WO2021083065A1 - 一种基于径向励磁的电磁式自动平衡装置 - Google Patents

一种基于径向励磁的电磁式自动平衡装置 Download PDF

Info

Publication number
WO2021083065A1
WO2021083065A1 PCT/CN2020/123514 CN2020123514W WO2021083065A1 WO 2021083065 A1 WO2021083065 A1 WO 2021083065A1 CN 2020123514 W CN2020123514 W CN 2020123514W WO 2021083065 A1 WO2021083065 A1 WO 2021083065A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
excitation
bearing
moving
counterweight
Prior art date
Application number
PCT/CN2020/123514
Other languages
English (en)
French (fr)
Inventor
潘鑫
吴海琦
江志农
高金吉
Original Assignee
北京化工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京化工大学 filed Critical 北京化工大学
Publication of WO2021083065A1 publication Critical patent/WO2021083065A1/zh
Priority to US17/561,884 priority Critical patent/US11362565B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/04Balancing means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof

Definitions

  • the invention relates to an automatic balancing device, in particular to an electromagnetic automatic balancing device based on radial excitation.
  • the electromagnetic slip ring automatic balancing device is an active balancing actuator that uses electromagnetic force to drive the counterweight to rotate. It was first proposed in 1998 by Dyer S.W. of the American Blance Dynamics (abbreviated as BalaDyne) company. This type of automatic balancing device not only has the advantages of not requiring complicated auxiliary systems, simple operation, and fast balancing speed, but also reduces the processing accuracy requirements for internal parts, and the manufacturing difficulty is small. There is no need for electrical energy and control signals in the working process. Transfer between them, fundamentally avoid the use of wear parts such as brushes, and the equipment has a longer service life. However, the dynamic ring and static ring in the traditional balancing device adopt a two-piece structure.
  • the dynamic ring and the static ring need to be installed separately, and the gap between the dynamic and static rings must be about 0.5mm, which is difficult to install and use.
  • the integrated electromagnetic slip ring type automatic balance structure does not need to adjust the gap between the dynamic and static rings during installation, it greatly reduces the installation difficulty of this type of product.
  • the counterweight plate due to its axial excitation structure, when the counterweight plate is too stressed, the counterweight plate Deflection may occur and collide with the excitation ring, which will interfere with the balance process.
  • the focus of the present invention is to improve the axial excitation structure to the radial excitation structure based on the integrated electromagnetic slip ring type automatic balance structure, which solves the problems of deflection and friction with the excitation ring during the rotation of the counterweight.
  • the permanent magnet and soft iron are used for joint drive, and under the premise that the self-locking force meets the demand, the drive capacity is effectively increased, and the operation stability and reliability of the balancing device are increased.
  • the purpose of the invention of this application is to solve the existing problems of the existing axial excitation structure, and to provide an electromagnetic automatic balancing device based on radial excitation.
  • the radial drive structure is adopted inside the device, and the counterweight disc uses permanent magnets—soft Iron combined drive.
  • the present invention adopts the following technical solutions:
  • An electromagnetic automatic balancing device based on radial excitation of the present invention includes: a housing, a moving ring, a static ring, a connecting bearing, and a controller.
  • the moving ring includes: an outer excitation ring, an inner excitation ring, a counterweight plate, and a second A counterweight, a second counterweight and a moving ring bearing;
  • the static ring includes: a stator, an excitation frame and a coil; the moving ring and the static ring are installed in the shell and connected by a connecting bearing (); the shell is connected by a partition Divide it into two spaces.
  • a stator is installed in the center of the casing.
  • Excitation skeletons are respectively fixed at both ends of the stator in the above two spaces.
  • a coil is installed in each excitation skeleton, and the controller passes through
  • the wire is connected to each coil, and a moving ring is installed in the space enclosed by the coil, the shell, the partition and the stator.
  • the outer wall of the outer excitation ring is fixed on the inner wall of the shell and is evenly distributed on the circumference of the outer excitation ring.
  • the internal excitation ring is fixed on the middle partition plate of the housing.
  • the internal excitation ring and the external excitation ring rotate coaxially.
  • the inner diameter of the internal excitation ring is connected with the stator through a connecting bearing and maintains a clearance fit.
  • the holes are divided into a hole group equipped with permanent magnets and a hole group equipped with soft iron.
  • the hole groups equipped with permanent magnet magnets and the hole group equipped with soft iron are arranged alternately along the circumference of the convex ring.
  • An electromagnetic automatic balancing device based on radial excitation of the present invention wherein: there are an even number of holes in the hole group of the permanent magnet magnet, the spacing between each hole is equal, and a permanent magnet magnet is installed in each hole ,
  • the N pole of the permanent magnet in one of the holes faces the outer teeth of the inner excitation ring
  • the S pole faces the inner teeth of the outer excitation ring
  • the S poles of the permanent magnets in the adjacent holes face the outer teeth of the inner excitation ring
  • the N poles face the outer excitation ring
  • the soft iron has an even number of holes in the hole group
  • the spacing between each hole is equal and equal to the hole spacing in the hole set of the permanent magnet.
  • the distance between the iron hole groups is 1.5 times the inner hole distance of the permanent magnet magnet or the soft iron hole group.
  • the moving ring further comprises: a moving ring end cover, a moving bearing outer ring positioning sleeve and a moving bearing inner ring positioning sleeve, the moving ring end cover is fixed on On the inner circumference of the outer excitation ring on one side of the counterweight plate, a moving bearing outer ring positioning sleeve and a moving bearing inner ring positioning sleeve are installed in the space enclosed by the excitation skeleton, the moving ring end cover, the inner excitation ring and the moving ring bearing.
  • the outer ring positioning sleeve of the dynamic bearing is sleeved on the counterweight plate, one end of which is against the outer ring of the dynamic bearing, the inner ring positioning sleeve of the dynamic bearing is sleeved on the inner excitation ring, and its end is against the inner ring of the dynamic bearing .
  • an electromagnetic automatic balancing device based on radial excitation further includes: bearing fasteners and excitation skeleton end covers, which are arranged on the outer circumference and inner circumference of the stator.
  • a connecting bearing is installed between the excitation rings, the connecting bearing is sleeved on the stator, one end of the connecting bearing is against the stator and the inner excitation ring, and the other end of the connecting bearing is equipped with a bearing fastener.
  • the end cover of the excitation skeleton is fixed on the excitation skeleton and the inner excitation ring. On the excitation skeleton between the end caps of the moving ring.
  • first counterweight and the second counterweight are semi-circular disc-shaped parts, and they are respectively mounted on two of each counterweight disc side.
  • An electromagnetic automatic balancing device based on radial excitation of the present invention wherein: a reference magnet is installed on the outer casing of the excitation skeleton, and a reference Hall element is installed at the corresponding position of the excitation skeleton, and the reference Hall element induces The position of the reference magnet is connected to the controller through a wire.
  • An electromagnetic automatic balancing device based on radial excitation of the present invention wherein: a positioning magnet is installed on each first counterweight close to the coil, and a positioning Hall element is installed at the corresponding position of the end cover of the excitation skeleton; The positioning Hall element senses the position of the positioning magnet and is connected to the controller through a wire.
  • An electromagnetic automatic balancing device based on radial excitation of the present invention wherein: the partition is integrated with the housing.
  • An electromagnetic automatic balancing device based on radial excitation of the present invention wherein: the stator, the excitation frame, the outer excitation ring, the inner excitation ring and the outer ring positioning sleeve of the dynamic bearing are made of soft magnetic material; the shell and the counterweight The disc is made of magnetically insulating material, and the first weight and the second weight are made of tungsten copper alloy, brass, stainless steel or aluminum alloy.
  • the electromagnetic automatic balancing device based on radial excitation of the present invention wherein: the electromagnetic automatic balancing device based on radial excitation is fixed to the shaft end of the rotating device through a connecting flange.
  • the electromagnetic automatic balancing device based on radial excitation of the present invention is installed on the end of the rotating shaft of the rotating device.
  • the controller inputs the positive and negative alternating driving voltage to the coil, and the static ring is in the moving ring according to the driving voltage.
  • An alternating magnetic field is generated on the side.
  • the inner excitation ring and outer excitation ring inside the moving ring are rapidly magnetized under the action of the magnetic field.
  • the interaction force between the inner excitation ring, the outer excitation ring and the permanent magnet and soft iron on the counterweight disk is used. Under the action of electromagnetic force, the counterweight disc inside the driving ring rotates step by step with respect to the rotating device.
  • the steps of the two counterweight discs By rotating and adjusting the phase of the center lines of the two eccentric masses and the angle between the counterweights, the mass distribution inside the balancing device can be changed online to form a compensation vector of moderate size and direction, and the unbalanced vibration of the rotating device can be suppressed online.
  • the radial excitation structure of the present invention solves the problem of deflection and friction between the inner excitation ring and the outer excitation ring of the counterweight disc.
  • the counterweight disc and the inner excitation ring and the outer excitation ring The fit gap of the spheroid can be smaller, and soft iron is used to replace part of the permanent magnets, which has a competitive advantage in terms of balance ability, balance speed and stability.
  • Figure 1 is a schematic cross-sectional view of the radial excitation electromagnetic slip ring automatic balancing device of the present invention
  • Fig. 2 is a schematic diagram of the coordination relationship between the outer excitation ring, the inner excitation ring and the counterweight plate in Fig. 1A-A;
  • Figure 3 is an enlarged partial magnetic circuit analysis diagram of the radial excitation electromagnetic slip ring automatic balancing device of the present invention
  • Figure 4 is an analysis diagram of the enlarged magnetic circuit of the outer excitation ring, the inner excitation ring and the counterweight disk of the radial excitation electromagnetic slip ring automatic balancing device of the present invention in the self-locking state;
  • Fig. 5 is a schematic diagram of the cooperation relationship between the outer excitation ring, the inner excitation ring and the counterweight plate of the radial excitation electromagnetic slip ring automatic balancing device of the present invention at the middle position of the stepping state;
  • Fig. 6 is a schematic diagram of the cooperation relationship between the outer excitation ring, the inner excitation ring and the counterweight plate of the radial excitation electromagnetic slip ring automatic balancing device of the present invention at the final position of the stepping state.
  • an electromagnetic automatic balancing device based on radial excitation of the present invention is fixed to the shaft end of the rotating device 14 through a connecting flange 15. It includes: a moving ring, a static ring, a controller 13 and a connection Bearing 27. Both the moving ring and the static ring are installed in the housing 1.
  • the moving ring includes: housing 1, outer excitation ring 2, inner excitation ring 3, counterweight plate 4, first counterweight 5, second counterweight 25, moving ring bearing 9, moving ring end cover 6, bearing outer ring
  • the positioning sleeve 29 and the positioning sleeve 30 of the bearing inner ring includes: the stator 10, the excitation skeleton 2, the excitation skeleton end cover 7 and the coil 26. Both the moving ring and the static ring are installed in the housing 1.
  • the housing 1 is divided into two spaces by a partition 22.
  • the housing 1 and the partition 22 are integrated.
  • the two inner excitation rings 3 are respectively fixed on the partition 22 of the housing 1 by bolts, and the inner excitation ring 3 is evenly distributed on the circumference.
  • the first counterweight 5 and the second counterweight 25 are semi-circular disc-shaped parts, and are installed on the inner and outer sides of the counterweight disc 4 respectively.
  • the moving ring end cover 6 is fixed on the inner circumference of the outer excitation ring 2 on one side of the counterweight disk 4, and plays a role of separating the moving and static rings and preventing dust.
  • the moving ring bearing 9 is fitted into the bearing hole of the counterweight plate 4.
  • the aforementioned counterweight plate 4, the first counterweight 5, the second counterweight 25, and the moving ring bearing 9 are integrally sleeved on the outer ring of the inner excitation ring 3. It is positioned by the stepped shaft on the moving ring bearing 9 and the inner excitation ring 3, and the stepped shaft is the stator 10.
  • a bearing outer ring positioning sleeve 29 and a bearing inner ring positioning sleeve 30 are fixed on the outer side of the moving ring bearing 9.
  • the outer ring positioning sleeve 29 of the moving bearing is sleeved on the counterweight plate 4, one end of which is against the outer ring of the moving ring bearing 9.
  • the inner ring positioning sleeve 30 of the dynamic bearing is set on the inner excitation ring 3, one end of which is against the inner ring of the dynamic bearing 9 and it is used to locate the inner ring of the dynamic bearing 9 to prevent the inner ring of the dynamic bearing 9 from being excited. Ring 3 moves relative to each other.
  • the outer wall of the outer excitation ring 2 is fixed on the inner wall of the housing 1, and a number of outer excitation ring inner teeth 24 are evenly distributed on the circumference of the outer excitation ring 2.
  • the number of the inner teeth 24 of the outer excitation ring and the outer teeth 23 of the inner excitation ring are equal and the number of teeth is 24 respectively.
  • the tooth shape is rectangular.
  • the inner teeth 24 of the outer excitation ring and the outer teeth 23 of the inner excitation ring correspond one-to-one along the radial direction of the housing 1. .
  • the outer ring of the stator 10 and the inner diameter of the inner excitation ring 3 are installed through clearance fit.
  • the inner ring of the connecting bearing 27 is matched with the outer surface of the stator 10, the outer ring is matched with the bearing hole of the inner excitation ring 3, and the outer side of the connecting bearing 27 is equipped with a bearing fastener 11.
  • a stator 10 is installed in the center of the housing 1.
  • Excitation skeletons 8 are respectively fixed at both ends of the stator 10, and an annular coil 26 is installed inside each excitation skeleton 8.
  • the excitation frame end cover 7 is fixed in the groove on the end surface of the excitation frame 8.
  • the above-mentioned excitation skeleton 8, coil 26, and excitation skeleton end cover 7 are integrally installed on the stator 10, and the outer side is fixed on the stator 10 by a lock nut 12.
  • convex ring 28 on the outer circumference of the counterweight plate 4, and the convex ring 28 extends between the inner teeth 24 of the outer excitation ring and the outer teeth 23 of the inner excitation ring.
  • the several holes are divided into a hole group with permanent magnets and a hole group with soft iron.
  • the hole group with permanent magnet magnet and the hole group with soft iron are along the convex ring.
  • a permanent magnet is installed in each hole, and one of the holes is
  • the N pole of the permanent magnet magnet faces the outer teeth of the inner excitation ring
  • the S pole faces the inner teeth of the outer excitation ring
  • the S poles of the permanent magnets in the adjacent holes face the outer teeth of the inner excitation ring
  • the N poles face the inner teeth of the outer excitation ring.
  • There is a hole in the soft iron hole group the distance between each hole is equal and equal to the hole distance in the hole group of the permanent magnet, between the hole group with the permanent magnet and the hole group with the soft iron
  • the distance between the inner holes of the permanent magnet magnet or the inner holes of the soft iron is 1.5 times, and the first weight and the second weight are respectively installed on both sides of the weight plate.
  • the numbers of the inner teeth 24 of the outer excitation ring and the outer teeth 23 of the inner excitation ring are 24 respectively.
  • the tooth profiles of the inner teeth 24 of the outer excitation ring and the outer teeth 23 of the inner excitation ring are rectangular.
  • the tooth width of the outer teeth 23 of the inner excitation ring is the hole spacing of two adjacent permanent magnets 20 or the hole spacing of the soft iron 21.
  • the hole group of the magnetic magnet 20 and the 4 hole groups equipped with soft iron 21, the permanent magnet 20 and the soft iron 21 are pressed into the above holes through interference fit, the hole group with the permanent magnet 20 and the hole group of the soft iron 21
  • the groups are arranged symmetrically on the outer circumference of the convex ring 28, and the gap between the permanent magnet 20 and the soft iron 21 and the tooth tip of the inner tooth 24 of the outer excitation ring and the tooth tip of the outer tooth 23 of the inner excitation ring is generally 0.3mm ⁇ 0.5 Within mm.
  • the static ring includes a stator 10, an excitation skeleton 8, an excitation skeleton end cover 7, and a coil 26.
  • the stator 10 is a stepped shaft with a through hole in the middle and threads on both ends.
  • the outer ring of the stator 10 and the inner diameter of the inner excitation ring 3 are installed through a clearance fit, and the clearance is in the range of 0.2-0.4 mm.
  • the excitation skeleton 8 has a "mountain" shape, and the inside thereof is used to install the toroidal coil 26.
  • a through hole is opened at the bottom of the excitation skeleton 8 for leading out the positioning Hall sensor element 18 and the coil 26 wires.
  • the excitation frame end cover 7 is fixed in the groove on the end face of the excitation frame 8 for fixing the coil.
  • excitation skeleton 8, coil 26, and excitation skeleton end cover 7 are fitted into the stator 10 together so that one end of the excitation skeleton 8 bears against the bearing fastener 11, and the outside of the excitation skeleton 8 is fixed on the stator 10 by a lock nut 12.
  • the wire of the inner coil 26 of the excitation skeleton 8 is led out from the through hole at the bottom of the inner test excitation skeleton 8, passes through the through hole of the stator 10, and is introduced into the aviation plug together with the wire of the outer coil 26 to connect to the controller 13.
  • the controller 13 is installed on the outside of the balancing device.
  • the inner ring of the connecting bearing 27 is matched with the outer surface of the stator 10, and the outer ring is matched with the bearing hole of the inner excitation ring 3 to connect the moving and static rings and to ensure the long-term stable operation of the moving and static rings under a small gap.
  • the bearing fastener 11 is installed on the outside of the connecting bearing 27, and the bearing fastener 11 can control the gap between the excitation frame 8 and the moving ring through its axial length, and fix the inner ring of the connecting bearing 27.
  • the housing 1 of the outer excitation skeleton 8 is equipped with a reference magnet 16, and a reference Hall element 17 is installed at the corresponding position of the outer excitation skeleton 8.
  • the reference Hall element 17 senses the position of the reference magnet 16, and is close to each coil 26.
  • a counterweight 5 is equipped with a positioning magnet 19, and a groove is opened at the corresponding position of the excitation skeleton end cover 7.
  • the positioning Hall element 18 is embedded in the groove of the excitation skeleton end cover 7, and the positioning Hall element 18 induces the positioning magnet. 19 location.
  • the wire of the outer positioning Hall element 18 passes through the bottom through hole of the outer excitation frame 8, and the inner positioning Hall element 18 is led out from the bottom through hole of the inner excitation frame 8, passes through the through hole of the stator 10, and merges with the wire of the outer positioning hall element 18 Into the aviation plug.
  • the aviation plug leads to a total of two buses to distinguish between strong and weak currents.
  • the coil 26 leads into the strong current bus, and the reference Hall element 17 and the positioning Hall element 18 lead into the weak current bus. Both the strong and weak current buses are connected to the controller 13.
  • the reference Hall element 17 and the positioning Hall element 18 can detect the specific phase of the two counterweight plates 4.
  • the stator 10, the excitation frame 8, the outer excitation ring 2, the inner excitation ring 3, and the outer ring positioning sleeve 29 of the moving bearing are made of soft magnetic materials; the housing 1 and the counterweight 4 are made of magnetically insulating materials such as aluminum alloy.
  • the weight 5 and the second weight 25 are made of tungsten copper alloy, brass, stainless steel or aluminum alloy.
  • the stationary ring does not rotate with the moving ring.
  • the static ring When the balancing device needs to act, the static ring generates an alternating magnetic field on the side of the moving ring under the action of the control signal, driving the core component of the moving ring, the counterweight disk 4 and the outer ring of the moving ring bearing 9 connected to it.
  • the outer excitation ring 2 and the inner excitation ring 3 of the moving ring rotate step by step, driving the first weight 5 and the second weight 25 to form the required compensation mass, and suppress the unbalanced vibration of the main shaft of the rotating device 14 on-line.
  • the radial excitation electromagnetic slip ring automatic balancing device of the present invention is an axisymmetric structure, as shown in Figure 4, a quarter of the structure is taken for magnetic circuit analysis, and the principle of magnetic circuit transmission is described as follows: the excitation skeleton of the static ring 8, the static ring The five parts of the ring stator 10, the outer excitation ring 2, the inner excitation ring 3 and the outer ring positioning sleeve 29 of the dynamic bearing are all made of soft magnetic materials, which together form a closed magnetic circuit, and the closing direction of the magnetic circuit is controlled by The positive or negative of the driving voltage supplied by the device 13 to the coil 26 is determined. During operation, the coil 26 is energized to generate a magnetic field.
  • the excitation skeleton 8 After the magnetic field is strengthened by the excitation skeleton 8, it passes through the gap between the moving and static rings in the direction of the arrow in the figure, and magnetizes the outer excitation ring 2 and the inner excitation ring 3 to make the outer
  • the excitation ring 2 and the inner excitation ring 3 respectively form the N pole and S pole; according to the principle of "same sex repulsion and opposite sex attraction" of the magnet, the outer excitation ring 2 and inner excitation ring 3 interact with the magnet on the counterweight disk 4, Then the counterweight plate 4 is driven to rotate step by step relative to other parts of the moving ring; the magnetic circuit returns to the excitation skeleton 8 through the inner excitation ring 3, the moving bearing outer ring positioning sleeve 29 and the stator 10, forming a closed magnetic circuit loop.
  • the outer excitation ring 2 and the inner excitation ring 3 are made of soft magnetic material.
  • the outer excitation ring 2 and the inner excitation ring 3 are rapidly magnetized, and the counterweight disk 4 is driven to move step by step.
  • the static ring magnetic field is removed , The magnetic field of the outer excitation ring 2 disappears quickly, and the counterweight disk 4 continues to move to the next self-locking state under the action of inertia.
  • the inner ring of the outer excitation ring 2 and the outer ring of the inner excitation ring 3 are respectively machined with 24 radially convex outer excitation ring inner teeth 24 and inner excitation ring outer teeth 23, and the tooth profile is rectangular, and the tooth width is adjacent
  • the pitch of the permanent magnet 20 or adjacent soft iron 21 is slightly larger than the length of the permanent magnet/soft iron block.
  • the material of the weight plate 4 is aluminum alloy.
  • the cylindrical soft iron 21 and the permanent magnet 20, and the adjacent permanent magnets 20 have opposite polarities, and are used for self-locking of the counterweight disk 4 and driving by an external magnetic field.
  • the inner ring of the counterweight plate 4 is connected to the outer ring of the moving ring bearing 9, and a semicircular ring-shaped eccentric first counterweight 5 and a second counterweight 25 are respectively mounted on both sides.
  • the counterweight plate 4 is located in the middle position between the outer excitation ring 2 and the inner excitation ring 3, and the gap with the tooth tip of the inner tooth 24 of the outer excitation ring or the tooth tip of the outer tooth 23 of the inner excitation ring is generally 0.3mm ⁇ 0.5mm .
  • the cylindrical permanent magnet 20 and the soft iron 21 are pressed into the long cylindrical hole of the counterweight plate 4 through interference connection, and every two adjacent permanent magnets 20 are a pair, corresponding to the outer excitation ring 2 and the inner excitation ring 3
  • the adjacent soft iron 21 corresponds to a tooth top and a tooth bottom of the outer excitation ring 2 and the inner excitation ring 3, respectively.
  • the magnetic path of the permanent magnet 20 is: from the N pole of a permanent magnet 20, pass through the outer teeth 23 of the inner excitation ring, return to the S pole of the adjacent permanent magnet 20, and then pass through the permanent magnet 20 , Reaching the inner teeth 24 of the outer excitation ring on the other side, and finally returning to the S pole of the first permanent magnet 20, forming a closed loop.
  • the magnetic resistance of the permanent magnetic field circuit is the smallest at this position, the micro-movement of the counterweight plate 4 in any direction will generate a motion on the counterweight plate 4 to restore it to a stable equilibrium position.
  • the magnetic force is used to prevent the counterweight plate 4 from slipping.
  • the permanent magnet 20 generates a force that locks with the outer excitation ring 2 and the inner excitation ring 3 through the action of the magnetic force lines passing through the excitation ring, that is, the self-locking force.
  • the counterweight plate 4 rotates together with the rotating device 14 and can not rotate relative to the rotating device 14 within a certain acceleration and deceleration, so that the self-locking function of the counterweight plate 4 is realized.
  • the outer excitation ring 2 and the inner excitation ring 3 are magnetized to produce corresponding S poles and N poles, which have the effect of "same sex repulsion and opposite sex attraction" with the magnetic poles of the permanent magnet 20.
  • Each group of magnetic poles Both the suction and repulsion forces produce magnetic moments in the same direction relative to the center of the rotating shaft, so that the counterweight plate 4 moves counterclockwise. After the counterweight disk 4 rotates, the original force balance between the soft iron 21 and the outer excitation ring 2 and the inner excitation ring 3 is broken.
  • the soft iron 21 attracts the magnetized outer excitation ring 2 and the inner excitation ring 3, and When moving in the direction with the least magnetic resistance, the soft iron 21 and the permanent magnet 20 jointly drive the counterweight 4 to continue to rotate counterclockwise, and move from the position shown in FIG. 2 to the intermediate position shown in FIG. 5. At this time, the driving voltage needs to be cut off in time, and the counterweight plate 4 moves to the final position shown in FIG. 6 under the action of its own inertial force and self-locking force to complete a one-step rotation operation. If the direction of the applied magnetic field continues to be alternately changed, the counterweight plate 4 will produce continuous movement in the counterclockwise direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

一种基于径向励磁的电磁式自动平衡装置,包括:外壳(1)、动环、静环、连接轴承(27)和控制器(13),动环包括:外励磁环(2)、内励磁环(3)、配重盘(4)、第一配重块(5)、第二配重块(25)和动环轴承(9);静环包括:定子(10)、励磁骨架(8)和线圈(26);动环和静环均装在外壳(1)内,并通过连接轴承(27)相连,在外壳(1)的中央装有定子(10),在定子(10)两端分别固定有励磁骨架(8),外励磁环(2)外壁固定在外壳(1)内壁上,在外励磁环(2)圆周上均匀分布有若干个外励磁环内齿(24),内励磁环(3)固定在外壳(1)的中间隔板(22)上,在内励磁环(3)圆周上均匀分布有若干个内励磁环外齿(23),配重盘(4)套装在动环轴承(9)上,配重盘(4)的外圆周上有凸起圆环(28),凸起圆环(28)上加工有安装永磁磁铁(20)的孔组和装有软铁(21)的孔组,该凸起圆环(28)伸入到外励磁环内齿(24)和内励磁环外齿(23)之间。

Description

一种基于径向励磁的电磁式自动平衡装置 技术领域
本发明涉及了一种自动平衡装置,特别是一种基于径向励磁的电磁式自动平衡装置。
背景技术
因转子质量不平衡而引起的振动超标是旋转机械最常发生的故障,严重影响设备的运行效率、工作精度以及使用寿命等,而自动平衡装置因为能在线自动抑制旋转设备的不平衡故障,平衡速度快,且平衡过程中无需设备停机,一直被认为是解决不平衡振动故障的有效方案。
电磁滑环式自动平衡装置是利用电磁力驱动配重块旋转的主动式平衡执行器,于1998年由美国Blance Dynamics(简称BalaDyne)公司的Dyer S.W.等人首次提出。该类自动平衡装置不仅具有无需复杂的辅助系统、操作简单、平衡速度快的优点,同时降低了对内部零件的加工精度要求、制造难度小,且工作过程中无需电能和控制信号需要在动静件间传递,从根本上避免了电刷等磨损件的使用,设备使用寿命更高。但传统的该类平衡装置内部的动环、静环采用了两体式结构,安装过程中需要分别安装动环和静环,且要保证动静环间的间隙在0.5mm左右,安装和使用困难。一体化电磁滑环式自动平衡结构虽然安装时无需调整动静环间隙,大大降低了该类产品的安装难度,但是由于其采用轴向励磁结构,当配重盘受力过大时,配重盘可能会发生偏摆并与励磁环发生碰磨,对平衡过程产生干扰。
本发明的重点即在一体化电磁滑环式自动平衡结构的基础上,将轴向励磁结构改进为径向励磁结构,解决了配重盘转动过程中的偏摆以及与励磁环碰磨问题,并采用永磁体与软铁联合驱动,在自锁力满足需求的前提下,有效增大了驱动能力,增加了平衡装置的运行稳定性和可靠性。
发明内容
本申请的发明目的在于解决现有的轴向励磁结构存在的问题,而提供一种基于径向励磁的电磁式自动平衡装置,装置内部采用径向驱动结构,且配重盘使用永磁体—软铁联合驱动。
为解决上述技术问题,本发明采用如下技术方案:
本发明的一种基于径向励磁的电磁式自动平衡装置,它包括:外壳、动环、静环、连接轴 承和控制器,动环包括:外励磁环、内励磁环、配重盘、第一配重块、第二配重块和动环轴承;静环包括:定子、励磁骨架和线圈;动环和静环均装在外壳内,并由连接轴承()相连;外壳内由隔板将其分成二个空间,沿着外壳轴向方向,在外壳的中央装有定子,在上述二个空间的定子两端分别固定有励磁骨架,在每个励磁骨架内装有线圈,控制器分别通过导线与每个线圈相连,在线圈、外壳、隔板和定子所围成的空间内分别装有一个动环,其中:外励磁环的外壁固定在外壳内壁上,在外励磁环的圆周上均匀分布有偶数2N个外励磁环内齿,内励磁环固定在外壳的中间隔板上,内励磁环和外励磁环同轴旋转,内励磁环的内径与定子通过连接轴承连接并保持间隙配合,在内励磁环圆周上均匀分布有偶数2N个内励磁环外齿,外励磁环内齿与内励磁环外齿的数目相等,在外壳轴向上,外励磁环内齿与内励磁环外齿相互对应,在内励磁环的另一端装有动环轴承,配重盘固定在上述动环轴承的外圈上,在配重盘的两侧分别装有第一配重块和第二配重块,配重盘的外圆周上有一凸起圆环,该凸起圆环伸入到外励磁环内齿和内励磁环外齿之间,在凸起圆环上开有若干个孔,若干个孔分为装有永磁磁铁的孔组和装有软铁的孔组,装有永磁磁铁的孔组和装有软铁的孔组沿着凸起圆环的圆周相间依次排列。
本发明的一种基于径向励磁的电磁式自动平衡装置,其中:所述永磁磁铁的孔组内有偶数个孔,每个孔之间的间距相等,在每个孔内装有一永磁磁铁,其中一个孔中永磁磁铁的N极朝向内励磁环外齿,S极朝向外励磁环内齿,相邻孔内的永磁磁铁的S极朝向内励磁环外齿,N极朝向外励磁环内齿,所述软铁的孔组内有偶数个孔,每个孔之间的间距相等,并且等于永磁磁铁的孔组中的孔间距,装有永磁磁铁的孔组和装有软铁的孔组之间的间距为永磁磁铁的孔组内孔间距或软铁的孔组内孔间距的1.5倍。
本发明的一种基于径向励磁的电磁式自动平衡装置,其中:所述动环还包括:动环端盖、动轴承外圈定位套和动轴承内圈定位套,动环端盖固定在配重盘一侧的外励磁环的内圆周上,在励磁骨架、动环端盖、内励磁环和动环轴承所围成的空间内装有动轴承外圈定位套和动轴承内圈定位套,动轴承外圈定位套套装在配重盘上,它的一端顶住动环轴承的外圈,动轴承内圈定位套套装在内励磁环上,它的一端顶住动环轴承的内圈。
本发明的一种基于径向励磁的电磁式自动平衡装置,其中:一种基于径向励磁的电磁式自动平衡装置还包括:轴承紧固件和励磁骨架端盖,在定子的外圆周与内励磁环之间装有连接轴承,连接轴承套装在定子上,连接轴承的一端顶住定子和内励磁环,在连接轴承的另一端上装有轴承紧固件,励磁骨架端盖固定在励磁骨架和动环端盖之间的励磁骨架上。
本发明的一种基于径向励磁的电磁式自动平衡装置,其中:所述第一配重块和第二配重块 为半圆形盘状零件,它们分别装在每个配重盘的两侧。
本发明的一种基于径向励磁的电磁式自动平衡装置,其中:在罩在励磁骨架外侧的外壳上装有基准磁铁,在励磁骨架的相应位置处装有基准霍尔元件,基准霍尔元件感应基准磁铁的位置,并通过导线与控制器相连。
本发明的一种基于径向励磁的电磁式自动平衡装置,其中:在靠近线圈的每个第一配重块上装有定位磁铁,在励磁骨架端盖相应的位置处装有定位霍尔元件,定位霍尔元件感应定位磁铁的位置,并通过导线与控制器相连。
本发明的一种基于径向励磁的电磁式自动平衡装置,其中:所述隔板与外壳为一体。
本发明的一种基于径向励磁的电磁式自动平衡装置,其中:所述定子、励磁骨架、外励磁环、内励磁环和动轴承外圈定位套由软磁材料制成;外壳和配重盘由隔磁材料制成,第一配重块和第二配重块由钨铜合金、黄铜、不锈钢或铝合金材料制成。
本发明的一种基于径向励磁的电磁式自动平衡装置,其中:所述一种基于径向励磁的电磁式自动平衡装置通过连接法兰固定在旋转装置的轴端。
本发明的一种基于径向励磁的电磁式自动平衡装置装在旋转装置的转轴端部,在工作过程中,由控制器向线圈输入正负交替的驱动电压,静环根据驱动电压在动环侧面产生交变的磁场,动环内部的内励磁环和外励磁环在磁场作用下迅速磁化,利用内励磁环、外励磁环与配重盘上永磁磁铁和软铁之间的相互作用力,在电磁力作用下,驱动动环内部的配重盘相对于旋转装置进行步进旋转,由于两配重盘上均装有平衡能力相同的偏心质量块,因此,通过两配重盘的步进旋转调整两偏心质量块中心线所在相位以及配重块间的夹角,即可在线改变平衡装置内部的质量分布,形成大小和方向适中的补偿矢量,在线抑制被旋转装置的不平衡振动。相比于传统轴向励磁结构,本发明所述径向励磁结构解决了配重盘在内励磁环和外励磁环间的偏摆碰磨的问题,配重盘与内励磁环和外励磁环的配合间隙可以更小,并使用软铁代替部分永磁磁铁,在平衡能力、平衡速度和稳定性等方面均具有竞争优势。
附图说明
图1为本发明径向励磁电磁滑环自动平衡装置的剖面示意图;
图2为图1A-A处的外励磁环、内励磁环和配重盘配合关系的示意图;
图3为本发明径向励磁电磁滑环自动平衡装置的放大局部磁路分析图;
图4为本发明径向励磁电磁滑环自动平衡装置,在自锁状态下,外励磁环、内励磁环和配重盘的放大磁路分析图;
图5为本发明径向励磁电磁滑环自动平衡装置,在步进状态的中间位置处,外励磁环、内励磁环和配重盘配合关系的示意图;
图6为本发明径向励磁电磁滑环自动平衡装置,在步进状态的最终位置处,外励磁环、内励磁环和配重盘配合关系的示意图。
在图1至图6中,标号1为外壳;标号2为外励磁环;标号3为内励磁环;标号4为配重盘;标号5为第一配重块;标号6为动环端盖;标号7为励磁骨架端盖;标号8为励磁骨架;标号9为动环轴承;标号10为定子;标号11为轴承紧固件;标号12为锁紧螺母;标号13为控制器;标号14为旋转装置;标号15为连接法兰;标号16为基准磁铁;标号17为基准霍尔元件;标号18为定位霍尔元件;标号19为定位磁铁;标号20为永磁磁铁;标号21为软铁;标号22为隔板;标号23为内励磁环外齿;标号24为外励磁环内齿;标号25为第二配重块;标号26为线圈;标号27为连接轴承;标号28为凸起圆环;标号29为动轴承外圈定位套;标号30为动轴承内圈定位套。
具体实施方式
如图1所示,本发明的一种基于径向励磁的电磁式自动平衡装置通过连接法兰15固定在旋转装置14的轴端,它包括:包括动环、静环、控制器13和连接轴承27。动环和静环均装在外壳1内。
动环包括:外壳1、外励磁环2、内励磁环3、配重盘4、第一配重块5、第二配重块25、动环轴承9、动环端盖6、轴承外圈定位套29和轴承内圈定位套30;静环包括:定子10、励磁骨架2、励磁骨架端盖7和线圈26。动环和静环均装在外壳1内。
外壳1内由隔板22将其分成二个空间,外壳1与隔板22为一体,两件内励磁环3分别通过螺栓固定在外壳1的隔板22上,在内励磁环3圆周上均匀分布有若干个内励磁环外齿23。第一配重块5、第二配重块25为半圆形盘状零件,并分别安装在配重盘4内外侧。动环端盖6固定在配重盘4一侧的外励磁环2的内圆周上,起到分隔动、静环以及防尘的作用。动环轴承9装入配重盘4的轴承孔内,上述配重盘4、第一配重块5、第二配重块25、动环轴承9整体套装于内励磁环3外圈上,并通过动环轴承9和内励磁环3上的阶梯轴定位,该阶梯轴为定子10。动环轴承9外侧固定有轴承外圈定位套29和轴承内圈定位套30,动轴承外圈定位套29套装在配重盘4上,它的一端顶住动环轴承9的外圈,它用于动环轴承9外圈的定位,防止动环轴承9外圈和配重盘4发生相对移动,另外起到动环轴承9密封作用。动轴承内圈定位套30套装在内励磁环3上,它的一端顶住动环轴承9的内圈,它用于动环轴承9内圈的定位,防 止动环轴承9内圈和内励磁环3发生相对移动。
外励磁环2外壁固定在外壳1内壁上,在外励磁环2的圆周上均匀分布有若干个外励磁环内齿24。外励磁环内齿24与内励磁环外齿23的数目相等且齿数分别为24个,齿形为矩形,外励磁环内齿24与内励磁环外齿23沿外壳1径向方向一一对应。定子10外圈与内励磁环3的内径通过间隙配合安装。连接轴承27的内圈与定子10的外表面相配合,其外圈与内励磁环3的轴承孔相配合,连接轴承27外侧装有轴承紧固件11。
沿着外壳1轴向方向,在外壳1的中央装有定子10,在定子10两端分别固定有励磁骨架8,在每个励磁骨架8内部安装圆环状线圈26。励磁骨架端盖7固定在励磁骨架8端面的凹槽内。将上述励磁骨架8、线圈26、励磁骨架端盖7整体安装在定子10上,外侧通过锁紧螺母12固定在定子10上。
如图2所示,配重盘4的外圆周上有一凸起圆环28,该凸起圆环28伸入到外励磁环内齿24和内励磁环外齿23之间,在凸起圆环上开有若干个孔,若干个孔分为装有永磁磁铁的孔组和装有软铁的孔组,装有永磁磁铁的孔组和装有软铁的孔组沿着凸起圆环的圆周相间依次排列,在装有永磁磁铁的孔组内有2、4、6或10个孔,每个孔之间的间距相等,在每个孔内装有一永磁磁铁,其中一个孔中永磁磁铁的N极朝向内励磁环外齿,S极朝向外励磁环内齿,相邻孔内的永磁磁铁的S极朝向内励磁环外齿,N极朝向外励磁环内齿,在软铁的孔组内有-个孔,每个孔之间的间距相等,并且等于永磁磁铁的孔组中的孔间距,装有永磁磁铁的孔组和装有软铁的孔组之间的间距为永磁磁铁的孔组内孔间距或软铁的孔组内孔间距的1.5倍,在配重盘的两侧分别装有第一配重块和第二配重块。例如:外励磁环内齿24与内励磁环外齿23的个数分别为24个,外励磁环内齿24与内励磁环外齿23的齿形轮廓为矩形,外励磁环内齿24与内励磁环外齿23的齿宽为相邻两个永磁磁铁20的孔间距或软铁21的孔间距,在配重盘4外圆周的凸起圆环28上,有4个装有永磁磁铁20的孔组和4个装有软铁21的孔组,永久磁铁20和软铁21通过过盈配合压入上述孔中,带有永磁磁铁20的孔组和软铁21的孔组分别在凸起圆环28的外圆周上对称布置,且永磁磁铁20和软铁21与外励磁环内齿24齿顶和内励磁环外齿23齿顶的间隙一般在0.3mm~0.5mm范围内。
静环包括:定子10、励磁骨架8、励磁骨架端盖7、线圈26。定子10是一根中间开有通孔,两端加工有螺纹的阶梯轴。定子10外圈与内励磁环3的内径通过间隙配合安装,且该间隙在0.2~0.4mm范围内。励磁骨架8呈“山”形,其内部用于安装圆环状线圈26。励磁骨架8底部开有通孔,用于引出定位霍尔传感元件18和线圈26导线。励磁骨架端盖7固定在励磁骨 架8端面的凹槽内,用于固定线圈。将上述励磁骨架8、线圈26、励磁骨架端盖7一同套装入定子10,使励磁骨架8一端顶住轴承紧固件11,励磁骨架8外侧通过锁紧螺母12固定在定子10上。励磁骨架8内侧线圈26导线由内测励磁骨架8底部通孔导出,并穿过定子10通孔,与外侧线圈26导线一同引入航空插头,接入控制器13。控制器13安装于平衡装置的外侧。
连接轴承27的内圈与定子10的外表面相配合,其外圈与内励磁环3的轴承孔相配合,用于连接动、静环并保证动环和静环在小间隙下长期稳定运行。轴承紧固件11安装在连接轴承27外侧,轴承紧固件11可通过其轴向长度控制励磁骨架8与动环间隙,并固定连接轴承27内圈。
外侧励磁骨架8的外壳1上装有基准磁铁16,在外侧励磁骨架8的相应位置处装有基准霍尔元件17,基准霍尔元件17感应基准磁铁16的位置,在靠近线圈26的每个第一配重块5上装有定位磁铁19,在励磁骨架端盖7相应的位置处开有凹槽,定位霍尔元件18嵌入励磁骨架端盖7的凹槽内,定位霍尔元件18感应定位磁铁19的位置。外侧定位霍尔元件18导线穿过外侧励磁骨架8底部通孔,内侧定位霍尔元件18从内侧励磁骨架8底部通孔引出,穿过定子10通孔,与外侧定位霍尔元件18导线一同汇入航空插头。航空插头总共引出两根总线,用于区分强、弱电,线圈26导线引入强电总线,基准霍尔元件17与定位霍尔元件18导线引入弱电总线,强、弱电总线都与控制器13相连。基准霍尔元件17和定位霍尔元件18可以检测出两个配重盘4所处的具体相位。
定子10、励磁骨架8、外励磁环2、内励磁环3和动轴承外圈定位套29由软磁材料制成;外壳1和配重盘4由铝合金等隔磁材料制成,第一配重块5和第二配重块25由钨铜合金、黄铜、不锈钢或铝合金材料制成。
在工作过程中,静环并不随动环一起旋转。当需要平衡装置动作时,静环在控制信号作用下,于动环的侧面产生一交变磁场,驱动动环内部的核心部件配重盘4及与之相连的动环轴承9的外环相对于动环的外励磁环2和内励磁环3步进旋转,带动第一配重块5和第二配重块25形成所需的补偿质量,在线抑制旋转装置14主轴的不平衡振动。
本发明的径向励磁电磁滑环自动平衡装置为轴对称结构,如图4所示,取其四分之一结构进行磁路分析,阐述磁路传递原理如下:静环的励磁骨架8、静环定子10以及动环的外励磁环2、内励磁环3和动轴承外圈定位套29五部件均由软磁材料制成,共同组成一个闭合的磁路,而磁路闭合的方向由控制器13向线圈26所供驱动电压的正负决定。工作过程中,线圈26通电产生磁场,磁场经励磁骨架8强化后,沿着图中的箭头方向垂直穿过动、静环间的间 隙,将外励磁环2和内励磁环3磁化,使外励磁环2和内励磁环3分别形成N极和S极;根据磁铁“同性相斥、异性相吸”的原理,外励磁环2和内励磁环3与配重盘4上的磁铁相互作用,进而驱动配重盘4相对动环的其它部件步进旋转;磁路通过内励磁环3、动轴承外圈定位套29和定子10返回励磁骨架8,形成一个闭合的磁路回路。
外励磁环2与内励磁环3由软磁材料制成,当静环产生磁场后,外励磁环2与内励磁环3迅速磁化,驱动配重盘4步进动作,当静环磁场撤销后,外励磁环2的磁场迅速消失,配重盘4在惯性作用下继续运动至下一自锁状态。外励磁环2的内圈和内励磁环3外圈分别加工有24个径向凸起的外励磁环内齿24及内励磁环外齿23,且齿形轮廓为矩形,齿宽为相邻永磁磁铁20或相邻软铁21的间距,齿厚略大于永磁体/软铁块的长度,组装过程中要求外励磁环内齿24的齿顶与内励磁环外齿23的齿顶一一对应。
配重盘4的材料为铝合金,配重盘4的外圆周上有一凸起圆环28,沿着凸起圆环28的径向方向上,加工有44个长圆柱孔,分别用于安装柱形软铁21和永磁磁铁20,相邻永磁磁铁20的极性相反,用于配重盘4自锁和外部磁场驱动。配重盘4的内圈与动环轴承9的外圈相连,其两侧分别安装有半圆环形偏心的第一配重块5和第二配重块25各一块。配重盘4位于外励磁环2和内励磁环3之间的中间位置,且与外励磁环内齿24的齿顶或内励磁环外齿23的齿顶的间隙一般在0.3mm~0.5mm。柱形永磁磁铁20和软铁21通过过盈连接压入配重盘4的长圆柱孔中,每两个相邻永磁磁铁20为一对,对应于外励磁环2和内励磁环3的一个齿顶,相邻软铁21分别对应外励磁环2和内励磁环3的一个齿顶和一个齿底。
如图4所示,在自锁状态,在没有外加磁场的情况下,依靠永磁磁铁20与外励磁环2和内励磁环3形成的磁场,使得永磁磁铁20与外励磁环2和内励磁环3间存在相互吸引的自锁力,以保证在旋转装置14匀速旋转和加、减速旋转时,配重盘4也随旋转装置14同步旋转并可以在一定的加、减速度内不与旋转装置14发生相对转动。永磁磁铁20的磁路路径为:从一块永磁磁铁20的N极发出,穿过内励磁环外齿23,回到相邻永磁磁铁20的S极,再穿过该永磁磁铁20,到达另外一侧的外励磁环内齿24,最终回到第一块永磁磁铁20的S极,形成一个闭合的环路。参照磁力驱动技术的原理,由于在这个位置上永久磁励磁场回路的磁阻为最小,配重盘4在任何方向的微动都会在配重盘4上产生一个使它再恢复到稳定平衡位置的磁力,以此来阻止配重盘4产生滑移。永磁磁铁20通过穿越励磁环的磁力线作用,产生一个和外励磁环2和内励磁环3相锁紧的力,即自锁力。在该自锁力的作用下,配重盘4与旋转装置14一起旋转并可以在一定的加、减速度内不与旋转装置14发生相对转动,实现了配重盘4的自锁 功能。
在外磁场作用下,外励磁环2和内励磁环3被磁化,产生对应的S极和N极,与永磁磁铁20的磁极发生“同性相斥,异性相吸”的作用,每一组磁极的吸力和斥力都相对转轴中心产生同方向的磁力矩,从而使配重盘4逆时针运动。配重盘4转动后,打破软铁21与外励磁环2和内励磁环3之间原有的受力平衡,软铁21与磁化后的外励磁环2和内励磁环3吸引,并向磁阻最小的方向运动,软铁21与永磁磁铁20共同驱动配重4继续向逆时针转动,并从图2所示的位置运动到图5所示的中间位置。此时需及时切断驱动电压,配重盘4在自身惯性力和自锁力的作用下,运动到图6所示的最终位置,完成一步的旋转操作。如果继续交替更换外加磁场方向,配重盘4就会产生逆时针方向的连续运动。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (9)

  1. 一种基于径向励磁的电磁式自动平衡装置,它包括:外壳(1)、动环、静环、连接轴承(27)和控制器(13),动环包括:外励磁环(2)、内励磁环(3)、配重盘(4)、第一配重块(5)、第二配重块(25)和动环轴承(9);静环包括:定子(10)、励磁骨架(8)和线圈(26);动环和静环均装在外壳(1)内,并由连接轴承(27)相连;外壳(1)内由隔板(22)将其分成二个空间,沿着外壳(1)轴向方向,在外壳(1)的中央装有定子(10),在上述二个空间的定子(10)两端分别固定有励磁骨架(8),在每个励磁骨架(8)内装有线圈(26),控制器(13)分别通过导线与每个线圈(26)相连,在线圈(26)、外壳(1)、隔板(22)和定子(10)所围成的空间内分别装有一个动环,其特征在于:外励磁环(2)的外壁固定在外壳(1)内壁上,在外励磁环(2)的圆周上均匀分布有偶数(2N)个外励磁环内齿(24),内励磁环(3)固定在外壳(1)的中间隔板(22)上,内励磁环(3)和外励磁环(2)同轴旋转,内励磁环(3)的内径与定子(10)通过连接轴承(27)连接并保持间隙配合,在内励磁环(3)圆周上均匀分布有偶数(2N)个内励磁环外齿(23),外励磁环内齿(24)与内励磁环外齿(23)的数目相等,在外壳(1)轴向上,外励磁环内齿(24)与内励磁环外齿(23)相互对应,在内励磁环(3)的一端装有动环轴承(9),配重盘(4)固定在上述动环轴承(9)的外圈上,在配重盘(4)的两侧分别装有第一配重块(5)和第二配重块(25),配重盘(4)的外圆周上有一凸起圆环(28),该凸起圆环(28)伸入到外励磁环内齿(24)和内励磁环外齿(23)之间,在凸起圆环(28)上开有若干个孔,若干个孔分为装有永磁磁铁(20)的孔组和装有软铁(21)的孔组,装有永磁磁铁(20)的孔组和装有软铁(21)的孔组沿着凸起圆环(28)的圆周相间依次排列,永磁磁铁(20)的孔组内有偶数个孔,每个孔之间的间距相等,在每个孔内装有一永磁磁铁(20),其中一个孔中永磁磁铁(20)的N极朝向内励磁环外齿(23),S极朝向外励磁环内齿(24),相邻孔内的永磁磁铁(20)的S极朝向内励磁环外齿(23),N极朝向外励磁环内齿(24),所述软铁(21)的孔组内有偶数个孔,每个孔之间的间距相等,并且等于永磁磁铁(20)的孔组中的孔间距,装有永磁磁铁(20)的孔组和装有软铁(21)的孔组之间的间距为永磁磁铁(20)的孔组内孔间距或软铁(21)的孔组内孔间距的1.5倍。
  2. 如权利要求1所述一种基于径向励磁的电磁式自动平衡装置,其特征在于:所述动环还包括:动环端盖(6)、动轴承外圈定位套(29)和动轴承内圈定位套(30),动环端盖(6)固定在配重盘(4)一侧的外励磁环(2)的内圆周上,在励磁骨架(8)、动环端盖(6)、内励 磁环(3)和动环轴承(9)所围成的空间内装有动轴承外圈定位套(29)和动轴承内圈定位套(30),动轴承外圈定位套(29)套装在配重盘(4)上,它的一端顶住动环轴承(9)的外圈,动轴承内圈定位套(30)套装在内励磁环(3)上,它的一端顶住动环轴承(9)的内圈。
  3. 如权利要求2所述一种基于径向励磁的电磁式自动平衡装置,其特征在于:一种基于径向励磁的电磁式自动平衡装置还包括:轴承紧固件(11)和励磁骨架端盖(7),在定子(10)的外圆周与内励磁环(3)之间装有连接轴承(27),连接轴承(27)套装在定子(10)上,连接轴承(27)的一端顶住定子(10)和内励磁环(3),在连接轴承(27)的另一端上装有轴承紧固件(11),励磁骨架端盖(7)固定在励磁骨架(8)和动环端盖(6)之间的励磁骨架(8)上。
  4. 如权利要求3所述一种基于径向励磁的电磁式自动平衡装置,其特征在于:所述第一配重块(5)和第二配重块(25)为半圆形盘状零件,它们分别装在每个配重盘(4)的两侧。
  5. 如权利要求4所述一种基于径向励磁的电磁式自动平衡装置,其特征在于:在罩在励磁骨架(8)外侧的外壳(1)上装有基准磁铁(16),在励磁骨架(8)的相应位置处装有基准霍尔元件(17),基准霍尔元件(17)感应基准磁铁(16)的位置,并通过导线与控制器(13)相连。
  6. 如权利要求5所述一种基于径向励磁的电磁式自动平衡装置,其特征在于:在靠近线圈(26)的每个第一配重块(5)上装有定位磁铁(19),在励磁骨架端盖(7)相应的位置处装有定位霍尔元件(18),定位霍尔元件(18)感应定位磁铁(19)的位置,并通过导线与控制器(13)相连。
  7. 如权利要求6所述一种基于径向励磁的电磁式自动平衡装置,其特征在于:所述隔板(22)与外壳(1)为一体。
  8. 如权利要求7所述一种基于径向励磁的电磁式自动平衡装置,其特征在于:所述定子(10)、励磁骨架(8)、外励磁环(2)、内励磁环(3)和动轴承外圈定位套(29)由软磁材料制成;外壳(1)和配重盘(4)由隔磁材料制成,第一配重块(5)和第二配重块(25)由钨铜合金、黄铜、不锈钢或铝合金材料制成。
  9. 如权利要求8所述一种基于径向励磁的电磁式自动平衡装置,其特征在于:所述一种基于径向励磁的电磁式自动平衡装置通过连接法兰(15)固定在旋转装置(14)的轴端。
PCT/CN2020/123514 2019-10-30 2020-10-26 一种基于径向励磁的电磁式自动平衡装置 WO2021083065A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/561,884 US11362565B2 (en) 2019-10-30 2021-12-24 Electromagnetic automatic balancing device based on radial excitation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911050276.X 2019-10-30
CN201911050276.XA CN110829711B (zh) 2019-10-30 2019-10-30 径向励磁电磁滑环式自动平衡装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/561,884 Continuation US11362565B2 (en) 2019-10-30 2021-12-24 Electromagnetic automatic balancing device based on radial excitation

Publications (1)

Publication Number Publication Date
WO2021083065A1 true WO2021083065A1 (zh) 2021-05-06

Family

ID=69551735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123514 WO2021083065A1 (zh) 2019-10-30 2020-10-26 一种基于径向励磁的电磁式自动平衡装置

Country Status (3)

Country Link
US (1) US11362565B2 (zh)
CN (1) CN110829711B (zh)
WO (1) WO2021083065A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110829711B (zh) * 2019-10-30 2020-11-10 北京化工大学 径向励磁电磁滑环式自动平衡装置
CN112791862A (zh) * 2021-01-25 2021-05-14 伯特利(山东)工业设备有限公司 一种离心机用在线动平衡装置
CN115541115B (zh) * 2022-12-02 2023-03-21 北京化工大学 电磁式自动平衡系统、自动平衡控制方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148134A (ja) * 2000-11-10 2002-05-22 Hitachi Ltd ディスク装置
CN204290596U (zh) * 2014-12-26 2015-04-22 西安盾安电气有限公司 一种永磁电机转子多功能平衡装置
CN105680616A (zh) * 2016-03-02 2016-06-15 河北佐佑电子科技有限公司 磁偏移式动平衡助力器
CN106312821A (zh) * 2016-09-08 2017-01-11 北京化工大学 一体化侧励磁电磁滑环式自动平衡装置
CN206743029U (zh) * 2017-03-18 2017-12-12 福建闽东电机股份有限公司 一种发电机转子平衡结构
CN110829711A (zh) * 2019-10-30 2020-02-21 北京化工大学 径向励磁电磁滑环式自动平衡装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955807A (en) * 1997-04-25 1999-09-21 Denso Corporation Synchronous electric machine having auxiliary permanent magnet
US20110074318A1 (en) * 2005-08-17 2011-03-31 Jayantha Liyanage Dual drive electric regenerator
JP5130947B2 (ja) * 2007-09-11 2013-01-30 ダイキン工業株式会社 アキシャルギャップ型回転電機及び回転駆動装置
US20090200882A1 (en) * 2008-02-12 2009-08-13 Elberto Berdut-Teruel Orbital hybrid magnetic electronic engine and generator
US20130162068A1 (en) * 2011-12-22 2013-06-27 Black & Decker Inc. Overmolded stator assembly lamination stack for a power tool
JP6093592B2 (ja) * 2013-02-22 2017-03-08 株式会社Ihi 磁気波動歯車装置
JP6432430B2 (ja) * 2015-04-15 2018-12-05 株式会社デンソー 回転電機のロータ
CN108134537B (zh) * 2018-01-09 2019-07-12 西安交通大学 一种内置式压电型在线动平衡执行装置
CN209313643U (zh) * 2018-12-27 2019-08-27 成都市微麟科技有限责任公司 一种电子限位电机及采用该电机的电动卷帘

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148134A (ja) * 2000-11-10 2002-05-22 Hitachi Ltd ディスク装置
CN204290596U (zh) * 2014-12-26 2015-04-22 西安盾安电气有限公司 一种永磁电机转子多功能平衡装置
CN105680616A (zh) * 2016-03-02 2016-06-15 河北佐佑电子科技有限公司 磁偏移式动平衡助力器
CN106312821A (zh) * 2016-09-08 2017-01-11 北京化工大学 一体化侧励磁电磁滑环式自动平衡装置
CN206743029U (zh) * 2017-03-18 2017-12-12 福建闽东电机股份有限公司 一种发电机转子平衡结构
CN110829711A (zh) * 2019-10-30 2020-02-21 北京化工大学 径向励磁电磁滑环式自动平衡装置

Also Published As

Publication number Publication date
CN110829711A (zh) 2020-02-21
US11362565B2 (en) 2022-06-14
US20220140692A1 (en) 2022-05-05
CN110829711B (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
WO2021083065A1 (zh) 一种基于径向励磁的电磁式自动平衡装置
CN106312821B (zh) 一体化侧励磁电磁滑环式自动平衡装置
TWI426686B (zh) 發電機-制動集成型旋轉機器
AU2018281935A1 (en) Pre-warped rotors for control of magnet-stator gap in axial flux machines
US20070222309A1 (en) High efficiency magnet motor
US20120229066A1 (en) Variable field magnet rotating electrical machine
US20110074318A1 (en) Dual drive electric regenerator
CN111404317A (zh) 一种磁悬浮电机
JPH0274633A (ja) 紡績用回転リングの軸承装置
CN204103739U (zh) 一种软启动永磁涡流联轴器
CN103986301A (zh) 高动态动磁式的直线旋转一体式二自由度电机
WO2007048273A1 (fr) Palier a suspension electromagnetique
CN102721510A (zh) 一种电磁‐永磁混合型旋转机械在线主动平衡头结构及其控制方法
CN112865421A (zh) 一种五自由度单绕组无轴承磁悬浮电机
JP2000197392A (ja) 風力発電装置
US2866110A (en) Rolling electric machine with increased torque
RU2515998C1 (ru) Магнитоэлектрический генератор
DK148865B (da) Elektrisk koblings- og bremsemotor
CN215009934U (zh) 一种五自由度单绕组无轴承磁悬浮电机
CN101707461A (zh) 空间机械臂用无通电结构电机制动器
WO2020224588A1 (zh) 一种平面感应同轴心多励磁组多定子组发电机
CN207218508U (zh) 一种永磁水密转矩传动装置
RU2545166C1 (ru) Магнитный редуктор
RU127266U1 (ru) Магнитоэлектрический двигатель
TWI690136B (zh) 防震磁浮發電裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20882023

Country of ref document: EP

Kind code of ref document: A1