WO2022099529A1 - 转子组件以及包括该转子组件的电机和设备 - Google Patents
转子组件以及包括该转子组件的电机和设备 Download PDFInfo
- Publication number
- WO2022099529A1 WO2022099529A1 PCT/CN2020/128263 CN2020128263W WO2022099529A1 WO 2022099529 A1 WO2022099529 A1 WO 2022099529A1 CN 2020128263 W CN2020128263 W CN 2020128263W WO 2022099529 A1 WO2022099529 A1 WO 2022099529A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor
- rotor assembly
- balance weight
- support portion
- magnet
- Prior art date
Links
- 230000002093 peripheral effect Effects 0.000 claims abstract description 6
- 239000004020 conductor Substances 0.000 claims description 10
- 230000008093 supporting effect Effects 0.000 description 15
- 230000004907 flux Effects 0.000 description 11
- 239000000463 material Substances 0.000 description 8
- 230000009471 action Effects 0.000 description 4
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 229910001369 Brass Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/24—Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/04—Balancing means
Definitions
- the present application relates to a rotor assembly and a motor and apparatus including the rotor assembly, eg, a motor and a compressor for a compressor.
- a motor is typically used to drive a crankshaft, which in turn drives moving parts such as a compression mechanism to compress the working fluid. Problems such as vibration, noise, etc. are often generated due to unbalanced motion of moving parts during operation of equipment or machines (eg, compressors) including a crankshaft.
- the electric machine includes a stator and a rotor rotatable relative to the stator.
- counterweights are fixed to the rotor so as to rotate with the rotor, thereby acting as a dynamic balance. Therefore, the rotor and counterweight fixed to each other may be referred to as a rotor assembly.
- the rotor is usually fitted with magnets.
- the balance weight can be made of non-magnetic conductive material, or a partition made of non-magnetic conductive material is provided between the balance weight and the rotor.
- some high-density non-magnetic-conductive materials such as brass, austenitic stainless steel, etc., are mainly used, and these non-magnetic-conductive materials are relatively expensive. Therefore, the cost of the rotor assembly with balance weights or diaphragms of non-magnetically permeable material is higher.
- the radially outer portion of the bottom surface of the counterweight is spaced from the magnets by a distance (i.e., forming an air gap) to prevent magnetic flux leakage.
- a distance i.e., forming an air gap
- An object of the present application is to provide a rotor assembly capable of improving bearing force under the condition of effectively preventing magnetic flux leakage.
- Another object of the present application is to provide a rotor assembly with lower material and assembly costs.
- a rotor assembly may include a rotor including a rotor core and magnets embedded in the rotor core between axial end faces of the rotor ; and a balance weight, the bottom surface of the balance weight facing the axial end surface of the rotor.
- the balancer includes a support portion extending and protruding in an axial direction and a radial direction from an outer peripheral edge of the bottom surface, the support portion being configured to form an air gap portion between the balancer and the magnet, and The support portion is located radially outside the magnet.
- a gap portion or an air gap portion is formed between the magnet and other parts of the bottom surface, thereby effectively preventing magnetic flux leakage.
- the support portion is disposed on the radially outer portion of the bottom surface, the distance between the resultant force supporting point of the support portion and the rotation center O is relatively large, and thus the stress condition of the balance weight and the fastener can be significantly improved.
- the counterweight includes a plurality of the support portions that are discretely arranged along a circumferential direction.
- the axial extension height of the support portion is greater than or equal to 3 mm.
- the shortest distance between the supporting parts and the magnets adjacent to each other is greater than or equal to 3 mm.
- the balance weight further includes a stopper portion extending and protruding from the bottom surface in an axial direction, the stopper portion being configured to prevent the magnet from protruding from the axial end surface.
- the counterweight is attached to the rotor by a fastener, and the stop is positioned adjacent the fastener.
- the stop is a single member extending from the support for each magnet.
- the stop portion extends from an adjacent support portion.
- the balance weight is made of a magnetically conductive material.
- the magnets are arranged in a zigzag shape in the circumferential direction.
- an electric machine including the above-described rotor assembly and a stator.
- an apparatus including the above-described motor.
- FIG. 1 is a schematic perspective view illustrating a rotor assembly according to an embodiment of the present disclosure
- Figure 2 is an exploded perspective view of the rotor assembly of Figure 1;
- FIG. 3 is a schematic cross-sectional view of the rotor assembly of FIG. 1;
- FIG. 4 is a perspective view showing the bottom surface of the upper balance weight of FIG. 1;
- Figure 5 is a top view of the rotor of Figure 1;
- 6A-6D are schematic plan views illustrating various bottom surfaces of a balance weight according to the present disclosure.
- FIG. 7 is a schematic diagram of a force analysis of the rotor assembly.
- FIGS. 1 to 5 show various schematic diagrams of rotor assemblies in accordance with embodiments of the present disclosure.
- the rotor assembly 1 according to an embodiment of the present disclosure will be described below with reference to FIGS. 1 to 5 .
- the rotor assembly 1 includes a rotor 20 and an upper balance weight 10 and a lower balance weight 30 respectively located at two ends of the rotor 20 .
- the upper balance weight 10 and the lower balance weight 30 are connected to the rotor 20 by fasteners 50 (eg, rivets or bolts).
- the upper balance weight 10 has through holes 11 for inserting the fasteners 50 .
- the rotor 20 has through holes 21 for inserting fasteners 50 .
- the lower balance weight 30 is used to insert the through hole 31 of the fastener 50 .
- the through holes 11 , 21 and 31 are aligned for insertion of the fastener 50 , thereby forming the rotor assembly 1 .
- the upper weight 10 has a base portion 12 and a weight portion 14 extending upward (in the axial direction) from the base portion 12 .
- the base 12 is configured for attachment of the upper counterweight 10 .
- the counterweight 14 is configured to achieve dynamic balance.
- the lower weight 30 has a base portion 32 and a weight portion 34 extending downwardly (in the axial direction) from the base portion 32 .
- the base 32 is configured for attachment of the lower weight 30 .
- the weight portion 34 is configured to achieve dynamic balance.
- the rotor 20 includes a cylindrical rotor core 22 and magnets 23 inserted or embedded in the rotor core 22 .
- the rotor assembly according to the present disclosure includes a balance weight whose bottom surface structure is improved to improve the stress condition, such as the upper surface structure (bottom surface structure) of the lower balance weight 30 shown in FIG. 2 and the lower surface structure of the upper balance weight 12 shown in FIG. 4 .
- Surface structure (bottom structure) such as the upper surface structure (bottom surface structure) of the lower balance weight 30 shown in FIG. 2 and the lower surface structure of the upper balance weight 12 shown in FIG. 4 .
- the structure of the weight portion 14 is different from that of the weight portion 34 , and the structure of the base portion 12 is substantially the same as that of the base portion 32 . It should be understood that the structures of the upper balance weight 10 and the lower balance weight 30 may be completely the same, partially the same or completely different, depending on the dynamic balancing requirements.
- the base portion 12 or 32 of the balance weight includes a bottom surface 100 , a support portion 110 extending and protruding axially and radially from an outer peripheral edge 101 of the bottom surface 100 , and a hole 150 for inserting the fastener 50 .
- the support portion 110 is used to support the balance weight on the rotor.
- the counterweight may include a plurality of supports 110, with six supports 110 in the example shown in FIG. 6A.
- the plurality of support portions 110 may be discretely arranged along the circumferential direction and/or distributed at equal intervals along the circumferential direction.
- the support portion 110 is located radially outside the magnet 23 . It should be understood that the “radial outer side” here refers to the relative positional relationship between the integral support portion and the integral magnet, as shown in FIG. 6A . Therefore, it is not excluded that a certain part of the support portion is radially inward of a certain part of the magnet.
- the resultant force supporting action point of each supporting portion 110 is located on the radially outer side of the radial centerline RC of the bottom surface 100 .
- the support portion 110 is provided away from the area of the magnets 23 (shown by the dashed line), ie, is provided corresponding to the area of the rotor without the magnets 23 (shown by the dashed line).
- the shortest distance between the adjacent support portion 110 and the magnet 23 may be greater than or equal to 3 mm to ensure its ability to prevent magnetic flux leakage.
- there is a constant distance d between the side walls of the adjacent support parts 110 and the side edges of the magnets 23 and the value of d may be greater than or equal to 3 mm.
- the side edge of the magnet 23 and the side wall of the support part 110 are not arranged in parallel, but also the shortest distance between the side edge of the magnet 23 and the side wall of the support part 110 may be greater than or equal to 3 mm.
- the axially extending height of the support portion 110 may be greater than or equal to 3 mm to ensure that the height of the formed void or air gap may be greater than or equal to 3 mm, thereby ensuring its ability to prevent magnetic flux leakage.
- the support portion 110 is provided at the radially outer portion of the bottom surface 100 , the distance from the rotation center O of the resultant support action point of the support portion 110 is relatively large. In this way, the supporting force of the rotor to the balance weight and the tightening force of the fastener to the balance weight can be reduced, that is, the stress condition of the balance weight and the fastener is significantly improved.
- the support portion 110 can not only effectively prevent magnetic flux leakage, but also can significantly improve the stress condition of each component of the rotor assembly and thus prolong the service life of the rotor assembly.
- the entire balance weight can be made of a magnetic conductive material (eg, iron-based metallurgical material), Alternatively, the spacer made of non-magnetically conductive material (eg, brass, austenitic stainless steel plate) disposed between the balance weight and the magnet can be omitted. In this way, the cost of the balance weight and rotor assembly can be significantly reduced.
- the structure of the support portion 110 is not limited to the specific example shown in the drawings, but can be varied as long as it can prevent magnetic flux leakage while improving the stress condition.
- the support portion 110 may be formed in one piece along the outer peripheral edge 101 of the bottom surface 100 .
- the shape of the support portion 110 may vary according to the arrangement of the magnets.
- the base portion 12 or 32 of the balance weight may further include a stop portion 130A extending and protruding from the bottom surface 100 in the axial direction.
- the stopper 130A is configured to prevent the magnets 23 (shown in phantom) from protruding from the axial end face of the rotor 20 .
- the stop 130A is in the form of a short column.
- Each stopper portion 130A serves to prevent the corresponding one of the magnets from protruding from the axial end face of the rotor 20 .
- the stopper portion 130A has a minimum area in contact with the magnet 23 under the condition that the stopper function can be realized. In this case, even if the stopper portion 130A is made of a magnetically conductive material, its magnetic flux leakage capability is limited.
- the stop 130A may be positioned proximate the hole 150 for receiving the fastener. In this way, the stop portion 130A can provide additional support for the balance weight near the connection portion (hole 150 ), thereby further improving the force bearing condition of the balance weight.
- the structure or shape of the stop 130A may vary.
- the stopper portion 130B has an oval shape.
- the stopper portion 13C is a curved elongated shape or a rib shape extending between adjacent support portions 110 to provide a stopper effect to two adjacent magnets at the same time. It should be understood that the stop 13C may be a linearly extending elongated shape or a rib shape.
- the stopper may be a single member provided for each magnet as shown in FIGS. 6A and 6B , or may be a member provided for two adjacent magnets as shown in FIG. 6C .
- the stopper may be omitted.
- the stopper may be omitted.
- the stopper may be omitted.
- the balance weight having the above-mentioned bottom surface structure can be applied to various arrangements of magnets.
- the rotor 20 has 12 magnets.
- Two magnets 23 are arranged between the adjacent through holes 21 for inserting the fastener 50, and the two magnets 23 may be V-shaped. In this way, all the magnets 23 are generally arranged in a zigzag shape in the circumferential direction.
- Each support portion 110 is located radially outside the adjacent V-shaped magnets 23 . In this way, the support portion 110 may have a larger size on the radially outer side and a smaller size on the radially inner side, so that the resultant force supporting action point of the support portion 110 is closer to the outer peripheral edge 101 of the bottom surface 100 .
- Such a configuration is not only beneficial to the arrangement of the magnets 23 , but also to improving the stress condition of the support portion and the fastener. It should be understood that the arrangement of the magnets is not limited to the specific examples shown, but may vary.
- the above-described rotor assembly according to the present disclosure can be applied to various electric machines, eg, permanent magnet electric machines.
- the electric machine also includes a stator (not shown) about which the rotor assembly is rotatable.
- the electric machine including the above-described rotor assembly can be applied to various apparatuses or machines, for example, a compressor.
- the magnetically permeable material and the non-magnetically permeable material can be understood according to the usual meaning in the art, for example, the magnetically permeable material can refer to a material with a relatively high magnetic rate, while the non-magnetically conductive material can refer to a material with a relatively low magnetic rate .
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
一种转子组件以及包括该转子组件的电机和设备,该转子组件(1)包括:转子(20),所述转子(20)包括转子芯(22)和在所述转子(20)的轴向端面之间嵌置在所述转子芯(22)中的磁体(23);以及平衡块(10,30),所述平衡块(10,30)的底面(100)面向所述转子(20)的轴向端面;所述平衡块(10,30)包括从所述底面(100)的外周边缘(101)沿轴向方向和径向方向延伸突出的支承部(110),所述支承部(110)构造成在所述平衡块(10,30)与所述磁体(23)之间形成气隙部,并且所述支承部(110)位于所述磁体(23)的径向外侧。
Description
本申请涉及一种转子组件以及一种包括该转子组件的电机和设备,例如,用于压缩机的电机和压缩机。
本部分中所提供的技术内容旨在有助于本领域技术人员对本申请的理解,而不一定构成现有技术。
电机通常用于驱动曲轴,曲轴再带动诸如压缩机构的运动部件运动以对工作流体进行压缩。在包括曲轴的设备或机器(例如,压缩机)运行时,由于运动部件的运动不平衡而常常产生振动、噪声等问题。
针对这种运动不平衡,通常在运动部件上设置能够提供反向离心力的平衡块以平衡所产生的运动不平衡从而减小振动和噪音。电机包括定子和相对于定子能够旋转的转子。常见的是,将平衡块固定至转子以便随着转子一起旋转,由此起到动平衡的作用。因此,可以将固定至彼此的转子和平衡块称为转子组件。
转子中通常配装有磁体。为了防止漏磁,平衡块可以由非导磁材料制成,或者在平衡块与转子之间设置有由非导磁材料制成的隔板。众所周知,对于转子组件而言,主要采用一些高密度的非导磁材料,比如黄铜、奥氏体不锈钢等,这些非导磁材料较贵。因此,具有非导磁材料的平衡块或隔板的转子组件的成本较高。
在现有的一种转子组件中,平衡块的底面的径向外部与磁体间隔开一定 距离(即,形成气隙)以防止漏磁。然而,这种转子组件会因为例如铆钉断裂而过早失效。
因此,期望的是,提供一种成本较低、能够有效防止漏磁且能够改善支承受力的转子组件。
发明内容
在本部分中提供本申请的总概要,而不是本申请完全范围或本申请所有特征的全面公开。
本申请的一个目的是提供一种在有效防止漏磁的情况下能够改善支承受力的转子组件。
本申请的另一目的是提供一种材料成本和组装成本较低的转子组件。
为了实现上述目的中的至少一个,提供一种转子组件,该转子组件可以包括:转子,所述转子包括转子芯和在所述转子的轴向端面之间嵌置在所述转子芯中的磁体;以及平衡块,所述平衡块的底面面向所述转子的轴向端面。所述平衡块包括从所述底面的外周边缘沿轴向方向和径向方向延伸突出的支承部,所述支承部构造成在所述平衡块与所述磁体之间形成气隙部,并且所述支承部位于所述磁体的径向外侧。
根据本公开的转子组件,由于支承部的凸出形状和支承作用,使磁体与底面的其他部分之间形成空隙部或气隙部,由此可以有效地防止漏磁。此外,由于支承部设置在底面的径向外侧部,因此支承部的合力支承作用点距离旋转中心O的距离较大,并因此可以显著改善平衡块以及紧固件的受力情况。
在根据本公开的一些示例中,所述平衡块包括沿着周向方向离散地布置的多个所述支承部。
在根据本公开的一些示例中,所述支承部的轴向延伸高度大于等于3mm。
在根据本公开的一些示例中,彼此相邻的所述支承部与所述磁体之间的最短距离大于等于3mm。
在根据本公开的一些示例中,所述平衡块还包括从所述底面沿轴向方向延伸突出的止档部,所述止档部构造成防止所述磁体从所述轴向端面伸出。
在根据本公开的一些示例中,所述平衡块通过紧固件附接至所述转子,并且所述止档部定位成邻近所述紧固件。
在根据本公开的一些示例中,所述止档部为针对每个磁体从所述支承部延伸的单个构件。
在根据本公开的一些示例中,所述止档部从相邻的支承部延伸。
在根据本公开的一些示例中,所述平衡块由导磁材料制成。
在根据本公开的一些示例中,所述磁体沿周向方向呈锯齿形状布置。
根据本公开的另一方面,提供一种包括上述转子组件和定子的电机。
根据本公开的又一方面,提供一种包括上述电机的设备。
通过以下参照附图的描述,本申请的一个或多个实施方式的特征和优点将变得更加容易理解,在附图中:
图1为示出根据本公开实施方式的转子组件的立体示意图;
图2为图1的转子组件的分解立体图;
图3为图1的转子组件的剖面示意图;
图4为示出图1的上平衡块的底面的立体示意图;
图5为图1的转子的俯视图;
图6A至图6D为示出根据本公开的平衡块的各种底面的平面示意图;以及
图7为转子组件的受力分析的示意图。
下面参照附图、借助示例性实施方式对本申请进行详细描述。对本申请的以下详细描述仅仅是出于说明目的,而绝不是对本申请及其应用或用途的限制。
图1至图5示出了根据本公开的实施方式的转子组件的各种示意图。下面将参照图1至图5对根据本公开实施方式的转子组件1进行描述。
如图1至图5所示,转子组件1包括转子20以及分别位于转子20两端的上平衡块10和下平衡块30。上平衡块10和下平衡块30通过紧固件50(例如,铆钉或螺栓)与转子20连接在一起。上平衡块10具有用于插入紧固件50的通孔11。转子20具有用于插入紧固件50的通孔21。下平衡块30用于插入紧固件50的通孔31。通孔11、21和31对准以便插入紧固件50,从而形成转子组件1。
上平衡块10具有基部12和从基部12向上(沿轴向方向)延伸的配重部14。基部12构造用于上平衡块10的附接。配重部14构造用于实现动平衡。类似地,下平衡块30具有基部32和从基部32向下(沿轴向方向)延伸的配重部34。基部32构造用于下平衡块30的附接。配重部34构造用于实现动平衡。
参见图5,转子20包括筒形的转子芯22以及插入或嵌入转子芯22中的磁体23。
本申请的发明人发现,现有的转子组件常常因为紧固件(铆钉)50断裂而过早失效。针对该问题,发明人对现有的转子组件进行了受力分析并根据其受力分析的结构提出了本申请。下面将参照图7对转子组件的受力情况进行说明。
如图7所示,向上的力SF表示转子对上平衡块10’的支承力;向下的力FF表示经由n个铆钉50’将上平衡块10’紧固至转子20’的紧固力;径向向外的力IF表示在转子组件旋转时产生的惯性力。支承力SF的合力作用点与旋转中心O之间的水平距离为a;惯性力IF与转子20’的端面(支承面)的竖向距离为h。
在受力平衡的情况下,转子对上平衡块施加的向上的支承力SF应等于n个螺钉对上平衡块的向下的紧固力FF,即,n*FF=SF。
在力矩平衡的情况下,由支承力SF产生的逆时针力矩应等于由惯性力IF产生的顺时针力矩,即,SF*a=IF*h。
如果支承力SF的合力作用点越靠近旋转中心O,即,径向向内靠近旋转中心O,则距离a的值越小,相应地,支承力SF以及紧固力FF越大。这种情况下,螺钉容易过早断裂。
对于现有的转子组件,为了防止漏磁,在平衡块的底面的径向外侧部与转子的磁体之间形成气隙。因此,平衡块的支承力的合力作用点距离旋转中心O较近,使得螺钉容易断裂。
基于上述发现,本申请的发明人提出了本申请。根据本公开的转子组件包括底面结构进行改进以改善受力情况的平衡块,如图2所示的下平衡块30的上表面结构(底面结构)以及图4所示的上平衡块12的下表面结构(底面 结构)。
在图1至图3的示例中,配重部14与配重部34的结构不同,而基部12的结构与基部32的结构基本相同。应理解的是,上平衡块10和下平衡块30的结构可以完全相同,部分相同或完全不同,这取决于动平衡要求。
图6A是示出图2的下平衡块和图4的上平衡块的底面结构的平面示意图。下面将参照图6A来描述根据本公开的平衡块的底面结构。如图6A所示,平衡块的基部12或32包括底面100、从底面100的外周边缘101沿轴向方向和径向方向延伸突出的支承部110以及用于插入紧固件50的孔150。
支承部110用于将平衡块支承在转子上。平衡块可以包括多个支承部110,在图6A所示的示例中具有6个支承部110。多个支承部110可以沿着周向方向离散地布置并且/或者沿周向方向等间距地分布。
支承部110位于磁体23的径向外侧。应理解的是,此处的“径向外侧”指的是整体支承部与整体磁体之间的相对位置关系,如图6A所示。因此,并不排除支承部的某个部分在磁体的某个部分的径向内侧的情况。每个支承部110的合力支承作用点位于底面100的径向中心线RC的径向外侧。支承部110避开磁体23(如虚线所示)的区域设置,即,设置在与转子的没有磁体23(如虚线所示)的区域相对应。
由于支承部110的凸出形状和支承作用,使磁体23与底面100的其他部分之间形成空隙部或气隙部,由此可以有效地防止漏磁。相邻的支承部110与磁体23的最短距离可以大于等于3mm,以确保其防止漏磁的能力。例如,如图6A所示,相邻的支承部110的侧壁与磁体23的侧边缘之间具有恒定距离d,d的值可以大于等于3mm。在未示出的示例中,磁体23的侧边缘与支 承部110的侧壁并非平行布置,但同样磁体23的侧边缘与支承部110的侧壁之间的最短距离可以大于等于3mm。
此外,支承部110的轴向延伸高度可以大于等于3mm,以确保形成的空隙部或气隙部的高度可以大于等于3mm,由此确保其防止漏磁的能力。
由于支承部110设置在底面100的径向外侧部,因此支承部110的合力支承作用点距离旋转中心O的距离较大。如此,转子对平衡块的支承力以及紧固件对平衡块的紧固力可以减小,即,显著改善了平衡块以及紧固件的受力情况。
因此,支承部110不仅能够有效地防止漏磁,而且能够显著改善转子组件的各个部件的受力情况并因此延长转子组件的使用寿命。
此外,由于支承部110提供了平衡块与磁体之间的气隙部,即,平衡块不会与磁体接触,因此整个平衡块可以由导磁材料(例如,铁基的冶金材料)制成,或者可以省去设置在平衡块与磁体之间的由非导磁材料(比如,黄铜,奥氏体不锈钢板)制成的隔板。这样,可以显著降低平衡块以及转子组件的成本。
应理解的是,支承部110的结构不局限于图示的具体示例,而是可以变化,只要其能够防止漏磁同时改善受力情况即可。例如,支承部110可以沿着底面100的外周边缘101形成为一体件。支承部110的形状可以根据磁体的布置而变化。
平衡块的基部12或32还可以包括从底面100沿轴向方向延伸突出的止档部130A。止档部130A构造用于防止磁体23(如虚线所示)从转子20的轴向端面伸出。
在图6A的示例中,止档部130A为短的柱状的形式。每个止档部130A用于防止相应的一个磁体从转子20的轴向端面伸出。优选地,止档部130A在能够实现止档作用的情况下具有与磁体23接触的最小面积。这种情况下,即使止档部130A由导磁材料制成,其漏磁的能力也会受到限制。
止档部130A可以定位成靠近用于接收紧固件的孔150。这样,止档部130A可以在连接部位(孔150)附近为平衡块提供额外支承,由此可以进一步改善平衡块的受力情况。
应理解的是,止档部130A的结构或形状可以变化。例如,如图6B所示,止档部130B具有长圆形的形状。如图6C所示,止档部13C为在相邻的支承部110之间延伸的弯曲的长形形状或肋形形状,以对相邻的两个磁体同时提供止档作用。应理解的是,止档部13C可以是线性地延伸的长形形状或肋形形状。
止档部可以为如图6A和图6B所示地针对每个磁体设置的单个构件,或者可以为如图6C所示地针对相邻的两个磁体设置的构件。
此外,如图6D所示,可以省去止档部。例如,在磁体能够通过粘合剂或其他方式牢固地固定在转子芯22中的情况下,可以省去止档部。
具有上述底面结构的平衡块可以适用于磁体的各种布置。参见图5,转子20具有12个磁体。在用于插入紧固件50的相邻的通孔21之间布置有两个磁体23,这两个磁体23可以呈V形。如此,所有的磁体23大体以锯齿形状沿周向方向进行布置。每个支持部110位于相邻的V形磁体23的径向外侧。这样,支持部110可以在径向外侧具有较大尺寸,而在径向内侧具有较小尺寸,使得支持部110的合力支承作用点更加靠近底面100的外周边缘101。 这样的构造不仅有利于磁体23的布置,而且有利于改善支承部以及紧固件的受力情况。应理解的是,磁体的布置不局限于图示的具体示例,而是可以改变。
根据本公开的上述转子组件可以适用于各种电机,例如,永磁体电机。电机还包括定子(未示出),转子组件能够围绕定子旋转。此外,包括上述转子组件的电机可以适用于各种设备或机器,例如,压缩机。
在本申请文件中,方位术语“上”和“下”等的使用仅仅出于便于描述的目的,而不应视为是限制性的。另外,在本申请文件中,导磁材料和非导磁材料可以依照本领域的通常含义理解,例如,导磁材料可以指导磁率相对高的材料,而非导磁材料可以指导磁率相对低的材料。
虽然已经参照示例性实施方式对本申请进行了描述,但是应当理解,本申请并不局限于文中详细描述和示出的具体实施方式,在不偏离权利要求书所限定的范围的情况下,本领域技术人员可以对示例性实施方式做出各种改变。
Claims (12)
- 一种转子组件,包括:转子,所述转子包括转子芯和在所述转子的轴向端面之间嵌置在所述转子芯中的磁体;以及平衡块,所述平衡块的底面面向所述转子的轴向端面,其中,所述平衡块包括从所述底面的外周边缘沿轴向方向和径向方向延伸突出的支承部,所述支承部构造成在所述平衡块与所述磁体之间形成气隙部,并且所述支承部位于所述磁体的径向外侧。
- 根据权利要求1所述的转子组件,其中,所述平衡块包括沿着周向方向离散地布置的多个所述支承部。
- 根据权利要求1或2所述的转子组件,其中,所述支承部的轴向延伸高度大于等于3mm。
- 根据权利要求1或2所述的转子组件,其中,彼此相邻的所述支承部与所述磁体之间的最短距离大于等于3mm。
- 根据权利要求1或2所述的转子组件,其中,所述平衡块还包括从所述底面沿轴向方向延伸突出的止档部,所述止档部构造成防止所述磁体从所述轴向端面伸出。
- 根据权利要求5所述的转子组件,其中,所述平衡块通过紧固件附接至所述转子,并且所述止档部定位成邻近所述紧固件。
- 根据权利要求5所述的转子组件,其中,所述止档部为针对每个磁体从所述支承部延伸的单个构件。
- 根据权利要求5所述的转子组件,其中,所述止档部从相邻的支承部延伸。
- 根据权利要求1或2所述的转子组件,其中,所述平衡块由导磁材料制成。
- 根据权利要求1或2所述的转子组件,其中,所述磁体沿周向方向呈锯齿形状布置。
- 一种包括根据权利要求1至10中任一项所述的转子组件和定子的电机。
- 一种包括根据权利要求11所述的电机的设备。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/128263 WO2022099529A1 (zh) | 2020-11-12 | 2020-11-12 | 转子组件以及包括该转子组件的电机和设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/128263 WO2022099529A1 (zh) | 2020-11-12 | 2020-11-12 | 转子组件以及包括该转子组件的电机和设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022099529A1 true WO2022099529A1 (zh) | 2022-05-19 |
Family
ID=81601947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/128263 WO2022099529A1 (zh) | 2020-11-12 | 2020-11-12 | 转子组件以及包括该转子组件的电机和设备 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022099529A1 (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010246390A (ja) * | 2010-07-21 | 2010-10-28 | Daikin Ind Ltd | モータ回転子 |
CN204041461U (zh) * | 2014-08-01 | 2014-12-24 | 艾默生环境优化技术(苏州)有限公司 | 压缩机 |
CN204190512U (zh) * | 2014-09-05 | 2015-03-04 | 上海日立电器有限公司 | 一种电机转子组件结构及转子式压缩机 |
CN204243933U (zh) * | 2014-11-17 | 2015-04-01 | 安徽美芝精密制造有限公司 | 压缩机及其电机转子组件 |
CN105508250A (zh) * | 2014-09-30 | 2016-04-20 | 艾默生环境优化技术(苏州)有限公司 | 平衡块、转子、转子组件以及旋转式压缩机 |
CN106998109A (zh) * | 2017-03-31 | 2017-08-01 | 广东美芝制冷设备有限公司 | 转子组件、电机和具有其的压缩机 |
CN107248791A (zh) * | 2017-03-31 | 2017-10-13 | 广东美芝精密制造有限公司 | 转子组件、电机和具有其的压缩机 |
CN208890558U (zh) * | 2018-09-19 | 2019-05-21 | 郑州凌达压缩机有限公司 | 平衡块、转子组件及压缩机 |
-
2020
- 2020-11-12 WO PCT/CN2020/128263 patent/WO2022099529A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010246390A (ja) * | 2010-07-21 | 2010-10-28 | Daikin Ind Ltd | モータ回転子 |
CN204041461U (zh) * | 2014-08-01 | 2014-12-24 | 艾默生环境优化技术(苏州)有限公司 | 压缩机 |
CN204190512U (zh) * | 2014-09-05 | 2015-03-04 | 上海日立电器有限公司 | 一种电机转子组件结构及转子式压缩机 |
CN105508250A (zh) * | 2014-09-30 | 2016-04-20 | 艾默生环境优化技术(苏州)有限公司 | 平衡块、转子、转子组件以及旋转式压缩机 |
CN204243933U (zh) * | 2014-11-17 | 2015-04-01 | 安徽美芝精密制造有限公司 | 压缩机及其电机转子组件 |
CN106998109A (zh) * | 2017-03-31 | 2017-08-01 | 广东美芝制冷设备有限公司 | 转子组件、电机和具有其的压缩机 |
CN107248791A (zh) * | 2017-03-31 | 2017-10-13 | 广东美芝精密制造有限公司 | 转子组件、电机和具有其的压缩机 |
CN208890558U (zh) * | 2018-09-19 | 2019-05-21 | 郑州凌达压缩机有限公司 | 平衡块、转子组件及压缩机 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2010231801B2 (en) | Electric motor rotor and compressor provided with the same | |
CN101584099B (zh) | 电动机和压缩机 | |
JP4539781B1 (ja) | 圧縮機用電動機の回転子 | |
JP5770407B2 (ja) | 永久磁石を固定するシステム | |
US8410655B2 (en) | Stator, motor, and compressor | |
US20060273667A1 (en) | Balancing structure for motor rotor | |
US20060181160A1 (en) | Balancing structure for motor | |
EP2458713A1 (en) | Rotor | |
WO2021083065A1 (zh) | 一种基于径向励磁的电磁式自动平衡装置 | |
WO2022099529A1 (zh) | 转子组件以及包括该转子组件的电机和设备 | |
JP2013155868A (ja) | スピンドルモータ | |
JP2008178233A (ja) | モータおよび圧縮機 | |
EP3882463B1 (en) | Vibration damping system by hanging vibrating source and a compressor using the same | |
CN213990313U (zh) | 转子组件以及包括该转子组件的电机和设备 | |
CN114498975A (zh) | 转子组件以及包括该转子组件的电机和设备 | |
JP2017082684A (ja) | 電動圧縮機 | |
CN116792459A (zh) | 自适应准零刚度脚垫、压缩机及制冷制热设备 | |
GB2417616A (en) | A motor without bearing | |
KR20130037177A (ko) | 스크류 압축기 | |
US8912703B2 (en) | Stator core and spindle motor including the same | |
JP2010041875A (ja) | ロータ、モータおよび圧縮機 | |
WO2022021663A1 (zh) | 压缩机 | |
CN215521266U (zh) | 涡旋压缩机的旋转组件和包括该旋转组件的涡旋压缩机 | |
CN214543966U (zh) | 一种配重组件及压缩机结构 | |
CN215186252U (zh) | 用于电动机的调谐质量阻尼器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20961086 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20961086 Country of ref document: EP Kind code of ref document: A1 |