WO2022098196A1 - Phenolic foam and method for manufacturing same - Google Patents

Phenolic foam and method for manufacturing same Download PDF

Info

Publication number
WO2022098196A1
WO2022098196A1 PCT/KR2021/016168 KR2021016168W WO2022098196A1 WO 2022098196 A1 WO2022098196 A1 WO 2022098196A1 KR 2021016168 W KR2021016168 W KR 2021016168W WO 2022098196 A1 WO2022098196 A1 WO 2022098196A1
Authority
WO
WIPO (PCT)
Prior art keywords
foam
closed cell
surface layer
cell ratio
thickness
Prior art date
Application number
PCT/KR2021/016168
Other languages
French (fr)
Korean (ko)
Inventor
김채훈
배성재
강길호
김샛별
박인성
김도훈
하혜민
박건표
김명희
김한수
Original Assignee
(주)엘엑스하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘엑스하우시스 filed Critical (주)엘엑스하우시스
Priority to JP2023526006A priority Critical patent/JP2023548687A/en
Publication of WO2022098196A1 publication Critical patent/WO2022098196A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only

Definitions

  • the present invention relates to a phenolic foam and a method for preparing the same.
  • Insulation is an essential item used to prevent energy loss in buildings. As the importance of green growth continues to be emphasized worldwide due to global warming, insulation is becoming more important to minimize energy loss.
  • An object of the present invention is to provide a high-thickness phenolic foam that increases production efficiency by controlling the distribution of the closed cell ratio of the high-thickness foam and exhibits economically superior physical properties.
  • the cell ratio is lower than the closed cell ratio of the second surface layer part (NN), and the section (Nmin) having the minimum closed cell ratio among the N slices is located between the first surface layer part (N1) and the middle section (Nc).
  • a phenolic foam can be provided.
  • the phenolic foam according to the present invention is a high-thickness foam, and it more economically prevents damage in the installation process of the foam, and exhibits excellent thermal insulation and compressive strength, etc. occurrence can be prevented.
  • the method for producing a phenol foam according to the present invention can provide a phenol foam having the above properties more economically by increasing production efficiency.
  • FIG. 2 is a schematic view of a discharge port of a nozzle for discharging a foaming composition according to an embodiment of the present invention.
  • FIG 3 is a schematic diagram schematically showing the arrangement of a plurality of outlets on the lower plate on the conveyor according to another embodiment of the present invention.
  • Figure 4 is a schematic diagram briefly showing a method for measuring the degree of warpage of the phenolic foam according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram briefly showing a method for measuring the dimensional stability of a phenolic foam according to another embodiment of the present invention.
  • One embodiment of the present invention is a phenolic foam having a thickness of 90 mm or more, and when divided into N (odd number of N ⁇ 7) slices in the thickness direction from any one surface of the foam to the surface, the first surface layer portion (N 1 ) is lower than the closed cell ratio of the second surface layer part (N N ), and the intercept (N min ) having the minimum closed cell ratio among the N slices is the first surface layer part (N 1 ) and the middle section ( N c ) located between the phenolic foams.
  • the thickness of the foam increases, it may be easier to secure thermal insulation.
  • the thickness of the foam exceeds a certain level or more, internal heat generation increases due to the curing reaction of the central portion in the thickness direction of the foam, and heat is not easily dissipated to the outside, and the internal temperature of the foam composition is excessively increased.
  • the physical properties of the foam may be significantly changed depending on the location in the thickness direction of the foam, such as rupture of the bubble near the center of the foam, and the foam may be easily damaged and warp may occur.
  • warpage occurs in the foam, there is a high possibility of poor appearance and poor construction, and problems such as product shrinkage over a long period of time occur. And, despite the increased thickness, thermal conductivity may be rather reduced.
  • the impact received by a portion having weak physical properties may be significantly different.
  • insulators for example, for ceilings or floors, are arbitrarily positioned by workers during an installation process, stepped on, poured cement, etc., and then aged for a certain period of time. Therefore, even if it is a foam that exhibits excellent physical properties during manufacture, the parts with weak properties of the foam are greatly damaged during the installation process. can be lowered
  • the phenolic foam has a thickness of about 90 mm or more, has an asymmetric structure with respect to the center portion in the thickness direction of the foam, and adjusts the position having the minimum closed cell ratio in the foam, so that the insulation properties and compressive strength of the foam as a whole It exhibits excellent physical properties, such as, and can prevent warpage. And, even if an impact is applied to either surface of both surfaces of the phenolic foam during the installation process, it is possible to similarly and similarly lower the impact received by a vulnerable part of the foam. Accordingly, the phenolic foam can exhibit excellent physical properties for a long period of time even after the construction process.
  • the phenolic foam may have a thickness of about 110 mm or more, about 150 mm or more, and about 180 mm or more to 300 mm.
  • the phenolic foam is When divided into N (odd number of N ⁇ 7) slices from the surface of the foam to the thickness direction along the surface, the closed cell ratio of the first surface layer part (N 1 ) is higher than the closed cell ratio of the second surface layer part (N N )
  • a fragment (N min ) which is low and has a minimum closed cell ratio among the N fragments is located between the first surface layer portion (N 1 ) and the middle fragment (N c ).
  • the thickness refers to the direction in which the foam composition on the face material grows (Z direction), and the surface perpendicular to the thickness direction is the surface, and it means the side to which the face material is attached when the foam is manufactured.
  • the foam if there is a face material, the face material is removed, and both surfaces of the foam to which the face material is attached are cut by 5 mm for accurate measurement of the closed cell ratio.
  • N an odd number of N ⁇ 7 slices from the surface of the foam body along the surface in the thickness direction. Then, the percentage of closed cells in each section is measured.
  • N may be an integer including an even number, N is preferably an odd number in order to more clearly confirm whether physical properties are symmetrical with respect to the center of the thickness direction in the foam.
  • Each segment may have a thickness of from about 10 mm to about 30 mm.
  • the phenolic foam includes a first surface and a second surface, the first surface layer includes a first surface, and the second surface layer means a segment including the second surface.
  • the section with a low closed cell ratio is N 1 (first surface layer)
  • the remaining section is N N (second surface layer)
  • sequentially from N 1 , N 2 , N 3 , N 4 , N 5 , ... and N N represent each intercept.
  • a fragment located in the middle is denoted as a middle fragment (Nc). That is, the middle section Nc refers to a section located at a 1/2 point in the thickness direction of the first surface layer part N 1 and the second surface layer part N N .
  • the phenol foam forms an asymmetric structure in which the closed cell ratio of the first surface layer portion (N 1 ) is lower than the closed cell ratio of the second surface layer portion (N N ), and at this time, the segment (N) having the minimum closed cell ratio among the N fragments min ) is located between the first surface layer portion (N 1 ) and the middle section (N c ). Accordingly, even if an impact is applied to any one surface of the first surface layer part and the second surface layer part, the impact received by the fragment (N min ) having the minimum closed cell ratio is similarly lowered, and physical properties such as excellent thermal insulation properties in the entire foam You can prevent warping together.
  • the phenolic foam has an asymmetric structure in which the closed cell ratio of the first surface layer part (N 1 ) is lower than the closed cell ratio of the second surface layer part (N N ) to produce a foam more economically, while having a minimum closed cell ratio
  • the intercept (N min ) is located between the first surface layer portion (N 1 ) and the middle section (N c ) having a lower closed cell ratio than the closed cell ratio of the second surface layer portion (N N ) to achieve the desired effect can
  • the foam having the minimum closed cell ratio (N min ) is located between the middle section (N c ) and the second surface layer portion (N N ) having a high closed cell ratio
  • the first surface layer portion (N 1 ) This may not be a problem if an impact is applied to the
  • the second surface layer portion (N N ) a large amount of warpage appears in the direction of the intercept (N min ) having the minimum closed cell ratio, and the foam is greatly damaged and the physical properties may be significantly reduced
  • the difference between the closed cell ratio of the first surface layer part (N 1 ) and the closed cell ratio of the second surface layer part (N N ) may be from about 0.05% to about 5%. For example, it can be from about 0.1% to about 5% or from about 0.1% to about 3%.
  • the difference between the closed cell ratio of the first surface layer part (N 1 ) and the second surface layer part (N N ) is less than the above range, the cost increases, the production efficiency is low, and it is uneconomical, and when it exceeds the above range, the entire foam There is a limit to having excellent physical properties.
  • the closed cell ratio of the first surface layer part (N 1 ) and the closed cell ratio of the second surface layer part (N N ) may each be about 85% or more. For example, from about 85% to about 100%.
  • the first surface layer portion (N 1 ) and the second surface layer portion (N N ) by having a closed cell ratio in the above range, together with excellent initial thermal conductivity, prevent replacement of the foam and air, the amount of change over time of the insulation performance It can be lowered to exhibit excellent thermal insulation properties.
  • the second surface layer portion (N N ) has the maximum closed cell ratio
  • the second surface layer portion (N N ) and the intercept (N min ) having the minimum closed cell ratio difference ( ⁇ C2)
  • ) may be about 1 to about 20%. For example, it can be from about 1% to about 15% or from about 1% to about 7%.
  • the foam may be easily and greatly warped.
  • the difference between the closed cell ratio of the first surface layer part (N 1 ) and the intercept (N min ) having the minimum closed cell ratio ( ⁇ C1
  • ) may be about 0.1 to about 20%. For example, it may be about 0.1 to about 10%.
  • the intercept (N min ) having the minimum closed cell ratio may have a closed cell ratio of about 70% or more. For example, it may be about 70% to about 89%.
  • the phenolic foam may control the closed cell ratio of the segment (N min ) within the above range to maintain low thermal conductivity over a long period of time, prevent warpage, and improve dimensional stability. For example, when it is less than the above range, the replacement rate of the foaming agent and air in the bubble increases, so that the change in thermal conductivity over time may be large.
  • a ratio of d1 and d2 to the total thickness of the foam may be from about 0.2:0.8 to about 0.45:0.55.
  • the overall thickness of the foam means the thickness of the foam after cutting each 5 mm of both surfaces of the foam to which the face material was attached.
  • d1 and d2 are from the upper surface of the first surface layer part or the lower surface of the second surface layer part to the 1/2 point in the thickness direction of the intercept Nmin having the minimum closed cell ratio. It means the ratio of the vertical distance.
  • the intercept (N min ) having the minimum closed cell ratio is located at the point in the relationship between the first surface layer part (N 1 ) and the second surface layer part (N N ), and is located on any one surface of the first surface layer part and the second surface layer part Even if an impact is applied, it is possible to similarly lower the impact received by the fragment (N min ) having the minimum closed cell ratio, thereby preventing warpage along with physical properties such as excellent thermal insulation properties in the entire foam.
  • the intercept (N min ) having the minimum closed cell ratio is outside the above range and is located closer to the first surface layer part (N 1 )
  • the physical properties of the first surface layer part (N 1 ) side are significantly reduced and , it is difficult to uniform the physical properties of the entire foam beyond a certain level, the shrinkage of the first surface layer part (N1) including the face material appears as an appearance, and the product warps in the direction of the first surface layer part (N1), and the compressive strength is low
  • problems such as degradation.
  • the phenolic foam has the difference ( ⁇ C1, ⁇ C2) of the closed cell ratio between each surface layer part (N 1 , N N ) and the intercept (N min ) having the minimum closed cell ratio with each surface layer part and the minimum closed cell ratio.
  • a value Y divided by the distance ratio to the intercept (d 1 , d 2 ) may be (
  • ) about 0.1 to about 9. For example, it may be from about 0.1 to about 6.5 or from about 0.1 to about 5.
  • the Y value exceeds the above range, there may be a problem in that the impact received at a specific position in the thickness direction is increased, or the physical properties of the entire foam are lowered, and warpage occurs.
  • the phenolic foam can exhibit excellent physical properties in the entire foam by having the closed cell ratio distribution as described above, and can maintain excellent thermal conductivity despite long-term use.
  • the phenolic foam may have a compressive strength of about 100 kPa to about 200 kPa according to KS M ISO 844. For example, it may be from about 115 kPa to about 200 kPa.
  • Compressive strength refers to the pressure at which the foam breaks.
  • the phenol foam has a compressive strength in the above range, and thus maintains an excellent balance between physical properties, and can exhibit excellent long-term durability even after distribution and construction.
  • the phenolic foam may have a dimensional change of from about 0% to about 2.0%.
  • the phenolic foam can have a dimensional change of from about 0% to about 1.0% or from about 0% to about 0.7%.
  • the dimensional change rate can be measured by the method described in Experimental Example 4.
  • the foam as shown in Figure 4, when 7 days elapsed at 25 ° C. and 60% relative humidity, the surface of the foam is bent concavely toward the floor (I), or the surface of the foam is curved convexly toward the ceiling Case (II) may occur.
  • the change of the corner portions (P1 to P4), and, in the case of (II), the maximum separation distance (R1, R2) between the two sides in the longitudinal direction of the foam and the bottom surface ) may affect the damage to which the foam is subjected to external impact and the overall deformation of the foam.
  • the phenolic foam may have an average warpage of from about 0 cm to about 1.5 cm, respectively, in the case of (I) above, and/or in the case of (II) above. or from about 0.1 cm to about 0.7 cm or from about 0.1 cm to about 0.5 cm, respectively.
  • the phenolic foam may have a thermal conductivity of about 0.017 W/m ⁇ K to about 0.020 W/m ⁇ K measured at an average temperature of 20° C. according to KS L 9016.
  • the phenolic foam has a thermal conductivity of about 0.018 W/m K to about 0.022 W/ It may be m ⁇ K.
  • the phenolic foam includes the closed cell ratio in the same distribution as above, and exhibits excellent properties such as compressive strength, prevents warpage, and may exhibit a change with time of about 10% or less in long-term thermal conductivity.
  • Another embodiment of the present invention comprises the steps of discharging a foaming composition comprising a phenol-based resin, a foaming agent and a curing agent onto the face material using a nozzle; and foaming and curing the discharged foaming composition, wherein the nozzle provides a method for producing a phenolic foam having a discharge port having a shape of 1 or more and 2 or less in length (L)/width (W).
  • a phenolic foam having a specific closed cell ratio distribution and excellent physical properties in the entire foam can be more economically produced.
  • the phenolic foam manufactured by the above manufacturing method has the same and similarly lowered the impact received by the fragment (N min ) having the minimum closed cell ratio even if an impact is applied to any one surface of the first surface layer part and the second surface layer part , it is possible to prevent warping along with physical properties such as excellent thermal insulation and compressive strength throughout the foam.
  • the above-mentioned matters such as the thickness of the phenol foam and the closed cell ratio are the same as those described above, except for those specifically described below.
  • the foaming composition is continuously discharged on the first face member using one nozzle, and then molded into a plate shape between conveyors in a curing furnace.
  • the curing reaction is carried out, and the heat of reaction generated during the reaction is easily radiated through the face material, so it is not difficult to have uniform physical properties throughout the thickness.
  • internal heat generation is increased due to a curing reaction in the central portion in the thickness direction of the foam, and heat is not easily dissipated to the outside, so that the internal temperature of the foaming composition is excessively increased.
  • the method for manufacturing the phenol foam includes discharging a foaming composition including a phenol-based resin, a foaming agent and a curing agent onto the face member 3 using a nozzle.
  • the discharge port 10 which is the inlet of the nozzle, may have a shape in which the length (L)/width (W) is 1 or more and 2 or less.
  • the length L may have an elliptical shape longer than the width W, and the length L/width W may be greater than 1 or less than 2 .
  • the discharge port means an inlet through which the composition is discharged.
  • the length (L) means the length of the major axis in the ellipse
  • the width (W) means the length of the minor axis.
  • the length (L) direction of the discharge port is parallel to the thickness direction (Z direction) of the foam
  • the width (W) direction of the discharge port is in a direction parallel to the width direction (Y direction) of the foam can be located
  • the discharge port of the nozzle may have a length (L)/width (W) (aspect ratio) of 1 or more and 2 or less.
  • the discharge port of the nozzle may have an elliptical discharge port of more than 1 and 2 or less. Accordingly, it prevents the cells being cured from collapsing due to the movement of the foaming composition, and prevents problems such as excessive foaming and expansion of the foaming composition in the vicinity of the face material (eg, the lower face material) from which the foaming composition is discharged.
  • the outlet of the nozzle has a rectangular structure rather than an ellipse, there may be a problem in that a cured product is accumulated near the corner of the outlet.
  • the discharge port has a circular or elliptical shape, but the length (L) / width (W) is less than the above range, excessive foaming and expansion occurs near the lower face material from which the foaming composition is discharged, so that the bubbles are easily broken. There may be a problem.
  • the ratio of length (L) / width (W) exceeds the above range, the amount of expansion of the foam composition in the width direction (Y direction, direction orthogonal to the discharge direction of the foam composition) of the foam increases while curing by heating The bubbles are broken by the movement of the foaming composition, the foaming and expansion rate in the thickness direction (Z direction) of the foam becomes slower, and the time and amount of the foaming composition staying near the lower face material increases. There may be problems such as
  • the outlet may have a length L of about 10 mm to about 100 mm.
  • L which is the long axis of the discharge port
  • the pressure generated during nozzle discharge may increase, and if it exceeds the above range, the pressure may be lowered and proper foaming may not be performed.
  • the foaming composition may be discharged at about 30 kg/min to about 100 kg/min.
  • the viscosity of the foaming composition at the time of the discharge may be from about 5,000 cps to about 40,000 cps at 25°C.
  • the foaming composition may be discharged in a slurry state suitable for foaming and curing by having a viscosity within the above range.
  • the temperature of the foaming composition may be about 0 °C to about 40 °C. If the temperature range is less than the above range, there may be a problem in that the discharge viscosity is excessively increased and thus discharge is difficult.
  • the method for producing the phenol foam is arranged along a direction (Y-axis direction, width direction of the foam) orthogonal to the flow direction of the foam composition (X-axis, that is, the running direction of the face material 3)
  • a plurality of nozzles having the discharge port 10 may be provided. Specifically, the number of nozzles may be about 4 to about 12. The nozzles may be arranged in parallel at equal intervals.
  • the foam composition grows in the direction (Z-axis direction, the thickness direction of the foam) as well as in the flow direction of the foam composition ( Uniform expansion can be induced in the direction (Y-axis direction, width direction of the foam) orthogonal to the X-axis, that is, the running direction of the face material. Accordingly, the growth and distribution of bubbles can be appropriately controlled.
  • the foaming composition includes a phenol-based resin, a foaming agent, and a curing agent.
  • the phenol-based resin may be obtained by reacting phenol and formaldehyde, and may include, for example, a resol-based phenol resin (hereinafter, 'resol resin').
  • the phenolic resin may be included in the phenolic foam in an amount of about 30 wt% to about 90 wt%, or about 50 wt% to about 90 wt%, or about 55 wt% to about 90 wt%.
  • the phenol foam may stably form a small-sized foam cell by including the phenol-based resin in an amount within the above range, and may implement excellent thermal conductivity.
  • the phenolic foam may include a blowing agent.
  • the blowing agent may include one selected from the group consisting of a hydrofluoroolefin (HFO)-based compound, a hydrocarbon-based compound, and combinations thereof.
  • the hydrofluoroolefin-based compound is, for example, monochlorotrifluoropropene, trifluoropropene, tetrafluoropropene, pentafluoropropene, hexafluorobutene, and combinations thereof. It may include at least one selected from the group consisting of.
  • the hydrocarbon-based compound may include a hydrocarbon having 1 to 8 carbon atoms.
  • the hydrocarbon-based compound is dichloroethane, propyl chloride, isopropyl chloride, butyl chloride, isobutyl chloride, pentyl chloride, isopentyl chloride, n-butane, isobutane, n- pentane, isopentane, cyclopentane, It may include at least one selected from the group consisting of hexane, heptane, cyclopentane, and combinations thereof.
  • the hydrocarbon-based compound is a hydrocarbon having 1 to 5 carbon atoms, dichloroethane, propyl chloride, isopropyl chloride, butyl chloride, isobutyl chloride, pentyl chloride, isopentyl chloride, n-butane, isobutane, n-pentane, By including at least one selected from the group consisting of isopentane, cyclopentane, and combinations thereof, it may exhibit excellent thermal insulation properties along with eco-friendliness.
  • the blowing agent may be included in an amount of about 6 parts by weight to about 13 parts by weight based on about 100 parts by weight of the phenol foam.
  • the phenolic foam includes a curing agent.
  • the curing agent is an acid curing agent, and may include one acid curing agent selected from the group consisting of toluene sulfonic acid, xylene sulfonic acid, benzenesulfonic acid, phenol sulfonic acid, ethylbenzene sulfonic acid, styrene sulfonic acid, naphthalene sulfonic acid, and combinations thereof.
  • the acid curing agent may be included in an amount of about 9 parts by weight to about 20 parts by weight, based on 100 parts by weight of the phenol foam.
  • the phenol foam may exhibit appropriate crosslinking, curing and foaming properties by including the curing agent in an amount within the above range.
  • the manufacturing method of the phenol foam includes foaming and curing the discharged foam composition.
  • the phenolic foam may be foamed and cured in a plate shape between conveyors in a curing furnace. For example, it may be foamed and cured under a temperature condition of about 40 °C to about 90 °C.
  • the foaming and curing may be performed for a time of about 2 minutes to about 20 minutes, but is not limited thereto, and may appropriately vary depending on the purpose and use of the invention.
  • Another embodiment of the present invention provides an insulating material comprising the phenol foam.
  • the phenol foam satisfies excellent compressive strength, warpage prevention and excellent thermal insulation properties at the same time, and can be used as a building insulation material.
  • the building insulation may further include a face material on one or both surfaces of the phenolic foam, for example, and may further improve flame retardancy by including aluminum as the face material.
  • a foaming composition (25° C., 20,000 cps) comprising 18 parts by weight of toluenesulfonic acid as a curing agent, 10 parts by weight of cyclopentane as a foaming agent and a surfactant was prepared.
  • each section is indicated as N 2 , N 3 , N 4 , N 5 , N 6 , N 7 , N 8 , and N 9 . Accordingly, the middle intercept Nc becomes N 5 .
  • the closed cell rate of each section is measured using the closed cell rate measuring device (Quantachrome, ULTRAPYC 1200e) by the KS M ISO 4590 measurement method, and the result is It is described in Table 1 below.
  • the overall thickness of the foam means the thickness of the foam after cutting each 5 mm of both surfaces of the foam to which the face material was attached.
  • the thickness of N1 to Nmin and the thickness of N9 to Nmin are the intercept (Nmin) having the minimum closed cell ratio from the upper surface of the first surface layer part or the lower surface of the second surface layer part, as shown in FIG. 1 . It means the vertical distance to 1/2 of the thickness direction. That is, d1 is the thickness/total thickness of the foam from the upper surface of the first surface layer portion (N 1 ) to the 1/2 point of the intercept (Nmin) having the minimum closed cell ratio, d2 is the lower surface of the second surface layer portion (N 1 ) It means the thickness/full thickness of the foam from 1/2 of the intercept (Nmin) having the minimum closed cell ratio.
  • the phenolic foam of Examples and Comparative Examples was prepared as a specimen with the thickness of the foam containing 150 mm (L) ⁇ 150 mm (W) ⁇ face material, and the specimen was placed between the wide plates of Lloyd Instrument's LF Plus universal testing machine (Universal Testing Machine). In the UTM equipment, it was set at a rate of 10% mm/min of the thickness of the specimen, and the compressive strength test was started, and the strength at the first compressive yield point that appeared while the thickness was decreased was recorded. Compressive strength was measured by the method of KS M ISO 844 standard, and the results are shown in Table 2 below.
  • FIG 4 is a schematic view briefly showing a method for measuring the degree of warpage of the phenolic foam containing the face material according to the present invention.
  • the surface of the phenolic foam including the face material of Examples and Comparative Examples was placed on a flat floor so that the surface was in contact with the floor surface.
  • 4 corners (vertices) of the surface of the phenol foam in contact with the bottom surface and the distances (p1, p2, p3, p4) from the bottom surface were measured.
  • the maximum separation distance (r1, r2) of the gap between the two sides in the longitudinal direction of the phenol foam and the bottom surface was measured. At this time, when the foam is in close contact with the bottom surface, each interval becomes "0".
  • the phenol foam was left to stand for 7 days under conditions of 25° C. and 60% relative humidity, and then the degree of warpage of the phenol foam was measured.
  • the surface of the foam is bent toward the bottom (I)
  • the four corners (vertices) and the spacing from the bottom (P1, P2, P3, P 4) are measured in the same way as above, and the following Table 2 shows the degree of warpage occurring in the phenol foam according to Formula 1.
  • the maximum separation distance (R1, R2) of the gap between the two sides in the longitudinal direction of the phenol foam and the bottom surface is measured, and by the following formula 2 Table 2 shows the extent to which warpage occurred in the phenol foam.
  • Figure 4 is a schematic diagram briefly showing a method for measuring the dimensional stability of the phenolic foam of the present invention.
  • Dimensional change rate (%) (
  • Equation 3 the initial length (a) is the length of each line of n equal points in the length (L) and width (W) directions of the foam, and the later length (a') is the foam at 70° C. It means the later length (a') of each line at each point after standing in the oven for 48 hours.
  • n may be 2 to 5.
  • the phenolic resin foams of Examples and Comparative Examples were cut to be 50 mm from one surface, cut to a size of 300 mm ⁇ 300 mm to prepare a specimen, and the specimen was dried at 70° C. for 12 hours and pre-treated. And, according to the measurement conditions of KS L 9016 (Method for measuring plate heat flow metering method) for the specimen, the thermal conductivity was measured using a HC-074-300 (EKO company) thermal conductivity instrument at an average temperature of 20° C., and the results are shown in the table below 2 was described.
  • KS L 9016 Method for measuring plate heat flow metering method
  • the phenolic resin foams of Examples and Comparative Examples were cut to be 50 mm from any one surface, and a specimen was prepared by cutting to a size of 300 mm ⁇ 300 mm, and the specimen was dried at 70° C. for 7 days according to EN13823. After drying at 110° C. for 14 days, thermal conductivity was measured at an average temperature of 20° C. using a thermal conductivity instrument HC-074-300 (EKO), and the results are shown in Table 2 below.
  • Example 1 Example 2 Comparative Example 1 Comparative Example 2 Compressive strength (kPa) 139 125 95 83 Warp (cm) 0.3 1.1 1.8 2.3 Dimensional stability (%) 0.5 0.4 1.1 1.4
  • Initial thermal conductivity (W/m ⁇ K) 0.0192 0.0193 0.0190 0.0193
  • Long-term thermal conductivity (W/m ⁇ K) 0.0205 0.0212 0.0216 0.0230 change in thermal conductivity 0.0013 0.0019 0.0026 0.0037
  • the phenolic foam of Examples has excellent compressive strength, suppresses the degree of warpage well, and exhibits excellent thermal conductivity.
  • the present invention has been described with reference to the illustrated drawings, but the present invention is not limited by the embodiments and drawings disclosed in this specification, and a variety of It is obvious that variations can be made.
  • the effect of the configuration of the present invention is not explicitly described and described while describing the embodiment of the present invention, it is natural that the effect predictable by the configuration should also be recognized.
  • d2 the thickness from the second surface layer portion (NN) to the intercept (Nmin) having the minimum closed cell ratio with respect to the total thickness of the foam

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a phenolic foam having a thickness of 90 mm or more, wherein when equally dividing the phenolic foam into N (an odd number of N≥7) slices from one surface of the foam and along the surface in the thickness direction, the closed cell ratio of a first surface layer part (N1) is lower than the closed cell ratio of a second surface layer part (NN), and the slice (Nmin) having the smallest closed cell ratio from among the N slices is positioned between the first surface layer part (N1) and a middle slice (Nc).

Description

페놀 발포체 및 이의 제조방법Phenolic foam and manufacturing method thereof
본 발명은 페놀 발포체 및 이의 제조방법에 관한 것이다.The present invention relates to a phenolic foam and a method for preparing the same.
단열재는 건축물에서 에너지 손실을 막기 위해 필수적으로 사용되는 물품이다. 지구온난화로 인해 녹색성장의 중요성이 전세계적으로 계속 강조되고 있기 때문에 에너지 손실 최소화를 위해 단열성이 더욱 중요해지고 있다. Insulation is an essential item used to prevent energy loss in buildings. As the importance of green growth continues to be emphasized worldwide due to global warming, insulation is becoming more important to minimize energy loss.
일반적으로 단열재의 두께를 두껍게 하면 단열성 확보가 용이하나, 단열재의 두께가 일정 이상을 초과하게 되면, 두께 방향으로 위치에 따라 물성이 달라져 발포체가 쉽게 손상되고 휘는 등 외관 및 물성이 저하되고, 열전도율까지 저하되는 문제가 발생한다. In general, increasing the thickness of the insulator makes it easy to secure insulation, but when the thickness of the insulator exceeds a certain level, the physical properties change depending on the location in the thickness direction, so that the foam is easily damaged and warped. There is a problem of degradation.
이에 따라, 종래에는 고후도 제품의 물성 확보를 위해, 발포체 전체에 있어서 균일한 물성을 나타내고, 발포체 두께 방향의 가운데 부분(중심)을 기준으로 대칭적인 물성을 갖는 발포체를 제조하려는 경향이 있었다.Accordingly, in the prior art, in order to secure the physical properties of the high-thickness product, there has been a tendency to produce a foam that exhibits uniform physical properties throughout the foam and has symmetrical properties with respect to the center portion (center) in the thickness direction of the foam.
그러나, 현실적으로 두께 전체에 걸쳐 물성의 편차를 줄이면서 대칭구조를 이루는 것은 쉽지 않으며, 비용 및 생산 효율 면에서 비경제적인 문제가 있다.However, in reality, it is not easy to achieve a symmetrical structure while reducing the deviation of physical properties over the entire thickness, and there is an uneconomical problem in terms of cost and production efficiency.
본 발명의 목적은 고후도 발포체의 독립 기포율 분포를 조절하여, 생산 효율을 높이고, 보다 경제적으로 우수한 물성을 나타내는 고후도 페놀 발포체를 제공하는 것이다. 또한 본 발명의 목적은 발포체의 설치 과정에서 발포체가 손상되는 것을 방지하여, 발포체 제조시뿐만 아니라, 장기간 사용과정에서도 우수한 단열성 및 압축강도 등의 물성을 일정 이상 유지하고, 휨의 발생을 방지할 수 있는 페놀 발포체를 제공하는 것이다.An object of the present invention is to provide a high-thickness phenolic foam that increases production efficiency by controlling the distribution of the closed cell ratio of the high-thickness foam and exhibits economically superior physical properties. In addition, it is an object of the present invention to prevent damage to the foam during the installation process of the foam, and to maintain physical properties such as excellent thermal insulation and compressive strength not only during foam manufacturing but also during long-term use, and to prevent the occurrence of warpage. It is to provide a phenolic foam.
또한 본 발명의 목적은 상기 페놀 발포체를 제조하는 방법을 제공하는 것이다.It is also an object of the present invention to provide a method for producing the phenolic foam.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects and advantages of the present invention not mentioned may be understood by the following description, and will be more clearly understood by the examples of the present invention. It will also be readily apparent that the objects and advantages of the present invention may be realized by the means and combinations thereof indicated in the appended claims.
본 발명에 따른 두께가 90㎜ 이상인 페놀 발포체이고, 상기 발포체의 어느 한 표면으로부터 그 표면을 따라 두께 방향으로 N (N≥7의 홀수)개의 절편으로 균분하였을 때, 제1 표층부(N1)의 독립기포율은 제2 표층부(NN)의 독립기포율보다 낮고, 상기 N개의 절편 중에서 최소 독립기포율을 갖는 절편(Nmin)은, 상기 제1 표층부(N1)와 가운데 절편(Nc) 사이에 위치하는 페놀 발포체를 제공할 수 있다.It is a phenolic foam having a thickness of 90 mm or more according to the present invention, and when it is divided into N (odd number of N≥7) slices in the thickness direction from any one surface of the foam to the surface, the independence of the first surface layer portion (N1) The cell ratio is lower than the closed cell ratio of the second surface layer part (NN), and the section (Nmin) having the minimum closed cell ratio among the N slices is located between the first surface layer part (N1) and the middle section (Nc). A phenolic foam can be provided.
또한 본 발명에 따른 페놀계 수지, 발포제 및 경화제를 포함하는 발포 조성물을 노즐을 이용하여 면재 상에 토출하는 단계; 및 상기 토출된 발포 조성물을 발포 및 경화하는 단계;를 포함하고, 상기 노즐은 길이(L)/ 폭(W) 이 1 이상 2이하인 형상의 토출구를 갖는 페놀 발포체의 제조방법을 제공할 수 있다.In addition, discharging the foaming composition comprising the phenolic resin, the foaming agent and the curing agent according to the present invention on the face material using a nozzle; and foaming and curing the discharged foaming composition, wherein the nozzle has a length (L)/width (W) of 1 or more and 2 or less.
본 발명에 따른 페놀 발포체는 고후도 발포체로서, 보다 경제적으로 발포체의 설치 과정에서의 손상을 방지하여, 발포체 제조시 뿐만 아니라, 장기간 사용과정에서도 우수한 단열성 및 압축강도 등의 물성을 일정 이상 나타내고, 휨 발생을 방지할 수 있다.The phenolic foam according to the present invention is a high-thickness foam, and it more economically prevents damage in the installation process of the foam, and exhibits excellent thermal insulation and compressive strength, etc. occurrence can be prevented.
또한 본 발명에 따른 페놀 발포체의 제조방법은 생산 효율을 높여 보다 경제적으로 상기 물성을 갖는 페놀 발포체를 제공 할 수 있다.In addition, the method for producing a phenol foam according to the present invention can provide a phenol foam having the above properties more economically by increasing production efficiency.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.In addition to the above-described effects, the specific effects of the present invention will be described together while describing specific details for carrying out the invention below.
도 1은 본 발명의 일 구현예에 따른 페놀 발포체를 두께 방향으로 N개(N=9) 균일하게 절단한 것을 나타낸 모식도이다.1 is a schematic diagram showing N (N=9) uniformly cut in the thickness direction of the phenolic foam according to an embodiment of the present invention.
도 2는 본 발명의 일 구현예에 따른 발포 조성물을 토출하는 노즐의 토출구를 모식화한 것이다.2 is a schematic view of a discharge port of a nozzle for discharging a foaming composition according to an embodiment of the present invention.
도 3은 본 발명의 다른 구현예에 따른 컨베이어 상의 하부 면재에 복수의 토출구를 배치한 것을 간략하게 나타낸 모식도이다.3 is a schematic diagram schematically showing the arrangement of a plurality of outlets on the lower plate on the conveyor according to another embodiment of the present invention.
도 4는 본 발명의 또 다른 구현예에 따른 페놀 발포체의 휨 정도를 측정하는 방법을 간략하게 나타낸 모식도이다.Figure 4 is a schematic diagram briefly showing a method for measuring the degree of warpage of the phenolic foam according to another embodiment of the present invention.
도 5는 본 발명의 또 다른 구현예에 따른 페놀 발포체의 치수 안정성을 측정하는 방법을 간략하게 나타낸 모식도이다.5 is a schematic diagram briefly showing a method for measuring the dimensional stability of a phenolic foam according to another embodiment of the present invention.
전술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 도면에서 동일한 참조부호는 동일 또는 유사한 구성요소를 가리키는 것으로 사용된다.The above-described objects, features and advantages will be described below in detail with reference to the accompanying drawings, and accordingly, those of ordinary skill in the art to which the present invention pertains will be able to easily implement the technical idea of the present invention. In describing the present invention, if it is determined that a detailed description of a known technology related to the present invention may unnecessarily obscure the gist of the present invention, the detailed description will be omitted. Hereinafter, preferred embodiments according to the present invention will be described in detail with reference to the accompanying drawings. In the drawings, the same reference numerals are used to indicate the same or similar components.
이하에서는, 본 발명의 몇몇 구현예에 따른 페놀 발포체를 설명하도록 한다.Hereinafter, the phenolic foam according to some embodiments of the present invention will be described.
본 발명의 일 구현 예는 두께가 90mm 이상인 페놀 발포체이고, 상기 발포체의 어느 한 표면으로부터 그 표면을 따라 두께 방향으로 N (N≥7의 홀수)개의 절편으로 균분하였을 때, 제1 표층부(N1)의 독립기포율이 제2 표층부(NN)의 독립기포율보다 낮고, 상기 N개의 절편 중에서 최소 독립기포율을 갖는 절편(Nmin)이, 상기 제1 표층부(N1)와 가운데 절편(Nc) 사이에 위치하는 페놀 발포체를 제공한다.One embodiment of the present invention is a phenolic foam having a thickness of 90 mm or more, and when divided into N (odd number of N≥7) slices in the thickness direction from any one surface of the foam to the surface, the first surface layer portion (N 1 ) is lower than the closed cell ratio of the second surface layer part (N N ), and the intercept (N min ) having the minimum closed cell ratio among the N slices is the first surface layer part (N 1 ) and the middle section ( N c ) located between the phenolic foams.
일반적으로, 발포체는 두께가 두꺼울수록, 단열성 확보가 용이할 수 있다. 그러나, 발포체의 두께가 일정 이상을 초과하게 되면, 발포체의 두께 방향 중심부의 경화 반응에 의해 내부 발열이 커지는 데다가 외부로 열이 잘 방산되지 않아, 발포 조성물의 내부 온도가 과도하게 상승한다. 이에 따라 발포체 중심 부근의 기포가 파열되는 등 발포체의 두께 방향으로 위치에 따라 물성이 현저히 달라질 수 있고, 발포체가 쉽게 손상되고 휨이 발생할 수 있다. 발포체에 휨이 발생하게 되면, 외관 불량 및 시공 불량이 발생할 가능성이 크며, 장기간에 걸쳐 제품이 수축하는 등의 문제가 발생한다. 그리고, 두께가 두꺼워졌음에도 불구하고, 열전도율이 오히려 저하될 수 있다. 이에 따라, 종래에는 고후도 제품의 물성 확보 및 휨 방지를 위해, 발포체 전체의 물성을 균일하게 하고, 발포체 두께 방향으로 가운데 부분을 기준으로 물성이 대칭을 이루는 발포체를 제조하려는 경향이 있었다. 그러나, 현실적으로 고후도 발포체에서, 두께 전체에 걸쳐 물성을 균일하게 하면서 대칭구조를 이루는 것은 쉽지 않으며, 비용 및 생산 효율 면에서 비경제적인 문제가 있다. In general, as the thickness of the foam increases, it may be easier to secure thermal insulation. However, when the thickness of the foam exceeds a certain level or more, internal heat generation increases due to the curing reaction of the central portion in the thickness direction of the foam, and heat is not easily dissipated to the outside, and the internal temperature of the foam composition is excessively increased. Accordingly, the physical properties of the foam may be significantly changed depending on the location in the thickness direction of the foam, such as rupture of the bubble near the center of the foam, and the foam may be easily damaged and warp may occur. When warpage occurs in the foam, there is a high possibility of poor appearance and poor construction, and problems such as product shrinkage over a long period of time occur. And, despite the increased thickness, thermal conductivity may be rather reduced. Accordingly, in the prior art, in order to secure the physical properties of the high-thickness product and prevent warping, there has been a tendency to make the physical properties of the entire foam uniform and to manufacture a foam having symmetrical properties with respect to the center portion in the foam thickness direction. However, in reality, in a high-thickness foam, it is not easy to achieve a symmetrical structure while uniform physical properties over the entire thickness, and there is an uneconomical problem in terms of cost and production efficiency.
또한, 발포체는 제조시에는 상부 표층부 및 하부 표층부의 구분이 가능하나, 시공시에는 발포체의 상하를 구분하는 것이 어렵다. 이에 따라 상부 표층부과 하부 표층부 중 어느 부위에 충격이 가해졌는가에 따라 물성이 취약한 부위가 받는 충격이 크게 상이할 수 있다. 특히, 단열재는, 예를 들어 천장용 또는 바닥용 단열재 등은 설치 과정에서 작업 인부들에 의해 임의로 위치 설정되고, 밟히고, 시멘트 등을 붓고 일정 시간 동안 숙성하는 과정을 거치게 된다. 따라서, 제조시에는 우수한 물성을 나타내는 발포체라도, 설치 과정에서 발포체의 물성이 취약한 부위가 크게 손상되어, 발포체 사용 중에 단열성 및 압축강도 등의 물성이 현저히 저하되고 휨이 발생할 수 있고, 이에 따라 열전도율이 저하될 수 있다.In addition, it is possible to distinguish the upper surface layer part and the lower surface layer part at the time of manufacture of the foam, but it is difficult to distinguish the upper and lower parts of the foam during construction. Accordingly, depending on which part of the upper surface layer portion and the lower surface layer portion is subjected to the impact, the impact received by a portion having weak physical properties may be significantly different. In particular, insulators, for example, for ceilings or floors, are arbitrarily positioned by workers during an installation process, stepped on, poured cement, etc., and then aged for a certain period of time. Therefore, even if it is a foam that exhibits excellent physical properties during manufacture, the parts with weak properties of the foam are greatly damaged during the installation process. can be lowered
상기 페놀 발포체는 약 90㎜ 이상의 두께를 갖는 것으로서, 발포체의 두께 방향으로 가운데 부분을 기준으로 비대칭 구조를 가지면서, 발포체에서 최소 독립기포율을 갖는 위치를 조절하여, 발포체 전체에 있어 단열성, 압축강도 등의 우수한 물성을 나타내고, 휨을 방지할 수 있다. 그리고, 설치 과정에서 페놀 발포체의 양 표면 중 어느 일면에 충격이 가해지더라도, 발포체에서 취약한 부위가 받는 충격을 동일, 유사하게 낮출 수 있다. 이에 따라, 상기 페놀 발포체는 시공과정을 거친 후에도 장기간 우수한 물성을 나타낼 수 있다. 상기 페놀 발포체는 약 110㎜이상, 약 150㎜이상, 약 180㎜이상 내지 300㎜의 두께를 가질 수 있다.The phenolic foam has a thickness of about 90 mm or more, has an asymmetric structure with respect to the center portion in the thickness direction of the foam, and adjusts the position having the minimum closed cell ratio in the foam, so that the insulation properties and compressive strength of the foam as a whole It exhibits excellent physical properties, such as, and can prevent warpage. And, even if an impact is applied to either surface of both surfaces of the phenolic foam during the installation process, it is possible to similarly and similarly lower the impact received by a vulnerable part of the foam. Accordingly, the phenolic foam can exhibit excellent physical properties for a long period of time even after the construction process. The phenolic foam may have a thickness of about 110 mm or more, about 150 mm or more, and about 180 mm or more to 300 mm.
상기 페놀 발포체는 발포체의 표면으로부터 그 표면을 따라 두께 방향으로 N (N≥7의 홀수)개의 절편으로 균분하였을 때, 제1 표층부(N1)의 독립기포율이 제2 표층부(NN)의 독립기포율보다 낮고, 상기 N개의 절편 중에서 최소 독립기포율을 갖는 절편(Nmin)이, 상기 제1 표층부(N1)와 가운데 절편(Nc) 사이에 위치한다. The phenolic foam is When divided into N (odd number of N≥7) slices from the surface of the foam to the thickness direction along the surface, the closed cell ratio of the first surface layer part (N 1 ) is higher than the closed cell ratio of the second surface layer part (N N ) A fragment (N min ) which is low and has a minimum closed cell ratio among the N fragments is located between the first surface layer portion (N 1 ) and the middle fragment (N c ).
본 발명은 발포체의 두께에 따른 독립기포율 분포를 측정을 위하여, 발포체의 표면으로부터 그 표면을 따라 두께 방향으로 N (N≥7의 홀수)개의 절편으로 균등하게 절단한다. 이때, 두께는 면재 상의 발포 조성물이 성장하는 방향(Z 방향)을 의미하고, 상기 두께 방향과 수직인 면이 표면으로 발포체 제조시에 면재가 부착되는 면을 의미한다. 상기 발포체는 면재가 있는 경우 면재를 제거하고, 정확한 독립기포율 측정을 위하여 면재가 부착되었던 발포체의 양 표면을 각각 5㎜씩 절단한다. In the present invention, in order to measure the distribution of the closed cell ratio according to the thickness of the foam, it is equally cut into N (odd number of N≥7) sections from the surface of the foam to the thickness direction along the surface. In this case, the thickness refers to the direction in which the foam composition on the face material grows (Z direction), and the surface perpendicular to the thickness direction is the surface, and it means the side to which the face material is attached when the foam is manufactured. In the foam, if there is a face material, the face material is removed, and both surfaces of the foam to which the face material is attached are cut by 5 mm for accurate measurement of the closed cell ratio.
그 후, 상기 발포체의 표면으로부터 그 표면을 따라 두께 방향으로 N (N≥7의 홀수)개의 절편으로 균분한다. 그리고, 각 절편의 독립기포율을 측정한다. N은 짝수를 포함하는 정수여도 상관없으나, 발포체에서 두께 방향의 중심부를 기준으로 물성이 대칭을 이루는 지를 보다 명확히 확인하기 위하여 N은 홀수 인 것이 바람직하다. 각각의 절편은 약 10 ㎜ 내지 약 30 ㎜의 두께를 가질 수 있다.Then, it is divided into N (an odd number of N≥7) slices from the surface of the foam body along the surface in the thickness direction. Then, the percentage of closed cells in each section is measured. Although N may be an integer including an even number, N is preferably an odd number in order to more clearly confirm whether physical properties are symmetrical with respect to the center of the thickness direction in the foam. Each segment may have a thickness of from about 10 mm to about 30 mm.
상기 페놀 발포체는 제1 표면 및 제2 표면을 포함하고, 상기 제1 표층부는 제1 표면을 포함하고, 제2 표층부는 상기 제2 표면을 포함하는 절편을 의미한다. 상기 발포체의 양 표면을 포함하는 양 끝의 2 개의 절편 중에서, 독립 기포율이 낮은 절편을 N1(제1 표층부), 나머지 절편을 NN(제2 표층부)로 표시하고, N1으로부터 순차적으로, N2, N3, N4, N5,... 및 NN로 각각의 절편을 나타낸다. 그리고, 상기 절편들 중에서, 정가운데에 위치한 절편은 가운데 절편(Nc)으로 나타낸다. 즉, 가운데 절편(Nc)은 상기 제1 표층부(N1) 및 상기 제2 표층부(NN)의 두께 방향의 1/2 지점에 위치한 절편을 의미한다. 예를 들어, 도 1은 본 발명의 일 구현예에 따른 페놀 발포체를 두께 방향으로 9개(N=9) 균일하게 절단한 것을 나타낸 모식도로서, 상기 발포체의 양 표면을 포함하는 양 끝의 2 개의 절편 중에서, 독립 기포율이 낮은 절편은 N1(제1 표층부), 나머지 절편은 N9(제2 표층부)가 되고, 가운데 절편(Nc)은 N5가 된다. 그리고, 최소 독립기포율을 갖는 절편(Nmin)이 4번째 절편, 즉, N4에 위치한 것을 나타낸 것이다.The phenolic foam includes a first surface and a second surface, the first surface layer includes a first surface, and the second surface layer means a segment including the second surface. Among the two sections at both ends including both surfaces of the foam, the section with a low closed cell ratio is N 1 (first surface layer), the remaining section is N N (second surface layer), and sequentially from N 1 , N 2 , N 3 , N 4 , N 5 , ... and N N represent each intercept. And, among the fragments, a fragment located in the middle is denoted as a middle fragment (Nc). That is, the middle section Nc refers to a section located at a 1/2 point in the thickness direction of the first surface layer part N 1 and the second surface layer part N N . For example, FIG. 1 is a schematic diagram showing that nine (N=9) uniformly cut phenolic foams according to an embodiment of the present invention in the thickness direction, two at both ends including both surfaces of the foam Among the fragments, the fragment with a low closed cell ratio becomes N 1 (first surface layer), the remaining fragments become N 9 (second surface layer), and the middle fragment (Nc) becomes N5. And, it shows that the intercept Nmin having the minimum closed cell ratio is located in the fourth intercept, that is, N4.
상기 페놀 발포체는 제1 표층부(N1)의 독립기포율이 제2 표층부(NN)의 독립기포율보다 낮아 비대칭 구조를 이루고, 이때, 상기 N개의 절편 중에서 최소 독립기포율을 갖는 절편(Nmin)이, 상기 제1 표층부(N1)와 가운데 절편(Nc) 사이에 위치한다. 이에 따라, 상기 제1 표층부 및 제2 표층부 중 어느 일면에 충격이 가해지더라도, 최소 독립기포율을 갖는 절편(Nmin)이 받는 충격을 동일 유사하게 낮추어, 발포체 전체에 있어서 우수한 단열성 등의 물성과 함께 휨을 방지할 수 있다. The phenol foam forms an asymmetric structure in which the closed cell ratio of the first surface layer portion (N 1 ) is lower than the closed cell ratio of the second surface layer portion (N N ), and at this time, the segment (N) having the minimum closed cell ratio among the N fragments min ) is located between the first surface layer portion (N 1 ) and the middle section (N c ). Accordingly, even if an impact is applied to any one surface of the first surface layer part and the second surface layer part, the impact received by the fragment (N min ) having the minimum closed cell ratio is similarly lowered, and physical properties such as excellent thermal insulation properties in the entire foam You can prevent warping together.
통상적으로, 고후도 발포체의 경우, 물성이 두께 방향으로 대칭의 분포를 갖도록 하여 발포체 전체의 물성을 향상시키고자 하나, 비용이 너무 많이 들고 생산 효율이 떨어지는 바 비경제적이다. 그리고, 발포체의 두께가 두꺼워질수록, 물성이 대칭 구조의 분포를 갖도록 하는 것은 현실적으로 불가능에 가깝다.In general, in the case of a high-thickness foam, it is intended to improve the overall physical properties of the foam by having the physical properties have a symmetrical distribution in the thickness direction, but the cost is too high and the production efficiency is low, which is uneconomical. And, as the thickness of the foam increases, it is practically impossible to have the physical properties have a symmetrical structure distribution.
이에, 상기 페놀 발포체는 제1 표층부(N1)의 독립기포율이 제2 표층부(NN)의 독립기포율보다 낮아 비대칭 구조를 갖도록 하여 보다 경제적으로 발포체를 제조하면서도, 최소 독립기포율을 갖는 절편(Nmin)이, 제2 표층부(NN)의 독립기포율보다 낮은 독립기포율을 갖는 상기 제1 표층부(N1)와 가운데 절편(Nc) 사이에 위치하여 목적하는 효과를 달성할 수 있다. 예를 들어, 최소 독립기포율을 갖는 절편(Nmin)이 가운데 절편(Nc)과 독립기포율이 높은 제2 표층부(NN) 사이에 위치하는 발포체에 있어서, 제1 표층부(N1)에 충격이 가해지는 경우에는 문제가 되지 않을 수 있다. 그러나, 제2 표층부(NN)에 충격이 가해지는 경우, 최소 독립기포율을 갖는 절편(Nmin) 방향으로 휨이 크게 나타나고, 발포체가 크게 손상되어 사용과정에서 물성이 현저히 저하될 수 있다. 상기 페놀 발포체는 상기 구조를 가짐으로써, 발포체의 두께 방향에 있어서 물성이 완전히 대칭을 이루는 발포체와 동일 유사한 효과를 나타낼 수 있는바, 경제적이다.Accordingly, the phenolic foam has an asymmetric structure in which the closed cell ratio of the first surface layer part (N 1 ) is lower than the closed cell ratio of the second surface layer part (N N ) to produce a foam more economically, while having a minimum closed cell ratio The intercept (N min ) is located between the first surface layer portion (N 1 ) and the middle section (N c ) having a lower closed cell ratio than the closed cell ratio of the second surface layer portion (N N ) to achieve the desired effect can For example, in the foam having the minimum closed cell ratio (N min ) is located between the middle section (N c ) and the second surface layer portion (N N ) having a high closed cell ratio, the first surface layer portion (N 1 ) This may not be a problem if an impact is applied to the However, when an impact is applied to the second surface layer portion (N N ), a large amount of warpage appears in the direction of the intercept (N min ) having the minimum closed cell ratio, and the foam is greatly damaged and the physical properties may be significantly reduced in the course of use. Since the phenolic foam has the above structure, it is economical, as it can exhibit the same and similar effects as the foam having completely symmetrical properties in the thickness direction of the foam.
상기 제1 표층부(N1)의 독립기포율과 상기 제2 표층부(NN)의 독립기포율의 차이(=|제2 표층부(NN)의 독립기포율-제1 표층부(N1)의 독립기포율|)는 약 0.05 % 내지 약 5 %일 수 있다. 예를 들어, 약 0.1 % 내지 약 5 % 또는 약 0.1 % 내지 약 3 %일 수 있다. 상기 제1 표층부(N1)와 상기 제2 표층부(NN)의 독립기포율의 차이가 상기 범위 미만인 경우에는 비용이 상승하고, 생산효율이 떨어져 비경제적이고, 상기 범위를 초과하는 경우에는 발포체 전체가 우수한 물성을 갖도록 하는데 한계가 있다.The difference between the closed cell ratio of the first surface layer part (N 1 ) and the closed cell ratio of the second surface layer part (N N ) (=| Closed cell ratio of the second surface layer part (NN) - Closed cells of the first surface layer part (N1) ratio|) may be from about 0.05% to about 5%. For example, it can be from about 0.1% to about 5% or from about 0.1% to about 3%. When the difference between the closed cell ratio of the first surface layer part (N 1 ) and the second surface layer part (N N ) is less than the above range, the cost increases, the production efficiency is low, and it is uneconomical, and when it exceeds the above range, the entire foam There is a limit to having excellent physical properties.
상기 제1 표층부(N1)의 독립기포율과 상기 제2 표층부(NN)의 독립기포율은 각각 약 85 % 이상일 수 있다. 예를 들어, 약 85% 내지 약 100%일 수 있다. 상기 제1 표층부(N1) 및 상기 제2 표층부(NN)는 상기 범위의 독립기포율을 가짐으로써, 우수한 초기 열전도율과 함께, 발포체와 공기와의 치환을 방지하여, 단열성능의 경시 변화량을 낮추어 우수한 단열성을 나타낼 수 있다.The closed cell ratio of the first surface layer part (N 1 ) and the closed cell ratio of the second surface layer part (N N ) may each be about 85% or more. For example, from about 85% to about 100%. The first surface layer portion (N 1 ) and the second surface layer portion (N N ) by having a closed cell ratio in the above range, together with excellent initial thermal conductivity, prevent replacement of the foam and air, the amount of change over time of the insulation performance It can be lowered to exhibit excellent thermal insulation properties.
상기 페놀 발포체는 상기 제2 표층부(NN)가 최대 독립기포율을 갖고, 상기 제2 표층부(NN)와 상기 최소 독립기포율을 갖는 절편(Nmin)의 독립기포율의 차이(△ C2=|제2 표층부(NN)의 독립기포율-절편(Nmin)의 독립기포율|)가 약 1 내지 약 20 % 일 수 있다. 예를 들어, 약 1 내지 약 15 % 또는 약 1 % 내지 약 7 %일 수 있다. 일 수 있다. 이때, 상기 최소 독립기포율을 갖는 절편(Nmin)과 상기 제2 표층부(NN)와의 독립기포율 차이가 상기 범위를 초과하는 경우, 기포 중의 발포제와 공기와의 치환 속도가 상승하여, 열전도율의 경시 변화량이 커질 뿐만 아니라, 고온 환경 하에서의 수축 응력에 견딜 수 있는 기계적 강도가 손상되어 버려, 치수 변화율이 현저하게 악화될 수 있다. 이에 따라, 발포체는 휨 현상이 쉽게 그리고, 크게 나타날 수 있다. 그리고, 상기 제1 표층부(N1)와 상기 최소 독립기포율을 갖는 절편(Nmin)의 독립기포율의 차이(△ C1=|제1 표층부(N1)의 독립기포율-절편(Nmin)의 독립기포율|)가 약 0.1 내지 약 20 % 일 수 있다. 예를 들어, 약 0.1 내지 약 10 % 일 수 있다.In the phenol foam, the second surface layer portion (N N ) has the maximum closed cell ratio, and the second surface layer portion (N N ) and the intercept (N min ) having the minimum closed cell ratio difference (Δ C2) =|The closed cell ratio of the second surface layer part NN-the closed cell ratio of the intercept (N min )|) may be about 1 to about 20%. For example, it can be from about 1% to about 15% or from about 1% to about 7%. can be At this time, when the difference in the closed cell ratio between the intercept (N min ) having the minimum closed cell ratio and the second surface layer part (N N ) exceeds the above range, the replacement rate of the foaming agent and air in the bubble increases, and the thermal conductivity Not only does the amount of change with time increase, but the mechanical strength that can withstand the shrinkage stress in a high-temperature environment is impaired, and the rate of dimensional change may be remarkably deteriorated. Accordingly, the foam may be easily and greatly warped. And, the difference between the closed cell ratio of the first surface layer part (N 1 ) and the intercept (N min ) having the minimum closed cell ratio (Δ C1 = | Closed cell ratio of the first surface layer part N1 - intercept (N min ) of closed cell ratio|) may be about 0.1 to about 20%. For example, it may be about 0.1 to about 10%.
상기 최소 독립기포율을 갖는 절편(Nmin)은 약 70% 이상의 독립기포율을 가질 수 있다. 예를 들어, 약 70% 내지 약 89 % 일 수 있다. 상기 페놀 발포체는 상기 절편(Nmin)의 독립기포율을 상기 범위 조절하여, 장기간에 걸쳐 낮은 열전도율을 유지하고, 휨 발생을 방지하고 치수 안정성을 향상시킬 수 있다. 예를 들어, 상기 범위 미만인 경우, 기포 내의 발포제와 공기와의 치환속도가 상승하여 열전도율의 경시 변화량이 커질 수 있다.The intercept (N min ) having the minimum closed cell ratio may have a closed cell ratio of about 70% or more. For example, it may be about 70% to about 89%. The phenolic foam may control the closed cell ratio of the segment (N min ) within the above range to maintain low thermal conductivity over a long period of time, prevent warpage, and improve dimensional stability. For example, when it is less than the above range, the replacement rate of the foaming agent and air in the bubble increases, so that the change in thermal conductivity over time may be large.
상기 페놀 발포체는 상기 발포체 전체 두께에 대한, d1과 d2의 비율이 약 0.2:0.8 내지 약 0.45:0.55일 수 있다. 상기 d1은, 상기 발포체 전체 두께에 대한, 상기 제1 표층부(N1)로부터 최소 독립기포율을 갖는 절편(Nmin)까지의 두께의 비율(d1=제1 표층부(N1)의 상부면로부터 최소 독립기포율을 갖는 절편(Nmin)의 1/2 지점까지의 두께/발포체 전체 두께)이고, 상기 d2는, 상기 발포체 전체 두께에 대한, 상기 제2 표층부(NN)로부터 최소 독립기포율을 갖는 절편(Nmin)까지의 두께의 비율(d2=제2 표층부(N1)의 하부면로부터 최소 독립기포율을 갖는 절편(Nmin)의 1/2 지점까지의 두께/발포체 전체 두께)일 수 있다. 이때, 상기 발포체 전체 두께는 면재가 부착되었던 발포체의 양 표면을 각각 5㎜씩 절단한 후의 발포체 두께를 의미한다. 그리고, 상기 d1 및 d2는, 도 1에서 보는 바와 같이, 상기 제1 표층부의 상부면 또는 상기 제2 표층부의 하부면으로부터 최소 독립기포율을 갖는 절편(Nmin)의 두께 방향 1/2 지점까지의 수직거리의 비율을 의미한다. In the phenolic foam, a ratio of d1 and d2 to the total thickness of the foam may be from about 0.2:0.8 to about 0.45:0.55. The d1 is the ratio of the thickness from the first surface layer portion (N 1 ) to the intercept (Nmin) having the minimum closed cell ratio with respect to the total thickness of the foam (d1 = the first surface layer portion (N 1 ) from the upper surface of the minimum It is the thickness up to 1/2 point of the intercept (Nmin) having the closed cell ratio / the total thickness of the foam), and d2 is, with respect to the total thickness of the foam, the second surface layer (N N ) having the minimum closed cell ratio It may be a ratio of the thickness to the slice (Nmin) (d2=thickness from the lower surface of the second surface layer part (N 1 ) to the 1/2 point of the slice (Nmin) having the minimum closed cell ratio/total thickness of the foam). In this case, the overall thickness of the foam means the thickness of the foam after cutting each 5 mm of both surfaces of the foam to which the face material was attached. And, as shown in FIG. 1 , d1 and d2 are from the upper surface of the first surface layer part or the lower surface of the second surface layer part to the 1/2 point in the thickness direction of the intercept Nmin having the minimum closed cell ratio. It means the ratio of the vertical distance.
상기 최소 독립기포율을 갖는 절편(Nmin)은 상기 제1 표층부(N1)와 상기 제2 표층부(NN)와의 관계에서 상기 지점에 위치하여 상기 제1 표층부 및 제2 표층부 중 어느 일면에 충격이 가해지더라도, 최소 독립기포율을 갖는 절편(Nmin)이 받는 충격을 동일 유사하게 낮추어, 발포체 전체에 있어서 우수한 단열성 등의 물성과 함께 휨을 방지할 수 있다. 예를 들어, 상기 최소 독립기포율을 갖는 절편(Nmin)이 상기 범위를 벗어나, 제1 표층부(N1)에 더 가까이 위치하는 경우, 제1 표층부(N1) 측의 물성이 현저히 저하되고, 발포체 전체의 물성을 일정 이상으로 균일하게 하는 것이 어렵고, 면재를 포함한 제1 표층부(N1)의 수축이 외관으로 나타나고, 제1 표층부(N1)방향으로 제품의 휨이 크게 발생하고, 압축강도가 저하되는 등의 문제가 있을 수 있다. 그리고, 최소 독립기포율을 갖는 절편(Nmin)이 제2 표층부(NN)에 더 가까이 위치하는 경우, 제2 표층부(NN)에 충격이 가해졌을 때 최소 독립기포율을 갖는 절편(Nmin)이 받는 충격의 정도가 급속히 증가하여 쉽게 손상되고, 제2 표층부(NN)방향으로 제품이 크게 휘는 등의 문제가 있을 수 있다. The intercept (N min ) having the minimum closed cell ratio is located at the point in the relationship between the first surface layer part (N 1 ) and the second surface layer part (N N ), and is located on any one surface of the first surface layer part and the second surface layer part Even if an impact is applied, it is possible to similarly lower the impact received by the fragment (N min ) having the minimum closed cell ratio, thereby preventing warpage along with physical properties such as excellent thermal insulation properties in the entire foam. For example, when the intercept (N min ) having the minimum closed cell ratio is outside the above range and is located closer to the first surface layer part (N 1 ), the physical properties of the first surface layer part (N 1 ) side are significantly reduced and , it is difficult to uniform the physical properties of the entire foam beyond a certain level, the shrinkage of the first surface layer part (N1) including the face material appears as an appearance, and the product warps in the direction of the first surface layer part (N1), and the compressive strength is low There may be problems such as degradation. And, when the segment (N min ) having the minimum closed cell ratio is located closer to the second surface layer part (N N ), when an impact is applied to the second surface layer part (N N ), the fragment (N) having the minimum closed cell ratio min ) is easily damaged due to a rapid increase in the degree of impact received, and there may be problems such as large bending of the product in the second surface layer (N N ) direction.
상기 페놀 발포체는 각각의 표층부(N1, NN)와 최소 독립기포율을 갖는 절편(Nmin)간의 독립기포율의 차이(△C1, △C2)를 각각의 표층부와 최소 독립기포율을 갖는 절편까지의 거리 비율(d1, d2)로 나눈 값(Y)이(|(△C2/d2)- (△C1/d1)|)= 약 0.1 내지 약 9 일 수 있다. 예를 들어, 약 0.1 내지 약 6.5 또는 약 0.1 내지 약 5 일 수 있다. 상기 Y값이 상기 범위를 초과하게 되면, 두께방향으로 특정 위치에서 받는 충격이 커지거나, 발포체 전체의 물성이 저하되고, 휨이 발생하는 문제가 있을 수 있다.The phenolic foam has the difference (ΔC1, ΔC2) of the closed cell ratio between each surface layer part (N 1 , N N ) and the intercept (N min ) having the minimum closed cell ratio with each surface layer part and the minimum closed cell ratio. A value Y divided by the distance ratio to the intercept (d 1 , d 2 ) may be (|(ΔC2/d2)- (ΔC1/d1)|)= about 0.1 to about 9. For example, it may be from about 0.1 to about 6.5 or from about 0.1 to about 5. When the Y value exceeds the above range, there may be a problem in that the impact received at a specific position in the thickness direction is increased, or the physical properties of the entire foam are lowered, and warpage occurs.
상기 페놀 발포체는 상기와 같은 독립기포율 분포를 가짐으로써, 발포체 전체에 있어서, 우수한 물성을 나타낼 수 있으며, 장기 사용에도 불구하고, 우수한 열전도율을 유지할 수 있다. The phenolic foam can exhibit excellent physical properties in the entire foam by having the closed cell ratio distribution as described above, and can maintain excellent thermal conductivity despite long-term use.
구체적으로, 상기 페놀 발포체는 KS M ISO 844 에 따른 압축강도가 약 100kPa 내지 약 200kPa일 수 있다. 예를 들어, 약 115kPa 내지 약 200kPa일 수 있다. 압축강도는 발포체가 파단 될 때의 압력을 의미한다. 상기 페놀 발포체는 상기 범위의 압축강도를 가짐으로써, 물성간의 우수한 균형을 유지하고, 유통 및 시공 후에도 우수한 장기 내구성을 나타낼 수 있다.Specifically, the phenolic foam may have a compressive strength of about 100 kPa to about 200 kPa according to KS M ISO 844. For example, it may be from about 115 kPa to about 200 kPa. Compressive strength refers to the pressure at which the foam breaks. The phenol foam has a compressive strength in the above range, and thus maintains an excellent balance between physical properties, and can exhibit excellent long-term durability even after distribution and construction.
상기 페놀 발포체는 약 0% 내지 약 2.0% 의 치수 변화율을 가질 수 있다. 예를 들어, 상기 페놀 발포체는 약 0% 내지 약 1.0% 또는 약 0% 내지 약 0.7% 의 치수 변화율을 가질 수 있다. 이때, 치수 변화율은 실험예 4에 기재된 방법으로 측정할 수 있다.The phenolic foam may have a dimensional change of from about 0% to about 2.0%. For example, the phenolic foam can have a dimensional change of from about 0% to about 1.0% or from about 0% to about 0.7%. In this case, the dimensional change rate can be measured by the method described in Experimental Example 4.
발포체는, 도 4에서 보는 바와 같이, 25℃, 상대습도 60%에서 7일 경과시키면, 발포체의 표면부가 바닥면을 향해 움푹 들어가게 휘는 경우(I), 또는 발포체의 표면부가 천장을 향해 볼록하게 휘는 경우(II)가 발생할 수 있다. 이때, 상기 (I)의 경우에는, 모서리 부분(P1∼P4)의 변화가, 그리고, 상기 (II)의 경우에는, 발포체의 길이 방향의 2 변과 바닥면 사이의 최대 이격거리(R1, R2)가, 발포체가 외부 충격에 대하여 받는 손상 및 발포체의 전체 변형에 영향을 미칠 수 있다. 상기 페놀 발포체는 상기 (I)의 경우, 및/또는 상기 (II)의 경우에 있어서, 각각 약 0㎝ 내지 약 1.5㎝의 평균 휨을 가질 수 있다. 또는 각각 약 0.1㎝ 내지 약 0.7㎝ 또는 약 0.1㎝ 내지 약 0.5㎝의 평균 휨을 가질 수 있다.The foam, as shown in Figure 4, when 7 days elapsed at 25 ° C. and 60% relative humidity, the surface of the foam is bent concavely toward the floor (I), or the surface of the foam is curved convexly toward the ceiling Case (II) may occur. At this time, in the case of (I), the change of the corner portions (P1 to P4), and, in the case of (II), the maximum separation distance (R1, R2) between the two sides in the longitudinal direction of the foam and the bottom surface ) may affect the damage to which the foam is subjected to external impact and the overall deformation of the foam. The phenolic foam may have an average warpage of from about 0 cm to about 1.5 cm, respectively, in the case of (I) above, and/or in the case of (II) above. or from about 0.1 cm to about 0.7 cm or from about 0.1 cm to about 0.5 cm, respectively.
상기 페놀 발포체는 KS L 9016에 따른 평균 온도 20℃에서 측정한 열전도율이 약 0.017 W/m·K 내지 약 0.020 W/m·K 일 수 있다. The phenolic foam may have a thermal conductivity of about 0.017 W/m·K to about 0.020 W/m·K measured at an average temperature of 20° C. according to KS L 9016.
그리고, 상기 페놀 발포체는 EN13823에 따라, 70℃에서 7일 동안 건조시킨 뒤에 110℃에서 14일 동안 건조시킨 후, 평균 온도 20℃에서 측정한 열전도율이 약 0.018 W/m·K 내지 약 0.022 W/m·K 일 수 있다. And, according to EN13823, the phenolic foam has a thermal conductivity of about 0.018 W/m K to about 0.022 W/ It may be m·K.
상기 페놀 발포체는 독립기포율을 상기와 같은 분포로 포함하여, 우수한 압축강도 등의 물성을 나타내고, 휨을 방지하며, 장기 열전도율에 있어서도 약 10% 이하의 경시변화를 나타낼 수 있다.The phenolic foam includes the closed cell ratio in the same distribution as above, and exhibits excellent properties such as compressive strength, prevents warpage, and may exhibit a change with time of about 10% or less in long-term thermal conductivity.
본 발명의 다른 구현예는 페놀계 수지, 발포제 및 경화제를 포함하는 발포 조성물을 노즐을 이용하여 면재 상에 토출하는 단계; 및 상기 토출된 발포 조성물을 발포 및 경화하는 단계;를 포함하고, 상기 노즐은 길이(L)/ 폭(W) 이 1 이상 2이하인 형상의 토출구를 갖는 페놀 발포체의 제조방법을 제공한다. Another embodiment of the present invention comprises the steps of discharging a foaming composition comprising a phenol-based resin, a foaming agent and a curing agent onto the face material using a nozzle; and foaming and curing the discharged foaming composition, wherein the nozzle provides a method for producing a phenolic foam having a discharge port having a shape of 1 or more and 2 or less in length (L)/width (W).
상기 제조방법에 의해 전술한 바와 같이, 특정한 독립기포율 분포를 갖고, 발포체 전체에 있어서 우수한 물성을 갖는 페놀 발포체를 보다 경제적으로 제조할 수 있다. 그리고, 상기 제조방법에 의해 제조된 상기 페놀 발포체는 상기 제1 표층부 및 상기 제2 표층부 중 어느 일면에 충격이 가해지더라도, 최소 독립기포율을 갖는 절편(Nmin)이 받는 충격을 동일 유사하게 낮추어, 발포체 전체에 있어서 우수한 단열성, 압축강도 등의 물성과 함께 휨을 방지할 수 있다. 상기 페놀 발포체의 두께, 독립기포율 등 앞서 기재한 사항은 하기에서 특별히 기재한 것을 제외하고는 전술한 바와 같다.As described above by the manufacturing method, a phenolic foam having a specific closed cell ratio distribution and excellent physical properties in the entire foam can be more economically produced. And, the phenolic foam manufactured by the above manufacturing method has the same and similarly lowered the impact received by the fragment (N min ) having the minimum closed cell ratio even if an impact is applied to any one surface of the first surface layer part and the second surface layer part , it is possible to prevent warping along with physical properties such as excellent thermal insulation and compressive strength throughout the foam. The above-mentioned matters such as the thickness of the phenol foam and the closed cell ratio are the same as those described above, except for those specifically described below.
통상의 두께를 갖는 페놀 발포체의 경우, 발포 조성물을 제1 면재 상에 하나의 노즐을 이용하여 연속적으로 토출시킨 후, 경화로 내의 컨베이어 사이에서 판상으로 성형하면, 발포 조성물이 설정된 두께까지 신속히 발포, 경화반응하고, 반응시 생성된 반응열은 표면의 면재를 통해 쉽게 방사되어 두께 전체에 걸쳐 균일한 물성을 가지는 것이 어렵지 않다. 반면, 두께 90㎜ 이상의 페놀 발포체의 경우, 발포체의 두께 방향 중심부의 경화 반응에 의해 내부 발열이 커지고, 외부로 열이 잘 방산되지 않아, 발포 조성물의 내부 온도가 과도하게 상승한다. 이에 따라 발포체 중심 부근의 기포가 파열되기 쉽다. 또한, 제1 면재(하부면재)상에 토출된 발포 조성물이 제2 면재(상부면재) 방향(Z 방향)으로 팽창을 함에 있어, 제품의 두께가 두꺼운 경우 발포-경화에 소요되는 시간이 상대적으로 길어지게 된다. 이에 따라, 발포 조성물이 제1 면재(하부면재)에 머무는 시간이 길어지고, 제1 면재(하부면재)에 발포 조성물이 점차적으로 축적되어 상대적으로 과도한 팽창이 발생하게 되어, 제1 면재(하부면재) 부근의 기포가 파열되기 쉬운 경향을 보이며 발포체의 두께가 두꺼워질수록, 물성의 불균일이 현저히 나타나고, 이에 따라 발포체의 전체 물성이 저하될 수 있다. 이를 극복하기 위하여, 상하부 면재 상에 각각의 노즐을 이용하여 개별적으로 발포 조성물을 토출시키는 방법이 제안되기도 하나, 이와 같은 방법은 복잡한 장치가 필요하여 비용이 상승하는 문제가 있다.In the case of a phenol foam having a normal thickness, the foaming composition is continuously discharged on the first face member using one nozzle, and then molded into a plate shape between conveyors in a curing furnace. The curing reaction is carried out, and the heat of reaction generated during the reaction is easily radiated through the face material, so it is not difficult to have uniform physical properties throughout the thickness. On the other hand, in the case of a phenolic foam having a thickness of 90 mm or more, internal heat generation is increased due to a curing reaction in the central portion in the thickness direction of the foam, and heat is not easily dissipated to the outside, so that the internal temperature of the foaming composition is excessively increased. As a result, the bubbles in the vicinity of the center of the foam are liable to be ruptured. In addition, when the foaming composition discharged on the first face member (lower face member) expands in the second face member (upper face member) direction (Z direction), when the thickness of the product is thick, the time required for foaming-hardening is relatively becomes longer Accordingly, the time for the foam composition to stay in the first face member (lower face member) is prolonged, and the foaming composition is gradually accumulated in the first face member (lower face member) to cause relatively excessive expansion, and the first face member (lower face member) ) nearby cells tend to rupture, and as the thickness of the foam increases, the non-uniformity of physical properties appears remarkably, and thus the overall physical properties of the foam may decrease. In order to overcome this, a method of individually discharging the foaming composition by using each nozzle on the upper and lower planes is also proposed, but such a method requires a complicated device, thereby increasing the cost.
본 발명의 다른 구현예에 따른, 상기 페놀 발포체의 제조방법은 페놀계 수지, 발포제 및 경화제를 포함하는 발포 조성물을 노즐을 이용하여 면재(3) 상에 토출하는 단계를 포함한다. 이때, 상기 노즐의 입구인 토출구(10)는 길이(L)/ 폭(W) 이 1 이상 2이하인 형상을 가질 수 있다. 예를 들어, 도 2에 나타난 바와 같이, 길이(L)가 폭(W) 보다 긴 타원 형상을 가질 수 있으며, 상기 길이(L)/ 폭(W)이 1초과 2이하일 수 있다. 상기 토출구는 조성물이 토출되는 입구를 의미한다. 이때, 길이(L)는 타원에 있어서 장축, 폭(W)은 단축의 길이를 의미한다. 도 3에 나타낸 바와 같이, 상기 토출구의 길이(L) 방향은 발포체의 두께 방향(Z 방향)과 평행하고, 상기 토출구의 폭(W) 방향은 발포체의 폭방향(Y 방향)과 평행한 방향으로 위치할 수 있다.According to another embodiment of the present invention, the method for manufacturing the phenol foam includes discharging a foaming composition including a phenol-based resin, a foaming agent and a curing agent onto the face member 3 using a nozzle. At this time, the discharge port 10, which is the inlet of the nozzle, may have a shape in which the length (L)/width (W) is 1 or more and 2 or less. For example, as shown in FIG. 2 , the length L may have an elliptical shape longer than the width W, and the length L/width W may be greater than 1 or less than 2 . The discharge port means an inlet through which the composition is discharged. In this case, the length (L) means the length of the major axis in the ellipse, and the width (W) means the length of the minor axis. 3, the length (L) direction of the discharge port is parallel to the thickness direction (Z direction) of the foam, and the width (W) direction of the discharge port is in a direction parallel to the width direction (Y direction) of the foam can be located
상기 노즐의 토출구는 1이상 2이하의 길이(L)/ 폭(W)(aspect ratio)을 가질 수 있다. 예를 들어, 상기 노즐의 토출구는 1초과 2 이하인 타원 형상의 토출구를 가질 수 있다. 이에 따라, 경화하고 있는 기포가 발포 조성물의 이동에 의해 무너지는 것을 방지하고, 발포 조성물이 토출되는 면재(예: 하부 면재) 부근에서 발포 조성물이 과도하게 발포 및 팽창하게 되는 등의 문제를 방지할 수 있다. 예를 들어, 노즐의 토출구가 타원이 아닌, 직사각형의 구조를 갖는 경우, 토출구 모서리 부근에 경화물이 축적되는 등의 문제가 있을 수 있다. 그리고, 상기 토출구가 원형 또는 타원 형상을 가지나, 길이(L)/ 폭(W)가 상기 범위 미만인 경우, 발포 조성물이 토출되는 하부 면재 부근에서 과도한 발포 및 팽창이 발생하여 기포가 쉽게 파포되는 등의 문제가 있을 수 있다. 길이(L)/ 폭(W)의 비가 상기 범위를 초과하는 경우, 발포 조성물이 발포체의 폭방향(Y 방향, 발포 조성물의 토출 방향과 직교하는 방향)으로 퍼지는 양이 증가하면서, 가열에 의해 경화하고 있는 기포가 발포 조성물의 이동에 의해 무너지고, 발포체의 두께 방향(Z 방향)으로의 발포 및 팽창 속도가 더 느려지고, 발포 조성물이 하부 면재 부근에 머무는 시간 및 양이 많아지는 문제지면서 기포가 파포되는 등의 문제가 있을 수 있다.The discharge port of the nozzle may have a length (L)/width (W) (aspect ratio) of 1 or more and 2 or less. For example, the discharge port of the nozzle may have an elliptical discharge port of more than 1 and 2 or less. Accordingly, it prevents the cells being cured from collapsing due to the movement of the foaming composition, and prevents problems such as excessive foaming and expansion of the foaming composition in the vicinity of the face material (eg, the lower face material) from which the foaming composition is discharged. can For example, when the outlet of the nozzle has a rectangular structure rather than an ellipse, there may be a problem in that a cured product is accumulated near the corner of the outlet. And, when the discharge port has a circular or elliptical shape, but the length (L) / width (W) is less than the above range, excessive foaming and expansion occurs near the lower face material from which the foaming composition is discharged, so that the bubbles are easily broken. There may be a problem. When the ratio of length (L) / width (W) exceeds the above range, the amount of expansion of the foam composition in the width direction (Y direction, direction orthogonal to the discharge direction of the foam composition) of the foam increases while curing by heating The bubbles are broken by the movement of the foaming composition, the foaming and expansion rate in the thickness direction (Z direction) of the foam becomes slower, and the time and amount of the foaming composition staying near the lower face material increases. There may be problems such as
상기 토출구는 약 10㎜ 내지 약 100㎜의 길이(L)를 가질 수 있다. 상기 토출구의 장축인 길이(L)가 상기 범위 미만인 경우 노즐 토출 시 발생되는 압력 상승할 수 있고, 상기 범위를 초과할 경우 압력이 낮아지면서 적절한 발포가 이루어 지지 않는 문제가 있을 수 있다. The outlet may have a length L of about 10 mm to about 100 mm. When the length (L), which is the long axis of the discharge port, is less than the above range, the pressure generated during nozzle discharge may increase, and if it exceeds the above range, the pressure may be lowered and proper foaming may not be performed.
상기 발포 조성물은 약 30kg/min 내지 약 100kg/min으로 토출될 수 있다.The foaming composition may be discharged at about 30 kg/min to about 100 kg/min.
상기 토출시의 상기 발포 조성물의 점도는 25℃에서 약 5,000 cps 내지 약 40,000 cps 일 수 있다. 상기 발포 조성물은 상기 범위의 점도를 가짐으로써, 발포 및 경화에 적절한 슬러리 상태로 토출될 수 있다. The viscosity of the foaming composition at the time of the discharge may be from about 5,000 cps to about 40,000 cps at 25°C. The foaming composition may be discharged in a slurry state suitable for foaming and curing by having a viscosity within the above range.
상기 토출시의, 상기 발포 조성물의 온도는 약 0 ℃ 내지 약 40 ℃일 수 있다. 온도 범위가 상기 범위 미만인 경우 토출물 점도가 과도하게 상승되어 토출이 어려운 문제가 있고, 상기 범위를 초과하는 경우 발포제가 쉽게 휘발되어 열전도율 저하되는 문제가 있을 수 있다.At the time of the discharge, the temperature of the foaming composition may be about 0 ℃ to about 40 ℃. If the temperature range is less than the above range, there may be a problem in that the discharge viscosity is excessively increased and thus discharge is difficult.
상기 페놀 발포체의 제조방법은 도 3에 나타낸 바와 같이, 발포 조성물의 흐름 방향(X축, 즉, 면재(3)의 주행 방향)과 직교하는 방향(Y축 방향, 발포체의 폭 방향)을 따라 배치된 상기 토출구(10)를 갖는 복수의 노즐을 구비할 수 있다. 구체적으로, 상기 노즐은 약 4개 내지 약 12개일 수 있다. 상기 노즐은 등간격으로 병렬로 배치될 수 있다.As shown in FIG. 3, the method for producing the phenol foam is arranged along a direction (Y-axis direction, width direction of the foam) orthogonal to the flow direction of the foam composition (X-axis, that is, the running direction of the face material 3) A plurality of nozzles having the discharge port 10 may be provided. Specifically, the number of nozzles may be about 4 to about 12. The nozzles may be arranged in parallel at equal intervals.
상기 제조방법은 상기 토출구(10)를 갖는 상기 개수의 노즐을 균일한 간격으로 병렬 배치하여, 발포 조성물이 성장하는 방향(Z축 방향, 발포체의 두께 방향)으로뿐만 아니라, 발포 조성물의 흐름 방향(X축, 즉, 면재의 주행 방향)과 직교하는 방향(Y축 방향, 발포체의 폭 방향)으로 균일한 팽창을 유도할 수 있다. 이에, 기포의 성장 및 분포를 적절히 조절할 수 있다.In the manufacturing method, by arranging the number of nozzles having the discharge ports 10 in parallel at uniform intervals, the foam composition grows in the direction (Z-axis direction, the thickness direction of the foam) as well as in the flow direction of the foam composition ( Uniform expansion can be induced in the direction (Y-axis direction, width direction of the foam) orthogonal to the X-axis, that is, the running direction of the face material. Accordingly, the growth and distribution of bubbles can be appropriately controlled.
상기 발포 조성물은 페놀계 수지, 발포제 및 경화제를 포함한다. 상기 페놀계 수지는 페놀 및 포름알데히드가 반응하여 얻어질 수 있으며, 예를 들어 레졸계 페놀 수지(이하, '레졸 수지')를 포함할 수 있다. 상기 페놀계 수지는 상기 페놀 발포체 내에 약 30 중량% 내지 약 90 중량% 또는 약 50 중량% 내지 약 90 중량% 또는 약 55 중량% 내지 약 90 중량%의 함량으로 포함될 수 있다. 상기 페놀 발포체는 상기 페놀계 수지를 상기 범위 내의 함량으로 포함함으로써 작은 크기의 발포 셀을 안정적으로 형성하고, 우수한 열전도도를 구현할 수 있다.The foaming composition includes a phenol-based resin, a foaming agent, and a curing agent. The phenol-based resin may be obtained by reacting phenol and formaldehyde, and may include, for example, a resol-based phenol resin (hereinafter, 'resol resin'). The phenolic resin may be included in the phenolic foam in an amount of about 30 wt% to about 90 wt%, or about 50 wt% to about 90 wt%, or about 55 wt% to about 90 wt%. The phenol foam may stably form a small-sized foam cell by including the phenol-based resin in an amount within the above range, and may implement excellent thermal conductivity.
상기 페놀 발포체는 발포제를 포함할 수 있다. 예를 들어, 상기 발포제는 히드로플루오로올레핀(hydrofluoroolefin, HFO)계 화합물, 탄화수소계 화합물 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다. 구체적으로, 상기 히드로플루오로올레핀계 화합물은 예를 들어, 모노클로로트리플루오로프로펜, 트리플루오로프로펜, 테트라플루오로프로펜, 펜타플루오로프로펜, 헥사플루오로부텐 및 이들의 조합으로 이루어진 군에서 선택되는 적어도 하나를 포함할 수 있다. 그리고, 상기 탄화수소계 화합물은 탄소수 1개 내지 8개의 탄화수소를 포함할 수 있다. 예를 들어, 상기 탄화수소계 화합물은 디클로로에탄, 프로필클로라이드, 이소프로필클로라이드, 부틸클로라이드, 이소부틸클로라이드, 펜틸클로라이드, 이소펜틸클로라이드, n-부탄, 이소부탄, n-펜탄, 이소펜탄, 시클로펜탄, 헥산, 헵탄, 시클로펜탄 및 이들의 조합으로 이루어진 군에서 선택되는 적어도 하나를 포함할 수 있다. 또는 상기 탄화수소계 화합물은 탄소수 1개 내지 5개의 탄화수소로서, 디클로로에탄, 프로필클로라이드, 이소프로필클로라이드, 부틸클로라이드, 이소부틸클로라이드, 펜틸클로라이드, 이소펜틸클로라이드, n-부탄, 이소부탄, n-펜탄, 이소펜탄, 시클로펜탄 및 이들의 조합으로 이루어진 군에서 선택되는 적어도 하나를 포함하여 친환경성과 함께 우수한 단열성을 나타낼 수 있다. 상기 발포제는 상기 페놀 발포체 약 100 중량부를 기준으로 약 6 중량부 내지 약 13 중량부가 되도록 포함될 수 있다.The phenolic foam may include a blowing agent. For example, the blowing agent may include one selected from the group consisting of a hydrofluoroolefin (HFO)-based compound, a hydrocarbon-based compound, and combinations thereof. Specifically, the hydrofluoroolefin-based compound is, for example, monochlorotrifluoropropene, trifluoropropene, tetrafluoropropene, pentafluoropropene, hexafluorobutene, and combinations thereof. It may include at least one selected from the group consisting of. And, the hydrocarbon-based compound may include a hydrocarbon having 1 to 8 carbon atoms. For example, the hydrocarbon-based compound is dichloroethane, propyl chloride, isopropyl chloride, butyl chloride, isobutyl chloride, pentyl chloride, isopentyl chloride, n-butane, isobutane, n- pentane, isopentane, cyclopentane, It may include at least one selected from the group consisting of hexane, heptane, cyclopentane, and combinations thereof. Or the hydrocarbon-based compound is a hydrocarbon having 1 to 5 carbon atoms, dichloroethane, propyl chloride, isopropyl chloride, butyl chloride, isobutyl chloride, pentyl chloride, isopentyl chloride, n-butane, isobutane, n-pentane, By including at least one selected from the group consisting of isopentane, cyclopentane, and combinations thereof, it may exhibit excellent thermal insulation properties along with eco-friendliness. The blowing agent may be included in an amount of about 6 parts by weight to about 13 parts by weight based on about 100 parts by weight of the phenol foam.
상기 페놀 발포체는 경화제를 포함한다. 상기 경화제는 산성 경화제로, 톨루엔 술폰산, 자일렌 술폰산, 벤젠술폰산, 페놀 술폰산, 에틸벤젠 술폰산, 스티렌 술폰산, 나프탈렌 술폰산 및 이들의 조합으로 이루어진 군으로부터 선택된 하나의 산성 경화제를 포함할 수 있다. The phenolic foam includes a curing agent. The curing agent is an acid curing agent, and may include one acid curing agent selected from the group consisting of toluene sulfonic acid, xylene sulfonic acid, benzenesulfonic acid, phenol sulfonic acid, ethylbenzene sulfonic acid, styrene sulfonic acid, naphthalene sulfonic acid, and combinations thereof.
상기 산성 경화제는 상기 페놀 발포체 100 중량부 대비, 약 9 중량부 내지 약 20 중량부의 함량으로 포함될 수 있다. 상기 페놀 발포체는 상기 경화제를 상기 범위의 함량으로 포함하여 적정의 가교, 경화 및 발포성을 나타낼 수 있다.The acid curing agent may be included in an amount of about 9 parts by weight to about 20 parts by weight, based on 100 parts by weight of the phenol foam. The phenol foam may exhibit appropriate crosslinking, curing and foaming properties by including the curing agent in an amount within the above range.
상기 페놀 발포체의 제조방법은 상기 토출된 발포 조성물을 발포 및 경화하는 단계를 포함한다. 상기 페놀 발포체는 경화로 내의 컨베이어 사이에서 판상으로 발포 및 경화될 수 있다. 예를 들어, 약 40℃ 내지 약 90℃의 온도 조건 하에서 발포 및 경화될 수 있다. 또한, 상기 발포 및 경화는 약 2분 내지 약 20분의 시간 동안 수행될 수 있으나, 이에 제한되지 아니하고, 발명의 목적 및 용도에 따라 적절히 달라질 수 있다. The manufacturing method of the phenol foam includes foaming and curing the discharged foam composition. The phenolic foam may be foamed and cured in a plate shape between conveyors in a curing furnace. For example, it may be foamed and cured under a temperature condition of about 40 °C to about 90 °C. In addition, the foaming and curing may be performed for a time of about 2 minutes to about 20 minutes, but is not limited thereto, and may appropriately vary depending on the purpose and use of the invention.
본 발명의 또 다른 구현 예는 상기 페놀 발포체를 포함하는 단열재를 제공한다. 상기 페놀 발포체는 우수한 압축강도, 휨 방지 및 우수한 단열성을 동시에 만족시켜, 건축용 단열재의 용도로 사용될 수 있다.Another embodiment of the present invention provides an insulating material comprising the phenol foam. The phenol foam satisfies excellent compressive strength, warpage prevention and excellent thermal insulation properties at the same time, and can be used as a building insulation material.
상기 건축용 단열재는 예를 들어, 상기 페놀 발포체의 일면 또는 양면상에 면재를 더 포함할 수 있고, 상기 면재로 알루미늄을 포함하여 난연성을 더욱 향상시킬 수 있다.The building insulation may further include a face material on one or both surfaces of the phenolic foam, for example, and may further improve flame retardancy by including aluminum as the face material.
(실시예) (Example)
실시예 1:Example 1:
레졸 수지 100 중량부에 대하여, 경화제로 톨루엔술폰산 18 중량부, 발포제로 시클로펜탄 10 중량부 및 계면활성제를 포함하는 발포 조성물(25℃, 20,000 cps)을 준비하였다.Based on 100 parts by weight of the resol resin, a foaming composition (25° C., 20,000 cps) comprising 18 parts by weight of toluenesulfonic acid as a curing agent, 10 parts by weight of cyclopentane as a foaming agent and a surfactant was prepared.
길이(L)/폭(W)이 1.5인 타원의 토출구(길이(L)=10㎜)를 갖는 노즐을 컨베이어(7)의 이동방향(X축, 즉, 면재의 주행 방향)과 직교하는 방향(Y축 방향, 발포체의 폭 방향)을 따라 하부 면재 상에 등간격으로 6개 병렬 배치하였다.A direction orthogonal to the moving direction of the conveyor 7 (X-axis, that is, the running direction of the face member) of the nozzle having an elliptical discharge port (length (L) = 10 mm) having a length (L)/width (W) of 1.5 (Y-axis direction, along the width direction of the foam) were arranged in parallel on the lower face member at equal intervals.
그리고, 10m/min 의 속도로 이동하고, 폭 1200mm 및 두께 190mm 의 크기를 갖고, 70℃ 분위기 온도인 컨베이어 상에, 상기 각각의 토출구를 이용하여, 상기 발포 조성물을 40k/min 토출하고, 발포 및 경화하여 두께 190mm의 페놀 발포체를 제조하였다. And, moving at a speed of 10 m/min, having a size of 1200 mm in width and 190 mm in thickness, and on a conveyor having an atmospheric temperature of 70° C., using each of the outlets, 40 k/min of the foamed composition is discharged, and the foaming and A phenolic foam having a thickness of 190 mm was prepared by curing.
실시예 2:Example 2:
길이(L)/폭(W)이 1인 원형의 토출구(길이(L)=10㎜)를 갖는 노즐을 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 페놀 발포체를 제조하였다. A phenol foam was prepared in the same manner as in Example 1, except that a nozzle having a circular outlet (length (L) = 10 mm) having a length (L)/width (W) of 1 was used.
비교예 1:Comparative Example 1:
길이(L)/폭(W)이 2.5인 타원의 토출구(길이(L)=10㎜)를 갖는 노즐을 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 페놀 발포체를 제조하였다. A phenolic foam was prepared in the same manner as in Example 1, except that a nozzle having an elliptical outlet (length (L) = 10 mm) having a length (L)/width (W) of 2.5 was used.
비교예 2:Comparative Example 2:
길이(L)/폭(W)이 0.5인 타원의 토출구(길이(L)=10㎜)를 갖는 노즐을 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 페놀 발포체를 제조하였다.A phenolic foam was prepared in the same manner as in Example 1, except that a nozzle having an elliptical outlet (length (L) = 10 mm) having a length (L)/width (W) of 0.5 was used.
평가evaluation
실험예 1: 각 절편의 독립기포율Experimental Example 1: Closed cell rate of each section
실시예 및 비교예의 페놀 발포체에 부착된 면재를 제거하고, 면재가 부착되었던 발포체의 양 표면을 각각 5㎜씩 절단하였다. The face material attached to the phenol foam of Examples and Comparative Examples was removed, and both surfaces of the foam to which the face material was attached were cut by 5 mm each.
그 후, 상기 발포체의 표면으로부터 그 표면을 따라 두께 방향으로 9개(N=9)의 절편으로 균일하게 절단하고, 절단 전의 발포체 두께 방향 전체에 걸친 가운데 부분을 포함하도록 2.5㎝(L)X2.5㎝ (W)X2.0㎝(T) 크기의 발포체 절편을 제조하였다. 이때, 상기 발포체의 양 표면을 포함하는 양 끝의 2 개의 절편 중에서, 독립 기포율이 낮은 절편을 N1(제1 표층부), 나머지 절편을 N9(제2 표층부)로 표시하고, N1으로부터 순차적으로, N2, N3, N4, N5, N6, N7, N8 및 N9로 각각의 절편을 나타내었다. 이에 따라, 가운데 절편(Nc)는 N5가 된다.Then, from the surface of the foam, uniformly cut into 9 (N=9) slices in the thickness direction along the surface, and 2.5 cm (L) X 2 to include the central portion over the entire thickness direction of the foam before cutting. A foam section having a size of 5 cm (W) X 2.0 cm (T) was prepared. At this time, among the two sections at both ends including both surfaces of the foam, the section with a low closed cell ratio is N 1 (first surface layer), and the remaining section is N 9 (second surface layer), and from N 1 Sequentially, each section is indicated as N 2 , N 3 , N 4 , N 5 , N 6 , N 7 , N 8 , and N 9 . Accordingly, the middle intercept Nc becomes N 5 .
그리고, 상기 각각의 시편(N1 ∼ N9)에 대하여, KS M ISO 4590 측정방법으로 독립기포율 측정기기(Quantachrome, ULTRAPYC 1200e) 장비를 사용하여 각 절편의 독립 기포율을 측정하고 그 결과를 하기 표 1에 기재하였다.And, for each of the specimens (N 1 to N 9 ), the closed cell rate of each section is measured using the closed cell rate measuring device (Quantachrome, ULTRAPYC 1200e) by the KS M ISO 4590 measurement method, and the result is It is described in Table 1 below.
그리고, d1은 발포체 전체 두께에 대한, 상기 제1 표층부(N1)로부터 최소 독립기포율을 갖는 절편(Nmin)까지의 두께(=N1∼Nmin두께)의 비율(d1= N1∼Nmin의 두께/발포체 전체 두께)이고, d2는, 발포체 전체 두께에 대한, 상기 제2 표층부(N9)로부터 최소 독립기포율을 갖는 절편(Nmin)까지의 두께(=N9∼Nmin두께)의 비율(d2= N9∼Nmin 의 두께/발포체 전체 두께)를 의미한다. 이때, 상기 발포체 전체 두께는 면재가 부착되었던 발포체의 양 표면을 각각 5㎜씩 절단한 후의 발포체 두께를 의미한다. 그리고, 상기 N1∼Nmin 의 두께 및 N9∼Nmin 의 두께는, 도 1에서 보는 바와 같이, 상기 제1 표층부의 상부면 또는 상기 제2 표층부의 하부면으로부터 최소 독립기포율을 갖는 절편(Nmin)의 두께 방향 1/2 지점까지의 수직거리를 의미한다. 즉, d1은 제1 표층부(N1)의 상부면로부터 최소 독립기포율을 갖는 절편(Nmin)의 1/2 지점까지의 두께/발포체 전체 두께, d2는 제2 표층부(N1)의 하부면로부터 최소 독립기포율을 갖는 절편(Nmin)의 1/2 지점까지의 두께/발포체 전체 두께를 의미한다.And, d1 is the ratio of the thickness (=N1 to Nmin thickness) from the first surface layer portion (N 1 ) to the intercept (Nmin) having the minimum closed cell ratio with respect to the total thickness of the foam (d1 = the thickness of N1 to Nmin / the total thickness of the foam), and d2 is the ratio of the thickness (=N 9 to Nmin thickness) from the second surface layer portion (N 9 ) to the intercept (Nmin) having the minimum closed cell ratio (=N 9 to Nmin thickness) to the total thickness of the foam (d2= N 9 to Nmin thickness / total thickness of the foam). In this case, the overall thickness of the foam means the thickness of the foam after cutting each 5 mm of both surfaces of the foam to which the face material was attached. And, the thickness of N1 to Nmin and the thickness of N9 to Nmin are the intercept (Nmin) having the minimum closed cell ratio from the upper surface of the first surface layer part or the lower surface of the second surface layer part, as shown in FIG. 1 . It means the vertical distance to 1/2 of the thickness direction. That is, d1 is the thickness/total thickness of the foam from the upper surface of the first surface layer portion (N 1 ) to the 1/2 point of the intercept (Nmin) having the minimum closed cell ratio, d2 is the lower surface of the second surface layer portion (N 1 ) It means the thickness/full thickness of the foam from 1/2 of the intercept (Nmin) having the minimum closed cell ratio.
독립 기포율closed cell rate 실시예 1Example 1 실시예 2Example 2 비교예 1Comparative Example 1 비교예 2Comparative Example 2
N1 N 1 90.390.3 89.189.1 88.588.5 85.685.6
N2 N 2 89.689.6 86.086.0 88.088.0 84.284.2
N3 N 3 88.088.0 84.084.0 87.287.2 83.283.2
N4 N 4 87.187.1 82.582.5 86.586.5 81.981.9
N5(=Nc)N 5 (=N c ) 88.088.0 83.883.8 86.086.0 81.081.0
N6 N 6 89.289.2 8585 84.284.2 8484
N7 N 7 9090 87.287.2 87.187.1 86.286.2
N8 N 8 90.690.6 88.388.3 88.688.6 89.089.0
N9 N 9 91.691.6 89.1589.15 92.192.1 90.590.5
N9-N1N9-N1 1.31.3 0.050.05 3.63.6 4.94.9
N9-Nmin(=△C2)N9-Nmin(=ΔC2) 4.54.5 6.656.65 7.97.9 9.59.5
N1-Nmin(=△ C1)N1-Nmin(=Δ C1) 3.23.2 6.66.6 4.34.3 4.64.6
N1∼Nmin두께N1 to Nmin thickness 7070 7070 110110 9090
N9∼Nmin두께 N9 to Nmin thickness 110110 110110 7070 9090
d1d1 0.390.39 0.390.39 0.610.61 0.50.5
d2d2 0.610.61 0.610.61 0.390.39 0.50.5
d1: d2d1: d2 0.39:0.610.39:0.61 0.39:0.610.39:0.61 0.61:0.390.61:0.39 0.5: 0.50.5: 0.5
Y=|(△C2/d2) - (△C1/d1)|Y=|(ΔC2/d2) - (ΔC1/d1)| 0.830.83 6.026.02 13.2113.21 9.89.8
실험예 2: 압축강도Experimental Example 2: Compressive strength
실시예 및 비교예의 페놀 발포체를 150mm(L)Χ150mm(W)Χ면재를 포함하는 발포체 두께 그대로의 시편으로 준비하고, 상기 시편을 Lloyd instrument社 LF Plus 만능재료시험기(Universal Testing Machine)의 넓은 판 사이에 두고, UTM 장비에서 시편 두께의 10%㎜/min 속도로 설정하고, 압축강도 실험을 시작하여 두께가 감소되는 중에 나타나는 첫번째 압축 항복점에서의 강도를 기록하였다. 압축강도는 KS M ISO 844 규격의 방법으로 측정하였고, 그 결과를 하기 표 2에 기재하였다. The phenolic foam of Examples and Comparative Examples was prepared as a specimen with the thickness of the foam containing 150 mm (L) Χ 150 mm (W) Χ face material, and the specimen was placed between the wide plates of Lloyd Instrument's LF Plus universal testing machine (Universal Testing Machine). In the UTM equipment, it was set at a rate of 10% mm/min of the thickness of the specimen, and the compressive strength test was started, and the strength at the first compressive yield point that appeared while the thickness was decreased was recorded. Compressive strength was measured by the method of KS M ISO 844 standard, and the results are shown in Table 2 below.
실험예 3: 휨Experimental Example 3: Warp
도 4는 본 발명에 따른 면재를 포함하는 페놀 발포체의 휨 정도를 측정하는 방법을 간략하게 나타낸 모식도이다. 실시예 및 비교예의 면재를 포함하는 페놀 발포체의 표면이 바닥면에 접하도록 평평한 바닥에 놓았다. 그리고, 상기 바닥면과 접하는 상기 페놀 발포체 표면의 4 모서리(꼭지점) 지점과 바닥면으로부터의 간격(p1, p2, p3, p4)을 측정하였다. 그리고, 페놀 발포체의 길이 방향의 2 변과 바닥면 사이의 간격의 최대 이격거리(r1, r2)를 측정하였다. 이때, 발포체가 바닥면과 밀착되어 있는 경우, 각각의 간격은 "0"이 된다.Figure 4 is a schematic view briefly showing a method for measuring the degree of warpage of the phenolic foam containing the face material according to the present invention. The surface of the phenolic foam including the face material of Examples and Comparative Examples was placed on a flat floor so that the surface was in contact with the floor surface. Then, 4 corners (vertices) of the surface of the phenol foam in contact with the bottom surface and the distances (p1, p2, p3, p4) from the bottom surface were measured. Then, the maximum separation distance (r1, r2) of the gap between the two sides in the longitudinal direction of the phenol foam and the bottom surface was measured. At this time, when the foam is in close contact with the bottom surface, each interval becomes "0".
그리고, 25℃, 상대습도 60% 조건하에서 7일간 상기 페놀 발포체를 방치하고, 그 후 페놀 발포체의 휨 정도를 측정하였다. 발포체의 표면부가 바닥면을 향해 움푹 들어가게 휜 경우(I)에는, 상기와 동일한 방법으로 4개의 모서리(꼭지점) 지점과 바닥면으로부터의 간격(P1, P2, P3, P 4)을 측정하고, 하기 식 1 에 의해 페놀 발포체에 휨이 발생한 정도를 표 2에 기재하였다. 그리고, 발포체의 표면부가 천장을 향해 볼록하게 휜 경우(II)에는, 페놀 발포체의 길이 방향의 2 변과 바닥면 사이의 간격의 최대 이격거리(R1, R2)를 측정하고, 하기 식 2 에 의해 페놀 발포체에 휨이 발생한 정도를 표 2에 기재하였다.Then, the phenol foam was left to stand for 7 days under conditions of 25° C. and 60% relative humidity, and then the degree of warpage of the phenol foam was measured. When the surface of the foam is bent toward the bottom (I), the four corners (vertices) and the spacing from the bottom (P1, P2, P3, P 4) are measured in the same way as above, and the following Table 2 shows the degree of warpage occurring in the phenol foam according to Formula 1. And, when the surface part of the foam is convexly bent toward the ceiling (II), the maximum separation distance (R1, R2) of the gap between the two sides in the longitudinal direction of the phenol foam and the bottom surface is measured, and by the following formula 2 Table 2 shows the extent to which warpage occurred in the phenol foam.
[식 1][Equation 1]
휨 발생 정도(△S)=[|P1-p1| + |P2-p2| + |P3-p3| + |P4-p4|]/4Degree of warpage (ΔS)=[|P1-p1| + |P2-p2| + |P3-p3| + |P4-p4|]/4
[식 2][Equation 2]
휨 발생 정도(△S')=[|R1-r1| + |R2-r2|]/2Degree of warpage (ΔS')=[|R1-r1| + |R2-r2|]/2
실험예 4: 치수 안정성Experimental Example 4: Dimensional Stability
도 4은 본 발명의 페놀 발포체의 치수 안정성을 측정하는 방법을 간략하게 나타낸 모식도이다.Figure 4 is a schematic diagram briefly showing a method for measuring the dimensional stability of the phenolic foam of the present invention.
실시예 및 비교예의 페놀 발포체를 100mm(L)Χ100mm(W)Χ면재를 포함하는 발포체 두께 그대로의 시편으로 준비하였다. 그리고, 도 5와 같이, 시편의 길이(L) 및 폭(W) 방향에 있어서 균등한 n(n=3)개 지점에 선을 긋고, 25℃에서 상기 각각의 선의 초기 길이(a)를 측정하였다. The phenolic foams of Examples and Comparative Examples were prepared as specimens with the same thickness as the foam containing 100 mm (L) Χ 100 mm (W) Χ face material. And, as shown in FIG. 5, a line is drawn at n (n=3) equal points in the length (L) and width (W) directions of the specimen, and the initial length (a) of each line is measured at 25°C did
그리고, 상기 시편을 70℃ 오븐에서 48시간 방치시킨 후의 각 지점의 나중 길이(a')를 측정하고, 초기 치수에서 변화된 치수 변화율(%)을 하기 식 3에 의해 각각 측정하고, 그 평균 값을 표 2에 기재하였다. 치수안정성은 KS M ISO 2796 규격의 방법으로 측정하였다.Then, the later length (a') of each point is measured after the specimen is left in an oven at 70° C. for 48 hours, and the dimensional change rate (%) changed from the initial dimension is measured by Equation 3 below, and the average value is Table 2 shows. Dimensional stability was measured by the method of KS M ISO 2796 standard.
[식 3][Equation 3]
치수 변화율(%)=(|초기 길이(a)-나중 길이(a')|/초기 길이(a)) X 100Dimensional change rate (%)=(|Initial length (a)-Later length (a')|/Initial length (a)) X 100
상기 식 3에서, 상기 초기 길이(a)는 발포체의 길이(L) 및 폭(W) 방향에 있어서 균등한 n개 지점의 각 선의 길이이고, 상기 나중 길이(a')는 상기 발포체를 70℃ 오븐에서 48시간 방치시킨 후의 상기 각 지점의 각 선의 나중 길이(a')를 의미한다. 이때, n은 2 내지 5일 수 있다.In Equation 3, the initial length (a) is the length of each line of n equal points in the length (L) and width (W) directions of the foam, and the later length (a') is the foam at 70° C. It means the later length (a') of each line at each point after standing in the oven for 48 hours. In this case, n may be 2 to 5.
실험예 5: 초기 열전도율Experimental Example 5: Initial thermal conductivity
실시예 및 비교예의 페놀 수지 발포체를 어느 한 표면으로부터 50㎜가 되도록 절단하고, 300㎜×300㎜ 크기로 절단하여 시편을 준비하고, 상기 시편을 70℃에서 12시간으로 건조하여 전처리 하였다. 그리고, 상기 시편에 대해 KS L 9016(평판 열류계법 측정방법)의 측정 조건에 따라 평균 온도 20℃에서 HC-074-300(EKO社) 열전도율 기기를 사용하여 열전도율을 측정하고, 그 결과를 하기 표 2 에 기재하였다.The phenolic resin foams of Examples and Comparative Examples were cut to be 50 mm from one surface, cut to a size of 300 mm × 300 mm to prepare a specimen, and the specimen was dried at 70° C. for 12 hours and pre-treated. And, according to the measurement conditions of KS L 9016 (Method for measuring plate heat flow metering method) for the specimen, the thermal conductivity was measured using a HC-074-300 (EKO company) thermal conductivity instrument at an average temperature of 20° C., and the results are shown in the table below 2 was described.
실험예 6: 장기 열전도율Experimental Example 6: Long-term thermal conductivity
실시예 및 비교예의 페놀 수지 발포체를 어느 한 표면으로부터 50㎜가 되도록 절단하고, 300㎜×300㎜ 크기로 절단하여 시편을 준비하고, 상기 시편을 EN13823에 따라, 70℃에서 7일 동안 건조시킨 뒤에 110℃에서 14일 동안 건조시킨 후, 평균 온도 20℃에서 HC-074-300(EKO社) 열전도율 기기를 사용하여 열전도율을 측정하고, 그 결과를 하기 표 2 에 기재하였다.The phenolic resin foams of Examples and Comparative Examples were cut to be 50 mm from any one surface, and a specimen was prepared by cutting to a size of 300 mm × 300 mm, and the specimen was dried at 70° C. for 7 days according to EN13823. After drying at 110° C. for 14 days, thermal conductivity was measured at an average temperature of 20° C. using a thermal conductivity instrument HC-074-300 (EKO), and the results are shown in Table 2 below.
실시예 1Example 1 실시예 2Example 2 비교예 1Comparative Example 1 비교예 2Comparative Example 2
압축 강도(kPa)Compressive strength (kPa) 139139 125125 9595 8383
휨(cm)Warp (cm) 0.30.3 1.11.1 1.81.8 2.32.3
치수 안정성(%)Dimensional stability (%) 0.50.5 0.40.4 1.11.1 1.41.4
초기 열전도율(W/m·K)Initial thermal conductivity (W/m·K) 0.01920.0192 0.01930.0193 0.01900.0190 0.01930.0193
장기 열전도율(W/m·K)Long-term thermal conductivity (W/m·K) 0.02050.0205 0.02120.0212 0.02160.0216 0.02300.0230
열전도율 변화량change in thermal conductivity 0.00130.0013 0.00190.0019 0.00260.0026 0.00370.0037
상기 표 1에서 보는 바와 같이, 실시예의 페놀 발포체는 우수한 압축강도와 함께, 휨 정도를 잘 억제하고, 우수한 열전도율을 나타내는 것을 알 수 있다. 이상과 같이 본 발명에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다. 아울러 앞서 본 발명의 실시예를 설명하면서 본 발명의 구성에 따른 작용 효과를 명시적으로 기재하여 설명하지 않았을 지라도, 해당 구성에 의해 예측 가능한 효과 또한 인정되어야 함은 당연하다.As shown in Table 1, it can be seen that the phenolic foam of Examples has excellent compressive strength, suppresses the degree of warpage well, and exhibits excellent thermal conductivity. As described above, the present invention has been described with reference to the illustrated drawings, but the present invention is not limited by the embodiments and drawings disclosed in this specification, and a variety of It is obvious that variations can be made. In addition, even if the effect of the configuration of the present invention is not explicitly described and described while describing the embodiment of the present invention, it is natural that the effect predictable by the configuration should also be recognized.
(부호의 설명)(Explanation of symbols)
d1: 발포체 전체 두께에 대한, 제1 표층부(N1)로부터 최소 독립기포율을 갖는 절편(Nmin)까지의 두께d1: the thickness from the first surface layer portion (N 1 ) to the intercept (N min ) having the minimum closed cell ratio with respect to the total thickness of the foam
d2: 발포체 전체 두께에 대한, 제2 표층부(NN)로부터 최소 독립기포율을 갖는 절편(Nmin)까지의 두께d2: the thickness from the second surface layer portion (NN) to the intercept (Nmin) having the minimum closed cell ratio with respect to the total thickness of the foam
10: 노즐의 토출구 10: the outlet of the nozzle
L: 토출구의 길이L: length of the outlet
W: 토출구의 폭W: width of the outlet
3: 면재3: face plate
7: 컨베이어7: Conveyor
100: 페놀 발포체100: phenolic foam

Claims (9)

  1. 두께가 90㎜ 이상인 페놀 발포체이고,It is a phenolic foam having a thickness of 90 mm or more,
    상기 발포체의 어느 한 표면으로부터 그 표면을 따라 두께 방향으로 N (N≥7의 홀수)개의 절편으로 균분하였을 때, 제1 표층부(N1)의 독립기포율은 제2 표층부(NN)의 독립기포율보다 낮고, 상기 N개의 절편 중에서 최소 독립기포율을 갖는 절편(Nmin)은, 상기 제1 표층부(N1)와 가운데 절편(Nc) 사이에 위치하는When divided into N (an odd number of N≥7) slices from any one surface of the foam along the surface in the thickness direction, the closed cell ratio of the first surface layer portion (N 1 ) is independent of the second surface layer portion (N N ) The segment (N min ) that is lower than the cell rate and has the minimum closed cell rate among the N segments is located between the first surface layer part (N 1 ) and the middle segment (N c )
    페놀 발포체.phenolic foam.
  2. 제1항에 있어서,According to claim 1,
    상기 제1 표층부(N1)의 독립기포율과 상기 제2 표층부(NN)의 독립기포율의 차이는 0.05 % 내지 5 %인The difference between the closed cell ratio of the first surface layer portion (N 1 ) and the closed cell ratio of the second surface layer portion (N N ) is 0.05% to 5%
    페놀 발포체.phenolic foam.
  3. 제1항에 있어서,According to claim 1,
    상기 제1 표층부(N1)의 독립기포율과 상기 제2 표층부(NN)의 독립기포율은 각각 85 % 이상인The closed cell ratio of the first surface layer portion (N 1 ) and the closed cell ratio of the second surface layer portion (N N ) are respectively 85% or more
    페놀 발포체.phenolic foam.
  4. 제1항에 있어서,According to claim 1,
    상기 최소 독립기포율을 갖는 절편(Nmin)의 독립기포율은 70% 이상인The closed cell ratio of the intercept (N min ) having the minimum closed cell ratio is 70% or more
    페놀 발포체.phenolic foam.
  5. 제1항에 있어서,The method of claim 1,
    상기 제2 표층부(NN)가 최대 독립기포율을 갖고,The second surface layer portion (N N ) has a maximum closed cell ratio,
    상기 제2 표층부(NN)와 상기 최소 독립기포율을 갖는 절편(Nmin)의 독립기포율의 차이가 1 % 내지 20 %인The difference between the closed cell ratio of the second surface layer portion (N N ) and the segment having the minimum closed cell ratio (N min ) is 1% to 20%
    페놀 발포체.phenolic foam.
  6. 제1항에 있어서,According to claim 1,
    상기 발포체 전체 두께에 대한, d1과 d2의 비율은 0.2:0.8 내지 0.45:0.55이고,The ratio of d1 and d2 to the overall thickness of the foam is 0.2:0.8 to 0.45:0.55,
    상기 d1은, 상기 발포체 전체 두께에 대한, 상기 제1 표층부(N1)로부터 최소 독립기포율을 갖는 절편(Nmin)까지의 두께 비율이고, 상기 d2는, 상기 발포체 전체 두께에 대한, 상기 제2 표층부(NN)로부터 최소 독립기포율을 갖는 절편(Nmin)까지의 두께 비율인The d1 is a thickness ratio from the first surface layer portion (N 1 ) to the intercept (N min ) having a minimum closed cell ratio with respect to the total thickness of the foam, and d2 is the total thickness of the foam, the second 2 The thickness ratio from the surface layer (N N ) to the intercept (N min ) with the minimum closed cell ratio
    페놀 발포체.phenolic foam.
  7. 제1항에 있어서,According to claim 1,
    EN13823에 따라, 70℃에서 7일 동안 건조시킨 뒤에 110℃에서 14일 동안 건조시킨 후, 평균 온도 20℃에서 측정한 열전도율이 0.018 W/m·K 내지 0.022 W/m·K 인According to EN13823, after drying at 70°C for 7 days and then at 110°C for 14 days, the thermal conductivity measured at an average temperature of 20°C is 0.018 W/m·K to 0.022 W/m·K
    페놀 발포체.phenolic foam.
  8. 페놀계 수지, 발포제 및 경화제를 포함하는 발포 조성물을 노즐을 이용하여 면재 상에 토출하는 단계; 및 discharging a foaming composition including a phenol-based resin, a foaming agent and a curing agent onto the face material using a nozzle; and
    상기 토출된 발포 조성물을 발포 및 경화하는 단계;를 포함하고,Including; foaming and curing the discharged foam composition;
    상기 노즐은 길이(L)/ 폭(W) 이 1 이상 2이하인 형상의 토출구를 갖는 페놀 발포체의 제조방법.The nozzle is a method for producing a phenol foam having a discharge port having a length (L)/width (W) of 1 or more and 2 or less.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 노즐은 4개 내지 12개인The number of nozzles is 4 to 12.
    페놀 발포체의 제조방법.Method for producing phenolic foam.
PCT/KR2021/016168 2020-11-09 2021-11-08 Phenolic foam and method for manufacturing same WO2022098196A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023526006A JP2023548687A (en) 2020-11-09 2021-11-08 Phenol foam and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200148782 2020-11-09
KR10-2020-0148782 2020-11-09

Publications (1)

Publication Number Publication Date
WO2022098196A1 true WO2022098196A1 (en) 2022-05-12

Family

ID=81458065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/016168 WO2022098196A1 (en) 2020-11-09 2021-11-08 Phenolic foam and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP2023548687A (en)
KR (1) KR20220063102A (en)
WO (1) WO2022098196A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120094030A (en) * 2009-12-18 2012-08-23 아사히 가세이 겐자이 가부시키가이샤 Phenolic resin foamed plate and method for producing same
JP2018095870A (en) * 2016-12-10 2018-06-21 積水化学工業株式会社 Phenol resin foam plate and method for producing the same
KR20180083962A (en) * 2013-02-26 2018-07-23 아사히 가세이 겐자이 가부시키가이샤 Phenolic resin foam board, and method for manufacturing same
KR20190031181A (en) * 2017-09-15 2019-03-25 (주)엘지하우시스 Phenolic foam and method for manufacturing the same
KR20200118101A (en) * 2018-04-27 2020-10-14 아사히 가세이 겐자이 가부시키가이샤 Flame retardant phenolic resin foam

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120094030A (en) * 2009-12-18 2012-08-23 아사히 가세이 겐자이 가부시키가이샤 Phenolic resin foamed plate and method for producing same
KR20180083962A (en) * 2013-02-26 2018-07-23 아사히 가세이 겐자이 가부시키가이샤 Phenolic resin foam board, and method for manufacturing same
JP2018095870A (en) * 2016-12-10 2018-06-21 積水化学工業株式会社 Phenol resin foam plate and method for producing the same
KR20190031181A (en) * 2017-09-15 2019-03-25 (주)엘지하우시스 Phenolic foam and method for manufacturing the same
KR20200118101A (en) * 2018-04-27 2020-10-14 아사히 가세이 겐자이 가부시키가이샤 Flame retardant phenolic resin foam

Also Published As

Publication number Publication date
JP2023548687A (en) 2023-11-20
KR20220063102A (en) 2022-05-17

Similar Documents

Publication Publication Date Title
AU2018309538B2 (en) Vacuum adiabatic body and refrigerator
WO2021045483A1 (en) Method for manufacturing aerogel blanket
AU2018318604B2 (en) Vacuum adiabatic body and refrigerator
WO2022098196A1 (en) Phenolic foam and method for manufacturing same
WO2013058489A2 (en) Polyurethane-based cement composite, preparation method thereof, and molded product using same
WO2021045514A1 (en) Aerogel blanket and manufacturing method therefor
WO2019054795A1 (en) Phenol foam and manufacturing method therefor
WO2021054644A1 (en) Aerogel blanket and manufacturing method therefor
WO2015102373A1 (en) Phenolic resin-based rigid polyurethane foam foamed by using no acid curing agents and preparation method therefor
WO2019083093A1 (en) Polyimide film for preparing roll type graphite sheet
WO2013109076A1 (en) Hvac duct using phenol foam and method for manufacturing same
WO2019050365A1 (en) Porous polyurethane polishing pad and method for manufacturing same
WO2021010802A1 (en) Thermoformable melamine foam and method for manufacturing same
KR102316355B1 (en) Non-combustible thermal insulation
CZ78198A3 (en) Refractory glazing system
WO2013012210A2 (en) Tray for loading substrates
WO2019245154A1 (en) Cation exchange membrane comprising polymer support and manufacturing method therefor
WO2020117029A1 (en) Thermosetting foam, manufacturing method therefor, and insulator comprising same
WO2018221987A1 (en) Aerogel sheet and insulation material comprising same
WO2021145492A1 (en) Phenol resin foam, method for producing same, and insulating material comprising same
EP1129151B1 (en) Fire protection for buildings and other civil engineering constructions
WO2021162528A1 (en) Thermosetting foam and method for preparing same
WO2021118259A1 (en) Polyurethane laminate and production method thereof
WO2019066504A2 (en) Thermosetting foam and manufacturing method therefor
WO2020045827A1 (en) Silicone rubber sponge composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21889661

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023526006

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21889661

Country of ref document: EP

Kind code of ref document: A1