WO2021162528A1 - Thermosetting foam and method for preparing same - Google Patents

Thermosetting foam and method for preparing same Download PDF

Info

Publication number
WO2021162528A1
WO2021162528A1 PCT/KR2021/001922 KR2021001922W WO2021162528A1 WO 2021162528 A1 WO2021162528 A1 WO 2021162528A1 KR 2021001922 W KR2021001922 W KR 2021001922W WO 2021162528 A1 WO2021162528 A1 WO 2021162528A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame retardant
foam
weight
phosphorus
parts
Prior art date
Application number
PCT/KR2021/001922
Other languages
French (fr)
Korean (ko)
Inventor
박건표
박인성
김명희
배성재
김도훈
강길호
하혜민
김채훈
김한수
Original Assignee
(주)엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지하우시스 filed Critical (주)엘지하우시스
Publication of WO2021162528A1 publication Critical patent/WO2021162528A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0028Use of organic additives containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0038Use of organic additives containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34922Melamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K2003/026Phosphorus

Definitions

  • the present invention relates to a thermosetting foam and a method for preparing the same.
  • Insulation is an essential material used to prevent energy loss in buildings. As the importance of green growth continues to be emphasized worldwide due to global warming, insulation is becoming more important to minimize energy loss.
  • Insulation materials include thermosetting foam insulation, EPS (expanded polystyrene foam) insulation, XPS (extruded polystyrene foam) insulation, and vacuum insulation.
  • thermosetting foam insulation materials are widely used because they have the best insulation properties, except for vacuum insulation materials, among existing materials.
  • fire stability is inevitably weaker than that of inorganic insulation materials.
  • thermosetting foam is manufactured including the surface material in the manufacturing process
  • the flame retardancy can be improved by applying the aluminum surface material, but in extreme situations such as an actual fire, the flame resistance of the surface material is greatly reduced, so the flame resistance of the foam is fundamentally It is very important to always let
  • flame retardancy is improved by including a flame retardant such as phosphate in the foamable composition, but flame retardancy and thermal insulation properties have a trade-off, so there is a problem in that thermal insulation properties are reduced.
  • a flame retardant such as phosphate
  • thermosetting foam having improved physical properties while simultaneously satisfying high heat insulation and high flame retardancy.
  • thermosetting foam It is also an object of the present invention to provide a method for producing the thermosetting foam.
  • thermosetting resin, a curing agent, a foaming agent and a composite flame retardant according to the present invention wherein the composite flame retardant includes a first flame retardant and a second flame retardant, the first flame retardant is phosphorus, and the second flame retardant is a melamine-based flame retardant.
  • Thermosetting comprising at least one selected from the group consisting of flame retardants, trialkyl phosphates, and combinations thereof, or at least one selected from the group consisting of melamine-based flame retardants, trialkyl phosphates, and combinations thereof and a pentaerythritol compound together
  • a foam may be provided.
  • At least one region of 1.2 mm (length, L) X 0.9 mm (width, W) included in the cross section perpendicular to the thickness direction of the foam according to the present invention contains 10 or more phosphorus, and the diameter of the phosphorus is A thermosetting foam of 1 ⁇ m to 80 ⁇ m can be provided.
  • the method comprising: preparing a flame retardant composition comprising a main agent including a thermosetting resin, a curing agent, a foaming agent, and a composite flame retardant; preparing a foam composition by stirring the base, curing agent, foaming agent and flame retardant composition; and foaming and curing the foam composition, wherein the composite flame retardant includes a first flame retardant and a second flame retardant, the first flame retardant is phosphorus, and the second flame retardant is a melamine-based flame retardant, tree At least one selected from the group consisting of alkyl phosphates and combinations thereof, or at least one selected from the group consisting of melamine-based flame retardants, trialkyl phosphates, and combinations thereof and a pentaerythritol-based compound.
  • a flame retardant composition comprising a main agent including a thermosetting resin, a curing agent, a foaming agent, and a composite flame retardant
  • the composite flame retardant includes a first flame retardant and
  • thermosetting foam according to the present invention contains a flame retardant, foaming and curing are appropriately controlled, so that the foam cell is not destroyed and well formed, and it may have a structure in which the flame retardant is uniformly distributed. Accordingly, it can exhibit improved flame retardancy, have excellent thermal insulation properties, and exhibit physical properties such as excellent compressive strength and dimensional stability.
  • the method for producing a thermosetting foam according to the present invention may provide a method for producing the thermosetting foam.
  • thermosetting foam of the present invention is a schematic diagram briefly showing a method for measuring the dimensional stability of a thermosetting foam of the present invention.
  • Figure 2 is a picture taken using a digital microscope (Digital Microscope) of the area of 1.2 mm (length, L) X 0.9 mm (width, W) included in the cross section perpendicular to the thickness direction of the thermosetting foam of the present invention it has been shown
  • thermosetting foam of the present invention shows a photograph in which the region of the thermosetting foam of the present invention is equally divided into 4 (length, L) X 3 (width, W).
  • Figure 4 is a schematic view showing the side of the foam when 50kW / m2 radiant heat is applied to a phenolic foam having a size of 100mm (length) ⁇ 100mm (width) ⁇ 50mm (thickness) according to KS F ISO 5660-1 for 10 minutes
  • Fig. 4a is a case of a conventional phenolic foam
  • Figure 4b is a schematic diagram when applied to a phenolic foam according to an embodiment of the present invention.
  • thermosetting foam according to some embodiments of the present invention will be described.
  • thermosetting resin includes a first flame retardant and a second flame retardant
  • the first flame retardant is phosphorus
  • the second flame retardant contains at least one selected from the group consisting of melamine-based flame retardants, trialkyl phosphates, and combinations thereof, or at least one selected from the group consisting of melamine-based flame retardants, trialkyl phosphates, and combinations thereof and a pentaerythritol-based compound together
  • a thermosetting foam comprising.
  • thermosetting foam Due to various fire accidents that have occurred recently, not only excellent thermal insulation properties but also improved flame retardancy are required for insulation materials essential for buildings.
  • thermosetting foam is inevitably weaker in fire stability than inorganic insulating materials due to the fundamental limitations of organic materials. Therefore, it is common to impart flame retardancy to the foam through surface treatment such as aluminum face material, but there is a risk that the face material may fall off in an actual fire, and when the face material falls off, the possibility of fire spreading increases.
  • flame retardancy is provided by using a phosphorus-based flame retardant such as phosphate to a thermosetting foam, but when a phosphorus-based flame retardant such as phosphate is used, the flame retardancy is improved, whereas the foam cell is destroyed in the foaming process and the thermal insulation property is lowered.
  • a phosphorus-based flame retardant such as phosphate
  • the flame retardancy is improved, whereas the foam cell is destroyed in the foaming process and the thermal insulation property is lowered.
  • ATH aluminum hydroxide
  • the aluminum hydroxide is a basic material and neutralizes the acid curing agent, so that the curing reactivity of the phenol-based resin may be deteriorated. Accordingly, there is a problem in that the thermal insulation properties of the foam produced therefrom is lowered.
  • phenolic foams have rigid (RIGID) characteristics compared to other thermosetting foams, and the viscosity of the resin is also high. It is difficult to manufacture.
  • the thermosetting foam comprises a thermosetting resin, a curing agent, a foaming agent and a composite flame retardant, and comprises a specific first flame retardant and a second flame retardant as the composite flame retardant, so that foaming and curing are appropriately controlled, for example, even in a phenolic foam, It may have a structure in which the foam cell is not destroyed and the flame retardant is uniformly distributed. Thus, it is possible to improve flame retardancy and heat insulation, which are trade-offs.
  • the thermosetting foam may also exhibit physical properties such as excellent compressive strength and dimensional stability.
  • thermosetting foam includes a thermosetting resin.
  • the thermosetting resin may include one selected from the group consisting of an epoxy-based resin, a polyurethane-based resin, a polyisocyanate-based resin, a polyisocyanurate-based resin, a polyester-based resin, a polyamide-based resin, a phenol-based resin, and combinations thereof.
  • the thermosetting foam may include a phenol-based resin obtained by reacting phenol and formaldehyde with a thermosetting resin, for example, a resol-based phenol resin (hereinafter, 'resol resin').
  • a thermosetting resin for example, a resol-based phenol resin (hereinafter, 'resol resin').
  • the composite flame retardant including the first flame retardant and the second flame retardant may be well mixed with the phenolic resin including a benzene ring and uniformly dispersed and foamed. Accordingly, the thermosetting foam, for example, the phenolic foam, while including the composite flame retardant, while stably forming a uniform and small-sized foam cell, as well as the initial thermal insulation properties as well as long-term thermal insulation can exhibit improved thermal insulation properties.
  • thermosetting resin may be included in the thermosetting foam in an amount of about 30 wt% to about 90 wt%, or about 50 wt% to about 90 wt%, or about 55 wt% to about 90 wt%.
  • the thermosetting foam may stably form a foamed cell and implement excellent thermal conductivity by including the thermosetting resin in an amount within the range.
  • the thermosetting foam includes a curing agent.
  • the curing agent may include one acid curing agent selected from the group consisting of toluene sulfonic acid, xylene sulfonic acid, benzenesulfonic acid, phenol sulfonic acid, ethylbenzene sulfonic acid, styrene sulfonic acid, naphthalene sulfonic acid, and combinations thereof.
  • the thermosetting foam may exhibit proper crosslinking, curing and foaming properties by including the curing agent.
  • the thermosetting foam includes a blowing agent.
  • the blowing agent may include one selected from the group consisting of a hydrofluoroolefin (HFO)-based compound, a hydrocarbon-based compound, and combinations thereof.
  • the hydrofluoroolefin-based compound is, for example, monochlorotrifluoropropene, trifluoropropene, tetrafluoropropene, pentafluoropropene, hexafluorobutene, and combinations thereof. It may include at least one selected from the group consisting of.
  • the hydrocarbon-based compound may include a hydrocarbon having 1 to 8 carbon atoms.
  • the hydrocarbon-based compound is dichloroethane, propyl chloride, isopropyl chloride, butyl chloride, isobutyl chloride, pentyl chloride, isopentyl chloride, n-butane, isobutane, n- pentane, isopentane, cyclopentane, It may include at least one selected from the group consisting of hexane, heptane, cyclopentane, and combinations thereof.
  • hydrocarbon-based compound is a hydrocarbon having 1 to 5 carbon atoms, dichloroethane, propyl chloride, isopropyl chloride, butyl chloride, isobutyl chloride, pentyl chloride, isopentyl chloride, n-butane, isobutane, n-pentane, By including at least one selected from the group consisting of isopentane, cyclopentane, and combinations thereof, it may exhibit excellent thermal insulation properties and eco-friendliness.
  • the thermosetting foam may include one surfactant selected from the group consisting of amphoteric, cationic, anionic, nonionic surfactants and combinations thereof.
  • the thermosetting foam may include an ethoxylated castor oil surfactant, that is, a nonionic surfactant.
  • the thermosetting foam, particularly the phenolic resin foam can more easily disperse the composite flame retardant components including the surfactant, and stably form an appropriate foaming structure in the thermosetting foam to realize excellent thermal conductivity and excellent physical strength, etc. can
  • thermosetting foam includes a composite flame retardant
  • the composite flame retardant includes a first flame retardant and a second flame retardant
  • the first flame retardant is phosphorus (Phosphorus)
  • the second flame retardant is a melamine-based flame retardant, trialkyl phosphate And at least one selected from the group consisting of combinations thereof, or at least one selected from the group consisting of melamine-based flame retardants, trialkyl phosphates, and combinations thereof and a pentaerythritol-based compound together.
  • the second flame retardant has excellent compatibility with the phosphorus of the solid phase, which is the first flame retardant, and thus can be mixed well, and suppresses the aggregation of small-sized phosphorus particles so that the flame retardant can be evenly dispersed, and uniformly It can be foamed to provide excellent thermal insulation with improved flame retardancy.
  • excellent physical properties such as compressive strength and dimensional stability can be imparted.
  • the thermosetting foam contains phosphorus as the first flame retardant of the composite flame retardant and can form a char with excellent carbonization action during combustion.
  • the phenolic resin foam can better form a carbonized film (char) by including phosphorus in the phenolic resin including a benzene ring.
  • the phosphorus traps hydrogen radicals and hydroxy radicals generated during combustion to prevent the combustion reaction from occurring in a chain, thereby quickly blocking fire propagation.
  • the phosphorus may be classified into white, red, black, and phosphorus according to the structural state and color of phosphorus.
  • the thermosetting foam may include red.
  • the thermosetting foam may be easily handled when the thermosetting foam is formed, including red with an appropriate structure.
  • the thermosetting foam may include about 80% or more or about 100% of the phosphorus red.
  • the phosphor may have an average particle diameter of about 1 to about 50 ⁇ m.
  • the average particle diameter means an average value of the diameters that one particle can have.
  • the thermosetting foam may include phosphorus having an average particle diameter in the above range, and may include phosphorus in a large surface area relative to the same weight part. Accordingly, excellent flame retardancy can be exhibited, and excellent thermal insulation properties can be exhibited at the same time by not interfering with the formation of foam cells.
  • the average particle diameter of the phosphorus may be measured using a laser particle size analyzer.
  • the foam includes red as a first flame retardant, and phosphorus can be observed in the form of red dots when photographing with a digital microscope, as shown in FIG. 2 . Through this, it is possible to check the content level and dispersion degree of red in the foam.
  • the foam may consist of cell walls and struts of foam cells.
  • the foam contains a red dot, that is, a red dot on the strut.
  • red dot that is, a red dot on the strut.
  • the phosphorus or red phosphorus in the strut portion of the foam, it may help to implement the flame retardant performance without significant deterioration in thermal insulation properties. It is important to ensure that the person or enemy is formed in the strut section. If phosphorus or enemy is located on the cell wall, the voids or non-uniform foaming may occur due to the breakage of air bubbles. Accordingly, it may be difficult to achieve the desired effect.
  • the particle size of phosphorus or phosphorus, combination with the second flame retardant and uniform dispersion before and after foaming through it may help to include phosphorus or phosphorus in the strut.
  • the composite flame retardant includes a second flame retardant, and the second flame retardant includes at least one selected from the group consisting of melamine-based flame retardants, trialkyl phosphates, and combinations thereof, or melamine-based flame retardants, trialkyl phosphates, and combinations thereof It contains at least one selected from the group consisting of and a pentaerythritol-based compound.
  • the second flame retardant has excellent compatibility with the phosphorus, which is the first flame retardant, so that it can be mixed well, and the aggregation phenomenon of small-sized phosphorus particles is appropriately suppressed so that phosphorus of an appropriate size can be evenly dispersed in the composite flame retardant, By uniformly foaming, it can exhibit excellent thermal insulation with improved flame retardancy.
  • a second flame retardant comprising a melamine-based flame retardant, a trialkyl phosphate and pentaerythritol together, or a second flame retardant comprising a melamine-based flame retardant and a trialkyl phosphate combination, or a melamine-based flame retardant and a pentaerythritol
  • the pentaerythritol-based compound binds between the phosphorus and phosphorus during combustion to better form a carbonized film (Char) and prevent the fire from spreading. can be prevented
  • the pentaerythritol-based compound may include one selected from the group consisting of monopentaerythritol, dipentaerythritol, tripentaerythritol, and combinations thereof.
  • the melamine-based flame retardant may include at least one selected from the group consisting of melamine, melamine phosphate, melamine polyphosphate, melamine cyanurate, and combinations thereof.
  • the melamine-based flame retardant may be melamine cyanurate, and may exhibit excellent compatibility in relation to a phenol-based resin. By using the melamine-based flame retardant having excellent compatibility with the phenol-based resin, it helps to achieve flame retardant performance without significant deterioration in thermal insulation performance.
  • the melamine-based flame retardant may work together to form a carbonized film of phosphorus to improve a reaction for forming a carbonized film of phosphorus and form a stable carbonized film.
  • the melamine-based flame retardant may condense melamine itself generated by combustion decomposition to form a carbonized film including a multi-ring structure such as melem and melon.
  • the melamine-based flame retardant may delay ignition by lowering the combustion heat due to endothermic heat due to sublimation and decomposition of melamine itself in the melamine-based flame retardant structure during combustion.
  • the melamine-based flame retardant may dilute oxygen by generating nitrogen and/or ammonia gas during combustion.
  • the melamine-based flame retardant may form uniform and small-sized cells in the thermosetting foam.
  • the melamine-based flame retardant may act as a nucleating agent in the foam, and more stably form a cell structure to further improve thermal insulation properties.
  • the average particle diameter of the melamine-based flame retardant may be about 1 ⁇ m to about 20 ⁇ m.
  • the average particle diameter means an average value of the diameters that one particle can have.
  • the particle is geometrically spherical, it means the average of the diameter, and in the case of other shapes, it means the average length of the major axis when divided into a major axis and a minor axis.
  • the particle size can be measured by a laser particle size analyzer (Laser Particle Size Analyzer, model name: BT-2000). If the average particle diameter of the melamine-based flame retardant is less than the above range, there may be a problem in that the viscosity of the composition comprising the same increases and the dispersion is not good. And, when it exceeds the above range, there may be a problem that the flame retardancy is lowered.
  • the trialkyl phosphate is trimethyl phosphate, triethyl phosphate, tributyl phosphate, tris (1-chloro 2-propyl) phosphate, tri (2-ethylhexyl) phosphate, triphenyl phosphate, tricresyl phosphate, triza Ilenyl phosphate (trixylenyl phosphate), tris (isopropylphenyl) phosphate, tris (phenylphenyl) phosphate, trinaphthyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, diphenyl (2-ethylhexyl) phosphate, diphenyl (2-ethylhexyl) phosphate (isopropylphenyl)phenylphosphate, monoisodecylphosphate) and combinations thereof.
  • the trialkyl phosphate improves the uniform dispersion of the phosphorus, suppresses the aggregation of small-sized phosphorus particles, so that the composite flame retardant can be evenly dispersed, and uniformly foams to exhibit excellent thermal insulation properties with improved flame retardancy. .
  • the trialkyl phosphate may be triethyl phosphate (TEP) or tris (1-chloro 2-propyl) phosphate (TCPP), and a trialkyl phosphate, that is, triethyl phosphate or tris (1-chloro 2-propyl) Phosphate (TCPP) is well mixed with the phosphorus with excellent compatibility, can help control the viscosity of the composite flame retardant with little adverse effect on foam curing, and does not interfere with the foaming and curing of phenolic foam, thereby providing flame retardancy and heat insulation properties can be further improved.
  • the trialkyl phosphate may be advantageous in uniform distribution of the first flame retardant when mixed in advance rather than separately added from the first flame retardant.
  • the composite flame retardant may be included in an amount of about 1 part by weight to about 12 parts by weight based on 100 parts by weight of the thermosetting foam.
  • the composite flame retardant may be included in an amount of about 1 part by weight to about 10 parts by weight or about 1 part by weight to about 8 parts by weight.
  • the thermosetting foam contains the composite flame retardant in the above range, particularly in a small amount, while controlling the combustion rate of the foam in case of fire and stably forming a carbonized film to provide excellent properties such as improved flame retardancy and excellent thermal insulation and compressive strength.
  • the carbonization film may not be stably formed and a sufficient flame retardant effect may not be exhibited.
  • the viscosity of the foam composition is greatly increased, which may cause problems during foaming.
  • the viscosity of the foam composition increases due to the content of the composite flame retardant, the temperature of the foam composition is increased because a large amount of torque of the mixer is taken during stirring. And, the amount of volatilization of the foaming agent is increased, and thus thermal insulation properties may be deteriorated.
  • phosphorus, a foaming agent, a curing agent, etc. may not be evenly dispersed, which may cause a problem in that the physical properties of the foam are not uniformly formed.
  • the composite flame retardant may include phosphorus (Phosphorus) as the first flame retardant, or phosphorus (Phosphorus) and trialkyl phosphate, and inductively coupled plasma optical emission spectrometer: ICP-OES, Agilent Company, model name 5110 ), it is possible to measure the content of the element P (phosphorus) contained in the composite flame retardant.
  • the thermosetting foam may be in the shape of a board having a length, width and thickness.
  • a sample including portions spaced apart from each other by about 1 cm or more from the entire outer surface of the foam is prepared.
  • the sample or the part with an abnormality such as a very large void or contamination in the sample is excluded.
  • a sample may be collected and measured from at least one region of at least one cross-section perpendicular to the thickness direction of the foam (parallel to the surface to which the surface material is attached). For example, a sample in which about 1 cm is cut off from the entire outer surface of the foam is prepared.
  • each of the m points is uniform in the cross section. It may be a very spaced point.
  • About 200 ( ⁇ 20) mg of the sample collected at each of the above points is put into a microwave container together with 5 ml of nitric acid, respectively, and wait for about 10 minutes for the reaction to occur sufficiently.
  • a microwave device Preekem, model name: TOPEX
  • thermosetting foam may include the composite flame retardant in a certain amount, and may include P(phosphorus) element in an average content of about 9,000 mg/kg to about 100,000 mg/kg according to ICP-OES. for example, from about 10,000 mg/kg to about 80,000 mg/kg or from about 10,000 mg/kg to about 60,000 mg/kg of element P(phosphorus) in an average content.
  • the first flame retardant may be included in an amount of about 0.9 parts by weight to about 10 parts by weight based on 100 parts by weight of the thermosetting foam.
  • the first flame retardant is contained in an amount of about 1 part by weight to about 8 parts by weight, or about 1 part by weight to about 6 parts by weight to be uniformly dispersed in the thermosetting resin, and improved flame retardancy and compressive strength while maintaining excellent thermal insulation properties, etc. excellent physical properties of
  • the viscosity of the foam composition is greatly increased, and a problem may occur during foaming.
  • the temperature of the foam composition may be increased because a large amount of torque of the mixer is applied during stirring.
  • the amount of volatilization of the foaming agent is increased, and accordingly, thermal insulation properties may be deteriorated.
  • phosphorus, a foaming agent, a curing agent, etc. may not be evenly dispersed, which may cause a problem in that physical properties are not formed uniformly, such as a decrease in compressive strength.
  • the second flame retardant may be included in an amount of about 0.001 parts by weight to about 6 parts by weight based on 100 parts by weight of the thermosetting foam.
  • the second flame retardant may be in an amount of about 0.01 parts by weight to about 6 parts by weight or about 0.05 parts by weight to about 4 parts by weight.
  • the composite flame retardant, together with the first flame retardant includes the second flame retardant in an amount within the above range, so that foaming and curing are easily controlled and the foam cell is not destroyed, and the flame retardant is uniformly distributed. And, by controlling the combustion rate of the foam in case of fire and forming a stable carbonized film, it can have excellent properties such as excellent flame retardancy and excellent thermal insulation, compressive strength, and dimensional stability at the same time.
  • the phosphorus and the phosphorus may not react properly to form an appropriate carbonized film, and the flame retardant improvement effect may be lowered because the formation rate of the carbonized film is not sufficient.
  • the second flame retardant compound itself that remains without reacting with phosphorus in a fire is combusted, thereby reducing the flame retardancy.
  • the weight ratio of the first flame retardant to the second flame retardant may be about 1: 0.001 to about 1: 0.8.
  • the weight ratio of the first flame retardant to the second flame retardant is from about 1: 0.01 to about 1: 0.8, from about 1: 0.02 to about 1: 0.8, or from about 1: 0.05 to about 1: 0.6
  • the thermosetting foam may include the first flame retardant and the second flame retardant in a weight ratio within the above range, and simultaneously exhibit improved flame retardancy and excellent thermal insulation, and exhibit excellent physical properties.
  • the second flame retardant when the second flame retardant is mixed in an amount less than the above range, there is an uneconomical problem due to insignificant synergistic effect with phosphorus, and when the second flame retardant is mixed in excess of the above range, the flame retardancy is rather reduced, and high independence It may be difficult to secure the cell ratio, and it may be difficult to secure sufficient compressive strength.
  • the composite flame retardant may include the phosphorus and the pentaerythritol-based compound, and the weight ratio of the phosphorus to the pentaerythritol-based compound may be about 1:0.05 to about 1:0.6.
  • the weight ratio of the phosphorus to the pentaerythritol-based compound may be about 1: 0.07 to about 1: 0.4.
  • the composite flame retardant may include the phosphorus and the melamine-based flame retardant, and the weight ratio of the phosphorus to the melamine-based flame retardant may be from about 1: 0.001 to about 1: 0.8.
  • the weight ratio of the phosphorus to the melamine-based flame retardant may be from about 1: 0.01 to about 1: 0.8 or from about 1: 0.07 to about 1: 0.6.
  • thermosetting foam containing the melamine-based flame retardant in the above range may exhibit a detection peak of melamine by pyrolysis gas chromatography/mass spectrometry (py-GC/MS) (600° C.).
  • py-GC/MS pyrolysis gas chromatography/mass spectrometry
  • a sample including portions spaced apart by about 1 cm or more from the entire outer surface of the foam are prepared, and perpendicular to the thickness direction of the foam (parallel to the surface to which the surface material is attached)
  • a melamine peak peak may be detected at at least one point of the at least one cross-section. .
  • the sample or the part with an abnormality such as a very large void or contamination in the sample is excluded.
  • each of the j points may be points uniformly spaced apart from each other in the cross section.
  • About 0.2 to 0.3 mg of each sample collected at each of the j points is placed in a sample cup. Then, put the sample cup into a pyrolysis gas chromatography/mass spectrometer (py-GC/MS, manufacturer: Agilent, model name: 7890A/5975C), and measure the gas produced by thermally decomposing the sample at 600° C.
  • thermosetting foam contains the melamine-based flame retardant in less than the above range, the melamine peak may not appear according to the GC/MS (600° C.).
  • the thermosetting foam shows a detection peak of melamine by the GC/MS (600° C.), and it can be seen that the melamine-based flame retardant is included in the content within the above range.
  • the composite flame retardant may include the phosphorus and the trialkyl phosphate, and the weight ratio of the phosphorus to the trialkyl phosphate may be from about 1: 0.001 to about 1: 0.8.
  • the weight ratio of the phosphorus to the trialkyl phosphate may be from about 1: 0.01 to about 1: 0.8 or from about 1: 0.07 to about 1: 0.6.
  • the second flame retardant When the content of each of the second flame retardants exceeds the above range in the relationship with the causality of the first flame retardant, the second flame retardant remaining without reacting with the phosphorus, which is the first flame retardant, burns in a fire and can rather reduce the flame retardancy. have. And, when the content of the second flame retardant is less than the above range, the dispersibility of phosphorus in the thermosetting foam may decrease, thereby reducing the thermal insulation properties. And, the synergistic effect of flame retardancy according to the combination of the second flame retardant and the phosphorus may not appear.
  • the trialkylphosphate may be triethylphosphate (TEP) or tris(1-chloro 2-propyl)phosphate (TCPP), in the above range triethylphosphate (TEP) or tris(1-chloro 2-propyl)phosphate ( TCPP) was obtained by pyrolysis gas chromatography/mass spectrometry (py-GC/MS) (200° C.) of triethylphosphate (TEP) or tris(1-chloro 2-propyl)phosphate (TCPP). A detection peak may be indicated.
  • py-GC/MS pyrolysis gas chromatography/mass spectrometry
  • a sample including portions spaced apart by about 1 cm or more from the entire outer surface of the foam are prepared, and perpendicular to the thickness direction of the foam (parallel to the surface to which the surface material is attached)
  • a peak of triethylphosphate (TEP) or tris(1-chloro 2-propyl)phosphate (TCPP) may be detected at at least one point of at least one cross-section.
  • a pyrolysis gas chromatography/mass spectrometer (py-GC/MS, manufacturer: Agilent, model name: 7890A/5975C), and measure the gas produced by pyrolyzing the sample at 200°C under inert gas conditions to measure triethyl phosphate
  • the GC/MS measurement method is the same as described above, except that characteristic peaks of (TEP) or tris(1-chloro 2-propyl)phosphate (TCPP) were identified.
  • thermosetting foam contains triethyl phosphate (TEP) or tris (1-chloro 2-propyl) phosphate (TCPP) in an amount less than the above range, according to the GC/MS (200° C.), triethyl
  • TEP triethyl phosphate
  • TCPP tris (1-chloro 2-propyl) phosphate
  • peaks of phosphate (TEP) or tris(1-chloro 2-propyl)phosphate (TCPP) may not appear.
  • thermosetting foam shows a detection peak of triethyl phosphate (TEP) or tris (1-chloro 2-propyl) phosphate (TCPP) by the GC/MS (200° C.), through which triethyl phosphate (TEP) or tris It can be seen that (1-chloro 2-propyl) phosphate (TCPP) is included in an amount within the above range.
  • TEP triethyl phosphate
  • TCPP (1-chloro 2-propyl) phosphate
  • the composite flame retardant may include the phosphorus, the pentaerythritol-based compound, and the melamine-based flame retardant, and contains about 0.1 parts by weight to about 50 parts by weight of the pentaerythritol-based compound relative to 100 parts by weight of the phosphorus. and about 0.1 parts by weight to about 80 parts by weight of the melamine-based flame retardant.
  • the phosphorus based on 100 parts by weight of the phosphorus, about 1 part by weight to about 50 parts by weight of the pentaerythritol-based compound, about 1 part by weight to about 80 parts by weight of the melamine-based flame retardant, or 100 parts by weight of the phosphorus , It may contain about 5 parts by weight to about 30 parts by weight of the pentaerythritol-based compound, and about 5 parts by weight to about 50 parts by weight of the melamine-based flame retardant.
  • the content of the pentaerythritol-based compound compared to the melamine-based flame retardant is less than the above range, the carbonized film formed by a synergistic action with phosphorus and the melamine-based flame retardant may be insufficient. There may be a problem in that the flame retardancy is rather reduced while the system compound is burned.
  • the composite flame retardant may include the phosphorus, the melamine-based flame retardant, and the trialkyl phosphate, and contains about 0.1 parts by weight to about 80 parts by weight of the melamine-based flame retardant, relative to 100 parts by weight of the phosphorus, and the trialkyl phosphate It may contain from about 0.1 parts by weight to about 80 parts by weight.
  • the phosphorus based on 100 parts by weight of the phosphorus, about 1 part by weight to about 80 parts by weight of the melamine-based flame retardant, about 1 part by weight to about 80 parts by weight of the trialkyl phosphate, or 100 parts by weight of the phosphorus, It may include about 5 parts by weight to about 50 parts by weight of the melamine-based flame retardant, and about 5 parts by weight to about 50 parts by weight of the trialkyl phosphate.
  • the content of the melamine-based flame retardant compared to the trialkyl phosphate is less than the above range, there is a problem in that the carbonization film formed in a synergistic action with phosphorus and trialkyl phosphate is insufficient, and when it exceeds the above range, the excess melamine-based flame retardant is a phenolic foam There may be a problem of lowering thermal conductivity by rather inhibiting cell formation of
  • the composite flame retardant may include the phosphorus, the pentaerythritol-based compound, and the trialkyl phosphate, and contains about 0.1 parts by weight to about 50 parts by weight of the pentaerythritol-based compound relative to 100 parts by weight of the phosphorus, It may contain about 0.1 parts by weight to about 80 parts by weight of the trialkyl phosphate.
  • the phosphorus based on 100 parts by weight of the phosphorus, about 1 part by weight to about 50 parts by weight of the pentaerythritol-based compound, about 1 part by weight to about 80 parts by weight of the trialkyl phosphate, or 100 parts by weight of the phosphorus In contrast, about 5 parts by weight to about 50 parts by weight of the pentaerythritol-based compound, and about 5 parts by weight to about 50 parts by weight of the trialkyl phosphate may be included.
  • the content of the pentaerythritol-based compound compared to the trialkyl phosphate is less than the above range, the formation of a carbonized film formed by a synergistic action with phosphorus and trialkyl phosphate may be insufficient. As the erythritol-based compound burns, there may be a problem in that the flame retardancy is lowered.
  • the composite flame retardant may include the phosphorus, the pentaerythritol-based compound, the melamine-based flame retardant, and the trialkyl phosphate, and the pentaerythritol-based compound is contained in an amount of about 0.1 parts by weight to about 30 parts by weight relative to 100 parts by weight of the phosphorus. Including parts by weight, including about 0.1 parts by weight to about 50 parts by weight of the melamine-based flame retardant, and may include about 0.1 parts by weight to about 60 parts by weight of the trialkyl phosphate.
  • the phosphorus based on 100 parts by weight of the phosphorus, about 1 part by weight to about 30 parts by weight of the pentaerythritol-based compound, about 1 part by weight to about 50 parts by weight of the melamine-based flame retardant, about 1 part by weight to the trialkyl phosphate About 60 parts by weight, or 100 parts by weight of the phosphorus, about 3 parts by weight to about 20 parts by weight of the pentaerythritol-based compound, and about 5 parts by weight to about 30 parts by weight of the melamine-based flame retardant, It may include about 5 parts by weight to about 40 parts by weight of the trialkyl phosphate.
  • the weight ratio of the melamine-based flame retardant and the trialkyl phosphate is less than the above range, the first flame retardant, phosphorus, does not sufficiently exert a synergistic effect of flame retardancy improvement, and the melamine-based flame retardant
  • the weight ratio of the trialkyl phosphate exceeds the above range, there may be a problem in that the cell structure formation of the phenol foam due to an excess of the flame retardant is prevented, resulting in structural instability and deterioration of thermal insulation properties.
  • thermosetting resin a curing agent, a foaming agent and a composite flame retardant
  • the composite flame retardant includes a first flame retardant and a second flame retardant
  • the first flame retardant is phosphorus (Phosphorus)
  • the second flame retardant is a melamine-based flame retardant
  • tree The thermosetting foam comprising at least one selected from the group consisting of alkyl phosphates and combinations thereof, or including at least one selected from the group consisting of melamine-based flame retardants, trialkyl phosphates, and combinations thereof and a pentaerythritol-based compound together
  • the thermal conductivity measured at an average temperature of 20°C according to KS L 9016 is about 0.016 W/m ⁇ K to about 0.029 W/m ⁇ K.
  • the thermosetting foam has a thermal conductivity measured at an average temperature of 20° C. according to KS L 9016 of about 0.016 W/m ⁇ K to about 0.025 W/m ⁇ K, about 0.016 W/m ⁇ K to about 0.023 W/ m ⁇ K, at least about 0.016 W/m ⁇ K, less than about 0.020 W/m ⁇ K, or at least about 0.016 W/m ⁇ K, and less than about 0.0195 W/m ⁇ K.
  • the thermal conductivity represents the initial thermal insulation of the foam, and the thermosetting foam may include the composite flame retardant to improve not only flame retardancy but also thermal insulation.
  • the thermosetting foam has a thermal conductivity measured at an average temperature of 20° C. of about 0.017 W/m ⁇ K to about 0.029 W/ It may be m ⁇ K. For example, it may be from about 0.017 W/m ⁇ K to about 0.025 W/m ⁇ K or greater than or equal to about 0.017 W/m ⁇ K and less than about 0.023 W/m ⁇ K.
  • the thermal conductivity represents the long-term thermal insulation properties of the foam, and the thermosetting foam includes the composite flame retardant and may exhibit the same initial thermal insulation properties and long-term thermal insulation properties in a similar range.
  • the thermosetting foam may have a total amount of heat released for 10 minutes (THR600s) by a cone calorimeter according to KS F ISO 5660-1 of about 2.0 MJ/m2 to about 17 MJ/m2.
  • TRR600s total amount of heat released for 10 minutes
  • KS F ISO 5660-1 a total amount of heat released for 10 minutes
  • the thermosetting foam may have excellent flame retardancy close to semi-incombustibility without a separate face material.
  • thermosetting foam has a total amount of heat released for 5 minutes (THR300s) by a cone calorimeter according to KS F ISO 5660-1 of about 1.0 MJ/m2 to about 12 MJ/m2, for example, about 1.0 MJ/m2 to about 7.5 MJ/m 2 may exhibit excellent flame retardancy.
  • the closed cell ratio of the thermosetting foam may be about 75% to about 98%.
  • the closed cell ratio of the thermosetting foam may be about 80% to about 95%.
  • thermosetting foam when a phosphorus-based flame retardant such as phosphate is used in a thermosetting foam to improve flame retardancy, the flame retardancy may be improved, but the foam cell is destroyed in the foaming process, so that the closed cell ratio is lowered and the thermal insulation property is lowered.
  • the thermosetting foam can maintain a high closed cell ratio in the above range by including the composite flame retardant. And, together with the excellent flame retardancy or semi-incombustibility in the above-described range, it can exhibit excellent thermal insulation.
  • thermosetting foam is uniformly mixed with the thermosetting resin including the composite flame retardant, the foam cell structure is not easily destroyed, and may have uniform physical properties through uniform foaming.
  • the phosphorus which is the first flame retardant, acts as a filler in the thermosetting foam to impart structural stability to the thermosetting foam together with the second flame retardant, and to impart excellent compressive strength and flexural fracture load in the following range.
  • thermosetting foam may have a compressive strength of about 60 kPa to about 300 kPa according to KS M ISO 844.
  • KS M ISO 844 For example, from about 80 kPa to about 300 kPa can be
  • thermosetting foam is, according to KS M ISO 4898, the maximum load ( The flexural breaking load (N) of N) may be about 15 N to about 50 N. For example, it may be about 20 N to about 50 N.
  • thermosetting foam may have an average value of dimensional change according to Equation 1 below about 0% to about 1.0%.
  • the thermoset foam can have an average dimensional change of from about 0% to about 0.8% or from about 0% to about 0.6%.
  • Equation 1 the initial length (a) is the length of each line of n equal points in the length (L) and width (W) directions of the thermosetting foam, and the later length (a') is the thermosetting foam It means the later length (a') of each line at each point after standing in an oven at 70° C. for 48 hours.
  • n may be 2 to 5.
  • n may be 3.
  • thermosetting foam has a dimensional change rate within the range including the composite flame retardant as a flame retardant, and has excellent dimensional stability. Accordingly, the thermosetting foam exhibits excellent thermal conductivity, so that long-term thermal insulation properties can be more effectively improved, and when applied to a predetermined product, processability and workability can be more excellent.
  • thermosetting foam may exhibit excellent flame retardancy with an oxygen index of about 39% or more according to KS M ISO 4589-2.
  • the oxygen index of the thermosetting foam may be about 40% or more or about 42% or more.
  • the upper limit is not limited thereto, but may be about 60%. Since the thermosetting foam has an oxygen index in the above range, it may not burn easily in case of fire, and thus it may be easy to secure an evacuation time.
  • At least one region of 1.2 mm (length, L) X 0.9 mm (width, W) included in the cross section perpendicular to the thickness direction of the foam contains 10 or more phosphorus, and the phosphorus ( Phosphorus) provides a thermosetting foam having a diameter of about 1 ⁇ m to about 80 ⁇ m. This indicates the content and the degree of distribution of the phosphorus contained in the foam.
  • the thermosetting foam includes the above-described composite flame retardant, and is manufactured by a manufacturing method to be described later, and may include the phosphorus in the structure and distribution as described above.
  • the thermosetting foam may exhibit physical properties such as excellent thermal insulation as well as excellent flame retardancy by having the above structure.
  • a normal thermosetting foam is provided with flame retardance using flame retardants, such as phosphate.
  • flame retardants such as phosphate.
  • the foam cell is destroyed during the foaming process, so that an appropriate foam cell may not be formed well. Accordingly, the degree of dispersion of the flame retardant may be reduced, and thermal insulation may be deteriorated.
  • flame retardants such as phosphate are easily agglomerated and are not well dispersed, and there is a problem in that the flame retardant effect is not sufficient compared to the content of the flame retardant. Accordingly, when a flame retardant such as phosphate is included, the foam cannot have the above structure.
  • the thermosetting foam may include the above-described composite flame retardant and the like, and may appropriately control the foaming and curing reaction, and may prevent aggregation of the flame retardants and the like, thereby improving the dispersibility of the flame retardant. Accordingly, it is possible to simultaneously exhibit physical properties such as excellent heat insulation and excellent flame retardancy by including the phosphorus particles in the above range in the region.
  • the thermoset foam may include from about 10 to about 300 phosphorus in the region. When the number of phosphorus is less than the above range, the phosphorus content is insufficient, or the phosphorus is non-uniformly dispersed, so that sufficient flame retardancy at a desired level cannot be ensured, and thermal insulation properties may be lowered. And, when the number of phosphorus exceeds the above range, the flame retardancy may be better, but due to the high phosphorus content, the balance between foaming and curing is broken, and there may be a problem in that the thermal insulation properties are deteriorated.
  • the number of phosphorus means the number of particles having a diameter of 1 ⁇ m to 80 ⁇ m.
  • the thermosetting foam may include phosphorus having an average particle diameter of about 1 to about 50 ⁇ m, and in this case, the phosphorus may be partially aggregated during foaming and curing.
  • the phosphorus included in the cross section may be formed by gathering one phosphorus or a part of phosphorus.
  • the number of phosphorus means particles having a size of 1 ⁇ m to 80 ⁇ m.
  • the diameter of phosphorus can be measured simultaneously when taking a cross-section using a digital microscope, and the diameter means the longest diameter of the phosphorus particle (eg, the red dot in FIG. 2 ).
  • the diameter of the phosphorus particles exceeds the above range, it means that the dispersing power of phosphorus is lowered and aggregation occurs a lot, and it is not included in the calculation of the number of phosphorus. And, when two or more phosphorus particles have independent interfaces, the number of phosphorus particles is calculated as separate particles even when the particles are located adjacent to each other.
  • At least one cross-section perpendicular to the thickness direction of the foam for example, at least one 1.2 mm (length , L) X 0.9 mm (width, W) area may include at least 10 or more Phosphorus particles.
  • the phosphorus particles are obtained by using a digital microscope (Digital Microscope, manufacturer: Leica Microsystems, model name: DVM6), specifically, by setting the magnification of the objective lens having a field of view (FOV) of 12.55 to 8.0x, It was enlarged to observe an arbitrary 1.2 mm (length) X 0.9 mm (width) area of the cross section.
  • a three-dimensional image was taken at intervals of 10 um in the thickness direction within a range of 400 um from the upper portion of the cut surface to obtain a planar two-dimensional image of the cut surface, and the number and diameter of red dots visible in the two-dimensional image were measured.
  • thermosetting foam the distribution of phosphorus particles uniformly dispersed to the same degree as described above can be confirmed even at 1/2 of the thickness including the composite flame retardant.
  • the region including at least 10 phosphorus is from about 60% to about 100% or from about 80% to about It can be 100%.
  • the thermosetting foam may have a structure in which phosphorus in the same content as described above is uniformly distributed. Accordingly, it is possible to exhibit uniformly improved flame retardancy throughout the foam, have excellent thermal insulation properties, and exhibit physical properties such as excellent compressive strength and dimensional stability.
  • the cross-section perpendicular to the thickness direction of the foam may include a region including 10 or more phosphorus particles per unit area (1 mm2), from about 60% to about 100% or from about 80% to about 100% of the cross-section.
  • the foam contains the phosphorus particles dispersed in the structure as described above, including the composite flame retardant, and thus, can exhibit excellent thermal insulation and flame retardancy at the same time.
  • the area containing the phosphorus in the cross section is less than the above range, the dispersibility of phosphorus is poor, and there may be a problem in that the flame retardancy does not appear depending on the location where the fire occurs, so that sufficient flame retardancy cannot be exhibited.
  • foaming and curing may also occur non-uniformly, thereby reducing thermal insulation properties.
  • the thermosetting foam may include 7 or more or 8 or more zones including at least one phosphorus among 12 zones in which the zone is equally divided by a size of 4 (length, L) ⁇ 3 (width, W).
  • the thermosetting foam may include the phosphorus in an appropriate dispersed distribution as described above, including the composite flame retardant. Accordingly, it is possible to simultaneously exhibit excellent thermal insulation properties as well as improved flame retardancy.
  • the area containing at least one phosphorus among the areas in which the area is equally divided by the size of 4 (length) X X 3 (width) may be about 60% or more.
  • the thermosetting foam may be uniformly well formed without destroying the foam cells by proper foaming and curing, including the composite flame retardant. And, it is uniformly dispersed and distributed on the struts of the foam cells.
  • FIG. 2 shows a picture taken using a digital microscope (Digital Microscope) of one area of the thermosetting foam according to an embodiment of the present invention. As shown in FIG. 2, it can be seen that the thermosetting foam hardly shows any breakage of the foam cells. And, the thermosetting foam contains red as the first flame retardant, and as shown in FIG. 2 , it can be seen that red dots (red, phosphorus particles) are uniformly distributed on the struts of the foam.
  • red dots red, phosphorus particles
  • Figure 3 shows a photograph in which the area of the thermosetting foam of the present invention is divided equally in the size of 4 (length) X 3 (width).
  • the thermosetting foam it can be seen that among the 12 zones, 8 or more zones containing at least one phosphorus were uniformly dispersed in an appropriate content in the foam in an amount of about 60% or more. If the content of phosphorus contained in one area is less than the above range, the desired level of flame retardancy cannot be secured, and if the area containing the phosphorus in the area is less than the above range, the dispersibility of phosphorus decreases and a fire occurs. Accordingly, there may be a problem in that the flame retardancy does not appear and sufficient flame retardancy cannot be exhibited.
  • the foam may have at least 60% of the area including at least one phosphorus among the areas in which the unit area (1 mm 2 ) is equally divided by the size of 4 (length) X 3 (width).
  • thermosetting foam contains 10 or more phosphorus in at least one area of 1.2 mm (length, L) X 0.9 mm (width, W) included in the cross section perpendicular to the thickness direction of the foam, as described above, It is possible to exhibit excellent flame retardancy while exhibiting thermal insulation properties of a certain level or higher.
  • the thermosetting foam may have a structure that maintains a cross-sectional area (S f ) of at least a certain level after a flame retardant test. And, it may include cracks having a size less than or equal to a certain size. Further, after combustion, cracks, holes, etc. are not formed below a certain thickness of the foam, so that the collapse of the foam and the like can be prevented.
  • thermosetting foam is a foam having a thickness of 100mm (Li, length) ⁇ 100mm (Wi, width) ⁇ 50mm (Ti) according to KS F ISO 5660-1.
  • the area (S f ) of the cross section of the 1/2 point (T 1/2 ) of the initial thickness of the foam (T i ) may satisfy Equation 2 below.
  • Si means the cross-sectional area (Si) of the 1/2 point (T1/2) of the initial thickness (Ti) of the foam before applying the radiant heat
  • Sf is the initial thickness (Ti) of the foam after applying the radiant heat
  • Sf means the cross-sectional area (Sf) of the 1/2 point (T1/2).
  • the thermosetting foam has a surface area (Sf) in the above range under the above conditions, thereby exhibiting excellent resistance to flame propagation or diffusion, and may exhibit structural stability during combustion. Accordingly, even when an impact or vibration occurs during a fire, the foam can easily fall off and the fire can be prevented from spreading.
  • Sf surface area
  • the thermosetting foam may be Si X 75% ⁇ Sf ⁇ Si X 100%.
  • the thermosetting foam according to an embodiment of the present invention may have a surface area (Sf) within the above range.
  • a cross section at a point (T1/2) of the initial thickness of the foam after application of the radiant heat may include cracks.
  • the crack means that the foam is formed by cracking the surface while shrinking by heat and combustion. It appears conspicuously when a char is formed, and the amount of foam that is burned and destroyed increases, meaning a shape different from that of a pit.
  • the crack may have a structure similar to a needle having a relatively long longitudinal direction and a relatively short width direction, that is, a width direction perpendicular to the longitudinal direction, in cross section.
  • the length means a value measured in the cross section.
  • the foam may include a crack in the cross-section, and the maximum length in the width direction perpendicular to the longitudinal direction of the crack may be about 15 mm or less. That is, the maximum length of the width of the crack may be about 15 mm or less. For example, it can be from about 1 mm to about 15 mm or from about 1 mm to about 11 mm. Specifically, when the width of the crack exceeds the above range, the foam may be easily broken by vibration or external impact, and thus there may be a problem in that the flame spreads and spreads.
  • the cross-section may include a plurality of cracks, and each of the plurality of cracks may have a length within the above range.
  • the thermosetting foam according to an embodiment of the present invention may include cracks as described above.
  • thermosetting foam is a foam having a size of 100mm (length) ⁇ 100mm (width) ⁇ 50mm (thickness) according to KS F ISO 5660-1
  • a thickness of mm to 23 mm may be free of cracks, grooves or holes.
  • no cracks, grooves, or holes may be formed in a thickness of about 13 mm to about 23 mm.
  • the thermosetting foam according to an embodiment of the present invention may have no cracks, grooves or holes within the thickness of the range from the bottom surface.
  • Another embodiment of the present invention comprises the steps of: preparing a flame retardant composition comprising a main agent comprising a thermosetting resin, a curing agent, a foaming agent, and a composite flame retardant; preparing a foam composition by stirring the base, curing agent, foaming agent and flame retardant composition; and foaming and curing the foam composition, wherein the composite flame retardant includes a first flame retardant and a second flame retardant, the first flame retardant is phosphorus, and the second flame retardant is a melamine-based flame retardant, tree At least one selected from the group consisting of alkyl phosphates and combinations thereof, or at least one selected from the group consisting of melamine-based flame retardants, trialkyl phosphates, and combinations thereof and a pentaerythritol-based compound. provide a way
  • thermosetting foam having physical properties such as improved flame retardancy, excellent thermal insulation, and excellent compressive strength and dimensional stability.
  • the thermosetting resin, the curing agent, the foaming agent and the composite flame retardant are the same as those described above, except for those specifically described below.
  • a flame-retardant composition including a base material containing a thermosetting resin, a curing agent, a foaming agent, and a composite flame retardant.
  • the subject may include about 1 part by weight to about 5 parts by weight of a surfactant and about 3 parts by weight to about 10 parts by weight of urea, based on 100 parts by weight of the thermosetting resin.
  • the composite flame retardant may be pre-mixed with the first flame retardant and the second flame retardant or mixed with a thermosetting resin such as a phenol resin, respectively. It may be advantageous in terms of uniform mixing and viscosity control to prepare a flame retardant composition by mixing the first flame retardant and the second flame retardant in advance and then mix them with a phenolic resin.
  • the premixed composite flame retardant may be mixed or the phenolic resin may be mixed with the phenolic resin before the blowing agent or the curing agent is mixed. This can be adjusted according to the type of mixer and process conditions.
  • the flame retardant composition including the first flame retardant and the second flame retardant may be prepared to an appropriate viscosity before mixing with the phenolic resin.
  • This can help uniform mixing with the phenolic resin. For example, if the viscosity is too high due to a solid flame retardant such as phosphorus or red phosphorus, uniform mixing may not occur, resulting in non-uniform foam hardening, which may deteriorate strength and thermal insulation properties or may deteriorate long-term physical properties.
  • the viscosity in consideration of not only the viscosity of the composite flame retardant before input, but also the compatibility between the composite flame retardant and the material serving to control the viscosity, and side effects during foam curing later. It may be advantageous to adjust the viscosity of the flame retardant composition including the composite flame retardant before the phenol resin is added through the second flame retardant.
  • the flame retardant composition may mean a mixture of the first flame retardant and the second flame retardant that does not include a separate organic solvent. It may also be advantageous to further include polyols and/or surfactants and/or ethylene glycol and/or polyethylene glycol in the flame retardant composition.
  • the viscosity may be adjusted by mixing the composite flame retardant in advance with water, a foaming agent, a curing agent, etc., but in terms of process convenience and compatibility, a liquid second flame retardant, polyol, surfactant, ethylene glycol, polyethylene glycol, etc. It is advantageous to control the viscosity of the flame retardant composition comprising the composite flame retardant. Regardless of whether or not a flame retardant is included when manufacturing a foam, a surfactant is sometimes added separately.
  • the viscosity of the flame retardant composition it is preferable to adjust the viscosity of the flame retardant composition by adding a portion of the surfactant in advance to the flame retardant mixture, that is, the flame retardant composition, and determine whether to add the surfactant.
  • the composite flame retardant includes an organic solvent of low viscosity selected from the group consisting of the polyol, surfactant, polyethylene glycol, ethylene glycol, and combinations thereof
  • the composite flame retardant: organic solvent is about 2:1 to about 1:2 It may be mixed in a weight ratio of the flame retardant composition. Mixed in the content ratio in the above range may not reduce the flame retardant improving effect of the composite flame retardant.
  • the organic solvent may be added in an amount of about 1 part by weight to about 15 parts by weight based on 100 parts by weight of the thermosetting resin. When the content of the organic solvent exceeds the above range, there may be a problem in that the thermal insulation is deteriorated.
  • the viscosity difference ( ⁇ V
  • ) between the viscosity (V1) of the thermosetting resin and the viscosity (V2) of the flame-retardant composition may be about 30,000 cps or less or about 20,000 cps or less. It may be about 0 or more and about 10,000 cps or less.
  • the composite flame retardant containing a solid material does not precipitate in the foam manufacturing process, and the thermosetting It can be uniformly mixed with the resin and exhibit excellent thermal insulation properties with improved flame retardancy.
  • thermosetting foam when the viscosity difference ( ⁇ V) exceeds the above range, uniform mixing and foaming of the composite flame retardant and the thermosetting resin may be difficult, and thus the physical properties of the thermosetting foam may be reduced. And, as the viscosity of the foam composition including the thermosetting resin and the flame-retardant composition increases as a whole, a lot of torque of the stirring mixer is taken, and the temperature of the foam composition is rapidly increased to increase the volatilization amount of the foaming agent before the foam is cured. and, accordingly, thermal insulation properties may be deteriorated.
  • the viscosity (V1) of the thermosetting resin may be from about 10,000 cps to about 80,000 cps, from about 10,000 cps to about 50,000 cps, or from about 20,000 cps to about 50,000 cps at 20°C.
  • the viscosity difference ( ⁇ V) and the viscosity (V1) of the thermosetting resin within the above range, the curing reaction rate of the thermosetting resin in which the composite flame retardant is dispersed may be appropriately adjusted. Accordingly, it is possible to form a thermosetting foam that is structurally stable and has an appropriate cross-linked structure, and the thermosetting foam maintains excellent thermal insulation at a certain level with improved flame retardancy, and exhibits excellent physical properties such as excellent compressive strength. .
  • the foaming agent may be included in an amount of about 5 parts by weight to about 15 parts by weight based on about 100 parts by weight of the thermosetting resin.
  • the foaming agent in the content in the above range, the foam composition including the composite flame retardant dispersed in the thermosetting resin is uniformly foamed at an appropriate foaming pressure in the process of foaming, thereby improving properties such as flame retardancy, heat insulation and compressive strength. It is possible to form a thermosetting foam having For example, when the content of the foaming agent exceeds the above range, the foaming cells are destroyed and thermal insulation properties are lowered, the dimensional change rate of the foam is increased, and the compressive strength may be reduced.
  • the curing agent may be included in an amount of about 15 to about 25 parts by weight, based on 100 parts by weight of the thermosetting resin.
  • the curing agent refers to a mixture in which a solvent such as toluenesulfonic acid is mixed.
  • the method for producing the thermosetting foam includes the step of preparing a foam composition by stirring the main agent, a curing agent, a foaming agent and a flame retardant composition.
  • the flame-retardant composition including the composite flame retardant may be separated from the main agent including the thermosetting resin, mixed and stirred. Accordingly, it is possible to prevent the viscosity of the main material containing the thermosetting resin from rapidly increasing, and it is possible to easily manufacture the thermosetting foam having the above-described physical properties.
  • the method for producing the thermosetting foam includes the step of foaming and curing the foam composition.
  • the thermosetting foam may be foamed and cured under a temperature condition of, for example, about 50° C. to about 90° C.
  • the foaming and curing may be performed for a time of about 2 minutes to about 20 minutes, but is not limited thereto, and may appropriately vary depending on the purpose and use of the invention.
  • Another embodiment of the present invention provides an insulating material comprising the thermosetting foam.
  • thermosetting foam can be applied, for example, for use as a building insulation material, and thus can simultaneously satisfy a remarkably improved flame retardancy with excellent thermal insulation properties required as a building insulation material. And, it may have excellent compressive strength, flexural fracture load (N), dimensional stability, high oxygen index, and the like.
  • the building insulation may further include a face material on one or both sides of the thermosetting foam, for example, and may further improve flame retardancy by including aluminum as the face material.
  • a resol resin having a viscosity in the range of 20,000 cps at 20° C. 1.5 parts by weight of an ethoxylated castor oil surfactant, 3 parts by weight of powdery urea, toluenesulfonic acid as a curing agent, and cyclopentane as a foaming agent were prepared.
  • the viscosity of the flame-retardant composition was adjusted by mixing a flame retardant complex of red and melamine cyanurate in an organic solvent in which a castor oil surfactant: ethylene glycol was mixed in a weight ratio of 2:1.
  • the flame retardant composition is piped It was supplied to a stirrer through the and stirred to prepare a foam composition.
  • the stirred foam composition was put into a caterpillar operated at a speed of 10 m/min to finally prepare a phenolic resin foam having a density of 43 kg/m 3 .
  • the temperature of the caterpillar was 65 °C, the thickness was set to 50mm.
  • the viscosity difference between the viscosity (V1) of the resol resin and the viscosity (V2) of the flame-retardant composition at 20°C was made to be within 10,000 cps.
  • the viscosity was measured using a Brookfield viscometer (Brookfield, DV3T Rheometer, #63 spindle).
  • the phenolic resin foam was made to include 6 parts by weight of red and 2 parts by weight of melamine cyanurate relative to 100 parts by weight of the phenolic resin foam.
  • a phenolic foam was prepared in the same manner as in Example 1, except that a composite flame retardant of red and triethyl phosphate was used instead of the composite flame retardant of red and melamine cyanurate. And, finally, compared to 100 parts by weight of the phenolic resin foam, it was made to contain 6 parts by weight of red and 2 parts by weight of triethyl phosphate.
  • a phenol foam was prepared in the same manner as in Example 1, except that a composite flame retardant of red, monopentaerythritol and melamine cyanurate was used instead of the composite flame retardant of red and melamine cyanurate. And, finally, based on 100 parts by weight of the phenolic resin foam, 6 parts by weight of red, 1 part by weight of monopentaerythritol, and 1 part by weight of melamine cyanurate were included.
  • a phenol foam was prepared in the same manner as in Example 1, except that a composite flame retardant of red, melamine cyanurate and triethyl phosphate was used instead of the composite flame retardant of red and melamine cyanurate. And, finally, based on 100 parts by weight of the phenolic resin foam, 6 parts by weight of red, 1 part by weight of melamine cyanurate, and 1 part by weight of triethyl phosphate were included.
  • a phenol foam was prepared in the same manner as in Example 1, except that a composite flame retardant of red, monopentaerythritol, and triethyl phosphate was used instead of the composite flame retardant of red and melamine cyanurate. And, finally, based on 100 parts by weight of the phenolic resin foam, 6 parts by weight of red, 1 part by weight of monopentaerythritol, and 1 part by weight of triethyl phosphate were included.
  • a phenol foam was prepared in the same manner as in Example 1, except that a composite flame retardant of red, monopentaerythritol, melamine cyanurate and triethyl phosphate was used instead of the composite flame retardant of red and melamine cyanurate. And, finally, based on 100 parts by weight of the phenolic resin foam, 6 parts by weight of red, 0.3 parts by weight of monopentaerythritol, 0.7 parts by weight of melamine cyanurate, and 1 part by weight of triethyl phosphate were included.
  • a phenolic foam was prepared in the same manner as in Example 1, except that only melamine cyanurate was used instead of the red and melamine cyanurate composite flame retardants. And, finally, compared to 100 parts by weight of the phenolic resin foam, 8 parts by weight of melamine cyanurate was included.
  • a phenol foam was prepared in the same manner as in Example 1, except that only pentaerythritol was used instead of the red and melamine cyanurate complex flame retardant. And, finally, compared to 100 parts by weight of the phenolic resin foam, 8 parts by weight of pentaerythritol was included.
  • a phenol foam was prepared in the same manner as in Example 1, except that a composite flame retardant of ammonium polyphosphate and melamine cyanurate was used instead of the composite flame retardant of red and melamine cyanurate. And, finally, based on 100 parts by weight of the phenolic resin foam, 6 parts by weight of ammonium polyphosphate and 2 parts by weight of melamine cyanurate were included.
  • a phenolic foam was prepared in the same manner as in Example 1, except that a composite flame retardant of ammonium polyphosphate and monopentaerythritol was used instead of the composite flame retardant of red and melamine cyanurate. And, finally, based on 100 parts by weight of the phenol resin foam, 6 parts by weight of ammonium polyphosphate and 2 parts by weight of monopentaerythritol were included.
  • a phenol foam was prepared in the same manner as in Example 1, except that only triethyl phosphate was used instead of the red and melamine cyanurate complex flame retardant. And, finally, compared to 100 parts by weight of the phenol resin foam, 8 parts by weight of triethyl phosphate was included.
  • the magnification of the objective lens is set to 8.0x, and any 1.2mm (length) X 0.9mm ( width) was enlarged to observe the size of the area. Then, a three-dimensional image is taken at intervals of 10 um in the thickness direction within a range of 400 um from the top of the cut surface to obtain a planar two-dimensional image of the cut surface.
  • the intensity of the light source is set to 60% of the intensity of ring light illumination (RL Light), 60% of coaxial illumination (CXI Light), and 80% of transmitted light illumination (BLI Light), and the exposure time is 24.5 milliseconds (ms).
  • the pixels of the image are 2 mega (1600 x 1200 pixels).
  • FIG. 2 is a picture taken using a digital microscope (Digital Microscope) of the region of the thermosetting foam according to Example 6. After confirming the red dots (Phosphorus particles) observed in the region, the number of red dots (red dots) having a diameter of 1 ⁇ m to 80 ⁇ m was counted and described in Table 1. In this case, the diameter of the red dot was measured using the program of the Digital Microscope device as the longest axis length among the diameters of the red dot. The diameter of the smallest particle (minimum) and the largest particle diameter (maximum) among the diameters of the target particles were checked, and the results are shown in Table 1 below. And, FIG. 3 shows a photograph in which the area is equally divided into a size of 4 (length) X 3 (width).
  • the strut of the phenolic foam contains red dots and redness.
  • the area is equally divided into 12 areas with a size of 4 (length) X X 3 (width), counting the number of areas containing at least one phosphorus among the areas, and calculating this as a percentage Table 1 shows the results.
  • the published material of Comparative Example did not include phosphorus, which is the first flame retardant, and was not observed.
  • the phenolic resin foams of Examples and Comparative Examples were cut to a thickness of 50 mm and a size of 300 mm ⁇ 300 mm to prepare a specimen, and the specimen was dried at 70° C. for 12 hours and pre-treated. And, according to the measurement conditions of KS L 9016 (Method for measuring plate heat flow metering method) for the specimen, the thermal conductivity was measured using a HC-074-300 (EKO company) thermal conductivity instrument at an average temperature of 20° C., and the results are shown in the table below. 2 was described.
  • Specimens were prepared by cutting the phenolic resin foams of Examples and Comparative Examples to a thickness of 50 mm and a size of 300 mm ⁇ 300 mm, and the specimens were dried at 70° C. for 7 days according to EN13823, and then at 110° C. for 14 days. After drying, the thermal conductivity was measured using a HC-074-300 (EKO) thermal conductivity instrument at an average temperature of 20°C, and the results are shown in Table 2 below.
  • EKO HC-074-300
  • the phenolic resin foams of Examples and Comparative Examples were prepared as specimens having a size of 100 mm (L) ⁇ 100 mm (W) ⁇ 50 mm (T) using a grizzly band saw.
  • KS F ISO 5660-1 The measurement conditions of KS F ISO 5660-1 were adjusted as follows. The temperature of the heater to match the cone 50kW / m 2 radiation was 700 °C road, the speed of the Blower is 24L / min, oxygen was started at 20.950%. Then, using a cone calorimeter measuring device (Festek International), 50 kW/m 2 radiant heat was applied to the specimen for 5 minutes, and the total amount of heat released (THR300) was measured. And, the results are shown in Table 2 below.
  • Specimens were prepared by cutting each of the phenolic resin foams of Examples and Comparative Examples to 2.5 cm (L) X 2.5 cm (W) X 2.5 cm (T). And, it was measured using a closed cell rate measuring device (Quantachrome, ULTRAPYC 1200e) as a KS M ISO 4590 measuring method, and the results are shown in Table 2 below.
  • the phenolic resin foams of Examples and Comparative Examples were prepared as specimens with a size of 50 mm (L) ⁇ 50 mm (W) ⁇ ⁇ 50 mm (T), and the specimen was placed between the wide plates of Lloyd Instrument's LF Plus Universal Testing Machine. , the UTM equipment was set at a rate of 10% mm/min of the thickness of the specimen, and the compressive strength test was started, and the strength at the first compressive yield point that appeared while the thickness was decreased was recorded. Compressive strength was measured by the method of KS M ISO 844 standard, and the results are shown in Table 2 below.
  • thermosetting foam of the present invention is a schematic diagram briefly showing a method for measuring the dimensional stability of a thermosetting foam of the present invention.
  • the phenolic resin foams of Examples and Comparative Examples were prepared as specimens with a size of 250 mm (L) ⁇ 100 mm (W) ⁇ 20 mm (T), and the specimen was prepared according to KS M ISO 4898, 200 mm support interval, load concentration of 50 mm/min The maximum load (N) until the specimen breaks at the speed was measured, and the results are shown in Table 2 below.
  • the foams of the Examples and Comparative Examples were prepared as specimens with a size of 100 mm (L) ⁇ 100 mm (W) ⁇ 50 mm (T) using a grizzly band saw, and 1/2 of the initial thickness (Ti) of the specimen (T1/2). ) of the cross-sectional area (Si) was first measured.
  • the remaining 5 sides except for the heating side of the specimen having a size of 100mm(L) ⁇ 100mm(W) ⁇ 50mm(T) are wrapped with aluminum foil, and according to KS F ISO 5660-1, The temperature was set to 700°C, the blower speed was 24L/min, and the oxygen concentration was 20.950%, and the test was started for a total of 10 minutes.
  • a 25 mm point ie, a 1/2 point (T1/2) of the initial thickness Ti
  • T1/2 1/2 point
  • Sf area of the cross-section
  • Experimental Example 12 Maximum length in the width direction of cracks formed in the cross section of Experimental Example 11
  • the foams of Examples and Comparative Examples were prepared as specimens having a size of 100 mm (L) ⁇ 100 mm (W) ⁇ 50 mm (T) using a grizzly band saw.
  • the remaining 5 sides except the heating side of the specimen were wrapped with aluminum foil, and the temperature of the cone heater was set to 700°C by matching 50kW/m2 radiant heat according to KS F ISO 5660-1, and the speed of the blower was 24L/min. , the oxygen concentration was 20.950%, starting the test, and proceeded for a total of 10 minutes.
  • the sample does not have cracks from the surface as shown in FIG. 4A and the sample is widely dissipated, it is indicated as “50 mm or more”.
  • the foams of Examples and Comparative Examples were prepared as specimens having a size of 100 mm (L) ⁇ 100 mm (W) ⁇ 50 mm (T) using a grizzly band saw.
  • the remaining 5 sides except the heating side of the specimen were wrapped with aluminum foil, and the temperature of the cone heater was set to 700°C by matching 50kW/m2 radiant heat according to KS F ISO 5660-1, and the speed of the blower was 24L/min. , the oxygen concentration was 20.950%, starting the test, and proceeded for a total of 10 minutes.
  • thermosetting foam of Examples As shown in Table 1, in the thermosetting foam of Examples, the phenomenon of easily aggregating phosphorus was suppressed, and phosphorus having a diameter of more than about 80 ⁇ m was not observed because it was uniformly dispersed, and about 1 ⁇ m to about 80 ⁇ m. It can be seen that there are 10 or more phosphorus within the diameter range, and the phosphorus is present in 8 or more zones, occupying more than 60% of the area. It can be confirmed that, while exhibiting excellent flame retardancy due to heat quantity and high oxygen index, it has excellent initial thermal conductivity and long-term thermal conductivity in a similar range, maintaining low thermal conductivity at a certain level even over time. In addition, it can be confirmed that the thermosetting foam of the embodiment simultaneously satisfies a high closed cell ratio, improved compressive strength, flexural fracture load and dimensional change rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Emergency Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

Provided is a thermosetting foam comprising a thermosetting resin, a curing agent, a foaming agent, and a composite flame retardant, wherein the composite flame retardant comprises a first flame retardant and a second flame retardant. The first flame retardant is phosphorus, and the second flame retardant comprises at least one selected from the group consisting of a melamine-based flame retardant, trialkyl phosphate, and a combination thereof, or comprises, together with a pentaerythritol-based compound, at least one selected from the group consisting of a melamine-based flame retardant, trialkyl phosphate, and a combination thereof.

Description

열경화성 발포체 및 이의 제조방법Thermosetting foam and manufacturing method thereof
본 발명은 열경화성 발포체 및 이의 제조방법에 관한 것이다.The present invention relates to a thermosetting foam and a method for preparing the same.
단열재는 건축물에서 에너지 손실을 막기 위해 필수적으로 사용되는 재료이다. 지구온난화로 인해 녹색성장의 중요성이 전세계적으로 계속 강조되고 있기 때문에 에너지 손실 최소화를 위해 단열성이 더욱 중요해지고 있다. Insulation is an essential material used to prevent energy loss in buildings. As the importance of green growth continues to be emphasized worldwide due to global warming, insulation is becoming more important to minimize energy loss.
단열재로 열경화성 발포체 단열재, EPS(expanded polystyrene foam) 단열재, XPS(extruded polystyrene foam) 단열재, 진공단열재 등이 있다. 그 중 열경화성 발포체 단열재는 현존하는 소재 중 진공단열재를 제외하고 가장 뛰어난 단열성을 가져 널리 사용되고 있다. 하지만, 유기물의 근본적인 한계 때문에 화재 안정성이 무기 단열재보다 취약할 수 밖에 없다.Insulation materials include thermosetting foam insulation, EPS (expanded polystyrene foam) insulation, XPS (extruded polystyrene foam) insulation, and vacuum insulation. Among them, thermosetting foam insulation materials are widely used because they have the best insulation properties, except for vacuum insulation materials, among existing materials. However, due to the fundamental limitations of organic materials, fire stability is inevitably weaker than that of inorganic insulation materials.
또한, 열경화성 발포체는 제조공정상 표면재를 포함하여 제조하기 때문에 알루미늄 소재의 표면재를 적용하여 난연성을 향상시킬 수 있지만, 실제 화재와 같은 극한의 상황에서는 표면재의 화염 저항성이 크게 떨어지기 때문에 근본적으로 발포체의 난연성을 항상시키는 것이 매우 중요하다.In addition, since the thermosetting foam is manufactured including the surface material in the manufacturing process, the flame retardancy can be improved by applying the aluminum surface material, but in extreme situations such as an actual fire, the flame resistance of the surface material is greatly reduced, so the flame resistance of the foam is fundamentally It is very important to always let
이에, 일반적으로 발포성 조성물에 포스페이트 등의 난연제를 포함시켜 난연성을 향상시키고 있으나, 난연성과 단열성은 상충관계(trade-off)를 가지는바, 단열성이 저하되는 문제가 있다.Accordingly, in general, flame retardancy is improved by including a flame retardant such as phosphate in the foamable composition, but flame retardancy and thermal insulation properties have a trade-off, so there is a problem in that thermal insulation properties are reduced.
본 발명의 목적은 고단열성과 고난연성을 동시에 만족하고 향상된 물성을 갖는 열경화성 발포체를 제공하는 것이다.It is an object of the present invention to provide a thermosetting foam having improved physical properties while simultaneously satisfying high heat insulation and high flame retardancy.
또한 본 발명의 목적은 상기 열경화성 발포체를 제조하는 방법을 제공하는 것이다.It is also an object of the present invention to provide a method for producing the thermosetting foam.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects and advantages of the present invention not mentioned may be understood by the following description, and will be more clearly understood by the examples of the present invention. Moreover, it will be readily apparent that the objects and advantages of the present invention may be realized by the means and combinations thereof indicated in the claims.
본 발명에 따른 열경화성 수지, 경화제, 발포제 및 복합 난연제를 포함하고, 상기 복합 난연제는 제1 난연제 및 제2 난연제를 포함하고, 상기 제1 난연제는 인(Phosphorus)이고, 상기 제2 난연제는 멜라민계 난연제, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나를 포함하거나, 또는 멜라민계 난연제, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나와 펜타에리트리톨계 화합물을 함께 포함하는 열경화성 발포체를 제공할 수 있다.A thermosetting resin, a curing agent, a foaming agent and a composite flame retardant according to the present invention, wherein the composite flame retardant includes a first flame retardant and a second flame retardant, the first flame retardant is phosphorus, and the second flame retardant is a melamine-based flame retardant. Thermosetting comprising at least one selected from the group consisting of flame retardants, trialkyl phosphates, and combinations thereof, or at least one selected from the group consisting of melamine-based flame retardants, trialkyl phosphates, and combinations thereof and a pentaerythritol compound together A foam may be provided.
또한, 본 발명에 따른 발포체의 두께 방향에 수직한 단면에 포함된 1.2 mm (길이, L) X 0.9 mm (폭, W)의 적어도 하나의 영역은 10개 이상의 인을 포함하고, 상기 인의 직경은 1㎛ 내지 80㎛인 열경화성 발포체를 제공할 수 있다.In addition, at least one region of 1.2 mm (length, L) X 0.9 mm (width, W) included in the cross section perpendicular to the thickness direction of the foam according to the present invention contains 10 or more phosphorus, and the diameter of the phosphorus is A thermosetting foam of 1 μm to 80 μm can be provided.
또한 본 발명에 따른, 열경화성 수지를 포함하는 주제, 경화제, 발포제 및 복합 난연제를 포함하는 난연 조성물을 준비하는 단계; 상기 주제, 경화제, 발포제 및 난연 조성물을 교반하여 발포체 조성물을 제조하는 단계; 및 상기 발포체 조성물을 발포 경화하는 단계;를 포함하고, 상기 복합 난연제는 제1 난연제 및 제2 난연제를 포함하고, 상기 제1 난연제는 인(Phosphorus)이고, 상기 제2 난연제는 멜라민계 난연제, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나를 포함하거나, 또는 멜라민계 난연제, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나와 펜타에리트리톨계 화합물을 함께 포함하는 열경화성 발포체의 제조방법을 제공할 수 있다.In addition, according to the present invention, the method comprising: preparing a flame retardant composition comprising a main agent including a thermosetting resin, a curing agent, a foaming agent, and a composite flame retardant; preparing a foam composition by stirring the base, curing agent, foaming agent and flame retardant composition; and foaming and curing the foam composition, wherein the composite flame retardant includes a first flame retardant and a second flame retardant, the first flame retardant is phosphorus, and the second flame retardant is a melamine-based flame retardant, tree At least one selected from the group consisting of alkyl phosphates and combinations thereof, or at least one selected from the group consisting of melamine-based flame retardants, trialkyl phosphates, and combinations thereof and a pentaerythritol-based compound. method can be provided.
본 발명에 따른 열경화성 발포체는 난연제를 포함하면서도, 발포 및 경화가 적절히 조절되어 발포셀이 파괴되지 않고 잘 형성되며, 난연제가 균일하게 분포하는 구조를 가질 수 있다. 이에 따라 향상된 난연성을 나타냄과 동시에 우수한 단열성을 갖고, 우수한 압축강도 및 치수 안정성 등의 물성을 나타낼 수 있다.Although the thermosetting foam according to the present invention contains a flame retardant, foaming and curing are appropriately controlled, so that the foam cell is not destroyed and well formed, and it may have a structure in which the flame retardant is uniformly distributed. Accordingly, it can exhibit improved flame retardancy, have excellent thermal insulation properties, and exhibit physical properties such as excellent compressive strength and dimensional stability.
또한 본 발명에 따른 열경화성 발포체의 제조방법은 상기 열경화성 발포체를 제조하는 방법을 제공할 수 있다.In addition, the method for producing a thermosetting foam according to the present invention may provide a method for producing the thermosetting foam.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.In addition to the above-described effects, the specific effects of the present invention will be described together while describing specific details for carrying out the invention below.
도 1은 본 발명의 열경화성 발포체의 치수 안정성을 측정하는 방법을 간략하게 나타낸 모식도이다.1 is a schematic diagram briefly showing a method for measuring the dimensional stability of a thermosetting foam of the present invention.
도 2은 본 발명의 열경화성 발포체의 두께 방향에 수직한 단면에 포함된 1.2 mm (길이, L) X 0.9 mm (폭, W)의 영역을 디지털 마이크로스코프(Digital Microscope)을 이용하여 촬영한 사진을 나타낸 것이다.Figure 2 is a picture taken using a digital microscope (Digital Microscope) of the area of 1.2 mm (length, L) X 0.9 mm (width, W) included in the cross section perpendicular to the thickness direction of the thermosetting foam of the present invention it has been shown
도 3는 본 발명의 열경화성 발포체의 상기 영역을 4(길이, L) X 3(폭, W)으로 균등 분할한 사진을 나타낸 것이다.3 shows a photograph in which the region of the thermosetting foam of the present invention is equally divided into 4 (length, L) X 3 (width, W).
도 4 는 KS F ISO 5660-1에 의하여 100mm(길이)Χ100mm(너비)Χ50mm(두께)의 크기를 갖는 페놀 발포체에 50kW/㎡ 복사열을 10분간 적용하였을 때의 발포체 측면을 나타내는 모식도로서, 도 4a 는 종래 페놀 발포체의 경우이고, 도 4b 는 본 발명의 일 구현예에 따른 페놀 발포체에 적용하였을 때의 모식도이다.Figure 4 is a schematic view showing the side of the foam when 50kW / m2 radiant heat is applied to a phenolic foam having a size of 100mm (length) Χ100mm (width) Χ50mm (thickness) according to KS F ISO 5660-1 for 10 minutes, Fig. 4a is a case of a conventional phenolic foam, and Figure 4b is a schematic diagram when applied to a phenolic foam according to an embodiment of the present invention.
전술한 목적, 특징 및 장점은 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 도면에서 동일한 참조부호는 동일 또는 유사한 구성요소를 가리키는 것으로 사용된다.The above-described objects, features and advantages will be described in detail below, and accordingly, those skilled in the art to which the present invention pertains will be able to easily implement the technical idea of the present invention. In describing the present invention, if it is determined that a detailed description of a known technology related to the present invention may unnecessarily obscure the gist of the present invention, the detailed description will be omitted. Hereinafter, preferred embodiments according to the present invention will be described in detail with reference to the accompanying drawings. In the drawings, the same reference numerals are used to indicate the same or similar components.
이하에서는, 본 발명의 몇몇 구현예에 따른 열경화성 발포체를 설명하도록 한다.Hereinafter, the thermosetting foam according to some embodiments of the present invention will be described.
본 발명의 일 구현예는 열경화성 수지, 경화제, 발포제 및 복합 난연제를 포함하고, 상기 복합 난연제는 제1 난연제 및 제2 난연제를 포함하고, 상기 제1 난연제는 인(Phosphorus)이고, 상기 제2 난연제는 멜라민계 난연제, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나를 포함하거나, 또는 멜라민계 난연제, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나와 펜타에리트리톨계 화합물을 함께 포함하는 열경화성 발포체를 제공한다.One embodiment of the present invention includes a thermosetting resin, a curing agent, a foaming agent and a composite flame retardant, the composite flame retardant includes a first flame retardant and a second flame retardant, the first flame retardant is phosphorus, and the second flame retardant contains at least one selected from the group consisting of melamine-based flame retardants, trialkyl phosphates, and combinations thereof, or at least one selected from the group consisting of melamine-based flame retardants, trialkyl phosphates, and combinations thereof and a pentaerythritol-based compound together It provides a thermosetting foam comprising.
최근 발생한 다양한 화재사고로 인하여, 건축물에 필수적으로 사용되는 단열재에 우수한 단열성뿐만 아니라, 향상된 난연성이 동시에 요구되고 있다. 하지만, 열경화성 발포체는 유기물의 근본적인 한계 때문에 화재 안정성이 무기 단열재보다 취약할 수 밖에 없다. 이에, 발포체에 알루미늄 면재 등의 표면처리를 통해 난연성을 부여하는 것이 일반적이나, 실재 화재에서 면재가 탈락할 우려가 있고, 면재가 탈락한 경우에는 화재가 확산할 가능성이 높아지게 된다.Due to various fire accidents that have occurred recently, not only excellent thermal insulation properties but also improved flame retardancy are required for insulation materials essential for buildings. However, the thermosetting foam is inevitably weaker in fire stability than inorganic insulating materials due to the fundamental limitations of organic materials. Therefore, it is common to impart flame retardancy to the foam through surface treatment such as aluminum face material, but there is a risk that the face material may fall off in an actual fire, and when the face material falls off, the possibility of fire spreading increases.
이에, 일반적으로 열경화성 발포체에 포스페이트 등의 인계 난연제를 사용하여 난연성을 부여하고 있으나, 포스페이트 등의 인계 난연제를 사용하는 경우 난연성은 향상되는 반면, 발포과정에서 발포셀이 파괴되고 단열성이 저하되는 문제가 있다. 그리고, 열경화성 발포체에 난연제로 수산화알루미늄(ATH)를 사용하는 경우, 상기 수산화알루미늄은 염기성 물질로서 산경화제를 중화시켜 페놀계 수지의 경화 반응성 등이 떨어질 수 있다. 이에 따라 이로부터 제조된 발포체의 단열성이 저하되는 문제가 있다. 그리고, 열경화성 발포체 중에서도 페놀 발포체의 경우 타 열경화성 발포체 대비 리지드(RIGID)한 특성을 가지고 수지의 점도 역시 높아 난연제와 같은 타 첨가제를 사용하는 경우 난연제의 균일한 분산이 어려워 충분한 난연성을 갖는 단열재에 적합한 발포체를 제조하는 것은 어려운 면이 있다.Accordingly, in general, flame retardancy is provided by using a phosphorus-based flame retardant such as phosphate to a thermosetting foam, but when a phosphorus-based flame retardant such as phosphate is used, the flame retardancy is improved, whereas the foam cell is destroyed in the foaming process and the thermal insulation property is lowered. have. And, when aluminum hydroxide (ATH) is used as a flame retardant in the thermosetting foam, the aluminum hydroxide is a basic material and neutralizes the acid curing agent, so that the curing reactivity of the phenol-based resin may be deteriorated. Accordingly, there is a problem in that the thermal insulation properties of the foam produced therefrom is lowered. And, among thermosetting foams, phenolic foams have rigid (RIGID) characteristics compared to other thermosetting foams, and the viscosity of the resin is also high. It is difficult to manufacture.
상기 열경화성 발포체는 열경화성 수지, 경화제, 발포제 및 복합 난연제를 포함하고, 상기 복합 난연제로 특정의 제1 난연제 및 제2 난연제를 포함하여, 발포 및 경화가 적절히 조절되며, 예를 들어, 페놀 발포체에서도, 발포셀이 파괴되지 않고, 난연제가 균일하게 분포하는 구조를 가질 수 있다. 그리하여, 상충관계(trade-off)에 있는 난연성 및 단열성을 향상시킬 수 있다. 또한, 상기 열경화성 발포체는 우수한 압축강도 및 치수 안정성 등의 물성도 함께 나타낼 수 있다.The thermosetting foam comprises a thermosetting resin, a curing agent, a foaming agent and a composite flame retardant, and comprises a specific first flame retardant and a second flame retardant as the composite flame retardant, so that foaming and curing are appropriately controlled, for example, even in a phenolic foam, It may have a structure in which the foam cell is not destroyed and the flame retardant is uniformly distributed. Thus, it is possible to improve flame retardancy and heat insulation, which are trade-offs. In addition, the thermosetting foam may also exhibit physical properties such as excellent compressive strength and dimensional stability.
구체적으로, 상기 열경화성 발포체는 열경화성 수지를 포함한다. 상기 열경화성 수지는 에폭시계 수지, 폴리우레탄계 수지, 폴리이소시아네이트계 수지, 폴리이소시아누레이트계 수지, 폴리에스테르계 수지, 폴리아미드계 수지, 페놀계 수지 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다. Specifically, the thermosetting foam includes a thermosetting resin. The thermosetting resin may include one selected from the group consisting of an epoxy-based resin, a polyurethane-based resin, a polyisocyanate-based resin, a polyisocyanurate-based resin, a polyester-based resin, a polyamide-based resin, a phenol-based resin, and combinations thereof. can
예를 들어, 상기 열경화성 발포체는 열경화성 수지로 페놀 및 포름알데히드가 반응하여 얻어질 수 있는 페놀계 수지, 예를 들어 레졸계 페놀 수지(이하, '레졸 수지')를 포함할 수 있다. 그리고, 제1 난연제 및 제2 난연제를 포함하는 복합 난연제는 벤젠고리를 포함하는 상기 페놀계 수지와 잘 혼합되고 균일하게 분산 및 발포 될 수 있다. 이에 따라, 상기 열경화성 발포체는, 예를 들어, 페놀 발포체는, 복합 난연제를 포함하면서도, 균일하고 작은 크기의 발포 셀을 안정적으로 형성하면서 초기 단열성뿐만 아니라 장기 단열성에 있어서도 향상된 단열성을 나타낼 수 있다. For example, the thermosetting foam may include a phenol-based resin obtained by reacting phenol and formaldehyde with a thermosetting resin, for example, a resol-based phenol resin (hereinafter, 'resol resin'). In addition, the composite flame retardant including the first flame retardant and the second flame retardant may be well mixed with the phenolic resin including a benzene ring and uniformly dispersed and foamed. Accordingly, the thermosetting foam, for example, the phenolic foam, while including the composite flame retardant, while stably forming a uniform and small-sized foam cell, as well as the initial thermal insulation properties as well as long-term thermal insulation can exhibit improved thermal insulation properties.
상기 열경화성 수지는 상기 열경화성 발포체 내에 약 30 중량% 내지 약 90 중량% 또는 약 50 중량% 내지 약 90 중량% 또는 약 55 중량% 내지 약 90 중량%의 함량으로 포함될 수 있다. 상기 열경화성 발포체는 상기 열경화성 수지를 상기 범위 내의 함량으로 포함함으로써 발포 셀을 안정적으로 형성하고, 우수한 열전도도를 구현할 수 있다.The thermosetting resin may be included in the thermosetting foam in an amount of about 30 wt% to about 90 wt%, or about 50 wt% to about 90 wt%, or about 55 wt% to about 90 wt%. The thermosetting foam may stably form a foamed cell and implement excellent thermal conductivity by including the thermosetting resin in an amount within the range.
상기 열경화성 발포체는 경화제를 포함한다. 상기 경화제는 톨루엔 술폰산, 자일렌 술폰산, 벤젠술폰산, 페놀 술폰산, 에틸벤젠 술폰산, 스티렌 술폰산, 나프탈렌 술폰산 및 이들의 조합으로 이루어진 군으로부터 선택된 하나의 산경화제를 포함할 수 있다. 상기 열경화성 발포체는 상기 경화제를 포함하여 적정의 가교, 경화 및 발포성을 나타낼 수 있다.The thermosetting foam includes a curing agent. The curing agent may include one acid curing agent selected from the group consisting of toluene sulfonic acid, xylene sulfonic acid, benzenesulfonic acid, phenol sulfonic acid, ethylbenzene sulfonic acid, styrene sulfonic acid, naphthalene sulfonic acid, and combinations thereof. The thermosetting foam may exhibit proper crosslinking, curing and foaming properties by including the curing agent.
상기 열경화성 발포체는 발포제를 포함한다. 예를 들어, 상기 발포제는 히드로플루오로올레핀(hydrofluoroolefin, HFO)계 화합물, 탄화수소계 화합물 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다. 구체적으로, 상기 히드로플루오로올레핀계 화합물은 예를 들어, 모노클로로트리플루오로프로펜, 트리플루오로프로펜, 테트라플루오로프로펜, 펜타플루오로프로펜, 헥사플루오로부텐 및 이들의 조합으로 이루어진 군에서 선택되는 적어도 하나를 포함할 수 있다. 그리고, 상기 탄화수소계 화합물은 탄소수 1개 내지 8개의 탄화수소를 포함할 수 있다. 예를 들어, 상기 탄화수소계 화합물은 디클로로에탄, 프로필클로라이드, 이소프로필클로라이드, 부틸클로라이드, 이소부틸클로라이드, 펜틸클로라이드, 이소펜틸클로라이드, n-부탄, 이소부탄, n-펜탄, 이소펜탄, 시클로펜탄, 헥산, 헵탄, 시클로펜탄 및 이들의 조합으로 이루어진 군에서 선택되는 적어도 하나를 포함할 수 있다. 또는 상기 탄화수소계 화합물은 탄소수 1개 내지 5개의 탄화수소로서, 디클로로에탄, 프로필클로라이드, 이소프로필클로라이드, 부틸클로라이드, 이소부틸클로라이드, 펜틸클로라이드, 이소펜틸클로라이드, n-부탄, 이소부탄, n-펜탄, 이소펜탄, 시클로펜탄 및 이들의 조합으로 이루어진 군에서 선택되는 적어도 하나를 포함하여 우수한 단열성과 함께 친환경성을 나타낼 수 있다.The thermosetting foam includes a blowing agent. For example, the blowing agent may include one selected from the group consisting of a hydrofluoroolefin (HFO)-based compound, a hydrocarbon-based compound, and combinations thereof. Specifically, the hydrofluoroolefin-based compound is, for example, monochlorotrifluoropropene, trifluoropropene, tetrafluoropropene, pentafluoropropene, hexafluorobutene, and combinations thereof. It may include at least one selected from the group consisting of. And, the hydrocarbon-based compound may include a hydrocarbon having 1 to 8 carbon atoms. For example, the hydrocarbon-based compound is dichloroethane, propyl chloride, isopropyl chloride, butyl chloride, isobutyl chloride, pentyl chloride, isopentyl chloride, n-butane, isobutane, n- pentane, isopentane, cyclopentane, It may include at least one selected from the group consisting of hexane, heptane, cyclopentane, and combinations thereof. or the hydrocarbon-based compound is a hydrocarbon having 1 to 5 carbon atoms, dichloroethane, propyl chloride, isopropyl chloride, butyl chloride, isobutyl chloride, pentyl chloride, isopentyl chloride, n-butane, isobutane, n-pentane, By including at least one selected from the group consisting of isopentane, cyclopentane, and combinations thereof, it may exhibit excellent thermal insulation properties and eco-friendliness.
상기 열경화성 발포체는 양성, 양이온계, 음이온계, 비이온계 계면활성제 및 이들의 조합으로 이루어진 군으로부터 선택된 하나의 계면활성제를 포함할 수 있다. 예를 들어, 상기 열경화성 발포체는 에톡시화 반응시킨 피마자유 계면활성제 즉, 비이온성 계면활성제를 포함할 수 있다. 상기 열경화성 발포체, 특히 페놀 수지 발포체는 상기 계면활성제를 포함하여 복합 난연제 성분들을 보다 쉽게 분산시킬 수 있고, 상기 열경화성 발포체에 적정의 발포 구조를 안정적으로 형성하여, 우수한 열전도도 및 우수한 물리적 강도 등을 구현할 수 있다.The thermosetting foam may include one surfactant selected from the group consisting of amphoteric, cationic, anionic, nonionic surfactants and combinations thereof. For example, the thermosetting foam may include an ethoxylated castor oil surfactant, that is, a nonionic surfactant. The thermosetting foam, particularly the phenolic resin foam, can more easily disperse the composite flame retardant components including the surfactant, and stably form an appropriate foaming structure in the thermosetting foam to realize excellent thermal conductivity and excellent physical strength, etc. can
그리고, 상기 열경화성 발포체는 복합 난연제를 포함하고, 상기 복합 난연제는 제1 난연제 및 제2 난연제를 포함하고, 상기 제1 난연제는 인(Phosphorus)이고, 상기 제2 난연제는 멜라민계 난연제, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나를 포함하거나, 또는 멜라민계 난연제, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나와 펜타에리트리톨계 화합물을 함께 포함한다. 상기 제2 난연제는 상기 제1 난연제인 고상(solid)의 상기 인과 상용성이 우수하여 잘 혼합될 수 있으며, 작은 크기의 인 입자의 뭉침 현상을 억제하여 상기 난연제가 고르게 분산될 수 있도록 하고, 균일하게 발포하여 향상된 난연성과 함께 우수한 단열성을 부여할 수 있다. 그리고, 압축강도, 치수 안정성 등의 우수한 물성을 부여할 수 있다.And, the thermosetting foam includes a composite flame retardant, the composite flame retardant includes a first flame retardant and a second flame retardant, the first flame retardant is phosphorus (Phosphorus), and the second flame retardant is a melamine-based flame retardant, trialkyl phosphate And at least one selected from the group consisting of combinations thereof, or at least one selected from the group consisting of melamine-based flame retardants, trialkyl phosphates, and combinations thereof and a pentaerythritol-based compound together. The second flame retardant has excellent compatibility with the phosphorus of the solid phase, which is the first flame retardant, and thus can be mixed well, and suppresses the aggregation of small-sized phosphorus particles so that the flame retardant can be evenly dispersed, and uniformly It can be foamed to provide excellent thermal insulation with improved flame retardancy. In addition, excellent physical properties such as compressive strength and dimensional stability can be imparted.
상기 열경화성 발포체는 상기 복합 난연제의 제1 난연제로 인을 포함하여 연소시에 우수한 탄화작용으로 탄화막(char)를 잘 형성할 수 있다. 특히, 페놀 수지 발포체는 벤젠고리를 포함하는 상기 페놀계 수지에 인을 포함하여 탄화막(char)를 보다 잘 형성할 수 있다. 또한, 상기 인은 연소시 발생하는 수소 라디칼 및 히드록시 라디칼을 포획하여 연소반응이 연쇄적으로 일어나는 것을 방지하여 화재 전파를 신속히 차단할 수 있다. The thermosetting foam contains phosphorus as the first flame retardant of the composite flame retardant and can form a char with excellent carbonization action during combustion. In particular, the phenolic resin foam can better form a carbonized film (char) by including phosphorus in the phenolic resin including a benzene ring. In addition, the phosphorus traps hydrogen radicals and hydroxy radicals generated during combustion to prevent the combustion reaction from occurring in a chain, thereby quickly blocking fire propagation.
상기 인은 인의 구조적 상태 및 색상에 따라 백인,적인, 흑인, 자인 등으로 구별될 수 있다. 구체적으로, 상기 열경화성 발포체는 적인을 포함할 수 있다. 상기 열경화성 발포체는 적정의 구조를 갖는 적인을 포함하여 열경화성 발포체 형성시 취급이 용이할 수 있다. 그리고, 열경화성 발포체 연소시에 탄화막(Char) 형성 속도를 조절하여 보다 향상된 난연성 및 단열성을 동시에 가질 수 있다. 예를 들어, 상기 열경화성 발포체는 상기 인으로 적인을 약 80% 이상 또는 약 100% 포함할 수 있다. The phosphorus may be classified into white, red, black, and phosphorus according to the structural state and color of phosphorus. Specifically, the thermosetting foam may include red. The thermosetting foam may be easily handled when the thermosetting foam is formed, including red with an appropriate structure. In addition, it is possible to have improved flame retardancy and heat insulation at the same time by controlling the rate of formation of a carbonized film (Char) during combustion of the thermosetting foam. For example, the thermosetting foam may include about 80% or more or about 100% of the phosphorus red.
상기 인(phosphor)은 약 1 내지 약 50㎛ 의 평균 입경을 가질 수 있다. 여기서 평균 입경은 하나의 입자가 가질 수 있는 직경의 평균치를 의미한다. 상기 열경화성 발포체는 상기 범위의 평균 입경을 갖는 인을 포함하여, 동일 중량부 대비 인을 넓은 표면적으로 포함할 수 있다. 이에 따라, 우수한 난연성을 나타내고, 발포 셀 형성을 방해하지 않음으로써 우수한 단열성을 동시에 나타낼 수 있다. 상기 인의 평균 입경은 레이저 입도 분석기를 사용하여 측정할 수 있다. The phosphor may have an average particle diameter of about 1 to about 50 μm. Here, the average particle diameter means an average value of the diameters that one particle can have. The thermosetting foam may include phosphorus having an average particle diameter in the above range, and may include phosphorus in a large surface area relative to the same weight part. Accordingly, excellent flame retardancy can be exhibited, and excellent thermal insulation properties can be exhibited at the same time by not interfering with the formation of foam cells. The average particle diameter of the phosphorus may be measured using a laser particle size analyzer.
상기 발포체는 제1 난연제로 적인을 포함하여, 디지털 마이크로스코프(Digital Microscope) 촬영시, 도 2에서와 같이, 붉은 점의 형태로 인을 관찰할 수 있다. 이를 통해 발포체에 포함된 적인의 함량 정도와 분산도를 확인할 수 있다. The foam includes red as a first flame retardant, and phosphorus can be observed in the form of red dots when photographing with a digital microscope, as shown in FIG. 2 . Through this, it is possible to check the content level and dispersion degree of red in the foam.
일반적으로 발포체는 발포 셀의 셀 벽(cell wall) 및 스트럿(strut)로 이루어질 수 있다. 이때, 상기 발포체는 도 2 또는 도 3 에서 보는 바와 같이, 스트럿(Strut)에 붉은 점, 즉, 적인이 포함되어 있는 것을 확인할 수 있다. 상기 인 또는 적인을 발포체의 스트럿(Strut) 부분에 포함함으로써, 단열성의 큰 저하 없이 난연 성능의 구현하는데 도움이 될 수 있다. 인 또는 적인이 스트럿(Strut) 부분에 형성되도록 하는 것은 중요하다. 만약 인 또는 적인이 셀벽에 위치하게 되는 경우에는 기포의 파포가 일어나 보이드가 발생하거나 또는 불균일한 발포가 일어나게 될 수 있다. 이에 따라, 목적하는 효과를 달성하기 어려울 수 있다. 상기 인 또는 적인을 스트럿(Strut)부분에 포함하는 것에는 하기에 기재된 다양한 조건이 도움이 될 수 있다. 인 또는 적인의 입경, 제2 난연제와의 조합과 이를 통한 발포 전후의 균일한 분산 등이 스트럿에 인 또는 적인을 포함하도록 하는 것에 도움이 될 수 있다.In general, the foam may consist of cell walls and struts of foam cells. At this time, as shown in FIG. 2 or FIG. 3 , it can be seen that the foam contains a red dot, that is, a red dot on the strut. By including the phosphorus or red phosphorus in the strut portion of the foam, it may help to implement the flame retardant performance without significant deterioration in thermal insulation properties. It is important to ensure that the person or enemy is formed in the strut section. If phosphorus or enemy is located on the cell wall, the voids or non-uniform foaming may occur due to the breakage of air bubbles. Accordingly, it may be difficult to achieve the desired effect. Various conditions described below may be helpful in including the phosphorus or enemy in the strut portion. The particle size of phosphorus or phosphorus, combination with the second flame retardant and uniform dispersion before and after foaming through it may help to include phosphorus or phosphorus in the strut.
상기 복합 난연제는 제2 난연제를 포함하고, 상기 제2 난연제는 멜라민계 난연제, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나를 포함하거나, 또는 멜라민계 난연제, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나와 펜타에리트리톨계 화합물을 함께 포함한다. 상기 제2 난연제는 상기 제1 난연제인 인과 상용성이 우수하여 잘 혼합될 수 있으며, 작은 크기의 인 입자의 뭉침 현상을 적절히 억제하여 적정 크기의 인이 상기 복합 난연제가 고르게 분산될 수 있도록 하고, 균일하게 발포하여 향상된 난연성과 함께 우수한 단열성을 나타낼 수 있다. 제2 난연제로 멜라민계 난연제, 트리알킬포스페이트 및 펜타에리트리톨을 함께 포함하는 것이, 또는 제2 난연제로 멜라민계 난연제와 트리알킬포스페이트 조합을 포함하는 것이, 또는 멜라민계 난연제와 펜타에리트리톨을 포함하는 것이, 또는 트리알킬포스페이트와 펜타에리트리톨을 포함하는 것이 더욱 도움이 될 수 있다.The composite flame retardant includes a second flame retardant, and the second flame retardant includes at least one selected from the group consisting of melamine-based flame retardants, trialkyl phosphates, and combinations thereof, or melamine-based flame retardants, trialkyl phosphates, and combinations thereof It contains at least one selected from the group consisting of and a pentaerythritol-based compound. The second flame retardant has excellent compatibility with the phosphorus, which is the first flame retardant, so that it can be mixed well, and the aggregation phenomenon of small-sized phosphorus particles is appropriately suppressed so that phosphorus of an appropriate size can be evenly dispersed in the composite flame retardant, By uniformly foaming, it can exhibit excellent thermal insulation with improved flame retardancy. A second flame retardant comprising a melamine-based flame retardant, a trialkyl phosphate and pentaerythritol together, or a second flame retardant comprising a melamine-based flame retardant and a trialkyl phosphate combination, or a melamine-based flame retardant and a pentaerythritol Alternatively, it may be more helpful to include trialkylphosphate and pentaerythritol.
구체적으로, 상기 펜타에리트리톨계 화합물은 연소시에 상기 인과 인 사이에 결합하여 탄화막(Char)을 보다 잘 형성하고, 화재가 전파되는 것을 방지할 수 있다. 상기 펜타에리트리톨계 화합물은 모노펜타에리트리톨, 다이펜타에리트리톨, 트리펜타에리트리톨 및 이들의 조합을 이루어진 군으로부터 선택된 하나를 포함할 수 있다.Specifically, the pentaerythritol-based compound binds between the phosphorus and phosphorus during combustion to better form a carbonized film (Char) and prevent the fire from spreading. can be prevented The pentaerythritol-based compound may include one selected from the group consisting of monopentaerythritol, dipentaerythritol, tripentaerythritol, and combinations thereof.
상기 멜라민계 난연제는 멜라민, 멜라민 포스페이트(Melamine phosphate), 멜라민 폴리포스페이트(Melalmine polyphosphate), 멜라민시아누레이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나를 포함할 수 있다. 예를 들어, 상기 멜라민계 난연제는 멜라민시아누레이트일 수 있으며, 페놀계 수지와의 관계에서 우수한 상용성을 나타낼 수 있다. 상기 멜라민계 난연제로 페놀계 수지와의 상용성이 우수한 것을 사용함으로써, 단열성능의 큰 저하 없이 난연성능을 달성하는데 도움이 된다.The melamine-based flame retardant may include at least one selected from the group consisting of melamine, melamine phosphate, melamine polyphosphate, melamine cyanurate, and combinations thereof. For example, the melamine-based flame retardant may be melamine cyanurate, and may exhibit excellent compatibility in relation to a phenol-based resin. By using the melamine-based flame retardant having excellent compatibility with the phenol-based resin, it helps to achieve flame retardant performance without significant deterioration in thermal insulation performance.
상기 멜라민계 난연제는 상기 인의 탄화막 형성시 함께 작용하여 인의 탄화막 형성 반응을 향상시키고, 안정적인 탄화막을 형성시킬 수 있다. 상기 멜라민계 난연제는 연소 분해에 의해 발생한 멜라민 자체가 응축하여 멜렘(melem) 및 멜론(melon)과 같은 다중 고리구조를 포함하는 탄화막을 형성할 수 있다. 그리고, 상기 멜라민계 난연제는 연소시에 멜라민계 난연제 구조 내의 멜라민 자체의 승화 및 분해에 의한 흡열로 연소열을 낮춰서 점화를 지연시킬 수 있다. 또한, 멜라민계 난연제는 연소시에 질소 및/또는 암모니아 가스를 생성하여 산소를 희석시킬 수 있다. 또한, 상기 멜라민계 난연제는 열경화성 발포체에 균일하고 작은 크기의 셀을 형성시킬 수 있다. 그리고, 상기 멜라민계 난연제는 발포체에 있어서 핵제로 작용할 수 있으며, 셀의 구조를 보다 안정적으로 형성하여 단열성을 더욱 향상시킬 수 있다.The melamine-based flame retardant may work together to form a carbonized film of phosphorus to improve a reaction for forming a carbonized film of phosphorus and form a stable carbonized film. The melamine-based flame retardant may condense melamine itself generated by combustion decomposition to form a carbonized film including a multi-ring structure such as melem and melon. In addition, the melamine-based flame retardant may delay ignition by lowering the combustion heat due to endothermic heat due to sublimation and decomposition of melamine itself in the melamine-based flame retardant structure during combustion. In addition, the melamine-based flame retardant may dilute oxygen by generating nitrogen and/or ammonia gas during combustion. In addition, the melamine-based flame retardant may form uniform and small-sized cells in the thermosetting foam. In addition, the melamine-based flame retardant may act as a nucleating agent in the foam, and more stably form a cell structure to further improve thermal insulation properties.
상기 멜라민계 난연제의 평균 입경은 약 1㎛ 내지 약 20㎛일 수 있다. 여기서 평균 입경은 하나의 입자가 가질 수 있는 직경의 평균치를 의미한다. 예를 들어, 입자가 기하학적으로 구형인 경우는 지름의 평균을 의미하고, 그 외의 다른 형상인 경우는 장축과 단축으로 구분시 장축의 평균 길이를 의미한다. 상기 입경은 레이저 입도분석기(Laser Particle Size Analyner, 모델명: BT-2000)에 의해 측정할 수 있다. 멜라민계 난연제의 평균 입경이 상기 범위 미만인 경우에는 이를 포함하는 조성물의 점도를 상승시키고 분산이 잘 되지 않는 문제가 있을 수 있다. 그리고, 상기 범위를 초과하는 경우에는 난연성이 저하되는 문제가 있을 수 있다. The average particle diameter of the melamine-based flame retardant may be about 1㎛ to about 20㎛. Here, the average particle diameter means an average value of the diameters that one particle can have. For example, if the particle is geometrically spherical, it means the average of the diameter, and in the case of other shapes, it means the average length of the major axis when divided into a major axis and a minor axis. The particle size can be measured by a laser particle size analyzer (Laser Particle Size Analyzer, model name: BT-2000). If the average particle diameter of the melamine-based flame retardant is less than the above range, there may be a problem in that the viscosity of the composition comprising the same increases and the dispersion is not good. And, when it exceeds the above range, there may be a problem that the flame retardancy is lowered.
그리고, 상기 트리알킬포스페이트는 트리메틸포스페이트, 트리에틸포스페이트, 트리부틸포스페이트, 트리스(1-클로로 2-프로필)포스페이트, 트리(2-에틸헥실)포스페이트, 트리페닐포스테이트, 트리크레실포스페이트, 트리자일레닐포스페이트(trixylenyl phosphate), 트리스(이소프로필페닐)포스페이트, 트리스(페닐페닐)포스페이트, 트리나프틸포스페이트, 크레실디페닐포스페이트, 자일레닐디페닐포스페이트, 디페닐(2-에틸헥실)포스페이트, 디(이소프로필페닐)페닐포스페이트, 모노이소데실포스페이트) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나의 화합물을 포함할 수 있다. 상기 트리알킬포스페이트는 상기 인의 균일한 분산을 향상시키고, 작은 크기의 인 입자의 뭉침 현상을 억제하여 상기 복합 난연제가 고르게 분산될 수 있도록 하고, 균일하게 발포하여 향상된 난연성과 함께 우수한 단열성을 나타낼 수 있다. 구체적으로, 상기 트리알킬포스페이트는 트리에틸포스페이트(TEP) 또는 트리스(1-클로로 2-프로필)포스페이트(TCPP)일 수 있으며, 트리알킬포스페이트, 즉 트리에틸포스페이트 또는 트리스(1-클로로 2-프로필)포스페이트(TCPP)는 상기 인과 우수한 상용성으로 잘 혼합되고, 발포 경화에 부작용이 거의 없이 복합 난연제의 점도를 조절하는데 도움이 될 수 있고, 페놀 발포체의 발포 및 경화를 방해하지 않음으로써, 난연성 및 단열성을 보다 향상시킬 수 있다. 상기 트리알킬포스페이트는 제1 난연제와 별개로 투입하기보다는 미리 혼합하여 투입해야 제1 난연제의 균일한 분포에 유리할 수 있다.And, the trialkyl phosphate is trimethyl phosphate, triethyl phosphate, tributyl phosphate, tris (1-chloro 2-propyl) phosphate, tri (2-ethylhexyl) phosphate, triphenyl phosphate, tricresyl phosphate, triza Ilenyl phosphate (trixylenyl phosphate), tris (isopropylphenyl) phosphate, tris (phenylphenyl) phosphate, trinaphthyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, diphenyl (2-ethylhexyl) phosphate, diphenyl (2-ethylhexyl) phosphate (isopropylphenyl)phenylphosphate, monoisodecylphosphate) and combinations thereof. The trialkyl phosphate improves the uniform dispersion of the phosphorus, suppresses the aggregation of small-sized phosphorus particles, so that the composite flame retardant can be evenly dispersed, and uniformly foams to exhibit excellent thermal insulation properties with improved flame retardancy. . Specifically, the trialkyl phosphate may be triethyl phosphate (TEP) or tris (1-chloro 2-propyl) phosphate (TCPP), and a trialkyl phosphate, that is, triethyl phosphate or tris (1-chloro 2-propyl) Phosphate (TCPP) is well mixed with the phosphorus with excellent compatibility, can help control the viscosity of the composite flame retardant with little adverse effect on foam curing, and does not interfere with the foaming and curing of phenolic foam, thereby providing flame retardancy and heat insulation properties can be further improved. The trialkyl phosphate may be advantageous in uniform distribution of the first flame retardant when mixed in advance rather than separately added from the first flame retardant.
상기 복합 난연제는 상기 열경화성 발포체 100 중량부 대비 약 1 중량부 내지 약 12 중량부의 함량으로 포함될 수 있다. 예를 들어, 상기 복합 난연제는 약 1 중량부 내지 약 10 중량부 또는 약 1 중량부 내지 약 8 중량부 의 함량으로 포함될 수 있다. 상기 열경화성 발포체는 상기 복합 난연제를 상기 범위, 특히 소량의 함량으로 포함하면서도, 화재시 발포체의 연소 속도를 조절하고 안정적으로 탄화막을 형성하여 향상된 난연성과 동시에 우수한 단열성 및 압축강도 등의 우수한 물성을 부여할 수 있다. The composite flame retardant may be included in an amount of about 1 part by weight to about 12 parts by weight based on 100 parts by weight of the thermosetting foam. For example, the composite flame retardant may be included in an amount of about 1 part by weight to about 10 parts by weight or about 1 part by weight to about 8 parts by weight. The thermosetting foam contains the composite flame retardant in the above range, particularly in a small amount, while controlling the combustion rate of the foam in case of fire and stably forming a carbonized film to provide excellent properties such as improved flame retardancy and excellent thermal insulation and compressive strength. can
구체적으로, 상기 복합 난연제의 함량이 상기 범위 미만일 경우, 안정적으로 탄화막을 형성하지 못하고 충분한 난연 효과를 발휘하지 못할 수 있다. 그리고, 상기 범위 초과를 제한하는 것은 아니지만, 상기 범위를 초과할 경우, 상승하는 난연 효과 대비 비용이 많이 소요되는 바 비경제적이고, 발포체 조성물의 점도가 크게 상승하여 발포시에 문제가 발생할 수 있다. 예를 들어, 복합 난연제의 함량으로 인해 발포체 조성물의 점도가 상승하면 교반시 믹서의 토크가 많이 걸리기 때문에 발포체 조성물의 온도가 높게 상승된다. 그리고, 상기 발포제 휘발량이 증가하게 되고, 이에 따라 단열성이 저하될 수 있다. 또한 발포체 조성물의 높은 점도로 인해 인, 발포제 및 경화제 등이 고르게 분산되지 못하여 발포체의 물성이 균일하게 형성되지 않는 문제가 발생할 수 있다.Specifically, when the content of the composite flame retardant is less than the above range, the carbonization film may not be stably formed and a sufficient flame retardant effect may not be exhibited. And, although it is not limited to exceeding the above range, when it exceeds the above range, it is uneconomical to bar a high cost compared to the rising flame retardant effect, and the viscosity of the foam composition is greatly increased, which may cause problems during foaming. For example, when the viscosity of the foam composition increases due to the content of the composite flame retardant, the temperature of the foam composition is increased because a large amount of torque of the mixer is taken during stirring. And, the amount of volatilization of the foaming agent is increased, and thus thermal insulation properties may be deteriorated. In addition, due to the high viscosity of the foam composition, phosphorus, a foaming agent, a curing agent, etc. may not be evenly dispersed, which may cause a problem in that the physical properties of the foam are not uniformly formed.
상기 복합 난연제는 제1 난연제인 인(Phosphorus), 또는 인(Phosphorus)과 트리알킬포스페이트를 포함할 수 있으며, 유도 결합 플라즈마 분광 분석기(inductively coupled plasma optical emission spectrometer: ICP-OES, Agilent社, 모델명 5110)를 이용하여, 상기 복합 난연제에 포함된 P(인) 원소의 함량을 측정할 수 있다. The composite flame retardant may include phosphorus (Phosphorus) as the first flame retardant, or phosphorus (Phosphorus) and trialkyl phosphate, and inductively coupled plasma optical emission spectrometer:  ICP-OES, Agilent Company, model name 5110 ), it is possible to measure the content of the element P (phosphorus) contained in the composite flame retardant.
구체적으로, 상기 열경화성 발포체는 길이, 폭 및 두께를 갖는 보드 형상일 수 있다. 이때, 오염 물질에 의한 영향을 배제하기 위하여, 발포체 전체 외표면으로부터 각각 약 1㎝ 이상 이격된 부분을 포함하는 샘플을 준비한다. 이 때 샘플에서 아주 큰 보이드 또는 오염 등 이상이 있는 부분이나 그 샘플은 제외한다. 그리고 상기 발포체의 두께 방향에 수직(표면재가 부착되는 표면에 평행)한 적어도 하나의 단면의 적어도 하나의 영역에서 시료를 채취하여 측정할 수 있다. 예를 들어, 발포체 전체 외표면으로부터 각각 약 1㎝ 를 잘라낸 샘플을 준비한다. 그 후, 발포체의 두께 방향의 1/2 지점에 수직한 단면의 임의의 m개 지점에서 시료를 채취한다.(상기 m=2 내지 10 의 정수) 이때, 상기 m개의 각 지점은 상기 단면에서 균일하게 이격된 지점일 수 있다. 상기 각각의 지점에서 채취한 시료 약 200(±20)mg을 각각 질산 5ml와 함께 마이크로웨이브 용기에 넣어 반응이 충분히 일어나도록 10분 정도 기다린다. 마이크로웨이브 용기를 조립한 뒤 마이크로웨이브 기기(Preekem社, 모델명 TOPEX)에 넣어 200℃까지 온도가 서서히 올라가도록 프로그램을 입력하여 초단파 분해한다. 그리고, 시료가 완전히 녹은 것(침전물이 없음)을 확인하고, 초순수(deionized water)를 더해 분해 용액의 부피가 총 50 mL가 되도록 한다. 그리고, 시료를 넣지 않은 대조군과 비교하여, 전 처리가 끝난 각 용액 내 P(인) 원소의 함량(P1, P2,.., Pm)을 ICP-OES (Agilent社, 모델명 5110)를 이용하여 분석한다. 그리고, 그 평균 값(=(P1+ P2+,.., Pm)/m))을 발포체에 포함된 P(인) 원소의 함량으로 한다. 예를 들어, 상기 단면에 포함된 임의의 3개 지점(m=3)에서 측정한 P(인) 원소의 함량(P1, P2, P3)을 ICP-OES (Agilent社, 모델명 5110)를 이용하여 분석하고, 그 평균 값(=(P1+ P2+ P3)/3))을 측정할 수 있다. 상기 열경화성 발포체는 상기 복합 난연제를 일정 함량으로 포함하여, ICP-OES 에 따라, 약 9,000㎎/㎏ 내지 약100,000 ㎎/㎏ 의 평균 함량의 P(인) 원소를 포함할 수 있다. 예를 들어, 약 10,000㎎/㎏ 내지 약 80,000 ㎎/㎏ 또는 약 10,000㎎/㎏ 내지 약 60,000 ㎎/㎏ 의 평균 함량의 P(인) 원소를 포함할 수 있다. Specifically, the thermosetting foam may be in the shape of a board having a length, width and thickness. At this time, in order to exclude the influence of contaminants, a sample including portions spaced apart from each other by about 1 cm or more from the entire outer surface of the foam is prepared. At this time, the sample or the part with an abnormality such as a very large void or contamination in the sample is excluded. In addition, a sample may be collected and measured from at least one region of at least one cross-section perpendicular to the thickness direction of the foam (parallel to the surface to which the surface material is attached). For example, a sample in which about 1 cm is cut off from the entire outer surface of the foam is prepared. After that, samples are taken at arbitrary m points of the cross section perpendicular to the 1/2 point in the thickness direction of the foam. (The above m = an integer of 2 to 10) At this time, each of the m points is uniform in the cross section. It may be a very spaced point. About 200 (±20) mg of the sample collected at each of the above points is put into a microwave container together with 5 ml of nitric acid, respectively, and wait for about 10 minutes for the reaction to occur sufficiently. After assembling the microwave container, put it in a microwave device (Preekem, model name: TOPEX) and enter the program so that the temperature rises gradually up to 200°C to perform microwave decomposition. Then, confirm that the sample is completely dissolved (no precipitate), and add deionized water so that the volume of the decomposition solution becomes 50 mL in total. And, compared to the control group without the sample, the content of P(phosphorus) element (P1, P2,.., Pm) in each solution after the pretreatment was analyzed using ICP-OES (Agilent, model name 5110) do. And, the average value (=(P1+ P2+,.., Pm)/m)) is taken as the content of P(phosphorus) element included in the foam. For example, the content (P1, P2, P3) of element P (P1, P2, P3) measured at three arbitrary points (m = 3) included in the cross section was measured using ICP-OES (Agilent, model name 5110). It can be analyzed and its average value (=(P1+P2+P3)/3)) can be determined. The thermosetting foam may include the composite flame retardant in a certain amount, and may include P(phosphorus) element in an average content of about 9,000 mg/kg to about 100,000 mg/kg according to ICP-OES. for example, from about 10,000 mg/kg to about 80,000 mg/kg or from about 10,000 mg/kg to about 60,000 mg/kg of element P(phosphorus) in an average content.
상기 제1 난연제는 상기 열경화성 발포체 100 중량부 대비 약 0.9 중량부 내지 약 10 중량부의 함량으로 포함될 수 있다. 예를 들어, 상기 제1 난연제는 약 1중량부 내지 약 8중량부, 또는 약 1중량부 내지 약 6중량부로 포함되어 열경화성 수지 내에 균일하게 분산되고, 우수한 단열성을 유지하면서 향상된 난연성 및 압축강도 등의 우수한 물성을 부여할 수 있다. The first flame retardant may be included in an amount of about 0.9 parts by weight to about 10 parts by weight based on 100 parts by weight of the thermosetting foam. For example, the first flame retardant is contained in an amount of about 1 part by weight to about 8 parts by weight, or about 1 part by weight to about 6 parts by weight to be uniformly dispersed in the thermosetting resin, and improved flame retardancy and compressive strength while maintaining excellent thermal insulation properties, etc. excellent physical properties of
구체적으로, 상기 인의 함량이 상기 범위 미만인 경우에는 충분한 난연 효과를 발휘하지 못하고, 화재시 화재 전파를 방지하지 못할 수 있으며, 치수 안정성이 떨어질 수 있다. 그리고, 상기 범위를 초과하는 경우에는 발포체 조성물의 점도가 크게 상승하여 발포시에 문제가 발생할 수 있다. 예를 들어, 발포체 조성물의 점도가 상승하면 교반시 믹서의 토크가 많이 걸리기 때문에 발포체 조성물의 온도가 높게 상승될 수 있다. 그리고, 발포제 휘발량이 증가하게 되고, 이에 따라, 단열성이 저하될 수 있다. 또한 발포체 조성물의 높은 점도로 인해 인, 발포제 및 경화제 등이 고르게 분산되지 못하여 압축강도가 떨어지는 등 물성이 균일하게 형성되지 않는 문제가 발생할 수 있다. Specifically, when the phosphorus content is less than the above range, a sufficient flame retardant effect may not be exhibited, fire propagation may not be prevented, and dimensional stability may be deteriorated. And, when it exceeds the above range, the viscosity of the foam composition is greatly increased, and a problem may occur during foaming. For example, when the viscosity of the foam composition increases, the temperature of the foam composition may be increased because a large amount of torque of the mixer is applied during stirring. And, the amount of volatilization of the foaming agent is increased, and accordingly, thermal insulation properties may be deteriorated. In addition, due to the high viscosity of the foam composition, phosphorus, a foaming agent, a curing agent, etc. may not be evenly dispersed, which may cause a problem in that physical properties are not formed uniformly, such as a decrease in compressive strength.
그리고, 상기 제2 난연제는 상기 열경화성 발포체 100 중량부 대비 약 0.001 중량부 내지 약 6 중량부의 함량으로 포함될 수 있다. 예를 들어, 상기 제2 난연제는 약 0.01 중량부 내지 약 6 중량부 또는 약 0.05 중량부 내지 약 4 중량부일 수 있다. 상기 복합 난연제는 상기 제1 난연제와 함께, 상기 제2 난연제를 상기 범위의 함량으로 포함하여, 발포 및 경화를 쉽게 조절하고 발포셀이 파괴되지 않고, 상기 난연제가 균일하게 분포하도록 할 수 있다. 그리고, 화재시 발포체의 연소 속도를 조절하고 안정적인 탄화막을 형성하여, 우수한 난연성과 동시에 우수한 단열성 및 압축강도, 치수 안정성 등의 우수한 물성을 가질 수 있다. 상기 제2 난연제의 함량이 상기 범위 미만인 경우, 상기 인과 적절히 반응하지 못하여 적정의 탄화막을 형성하지 못하고, 탄화막의 형성 속도가 충분하지 못하여 난연성 향상 효과가 떨어질 수 있다. 그리고, 상기 범위를 초과하는 경우 화재시 인과 반응하지 않고 잔존하는 제2 난연제 화합물 자체가 연소하여 난연성을 저하시킬 수 있다. In addition, the second flame retardant may be included in an amount of about 0.001 parts by weight to about 6 parts by weight based on 100 parts by weight of the thermosetting foam. For example, the second flame retardant may be in an amount of about 0.01 parts by weight to about 6 parts by weight or about 0.05 parts by weight to about 4 parts by weight. The composite flame retardant, together with the first flame retardant, includes the second flame retardant in an amount within the above range, so that foaming and curing are easily controlled and the foam cell is not destroyed, and the flame retardant is uniformly distributed. And, by controlling the combustion rate of the foam in case of fire and forming a stable carbonized film, it can have excellent properties such as excellent flame retardancy and excellent thermal insulation, compressive strength, and dimensional stability at the same time. If the content of the second flame retardant is less than the above range, the phosphorus and the phosphorus may not react properly to form an appropriate carbonized film, and the flame retardant improvement effect may be lowered because the formation rate of the carbonized film is not sufficient. In addition, when the above range is exceeded, the second flame retardant compound itself that remains without reacting with phosphorus in a fire is combusted, thereby reducing the flame retardancy.
그리고, 상기 제1 난연제 대 상기 제2 난연제의 중량비는 약 1 : 0.001 내지 약 1 : 0.8 일 수 있다. 예를 들어, 상기 제1 난연제 대 상기 제2 난연제의 중량비는 약 1 : 0.01 내지 약 1 : 0.8, 약 1 : 0.02 내지 약 1 : 0.8, 또는 약 1 : 0.05 내지 약 1 : 0.6 일 수 있다. 상기 열경화성 발포체는 상기 범위의 중량비로 상기 제1 난연제 및 상기 제2 난연제를 포함하여, 향상된 난연성 및 우수한 단열성을 동시에 나타내고, 우수한 물성을 함께 나타낼 수 있다. 구체적으로, 제2 난연제가 상기 범위 미만의 함량으로 혼합될 경우에는 인과의 시너지 효과가 미미하여 비경제적인 문제가 있으며, 제2 난연제가 상기 범위를 초과하여 혼합될 경우에는 오히려 난연성이 저하되고, 높은 독립 기포율이 확보가 어렵고, 충분한 압축강도를 확보하는 것이 어려울 수 있다.And, the weight ratio of the first flame retardant to the second flame retardant may be about 1: 0.001 to about 1: 0.8. For example, the weight ratio of the first flame retardant to the second flame retardant is from about 1: 0.01 to about 1: 0.8, from about 1: 0.02 to about 1: 0.8, or from about 1: 0.05 to about 1: 0.6 can be The thermosetting foam may include the first flame retardant and the second flame retardant in a weight ratio within the above range, and simultaneously exhibit improved flame retardancy and excellent thermal insulation, and exhibit excellent physical properties. Specifically, when the second flame retardant is mixed in an amount less than the above range, there is an uneconomical problem due to insignificant synergistic effect with phosphorus, and when the second flame retardant is mixed in excess of the above range, the flame retardancy is rather reduced, and high independence It may be difficult to secure the cell ratio, and it may be difficult to secure sufficient compressive strength.
구체적으로, 상기 복합 난연제는 상기 인 및 상기 펜타에리트리톨계 화합물을 포함할 수 있으며, 상기 인 대 상기 펜타에리트리톨계 화합물의 중량비는 약 1 : 0.05 내지 약 1 : 0.6 일 수 있다. 예를 들어, 상기 인 대 상기 펜타에리트리톨계 화합물의 중량비는 약 1 : 0.07 내지 약 1 : 0.4 일 수 있다.Specifically, the composite flame retardant may include the phosphorus and the pentaerythritol-based compound, and the weight ratio of the phosphorus to the pentaerythritol-based compound may be about 1:0.05 to about 1:0.6. For example, the weight ratio of the phosphorus to the pentaerythritol-based compound may be about 1: 0.07 to about 1: 0.4.
상기 복합 난연제는 상기 인 및 상기 멜라민계 난연제를 포함할 수 있으며, 상기 인 대 상기 멜라민계 난연제의 중량비는 약 1 : 0.001 내지 약 1 : 0.8일 수 있다. 예를 들어, 상기 인 대 상기 멜라민계 난연제의 중량비는 약 1 : 0.01 내지 약 1 : 0.8 또는 약 1 : 0.07 내지 약 1 : 0.6 일 수 있다. The composite flame retardant may include the phosphorus and the melamine-based flame retardant, and the weight ratio of the phosphorus to the melamine-based flame retardant may be from about 1: 0.001 to about 1: 0.8. For example, the weight ratio of the phosphorus to the melamine-based flame retardant may be from about 1: 0.01 to about 1: 0.8 or from about 1: 0.07 to about 1: 0.6.
상기 범위의 멜라민계 난연제를 포함하는 상기 열경화성 발포체는, 열분해 가스 크로마토그래피/질량분석법(py-GC/MS)(600℃)에 의해 멜라민의 검출 피크를 나타낼 수 있다. 구체적으로, 오염 물질의 의한 영향을 배제하기 위하여, 발포체 전체 외표면으로부터 각각 약 1㎝ 이상 이격된 부분을 포함하는 샘플을 준비하고, 상기 발포체의 두께 방향에 수직(표면재가 부착되는 표면에 평행)한 적어도 하나의 단면의 적어도 하나의 지점에서 멜라민 피크 피크를 검출할 수 있다. . 이 때 샘플에서 아주 큰 보이드 또는 오염 등 이상이 있는 부분이나 그 샘플은 제외한다. 예를 들어, 발포체 전체 외표면으로부터 각각 약 1㎝씩 이격된 부분을 포함하는 샘플을 준비한다. 그 후, 발포체의 두께 방향의 약 1/2 지점에 수직한 단면의 임의의 j 개 지점에서 시료를 채취한다(상기 j=2 내지 10 의 정수). 이때, 상기 j 개의 각 지점은 상기 단면에서 균일하게 이격된 지점일 수 있다. 상기 j 개의 각 지점에서 채취한 각각의 시료 약 0.2∼0.3mg을 샘플컵에 넣는다. 그리고, 상기 샘플컵을 열분해 가스 크로마토그래피/질량분석기 (py-GC/MS, 제조사: Agilent, 모델명: 7890A/5975C)에 넣고, 불활성 기체 조건하에서 600℃ 온도에서 시료를 열분해하여 나온 가스를 측정하여 멜라민의 특성 피크를 확인할 수 있다. 상기 j 개의 지점 중 적어도 1개 이상의 지점에서 멜라민의 피크가 나타날 수 있다. 예를 들어, 상기 단면의 임의의 3개 지점(j=3) 중, 1개 이상의 지점에서 멜라민의 피크가 나타날 수 있다. 열경화성 발포체가 상기 멜라민계 난연제를 상기 범위 미만으로 포함되는 경우에는, 상기 GC/MS (600℃)에 의할 때, 멜라민의 피크가 나타나지 않을 수 있다. 상기 열경화성 발포체는 상기 GC/MS (600℃)에 의해 멜라민의 검출 피크를 나타내고, 이를 통해 멜라민계 난연제가 상기 범위의 함량으로 포함된 것을 알 수 있다. The thermosetting foam containing the melamine-based flame retardant in the above range may exhibit a detection peak of melamine by pyrolysis gas chromatography/mass spectrometry (py-GC/MS) (600° C.). Specifically, in order to exclude the influence of contaminants, a sample including portions spaced apart by about 1 cm or more from the entire outer surface of the foam are prepared, and perpendicular to the thickness direction of the foam (parallel to the surface to which the surface material is attached) A melamine peak peak may be detected at at least one point of the at least one cross-section. . At this time, the sample or the part with an abnormality such as a very large void or contamination in the sample is excluded. For example, prepare a sample comprising portions spaced about 1 cm each from the entire outer surface of the foam. After that, samples are taken at arbitrary j points of the cross section perpendicular to about 1/2 point in the thickness direction of the foam (the above j = an integer of 2 to 10). In this case, each of the j points may be points uniformly spaced apart from each other in the cross section. About 0.2 to 0.3 mg of each sample collected at each of the j points is placed in a sample cup. Then, put the sample cup into a pyrolysis gas chromatography/mass spectrometer (py-GC/MS, manufacturer: Agilent, model name: 7890A/5975C), and measure the gas produced by thermally decomposing the sample at 600° C. under inert gas conditions. The characteristic peak of melamine can be confirmed. A peak of melamine may appear at at least one of the j points. For example, a peak of melamine may appear at one or more points among any three points (j=3) of the cross section. When the thermosetting foam contains the melamine-based flame retardant in less than the above range, the melamine peak may not appear according to the GC/MS (600° C.). The thermosetting foam shows a detection peak of melamine by the GC/MS (600° C.), and it can be seen that the melamine-based flame retardant is included in the content within the above range.
상기 복합 난연제는 상기 인 및 상기 트리알킬포스페이트를 포함할 수 있으며, 상기 인 대 상기 트리알킬포스페이트의 중량비는 약 1 : 0.001 내지 약 1 : 0.8일 수 있다. 예를 들어, 상기 인 대 상기 트리알킬포스페이트의 중량비는 약 1 : 0.01 내지 약 1 : 0.8 또는 약 1 : 0.07 내지 약 1 : 0.6 일 수 있다. The composite flame retardant may include the phosphorus and the trialkyl phosphate, and the weight ratio of the phosphorus to the trialkyl phosphate may be from about 1: 0.001 to about 1: 0.8. For example, the weight ratio of the phosphorus to the trialkyl phosphate may be from about 1: 0.01 to about 1: 0.8 or from about 1: 0.07 to about 1: 0.6.
상기 제1 난연제인 상기 인과의 관계에서 상기 제2 난연제 각각의 함량이 상기 범위를 초과하는 경우, 제1 난연제인 상기 인과 반응하지 않고 잔존하는 제2 난연제가 화재시 연소하면서 오히려 난연성을 저하시킬 수 있다. 그리고, 상기 제2 난연제의 함량이 상기 범위 미만인 경우, 열경화성 발포체 내에서 인의 분산성이 떨어져 단열성이 저하될 수 있다. 그리고, 상기 제2 난연제와 상기 인의 조합에 따른 난연성의 시너지 효과가 나타나지 않을 수 있다.When the content of each of the second flame retardants exceeds the above range in the relationship with the causality of the first flame retardant, the second flame retardant remaining without reacting with the phosphorus, which is the first flame retardant, burns in a fire and can rather reduce the flame retardancy. have. And, when the content of the second flame retardant is less than the above range, the dispersibility of phosphorus in the thermosetting foam may decrease, thereby reducing the thermal insulation properties. And, the synergistic effect of flame retardancy according to the combination of the second flame retardant and the phosphorus may not appear.
상기 트리알킬포스페이트는 트리에틸포스페이트(TEP) 또는 트리스(1-클로로 2-프로필)포스페이트(TCPP)일 수 있으며, 상기 범위의 트리에틸포스페이트(TEP) 또는 트리스(1-클로로 2-프로필)포스페이트(TCPP)를 포함하는 상기 열경화성 발포체는 열분해 가스 크로마토그래피/질량분석법(py-GC/MS)(200℃)에 의해 트리에틸포스페이트(TEP) 또는 트리스(1-클로로 2-프로필)포스페이트(TCPP)의 검출 피크를 나타낼 수 있다. 구체적으로, 오염 물질의 의한 영향을 배제하기 위하여, 발포체 전체 외표면으로부터 각각 약 1㎝ 이상 이격된 부분을 포함하는 샘플을 준비하고, 상기 발포체의 두께 방향에 수직(표면재가 부착되는 표면에 평행)한 적어도 하나의 단면의 적어도 하나의 지점에서 트리에틸포스페이트(TEP) 또는 트리스(1-클로로 2-프로필)포스페이트(TCPP)의 피크를 검출할 수 있다. 샘플컵을 열분해 가스 크로마토그래피/질량분석기 (py-GC/MS, 제조사: Agilent, 모델명: 7890A/5975C)에 넣고, 불활성 기체 조건하에서 200℃ 온도에서 시료를 열분해하여 나온 가스를 측정하여 트리에틸포스페이트(TEP) 또는 트리스(1-클로로 2-프로필)포스페이트(TCPP)의 특성 피크를 확인한 것을 제외하고는 상기 GC/MS 측정 방법은 전술한 바와 같다. 예를 들어, 상기 단면의 임의의 3개 지점(k=3) 중, 1개 이상의 지점에서 트리에틸포스페이트(TEP) 또는 트리스(1-클로로 2-프로필)포스페이트(TCPP)의 피크가 나타날 수 있다. 열경화성 발포체가 트리에틸포스페이트(TEP) 또는 트리스(1-클로로 2-프로필)포스페이트(TCPP)를 상기 범위 미만의 함량으로 포함되는 경우에는, 상기 GC/MS (200℃)에 의할 때, 트리에틸포스페이트(TEP) 또는 트리스(1-클로로 2-프로필)포스페이트(TCPP)의 피크가 나타나지 않을 수 있다. 상기 열경화성 발포체는 상기 GC/MS (200℃)에 의해 트리에틸포스페이트(TEP) 또는 트리스(1-클로로 2-프로필)포스페이트(TCPP)의 검출 피크를 나타내고, 이를 통해 트리에틸포스페이트(TEP) 또는 트리스(1-클로로 2-프로필)포스페이트(TCPP)가 상기 범위의 함량으로 포함된 것을 알 수 있다. The trialkylphosphate may be triethylphosphate (TEP) or tris(1-chloro 2-propyl)phosphate (TCPP), in the above range triethylphosphate (TEP) or tris(1-chloro 2-propyl)phosphate ( TCPP) was obtained by pyrolysis gas chromatography/mass spectrometry (py-GC/MS) (200° C.) of triethylphosphate (TEP) or tris(1-chloro 2-propyl)phosphate (TCPP). A detection peak may be indicated. Specifically, in order to exclude the influence of contaminants, a sample including portions spaced apart by about 1 cm or more from the entire outer surface of the foam are prepared, and perpendicular to the thickness direction of the foam (parallel to the surface to which the surface material is attached) A peak of triethylphosphate (TEP) or tris(1-chloro 2-propyl)phosphate (TCPP) may be detected at at least one point of at least one cross-section. Put the sample cup into a pyrolysis gas chromatography/mass spectrometer (py-GC/MS, manufacturer: Agilent, model name: 7890A/5975C), and measure the gas produced by pyrolyzing the sample at 200°C under inert gas conditions to measure triethyl phosphate The GC/MS measurement method is the same as described above, except that characteristic peaks of (TEP) or tris(1-chloro 2-propyl)phosphate (TCPP) were identified. For example, a peak of triethylphosphate (TEP) or tris(1-chloro 2-propyl)phosphate (TCPP) may appear at one or more of any three points (k=3) of the cross section. . When the thermosetting foam contains triethyl phosphate (TEP) or tris (1-chloro 2-propyl) phosphate (TCPP) in an amount less than the above range, according to the GC/MS (200° C.), triethyl The peaks of phosphate (TEP) or tris(1-chloro 2-propyl)phosphate (TCPP) may not appear. The thermosetting foam shows a detection peak of triethyl phosphate (TEP) or tris (1-chloro 2-propyl) phosphate (TCPP) by the GC/MS (200° C.), through which triethyl phosphate (TEP) or tris It can be seen that (1-chloro 2-propyl) phosphate (TCPP) is included in an amount within the above range.
그리고, 상기 복합 난연제는 상기 인, 상기 펜타에리트리톨계 화합물 및 상기 멜라민계 난연제를 포함할 수 있으며, 상기 인 100 중량부 대비, 상기 펜타에리트리톨계 화합물을 약 0.1 중량부 내지 약 50 중량부 포함하고, 상기 멜라민계 난연제를 약 0.1 중량부 내지 약 80중량부 포함할 수 있다. 예를 들어, 상기 인 100 중량부 대비, 상기 펜타에리트리톨계 화합물 약 1 중량부 내지 약 50 중량부, 상기 멜라민계 난연제를 약 1 중량부 내지 약 80중량부를 포함하거나, 상기 인 100 중량부 대비, 상기 펜타에리트리톨계 화합물을 약 5 중량부 내지 약 30 중량부 포함하고, 상기 멜라민계 난연제를 약 5 중량부 내지 약 50중량부 포함할 수 있다.In addition, the composite flame retardant may include the phosphorus, the pentaerythritol-based compound, and the melamine-based flame retardant, and contains about 0.1 parts by weight to about 50 parts by weight of the pentaerythritol-based compound relative to 100 parts by weight of the phosphorus. and about 0.1 parts by weight to about 80 parts by weight of the melamine-based flame retardant. For example, based on 100 parts by weight of the phosphorus, about 1 part by weight to about 50 parts by weight of the pentaerythritol-based compound, about 1 part by weight to about 80 parts by weight of the melamine-based flame retardant, or 100 parts by weight of the phosphorus , It may contain about 5 parts by weight to about 30 parts by weight of the pentaerythritol-based compound, and about 5 parts by weight to about 50 parts by weight of the melamine-based flame retardant.
상기 멜라민계 난연제 대비 상기 펜타에리트리톨계 화합물의 함량이 상기 범위 미만인 경우 인과 멜라민계 난연제와 함께 시너지 작용으로 형성하는 탄화막이 부족할 수 있고, 상기 범위를 초과하는 경우 반응하지 않고 남은 과량의 펜타에리트리톨계 화합물이 연소하면서 오히려 난연성을 저하되는 문제가 있을 수 있다.When the content of the pentaerythritol-based compound compared to the melamine-based flame retardant is less than the above range, the carbonized film formed by a synergistic action with phosphorus and the melamine-based flame retardant may be insufficient. There may be a problem in that the flame retardancy is rather reduced while the system compound is burned.
상기 복합 난연제는 상기 인, 상기 멜라민계 난연제 및 상기 트리알킬포스페이트를 포함할 수 있으며, 상기 인 100 중량부 대비, 상기 멜라민계 난연제를 약 0.1 중량부 내지 약 80 중량부 포함하고, 상기 트리알킬포스페이트를 약 0.1 중량부 내지 약 80 중량부 포함할 수 있다. 예를 들어, 상기 인 100 중량부 대비, 상기 멜라민계 난연제를 약 1 중량부 내지 약 80 중량부, 상기 트리알킬포스페이트를 약 1 중량부 내지 약 80 중량부 포함하거나, 상기 인 100 중량부 대비, 상기 멜라민계 난연제를 약 5 중량부 내지 약 50 중량부 포함하고, 상기 트리알킬포스페이트를 약 5 중량부 내지 약 50 중량부 포함할 수 있다. The composite flame retardant may include the phosphorus, the melamine-based flame retardant, and the trialkyl phosphate, and contains about 0.1 parts by weight to about 80 parts by weight of the melamine-based flame retardant, relative to 100 parts by weight of the phosphorus, and the trialkyl phosphate It may contain from about 0.1 parts by weight to about 80 parts by weight. For example, based on 100 parts by weight of the phosphorus, about 1 part by weight to about 80 parts by weight of the melamine-based flame retardant, about 1 part by weight to about 80 parts by weight of the trialkyl phosphate, or 100 parts by weight of the phosphorus, It may include about 5 parts by weight to about 50 parts by weight of the melamine-based flame retardant, and about 5 parts by weight to about 50 parts by weight of the trialkyl phosphate.
상기 트리알킬포스페이트 대비 상기 멜라민계 난연제의 함량이 상기 범위 미만인 경우 인과 트리알킬포스페이트와 함께 시너지 작용으로 형성하는 탄화막 형성이 부족한 문제가 있고, 상기 범위를 초과하는 경우 과량의 멜라민계 난연제는 페놀 발포체의 셀 형성을 오히려 방해하여 열전도도를 저하시키는 문제가 있을 수 있다.When the content of the melamine-based flame retardant compared to the trialkyl phosphate is less than the above range, there is a problem in that the carbonization film formed in a synergistic action with phosphorus and trialkyl phosphate is insufficient, and when it exceeds the above range, the excess melamine-based flame retardant is a phenolic foam There may be a problem of lowering thermal conductivity by rather inhibiting cell formation of
상기 복합 난연제는 상기 인, 상기 펜타에리트리톨계 화합물 및 상기 트리알킬포스페이트를 포함할 수 있으며, 상기 인 100 중량부 대비, 상기 펜타에리트리톨계 화합물을 약 0.1 중량부 내지 약 50 중량부 포함하고, 상기 트리알킬포스페이트를 약 0.1 중량부 내지 약 80 중량부 포함할 수 있다. 예를 들어, 상기 인 100 중량부 대비, 상기 펜타에리트리톨계 화합물을 약 1 중량부 내지 약 50 중량부, 상기 트리알킬포스페이트를 약 1 중량부 내지 약 80 중량부 포함하거나, 상기 인 100 중량부 대비, 상기 펜타에리트리톨계 화합물을 약 5 중량부 내지 약 50 중량부 포함하고, 상기 트리알킬포스페이트를 약 5 중량부 내지 약 50 중량부 포함할 수 있다. The composite flame retardant may include the phosphorus, the pentaerythritol-based compound, and the trialkyl phosphate, and contains about 0.1 parts by weight to about 50 parts by weight of the pentaerythritol-based compound relative to 100 parts by weight of the phosphorus, It may contain about 0.1 parts by weight to about 80 parts by weight of the trialkyl phosphate. For example, based on 100 parts by weight of the phosphorus, about 1 part by weight to about 50 parts by weight of the pentaerythritol-based compound, about 1 part by weight to about 80 parts by weight of the trialkyl phosphate, or 100 parts by weight of the phosphorus In contrast, about 5 parts by weight to about 50 parts by weight of the pentaerythritol-based compound, and about 5 parts by weight to about 50 parts by weight of the trialkyl phosphate may be included.
상기 트리알킬포스페이트 대비 상기 펜타에리트리톨계 화합물의 함량이 상기 범위 미만인 경우 인과 트리알킬포스페이트와 함께 시너지 작용으로 형성하는 탄화막 형성이 부족할 수 있고, 상기 범위를 초과하는 경우 반응하지 않고 남은 과량의 펜타에리트리톨계 화합물이 연소하면서 오히려 난연성을 떨어뜨리는 문제가 있을 수 있다.When the content of the pentaerythritol-based compound compared to the trialkyl phosphate is less than the above range, the formation of a carbonized film formed by a synergistic action with phosphorus and trialkyl phosphate may be insufficient. As the erythritol-based compound burns, there may be a problem in that the flame retardancy is lowered.
상기 복합 난연제는 상기 인, 상기 펜타에리트리톨계 화합물, 상기 멜라민계 난연제 및 상기 트리알킬포스페이트를 포함할 수 있으며, 상기 인 100 중량부 대비, 상기 펜타에리트리톨계 화합물을 약 0.1 중량부 내지 약 30 중량부 포함하고, 상기 멜라민계 난연제를 약 0.1 중량부 내지 약 50 중량부 포함하고, 상기 트리알킬포스페이트를 약 0.1 중량부 내지 약 60 중량부 포함할 수 있다. 예를 들어, 상기 인 100 중량부 대비, 상기 펜타에리트리톨계 화합물 약 1 중량부 내지 약 30 중량부, 상기 멜라민계 난연제 약 1 중량부 내지 약 50 중량부, 상기 트리알킬포스페이트 약 1 중량부 내지 약 60 중량부를 포함하거나, 상기 인 100 중량부 대비, 상기 펜타에리트리톨계 화합물을 약 3 중량부 내지 약 20 중량부 포함하고, 상기 멜라민계 난연제를 약 5 중량부 내지 약 30 중량부 포함하고, 상기 트리알킬포스페이트를 약 5 중량부 내지 약 40 중량부 포함할 수 있다. The composite flame retardant may include the phosphorus, the pentaerythritol-based compound, the melamine-based flame retardant, and the trialkyl phosphate, and the pentaerythritol-based compound is contained in an amount of about 0.1 parts by weight to about 30 parts by weight relative to 100 parts by weight of the phosphorus. Including parts by weight, including about 0.1 parts by weight to about 50 parts by weight of the melamine-based flame retardant, and may include about 0.1 parts by weight to about 60 parts by weight of the trialkyl phosphate. For example, based on 100 parts by weight of the phosphorus, about 1 part by weight to about 30 parts by weight of the pentaerythritol-based compound, about 1 part by weight to about 50 parts by weight of the melamine-based flame retardant, about 1 part by weight to the trialkyl phosphate About 60 parts by weight, or 100 parts by weight of the phosphorus, about 3 parts by weight to about 20 parts by weight of the pentaerythritol-based compound, and about 5 parts by weight to about 30 parts by weight of the melamine-based flame retardant, It may include about 5 parts by weight to about 40 parts by weight of the trialkyl phosphate.
상기 펜타에리트리톨계 화합물 대비, 상기 멜라민계 난연제 및 상기 트리알킬포스페이트의 중량비가 상기 범위 미만인 경우에는 제 1 난연제인 인과 작용하여 난연성 향상의 시너지 효과를 충분히 발휘하지 못하는 문제가 있고, 상기 멜라민계 난연제 및 상기 트리알킬포스페이트의 중량비가 상기 범위 초과인 경우에는 과량의 난연제로 인한 페놀 발포체의 셀 구조 형성을 방해하여 구조적으로 불안정해지고 단열성이 악화되는 문제가 있을 수 있다.Compared to the pentaerythritol-based compound, when the weight ratio of the melamine-based flame retardant and the trialkyl phosphate is less than the above range, the first flame retardant, phosphorus, does not sufficiently exert a synergistic effect of flame retardancy improvement, and the melamine-based flame retardant And when the weight ratio of the trialkyl phosphate exceeds the above range, there may be a problem in that the cell structure formation of the phenol foam due to an excess of the flame retardant is prevented, resulting in structural instability and deterioration of thermal insulation properties.
상기 열경화성 수지, 경화제, 발포제 및 복합 난연제를 포함하고, 상기 복합 난연제는 제1 난연제 및 제2 난연제를 포함하고, 상기 제1 난연제는 인(Phosphorus)이고, 상기 제2 난연제는 멜라민계 난연제, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나를 포함하거나, 또는 멜라민계 난연제, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나와 펜타에리트리톨계 화합물을 함께 포함하는 상기 열경화성 발포체는 KS L 9016에 따른 평균 온도 20℃에서 측정한 열전도율이 약 0.016 W/m·K 내지 약 0.029 W/m·K 이다. 예를 들어, 상기 열경화성 발포체는 KS L 9016에 따른 평균 온도 20℃에서 측정한 열전도율이 약 0.016 W/m·K 내지 약 0.025 W/m·K, 약 0.016 W/m·K 내지 약 0.023 W/m·K, 약 0.016 W/m·K 이상, 약 0.020 W/m·K 미만 또는 약 0.016 W/m·K 이상, 약 0.0195 W/m·K 미만 일 수 있다. 상기 열전도율은 발포체의 초기 단열성을 나타내는 것으로서, 상기 열경화성 발포체는 상기 복합 난연제를 포함하여, 난연성 뿐만 아니라, 단열성을 향상시킬 수 있다.The thermosetting resin, a curing agent, a foaming agent and a composite flame retardant, the composite flame retardant includes a first flame retardant and a second flame retardant, the first flame retardant is phosphorus (Phosphorus), the second flame retardant is a melamine-based flame retardant, tree The thermosetting foam comprising at least one selected from the group consisting of alkyl phosphates and combinations thereof, or including at least one selected from the group consisting of melamine-based flame retardants, trialkyl phosphates, and combinations thereof and a pentaerythritol-based compound together The thermal conductivity measured at an average temperature of 20°C according to KS L 9016 is about 0.016 W/m·K to about 0.029 W/m·K. For example, the thermosetting foam has a thermal conductivity measured at an average temperature of 20° C. according to KS L 9016 of about 0.016 W/m·K to about 0.025 W/m·K, about 0.016 W/m·K to about 0.023 W/ m·K, at least about 0.016 W/m·K, less than about 0.020 W/m·K, or at least about 0.016 W/m·K, and less than about 0.0195 W/m·K. The thermal conductivity represents the initial thermal insulation of the foam, and the thermosetting foam may include the composite flame retardant to improve not only flame retardancy but also thermal insulation.
그리고, 상기 열경화성 발포체는 EN13823에 따라, 70℃ 에서 7일 동안 건조시킨 뒤에 110℃에서 14일 동안 건조시킨 후, 평균 온도 20℃에서 측정한 열전도율이 약 0.017 W/m·K 내지 약 0.029 W/m·K 일 수 있다. 예를 들어, 약 0.017 W/m·K 내지 약 0.025 W/m·K 또는 약 0.017 W/m·K 이상, 약 0.023 W/m·K 미만 일 수 있다. 상기 열전도율은 발포체의 장기 단열성을 나타내는 것으로서, 상기 열경화성 발포체는 상기 복합 난연제를 포함하여 초기 단열성과 동일, 유사 범위의 장기 단열성을 나타낼 수 있다.And, according to EN13823, the thermosetting foam has a thermal conductivity measured at an average temperature of 20° C. of about 0.017 W/m·K to about 0.029 W/ It may be m·K. For example, it may be from about 0.017 W/m·K to about 0.025 W/m·K or greater than or equal to about 0.017 W/m·K and less than about 0.023 W/m·K. The thermal conductivity represents the long-term thermal insulation properties of the foam, and the thermosetting foam includes the composite flame retardant and may exhibit the same initial thermal insulation properties and long-term thermal insulation properties in a similar range.
이와 동시에, 상기 열경화성 발포체는 KS F ISO 5660-1 에 따른 콘칼로리미터에 의한 10분간의 총 방출열량(THR600s)이 약 2.0 MJ/㎡ 내지 약 17 MJ/㎡ 일 수 있다. 예를 들어, 약 2.0 MJ/㎡ 내지 약 12.0 MJ/㎡ 또는 2.0 MJ/㎡ 내지 약 9.0 MJ/㎡ 미만, 또는 2.0 MJ/㎡ 내지 약 8.0 MJ/㎡, 또는 2.0 MJ/㎡ 내지 약 7.0 MJ/㎡ 미만일 수 있다. 즉, 상기 열경화성 발포체는 별도의 면재 없이도 준불연성에 가까운 우수한 난연성을 가질 수 있다.At the same time, the thermosetting foam may have a total amount of heat released for 10 minutes (THR600s) by a cone calorimeter according to KS F ISO 5660-1 of about 2.0 MJ/m2 to about 17 MJ/m2. For example, from about 2.0 MJ/m to about 12.0 MJ/m or from 2.0 MJ/m to less than about 9.0 MJ/m, or from 2.0 MJ/m to about 8.0 MJ/m, or from 2.0 MJ/m to about 7.0 MJ/m It may be less than m2. That is, the thermosetting foam may have excellent flame retardancy close to semi-incombustibility without a separate face material.
그리고, 상기 열경화성 발포체는 KS F ISO 5660-1 에 따른 콘칼로리미터에 의한 5분간의 총 방출열량(THR300s)이 약 1.0 MJ/㎡ 내지 약 12 MJ/㎡, 예를 들어, 약 1.0 MJ/㎡ 내지 약 7.5 MJ/㎡로 우수한 난연성을 나타낼 수 있다. And, the thermosetting foam has a total amount of heat released for 5 minutes (THR300s) by a cone calorimeter according to KS F ISO 5660-1 of about 1.0 MJ/m2 to about 12 MJ/m2, for example, about 1.0 MJ/m2 to about 7.5 MJ/m 2 may exhibit excellent flame retardancy.
또한, 상기 열경화성 발포체의 독립기포율은 약 75% 내지 약 98%일 수 있다. 예를 들어, 상기 열경화성 발포체의 독립기포율은 약 80% 내지 약 95% 일 수 있다.In addition, the closed cell ratio of the thermosetting foam may be about 75% to about 98%. For example, the closed cell ratio of the thermosetting foam may be about 80% to about 95%.
일반적으로 난연성 향상을 위해 열경화성 발포체에 포스페이트 등의 인계 난연제를 사용하는 경우 난연성은 향상될 수 있으나, 발포과정에서 발포셀이 파괴되어 독립기포율이 낮아지고 단열성이 저하되는 문제가 있다. 반면, 상기 열경화성 발포체는 상기 복합 난연제를 포함하여 상기 범위의 높은 독립기포율을 유지할 수 있다. 그리고, 전술한 범위의 우수한 난연성 또는 준불연성과 함께, 우수한 단열성을 나타낼 수 있다.In general, when a phosphorus-based flame retardant such as phosphate is used in a thermosetting foam to improve flame retardancy, the flame retardancy may be improved, but the foam cell is destroyed in the foaming process, so that the closed cell ratio is lowered and the thermal insulation property is lowered. On the other hand, the thermosetting foam can maintain a high closed cell ratio in the above range by including the composite flame retardant. And, together with the excellent flame retardancy or semi-incombustibility in the above-described range, it can exhibit excellent thermal insulation.
난연제로 일반적으로 사용하는 포스페이트 등의 인계 난연제의 경우, 열경화성 수지와 상용성이 떨어지고, 발포 셀 구조를 파괴하여 압축 강도 및 굴곡 파괴하중 등의 물성이 저하될 수 있다. 한편, 상기 열경화성 발포체는 상기 복합 난연제를 포함하여 열경화성 수지와 균일하게 혼합되고, 발포 셀 구조가 쉽게 파괴되지 않으며, 균일한 발포로 균일한 물성을 가질 수 있다. 또한, 상기 제1 난연제인 상기 인은 열경화성 발포체에서 필러로서 작용하여 상기 제2 난연제와 함께 상기 열경화성 발포체에 구조적 안정성을 부여하고 이와 함께 하기 범위의 우수한 압축강도 및 굴곡 파괴하중을 부여할 수 있다.In the case of a phosphorus-based flame retardant such as phosphate, which is generally used as a flame retardant, compatibility with the thermosetting resin is poor, and physical properties such as compressive strength and flexural fracture load may be reduced by destroying the foam cell structure. On the other hand, the thermosetting foam is uniformly mixed with the thermosetting resin including the composite flame retardant, the foam cell structure is not easily destroyed, and may have uniform physical properties through uniform foaming. In addition, the phosphorus, which is the first flame retardant, acts as a filler in the thermosetting foam to impart structural stability to the thermosetting foam together with the second flame retardant, and to impart excellent compressive strength and flexural fracture load in the following range.
구체적으로, 상기 열경화성 발포체는 KS M ISO 844 에 따른 압축강도가 약 60kPa 내지 약 300kPa 일 수 있다. 예를 들어, 약 80kPa 내지 약 300kPa 일 수 있다. Specifically, the thermosetting foam may have a compressive strength of about 60 kPa to about 300 kPa according to KS M ISO 844. For example, from about 80 kPa to about 300 kPa can be
상기 열경화성 발포체는 KS M ISO 4898에 따라, 250mm(L)ХΧ100mm(W)ХΧ20mm(T) 크기의 시편에 200mm 지지 간격, 50mm/min의 하중 집중 속도에서 상기 시편이 파단될 때까지의 최대 하중(N)인 굴곡 파괴하중(N)이 약 15 N 내지 약 50 N 일 수 있다. 예를 들어, 약 20 N 내지 약 50 N 일 수 있다. The thermosetting foam is, according to KS M ISO 4898, the maximum load ( The flexural breaking load (N) of N) may be about 15 N to about 50 N. For example, it may be about 20 N to about 50 N.
그리고, 상기 열경화성 발포체는 하기 식 1에 의한 치수 변화율의 평균값이 약 0% 내지 약 1.0% 일 수 있다. 예를 들어, 상기 열경화성 발포체는 약 0% 내지 약 0.8% 또는 약 0% 내지 약 0.6% 의 평균 치수 변화율을 가질 수 있다.In addition, the thermosetting foam may have an average value of dimensional change according to Equation 1 below about 0% to about 1.0%. For example, the thermoset foam can have an average dimensional change of from about 0% to about 0.8% or from about 0% to about 0.6%.
[식 1][Equation 1]
치수 변화율(%)={|초기 길이(a)-나중 길이(a')| /초기 길이(a)} X 100Dimensional change rate (%)={|Initial length (a) - Later length (a')| /initial length(a)} X 100
상기 식 1에서, 상기 초기 길이(a)는 열경화성 발포체의 길이(L) 및 폭(W) 방향에 있어서 균등한 n개 지점의 각 선의 길이이고, 상기 나중 길이(a')는 상기 열경화성 발포체를 70℃ 오븐에서 48시간 방치시킨 후의 상기 각 지점의 각 선의 나중 길이(a')를 의미한다. 이때, n은 2 내지 5일 수 있다. n은 3 일 수 있다.In Equation 1, the initial length (a) is the length of each line of n equal points in the length (L) and width (W) directions of the thermosetting foam, and the later length (a') is the thermosetting foam It means the later length (a') of each line at each point after standing in an oven at 70° C. for 48 hours. In this case, n may be 2 to 5. n may be 3.
상기 열경화성 발포체는 난연제로 상기 복합 난연제를 포함하여 상기 범위 내의 치수 변화율을 가지는바, 우수한 치수 안정성을 갖는 것을 알 수 있다. 그에 따라 상기 열경화성 발포체는 우수한 열전도율을 나타내어, 장기 단열성이 더욱 효과적으로 향상될 수 있으면서 소정의 제품으로 적용시 가공성, 작업성이 더욱 우수할 수 있다.It can be seen that the thermosetting foam has a dimensional change rate within the range including the composite flame retardant as a flame retardant, and has excellent dimensional stability. Accordingly, the thermosetting foam exhibits excellent thermal conductivity, so that long-term thermal insulation properties can be more effectively improved, and when applied to a predetermined product, processability and workability can be more excellent.
그리고, 상기 열경화성 발포체는 KS M ISO 4589-2에 따른 산소지수가 약 39% 이상으로 우수한 난연성을 나타낼 수 있다. 예를 들어, 상기 열경화성 발포체의 산소지수는 약 40% 이상 또는 약 42% 이상일 수 있다. 상한은 이에 제한되는 것은 아니나, 약 60% 일 수 있다. 상기 열경화성 발포체는 상기 범위의 산소지수를 갖는 바, 화재시 쉽게 연소하지 않을 수 있고, 이에 따라 대피 시간 확보 등이 용이할 수 있다.And, the thermosetting foam may exhibit excellent flame retardancy with an oxygen index of about 39% or more according to KS M ISO 4589-2. For example, the oxygen index of the thermosetting foam may be about 40% or more or about 42% or more. The upper limit is not limited thereto, but may be about 60%. Since the thermosetting foam has an oxygen index in the above range, it may not burn easily in case of fire, and thus it may be easy to secure an evacuation time.
본 발명의 다른 구현 예는 발포체의 두께 방향에 수직한 단면에 포함된 1.2 mm (길이, L) X 0.9 mm (폭, W)의 적어도 하나의 영역은 10개 이상의 인을 포함하고, 상기 인(Phosphorus)의 직경은 약 1㎛ 내지 약 80㎛인 열경화성 발포체를 제공한다. 이는 상기 발포체에 포함된 상기 인의 함량 및 분포 정도 나타내는 것이다. 상기 열경화성 발포체는 전술한 상기 복합 난연제를 포함하고, 후술하는 제조방법에 의해 제조된 것으로서, 상기 인을 상기와 같은 구조 및 분포로 포함할 수 있다. 상기 열경화성 발포체는 상기 구조를 가짐으로써, 우수한 난연성과 함께 우수한 단열성 등의 물성을 나타낼 수 있다. In another embodiment of the present invention, at least one region of 1.2 mm (length, L) X 0.9 mm (width, W) included in the cross section perpendicular to the thickness direction of the foam contains 10 or more phosphorus, and the phosphorus ( Phosphorus) provides a thermosetting foam having a diameter of about 1 μm to about 80 μm. This indicates the content and the degree of distribution of the phosphorus contained in the foam. The thermosetting foam includes the above-described composite flame retardant, and is manufactured by a manufacturing method to be described later, and may include the phosphorus in the structure and distribution as described above. The thermosetting foam may exhibit physical properties such as excellent thermal insulation as well as excellent flame retardancy by having the above structure.
통상의 열경화성 발포체는 포스페이트 등의 난연제를 사용하여 난연성을 부여하고 있다. 그러나, 포스페이트 등의 난연제를 포함하는 경우 발포과정에서 발포셀이 파괴되어 적정의 발포셀이 잘 형성되지 않을 수 있다. 이에 따라, 난연제의 분산도가 저하 될 수 있고, 단열성이 저하될 수 있다. 또한, 포스페이트 등의 난연제는 쉽게 뭉치고 잘 분산되지 않으며, 난연제의 함량 대비 난연 효과가 충분하지 못한 문제가 있다. 이에 따라, 포스페이트 등의 난연제를 포함하는 경우, 발포체는 상기와 같은 구조를 가질 수 없다.A normal thermosetting foam is provided with flame retardance using flame retardants, such as phosphate. However, when a flame retardant such as phosphate is included, the foam cell is destroyed during the foaming process, so that an appropriate foam cell may not be formed well. Accordingly, the degree of dispersion of the flame retardant may be reduced, and thermal insulation may be deteriorated. In addition, flame retardants such as phosphate are easily agglomerated and are not well dispersed, and there is a problem in that the flame retardant effect is not sufficient compared to the content of the flame retardant. Accordingly, when a flame retardant such as phosphate is included, the foam cannot have the above structure.
상기 열경화성 발포체는 전술한 복합 난연제 등을 포함하여, 발포 및 경화반응을 적절히 조절할 수 있고, 난연제끼리의 뭉침 등을 방지하여, 난연제의 분산도를 향상시킬 수 있다. 이에 따라, 상기 영역에서 상기 범위의 인 입자를 포함하여 우수한 난연성과 함께 우수한 단열성 등의 물성을 동시에 나타낼 수 있다. 예를 들어, 상기 열경화성 발포체는 상기 영역에 약 10개 내지 약 300개의 인을 포함할 수 있다. 인의 개수가 상기 범위 미만인 경우에는 인의 함량이 부족하거나, 인이 불균일하게 분산되어 목적하는 수준의 충분한 난연성을 확보할 수 없고, 단열성이 낮아질 수 있다. 그리고, 인의 개수가 상기 범위를 초과하는 경우에는 난연성은 더 좋아질 수 있으나, 높은 인의 함량으로 인하여 발포 및 경화가 균형이 깨져 단열성이 저하되는 문제가 있을 수 있다. The thermosetting foam may include the above-described composite flame retardant and the like, and may appropriately control the foaming and curing reaction, and may prevent aggregation of the flame retardants and the like, thereby improving the dispersibility of the flame retardant. Accordingly, it is possible to simultaneously exhibit physical properties such as excellent heat insulation and excellent flame retardancy by including the phosphorus particles in the above range in the region. For example, the thermoset foam may include from about 10 to about 300 phosphorus in the region. When the number of phosphorus is less than the above range, the phosphorus content is insufficient, or the phosphorus is non-uniformly dispersed, so that sufficient flame retardancy at a desired level cannot be ensured, and thermal insulation properties may be lowered. And, when the number of phosphorus exceeds the above range, the flame retardancy may be better, but due to the high phosphorus content, the balance between foaming and curing is broken, and there may be a problem in that the thermal insulation properties are deteriorated.
상기 인의 개수는 직경 1㎛ 내지 80㎛ 를 갖는 입자(particle)의 개수를 의미한다. 상기 열경화성 발포체는 약 1 내지 약 50㎛ 의 평균 입경을 갖는 인을 포함할 수 있으며, 이때, 인은 발포 및 경화 과정에서 일부 뭉칠 수도 있다. 상기 단면에 포함된 인은 인 1개 또는 인 일부가 모여서 형성된 것일 수 있다. 이때, 인의 개수는 1㎛ 내지 80㎛ 를 갖는 입자를 의미한다. 인의 직경은 Digital Microscope 기기를 이용하여 단면을 촬영 할 때 동시에 측정할 수 있으며, 상기 직경은 인 입자(예: 도 2의 붉은 점)의 가장 긴 지름을 의미한다. 인 입자의 직경이 상기 범위를 초과하는 경우에는 인의 분산력이 저하되고, 응집이 많이 발생한 것을 의미하는 바, 인의 개수 계산시에 포함시키지 않는다. 그리고, 2개 이상의 인 입자가 독립된 계면(interface)을 갖고 있는 경우에는, 입자들이 서로 인접하여 위치하는 경우에도 별개의 입자로 보아 인 입자의 개수를 계산한다.The number of phosphorus means the number of particles having a diameter of 1 μm to 80 μm. The thermosetting foam may include phosphorus having an average particle diameter of about 1 to about 50 μm, and in this case, the phosphorus may be partially aggregated during foaming and curing. The phosphorus included in the cross section may be formed by gathering one phosphorus or a part of phosphorus. In this case, the number of phosphorus means particles having a size of 1 μm to 80 μm. The diameter of phosphorus can be measured simultaneously when taking a cross-section using a digital microscope, and the diameter means the longest diameter of the phosphorus particle (eg, the red dot in FIG. 2 ). When the diameter of the phosphorus particles exceeds the above range, it means that the dispersing power of phosphorus is lowered and aggregation occurs a lot, and it is not included in the calculation of the number of phosphorus. And, when two or more phosphorus particles have independent interfaces, the number of phosphorus particles is calculated as separate particles even when the particles are located adjacent to each other.
구체적으로, 상기 발포체의 두께 방향에 수직한 적어도 하나의 단면 예를 들어, 상기 발포체 두께의 1/2지점에 수직한 단면(표면재가 부착되는 표면에 평행)에 포함된 적어도 하나의 1.2 mm (길이, L) X 0.9 mm (폭, W)의 영역은 적어도 10개 이상의 인(Phosphorus) 입자를 포함할 수 있다. 상기 인 입자는 디지털 마이크로스코프(Digital Microscope, 제조사: Leica Microsystems, 모델명: DVM6)을 이용하여, 구체적으로, 시야 범위 (Field of View, FOV)가 12.55 인 대물렌즈의 배율을 8.0x로 하여, 상기 단면 중 임의의 1.2mm(길이) X 0.9mm(폭) 크기의 영역을 관찰하도록 확대하였다. 그 다음, 상기 절단면 상부로부터 400 um 범위 내에서 두께 방향으로 10 um의 간격으로 삼차원 이미지를 촬영하여 절단면의 평면 이차원 이미지를 얻고, 상기 이차원 이미지에 보이는 붉은 점의 개수 및 직경을 측정하였다.Specifically, at least one cross-section perpendicular to the thickness direction of the foam, for example, at least one 1.2 mm (length , L) X 0.9 mm (width, W) area may include at least 10 or more Phosphorus particles. The phosphorus particles are obtained by using a digital microscope (Digital Microscope, manufacturer: Leica Microsystems, model name: DVM6), specifically, by setting the magnification of the objective lens having a field of view (FOV) of 12.55 to 8.0x, It was enlarged to observe an arbitrary 1.2 mm (length) X 0.9 mm (width) area of the cross section. Then, a three-dimensional image was taken at intervals of 10 um in the thickness direction within a range of 400 um from the upper portion of the cut surface to obtain a planar two-dimensional image of the cut surface, and the number and diameter of red dots visible in the two-dimensional image were measured.
통상적으로, 발포체의 발포 및 경화의 균형이 조절되지 않아 발포 셀의 파괴가 많은 경우, 인(Phosphorus)과 같은 고상의 입자들은 표면으로 쏠리는 경향이 있다. 반면, 상기 열경화성 발포체는 상기 복합 난연제 등을 포함하여 두께의 1/2 지점에서도 상기와 같은 정도의 균일하게 분산된 인 입자의 분포를 확인 할 수 있다. In general, when the balance of foaming and curing of the foam is not controlled and the foam cells are often destroyed, solid particles such as phosphorus tend to be drawn to the surface. On the other hand, in the thermosetting foam, the distribution of phosphorus particles uniformly dispersed to the same degree as described above can be confirmed even at 1/2 of the thickness including the composite flame retardant.
상기 열경화성 발포체는 상기 단면에 있어서 1.2 mm (길이, L) X 0.9 mm (폭, W)의 영역을 포함하는 i개의 영역 중 적어도 10개 이상의 인을 포함하는 영역이 약 60% 내지 약 100 %일 수 있다.(상기 i=2 내지 15 의 정수) 예를 들어, 10개의 영역 중(i=10), 적어도 10개 이상의 인을 포함하는 영역이 약 60% 내지 약 100 % 또는 약 80% 내지 약 100%일 수 있다. 상기 열경화성 발포체는 상기와 같은 함량의 인이 균일하게 분포하는 구조를 가질 수 있다. 이에 따라 발포체 전체에 있어서 균일하게 향상된 난연성을 나타냄과 동시에 우수한 단열성을 갖고, 우수한 압축강도 및 치수 안정성 등의 물성을 나타낼 수 있다. wherein the thermosetting foam has about 60% to about 100% of an area comprising at least 10 phosphorus out of i areas comprising an area of 1.2 mm (length, L) X 0.9 mm (width, W) in the cross section (integer of i=2 to 15) For example, among the ten regions (i=10), the region including at least 10 phosphorus is from about 60% to about 100% or from about 80% to about It can be 100%. The thermosetting foam may have a structure in which phosphorus in the same content as described above is uniformly distributed. Accordingly, it is possible to exhibit uniformly improved flame retardancy throughout the foam, have excellent thermal insulation properties, and exhibit physical properties such as excellent compressive strength and dimensional stability.
상기 발포체의 두께 방향에 수직한 단면은 단위면적(1㎟) 당 10개 이상의 인(Phosphorus) 입자를 포함하는 영역을, 단면의 약 60% 내지 약 100 % 또는 약 80% 내지 약 100% 포함할 수 있다. 상기 발포체는 상기 복합 난연제를 포함하여 상기와 같은 구조로 분산된 인(Phosphorus) 입자를 포함하고 이에 따라, 우수한 단열성 및 난연성을 동시에 나타낼 수 있다. 상기 단면 중에 상기 인을 포함하는 영역이 상기 범위 미만인 경우에는 인의 분산성이 떨어지는 것으로서, 화재가 발생하는 위치에 따라 난연성이 나타나지 않아 충분한 난연성을 발휘할 수 없는 문제가 있을 수 있다. 그리고, 인의 분포가 어느 한 쪽으로 쏠림에 따라, 발포 및 경화 역시 불균일하게 발생하여 단열성이 저하될 수 있다.The cross-section perpendicular to the thickness direction of the foam may include a region including 10 or more phosphorus particles per unit area (1 mm2), from about 60% to about 100% or from about 80% to about 100% of the cross-section. can The foam contains the phosphorus particles dispersed in the structure as described above, including the composite flame retardant, and thus, can exhibit excellent thermal insulation and flame retardancy at the same time. When the area containing the phosphorus in the cross section is less than the above range, the dispersibility of phosphorus is poor, and there may be a problem in that the flame retardancy does not appear depending on the location where the fire occurs, so that sufficient flame retardancy cannot be exhibited. And, as the distribution of phosphorus is inclined to one side, foaming and curing may also occur non-uniformly, thereby reducing thermal insulation properties.
상기 열경화성 발포체는 상기 영역을 4(길이, L) X 3(폭, W) 의 크기로 균등 분할한 12개의 구역 중, 1개 이상의 인을 포함하는 구역이 7개 이상 또는 8개 이상일 수 있다. 상기 열경화성 발포체는 상기 복합 난연제를 포함하여 상기 인을 상기와 같이 적정의 분산된 분포로 포함할 수 있다. 이에 따라, 향상된 난연성과 함께 우수한 단열성을 동시에 나타낼 수 있다.The thermosetting foam may include 7 or more or 8 or more zones including at least one phosphorus among 12 zones in which the zone is equally divided by a size of 4 (length, L) × 3 (width, W). The thermosetting foam may include the phosphorus in an appropriate dispersed distribution as described above, including the composite flame retardant. Accordingly, it is possible to simultaneously exhibit excellent thermal insulation properties as well as improved flame retardancy.
또한, 상기 열경화성 발포체는 상기 영역을 4(길이) X 3(폭)의 크기로 균등 분할한 구역 중 1개 이상의 인을 포함하는 구역이 약 60% 이상일 수 있다. 상기 열경화성 발포체는 상기 복합 난연제를 포함하여 적정의 발포 및 경화로 발포 셀이 파괴되지 않고 균일하게 잘 형성될 수 있다. 그리고, 발포 셀의 스트럿(strut)에 균일하게 분산되어 분포한다. In addition, in the thermosetting foam, the area containing at least one phosphorus among the areas in which the area is equally divided by the size of 4 (length) X X 3 (width) may be about 60% or more. The thermosetting foam may be uniformly well formed without destroying the foam cells by proper foaming and curing, including the composite flame retardant. And, it is uniformly dispersed and distributed on the struts of the foam cells.
도 2은 본 발명의 일 구현예에 따른 열경화성 발포체의 하나의 영역을 디지털 마이크로스코프(Digital Microscope)을 이용하여 촬영한 사진을 나타낸 것이다. 도 2에서 보는 바와 같이, 상기 열경화성 발포체는 발포셀의 파괴가 거의 보이지 않는 것을 알 수 있다. 그리고, 상기 열경화성 발포체는 제1 난연제로 적인을 포함한 것으로서, 도 2에서 보는 바와 같이 붉은 점(적인, 인(Phosphorus) 입자)이 발포체의 스트럿(strut) 에 균일하게 분포된 것을 알 수 있다. Figure 2 shows a picture taken using a digital microscope (Digital Microscope) of one area of the thermosetting foam according to an embodiment of the present invention. As shown in FIG. 2, it can be seen that the thermosetting foam hardly shows any breakage of the foam cells. And, the thermosetting foam contains red as the first flame retardant, and as shown in FIG. 2 , it can be seen that red dots (red, phosphorus particles) are uniformly distributed on the struts of the foam.
도 3는 본 발명의 열경화성 발포체의 상기 영역을 4(길이) X 3(폭) 크기의 균등 분할한 사진을 나타낸 것이다. 상기 열경화성 발포체는 상기 12개의 구역 중에서, 1개 이상의 인을 포함하는 구역이 8개 이상 그리고, 약 60% 이상으로 발포체에 있어서 인이 적정의 함량으로 균일하게 분산된 것을 알 수 있다. 하나의 구역에 포함된 인의 함량이 상기 범위 미만인 경우에는 원하는 수준의 난연성을 확보할 수 없고, 상기 영역에서 상기 인을 포함하는 구역이 상기 범위 미만인 경우에는 인의 분산성이 떨어져 화재가 발생하는 위치에 따라 난연성이 나타나지 않아 충분한 난연성을 발휘할 수 없는 문제가 있을 수 있다. 또한, 상기 발포체는 상기 단위면적(1㎟) 을 4(길이) X 3(폭) 의 크기로 균등 분할한 구역 중, 1개 이상의 인을 포함하는 구역이 60% 이상일 수 있다. Figure 3 shows a photograph in which the area of the thermosetting foam of the present invention is divided equally in the size of 4 (length) X 3 (width). In the thermosetting foam, it can be seen that among the 12 zones, 8 or more zones containing at least one phosphorus were uniformly dispersed in an appropriate content in the foam in an amount of about 60% or more. If the content of phosphorus contained in one area is less than the above range, the desired level of flame retardancy cannot be secured, and if the area containing the phosphorus in the area is less than the above range, the dispersibility of phosphorus decreases and a fire occurs. Accordingly, there may be a problem in that the flame retardancy does not appear and sufficient flame retardancy cannot be exhibited. In addition, the foam may have at least 60% of the area including at least one phosphorus among the areas in which the unit area (1 mm 2 ) is equally divided by the size of 4 (length) X 3 (width).
상기 열경화성 발포체는, 전술한 바와 같이, 발포체의 두께 방향에 수직한 단면에 포함된 1.2 mm (길이, L) X 0.9 mm (폭, W)의 적어도 하나의 영역에 10개 이상의 인을 포함하여, 일정 이상의 단열성을 나타내면서도, 우수한 난연성을 나타낼 수 있다. 구체적으로, 상기 열경화성 발포체는 난연 테스트를 한 후에, 일정 이상의 단면의 면적(S f)을 유지하는 구조를 가질 수 있다. 그리고, 일정 이하의 크기를 갖는 크랙을 포함할 수 있다. 또한, 연소 후에, 크랙, 홀 등이 발포체의 일정 이상의 두께를 밑에는 형성되지 않도록 하여, 발포체의 붕괴 등을 방지할 수 있다.The thermosetting foam contains 10 or more phosphorus in at least one area of 1.2 mm (length, L) X 0.9 mm (width, W) included in the cross section perpendicular to the thickness direction of the foam, as described above, It is possible to exhibit excellent flame retardancy while exhibiting thermal insulation properties of a certain level or higher. Specifically, the thermosetting foam may have a structure that maintains a cross-sectional area (S f ) of at least a certain level after a flame retardant test. And, it may include cracks having a size less than or equal to a certain size. Further, after combustion, cracks, holes, etc. are not formed below a certain thickness of the foam, so that the collapse of the foam and the like can be prevented.
구체적으로, 상기 열경화성 발포체는 KS F ISO 5660-1에 의하여, 100mm(Li, 길이)Х100mm(Wi, 너비)Х50mm(Ti)의 두께를 갖는 발포체에 50kW/㎡ 복사열을 10분간 적용하였을 때, 상기 발포체 초기 두께(T i)의 1/2 지점(T 1/2)의 단면의 면적(S f)이 하기 식 2을 만족할 수 있다.Specifically, the thermosetting foam is a foam having a thickness of 100mm (Li, length) Х100mm (Wi, width) Х50mm (Ti) according to KS F ISO 5660-1. When 50kW/m2 radiant heat is applied for 10 minutes, the The area (S f ) of the cross section of the 1/2 point (T 1/2 ) of the initial thickness of the foam (T i ) may satisfy Equation 2 below.
[식 2][Equation 2]
Si X 50% ≤ Sf ≤ Si X 100%Si X 50% ≤ Sf ≤ Si X 100%
여기서, Si 는 상기 복사열을 적용하기 전 발포체의 초기 두께(Ti)의 1/2 지점(T1/2)의 단면적(Si)을 의미하고, 상기 Sf 는 상기 복사열을 적용한 후 발포체의 초기 두께(Ti)의 1/2 지점(T1/2)의 단면적(Sf)을 의미한다. Here, Si means the cross-sectional area (Si) of the 1/2 point (T1/2) of the initial thickness (Ti) of the foam before applying the radiant heat, and Sf is the initial thickness (Ti) of the foam after applying the radiant heat ) means the cross-sectional area (Sf) of the 1/2 point (T1/2).
상기 열경화성 발포체는 상기 조건 하에서 상기 범위의 표면적(Sf)을 가짐으로써, 화염의 전파나 확산에 대하여 우수한 저항성을 나타내고, 연소시 구조적 안정성을 나타낼 수 있다. 이에 따라, 화재 중에 충격이나 진동 등이 발생하더라도, 발포체가 쉽게 탈락하여 화재가 확산되는 것을 방지할 수 있다. 예를 들어, 상기 조건 하에서 열경화성 발포체의 표면적(Sf)이 상기 범위 미만인 경우에는 연소로 소실된 발포체의 함량이 너무 많아 구조적으로 불안정하고 이에 따라 진동 등의 조그마한 충격에도 발포체가 쉽게 탈락하여 화재를 확산시킬 수 있다. 상기 열경화성 발포체는 Si X 75% ≤ Sf ≤ Si X 100% 일 수 있다. 본 발명의 실시예에 따른 상기 열경화성 발포체는 상기 범위의 표면적(Sf)을 가질 수 있다.The thermosetting foam has a surface area (Sf) in the above range under the above conditions, thereby exhibiting excellent resistance to flame propagation or diffusion, and may exhibit structural stability during combustion. Accordingly, even when an impact or vibration occurs during a fire, the foam can easily fall off and the fire can be prevented from spreading. For example, under the above conditions, when the surface area (Sf) of the thermosetting foam is less than the above range, the content of the foam lost by combustion is too large, so it is structurally unstable. can do it The thermosetting foam may be Si X 75% ≤ Sf ≤ Si X 100%. The thermosetting foam according to an embodiment of the present invention may have a surface area (Sf) within the above range.
상기 복사열을 적용한 후의 상기 발포체 초기 두께의 1/2 지점(T1/2)의 단면은 크랙을 포함할 수 있다. 여기서, 크랙이란 발포체가 열 및 연소에 의해 수축하면서 표면이 갈라져 형성된 것을 의미한다. 탄화막(char)이 형성될 때 두드러지게 나타나며 발포체가 연소되어 소멸되는 양이 많아져 파이는 것과는 다른 형상을 의미한다. 크랙은 단면에 있어서, 상대적으로 길이가 긴 길이 방향과 상기 길이 방향에 대하여 수직하고 상대적으로 길이가 짧은 너비 방향, 즉 폭 방향을 갖는 침상과 유사한 구조를 가질 수 있다. 상기 길이는 상기 단면에서 측정한 값을 의미한다.A cross section at a point (T1/2) of the initial thickness of the foam after application of the radiant heat may include cracks. Here, the crack means that the foam is formed by cracking the surface while shrinking by heat and combustion. It appears conspicuously when a char is formed, and the amount of foam that is burned and destroyed increases, meaning a shape different from that of a pit. The crack may have a structure similar to a needle having a relatively long longitudinal direction and a relatively short width direction, that is, a width direction perpendicular to the longitudinal direction, in cross section. The length means a value measured in the cross section.
상기 발포체는 상기 단면에 크랙을 포함하고, 상기 크랙의 길이방향에 대하여 수직한 너비 방향의 최대 길이가 약 15㎜이하일 수 있다. 즉, 상기 크랙의 폭의 최대 길이가 약 15㎜이하일 수 있다. 예를 들어, 약 1 ㎜ 내지 약 15 ㎜ 또는 약 1 ㎜ 내지 약 11 ㎜일 수 있다. 구체적으로, 상기 크랙의 폭이 상기 범위를 초과하는 경우에는 진동이나 외부의 충격에 의해 발포체가 쉽게 깨질 수 있으며 이에 따라 화염이 전파 및 확산되는 문제가 있을 수 있다. 상기 단면은 복수의 크랙을 포함할 수 있으며, 상기 복수의 크랙 각각이 상기 범위의 길이를 가질 수 있다. 본 발명의 실시예에 따른 상기 열경화성 발포체는 상기와 같은 크랙을 포함할 수 있다.The foam may include a crack in the cross-section, and the maximum length in the width direction perpendicular to the longitudinal direction of the crack may be about 15 mm or less. That is, the maximum length of the width of the crack may be about 15 mm or less. For example, it can be from about 1 mm to about 15 mm or from about 1 mm to about 11 mm. Specifically, when the width of the crack exceeds the above range, the foam may be easily broken by vibration or external impact, and thus there may be a problem in that the flame spreads and spreads. The cross-section may include a plurality of cracks, and each of the plurality of cracks may have a length within the above range. The thermosetting foam according to an embodiment of the present invention may include cracks as described above.
그리고, 상기 열경화성 발포체는 KS F ISO 5660-1에 의하여 100mm(길이)ХΧ100mm(너비)ХΧ50mm(두께)의 크기를 갖는 발포체에 50kW/㎡ 복사열을 10분간 적용하였을 때, 상기 발포체의 바닥면으로부터 5㎜ 내지 23 ㎜의 두께에는 크랙, 홈 또는 홀이 없을 수 있다. 예를 들어, 약 13 ㎜ 내지 약 23 ㎜ 의 두께에는 크랙, 홈 또는 홀이 형성되지 않을 수 있다. 구체적으로, 크랙, 홈 또는 홀 등이 상기 범위 미만의 두께까지 형성되는 경우 진동이나 외부의 충격에 의해 발포체가 쉽게 탈락하여 화염의 전파 및 확산을 가속화시키는 문제가 있을 수 있다. 본 발명의 실시예에 따른 상기 열경화성 발포체는 바닥면으로부터 상기 범위의 두께 내에서 크랙, 홈 또는 홀이 없을 수 있다.And, the thermosetting foam is a foam having a size of 100mm (length) ХΧ100mm (width) ХΧ50mm (thickness) according to KS F ISO 5660-1 When 50kW/m2 radiant heat is applied for 10 minutes, 5 from the bottom of the foam A thickness of mm to 23 mm may be free of cracks, grooves or holes. For example, no cracks, grooves, or holes may be formed in a thickness of about 13 mm to about 23 mm. Specifically, when cracks, grooves, or holes are formed to a thickness less than the above range, there may be a problem in that the foam is easily removed by vibration or external impact, thereby accelerating the propagation and diffusion of the flame. The thermosetting foam according to an embodiment of the present invention may have no cracks, grooves or holes within the thickness of the range from the bottom surface.
본 발명의 또 다른 구현 예는 열경화성 수지를 포함하는 주제, 경화제, 발포제 및 복합 난연제를 포함하는 난연 조성물을 준비하는 단계; 상기 주제, 경화제, 발포제 및 난연 조성물을 교반하여 발포체 조성물을 제조하는 단계; 및 상기 발포체 조성물을 발포 경화하는 단계;를 포함하고, 상기 복합 난연제는 제1 난연제 및 제2 난연제를 포함하고, 상기 제1 난연제는 인(Phosphorus)이고, 상기 제2 난연제는 멜라민계 난연제, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나를 포함하거나, 또는 멜라민계 난연제, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나와 펜타에리트리톨계 화합물을 함께 포함하는 열경화성 발포체의 제조방법을 제공한다.Another embodiment of the present invention comprises the steps of: preparing a flame retardant composition comprising a main agent comprising a thermosetting resin, a curing agent, a foaming agent, and a composite flame retardant; preparing a foam composition by stirring the base, curing agent, foaming agent and flame retardant composition; and foaming and curing the foam composition, wherein the composite flame retardant includes a first flame retardant and a second flame retardant, the first flame retardant is phosphorus, and the second flame retardant is a melamine-based flame retardant, tree At least one selected from the group consisting of alkyl phosphates and combinations thereof, or at least one selected from the group consisting of melamine-based flame retardants, trialkyl phosphates, and combinations thereof and a pentaerythritol-based compound. provide a way
상기 제조방법에 의해 전술한 바와 같이, 난연제를 포함하면서도, 발포 및 경화가 적절히 조절되어 발포셀이 파괴되지 않고, 난연제가 균일하게 분포하는 구조를 가질 수 있다. 이에 따라, 전술한 바와 같이, 향상된 난연성과 동시에, 우수한 단열성 그리고, 우수한 압축강도, 치수 안정성 등의 물성을 갖는 상기 열경화성 발포체를 제조할 수 있다. 상기 열경화성 수지, 경화제, 발포제 및 복합 난연제에 관한 사항은 하기에서 특별히 기재한 것을 제외하고는 전술한 바와 같다.As described above by the manufacturing method, while including the flame retardant, foaming and curing are appropriately controlled so that the foam cell is not destroyed, and the flame retardant is uniformly distributed. Accordingly, as described above, it is possible to prepare the thermosetting foam having physical properties such as improved flame retardancy, excellent thermal insulation, and excellent compressive strength and dimensional stability. The thermosetting resin, the curing agent, the foaming agent and the composite flame retardant are the same as those described above, except for those specifically described below.
먼저, 열경화성 수지를 포함하는 주제, 경화제, 발포제 및 복합 난연제를 포함하는 난연 조성물을 준비하는 단계를 포함한다. 주제는 열경화성 수지 100 중량부 대비, 계면활성제 약 1 중량부 내지 약 5 중량부 및 우레아 약 3 중량부 내지 약 10 중량부를 포함할 수 있다. First, it includes the step of preparing a flame-retardant composition including a base material containing a thermosetting resin, a curing agent, a foaming agent, and a composite flame retardant. The subject may include about 1 part by weight to about 5 parts by weight of a surfactant and about 3 parts by weight to about 10 parts by weight of urea, based on 100 parts by weight of the thermosetting resin.
상기 복합 난연제는 상기 제1 난연제와 상기 제2 난연제를 미리 혼합하거나 각각 페놀수지와 같은 열경화성 수지에 혼합할 수 있다. 상기 제1 난연제와 상기 제2 난연제를 미리 혼합하여 난연 조성물을 준비한 뒤 페놀수지와 혼합하는 것이 균일한 혼합 및 점도 조절 측면에서 유리할 수 있다. 그리고, 페놀수지가 발포제 및 경화제와 혼합될 때 상기 미리 혼합한 복합 난연제를 혼합하거나 또는 페놀수지가 발포제 또는 경화제가 혼합되기 전에 미리 페놀수지와 혼합할 수 있다. 이는 혼합기의 종류 및 공정 상황에 따라 조절할 수 있다.The composite flame retardant may be pre-mixed with the first flame retardant and the second flame retardant or mixed with a thermosetting resin such as a phenol resin, respectively. It may be advantageous in terms of uniform mixing and viscosity control to prepare a flame retardant composition by mixing the first flame retardant and the second flame retardant in advance and then mix them with a phenolic resin. In addition, when the phenolic resin is mixed with the foaming agent and the curing agent, the premixed composite flame retardant may be mixed or the phenolic resin may be mixed with the phenolic resin before the blowing agent or the curing agent is mixed. This can be adjusted according to the type of mixer and process conditions.
상기 제1 난연제와 상기 제2 난연제를 포함하는 난연 조성물은 페놀수지와 혼합하기 전에 적절한 점도로 미리 준비해놓는 것이 유리할 수 있다. 이를 통해 페놀수지와 균일한 혼합에 도움이 될 수 있다. 예를 들어, 인 또는 적인 등과 같은 고상 난연제로 인해 점도가 너무 높은 경우 균일한 혼합이 되지 않아 발포 경화가 불균일해져 강도 및 단열성이 악화되거나 장기 물성이 저하될 수 있다. 그리고, 점도를 조절함에 있어, 투입 전 복합 난연제의 점도뿐 아니라 상기 복합 난연제와 상기 점도 조절 역할을 하는 물질과의 상용성, 그리고, 추후 발포 경화 시 부작용을 고려하여 점도 조절을 하는 것이 좋다. 상기 페놀 수지 투입 전 상기 복합 난연제를 포함하는 난연 조성물의 점도는 제2난연제를 통해 조절하는 것이 유리할 수 있다. 이때, 상기 난연 조성물은 별도의 유기 용매를 포함하지 않는 제1 난연제 및 제2 난연제의 혼합물을 의미할 수 있다. 또한, 폴리올 및/또는 계면활성제 및/또는 에틸렌글리콜 및/또는 폴리에틸렌글리콜을 난연 조성물에 추가로 포함하는 것이 유리할 수 있다. 예를 들여, 복합 난연제를 물, 발포제, 경화제 등과 미리 혼합하여 점도를 조절할 수도 있으나, 공정 편의성 및 상용성 등의 측면에서 액상의 제2난연제, 폴리올, 계면활성제, 에틸렌글리콜, 폴리에틸렌글리콜 등을 통해 복합 난연제를 포함하는 난연 조성물의 점도를 조절하는 것이 유리하다. 발포체를 제조할 때 난연제의 포함여부와 상관없이, 계면활성제가 별도로 투입되는 경우가 있다. 이와 같이 발포체 제조시에 계면활성제를 포함하는 경우에는, 난연제 혼합물, 즉 난연 조성물에 계면활성제를 미리 일부를 투입하여 난연 조성물의 점도를 조절하고, 계면활성제의 추가 투입 여부를 결정하는 것이 바람직하다.It may be advantageous to prepare the flame retardant composition including the first flame retardant and the second flame retardant to an appropriate viscosity before mixing with the phenolic resin. This can help uniform mixing with the phenolic resin. For example, if the viscosity is too high due to a solid flame retardant such as phosphorus or red phosphorus, uniform mixing may not occur, resulting in non-uniform foam hardening, which may deteriorate strength and thermal insulation properties or may deteriorate long-term physical properties. In addition, in adjusting the viscosity, it is preferable to adjust the viscosity in consideration of not only the viscosity of the composite flame retardant before input, but also the compatibility between the composite flame retardant and the material serving to control the viscosity, and side effects during foam curing later. It may be advantageous to adjust the viscosity of the flame retardant composition including the composite flame retardant before the phenol resin is added through the second flame retardant. In this case, the flame retardant composition may mean a mixture of the first flame retardant and the second flame retardant that does not include a separate organic solvent. It may also be advantageous to further include polyols and/or surfactants and/or ethylene glycol and/or polyethylene glycol in the flame retardant composition. For example, the viscosity may be adjusted by mixing the composite flame retardant in advance with water, a foaming agent, a curing agent, etc., but in terms of process convenience and compatibility, a liquid second flame retardant, polyol, surfactant, ethylene glycol, polyethylene glycol, etc. It is advantageous to control the viscosity of the flame retardant composition comprising the composite flame retardant. Regardless of whether or not a flame retardant is included when manufacturing a foam, a surfactant is sometimes added separately. In the case of including a surfactant at the time of manufacturing the foam as described above, it is preferable to adjust the viscosity of the flame retardant composition by adding a portion of the surfactant in advance to the flame retardant mixture, that is, the flame retardant composition, and determine whether to add the surfactant.
상기 난연 조성물이 상기 폴리올, 계면활성제, 폴리에틸렌글리콜, 에틸렌글리콜 및 이들의 조합으로 이루어진 군으로부터 선택된 저점도의 유기 용매를 포함하는 경우, 상기 복합 난연제: 유기 용매는 약 2:1 내지 약 1:2의 중량비로 혼합되어 난연 조성물에 포함될 수 있다. 상기 범위의 함량비로 혼합되어 복합 난연제의 난연성 향상 효과를 저하시키지 않을 수 있다. 상기 유기 용매는 열경화성 수지 100중량부 대비 약 1 중량부 내지 약 15 중량부의 범위로 첨가될 수 있다. 상기 유기 용매의 함량이 상기 범위를 초과하는 경우 단열성이 저하되는 문제가 발생할 수 있다. When the flame retardant composition includes an organic solvent of low viscosity selected from the group consisting of the polyol, surfactant, polyethylene glycol, ethylene glycol, and combinations thereof, the composite flame retardant: organic solvent is about 2:1 to about 1:2 It may be mixed in a weight ratio of the flame retardant composition. Mixed in the content ratio in the above range may not reduce the flame retardant improving effect of the composite flame retardant. The organic solvent may be added in an amount of about 1 part by weight to about 15 parts by weight based on 100 parts by weight of the thermosetting resin. When the content of the organic solvent exceeds the above range, there may be a problem in that the thermal insulation is deteriorated.
그리고, 20℃에서, 상기 열경화성 수지의 점도(V1)와 상기 난연 조성물의 점도(V2)의 점도 차이(△V=|V1 - V2|)는 약 30,000 cps 이하 또는 약 20,000 cps 이하일 수 있다. 약 0 이상 약 10,000cps 이하일 수 있다. 상기 열경화성 수지의 점도(V1)와 상기 난연 조성물의 점도(V2)의 점도 차이(△V)를 상기 범위로 조절함으로써, 고상의 물질을 포함하는 복합 난연제가 발포체 제조 과정에서 침전되지 않고, 상기 열경화성 수지와 균일하게 잘 혼합되어 향상된 난연성과 함께 우수한 단열성을 나타낼 수 있다.And, at 20 ℃, the viscosity difference (ΔV=|V1 - V2|) between the viscosity (V1) of the thermosetting resin and the viscosity (V2) of the flame-retardant composition may be about 30,000 cps or less or about 20,000 cps or less. It may be about 0 or more and about 10,000 cps or less. By adjusting the viscosity difference (ΔV) between the viscosity (V1) of the thermosetting resin and the viscosity (V2) of the flame-retardant composition in the above range, the composite flame retardant containing a solid material does not precipitate in the foam manufacturing process, and the thermosetting It can be uniformly mixed with the resin and exhibit excellent thermal insulation properties with improved flame retardancy.
구체적으로, 상기 점도 차이(△V) 가 상기 범위를 초과하는 경우 복합 난연제와 열경화성 수지 등과의 균일한 혼합 및 발포가 어려워질 수 있고, 이에 따라 열경화성 발포체의 물성이 저하될 수 있다. 그리고, 상기 열경화성 수지 및 상기 난연 조성물 등을 포함하는 상기 발포체 조성물의 점도가 전체적으로 높아지면서 교반 믹서의 토크가 많이 걸리고, 발포체 조성물의 온도가 급격히 상승되어 발포체가 경화되기 전 발포제의 휘발량이 증가할 수 있고, 이에 따라 단열성이 저하 될 수 있다.Specifically, when the viscosity difference (ΔV) exceeds the above range, uniform mixing and foaming of the composite flame retardant and the thermosetting resin may be difficult, and thus the physical properties of the thermosetting foam may be reduced. And, as the viscosity of the foam composition including the thermosetting resin and the flame-retardant composition increases as a whole, a lot of torque of the stirring mixer is taken, and the temperature of the foam composition is rapidly increased to increase the volatilization amount of the foaming agent before the foam is cured. and, accordingly, thermal insulation properties may be deteriorated.
그리고, 상기 열경화성 수지의 점도(V1)는 20℃에서, 약 1만cps 내지 약 8만cps, 약 1만cps 내지 약 5만cps 또는 약 2만cps 내지 약 5만cps 일 수 있다. 상기 점도 차이(△V)와 상기 열경화성 수지의 점도(V1)를 상기 범위로 조절하여 상기 복합 난연제가 분산된 열경화성 수지의 경화 반응 속도를 적절히 조절할 수 있다. 이에 따라, 구조적으로 안정적이면서, 적정의 가교 구조를 갖는 열경화성 발포체를 형성할 수 있어, 상기 열경화성 발포체는 향상된 난연성과 함께 우수한 단열성을 일정 수준으로 유지하고, 우수한 압축강도 등의 우수한 물성을 나타낼 수 있다.In addition, the viscosity (V1) of the thermosetting resin may be from about 10,000 cps to about 80,000 cps, from about 10,000 cps to about 50,000 cps, or from about 20,000 cps to about 50,000 cps at 20°C. By adjusting the viscosity difference (ΔV) and the viscosity (V1) of the thermosetting resin within the above range, the curing reaction rate of the thermosetting resin in which the composite flame retardant is dispersed may be appropriately adjusted. Accordingly, it is possible to form a thermosetting foam that is structurally stable and has an appropriate cross-linked structure, and the thermosetting foam maintains excellent thermal insulation at a certain level with improved flame retardancy, and exhibits excellent physical properties such as excellent compressive strength. .
상기 발포제는 상기 열경화성 수지 약 100 중량부를 기준으로 약 5 중량부 내지 약 15 중량부가 되도록 포함될 수 있다. 상기 발포제를 상기 범위의 함량으로 포함함으로써, 상기 열경화성 수지에 분산된 상기 복합 난연제를 포함하는 발포체 조성물이 발포하는 과정에서 적정의 발포압으로 균일하게 발포하여 향상된 난연성, 단열성 및 압축 강도 등의 물성을 갖는 열경화성 발포체를 형성할 수 있다. 예를 들어, 발포제의 함량이 상기 범위를 초과하는 경우 발포 셀이 파괴되어 단열성이 저하되고, 발포체의 치수 변화율이 커지고, 압축 강도가 저하될 수 있다. The foaming agent may be included in an amount of about 5 parts by weight to about 15 parts by weight based on about 100 parts by weight of the thermosetting resin. By including the foaming agent in the content in the above range, the foam composition including the composite flame retardant dispersed in the thermosetting resin is uniformly foamed at an appropriate foaming pressure in the process of foaming, thereby improving properties such as flame retardancy, heat insulation and compressive strength. It is possible to form a thermosetting foam having For example, when the content of the foaming agent exceeds the above range, the foaming cells are destroyed and thermal insulation properties are lowered, the dimensional change rate of the foam is increased, and the compressive strength may be reduced.
그리고, 상기 경화제는 열경화성 수지 100 중량부 대비, 약 15 내지 약 25 중량부의 함량으로 포함될 수 있다. 상기 경화제는 톨루엔술폰산 등의 물질을 용매에 혼합한 혼합물을 의미한다. 경화제를 상기 범위의 함량으로 포함하여 복합난연제를 포함하는 조성물에 있어서 발포 및 경화의 발런스를 적절히 조절할 수 있으며, 이에 따라 우수한 난연성과 함께, 단열성 및 우수한 압축강도 등의 물성을 부여할 수 있다.In addition, the curing agent may be included in an amount of about 15 to about 25 parts by weight, based on 100 parts by weight of the thermosetting resin. The curing agent refers to a mixture in which a solvent such as toluenesulfonic acid is mixed. By including the curing agent in the content in the above range, the balance of foaming and curing can be appropriately adjusted in the composition including the composite flame retardant, and thus physical properties such as heat insulation and excellent compressive strength can be imparted with excellent flame retardancy.
그리고, 상기 열경화성 발포체의 제조방법은 상기 주제, 경화제, 발포제 및 난연 조성물을 교반하여 발포체 조성물을 제조하는 단계를 포함한다. 상기 열경화성 발포체의 제조방법은 복합 난연제를 포함하는 난연 조성물을 열경화성 수지를 포함하는 주제와 별도로 분리하여 혼합 및 교반할 수 있다. 이에 따라, 열경화성 수지를 포함하는 주제의 점도가 급격히 상승하는 것을 방지할 수 있고, 전술한 물성을 갖는 열경화성 발포체를 쉽게 제조할 수 있다.And, the method for producing the thermosetting foam includes the step of preparing a foam composition by stirring the main agent, a curing agent, a foaming agent and a flame retardant composition. In the method for producing the thermosetting foam, the flame-retardant composition including the composite flame retardant may be separated from the main agent including the thermosetting resin, mixed and stirred. Accordingly, it is possible to prevent the viscosity of the main material containing the thermosetting resin from rapidly increasing, and it is possible to easily manufacture the thermosetting foam having the above-described physical properties.
그리고, 상기 열경화성 발포체의 제조방법은 상기 발포체 조성물을 발포 경화하는 단계;를 포함한다. 상기 열경화성 발포체는 예를 들어, 약 50℃ 내지 약 90℃의 온도 조건 하에서 발포 및 경화될 수 있다. 또한, 상기 발포 및 경화는 약 2분 내지 약 20분의 시간 동안 수행될 수 있으나, 이에 제한되지 아니하고, 발명의 목적 및 용도에 따라 적절히 달라질 수 있다. And, the method for producing the thermosetting foam includes the step of foaming and curing the foam composition. The thermosetting foam may be foamed and cured under a temperature condition of, for example, about 50° C. to about 90° C. In addition, the foaming and curing may be performed for a time of about 2 minutes to about 20 minutes, but is not limited thereto, and may appropriately vary depending on the purpose and use of the invention.
본 발명의 또 다른 구현 예는 상기 열경화성 발포체를 포함하는 단열재를 제공한다.Another embodiment of the present invention provides an insulating material comprising the thermosetting foam.
상기 열경화성 발포체는 예를 들어, 건축용 단열재의 용도로 적용될 수 있고, 그에 따라 건축용 단열재로서 요구되는 우수한 단열성과 함께 현저히 향상된 난연성을 동시에 만족시킬 수 있다. 그리고, 우수한 압축강도, 굴곡 파괴하중(N), 치수 안정성 및 높은 산소 지수 등을 가질 수 있다.The thermosetting foam can be applied, for example, for use as a building insulation material, and thus can simultaneously satisfy a remarkably improved flame retardancy with excellent thermal insulation properties required as a building insulation material. And, it may have excellent compressive strength, flexural fracture load (N), dimensional stability, high oxygen index, and the like.
상기 건축용 단열재는 예를 들어, 상기 열경화성 발포체의 일면 또는 양면상에 면재를 더 포함할 수 있고, 상기 면재로 알루미늄을 포함하여 난연성을 더욱 향상시킬 수 있다.The building insulation may further include a face material on one or both sides of the thermosetting foam, for example, and may further improve flame retardancy by including aluminum as the face material.
(실시예) (Example)
실시예 1: Example 1:
20℃에서 점도가 2만cps 범위인 레졸 수지 100중량부, 에톡시화 반응시킨 피마자유 계면활성제 1.5 중량부, 분말 형상 우레아 3 중량부를 혼합한 주제, 경화제로 톨루엔술폰산, 발포제로 시클로펜탄을 준비하였다. 그리고, 적인 및 멜라민시아누레이트의 복합 난연제를 피마자유 계면활성제: 에틸렌글리콜이 2:1의 중량비로 혼합한 유기 용매에 혼합하여 난연 조성물의 점도를 조절하였다. 100 parts by weight of a resol resin having a viscosity in the range of 20,000 cps at 20° C., 1.5 parts by weight of an ethoxylated castor oil surfactant, 3 parts by weight of powdery urea, toluenesulfonic acid as a curing agent, and cyclopentane as a foaming agent were prepared. . And, the viscosity of the flame-retardant composition was adjusted by mixing a flame retardant complex of red and melamine cyanurate in an organic solvent in which a castor oil surfactant: ethylene glycol was mixed in a weight ratio of 2:1.
그리고, 상기 레졸 수지 100 중량부에 대하여, 상기 톨루엔술폰산 80중량%를 에틸렌클리콜 15중량% 및 물 5중량%에 혼합한 혼합물 15 중량부, 시클로펜탄 6 중량부와 함께, 상기 난연 조성물을 배관을 통해 교반기에 공급하고 교반하여 발포체 조성물을 제조하였다. And, with respect to 100 parts by weight of the resol resin, 15 parts by weight of a mixture of 80% by weight of toluenesulfonic acid mixed with 15% by weight of ethylene glycol and 5% by weight of water, 6 parts by weight of cyclopentane, along with 6 parts by weight of cyclopentane, the flame retardant composition is piped It was supplied to a stirrer through the and stirred to prepare a foam composition.
그리고, 상기 교반된 발포체 조성물을 10 m/min 속도로 작동되는 케터필러에 투입하여 최종적으로 43kg/m3 밀도를 가지는 페놀 수지 발포체를 제조하였다. 이때, 상기 케터필러의 온도는 65℃이고, 두께는 50mm 가 되도록 하였다. Then, the stirred foam composition was put into a caterpillar operated at a speed of 10 m/min to finally prepare a phenolic resin foam having a density of 43 kg/m 3 . At this time, the temperature of the caterpillar was 65 ℃, the thickness was set to 50mm.
이때, 상기 난연 조성물에 포함된 적인, 멜라민시아누레이트의 함량과 유기 용매의 함량을 조절하여, 20℃에서, 상기 레졸 수지의 점도(V1)와 상기 난연 조성물의 점도(V2)의 점도 차이(△V=|V1 - V2|)가 1만cps 이내가 되도록 하였다. 상기 점도는 브룩필드 점도계(Brookfield 사, DV3T Rheometer, #63 스핀들)를 이용하여 측정하였다.At this time, by adjusting the content of red, melamine cyanurate and the content of the organic solvent contained in the flame-retardant composition, the viscosity difference between the viscosity (V1) of the resol resin and the viscosity (V2) of the flame-retardant composition at 20°C ( △V=|V1 - V2|) was made to be within 10,000 cps. The viscosity was measured using a Brookfield viscometer (Brookfield, DV3T Rheometer, #63 spindle).
그리고, 최종적으로, 상기 페놀 수지 발포체는 상기 페놀 수지 발포체 100 중량부 대비, 적인 6 중량부와 멜라민시아누레이트 2 중량부를 포함하도록 하였다.And, finally, the phenolic resin foam was made to include 6 parts by weight of red and 2 parts by weight of melamine cyanurate relative to 100 parts by weight of the phenolic resin foam.
실시예 2: Example 2:
상기 적인 및 멜라민시아누레이트의 복합 난연제 대신에, 적인 및 트리에틸포스페이트의 복합 난연제를 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 페놀 발포체를 제조하였다. 그리고, 최종적으로, 상기 페놀 수지 발포체 100 중량부 대비, 적인 6 중량부 및 트리에틸포스페이트 2 중량부를 포함하도록 하였다.A phenolic foam was prepared in the same manner as in Example 1, except that a composite flame retardant of red and triethyl phosphate was used instead of the composite flame retardant of red and melamine cyanurate. And, finally, compared to 100 parts by weight of the phenolic resin foam, it was made to contain 6 parts by weight of red and 2 parts by weight of triethyl phosphate.
실시예 3: Example 3:
상기 적인 및 멜라민시아누레이트의 복합 난연제 대신에, 적인, 모노펜타에리트리톨 및 멜라민시아누레이트의 복합 난연제를 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 페놀 발포체를 제조하였다. 그리고, 최종적으로, 상기 페놀 수지 발포체 100 중량부 대비, 적인 6 중량부, 모노펜타에리트리톨 1 중량부 및 멜라민시아누레이트 1 중량부를 포함하도록 하였다.A phenol foam was prepared in the same manner as in Example 1, except that a composite flame retardant of red, monopentaerythritol and melamine cyanurate was used instead of the composite flame retardant of red and melamine cyanurate. And, finally, based on 100 parts by weight of the phenolic resin foam, 6 parts by weight of red, 1 part by weight of monopentaerythritol, and 1 part by weight of melamine cyanurate were included.
실시예 4: Example 4:
상기 적인 및 멜라민시아누레이트의 복합 난연제 대신에, 적인, 멜라민시아누레이트 및 트리에틸포스페이트의 복합 난연제를 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 페놀 발포체를 제조하였다. 그리고, 최종적으로, 상기 페놀 수지 발포체 100 중량부 대비, 적인 6 중량부, 멜라민시아누레이트 1 중량부 및 트리에틸포스페이트 1 중량부를 포함하도록 하였다.A phenol foam was prepared in the same manner as in Example 1, except that a composite flame retardant of red, melamine cyanurate and triethyl phosphate was used instead of the composite flame retardant of red and melamine cyanurate. And, finally, based on 100 parts by weight of the phenolic resin foam, 6 parts by weight of red, 1 part by weight of melamine cyanurate, and 1 part by weight of triethyl phosphate were included.
실시예 5: Example 5:
상기 적인 및 멜라민시아누레이트의 복합 난연제 대신에, 적인, 모노펜타에리트리톨 및 트리에틸포스페이트의 복합 난연제를 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 페놀 발포체를 제조하였다. 그리고, 최종적으로, 상기 페놀 수지 발포체 100 중량부 대비, 적인 6 중량부, 모노펜타에리트리톨 1 중량부 및 트리에틸포스페이트 1 중량부를 포함하도록 하였다.A phenol foam was prepared in the same manner as in Example 1, except that a composite flame retardant of red, monopentaerythritol, and triethyl phosphate was used instead of the composite flame retardant of red and melamine cyanurate. And, finally, based on 100 parts by weight of the phenolic resin foam, 6 parts by weight of red, 1 part by weight of monopentaerythritol, and 1 part by weight of triethyl phosphate were included.
실시예 6: Example 6:
상기 적인 및 멜라민시아누레이트의 복합 난연제 대신에, 적인, 모노펜타에리트리톨, 멜라민시아누레이트 및 트리에틸포스페이트의 복합 난연제를 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 페놀 발포체를 제조하였다. 그리고, 최종적으로, 상기 페놀 수지 발포체 100 중량부 대비, 적인 6 중량부, 모노펜타에리트리톨 0.3 중량부, 멜라민시아누레이트 0.7 중량부 및 트리에틸포스페이트 1 중량부를 포함하도록 하였다.A phenol foam was prepared in the same manner as in Example 1, except that a composite flame retardant of red, monopentaerythritol, melamine cyanurate and triethyl phosphate was used instead of the composite flame retardant of red and melamine cyanurate. And, finally, based on 100 parts by weight of the phenolic resin foam, 6 parts by weight of red, 0.3 parts by weight of monopentaerythritol, 0.7 parts by weight of melamine cyanurate, and 1 part by weight of triethyl phosphate were included.
비교예 1: Comparative Example 1:
상기 적인 및 멜라민시아누레이트의 복합 난연제 대신에, 멜라민시아누레이트만을 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 페놀 발포체를 제조하였다. 그리고, 최종적으로, 상기 페놀 수지 발포체 100 중량부 대비, 멜라민시아누레이트 8 중량부를 포함하도록 하였다.A phenolic foam was prepared in the same manner as in Example 1, except that only melamine cyanurate was used instead of the red and melamine cyanurate composite flame retardants. And, finally, compared to 100 parts by weight of the phenolic resin foam, 8 parts by weight of melamine cyanurate was included.
비교예 2: Comparative Example 2:
상기 적인 및 멜라민시아누레이트의 복합 난연제 대신에, 펜타에리트리톨만을 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 페놀 발포체를 제조하였다. 그리고, 최종적으로, 상기 페놀 수지 발포체 100 중량부 대비, 펜타에리트리톨 8 중량부를 포함하도록 하였다.A phenol foam was prepared in the same manner as in Example 1, except that only pentaerythritol was used instead of the red and melamine cyanurate complex flame retardant. And, finally, compared to 100 parts by weight of the phenolic resin foam, 8 parts by weight of pentaerythritol was included.
비교예 3: Comparative Example 3:
상기 적인 및 멜라민시아누레이트의 복합 난연제 대신에, 암모늄 폴리포스페이트 및 멜라민시아누레이트의 복합 난연제를 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 페놀 발포체를 제조하였다. 그리고, 최종적으로, 상기 페놀 수지 발포체 100 중량부 대비, 암모늄 폴리포스페이트 6 중량부 및 멜라민시아누레이트 2 중량부를 포함하도록 하였다.A phenol foam was prepared in the same manner as in Example 1, except that a composite flame retardant of ammonium polyphosphate and melamine cyanurate was used instead of the composite flame retardant of red and melamine cyanurate. And, finally, based on 100 parts by weight of the phenolic resin foam, 6 parts by weight of ammonium polyphosphate and 2 parts by weight of melamine cyanurate were included.
비교예 4: Comparative Example 4:
상기 적인 및 멜라민시아누레이트의 복합 난연제 대신에, 암모늄 폴리포스페이트 및 모노펜타에리트리톨의 복합 난연제를 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 페놀 발포체를 제조하였다. 그리고, 최종적으로, 상기 페놀 수지 발포체 100 중량부 대비, 암모늄 폴리포스페이트 6 중량부 및 모노펜타에리트리톨 2 중량부를 포함하도록 하였다.A phenolic foam was prepared in the same manner as in Example 1, except that a composite flame retardant of ammonium polyphosphate and monopentaerythritol was used instead of the composite flame retardant of red and melamine cyanurate. And, finally, based on 100 parts by weight of the phenol resin foam, 6 parts by weight of ammonium polyphosphate and 2 parts by weight of monopentaerythritol were included.
비교예 5:Comparative Example 5:
상기 적인 및 멜라민시아누레이트의 복합 난연제 대신에, 트리에틸포스페이트만을 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 페놀 발포체를 제조하였다. 그리고, 최종적으로, 상기 페놀 수지 발포체 100 중량부 대비, 트리에틸포스페이트 8 중량부를 포함하도록 하였다.A phenol foam was prepared in the same manner as in Example 1, except that only triethyl phosphate was used instead of the red and melamine cyanurate complex flame retardant. And, finally, compared to 100 parts by weight of the phenol resin foam, 8 parts by weight of triethyl phosphate was included.
평가evaluation
실험예 1: 제1 난연제(인)의 직경(㎛) 및 분산도(%)Experimental Example 1: Diameter (㎛) and dispersion (%) of the first flame retardant (phosphorus)
실시예 및 비교예의 페놀 수지 발포체 전체 외표면으로부터 각각 약 1㎝ 이상 이격된 부분에서 20mm(L) X 20mm(W) X 20mm(T) 샘플을 준비하였다. 그리고, 상기 샘플을 액체 질소로 1분 동안 동결건조 시킨 후, 날카로운 얇은 면도날로 두께 방향의 1/2 지점을 가운데 부분를 포함하도록 두께 방향과 수직하게(표면재가 부착되는 표면에 평행하게) 10mm 두께로 평평하게 잘랐다. 자른 상기 단면을 Digital Microscope(제조사: Leica Microsystems, 모델명: DVM6)로 촬영하였다. 구체적으로, 시야 범위 (Field of View, FOV)가 12.55 인 대물렌즈와 산광기 어댑터가 장착된 상태에서, 대물렌즈의 배율을 8.0x로 하여 상기 단면 중 임의의 1.2mm(길이) X 0.9mm(폭) 크기의 영역을 관찰하도록 확대하였다. 그 다음, 절단면 상부로부터 400 um 범위 내에서 두께 방향으로 10 um의 간격으로 삼차원 이미지를 촬영하여 절단면의 평면 이차원 이미지를 얻는다. 광원의 세기는 링 광 조명 (RL Light) 세기 60%, 동축 조명 (CXI Light) 세기 60%, 투과 광 조명 (BLI Light) 세기 80%으로 하며, 노출 시간은 24.5 밀리초 (ms), 취득하는 이미지의 화소는 2메가 (1600 x 1200 픽셀)으로 한다. 20mm (L) X 20mm (W) X 20mm (T) samples were prepared at portions spaced apart from each other by about 1 cm or more from the entire outer surface of the phenolic resin foams of Examples and Comparative Examples. Then, after freeze-drying the sample with liquid nitrogen for 1 minute, with a sharp thin razor blade, the 1/2 point in the thickness direction is 10 mm perpendicular to the thickness direction (parallel to the surface to which the surface material is attached) to include the middle part. Cut flat to thickness. The cut section was photographed with a Digital Microscope (manufacturer: Leica Microsystems, model name: DVM6). Specifically, with an objective lens having a field of view (FOV) of 12.55 and a diffuser adapter mounted, the magnification of the objective lens is set to 8.0x, and any 1.2mm (length) X 0.9mm ( width) was enlarged to observe the size of the area. Then, a three-dimensional image is taken at intervals of 10 um in the thickness direction within a range of 400 um from the top of the cut surface to obtain a planar two-dimensional image of the cut surface. The intensity of the light source is set to 60% of the intensity of ring light illumination (RL Light), 60% of coaxial illumination (CXI Light), and 80% of transmitted light illumination (BLI Light), and the exposure time is 24.5 milliseconds (ms). The pixels of the image are 2 mega (1600 x 1200 pixels).
도 2은 실시예 6에 따른 열경화성 발포체의 상기 영역을 디지털 마이크로스코프(Digital Microscope)을 이용하여 촬영한 사진이다. 상기 영역에서 붉은 점(인(Phosphorus) 입자)으로 관찰되는 적인을 확인한 후, 직경 1㎛ 내지 80㎛ 의 크기를 갖는 적인(붉은 점)의 개수를 세어 표 1에 기재하였다. 이때, 상기 적인의 직경은 상기 Digital Microscope 기기의 프로그램을 이용하여 상기 붉은 점의 지름 중에서 가장 긴, 장축의 길이로 하여 측정하였다. 상기 적인 입자들의 직경 중에서 가장 작은 입자의 직경(최소) 및 가장 큰 입자의 직경(최대)을 확인하고 그 결과를 하기 표 1에 기재하였다. 그리고, 도 3는 상기 영역을 4(길이) X 3(폭) 의 크기로 균등 분할한 사진을 나타낸 것이다. 페놀 발포체의 스트럿(strut)에 붉은 점, 적인이 포함되어 있는 것을 확인할 수 있다. 도 3에서 보는 바와 같이, 상기 영역을 4(길이) X 3(폭) 크기의 12개의 구역으로 균등 분할하고, 상기 구역 중에서 인이 1개 이상 포함된 구역의 개수를 세고, 이를 %로도 계산하여 표 1에 그 결과를 나타내었다. 비교예의 발표체는 제1 난연제인 인(Phosphorus)을 포함하지 않는바, 관찰되지 않았다.2 is a picture taken using a digital microscope (Digital Microscope) of the region of the thermosetting foam according to Example 6. After confirming the red dots (Phosphorus particles) observed in the region, the number of red dots (red dots) having a diameter of 1 μm to 80 μm was counted and described in Table 1. In this case, the diameter of the red dot was measured using the program of the Digital Microscope device as the longest axis length among the diameters of the red dot. The diameter of the smallest particle (minimum) and the largest particle diameter (maximum) among the diameters of the target particles were checked, and the results are shown in Table 1 below. And, FIG. 3 shows a photograph in which the area is equally divided into a size of 4 (length) X 3 (width). It can be seen that the strut of the phenolic foam contains red dots and redness. As shown in FIG. 3, the area is equally divided into 12 areas with a size of 4 (length) X X 3 (width), counting the number of areas containing at least one phosphorus among the areas, and calculating this as a percentage Table 1 shows the results. The published material of Comparative Example did not include phosphorus, which is the first flame retardant, and was not observed.
인의 개수number of people 인의 직경(㎛)Phosphorus diameter (μm) 인의 분산도(구역수)Phosphorus dispersion (number of districts) 인의 분산도 (%)Phosphorus dispersion (%)
실시예1Example 1 8787 최소: 16, 최대: 68Min: 16, Max: 68 88 6767
실시예2Example 2 9494 최소: 13, 최대: 57Min: 13, Max: 57 99 7575
실시예3Example 3 9797 최소: 12, 최대: 53Min: 12, Max: 53 1010 8383
실시예4Example 4 121121 최소: 8, 최대: 41Min: 8, Max: 41 1212 100100
실시예5Example 5 108108 최소: 10, 최대: 45Min: 10, Max: 45 1111 9292
실시예6Example 6 134134 최소: 5, 최대: 38Min: 5, Max: 38 1212 100100
비교예1∼5Comparative Examples 1 to 5 XX XX XX XX
실험예 2: 초기 열전도율(W/m·K)Experimental Example 2: Initial thermal conductivity (W/m·K)
실시예 및 비교예의 페놀 수지 발포체를 50㎜의 두께 및 300㎜×300㎜ 크기로 절단하여 시편을 준비하고, 상기 시편을 70℃에서 12시간으로 건조하여 전처리 하였다. 그리고, 상기 시편에 대해 KS L 9016(평판 열류계법 측정방법)의 측정 조건에 따라 평균 온도 20℃에서 HC-074-300(EKO社) 열전도율 기기를 사용하여 열전도율을 측정하고, 그 결과를 하기 표 2 에 기재하였다.The phenolic resin foams of Examples and Comparative Examples were cut to a thickness of 50 mm and a size of 300 mm × 300 mm to prepare a specimen, and the specimen was dried at 70° C. for 12 hours and pre-treated. And, according to the measurement conditions of KS L 9016 (Method for measuring plate heat flow metering method) for the specimen, the thermal conductivity was measured using a HC-074-300 (EKO company) thermal conductivity instrument at an average temperature of 20° C., and the results are shown in the table below. 2 was described.
실험예 3: 장기 열전도율(W/m·K)Experimental Example 3: Long-term thermal conductivity (W/m·K)
실시예 및 비교예의 페놀 수지 발포체를 50㎜의 두께 및 300㎜×300㎜ 크기로 절단하여 시편을 준비하고, 상기 시편을 EN13823에 따라, 70℃에서 7일 동안 건조시킨 뒤에 110℃에서 14일 동안 건조시킨 후, 평균 온도 20℃에서 HC-074-300(EKO社) 열전도율 기기를 사용하여 열전도율을 측정하고, 그 결과를 하기 표 2 에 기재하였다.Specimens were prepared by cutting the phenolic resin foams of Examples and Comparative Examples to a thickness of 50 mm and a size of 300 mm × 300 mm, and the specimens were dried at 70° C. for 7 days according to EN13823, and then at 110° C. for 14 days. After drying, the thermal conductivity was measured using a HC-074-300 (EKO) thermal conductivity instrument at an average temperature of 20°C, and the results are shown in Table 2 below.
실험예 4: THR 300s(MJ/㎡)Experimental Example 4: THR 300s (MJ/m2)
상기 실시예 및 비교예의 페놀 수지 발포체를 그리즐리 밴드쏘를 이용하여 100mm(L)ХΧ100mm(W)ХΧ50mm(T) 크기의 시편으로 제작하였다.The phenolic resin foams of Examples and Comparative Examples were prepared as specimens having a size of 100 mm (L) ХΧ100 mm (W) ХΧ 50 mm (T) using a grizzly band saw.
그리고, KS F ISO 5660-1의 측정조건을 하기와 같이 맞추었다. 50kW/m 2 복사열을 맞추어 콘히터의 온도는 700℃도로 하였고, Blower의 속도는 24L/min, 산소농도는 20.950%에서 시작하였다. 그리고, 콘칼로리미터 측정기(페스텍인터네서날)를 사용하여, 상기 시편에 50kW/m 2 복사열을 5분간 적용하고 총방출열량(THR300)을 측정하였다. 그리고, 그 결과를 하기 표 2에 기재하였다. And, the measurement conditions of KS F ISO 5660-1 were adjusted as follows. The temperature of the heater to match the cone 50kW / m 2 radiation was 700 ℃ road, the speed of the Blower is 24L / min, oxygen was started at 20.950%. Then, using a cone calorimeter measuring device (Festek International), 50 kW/m 2 radiant heat was applied to the specimen for 5 minutes, and the total amount of heat released (THR300) was measured. And, the results are shown in Table 2 below.
실험예 5: THR 600s (MJ/㎡)Experimental Example 5: THR 600s (MJ/m2)
콘칼로리미터 측정기(페스텍인터네서날)를 사용하여, 상기 시편에 50kW/m 2 복사열을 10분간 적용하고 총방출열량(THR600)을 측정한 것을 제외하고는 실험예 4과 동일한 방법으로 측정하였다. 그리고, 그 결과를 하기 표 2에 기재하였다. Using a cone calorimeter measuring instrument (Festek International), 50 kW/m 2 radiant heat was applied to the specimen for 10 minutes, and the total amount of heat released (THR600) was measured in the same manner as in Experimental Example 4. And, the results are shown in Table 2 below.
실험예 6: 독립기포율(%)Experimental Example 6: Closed cell rate (%)
실시예 및 비교예 각각의 페놀 수지 발포체를 2.5㎝(L)X2.5㎝ (W)X2.5㎝(T)로 절단하여 시편을 제조하였다. 그리고, KS M ISO 4590 측정방법으로 독립기포율 측정기기(Quantachrome, ULTRAPYC 1200e) 장비를 사용하여 측정하고 그 결과를 하기 표 2에 기재하였다.Specimens were prepared by cutting each of the phenolic resin foams of Examples and Comparative Examples to 2.5 cm (L) X 2.5 cm (W) X 2.5 cm (T). And, it was measured using a closed cell rate measuring device (Quantachrome, ULTRAPYC 1200e) as a KS M ISO 4590 measuring method, and the results are shown in Table 2 below.
실험예 7: 압축 강도(kPa)Experimental Example 7: Compressive strength (kPa)
실시예 및 비교예의 페놀 수지 발포체를 50mm(L)ХΧ50mm(W)ХΧ50mm(T) 크기의 시편으로 준비하고, 상기 시편을 Lloyd instrument社 LF Plus 만능재료시험기(Universal Testing Machine)의 넓은 판 사이에 두고, UTM 장비에서 시편 두께의 10%㎜/min 속도로 설정하고, 압축강도 실험을 시작하여 두께가 감소되는 중에 나타나는 첫번째 압축 항복점에서의 강도를 기록하였다. 압축강도는 KS M ISO 844 규격의 방법으로 측정하였고, 그 결과를 하기 표 2에 기재하였다. The phenolic resin foams of Examples and Comparative Examples were prepared as specimens with a size of 50 mm (L) ХΧ 50 mm (W) Х Χ 50 mm (T), and the specimen was placed between the wide plates of Lloyd Instrument's LF Plus Universal Testing Machine. , the UTM equipment was set at a rate of 10% mm/min of the thickness of the specimen, and the compressive strength test was started, and the strength at the first compressive yield point that appeared while the thickness was decreased was recorded. Compressive strength was measured by the method of KS M ISO 844 standard, and the results are shown in Table 2 below.
실험예 8: 치수 안정성 (%)Experimental Example 8: Dimensional Stability (%)
도 1은 본 발명의 열경화성 발포체의 치수 안정성을 측정하는 방법을 간략하게 나타낸 모식도이다.1 is a schematic diagram briefly showing a method for measuring the dimensional stability of a thermosetting foam of the present invention.
실시예 및 비교예의 페놀 수지 발포체를 100mm(L)ХΧ100mm(W)ХΧ50mm(T) 크기의 시편으로 준비하였다. 그리고, 도 1과 같이, 시편의 길이(L) 및 폭(W) 방향에 있어서 균등한 n(n=3)개 지점에 선을 긋고, 25℃에서 상기 각각의 지점 양끝을 잇는 선의 초기 길이(a)를 측정하였다. The phenolic resin foams of Examples and Comparative Examples were prepared as specimens having a size of 100 mm (L) ХΧ 100 mm (W) Х Χ 50 mm (T). And, as shown in Figure 1, a line is drawn at n (n = 3) equal points in the length (L) and width (W) directions of the specimen, and the initial length ( a) was measured.
그리고, 상기 시편을 70℃ 오븐에서 48시간 방치시킨 후의 각 지점의 나중 길이(a')를 측정하고, 초기 치수에서 변화된 치수 변화율(%)을 하기 식 1에 의해 각각 측정하고, 그 평균 값을 표 2에 기재하였다. 치수안정성은 KS M ISO 2796 규격의 방법으로 측정하였다.Then, the later length (a') of each point is measured after the specimen is left in an oven at 70° C. for 48 hours, and the dimensional change rate (%) changed from the initial dimension is measured by Equation 1 below, and the average value is Table 2 shows. Dimensional stability was measured by the method of KS M ISO 2796 standard.
[식 1][Equation 1]
치수 변화율(%)={|초기 길이(a)-나중 길이(a')| /초기 길이(a)} X 100Dimensional change rate (%)={|Initial length (a) - Later length (a')| /initial length(a)} X 100
실험예 9: 산소 지수 (LOI)Experimental Example 9: Oxygen Index (LOI)
KS M ISO 4589-2 규격에서 규정된 시험 조건하에서 실시예 및 비교예의 발포체의 연소를 지속시키기 위해 요구되는 산소의 최소 농도를 측정하고, 그 결과를 하기 표 2에 기재하였다. 시험 결과값은 23±2℃ 온도에서 주입되는 산소 및 질소 혼합물에서 산소의 부피 퍼센트로 주어진다.The minimum concentration of oxygen required to sustain combustion of the foams of Examples and Comparative Examples under the test conditions specified in the KS M ISO 4589-2 standard was measured, and the results are shown in Table 2 below. Test results are given in percent by volume of oxygen in a mixture of oxygen and nitrogen injected at a temperature of 23±2°C.
실험예 10: 굴곡 파괴 하중(N)Experimental Example 10: Flexural fracture load (N)
실시예 및 비교예의 페놀 수지 발포체를 250mm(L) ХΧ 100mm(W) ХΧ 20mm(T) 크기의 시편으로 준비하고, 상기 시편을 KS M ISO 4898에 따라, 200mm 지지 간격, 50mm/min의 하중 집중 속도에서 상기 시편이 파단 될 때까지의 최대 하중(N)을 측정하고 그 결과를 하기 표 2에 기재하였다.The phenolic resin foams of Examples and Comparative Examples were prepared as specimens with a size of 250 mm (L) ХΧ 100 mm (W) ХΧ 20 mm (T), and the specimen was prepared according to KS M ISO 4898, 200 mm support interval, load concentration of 50 mm/min The maximum load (N) until the specimen breaks at the speed was measured, and the results are shown in Table 2 below.
실험예 11: 초기 두께(Ti)의 1/2 지점(T1/2)의 단면의 면적(Sf)Experimental Example 11: Area (Sf) of the cross section at the 1/2 point (T1/2) of the initial thickness (Ti)
상기 실시예 및 비교예의 발포체를 그리즐리 밴드쏘를 이용하여 100mm(L)Χ100mm(W)Χ50mm(T) 크기의 시편으로 제작하고, 상기 시편의 초기 두께(Ti)의 1/2 지점(T1/2)의 단면적(Si)을 먼저 측정하였다. The foams of the Examples and Comparative Examples were prepared as specimens with a size of 100 mm (L) Χ 100 mm (W) Χ 50 mm (T) using a grizzly band saw, and 1/2 of the initial thickness (Ti) of the specimen (T1/2). ) of the cross-sectional area (Si) was first measured.
그리고, 100mm(L)Χ100mm(W)Χ50mm(T) 크기를 갖는 시편의 가열면을 제외한 나머지 5면은 알루미늄 호일로 감싸고, KS F ISO 5660-1에 따라, 50kW/m2 복사열을 맞추어 콘히터의 온도는 700℃도로 하였고, Blower의 속도는 24L/min, 산소농도는 20.950%에서 시험을 시작하여, 총 10분 동안 진행하였다.And, the remaining 5 sides except for the heating side of the specimen having a size of 100mm(L)Χ100mm(W)Χ50mm(T) are wrapped with aluminum foil, and according to KS F ISO 5660-1, The temperature was set to 700°C, the blower speed was 24L/min, and the oxygen concentration was 20.950%, and the test was started for a total of 10 minutes.
그렇게 시험이 완료된 시편의 바닥면으로부터 25mm 지점(즉, 초기 두께(Ti)의 1/2 지점(T1/2))을 절단하고, 그 단면의 면적(Sf)을 측정하였다.A 25 mm point (ie, a 1/2 point (T1/2) of the initial thickness Ti) was cut from the bottom surface of the specimen on which the test was completed, and the area (Sf) of the cross-section was measured.
구체적으로, 상기 절단면을 정면으로 하여 사진을 찍은 뒤 “ImageJ” 소프트웨어를 사용하여 사진 이미지를 형성하였다. 그리고, 사각형(Rectangular) 그리기로 샘플의 전체 면적을 구한 뒤, 자유롭게(Freehand selections) 그리기로 크랙/홀의 면적을 제외시켜 상기 절단면의 면적(Sf)을 측정하였다. 그리고, 상기 Sf 가 상기 Si 와의 관계에서 어느 정도의 비율(=Sf/ Si X 100)을 차지하는지를 확인하고 그 결과를 하기 표 3에 기재하였다.Specifically, a photograph was taken with the cut surface facing the front, and then a photographic image was formed using “ImageJ” software. Then, after obtaining the total area of the sample by drawing a rectangle, the area (Sf) of the cut surface was measured by excluding the area of cracks/holes by drawing freely (Freehand selections). In addition, it was confirmed how much ratio (=Sf/Si X 100) the Sf occupies in the relationship with the Si, and the results are shown in Table 3 below.
실험예 12: 실험예 11의 단면에 형성된 크랙 너비 방향의 최대 길이Experimental Example 12: Maximum length in the width direction of cracks formed in the cross section of Experimental Example 11
상기 실시예 및 비교예의 발포체를 그리즐리 밴드쏘를 이용하여 100mm(L)Χ100mm(W)Χ50mm(T) 크기의 시편으로 제작하였다. The foams of Examples and Comparative Examples were prepared as specimens having a size of 100 mm (L) Χ 100 mm (W) Χ 50 mm (T) using a grizzly band saw.
그리고, 상기 시편의 가열면을 제외한 나머지 5면은 알루미늄 호일로 감싸고, KS F ISO 5660-1에 따라, 50kW/m2 복사열을 맞추어 콘히터의 온도는 700℃도로 하였고, Blower의 속도는 24L/min, 산소농도는 20.950%에서 시험을 시작하여, 총 10분 동안 진행하였다.And, the remaining 5 sides except the heating side of the specimen were wrapped with aluminum foil, and the temperature of the cone heater was set to 700°C by matching 50kW/m2 radiant heat according to KS F ISO 5660-1, and the speed of the blower was 24L/min. , the oxygen concentration was 20.950%, starting the test, and proceeded for a total of 10 minutes.
그렇게 시험이 완료된 시편의 바닥면으로부터 25mm 지점(즉, 초기 두께(Ti)의 1/2 지점(T1/2))을 절단하고, 표면(가열면측)에서 발생한 크랙의 최대 너비(폭)를 측정하였다. Cut a 25mm point from the bottom of the test specimen (that is, 1/2 of the initial thickness (Ti) (T1/2)), and measure the maximum width (width) of cracks occurring on the surface (heating side) did.
구체적으로 도 4b 와 같이 가열면과 수직 아래 방향으로 크랙이 발생하면, 상기 크랙이 발생한 샘플의 표면을 육안으로 관찰하였을 때 가장 넓게 벌어진 곳으로 판단되는 크랙 부분의 표면을 강철자를 사용하여 너비를 측정한다. 육안으로 비슷한 거리로 보이는 부분은 모두 측정되어야 한다. 이 때 가장 넓은 길이로 측정된 값을 하기 표 3에 기재하였다. Specifically, when a crack occurs in a downward direction perpendicular to the heating surface as shown in FIG. 4B, when the surface of the sample where the crack occurs is observed with the naked eye, the surface of the crack part, which is determined to be the widest part, is measured using a steel ruler. do. All parts that are visible at a similar distance to the naked eye shall be measured. At this time, the values measured in the widest length are shown in Table 3 below.
만약 시험 후 샘플이 도 4a 와 같이 크랙이 표면부터 발생하지 않고, 샘플이 넓게 아래로 소실된다면 이때는 “50mm 이상”이라고 표기한다. If, after the test, the sample does not have cracks from the surface as shown in FIG. 4A and the sample is widely dissipated, it is indicated as “50 mm or more”.
실험예 13: 크랙, 홈 또는 홀이 형성된 발포체의 바닥면으로부터의 두께Experimental Example 13: Thickness from the bottom of the foam with cracks, grooves or holes
상기 실시예 및 비교예의 발포체를 그리즐리 밴드쏘를 이용하여 100mm(L)Χ100mm(W)Χ50mm(T) 크기의 시편으로 제작하였다. The foams of Examples and Comparative Examples were prepared as specimens having a size of 100 mm (L) Χ 100 mm (W) Χ 50 mm (T) using a grizzly band saw.
그리고, 상기 시편의 가열면을 제외한 나머지 5면은 알루미늄 호일로 감싸고, KS F ISO 5660-1에 따라, 50kW/m2 복사열을 맞추어 콘히터의 온도는 700℃도로 하였고, Blower의 속도는 24L/min, 산소농도는 20.950%에서 시험을 시작하여, 총 10분 동안 진행하였다.And, the remaining 5 sides except the heating side of the specimen were wrapped with aluminum foil, and the temperature of the cone heater was set to 700°C by matching 50kW/m2 radiant heat according to KS F ISO 5660-1, and the speed of the blower was 24L/min. , the oxygen concentration was 20.950%, starting the test, and proceeded for a total of 10 minutes.
그렇게 시험이 완료된 시편의 측면에 바닥면으로부터 10mm, 20mm, 30mm, 40mm 4곳의 높이에 수평방향으로 표시해두고, 바닥면으로부터 2mm 간격으로 절단하면서 크랙, 홈 또는 홀의 유무를 육안으로 판단하였다. 그리고, 상기 크랙, 홈 또는 홀이 확인된 지점과 상기 측면에 표시한 지점으로부터의 거리를 통해 바닥면으로부터의 크랙이 발생한 두께를 확인하고 그 결과를 하기 표 3에 기재하였다.So, on the side of the test-completed specimen, the presence or absence of cracks, grooves or holes was visually judged while marking the specimen at 4 heights of 10 mm, 20 mm, 30 mm, and 40 mm from the bottom in the horizontal direction, and cutting at intervals of 2 mm from the bottom. Then, the thickness at which the crack occurred from the bottom surface was confirmed through the distance from the point where the crack, groove or hole was confirmed and the point marked on the side surface, and the results are shown in Table 3 below.
초기열전도율(W/m·K)Initial thermal conductivity (W/m·K) 장기열전도율(W/m·K)Long-term thermal conductivity (W/m·K) THR 300s(MJ/㎡)THR 300s (MJ/㎡) THR 600s(MJ/㎡)THR 600s (MJ/㎡) 독립기포율(%)Closed cell rate (%) 압축 강도(kPa)Compressive strength (kPa) 치수안정성(%)Dimensional stability (%) 산소 지수 (LOI)Oxygen Index (LOI) 굴곡파괴하중(N)Flexural fracture load (N)
실시예1Example 1 0.019450.01945 0.022240.02224 4.54.5 7.57.5 86.686.6 128.4128.4 0.620.62 45.145.1 23.123.1
실시예2Example 2 0.019360.01936 0.021960.02196 4.84.8 7.97.9 87.487.4 115.2115.2 0.550.55 43.543.5 22.822.8
실시예3Example 3 0.019310.01931 0.021580.02158 4.14.1 7.07.0 88.188.1 136.7136.7 0.510.51 46.246.2 27.427.4
실시예4Example 4 0.019150.01915 0.020900.02090 3.83.8 6.66.6 89.689.6 144.6144.6 0.410.41 49.649.6 30.430.4
실시예5Example 5 0.019240.01924 0.021240.02124 4.04.0 7.17.1 88.488.4 131.7131.7 0.490.49 46.346.3 26.526.5
실시예6Example 6 0.019100.01910 0.020640.02064 3.53.5 6.16.1 90.590.5 152.9152.9 0.390.39 50.350.3 31.031.0
비교예1Comparative Example 1 0.022760.02276 0.027450.02745 13.213.2 18.718.7 75.375.3 104.5104.5 0.880.88 35.635.6 18.218.2
비교예2Comparative Example 2 0.020130.012013 0.022540.02254 14.914.9 26.426.4 85.485.4 110.5110.5 0.750.75 31.031.0 19.619.6
비교예3Comparative Example 3 0.030980.03098 0.032200.03220 5.65.6 9.89.8 6.36.3 77.877.8 1.361.36 41.541.5 11.411.4
비교예4Comparative Example 4 0.029480.02948 0.031570.03157 6.36.3 10.410.4 7.87.8 83.683.6 1.101.10 39.839.8 12.812.8
비교예5Comparative Example 5 0.024110.02411 0.026820.02682 14.314.3 23.523.5 61.261.2 78.978.9 1.281.28 29.829.8 14.514.5
(S f/S i) X 100(%)(S f /S i ) X 100(%) 크랙의 너비 방향 길이(폭)(㎜)Length (width) in the width direction of the crack (mm) 크랙, 홈 또는 홀 생성 두께(㎜)Thickness of crack, groove or hole creation (mm)
실시예1Example 1 78.178.1 99 1212
실시예2Example 2 82.482.4 88 1414
실시예3Example 3 80.580.5 77 1212
실시예4Example 4 81.981.9 77 1616
실시예5Example 5 85.485.4 66 1818
실시예6Example 6 91.691.6 55 2020
비교예1Comparative Example 1 33.333.3 3030 44
비교예2Comparative Example 2 15.115.1 50 이상50 or more 00
비교예3Comparative Example 3 65.665.6 1717 88
비교예4Comparative Example 4 70.570.5 1616 88
비교예5Comparative Example 5 19.919.9 3535 44
상기 표 1에서 보는 바와 같이, 실시예의 열경화성 발포체는 인이 쉽게 뭉치는 현상이 억제되고, 균일하게 분산되어 약 80㎛ 초과의 직경을 갖는 인은 관찰되지 않았으며, 약 1㎛ 내지 약 80㎛의 직경 범위 내의 인이 10개 이상 존재하고, 상기 인이 8개 이상의 구역에 있어, 상기 영역의 60% 이상을 차지하는 것을 확인할 수 있다.상기 표 2에서 보는 바와 같이, 실시예의 열경화성 발포체는 낮은 총방출열량, 높은 산소지수로 우수한 난연성을 나타내면서, 이와 함께, 우수한 초기 열전도율과 이와 유사범위의 장기 열전도율을 가져, 시간이 지나도 낮은 열전도율을 일정 수준으로 유지하는 것을 확인 할 수 있다. 또한, 실시예의 열경화성 발포체는 높은 독립기포율, 향상된 압축강도, 굴곡파괴하중 및 치수변화율을 동시에 만족하는 것을 확인할 수 있다. As shown in Table 1, in the thermosetting foam of Examples, the phenomenon of easily aggregating phosphorus was suppressed, and phosphorus having a diameter of more than about 80 μm was not observed because it was uniformly dispersed, and about 1 μm to about 80 μm. It can be seen that there are 10 or more phosphorus within the diameter range, and the phosphorus is present in 8 or more zones, occupying more than 60% of the area. It can be confirmed that, while exhibiting excellent flame retardancy due to heat quantity and high oxygen index, it has excellent initial thermal conductivity and long-term thermal conductivity in a similar range, maintaining low thermal conductivity at a certain level even over time. In addition, it can be confirmed that the thermosetting foam of the embodiment simultaneously satisfies a high closed cell ratio, improved compressive strength, flexural fracture load and dimensional change rate.
또한, 상기 표 3에서 보는 바와 같이, 비교예와 달리, 실시예는 상기 우수한 단열성과 함께, 식 2을 만족하여 우수한 난연성을 동시에 나타내는 것을 알 수 있다. In addition, as shown in Table 3, it can be seen that, unlike the comparative example, the Example satisfies Equation 2 along with the excellent thermal insulation properties to simultaneously exhibit excellent flame retardancy.
이상과 같이 본 발명에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다. 아울러 앞서 본 발명의 실시예를 설명하면서 본 발명의 구성에 따른 작용 효과를 명시적으로 기재하여 설명하지 않았을 지라도, 해당 구성에 의해 예측 가능한 효과 또한 인정되어야 함은 당연하다.As described above, the present invention has been described with reference to the illustrated drawings, but the present invention is not limited by the embodiments and drawings disclosed in the present specification. It is obvious that variations can be made. In addition, although the effects of the configuration of the present invention are not explicitly described and described while describing the embodiments of the present invention, it is natural that the effects predictable by the configuration should also be recognized.

Claims (24)

  1. 열경화성 수지, 경화제, 발포제 및 복합 난연제를 포함하고,a thermosetting resin, a curing agent, a foaming agent, and a composite flame retardant;
    상기 복합 난연제는 제1 난연제 및 제2 난연제를 포함하고,The composite flame retardant comprises a first flame retardant and a second flame retardant,
    상기 제1 난연제는 인(Phosphorus)이고,The first flame retardant is phosphorus (Phosphorus),
    상기 제2 난연제는 멜라민계 난연제, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나를 포함하거나, 또는 멜라민계 난연제, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나와 펜타에리트리톨계 화합물을 함께 포함하는The second flame retardant includes at least one selected from the group consisting of melamine-based flame retardants, trialkyl phosphates, and combinations thereof, or at least one selected from the group consisting of melamine-based flame retardants, trialkyl phosphates, and combinations thereof and pentaerythritol containing the compound
    열경화성 발포체.thermosetting foam.
  2. 제1항에 있어서,According to claim 1,
    상기 복합 난연제는 상기 열경화성 발포체 100 중량부 대비 1 중량부 내지 12 중량부의 함량으로 포함하는The composite flame retardant is included in an amount of 1 to 12 parts by weight based on 100 parts by weight of the thermosetting foam.
    열경화성 발포체.thermosetting foam.
  3. 제1항에 있어서,According to claim 1,
    상기 제1 난연제는 상기 열경화성 발포체 100 중량부 대비 0.9 중량부 내지 10 중량부의 함량으로 포함하는The first flame retardant comprises in an amount of 0.9 to 10 parts by weight based on 100 parts by weight of the thermosetting foam
    열경화성 발포체.thermosetting foam.
  4. 제1항에 있어서, According to claim 1,
    상기 트리알킬포스페이트는 트리메틸포스페이트, 트리에틸포스페이트, 트리부틸포스페이트, 트리스(1-클로로 2-프로필)포스페이트, 트리(2-에틸헥실)포스페이트, 트리페닐포스테이트, 트리크레실포스페이트, 트리자일레닐포스페이트(trixylenyl phosphate), 트리스(이소프로필페닐)포스페이트, 트리스(페닐페닐)포스페이트, 트리나프틸포스페이트, 크레실디페닐포스페이트, 자일레닐디페닐포스페이트, 디페닐(2-에틸헥실)포스페이트, 디(이소프로필페닐)페닐포스페이트, 모노이소데실포스페이트) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나의 화합물을 포함하는 The trialkyl phosphate is trimethyl phosphate, triethyl phosphate, tributyl phosphate, tris (1-chloro 2-propyl) phosphate, tri (2-ethylhexyl) phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl Phosphate (trixylenyl phosphate), tris (isopropylphenyl) phosphate, tris (phenylphenyl) phosphate, trinaphthyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, diphenyl (2-ethylhexyl) phosphate, di (iso Propylphenyl) comprising one compound selected from the group consisting of phenyl phosphate, monoisodecyl phosphate) and combinations thereof
    열경화성 발포체.thermosetting foam.
  5. 제1항에 있어서,According to claim 1,
    상기 제2 난연제는 상기 열경화성 발포체 100 중량부 대비 0.001 중량부 내지 6 중량부의 함량으로 포함하는 The second flame retardant is included in an amount of 0.001 parts by weight to 6 parts by weight based on 100 parts by weight of the thermosetting foam.
    열경화성 발포체.thermosetting foam.
  6. 제1항에 있어서,According to claim 1,
    상기 제1 난연제 대 상기 제2 난연제의 중량비가 1 : 0.001 내지 1 : 0.8 인The weight ratio of the first flame retardant to the second flame retardant is 1: 0.001 to 1: 0.8
    열경화성 발포체. thermosetting foam.
  7. 제1항에 있어서,According to claim 1,
    상기 복합 난연제는 인 및 멜라민계 난연제를 포함하고,The composite flame retardant includes phosphorus and a melamine-based flame retardant,
    상기 인 대 상기 멜라민계 난연제의 중량비가 1 : 0.001 내지 1 : 0.8인The weight ratio of the phosphorus to the melamine-based flame retardant is 1: 0.001 to 1: 0.8
    열경화성 발포체.thermosetting foam.
  8. 제1항에 있어서,According to claim 1,
    상기 복합 난연제는 인 및 트리알킬포스페이트를 포함하고,The composite flame retardant comprises phosphorus and trialkylphosphate,
    상기 인 대 상기 트리알킬포스페이트의 중량비가 1 : 0.001 내지 1 : 0.8인wherein the weight ratio of the phosphorus to the trialkyl phosphate is 1: 0.001 to 1: 0.8
    열경화성 발포체.Thermosetting foam.
  9. 제1항에 있어서,According to claim 1,
    상기 복합 난연제는 인, 펜타에리트리톨계 화합물 및 멜라민계 난연제를 포함하고,The composite flame retardant includes phosphorus, a pentaerythritol-based compound, and a melamine-based flame retardant,
    상기 인 100 중량부 대비, 상기 펜타에리트리톨계 화합물을 0.1 내지 50 중량부 포함하고, 상기 멜라민계 난연제를 0.1 내지 80중량부 포함하는Based on 100 parts by weight of the phosphorus, 0.1 to 50 parts by weight of the pentaerythritol-based compound, and 0.1 to 80 parts by weight of the melamine-based flame retardant
    열경화성 발포체.thermosetting foam.
  10. 제1항에 있어서,According to claim 1,
    상기 복합 난연제는 인, 멜라민계 난연제 및 트리알킬포스페이트를 포함하고,The composite flame retardant includes phosphorus, a melamine-based flame retardant and a trialkyl phosphate,
    상기 인 100 중량부 대비, 상기 멜라민계 난연제를 0.1 내지 80 중량부 포함하고, 상기 트리알킬포스페이트를 0.1 내지 80 중량부 포함하는Based on 100 parts by weight of the phosphorus, 0.1 to 80 parts by weight of the melamine-based flame retardant, and 0.1 to 80 parts by weight of the trialkyl phosphate
    열경화성 발포체.thermosetting foam.
  11. 제1항에 있어서,According to claim 1,
    상기 복합 난연제는 인, 펜타에리트리톨계 화합물 및 트리알킬포스페이트를 포함하고,The composite flame retardant includes phosphorus, a pentaerythritol-based compound, and a trialkyl phosphate,
    상기 인 100 중량부 대비, 상기 펜타에리트리톨계 화합물을 0.1 내지 50 중량부 포함하고, 상기 트리알킬포스페이트를 0.1 내지 80 중량부 포함하는Based on 100 parts by weight of the phosphorus, 0.1 to 50 parts by weight of the pentaerythritol-based compound, and 0.1 to 80 parts by weight of the trialkyl phosphate
    열경화성 발포체.thermosetting foam.
  12. 제1항에 있어서,According to claim 1,
    상기 복합 난연제는 인, 펜타에리트리톨계 화합물, 멜라민계 난연제 및 트리알킬포스페이트를 포함하고,The composite flame retardant includes phosphorus, a pentaerythritol-based compound, a melamine-based flame retardant and a trialkyl phosphate,
    상기 인 100 중량부 대비, 상기 펜타에리트리톨계 화합물을 0.1 내지 30 중량부 포함하고, 상기 멜라민계 난연제를 0.1 내지 50 중량부 포함하고, 상기 트리알킬포스페이트를 0.1 내지 60 중량부 포함하는Based on 100 parts by weight of the phosphorus, 0.1 to 30 parts by weight of the pentaerythritol-based compound, 0.1 to 50 parts by weight of the melamine-based flame retardant, and 0.1 to 60 parts by weight of the trialkyl phosphate
    열경화성 발포체.thermosetting foam.
  13. 제1항에 있어서,According to claim 1,
    KS L 9016에 따른 평균 온도 20℃에서 측정한 열전도율이 0.016 W/m·K 내지 0.029 W/m·K 인In accordance with KS L 9016, the thermal conductivity measured at an average temperature of 20°C is 0.016 W/m·K to 0.029 W/m·K
    열경화성 발포체.thermosetting foam.
  14. 제1항에 있어서,According to claim 1,
    EN13823에 따라, 70℃에서 7일 동안 건조시킨 뒤에 110℃에서 14일 동안 건조시킨 후, 평균 온도 20℃에서 측정한 열전도율이 0.017 W/m·K 내지 0.029 W/m·K 인According to EN13823, after drying at 70°C for 7 days and then at 110°C for 14 days, the thermal conductivity measured at an average temperature of 20°C is 0.017 W/m·K to 0.029 W/m·K
    열경화성 발포체.thermosetting foam.
  15. 제1항에 있어서,According to claim 1,
    KS M ISO 844 에 따른 압축강도가 60kPa 내지 300kPa인Compressive strength of 60 kPa to 300 kPa according to KS M ISO 844
    열경화성 발포체. thermosetting foam.
  16. 제1항에 있어서,According to claim 1,
    KS F ISO 5660-1 에 따른 콘칼로리미터에 의한 10분간의 총 방출열량(THR600s)이 2.0 MJ/㎡ 내지 17 MJ/㎡ 인Total heat released for 10 minutes (THR600s) by cone calorimeter according to KS F ISO 5660-1 is 2.0 MJ/m2 to 17 MJ/m2
    열경화성 발포체.Thermosetting foam.
  17. 제1항에 있어서,According to claim 1,
    KS M ISO 4898에 따라, 250mm(L)ХΧ100mm(W)ХΧ20mm(T) 크기의 시편에 200mm 지지 간격, 50mm/min의 하중 집중 속도에서 상기 시편이 파단될 때까지의 최대 하중(N)인 굴곡 파괴하중(N)이 15 N 내지 50 N 인 According to KS M ISO 4898, the maximum load (N) until the specimen breaks at a 200mm support interval and a load concentration rate of 50mm/min on a specimen of 250mm(L)ХΧ100mm(W)ХΧ20mm(T) size. When the breaking load (N) is 15 N to 50 N
    열경화성 발포체.thermosetting foam.
  18. 제1항에 있어서,According to claim 1,
    하기 식 1에 의한 치수 변화율의 평균값이 0% 내지 1.0% 인The average value of the dimensional change rate by the following formula 1 is 0% to 1.0%
    열경화성 발포체:Thermosetting foam:
    [식 1][Equation 1]
    치수 변화율(%)={|초기 길이(a)-나중 길이(a')| /초기 길이(a)} X 100Dimensional change rate (%)={|Initial length (a) - Later length (a')| /initial length(a)} X 100
    상기 식 1에서, 상기 초기 길이(a)는 열경화성 발포체의 길이(L) 및 폭(W) 방향에 있어서 균등한 n개 지점의 각 선의 길이이고, 상기 나중 길이(a')는 상기 열경화성 발포체를 70℃ 오븐에서 48시간 방치시킨 후의 상기 각 지점의 각 선의 나중 길이(a')를 의미한다.(n은 2 내지 5)In Equation 1, the initial length (a) is the length of each line of n equal points in the length (L) and width (W) directions of the thermosetting foam, and the later length (a') is the thermosetting foam It means the later length (a') of each line at each point after standing in an oven at 70° C. for 48 hours. (n is 2 to 5)
  19. 제1항에 있어서,According to claim 1,
    열분해 가스 크로마토그래피/질량분석법(py-GC/MS)(600℃)에 의해, 멜라민의 검출 피크가 나타내는The detection peak of melamine shows by pyrolysis gas chromatography/mass spectrometry (py-GC/MS) (600°C)
    열경화성 발포체.thermosetting foam.
  20. 발포체의 두께 방향에 수직한 단면에 포함된 1.2 mm (길이, L) X 0.9 mm (폭, W)의 적어도 하나의 영역은 10개 이상의 인을 포함하고,At least one area of 1.2 mm (length, L) X 0.9 mm (width, W) included in the cross section perpendicular to the thickness direction of the foam contains 10 or more phosphors,
    상기 인의 직경은 1㎛ 내지 80㎛인The diameter of the phosphorus is 1㎛ to 80㎛
    열경화성 발포체.thermosetting foam.
  21. 제20항에 있어서,21. The method of claim 20,
    상기 영역을 4(길이) X 3(폭) 의 크기로 균등 분할한 구역 중, 1개 이상의 인을 포함하는 구역이 60% 이상인Among the areas in which the area is equally divided into 4 (length) × 3 (width), 60% or more of the area containing at least one phosphorus
    열경화성 발포체.thermosetting foam.
  22. 제20항에 있어서,21. The method of claim 20,
    상기 열경화성 발포체는 산소 지수(LOI: Limit Oxygen Index)가 39% 이상인The thermosetting foam has an oxygen index (LOI) of 39% or more
    열경화성 발포체.thermosetting foam.
  23. 열경화성 수지를 포함하는 주제, 경화제, 발포제 및 복합 난연제를 포함하는 난연 조성물을 준비하는 단계;Preparing a flame-retardant composition comprising a base material comprising a thermosetting resin, a curing agent, a foaming agent, and a composite flame retardant;
    상기 주제, 경화제, 발포제 및 난연 조성물을 교반하여 발포체 조성물을 제조하는 단계; 및preparing a foam composition by stirring the base, curing agent, foaming agent and flame retardant composition; and
    상기 발포체 조성물을 발포 경화하는 단계;를 포함하고,Including; foam curing the foam composition;
    상기 복합 난연제는 제1 난연제 및 제2 난연제를 포함하고, The composite flame retardant comprises a first flame retardant and a second flame retardant,
    상기 제1 난연제는 인(Phosphorus)이고, 상기 제2 난연제는 멜라민계 난연제, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나를 포함하거나, 또는 멜라민계 난연제, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나와 펜타에리트리톨계 화합물을 함께 포함하는The first flame retardant is phosphorus (Phosphorus), and the second flame retardant includes at least one selected from the group consisting of melamine-based flame retardants, trialkyl phosphates, and combinations thereof, or melamine-based flame retardants, trialkyl phosphates, and combinations thereof. At least one selected from the group consisting of and a pentaerythritol-based compound
    열경화성 발포체의 제조방법.A method for producing a thermosetting foam.
  24. 제23항에 있어서,24. The method of claim 23,
    20℃에서, 상기 열경화성 수지의 점도(V1)와 상기 난연 조성물의 점도(V2)의 점도 차이(△V=|V1 - V2|)가 30,000 cps 이하인At 20 ℃, the viscosity difference (ΔV=|V1 - V2|) of the viscosity (V1) of the thermosetting resin and the viscosity (V2) of the flame-retardant composition is 30,000 cps or less
    열경화성 발포체의 제조방법.A method for producing a thermosetting foam.
PCT/KR2021/001922 2020-02-11 2021-02-15 Thermosetting foam and method for preparing same WO2021162528A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200016664 2020-02-11
KR10-2020-0016664 2020-02-11

Publications (1)

Publication Number Publication Date
WO2021162528A1 true WO2021162528A1 (en) 2021-08-19

Family

ID=77292767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/001922 WO2021162528A1 (en) 2020-02-11 2021-02-15 Thermosetting foam and method for preparing same

Country Status (2)

Country Link
KR (1) KR102478779B1 (en)
WO (1) WO2021162528A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117910885A (en) * 2024-03-18 2024-04-19 国网安徽省电力有限公司经济技术研究院 Comprehensive evaluation method and system for comprehensive energy service

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR980009378A (en) * 1996-07-11 1998-04-30 김상응 Low gloss flame retardant resin composition
JP2013172049A (en) * 2012-02-22 2013-09-02 Tdk Corp Electromagnetic wave absorption sheet
KR101496218B1 (en) * 2013-07-18 2015-02-26 영보화학 주식회사 Non-halogen flame retardant foam and manufacturing method thereof
WO2019030239A1 (en) * 2017-08-10 2019-02-14 Kingspan Holdings (Irl) Limited Phenolic foam and method of manufacture thereof
KR20190031181A (en) * 2017-09-15 2019-03-25 (주)엘지하우시스 Phenolic foam and method for manufacturing the same
WO2020117029A1 (en) * 2018-12-07 2020-06-11 (주)엘지하우시스 Thermosetting foam, manufacturing method therefor, and insulator comprising same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307602A (en) * 2003-04-04 2004-11-04 Kanegafuchi Chem Ind Co Ltd Thermoplastic resin foam and method for producing the same
JP6273889B2 (en) * 2014-02-19 2018-02-07 東ソー株式会社 Flame retardant polyurethane foam
JP6752463B2 (en) * 2016-12-16 2020-09-09 パナソニック株式会社 Method for manufacturing flame-retardant foam and flame-retardant foam
WO2020080148A1 (en) * 2018-10-16 2020-04-23 旭有機材株式会社 Semi-noncombustible phenolic-resin composition and semi-noncombustible material obtained therefrom
KR102504693B1 (en) * 2018-12-07 2023-03-08 (주)엘엑스하우시스 Thermosetting foam, method of producing the same, and insulating material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR980009378A (en) * 1996-07-11 1998-04-30 김상응 Low gloss flame retardant resin composition
JP2013172049A (en) * 2012-02-22 2013-09-02 Tdk Corp Electromagnetic wave absorption sheet
KR101496218B1 (en) * 2013-07-18 2015-02-26 영보화학 주식회사 Non-halogen flame retardant foam and manufacturing method thereof
WO2019030239A1 (en) * 2017-08-10 2019-02-14 Kingspan Holdings (Irl) Limited Phenolic foam and method of manufacture thereof
KR20190031181A (en) * 2017-09-15 2019-03-25 (주)엘지하우시스 Phenolic foam and method for manufacturing the same
WO2020117029A1 (en) * 2018-12-07 2020-06-11 (주)엘지하우시스 Thermosetting foam, manufacturing method therefor, and insulator comprising same

Also Published As

Publication number Publication date
KR20210102115A (en) 2021-08-19
KR102478779B9 (en) 2024-01-08
KR102478779B1 (en) 2022-12-19

Similar Documents

Publication Publication Date Title
WO2021162528A1 (en) Thermosetting foam and method for preparing same
WO2019066543A1 (en) Method for producing thermally conductive thin film using synthetic graphite powder
WO2016133328A1 (en) Non-woven fabric impregnated with fine powder and preparation method therefor
WO2018128368A1 (en) Insulating and heat-radiating coating composition, and insulating and heat-radiating product implemented therewith
Zhang et al. Comparison of intumescence mechanism and blowing-out effect in flame-retarded epoxy resins
WO2015182920A1 (en) Water-soluble flame-retardant composition for wood and method for flame-retardant treatment
WO2020117029A1 (en) Thermosetting foam, manufacturing method therefor, and insulator comprising same
WO2019054795A1 (en) Phenol foam and manufacturing method therefor
WO2023013834A1 (en) Heat sink paint composition, preparation method therefor, heat sink coating film formed therefrom, and heat sink comprising same
Haurie et al. Addition of flame retardants in epoxy mortars: Thermal and mechanical characterization
KR102422819B1 (en) Phenol foam, method of producing the same, and insulating material
WO2021002660A1 (en) Aerogel-containing composition for spraying and method for preparing same
WO2017051963A1 (en) Carbon fiber electrode using carbon fiber and manufacturing method therefor
WO2021034099A1 (en) Resin composition
KR102580146B1 (en) Thermosetting foam, method of producing the same, and insulating material
WO2020076132A1 (en) Method for manufacturing thermosetting expanded foam having excellent flame retardancy, and thermosetting expanded foam using same
WO2022114536A1 (en) Adhesive, total heat exchange element and structure comprising dried adhesive layer, and production methods for same
WO2020149662A1 (en) Composite and method for preparing composite
WO2012177044A2 (en) Optical film
WO2021145492A1 (en) Phenol resin foam, method for producing same, and insulating material comprising same
WO2019066504A2 (en) Thermosetting foam and manufacturing method therefor
WO2021251629A1 (en) Method for preparing admixture for gypsum board, admixture prepared thereby, and composition for forming gypsum board, comprising same
WO2017018570A1 (en) Metal composite material comprising alignment-type precipitates and preparation method therefor
WO2020045827A1 (en) Silicone rubber sponge composition
WO2021034102A1 (en) Resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21753353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21753353

Country of ref document: EP

Kind code of ref document: A1