WO2020117029A1 - Thermosetting foam, manufacturing method therefor, and insulator comprising same - Google Patents

Thermosetting foam, manufacturing method therefor, and insulator comprising same Download PDF

Info

Publication number
WO2020117029A1
WO2020117029A1 PCT/KR2019/017321 KR2019017321W WO2020117029A1 WO 2020117029 A1 WO2020117029 A1 WO 2020117029A1 KR 2019017321 W KR2019017321 W KR 2019017321W WO 2020117029 A1 WO2020117029 A1 WO 2020117029A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame retardant
weight
parts
foam
phosphate
Prior art date
Application number
PCT/KR2019/017321
Other languages
French (fr)
Korean (ko)
Inventor
박건표
배성재
민경서
김채훈
강길호
김명희
박인성
하혜민
김도훈
Original Assignee
(주)엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190082172A external-priority patent/KR20200070077A/en
Application filed by (주)엘지하우시스 filed Critical (주)엘지하우시스
Priority to JP2021531829A priority Critical patent/JP7355824B2/en
Priority to CN201980080556.7A priority patent/CN113490705B/en
Publication of WO2020117029A1 publication Critical patent/WO2020117029A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08L61/22Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
    • C08L61/24Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds with urea or thiourea

Definitions

  • the present invention relates to a thermosetting foam, a method for manufacturing the same, and a heat insulating material including the same.
  • Insulation is an essential material to prevent energy loss in buildings. As global warming continues to emphasize the importance of green growth worldwide, insulation is becoming more important to minimize energy loss.
  • Thermal insulation materials include thermosetting foam insulation, EPS (expanded polystyrene foam) insulation, XPS (extruded polystyrene foam) insulation, and vacuum insulation materials.
  • thermosetting foam insulation materials are widely used because they have the best insulation properties, excluding vacuum insulation materials among existing materials.
  • fire stability is inevitably weaker than inorganic insulating materials.
  • thermosetting foam is manufactured by including the surface material in the manufacturing process, it is possible to improve the flame retardancy by applying the surface material of aluminum material, but in the extreme situation such as a real fire, the flame resistance of the surface material is greatly reduced, so the flame retardancy of the foam is basically It is very important to always.
  • a flame retardant is improved by including a flame retardant such as phosphate in the foamable composition, but the flame retardancy and heat insulation have a trade-off, and there is a problem that the heat insulation is deteriorated.
  • An object of the present invention is to provide a thermosetting foam that satisfies both high thermal insulation and high flame retardancy and has improved physical properties.
  • thermosetting foam It is also an object of the present invention to provide a method for producing the thermosetting foam.
  • thermosetting foam It is also an object of the present invention to provide a heat insulating material comprising the thermosetting foam.
  • thermosetting resin according to the present invention a curing agent, a foaming agent and a composite flame retardant
  • the composite flame retardant includes a first flame retardant and a second flame retardant
  • the first flame retardant is Phosphorus (Phosphorus)
  • the second flame retardant is melamine
  • preparing a flame retardant composition comprising a subject, a curing agent, a blowing agent and a composite flame retardant comprising a thermosetting resin; Preparing a foam composition by stirring the subject, a curing agent, a foaming agent, and a flame retardant composition; And foam-curing the foam composition; wherein the composite flame retardant includes a first flame retardant and a second flame retardant, the first flame retardant is phosphorus, and the second flame retardant is melamine cyanurate,
  • a thermosetting foam comprising at least one selected from the group consisting of trialkylphosphates and combinations thereof, or at least one selected from the group consisting of melamine cyanurate, trialkylphosphates and combinations thereof, and a pentaerythritol-based compound. It can provide a manufacturing method.
  • thermosetting foam according to the present invention.
  • thermosetting foam according to the present invention has improved flame retardancy and excellent heat insulation properties, and can exhibit physical properties such as excellent compressive strength and dimensional stability.
  • thermosetting foam according to the present invention can provide a method for manufacturing the thermosetting foam.
  • the heat insulating material according to the present invention includes the thermosetting foam, has improved flame retardancy and excellent heat insulation properties, and can exhibit excellent compressive strength, dimensional stability, and other physical properties.
  • thermosetting foam of the present invention is a schematic view schematically showing a method for measuring dimensional stability of a thermosetting foam of the present invention.
  • thermosetting foam according to some embodiments of the present invention will be described.
  • thermosetting resin a curing agent, a blowing agent and a composite flame retardant
  • the composite flame retardant comprises a first flame retardant and a second flame retardant
  • the first flame retardant is Phosphorus (Phosphorus)
  • the second flame retardant Is at least one selected from the group consisting of melamine cyanurate, trialkyl phosphate and combinations thereof, or at least one selected from the group consisting of melamine cyanurate, trialkyl phosphate and combinations thereof and a pentaerythritol-based compound It provides a thermosetting foam comprising a.
  • thermosetting foams are inevitably weaker in fire stability than inorganic insulating materials.
  • it is common to impart flame retardancy to the foam through surface treatment such as aluminum face material but there is a fear that the face material may fall off from the actual fire, and if the face material falls off, the probability of fire spreading increases.
  • thermosetting foam is imparted with a flame retardant by using a phosphorus-based flame retardant such as phosphate, but when using a phosphorus-based flame retardant such as phosphate, the flame retardancy is improved, while the foam cell is destroyed during the foaming process and the problem of deterioration in thermal insulation is caused.
  • a phosphorus-based flame retardant such as phosphate
  • the flame retardancy is improved, while the foam cell is destroyed during the foaming process and the problem of deterioration in thermal insulation is caused.
  • the aluminum hydroxide is a basic material, which neutralizes an acid curing agent, so that the curing reactivity of the phenolic resin may deteriorate. Accordingly, there is a problem that the heat insulating properties of the foam produced therefrom are lowered.
  • thermosetting foams in the case of the phenolic foam, it has a rigid (RIGID) property compared to other thermosetting foams, and the viscosity of the resin is also high, so it is difficult to produce a foam suitable for a heat insulating material using other additives such as flame retardants.
  • thermosetting foam includes a thermosetting resin, a curing agent, a foaming agent, and a composite flame retardant, and includes a specific first flame retardant and a second flame retardant as the composite flame retardant, thereby improving flame retardancy and thermal insulation in trade-off.
  • thermosetting foam can exhibit excellent physical properties such as compressive strength and dimensional stability.
  • thermosetting foam includes a thermosetting resin.
  • the thermosetting resin may include one selected from the group consisting of epoxy resin, polyurethane resin, polyisocyanate resin, polyisocyanurate resin, polyester resin, polyamide resin, phenol resin and combinations thereof. Can be.
  • the thermosetting foam may include a phenol-based resin that can be obtained by reacting phenol and formaldehyde as a thermosetting resin, for example, a resol-based phenol resin (hereinafter referred to as'resol resin').
  • the composite flame retardant comprising the first flame retardant and the second flame retardant can be well mixed with the phenolic resin containing a benzene ring and uniformly dispersed and foamed.
  • the thermosetting foam may include a composite flame retardant, while stably forming a uniform and small-sized foam cell, and exhibit improved thermal insulation properties as well as initial thermal insulation properties as well as long-term thermal insulation properties.
  • thermosetting resin may be included in the thermosetting foam in an amount of about 30 wt% to about 90 wt% or about 50 wt% to about 90 wt% or about 55 wt% to about 90 wt%.
  • the thermosetting foam can stably form a foam cell by including the thermosetting resin in an amount within the above range, and realize excellent thermal conductivity.
  • the thermosetting foam contains a curing agent.
  • the curing agent may include one acid curing agent selected from the group consisting of toluene sulfonic acid, xylene sulfonic acid, benzene sulfonic acid, phenol sulfonic acid, ethylbenzene sulfonic acid, styrene sulfonic acid, naphthalene sulfonic acid, and combinations thereof.
  • the thermosetting foam may exhibit appropriate crosslinking, curing and foaming properties including the curing agent.
  • the thermosetting foam contains a blowing agent.
  • the blowing agent may include one selected from the group consisting of hydrofluoroolefin (HFO)-based compounds, hydrocarbon-based compounds, and combinations thereof.
  • the hydrofluoroolefin-based compound is, for example, monochlorotrifluoropropene, trifluoropropene, tetrafluoropropene, pentafluoropropene, hexafluorobutene, and combinations thereof. It may include at least one selected from the group consisting of.
  • the hydrocarbon-based compound may include 1 to 8 carbon atoms.
  • the hydrocarbon-based compound is dichloroethane, propyl chloride, isopropyl chloride, butyl chloride, isobutyl chloride, pentyl chloride, isopentyl chloride, n-butane, isobutane, n-pentane, isopentane, cyclopentane, It may include at least one selected from the group consisting of hexane, heptane, cyclopentane and combinations thereof.
  • the hydrocarbon-based compound is a hydrocarbon having 1 to 5 carbon atoms, dichloroethane, propyl chloride, isopropyl chloride, butyl chloride, isobutyl chloride, pentyl chloride, isopentyl chloride, n-butane, isobutane, n-pentane, Including at least one selected from the group consisting of isopentane, cyclopentane, and combinations thereof, it may exhibit excellent thermal insulation properties along with eco-friendliness.
  • thermosetting foam may include a surfactant selected from the group consisting of amphoteric, cationic, anionic, and nonionic surfactants and combinations thereof.
  • the thermosetting foam may include castor oil surfactant that is ethoxylated, that is, a nonionic surfactant.
  • thermosetting foam particularly the phenolic resin foam
  • the thermosetting foam can easily disperse the complex flame retardant components including the surfactant, and stably form an appropriate foam structure on the thermosetting foam, thereby realizing excellent thermal conductivity and excellent physical strength. Can be.
  • thermosetting foam includes a composite flame retardant
  • the composite flame retardant includes a first flame retardant and a second flame retardant
  • the first flame retardant is Phosphorus
  • the second flame retardant is melamine cyanurate, trialkyl At least one selected from the group consisting of phosphates and combinations thereof, or at least one selected from the group consisting of melamine cyanurate, trialkylphosphates and combinations thereof, and a pentaerythritol-based compound.
  • the second flame retardant is excellent in compatibility with the first flame retardant, the phosphorus, so that it can be mixed well, and suppresses agglomeration of small-sized phosphorus particles so that the composite flame retardant is evenly dispersed and improved by uniform foaming.
  • excellent heat insulation properties can be imparted.
  • excellent physical properties such as compressive strength and dimensional stability can be imparted.
  • the thermosetting foam can be well formed as a first flame retardant of the composite flame retardant, including phosphorus, with excellent carbonization during combustion.
  • the phenolic resin foam may contain phosphorus in the phenolic resin containing a benzene ring to better form a char.
  • the phosphorus can capture the hydrogen radicals and hydroxy radicals generated during combustion, thereby preventing the combustion reaction from occurring in a chain, thereby rapidly blocking the propagation of fire.
  • the phosphorus can be divided into white, red, black, and white, depending on the structural state and color of the phosphorus.
  • the thermosetting foam may include red.
  • the thermosetting foam may be easily handled when forming a thermosetting foam, including an enemy having an appropriate structure.
  • the thermosetting foam may include 80% or more or 100% of the phosphorous enemy.
  • the composite flame retardant comprises a second flame retardant, the second flame retardant comprises at least one selected from the group consisting of melamine cyanurate, trialkylphosphates and combinations thereof, or melamine cyanurate, trialkylphosphates and these And at least one selected from the group consisting of pentaerythritol-based compounds.
  • the second flame retardant is excellent in compatibility with the first flame retardant phosphorus and can be mixed well, and suppresses the agglomeration of small-sized phosphorus particles so that the composite flame retardant is evenly dispersed and uniformly foamed to improve flame retardancy Together with it can exhibit excellent thermal insulation.
  • the pentaerythritol-based compound may form a carbonized film (Char) by bonding between the phosphorus and phosphorus during combustion, and prevent fire propagation.
  • the pentaerythritol-based compound may include one selected from the group consisting of monopentaerythritol, dipentaerythritol, tripentaerythritol, and combinations thereof.
  • melamine cyanurate hydrogen bonds in the melamine cyanurate structure are endothermally decomposed upon combustion, and combustion heat may be lowered by delaying ignition by absorbing heat by sublimation and decomposition of melamine itself.
  • melamine cyanurate can dilute oxygen by generating nitrogen and/or ammonia gas upon combustion.
  • the melamine cyanurate may condense the melamine itself generated by combustion decomposition to form a carbonized film including multiple ring structures such as melem and melon. At this time, the melamine cyanurate acts together when forming the carbonized film of the phosphorus, thereby improving the reaction of forming the carbonized film and forming a stable carbonized film.
  • the melamine cyanurate can form a uniform and small cell in a thermosetting foam.
  • the melamine cyanurate may act as a nucleating agent in the foam, and the structure of the cell may be more stably formed to further improve heat insulation.
  • the melamine cyanurate may have an average particle diameter of about 1 ⁇ m to about 20 ⁇ m or about 1 ⁇ m to 10 ⁇ m.
  • the particle diameter can be measured by a laser particle size analyzer (Laser Particle Size Analyner, model name: BT-2000). If the average particle diameter of melamine cyanurate is less than the above range, there may be a problem that the viscosity of the composition containing it is increased and dispersion is not good. And, if it exceeds the above range, there may be a problem that the flame retardancy is lowered.
  • the trialkyl phosphate is trimethyl phosphate, triethyl phosphate, tributyl phosphate, tris (1-chloro 2-propyl) phosphate, tri (2-ethylhexyl) phosphate, triphenyl phosphate, tricresyl phosphate, triza Trienylenyl phosphate, tris(isopropylphenyl)phosphate, tris(phenylphenyl)phosphate, trinaphthylphosphate, cresyldiphenylphosphate, xylenyldiphenylphosphate, diphenyl(2-ethylhexyl)phosphate, di (Isopropylphenyl)phenylphosphate, monoisodecylphosphate) and combinations thereof.
  • the trialkyl phosphate improves the uniform dispersion of the phosphorus, suppresses the agglomeration of small-sized phosphorus particles so that the composite flame retardant can be evenly dispersed, and uniformly foams to exhibit excellent heat insulation with improved flame retardancy.
  • the trialkyl phosphate may be triethyl phosphate, and it is well mixed with the phosphorus to improve the flame retardancy and heat insulation.
  • the composite flame retardant may be included in an amount of 1 to 20 parts by weight compared to 100 parts by weight of the thermosetting foam.
  • the composite flame retardant may be included in an amount of 1.5 parts by weight to 15 parts by weight or about 2 parts by weight to about 10 parts by weight.
  • the thermosetting foam may include the composite flame retardant in the above range to control the combustion speed of the foam during a fire and stably form a carbonized film, and at the same time, provide excellent physical properties such as improved flame retardancy and excellent heat insulation and compressive strength.
  • the content of the composite flame retardant when the content of the composite flame retardant is less than the above range, it may not stably form a carbonized film and may not exhibit a sufficient flame retardant effect. And, if it exceeds the above range, it is uneconomical because it takes a lot of cost compared to the rising flame retardant effect, and the viscosity of the foam composition is greatly increased, which may cause problems during foaming. For example, if the viscosity of the foam composition is increased due to the content of the composite flame retardant, the temperature of the foam composition is increased because the torque of the mixer is high during stirring. In addition, the amount of volatilization of the blowing agent is increased, and accordingly, thermal insulation may be deteriorated. In addition, due to the high viscosity of the foam composition, phosphors, foaming agents, curing agents, and the like are not evenly dispersed, which may cause a problem that the physical properties of the foam are not uniformly formed.
  • the first flame retardant may be included in an amount of 0.9 to 15 parts by weight compared to 100 parts by weight of the thermosetting foam.
  • the first flame retardant is contained in about 1 part by weight to about 10 parts by weight, or about 2 parts by weight to about 8 parts by weight, uniformly dispersed in the thermosetting resin, and improved flame retardancy and compressive strength while maintaining excellent thermal insulation It can give excellent physical properties.
  • the viscosity of the foam composition is greatly increased, which may cause problems during foaming. For example, if the viscosity of the foam composition is increased, the temperature of the foam composition may be increased because the torque of the mixer is high during stirring. In addition, the amount of volatilization of the blowing agent is increased, and accordingly, thermal insulation may be deteriorated. In addition, due to the high viscosity of the foam composition, phosphors, foaming agents, curing agents, and the like are not evenly distributed, and a problem that physical properties such as poor compressive strength may not be formed may occur.
  • the second flame retardant may be included in an amount of 0.1 to 7 parts by weight compared to 100 parts by weight of the thermosetting foam.
  • the second flame retardant may be about 0.1 parts by weight to about 4 parts by weight.
  • the composite flame retardant, together with the first flame retardant includes the second flame retardant in an amount within the above range to control the combustion rate of the foam during a fire and to form a stable carbonized film, thereby providing excellent flame retardancy, excellent thermal insulation, compressive strength, and dimensional stability. It can have excellent physical properties such as.
  • the content of the second flame retardant When the content of the second flame retardant is less than the above range, it may not properly react with the phosphorus to form an appropriate carbonized film, and the rate of formation of the carbonized film may not be sufficient, thereby improving the flame retardant improving effect. In addition, when the amount exceeds the above range, the second flame retardant compound itself, which does not react with phosphorus in the fire, may burn and deteriorate flame retardancy.
  • the weight ratio of the first flame retardant to the second flame retardant may be about 1: 0.05 to about 1: 1.2.
  • the weight ratio of the first flame retardant to the second flame retardant is about 1: 0.07 to about 1: 0.6, or about 1: 0.1 to about 1: 0.4
  • the thermosetting foam includes the first flame retardant and the second flame retardant in a weight ratio in the above range, and simultaneously exhibits improved flame retardancy and excellent heat insulation, and can also exhibit excellent physical properties.
  • the second flame retardant is mixed in an amount less than the above range, the synergistic effect of phosphorus is insignificant and there is an uneconomical problem.
  • the second flame retardant is mixed above the above range, the flame retardance is lowered, and the high independent Bubble rate is difficult to secure, it may be difficult to secure a sufficient compressive strength.
  • the composite flame retardant may include the phosphorus and the pentaerythritol-based compound, and the weight ratio of the phosphorus to the pentaerythritol-based compound may be about 1: 0.05 to about 1: 0.6.
  • the weight ratio of the phosphorus to the pentaerythritol-based compound may be about 1: 0.07 to about 1: 0.4.
  • the composite flame retardant may include the phosphorus and the melamine cyanurate compound, and the weight ratio of the phosphorus to the melamine cyanurate compound may be about 1: 0.05 to about 1: 0.8.
  • the weight ratio of the phosphorus to the melamine cyanurate compound may be about 1: 0.07 to about 1: 0.6.
  • the composite flame retardant may include the phosphorus and the trialkyl phosphate, and the weight ratio of the phosphorus to the trialkyl phosphate may be about 1: 0.05 to about 1: 0.8.
  • the weight ratio of the phosphorus to the trialkylphosphate may be about 1: 0.07 to about 1: 0.6.
  • the second flame retardant that remains without reacting with the phosphorus that is the first flame retardant may be burned during a fire and deteriorate flame retardancy. have.
  • the content of the second flame retardant is less than the above range, the dispersibility of phosphorus in the thermosetting foam is poor and the heat insulating property may be deteriorated.
  • a synergistic effect of flame retardancy according to the combination of the second flame retardant and the phosphorus may not be exhibited.
  • the composite flame retardant may include the phosphorus, the pentaerythritol-based compound, and the melamine cyanurate, compared to 100 parts by weight of the phosphorus, the pentaerythritol-based compound from about 1 part by weight to about 50 parts by weight And about 1 part by weight to about 80 parts by weight of the melamine cyanurate.
  • the pentaerythritol-based compound may include about 5 parts by weight to about 30 parts by weight
  • the melamine cyanurate may include about 5 parts by weight to about 40 parts by weight.
  • the composite flame retardant may include the phosphorus, the melamine cyanurate, and the trialkyl phosphate, and the phosphorus, compared to 100 parts by weight of the melamine cyanurate, including about 1 part by weight to about 80 parts by weight of the tree,
  • the alkyl phosphate may include about 1 part by weight to about 80 parts by weight.
  • the melamine cyanurate may include about 5 parts by weight to about 40 parts by weight
  • the trialkyl phosphate may include about 5 parts by weight to about 40 parts by weight.
  • the content of the melamine cyanurate compared to the trialkyl phosphate is less than the above range, there is a problem of insufficient formation of a carbonized film formed by synergy with phosphorus and trialkyl phosphate, and when it exceeds the above range, the excess melamine cyanurate There may be a problem of lowering the thermal conductivity by rather hindering the cell formation of the phenolic foam.
  • the composite flame retardant may include the phosphorus, the pentaerythritol-based compound, and the trialkyl phosphate, and the pentaerythritol-based compound to about 1 part by weight to about 50 parts by weight, compared to 100 parts by weight of the phosphorus,
  • the trialkyl phosphate may include about 1 part by weight to about 80 parts by weight.
  • the pentaerythritol-based compound may include about 5 parts by weight to about 30 parts by weight
  • the trialkyl phosphate may include about 5 parts by weight to about 40 parts by weight.
  • the content of the pentaerythritol-based compound compared to the trialkyl phosphate is less than the above range, the formation of a carbonized film formed by synergy with phosphorus and trialkyl phosphate may be insufficient, and when it exceeds the above range, the excess penta remaining without reacting As the erythritol-based compound is burned, there may be a problem of deteriorating flame retardancy.
  • the composite flame retardant may include the phosphorus, the pentaerythritol-based compound, the melamine cyanurate, and the trialkyl phosphate, compared to 100 parts by weight of the phosphorus, the pentaerythritol-based compound from about 1 part by weight to about 30 parts by weight, the melamine cyanurate may include about 1 part by weight to about 50 parts by weight, and the trialkyl phosphate may include about 1 part by weight to about 60 parts by weight.
  • the pentaerythritol-based compound includes about 3 parts by weight to about 20 parts by weight
  • the melamine cyanurate contains about 5 parts by weight to about 30 parts by weight
  • the tree The alkyl phosphate may include about 5 parts by weight to about 40 parts by weight.
  • thermosetting resin a curing agent, a blowing agent and a composite flame retardant
  • the composite flame retardant includes a first flame retardant and a second flame retardant
  • the first flame retardant is Phosphorus (Phosphorus)
  • the second flame retardant is melamine cyanurate
  • the thermosetting comprising at least one selected from the group consisting of trialkyl phosphates and combinations thereof, or at least one selected from the group consisting of melamine cyanurate, trialkyl phosphates and combinations thereof, and a pentaerythritol-based compound.
  • the foam has a thermal conductivity of about 0.016 W/m ⁇ K to about 0.029 W/m ⁇ K measured at an average temperature of 20° C. according to KS L 9016.
  • the thermosetting foam has a thermal conductivity of about 0.016 W/m ⁇ K to about 0.025 W/m ⁇ K, about 0.016 W/m ⁇ K to about 0.023 W/ measured at an average temperature of 20° C. according to KS L 9016. m ⁇ K, about 0.016 W/m ⁇ K or more, about 0.020 W/m ⁇ K or less, or about 0.016 W/m ⁇ K or more, and less than about 0.0195 W/m ⁇ K.
  • the thermal conductivity indicates the initial thermal insulation of the foam, and the thermally curable foam includes the composite flame retardant, and may improve thermal insulation as well as flame retardancy.
  • thermosetting foam according to EN13823 dried for 7 days at 70°C and then dried for 14 days at 110°C
  • the thermal conductivity measured at an average temperature of 20°C is about 0.017 W/mK to about 0.029 W/ It can be m ⁇ K.
  • it may be about 0.017 W/m ⁇ K to about 0.025 W/m ⁇ K or about 0.017 W/m ⁇ K or more and less than about 0.023 W/m ⁇ K.
  • the thermal conductivity indicates long-term thermal insulation of the foam, and the thermal-curable foam may exhibit long-term thermal insulation of the same or similar range as the initial thermal insulation by including the composite flame retardant.
  • the thermosetting foam may have a total heat emission rate (THR600s) of 10 minutes by a cone calorimeter according to KS F ISO 5660-1 from about 2.0 MJ/m 2 to about 15 MJ/m 2.
  • TRR600s total heat emission rate
  • KS F ISO 5660-1 total heat emission rate
  • the thermosetting foam may have excellent flame retardancy close to semi-incombustibility even without a separate face material.
  • thermosetting foam has a total heat emission rate (THR300s) of about 1.0 MJ/m 2 to about 12 MJ/m 2, for example, about 1.0 MJ/m 2 by concalimeter according to KS F ISO 5660-1. To about 7.5 MJ/m 2, about 1.0 MJ/m 2 to about 5 MJ/m 2 or about 1.0 MJ/m 2 or more, and less than about 4 MJ/m 2, it may exhibit excellent flame retardancy.
  • the independent bubble rate of the thermosetting foam may be from about 75% to about 98%.
  • the independent bubble rate of the thermosetting foam may be from about 80% to about 95%.
  • thermosetting foam when a phosphorus-based flame retardant such as phosphate is used in the thermosetting foam to improve the flame retardancy, the flame retardancy may be improved, but the foam cell is destroyed during the foaming process, resulting in a decrease in the independent bubble rate and a decrease in thermal insulation.
  • the thermosetting foam can maintain a high independent bubble rate in the above range including the composite flame retardant.
  • thermosetting foam is uniformly mixed with the thermosetting resin, including the composite flame retardant, the foam cell structure is not easily destroyed, it can have uniform properties by uniform foaming.
  • the phosphorus which is the first flame retardant, acts as a filler in the thermosetting foam to impart structural stability to the thermosetting foam together with the second flame retardant and, together with it, to provide excellent compressive strength and flexural breaking load in the above range.
  • thermosetting foam may have a compressive strength of about 80 kPa to about 300 kPa according to KS M ISO 844.
  • KS M ISO 844 For example, about 150 kPa to about 230 kPa Can be
  • thermosetting foam according to KS M ISO 4898, 200 mm support spacing on a specimen of 250 mm (L) ⁇ 100 mm (W) ⁇ 20 mm (T), the maximum load until the specimen breaks at a load concentration rate of 50 mm/min ( N), the flexural breaking load (N) may be from about 15 N to about 50 N. For example, it may be about 20 N to about 50 N.
  • thermosetting foam may have an average value of a dimensional change rate according to Equation 1 below from 0% to 1.0%.
  • the thermosetting foam may have an average dimensional change rate of about 0% to about 0.8% or about 0% to about 0.6%.
  • Dimensional change rate (%) (Initial length(a)-Last length(a'))/Initial length(a) X 100
  • Equation 1 the initial length (a) is the length of each line at n points equal in the length (L) and width (W) directions of the thermosetting foam, and the later length (a') is the thermosetting foam. It means the later length (a') of each line at each point after leaving the oven at 70°C for 48 hours. At this time, n may be 2 to 5. n can be 3.
  • thermosetting foam includes the composite flame retardant as a flame retardant, and thus has a dimensional change rate within the above range, and it can be seen that it has excellent dimensional stability. Accordingly, the thermosetting foam exhibits excellent thermal conductivity, so that long-term thermal insulation can be more effectively improved, and workability and workability can be more excellent when applied as a predetermined product.
  • thermosetting foam may exhibit excellent flame retardancy with an oxygen index of about 32% or more according to KS M ISO 4589-2.
  • the oxygen index of the thermosetting foam may be about 32% to about 60%, about 36% to about 60% or about 43% to about 60%. Since the thermosetting foam has an oxygen index in the above range, it may not be easily burned in a fire, and thus it may be easy to secure an evacuation time.
  • Another embodiment of the present invention comprises the steps of preparing a flame retardant composition comprising a subject, a curing agent, a blowing agent and a composite flame retardant comprising a thermosetting resin; Preparing a foam composition by stirring the subject, a curing agent, a foaming agent, and a flame retardant composition; And foam-curing the foam composition; wherein the composite flame retardant includes a first flame retardant and a second flame retardant, the first flame retardant is phosphorus, and the second flame retardant is melamine cyanurate,
  • a thermosetting foam comprising at least one selected from the group consisting of trialkylphosphates and combinations thereof, or at least one selected from the group consisting of melamine cyanurate, trialkylphosphates and combinations thereof, and a pentaerythritol-based compound. It provides a method of manufacturing.
  • thermosetting foam having improved flame retardancy, excellent thermal insulation properties, and excellent compressive strength and dimensional stability. Matters relating to the thermosetting resin, curing agent, foaming agent and composite flame retardant are as described above, except as specifically described below.
  • a step of preparing a flame retardant composition comprising a subject, a curing agent, a blowing agent, and a composite flame retardant, comprising a thermosetting resin.
  • Subjects may include from about 1 part to about 5 parts by weight of surfactant and from about 3 parts to about 10 parts by weight of urea, relative to 100 parts by weight of thermosetting resin.
  • the composite flame retardant may include one solid material selected from the group consisting of phosphorus, pentaerythritol-based compounds, melamine cyanurate, and combinations thereof, wherein the composite flame retardant is in the form of a flame retardant composition mixed with an organic solvent. It is included in the furnace foam composition and has proper flowability and is easily introduced into the production process, and can be uniformly mixed with the thermosetting resin.
  • the composite flame retardant: the organic solvent may be mixed in a weight ratio of about 2:1 to about 1:2 to be included in the flame retardant composition, and may be mixed at a content ratio in the above range to not decrease the flame retardant enhancing effect of the composite flame retardant. have.
  • the organic solvent may be a low-viscosity organic solvent selected from the group consisting of polyols, surfactants, polyethylene glycol, ethylene glycol, phosphate-based compounds, and combinations thereof.
  • the phosphate-based compound is, for example, Tris(1-chloro-2-propyl)phosphate (TCP), Tris-(2-chloroethyl)phosphate (Tris-( 2-chloroethyl)phosphate, TCEP), and triethyl phosphate (TEP).
  • the organic solvent may be added in a range of about 1 part by weight to about 15 parts by weight relative to 100 parts by weight of the thermosetting resin. When the content of the organic solvent exceeds the above range, a problem that thermal insulation is deteriorated may occur.
  • the organic solvent is a first organic solvent selected from the group consisting of TCPP, TCEP, TEP and combinations thereof and one selected from the group consisting of polyol, surfactant, polyethylene glycol, ethylene glycol and combinations thereof. It may be a mixed organic solvent of the second organic solvent.
  • the difference in viscosity ( ⁇ V
  • ) between the viscosity (V1) of the thermosetting resin and the viscosity (V2) of the flame retardant composition may be about 30,000 cps or less or about 20,000 cps or less. It may be between about 0 and about 10,000 cps.
  • thermosetting foam when the viscosity difference ( ⁇ V) exceeds the above range, uniform mixing and foaming of the composite flame retardant and the thermosetting resin may be difficult, and accordingly, the physical properties of the thermosetting foam may deteriorate.
  • the viscosity of the foam composition including the thermosetting resin and the flame retardant composition increases, the torque of the stirring mixer takes a lot, and the temperature of the foam composition rises rapidly so that the volatilization amount of the foaming agent may increase before the foam is cured. And, accordingly, thermal insulation may be deteriorated.
  • the viscosity (V1) of the thermosetting resin may be about 10,000 cps to about 80,000 cps, about 10,000 cps to about 50,000 cps, or about 20,000 cps to about 50,000 cps at 20°C.
  • ⁇ V difference in viscosity
  • V1 viscosity of the thermosetting resin
  • the curing reaction rate of the thermosetting resin in which the composite flame retardant is dispersed can be appropriately adjusted. Accordingly, it is possible to form a thermosetting foam having a structurally stable and moderate cross-linking structure, and the thermosetting foam maintains excellent thermal insulation properties at a constant level with improved flame retardancy, and exhibits excellent physical properties such as excellent compressive strength. .
  • the blowing agent may be included to be about 5 parts by weight to about 15 parts by weight based on about 100 parts by weight of the thermosetting resin.
  • the foam composition comprising the composite flame retardant dispersed in the thermosetting resin uniformly foams at an appropriate blowing pressure in the process of foaming to improve physical properties such as improved flame retardancy, heat insulation and compressive strength. It is possible to form a thermosetting foam having. For example, when the content of the foaming agent exceeds the above range, the foam cell is destroyed and the heat insulating property is lowered, the dimensional change rate of the foam is increased, and the compressive strength may be lowered.
  • the curing agent may be included in an amount of about 15 to about 25 parts by weight compared to 100 parts by weight of the thermosetting resin.
  • the curing agent refers to a mixture of a substance such as toluene sulfonic acid in a solvent.
  • a composition containing a composite flame retardant by including a curing agent in the above range the balance of foaming and curing can be appropriately adjusted, and accordingly, physical properties such as heat insulation and excellent compressive strength can be imparted along with excellent flame retardancy.
  • the method for manufacturing the thermosetting foam includes the steps of preparing the foam composition by stirring the subject, the curing agent, the foaming agent and the flame retardant composition.
  • the flame retardant composition containing the composite flame retardant can be separately mixed and stirred by separating from the subject containing the thermosetting resin. Accordingly, it is possible to prevent the viscosity of the subject containing the thermosetting resin from rapidly increasing, and the thermosetting foam having the above-described physical properties can be easily produced.
  • the method of manufacturing the thermosetting foam comprises the step of foam-curing the foam composition.
  • the thermosetting foam can be foamed and cured, for example, under temperature conditions from about 50°C to about 90°C.
  • the foaming and curing may be performed for a time of about 2 minutes to about 20 minutes, but is not limited thereto, and may be appropriately changed according to the purpose and use of the invention.
  • Another embodiment of the present invention provides a heat insulating material comprising the thermosetting foam.
  • thermosetting foam can be applied, for example, to the use of a building insulation material, and accordingly, can simultaneously satisfy a significantly improved flame retardancy along with excellent heat insulation required as a building insulation material. And, it can have excellent compressive strength, flexural breaking load (N), dimensional stability, and high oxygen index.
  • the building insulation material may further include, for example, a face material on one side or both sides of the thermosetting foam, and further include aluminum as the face material to further improve flame retardancy.
  • Toluenesulfonic acid as a curing agent and cyclopentane as a foaming agent were prepared by mixing 100 parts by weight of a resol resin having a viscosity of 30,000 cps at 20°C, 1 part by weight of castor oil surfactant subjected to an ethoxylation reaction, and 3.5 parts by weight of a powdery urea. . Then, a flame retardant composition was prepared by mixing a composite flame retardant of red and melamine cyanurate in an organic solvent in which a castor oil surfactant: ethylene glycol was mixed in a weight ratio of 2:1.
  • the toluene sulfonic acid 80 parts by weight of ethylene glycol 15% by weight and 5% by weight of a mixture of 18 parts by weight of the mixture, 8 parts by weight of cyclopentane, piping the flame retardant composition It was supplied to the stirrer through and stirred to prepare a foam composition.
  • the stirred foam composition was introduced into a caterpillar operated at a speed of 5 m/min to finally prepare a phenolic resin foam having a density of 40 kg/m3.
  • the temperature of the caterpillar was 70°C, and the thickness was 50 mm.
  • the viscosity difference between the viscosity of the resol resin (V1) and the viscosity of the flame retardant composition (V2) was made to be within 10,000 cps.
  • the viscosity was measured using a Brookfield viscometer (Brookfield, DV3T Rheometer, #63 spindle).
  • the phenolic resin foam was prepared to contain 6 parts by weight of red and 2 parts by weight of melamine cyanurate, relative to 100 parts by weight of the phenolic resin foam.
  • a phenolic foam was prepared in the same manner as in Example 1, except that a composite flame retardant of red and triethylphosphate was used instead of the composite flame retardant of red and melamine cyanurate. And, finally, compared to 100 parts by weight of the phenolic resin foam, it was made to include 6 parts by weight of red and 2 parts by weight of triethyl phosphate.
  • a phenolic foam was prepared in the same manner as in Example 1, except that a composite flame retardant of red, monopentaerythritol and melamine cyanurate was used instead of the composite flame retardant of red and melamine cyanurate. And, finally, compared to 100 parts by weight of the phenolic resin foam, it was made to include 6 parts by weight of red, 1 part by weight of monopentaerythritol and 1 part by weight of melamine cyanurate.
  • a phenolic foam was prepared in the same manner as in Example 1, except that a composite flame retardant of red, melamine cyanurate and triethylphosphate was used instead of the composite flame retardant of red and melamine cyanurate. And, finally, compared to 100 parts by weight of the phenolic resin foam, 6 parts by weight of red, 1 part by weight of melamine cyanurate and 1 part by weight of triethyl phosphate.
  • a phenolic foam was prepared in the same manner as in Example 1, except that a composite flame retardant of red, monopentaerythritol and triethylphosphate was used instead of the composite flame retardant of red and melamine cyanurate. And, finally, compared to 100 parts by weight of the phenolic resin foam, it was made to include 6 parts by weight of red, 1 part by weight of monopentaerythritol and 1 part by weight of triethyl phosphate.
  • a phenolic foam was prepared in the same manner as in Example 1, except that the composite flame retardant of red, monopentaerythritol, melamine cyanurate, and triethyl phosphate was used instead of the composite flame retardant of red and melamine cyanurate. And, finally, compared to 100 parts by weight of the phenolic resin foam, 6 parts by weight of red, 0.3 parts by weight of monopentaerythritol, 0.7 parts by weight of melamine cyanurate and 1 part by weight of triethyl phosphate.
  • a phenolic foam was prepared in the same manner as in Example 1, except that only melamine cyanurate was used in place of the above-mentioned composite flame retardant of melamine cyanurate. And, finally, compared to 100 parts by weight of the phenolic resin foam, it was made to contain 8 parts by weight of melamine cyanurate.
  • a phenolic foam was prepared in the same manner as in Example 1, except that only pentaerythritol was used instead of the above-mentioned composite flame retardant of melamine cyanurate. And, finally, compared to 100 parts by weight of the phenolic resin foam, it was made to include 8 parts by weight of pentaerythritol.
  • a phenolic foam was prepared in the same manner as in Example 1, except that the composite flame retardant of ammonium polyphosphate and melamine cyanurate was used instead of the above-mentioned composite flame retardant of melamine cyanurate. And finally, compared to 100 parts by weight of the phenolic resin foam, it was made to include 6 parts by weight of ammonium polyphosphate and 2 parts by weight of melamine cyanurate.
  • a phenolic foam was prepared in the same manner as in Example 1, except that the composite flame retardant of ammonium polyphosphate and monopentaerythritol was used instead of the composite flame retardant of the above and melamine cyanurate. And, finally, compared to 100 parts by weight of the phenolic resin foam, it was made to include 6 parts by weight of ammonium polyphosphate and 2 parts by weight of monopentaerythritol.
  • a phenolic foam was prepared in the same manner as in Example 1, except that only the triethyl phosphate was used instead of the above-mentioned composite flame retardant of melamine cyanurate. And, finally, compared to 100 parts by weight of the phenolic resin foam, it was made to include 8 parts by weight of triethyl phosphate.
  • the phenolic resin foams of Examples and Comparative Examples were cut to a thickness of 50 mm and a size of 300 mm ⁇ 300 mm to prepare specimens, and the specimens were dried at 70° C. for 12 hours for pretreatment. Then, according to the measurement conditions of KS L 9016 (flat plate heat flow meter method) for the specimen, the thermal conductivity was measured using an HC-074-300 (EKO) thermal conductivity device at an average temperature of 20°C, and the results are shown in the table below. It was described in 1.
  • the phenolic resin foams of Examples and Comparative Examples were cut to a thickness of 50 mm and a size of 300 mm ⁇ 300 mm to prepare specimens, and the specimens were dried for 7 days at 70° C. according to EN13823, followed by 14 days at 110° C. After drying, the thermal conductivity was measured using an HC-074-300 (EKO) thermal conductivity device at an average temperature of 20°C, and the results are shown in Table 1 below.
  • the phenolic resin foams of the above examples and comparative examples were fabricated into specimens having a size of 100 mm(L) ⁇ 100 mm(W) ⁇ 50 mm(T) using a grizzly band saw.
  • KS F ISO 5660-1 Then, the measurement conditions of KS F ISO 5660-1 were set as follows. The heat of the heater was set to 700°C by matching 50kW/m 2 radiant heat, the blower speed was 24L/min, and the oxygen concentration started at 20.950%. Then, using a cone-calorimeter (Fasttech International), 50 kW/m 2 radiant heat was applied to the specimen for 5 minutes, and the total amount of heat released (THR300) was measured. And the results are shown in Table 1 below.
  • the phenol resin foam of each of the examples and comparative examples was cut into 2.5 cm (L) X 2.5 cm (W) X 2.5 cm (T) to prepare specimens. And, using the KS M ISO 4590 measurement method using an independent bubble rate measuring instrument (Quantachrome, ULTRAPYC 1200e) equipment and the results are shown in Table 1 below.
  • the phenolic resin foams of Examples and Comparative Examples were prepared as specimens having a size of 50mm(L) ⁇ 50mm(W) ⁇ 50mm(T), and the specimens were placed between wide plates of a Lloyd instrument company LF Plus Universal Testing Machine. , UTM equipment was set at a rate of 10% mm/min of the specimen thickness, and the compressive strength experiment was started to record the strength at the first compressive yield point during the thickness reduction. Compressive strength was measured by the method of KS M ISO 844 standard, and the results are shown in Table 1 below.
  • thermosetting foam of the present invention is a schematic view schematically showing a method for measuring dimensional stability of a thermosetting foam of the present invention.
  • Dimensional change rate (%) (Initial length(a)-Last length(a'))/Initial length(a) X 100
  • the phenolic resin foams of Examples and Comparative Examples were prepared as specimens having a size of 250 mm (L) ⁇ 100 mm (W) ⁇ 20 mm (T), and the specimens according to KS M ISO 4898, 200 mm support spacing, 50 mm/min load concentration
  • the maximum load (N) from the velocity until the specimen fractured was measured and the results are shown in Table 1 below.
  • thermosetting foam of the embodiment exhibits excellent flame retardancy with low total emission heat and high oxygen index, and at the same time, has excellent initial thermal conductivity and long-term thermal conductivity in a similar range, and has a constant low thermal conductivity over time. You can see that it stays at the level.
  • thermosetting foam of the Example satisfies the high independent bubble rate, the improved compressive strength, the flexural fracture load, and the dimensional change rate at the same time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

Provided is a thermosetting foam comprising a thermosetting resin, a curing agent, a foaming agent, and a composite flame retardant, wherein the composite flame retardant comprises a first flame retardant and a second flame retardant. The first flame retardant is phosphorus, and the second flame retardant comprises at least one selected from the group consisting of melamine cyanurate, trialkyl phosphate, and combinations thereof, or comprises both a pentaerythritol-based compound and at least one selected from the group consisting of melamine cyanurate, trialkyl phosphate, and combinations thereof.

Description

열경화성 발포체, 이의 제조방법 및 이를 포함하는 단열재Thermosetting foam, method for manufacturing the same, and insulating material including the same
본 발명은 열경화성 발포체, 이의 제조방법 및 이를 포함하는 단열재에 관한 것이다.The present invention relates to a thermosetting foam, a method for manufacturing the same, and a heat insulating material including the same.
단열재는 건축물에서 에너지 손실을 막기 위해 필수적으로 사용되는 재료이다. 지구온난화로 인해 녹색성장의 중요성이 전세계적으로 계속 강조되고 있기 때문에 에너지 손실 최소화를 위해 단열성이 더욱 중요해지고 있다. Insulation is an essential material to prevent energy loss in buildings. As global warming continues to emphasize the importance of green growth worldwide, insulation is becoming more important to minimize energy loss.
단열재로 열경화성 발포체 단열재, EPS(expanded polystyrene foam) 단열재, XPS(extruded polystyrene foam) 단열재, 진공단열재 등이 있다. 그 중 열경화성 발포체 단열재는 현존하는 소재 중 진공단열재를 제외하고 가장 뛰어난 단열성을 가져 널리 사용되고 있다. 하지만, 유기물의 근본적인 한계 때문에 화재 안정성이 무기 단열재보다 취약할 수 밖에 없다.Thermal insulation materials include thermosetting foam insulation, EPS (expanded polystyrene foam) insulation, XPS (extruded polystyrene foam) insulation, and vacuum insulation materials. Among them, thermosetting foam insulation materials are widely used because they have the best insulation properties, excluding vacuum insulation materials among existing materials. However, due to the fundamental limitations of organic matter, fire stability is inevitably weaker than inorganic insulating materials.
또한, 열경화성 발포체는 제조공정상 표면재를 포함하여 제조하기 때문에 알루미늄 소재의 표면재를 적용하여 난연성을 향상시킬 수 있지만, 실제 화재와 같은 극한의 상황에서는 표면재의 화염 저항성이 크게 떨어지기 때문에 근본적으로 발포체의 난연성을 항상시키는 것이 매우 중요하다.In addition, since the thermosetting foam is manufactured by including the surface material in the manufacturing process, it is possible to improve the flame retardancy by applying the surface material of aluminum material, but in the extreme situation such as a real fire, the flame resistance of the surface material is greatly reduced, so the flame retardancy of the foam is basically It is very important to always.
이에, 일반적으로 발포성 조성물에 포스페이트 등의 난연제를 포함시켜 난연성을 향상시키고 있으나, 난연성과 단열성은 상충관계(trade-off)를 가지는바, 단열성이 저하되는 문제가 있다.Thus, in general, a flame retardant is improved by including a flame retardant such as phosphate in the foamable composition, but the flame retardancy and heat insulation have a trade-off, and there is a problem that the heat insulation is deteriorated.
본 발명의 목적은 고단열성과 고난연성을 동시에 만족하고 향상된 물성을 갖는 열경화성 발포체를 제공하는 것이다.An object of the present invention is to provide a thermosetting foam that satisfies both high thermal insulation and high flame retardancy and has improved physical properties.
또한 본 발명의 목적은 상기 열경화성 발포체를 제조하는 방법을 제공하는 것이다.It is also an object of the present invention to provide a method for producing the thermosetting foam.
또한 본 발명의 목적은 상기 열경화성 발포체를 포함하는 단열재를 제공하는 것이다.It is also an object of the present invention to provide a heat insulating material comprising the thermosetting foam.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects and advantages of the present invention not mentioned can be understood by the following description, and will be more clearly understood by embodiments of the present invention. In addition, it will be readily appreciated that the objects and advantages of the present invention can be realized by means of the appended claims and combinations thereof.
본 발명에 따른 열경화성 수지, 경화제, 발포제 및 복합 난연제를 포함하고, 상기 복합 난연제는 제1 난연제 및 제2 난연제를 포함하고, 상기 제1 난연제는 인(Phosphorus)이고, 상기 제2 난연제는 멜라민시아누레이트, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나를 포함하거나, 또는 멜라민시아누레이트, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나와 펜타에리트리톨계 화합물을 함께 포함하는 열경화성 발포체를 제공할 수 있다.A thermosetting resin according to the present invention, a curing agent, a foaming agent and a composite flame retardant, the composite flame retardant includes a first flame retardant and a second flame retardant, the first flame retardant is Phosphorus (Phosphorus), and the second flame retardant is melamine At least one selected from the group consisting of anurates, trialkylphosphates and combinations thereof, or at least one selected from the group consisting of melamine cyanurate, trialkylphosphates and combinations thereof, and a pentaerythritol-based compound together It can provide a thermosetting foam.
또한 본 발명에 따른, 열경화성 수지를 포함하는 주제, 경화제, 발포제 및 복합 난연제를 포함하는 난연 조성물을 준비하는 단계; 상기 주제, 경화제, 발포제 및 난연 조성물을 교반하여 발포체 조성물을 제조하는 단계; 및 상기 발포체 조성물을 발포 경화하는 단계;를 포함하고, 상기 복합 난연제는 제1 난연제 및 제2 난연제를 포함하고, 상기 제1 난연제는 인(Phosphorus)이고, 상기 제2 난연제는 멜라민시아누레이트, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나를 포함하거나, 또는 멜라민시아누레이트, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나와 펜타에리트리톨계 화합물을 함께 포함하는 열경화성 발포체의 제조방법을 제공할 수 있다.In addition, according to the present invention, preparing a flame retardant composition comprising a subject, a curing agent, a blowing agent and a composite flame retardant comprising a thermosetting resin; Preparing a foam composition by stirring the subject, a curing agent, a foaming agent, and a flame retardant composition; And foam-curing the foam composition; wherein the composite flame retardant includes a first flame retardant and a second flame retardant, the first flame retardant is phosphorus, and the second flame retardant is melamine cyanurate, A thermosetting foam comprising at least one selected from the group consisting of trialkylphosphates and combinations thereof, or at least one selected from the group consisting of melamine cyanurate, trialkylphosphates and combinations thereof, and a pentaerythritol-based compound. It can provide a manufacturing method.
또한 본 발명에 따른 상기 열경화성 발포체를 포함하는 단열재를 제공 할 수 있다.In addition, it is possible to provide an insulating material comprising the thermosetting foam according to the present invention.
본 발명에 따른 열경화성 발포체는 향상된 난연성과 동시에 우수한 단열성을 갖고, 우수한 압축강도 및 치수 안정성 등의 물성을 나타낼 수 있다.The thermosetting foam according to the present invention has improved flame retardancy and excellent heat insulation properties, and can exhibit physical properties such as excellent compressive strength and dimensional stability.
또한 본 발명에 따른 열경화성 발포체의 제조방법은 상기 열경화성 발포체를 제조하는 방법을 제공할 수 있다.In addition, the method for manufacturing a thermosetting foam according to the present invention can provide a method for manufacturing the thermosetting foam.
또한 본 발명에 따른 단열재는 상기 열경화성 발포체를 포함하여 향상된 난연성과 동시에 우수한 단열성을 갖고, 우수한 압축강도, 치수 안정성 등의 물성을 나타낼 수 있다.In addition, the heat insulating material according to the present invention includes the thermosetting foam, has improved flame retardancy and excellent heat insulation properties, and can exhibit excellent compressive strength, dimensional stability, and other physical properties.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.In addition to the above-described effects, the concrete effects of the present invention will be described together while describing the specific matters for carrying out the invention.
도 1은 본 발명의 열경화성 발포체의 치수 안정성을 측정하는 방법을 간략하게 나타낸 모식도이다.1 is a schematic view schematically showing a method for measuring dimensional stability of a thermosetting foam of the present invention.
전술한 목적, 특징 및 장점은 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 도면에서 동일한 참조부호는 동일 또는 유사한 구성요소를 가리키는 것으로 사용된다.The above-described objects, features, and advantages will be described in detail below, and accordingly, a person skilled in the art to which the present invention pertains can easily implement the technical spirit of the present invention. In the description of the present invention, when it is determined that detailed descriptions of known technologies related to the present invention may unnecessarily obscure the subject matter of the present invention, detailed descriptions will be omitted. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The same reference numerals in the drawings are used to indicate the same or similar components.
이하에서는, 본 발명의 몇몇 구현예에 따른 열경화성 발포체를 설명하도록 한다.Hereinafter, a thermosetting foam according to some embodiments of the present invention will be described.
본 발명의 일 구현예는 열경화성 수지, 경화제, 발포제 및 복합 난연제를 포함하고, 상기 복합 난연제는 제1 난연제 및 제2 난연제를 포함하고, 상기 제1 난연제는 인(Phosphorus)이고, 상기 제2 난연제는 멜라민시아누레이트, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나를 포함하거나, 또는 멜라민시아누레이트, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나와 펜타에리트리톨계 화합물을 함께 포함하는 열경화성 발포체를 제공한다.One embodiment of the present invention includes a thermosetting resin, a curing agent, a blowing agent and a composite flame retardant, the composite flame retardant comprises a first flame retardant and a second flame retardant, the first flame retardant is Phosphorus (Phosphorus), the second flame retardant Is at least one selected from the group consisting of melamine cyanurate, trialkyl phosphate and combinations thereof, or at least one selected from the group consisting of melamine cyanurate, trialkyl phosphate and combinations thereof and a pentaerythritol-based compound It provides a thermosetting foam comprising a.
최근 발생한 다양한 화재사고로 인하여, 건축물에 필수적으로 사용되는 단열재에 우수한 단열성뿐만 아니라, 향상된 난연성이 동시에 요구되고 있다. 하지만, 열경화성 발포체는 유기물의 근본적인 한계 때문에 화재 안정성이 무기 단열재보다 취약할 수 밖에 없다. 이에, 발포체에 알루미늄 면재 등의 표면처리를 통해 난연성을 부여하는 것이 일반적이나, 실재 화재에서 면재가 탈락할 우려가 있고, 면재가 탈락한 경우에는 화재가 확산할 가능성이 높아지게 된다.Due to various fire accidents that have recently occurred, not only excellent thermal insulation properties but also improved flame retardancy are required for thermal insulation materials essential for buildings. However, due to the fundamental limitations of organic materials, thermosetting foams are inevitably weaker in fire stability than inorganic insulating materials. Thus, it is common to impart flame retardancy to the foam through surface treatment such as aluminum face material, but there is a fear that the face material may fall off from the actual fire, and if the face material falls off, the probability of fire spreading increases.
이에, 일반적으로 열경화성 발포체에 포스페이트 등의 인계 난연제를 사용하여 난연성을 부여하고 있으나, 포스페이트 등의 인계 난연제를 사용하는 경우 난연성은 향상되는 반면, 발포과정에서 발포셀이 파괴되고 단열성이 저하되는 문제가 있다. 그리고, 열경화성 발포체에 난연제로 수산화알루미늄(ATH)를 사용하는 경우, 상기 수산화알루미늄은 염기성 물질로서 산경화제를 중화시켜 페놀계 수지의 경화 반응성 등이 떨어질 수 있다. 이에 따라 이로부터 제조된 발포체의 단열성이 저하되는 문제가 있다. 그리고, 열경화성 발포체 중에서 페놀 발포체의 경우 타 열경화성 발포체 대비 리지드(RIGID)한 특성을 가지고 수지의 점도 역시 높아 난연제와 같은 타 첨가제를 사용하여 단열재에 적합한 발포체를 제조하는 것은 어려운 면이 있다.Thus, in general, a thermosetting foam is imparted with a flame retardant by using a phosphorus-based flame retardant such as phosphate, but when using a phosphorus-based flame retardant such as phosphate, the flame retardancy is improved, while the foam cell is destroyed during the foaming process and the problem of deterioration in thermal insulation is caused. have. In addition, when aluminum hydroxide (ATH) is used as a flame retardant in the thermosetting foam, the aluminum hydroxide is a basic material, which neutralizes an acid curing agent, so that the curing reactivity of the phenolic resin may deteriorate. Accordingly, there is a problem that the heat insulating properties of the foam produced therefrom are lowered. In addition, among the thermosetting foams, in the case of the phenolic foam, it has a rigid (RIGID) property compared to other thermosetting foams, and the viscosity of the resin is also high, so it is difficult to produce a foam suitable for a heat insulating material using other additives such as flame retardants.
상기 열경화성 발포체는 열경화성 수지, 경화제, 발포제 및 복합 난연제를 포함하고, 상기 복합 난연제로 특정의 제1 난연제 및 제2 난연제를 포함하여, 상충관계(trade-off)에 있는 난연성 및 단열성을 향상시킬 수 있다. 또한, 상기 열경화성 발포체는 우수한 압축강도 및 치수 안정성 등의 물성도 함께 나타낼 수 있다.The thermosetting foam includes a thermosetting resin, a curing agent, a foaming agent, and a composite flame retardant, and includes a specific first flame retardant and a second flame retardant as the composite flame retardant, thereby improving flame retardancy and thermal insulation in trade-off. have. In addition, the thermosetting foam can exhibit excellent physical properties such as compressive strength and dimensional stability.
구체적으로, 상기 열경화성 발포체는 열경화성 수지를 포함한다. 상기 열경화성 수지는 에폭시계 수지, 폴리우레탄계 수지, 폴리이소시아네이트계 수지, 폴리이소시아누레이트계 수지, 폴리에스테르계 수지, 폴리아미드계 수지, 페놀계 수지 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다. Specifically, the thermosetting foam includes a thermosetting resin. The thermosetting resin may include one selected from the group consisting of epoxy resin, polyurethane resin, polyisocyanate resin, polyisocyanurate resin, polyester resin, polyamide resin, phenol resin and combinations thereof. Can be.
예를 들어, 상기 열경화성 발포체는 열경화성 수지로 페놀 및 포름알데히드가 반응하여 얻어질 수 있는 페놀계 수지, 예를 들어 레졸계 페놀 수지(이하, '레졸 수지')를 포함할 수 있다. 그리고, 제1 난연제 및 제2 난연제를 포함하는 복합 난연제는 벤젠고리를 포함하는 상기 페놀계 수지와 잘 혼합되고 균일하게 분산 및 발포 될 수 있다. 이에 따라, 상기 열경화성 발포체는 복합 난연제를 포함하면서도, 균일하고 작은 크기의 발포 셀을 안정적으로 형성하면서 초기 단열성 뿐만 아니라 장기 단열성에 있어서도 향상된 단열성을 나타낼 수 있다. For example, the thermosetting foam may include a phenol-based resin that can be obtained by reacting phenol and formaldehyde as a thermosetting resin, for example, a resol-based phenol resin (hereinafter referred to as'resol resin'). In addition, the composite flame retardant comprising the first flame retardant and the second flame retardant can be well mixed with the phenolic resin containing a benzene ring and uniformly dispersed and foamed. Accordingly, the thermosetting foam may include a composite flame retardant, while stably forming a uniform and small-sized foam cell, and exhibit improved thermal insulation properties as well as initial thermal insulation properties as well as long-term thermal insulation properties.
상기 열경화성 수지는 상기 열경화성 발포체 내에 약 30 중량% 내지 약 90 중량% 또는 약 50 중량% 내지 약 90 중량% 또는 약 55 중량% 내지 약 90 중량%의 함량으로 포함될 수 있다. 상기 열경화성 발포체는 상기 열경화성 수지를 상기 범위 내의 함량으로 포함함으로써 발포 셀을 안정적으로 형성하고, 우수한 열전도도를 구현할 수 있다.The thermosetting resin may be included in the thermosetting foam in an amount of about 30 wt% to about 90 wt% or about 50 wt% to about 90 wt% or about 55 wt% to about 90 wt%. The thermosetting foam can stably form a foam cell by including the thermosetting resin in an amount within the above range, and realize excellent thermal conductivity.
상기 열경화성 발포체는 경화제를 포함한다. 상기 경화제는 톨루엔 술폰산, 자일렌 술폰산, 벤젠술폰산, 페놀 술폰산, 에틸벤젠 술폰산, 스티렌 술폰산, 나프탈렌 술폰산 및 이들의 조합으로 이루어진 군으로부터 선택된 하나의 산경화제를 포함할 수 있다. 상기 열경화성 발포체는 상기 경화제를 포함하여 적정의 가교, 경화 및 발포성을 나타낼 수 있다.The thermosetting foam contains a curing agent. The curing agent may include one acid curing agent selected from the group consisting of toluene sulfonic acid, xylene sulfonic acid, benzene sulfonic acid, phenol sulfonic acid, ethylbenzene sulfonic acid, styrene sulfonic acid, naphthalene sulfonic acid, and combinations thereof. The thermosetting foam may exhibit appropriate crosslinking, curing and foaming properties including the curing agent.
상기 열경화성 발포체는 발포제를 포함한다. 예를 들어, 상기 발포제는 히드로플루오로올레핀(hydrofluoroolefin, HFO)계 화합물, 탄화수소계 화합물 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다. 구체적으로, 상기 히드로플루오로올레핀계 화합물은 예를 들어, 모노클로로트리플루오로프로펜, 트리플루오로프로펜, 테트라플루오로프로펜, 펜타플루오로프로펜, 헥사플루오로부텐 및 이들의 조합으로 이루어진 군에서 선택되는 적어도 하나를 포함할 수 있다. 그리고, 상기 탄화수소계 화합물은 탄소수 1개 내지 8개의 탄화수소를 포함할 수 있다. 예를 들어, 상기 탄화수소계 화합물은 디클로로에탄, 프로필클로라이드, 이소프로필클로라이드, 부틸클로라이드, 이소부틸클로라이드, 펜틸클로라이드, 이소펜틸클로라이드, n-부탄, 이소부탄, n-펜탄, 이소펜탄, 시클로펜탄, 헥산, 헵탄, 시클로펜탄 및 이들의 조합으로 이루어진 군에서 선택되는 적어도 하나를 포함할 수 있다. 또는 상기 탄화수소계 화합물은 탄소수 1개 내지 5개의 탄화수소로서, 디클로로에탄, 프로필클로라이드, 이소프로필클로라이드, 부틸클로라이드, 이소부틸클로라이드, 펜틸클로라이드, 이소펜틸클로라이드, n-부탄, 이소부탄, n-펜탄, 이소펜탄, 시클로펜탄 및 이들의 조합으로 이루어진 군에서 선택되는 적어도 하나를 포함하여 친환경성과 함께 우수한 단열성을 나타낼 수 있다.The thermosetting foam contains a blowing agent. For example, the blowing agent may include one selected from the group consisting of hydrofluoroolefin (HFO)-based compounds, hydrocarbon-based compounds, and combinations thereof. Specifically, the hydrofluoroolefin-based compound is, for example, monochlorotrifluoropropene, trifluoropropene, tetrafluoropropene, pentafluoropropene, hexafluorobutene, and combinations thereof. It may include at least one selected from the group consisting of. Further, the hydrocarbon-based compound may include 1 to 8 carbon atoms. For example, the hydrocarbon-based compound is dichloroethane, propyl chloride, isopropyl chloride, butyl chloride, isobutyl chloride, pentyl chloride, isopentyl chloride, n-butane, isobutane, n-pentane, isopentane, cyclopentane, It may include at least one selected from the group consisting of hexane, heptane, cyclopentane and combinations thereof. Or the hydrocarbon-based compound is a hydrocarbon having 1 to 5 carbon atoms, dichloroethane, propyl chloride, isopropyl chloride, butyl chloride, isobutyl chloride, pentyl chloride, isopentyl chloride, n-butane, isobutane, n-pentane, Including at least one selected from the group consisting of isopentane, cyclopentane, and combinations thereof, it may exhibit excellent thermal insulation properties along with eco-friendliness.
상기 열경화성 발포체는 양성, 양이온계, 음이온계, 비이온계 계면활성제 및 이들의 조합으로 이루어진 군으로부터 선택된 하나의 계면활성제를 포함할 수 있다. 예를 들어, 상기 열경화성 발포체는 에톡시화 반응시킨 피마자유 계면활성제 즉, 비이온성 계면활성제를 포함할 수 있다. The thermosetting foam may include a surfactant selected from the group consisting of amphoteric, cationic, anionic, and nonionic surfactants and combinations thereof. For example, the thermosetting foam may include castor oil surfactant that is ethoxylated, that is, a nonionic surfactant.
상기 열경화성 발포체, 특히 페놀 수지 발포체는 상기 계면활성제를 포함하여 복합 난연제 성분들을 용이하게 분산시킬 수 있고, 상기 열경화성 발포체에 적정의 발포 구조를 안정적으로 형성하여, 우수한 열전도도 및 우수한 물리적 강도 등을 구현할 수 있다.The thermosetting foam, particularly the phenolic resin foam, can easily disperse the complex flame retardant components including the surfactant, and stably form an appropriate foam structure on the thermosetting foam, thereby realizing excellent thermal conductivity and excellent physical strength. Can be.
그리고, 상기 열경화성 발포체는 복합 난연제를 포함하고, 상기 복합 난연제는 제1 난연제 및 제2 난연제를 포함하고, 상기 제1 난연제는 인(Phosphorus)이고, 상기 제2 난연제는 멜라민시아누레이트, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나를 포함하거나, 또는 멜라민시아누레이트, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나와 펜타에리트리톨계 화합물을 함께 포함한다. 상기 제2 난연제는 상기 제1 난연제인 상기 인과 상용성이 우수하여 잘 혼합될 수 있으며, 작은 크기의 인 입자의 뭉침 현상을 억제하여 상기 복합 난연제가 고르게 분산될 수 있도록 하고, 균일하게 발포하여 향상된 난연성과 함께 우수한 단열성을 부여할 수 있다. 그리고, 압축강도, 치수 안정성 등의 우수한 물성을 부여할 수 있다.In addition, the thermosetting foam includes a composite flame retardant, the composite flame retardant includes a first flame retardant and a second flame retardant, the first flame retardant is Phosphorus, and the second flame retardant is melamine cyanurate, trialkyl At least one selected from the group consisting of phosphates and combinations thereof, or at least one selected from the group consisting of melamine cyanurate, trialkylphosphates and combinations thereof, and a pentaerythritol-based compound. The second flame retardant is excellent in compatibility with the first flame retardant, the phosphorus, so that it can be mixed well, and suppresses agglomeration of small-sized phosphorus particles so that the composite flame retardant is evenly dispersed and improved by uniform foaming. In addition to flame retardancy, excellent heat insulation properties can be imparted. In addition, excellent physical properties such as compressive strength and dimensional stability can be imparted.
상기 열경화성 발포체는 상기 복합 난연제의 제1 난연제로 인을 포함하여 연소시에 우수한 탄화작용으로 탄화막(char)를 잘 형성할 수 있다. 특히, 페놀 수지 발포체는 벤젠고리를 포함하는 상기 페놀계 수지에 인을 포함하여 탄화막(char)를 보다 잘 형성할 수 있다. 또한, 상기 인은 연소시 발생하는 수소 라디칼 및 히드록시 라디칼을 포획하여 연소반응이 연쇄적으로 일어나는 것을 방지하여 화재 전파를 신속히 차단할 수 있다. The thermosetting foam can be well formed as a first flame retardant of the composite flame retardant, including phosphorus, with excellent carbonization during combustion. In particular, the phenolic resin foam may contain phosphorus in the phenolic resin containing a benzene ring to better form a char. In addition, the phosphorus can capture the hydrogen radicals and hydroxy radicals generated during combustion, thereby preventing the combustion reaction from occurring in a chain, thereby rapidly blocking the propagation of fire.
상기 인은 인의 구조적 상태 및 색상에 따라 백인,적인, 흑인, 자인 등으로 구별될 수 있다. 구체적으로, 상기 열경화성 발포체는 적인을 포함할 수 있다. 상기 열경화성 발포체는 적정의 구조를 갖는 적인을 포함하여 열경화성 발포체 형성시 취급이 용이할 수 있다. 그리고, 열경화성 발포체 연소시에 탄화막(Char) 형성 속도를 조절하여 보다 향상된 난연성 및 단열성을 동시에 가질 수 있다. 예를 들어, 상기 열경화성 발포체는 상기 인으로 적인을 80% 이상 또는 100% 포함할 수 있다.The phosphorus can be divided into white, red, black, and white, depending on the structural state and color of the phosphorus. Specifically, the thermosetting foam may include red. The thermosetting foam may be easily handled when forming a thermosetting foam, including an enemy having an appropriate structure. In addition, it is possible to simultaneously have improved flame retardancy and thermal insulation by controlling the rate of formation of a char film during combustion of the thermosetting foam. For example, the thermosetting foam may include 80% or more or 100% of the phosphorous enemy.
상기 복합 난연제는 제2 난연제를 포함하고, 상기 제2 난연제는 멜라민시아누레이트, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나를 포함하거나, 또는 멜라민시아누레이트, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나와 펜타에리트리톨계 화합물을 함께 포함한다. 상기 제2 난연제는 상기 제1 난연제인 인과 상용성이 우수하여 잘 혼합될 수 있으며, 작은 크기의 인 입자의 뭉침 현상을 억제하여 상기 복합 난연제가 고르게 분산될 수 있도록 하고, 균일하게 발포하여 향상된 난연성과 함께 우수한 단열성을 나타낼 수 있다.The composite flame retardant comprises a second flame retardant, the second flame retardant comprises at least one selected from the group consisting of melamine cyanurate, trialkylphosphates and combinations thereof, or melamine cyanurate, trialkylphosphates and these And at least one selected from the group consisting of pentaerythritol-based compounds. The second flame retardant is excellent in compatibility with the first flame retardant phosphorus and can be mixed well, and suppresses the agglomeration of small-sized phosphorus particles so that the composite flame retardant is evenly dispersed and uniformly foamed to improve flame retardancy Together with it can exhibit excellent thermal insulation.
구체적으로, 상기 펜타에리트리톨계 화합물은 연소시에 상기 인과 인 사이에 결합하여 탄화막(Char)을 보다 잘 형성하고, 화재가 전파되는 것을 방지할 수 있다. 상기 펜타에리트리톨계 화합물은 모노펜타에리트리톨, 다이펜타에리트리톨, 트리펜타에리트리톨 및 이들의 조합을 이루어진 군으로부터 선택된 하나를 포함할 수 있다.Specifically, the pentaerythritol-based compound may form a carbonized film (Char) by bonding between the phosphorus and phosphorus during combustion, and prevent fire propagation. The pentaerythritol-based compound may include one selected from the group consisting of monopentaerythritol, dipentaerythritol, tripentaerythritol, and combinations thereof.
그리고, 상기 멜라민시아누레이트는 연소시에 멜라민시아누레이트 구조 내의 수소 결합이 흡열 분해되고, 멜라민 자체의 승화 및 분해에 의한 흡열로 연소열을 낮춰서 점화를 지연시킬 수 있다. 또한, 멜라민시아누레이트는 연소시에 질소 및/또는 암모니아 가스를 생성하여 산소를 희석시킬 수 있다. 그리고, 상기 멜라민시아누레이트는 연소 분해에 의해 발생한 멜라민 자체가 응축하여 멜렘(melem) 및 멜론(melon)과 같은 다중 고리구조를 포함하는 탄화막을 형성할 수 있다. 이때, 상기 멜라민시아누레이트는 상기 인의 탄화막 형성시 함께 작용하여 인의 탄화막 형성 반응을 향상시키고, 안정적인 탄화막을 형성시킬 수 있다. 또한, 상기 멜라민시아누레이트는 열경화성 발포체에 균일하고 작은 크기의 셀을 형성시킬 수 있다. 그리고, 상기 멜라민시아누레이트는 발포체에 있어서 핵제로 작용할 수 있으며, 셀의 구조를 보다 안정적으로 형성하여 단열성을 더욱 향상시킬 수 있다.In addition, in the melamine cyanurate, hydrogen bonds in the melamine cyanurate structure are endothermally decomposed upon combustion, and combustion heat may be lowered by delaying ignition by absorbing heat by sublimation and decomposition of melamine itself. In addition, melamine cyanurate can dilute oxygen by generating nitrogen and/or ammonia gas upon combustion. In addition, the melamine cyanurate may condense the melamine itself generated by combustion decomposition to form a carbonized film including multiple ring structures such as melem and melon. At this time, the melamine cyanurate acts together when forming the carbonized film of the phosphorus, thereby improving the reaction of forming the carbonized film and forming a stable carbonized film. In addition, the melamine cyanurate can form a uniform and small cell in a thermosetting foam. In addition, the melamine cyanurate may act as a nucleating agent in the foam, and the structure of the cell may be more stably formed to further improve heat insulation.
상기 멜라민시아누레이트의 평균 입경은 약 1㎛ 내지 약 20㎛ 또는 약 1㎛ 내지 10㎛일 수 있다. 상기 입경은 레이저 입도분석기(Laser Particle Size Analyner, 모델명: BT-2000)에 의해 측정할 수 있다. 멜라민시아누레이트의 평균 입경이 상기 범위 미만인 경우에는 이를 포함하는 조성물의 점도를 상승시키고 분산이 잘 되지 않는 문제가 있을 수 있다. 그리고, 상기 범위를 초과하는 경우에는 난연성이 저하되는 문제가 있을 수 있다.The melamine cyanurate may have an average particle diameter of about 1 μm to about 20 μm or about 1 μm to 10 μm. The particle diameter can be measured by a laser particle size analyzer (Laser Particle Size Analyner, model name: BT-2000). If the average particle diameter of melamine cyanurate is less than the above range, there may be a problem that the viscosity of the composition containing it is increased and dispersion is not good. And, if it exceeds the above range, there may be a problem that the flame retardancy is lowered.
그리고, 상기 트리알킬포스페이트는 트리메틸포스페이트, 트리에틸포스페이트, 트리부틸포스페이트, 트리스(1-클로로 2-프로필)포스페이트, 트리(2-에틸헥실)포스페이트, 트리페닐포스테이트, 트리크레실포스페이트, 트리자일레닐포스페이트(trixylenyl phosphate), 트리스(이소프로필페닐)포스페이트, 트리스(페닐페닐)포스페이트, 트리나프틸포스페이트, 크레실디페닐포스페이트, 자일레닐디페닐포스페이트, 디페닐(2-에틸헥실)포스페이트, 디(이소프로필페닐)페닐포스페이트, 모노이소데실포스페이트) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나의 화합물을 포함할 수 있다. 상기 트리알킬포스페이트는 상기 인의 균일한 분산을 향상시키고, 작은 크기의 인 입자의 뭉침 현상을 억제하여 상기 복합 난연제가 고르게 분산될 수 있도록 하고, 균일하게 발포하여 향상된 난연성과 함께 우수한 단열성을 나타낼 수 있다. 구체적으로, 상기 트리알킬포스페이트는 트리에틸포스페이트일 수 있으며, 상기 인과 우수한 상용성으로 잘 혼합되어 난연성 및 단열성을 보다 향상시킬 수 있다.And, the trialkyl phosphate is trimethyl phosphate, triethyl phosphate, tributyl phosphate, tris (1-chloro 2-propyl) phosphate, tri (2-ethylhexyl) phosphate, triphenyl phosphate, tricresyl phosphate, triza Trienylenyl phosphate, tris(isopropylphenyl)phosphate, tris(phenylphenyl)phosphate, trinaphthylphosphate, cresyldiphenylphosphate, xylenyldiphenylphosphate, diphenyl(2-ethylhexyl)phosphate, di (Isopropylphenyl)phenylphosphate, monoisodecylphosphate) and combinations thereof. The trialkyl phosphate improves the uniform dispersion of the phosphorus, suppresses the agglomeration of small-sized phosphorus particles so that the composite flame retardant can be evenly dispersed, and uniformly foams to exhibit excellent heat insulation with improved flame retardancy. . Specifically, the trialkyl phosphate may be triethyl phosphate, and it is well mixed with the phosphorus to improve the flame retardancy and heat insulation.
상기 복합 난연제는 상기 열경화성 발포체 100 중량부 대비 1 중량부 내지 20 중량부의 함량으로 포함될 수 있다. 예를 들어, 상기 복합 난연제는 1.5 중량부 내지 15 중량부 또는 약 2 중량부 내지 약 10 중량부 의 함량으로 포함될 수 있다. 상기 열경화성 발포체는 상기 복합 난연제를 상기 범위로 포함하여 화재시 발포체의 연소 속도를 조절하고 안정적으로 탄화막을 형성하여 향상된 난연성과 동시에 우수한 단열성 및 압축강도 등의 우수한 물성을 부여할 수 있다.The composite flame retardant may be included in an amount of 1 to 20 parts by weight compared to 100 parts by weight of the thermosetting foam. For example, the composite flame retardant may be included in an amount of 1.5 parts by weight to 15 parts by weight or about 2 parts by weight to about 10 parts by weight. The thermosetting foam may include the composite flame retardant in the above range to control the combustion speed of the foam during a fire and stably form a carbonized film, and at the same time, provide excellent physical properties such as improved flame retardancy and excellent heat insulation and compressive strength.
구체적으로, 상기 복합 난연제의 함량이 상기 범위 미만일 경우, 안정적으로 탄화막을 형성하지 못하고 충분한 난연 효과를 발휘하지 못할 수 있다. 그리고, 상기 범위를 초과할 경우, 상승하는 난연 효과 대비 비용이 많이 소요되는 바 비경제적이고, 발포체 조성물의 점도가 크게 상승하여 발포시에 문제가 발생할 수 있다. 예를 들어, 복합 난연제의 함량으로 인해 발포체 조성물의 점도가 상승하면 교반시 믹서의 토크가 많이 걸리기 때문에 발포체 조성물의 온도가 높게 상승된다. 그리고, 상기 발포제 휘발량이 증가하게 되고, 이에 따라 단열성이 저하될 수 있다. 또한 발포체 조성물의 높은 점도로 인해 인, 발포제 및 경화제 등이 고르게 분산되지 못하여 발포체의 물성이 균일하게 형성되지 않는 문제가 발생할 수 있다.Specifically, when the content of the composite flame retardant is less than the above range, it may not stably form a carbonized film and may not exhibit a sufficient flame retardant effect. And, if it exceeds the above range, it is uneconomical because it takes a lot of cost compared to the rising flame retardant effect, and the viscosity of the foam composition is greatly increased, which may cause problems during foaming. For example, if the viscosity of the foam composition is increased due to the content of the composite flame retardant, the temperature of the foam composition is increased because the torque of the mixer is high during stirring. In addition, the amount of volatilization of the blowing agent is increased, and accordingly, thermal insulation may be deteriorated. In addition, due to the high viscosity of the foam composition, phosphors, foaming agents, curing agents, and the like are not evenly dispersed, which may cause a problem that the physical properties of the foam are not uniformly formed.
상기 제1 난연제는 상기 열경화성 발포체 100 중량부 대비 0.9 중량부 내지 15 중량부의 함량으로 포함될 수 있다. 예를 들어, 상기 제1 난연제는 약 1중량부 내지 약 10중량부, 또는 약 2중량부 내지 약 8중량부로 포함되어 열경화성 수지 내에 균일하게 분산되고, 우수한 단열성을 유지하면서 향상된 난연성 및 압축강도 등의 우수한 물성을 부여할 수 있다. The first flame retardant may be included in an amount of 0.9 to 15 parts by weight compared to 100 parts by weight of the thermosetting foam. For example, the first flame retardant is contained in about 1 part by weight to about 10 parts by weight, or about 2 parts by weight to about 8 parts by weight, uniformly dispersed in the thermosetting resin, and improved flame retardancy and compressive strength while maintaining excellent thermal insulation It can give excellent physical properties.
구체적으로, 상기 인의 함량이 상기 범위 미만인 경우에는 충분한 난연 효과를 발휘하지 못하고, 화재시 화재 전파를 방지하지 못할 수 있으며, 치수 안정성이 떨어질 수 있다. 그리고, 상기 범위를 초과하는 경우에는 발포체 조성물의 점도가 크게 상승하여 발포시에 문제가 발생할 수 있다. 예를 들어, 발포체 조성물의 점도가 상승하면 교반시 믹서의 토크가 많이 걸리기 때문에 발포체 조성물의 온도가 높게 상승될 수 있다. 그리고, 발포제 휘발량이 증가하게 되고, 이에 따라, 단열성이 저하될 수 있다. 또한 발포체 조성물의 높은 점도로 인해 인, 발포제 및 경화제 등이 고르게 분산되지 못하여 압축강도가 떨어지는 등 물성이 균일하게 형성되지 않는 문제가 발생할 수 있다.Specifically, when the phosphorus content is less than the above range, a sufficient flame retardant effect may not be exhibited, and fire propagation may not be prevented in case of fire, and dimensional stability may be deteriorated. And, when it exceeds the above range, the viscosity of the foam composition is greatly increased, which may cause problems during foaming. For example, if the viscosity of the foam composition is increased, the temperature of the foam composition may be increased because the torque of the mixer is high during stirring. In addition, the amount of volatilization of the blowing agent is increased, and accordingly, thermal insulation may be deteriorated. In addition, due to the high viscosity of the foam composition, phosphors, foaming agents, curing agents, and the like are not evenly distributed, and a problem that physical properties such as poor compressive strength may not be formed may occur.
그리고, 상기 제2 난연제는 상기 열경화성 발포체 100 중량부 대비 0.1 중량부 내지 7 중량부의 함량으로 포함될 수 있다. 예를 들어, 상기 제2 난연제는 약 0.1 중량부 내지 약 4 중량부 일 수 있다. 상기 복합 난연제는 상기 제1 난연제와 함께, 상기 제2 난연제를 상기 범위의 함량으로 포함하여 화재시 발포체의 연소 속도를 조절하고 안정적인 탄화막을 형성하여, 우수한 난연성과 동시에 우수한 단열성 및 압축강도, 치수 안정성 등의 우수한 물성을 가질 수 있다. 상기 제2 난연제의 함량이 상기 범위 미만인 경우, 상기 인과 적절히 반응하지 못하여 적정의 탄화막을 형성하지 못하고, 탄화막의 형성 속도가 충분하지 못하여 난연성 향상 효과가 떨어질 수 있다. 그리고, 상기 범위를 초과하는 경우 화재시 인과 반응하지 않고 잔존하는 제2 난연제 화합물 자체가 연소하여 난연성을 저하시킬 수 있다. In addition, the second flame retardant may be included in an amount of 0.1 to 7 parts by weight compared to 100 parts by weight of the thermosetting foam. For example, the second flame retardant may be about 0.1 parts by weight to about 4 parts by weight. The composite flame retardant, together with the first flame retardant, includes the second flame retardant in an amount within the above range to control the combustion rate of the foam during a fire and to form a stable carbonized film, thereby providing excellent flame retardancy, excellent thermal insulation, compressive strength, and dimensional stability. It can have excellent physical properties such as. When the content of the second flame retardant is less than the above range, it may not properly react with the phosphorus to form an appropriate carbonized film, and the rate of formation of the carbonized film may not be sufficient, thereby improving the flame retardant improving effect. In addition, when the amount exceeds the above range, the second flame retardant compound itself, which does not react with phosphorus in the fire, may burn and deteriorate flame retardancy.
그리고, 상기 제1 난연제 대 상기 제2 난연제의 중량비는 약 1 : 0.05 내지 약 1 : 1.2 일 수 있다. 예를 들어, 상기 제1 난연제 대 상기 제2 난연제의 중량비는 약 1 : 0.07 내지 약 1 : 0.6, 또는 약 1 : 0.1 내지 약 1 : 0.4 일 수 있다. 상기 열경화성 발포체는 상기 범위의 중량비로 상기 제1 난연제 및 상기 제2 난연제를 포함하여, 향상된 난연성 및 우수한 단열성을 동시에 나타내고, 우수한 물성을 함께 나타낼 수 있다. 구체적으로, 제2 난연제가 상기 범위 미만의 함량으로 혼합될 경우에는 인과의 시너지 효과가 미미하여 비경제적인 문제가 있으며, 제2 난연제가 상기 범위를 초과하여 혼합될 경우에는 오히려 난연성이 저하되고, 높은 독립 기포율이 확보가 어렵고, 충분한 압축강도를 확보하는 것이 어려울 수 있다.In addition, the weight ratio of the first flame retardant to the second flame retardant may be about 1: 0.05 to about 1: 1.2. For example, the weight ratio of the first flame retardant to the second flame retardant is about 1: 0.07 to about 1: 0.6, or about 1: 0.1 to about 1: 0.4 Can be The thermosetting foam includes the first flame retardant and the second flame retardant in a weight ratio in the above range, and simultaneously exhibits improved flame retardancy and excellent heat insulation, and can also exhibit excellent physical properties. Specifically, when the second flame retardant is mixed in an amount less than the above range, the synergistic effect of phosphorus is insignificant and there is an uneconomical problem. When the second flame retardant is mixed above the above range, the flame retardance is lowered, and the high independent Bubble rate is difficult to secure, it may be difficult to secure a sufficient compressive strength.
구체적으로, 상기 복합 난연제는 상기 인 및 상기 펜타에리트리톨계 화합물을 포함할 수 있으며, 상기 인 대 상기 펜타에리트리톨계 화합물의 중량비는 약 1 : 0.05 내지 약 1 : 0.6 일 수 있다. 예를 들어, 상기 인 대 상기 펜타에리트리톨계 화합물의 중량비는 약 1 : 0.07 내지 약 1 : 0.4 일 수 있다.Specifically, the composite flame retardant may include the phosphorus and the pentaerythritol-based compound, and the weight ratio of the phosphorus to the pentaerythritol-based compound may be about 1: 0.05 to about 1: 0.6. For example, the weight ratio of the phosphorus to the pentaerythritol-based compound may be about 1: 0.07 to about 1: 0.4.
상기 복합 난연제는 상기 인 및 상기 멜라민시아누레이트 화합물을 포함할 수 있으며, 상기 인 대 상기 멜라민시아누레이트 화합물의 중량비는 약 1 : 0.05 내지 약 1 : 0.8일 수 있다. 예를 들어, 상기 인 대 상기 멜라민시아누레이트 화합물의 중량비는 약 1 : 0.07 내지 약 1 : 0.6 일 수 있다.The composite flame retardant may include the phosphorus and the melamine cyanurate compound, and the weight ratio of the phosphorus to the melamine cyanurate compound may be about 1: 0.05 to about 1: 0.8. For example, the weight ratio of the phosphorus to the melamine cyanurate compound may be about 1: 0.07 to about 1: 0.6.
상기 복합 난연제는 상기 인 및 상기 트리알킬포스페이트를 포함할 수 있으며, 상기 인 대 상기 트리알킬포스페이트의 중량비는 약 1 : 0.05 내지 약 1 : 0.8일 수 있다. 예를 들어, 상기 인 대 상기 트리알킬포스페이트의 중량비는 약 1 : 0.07 내지 약 1 : 0.6 일 수 있다. The composite flame retardant may include the phosphorus and the trialkyl phosphate, and the weight ratio of the phosphorus to the trialkyl phosphate may be about 1: 0.05 to about 1: 0.8. For example, the weight ratio of the phosphorus to the trialkylphosphate may be about 1: 0.07 to about 1: 0.6.
상기 제1 난연제인 상기 인과의 관계에서 상기 제2 난연제 각각의 함량이 상기 범위를 초과하는 경우, 제1 난연제인 상기 인과 반응하지 않고 잔존하는 제2 난연제가 화재시 연소하면서 오히려 난연성을 저하시킬 수 있다. 그리고, 상기 제2 난연제의 함량이 상기 범위 미만인 경우, 열경화성 발포체 내에서 인의 분산성이 떨어져 단열성이 저하될 수 있다. 그리고, 상기 제2 난연제와 상기 인의 조합에 따른 난연성의 시너지 효과가 나타나지 않을 수 있다.When the content of each of the second flame retardants in the relationship with the phosphorus that is the first flame retardant exceeds the above range, the second flame retardant that remains without reacting with the phosphorus that is the first flame retardant may be burned during a fire and deteriorate flame retardancy. have. And, when the content of the second flame retardant is less than the above range, the dispersibility of phosphorus in the thermosetting foam is poor and the heat insulating property may be deteriorated. In addition, a synergistic effect of flame retardancy according to the combination of the second flame retardant and the phosphorus may not be exhibited.
그리고, 상기 복합 난연제는 상기 인, 상기 펜타에리트리톨계 화합물 및 상기 멜라민시아누레이트를 포함할 수 있으며, 상기 인 100 중량부 대비, 상기 펜타에리트리톨계 화합물을 약 1 중량부 내지 약 50 중량부 포함하고, 상기 멜라민시아누레이트를 약 1 중량부 내지 약 80중량부 포함할 수 있다. 예를 들어, 상기 인 100 중량부 대비, 상기 펜타에리트리톨계 화합물을 약 5 중량부 내지 약 30 중량부 포함하고, 상기 멜라민시아누레이트를 약 5 중량부 내지 약 40중량부 포함할 수 있다.In addition, the composite flame retardant may include the phosphorus, the pentaerythritol-based compound, and the melamine cyanurate, compared to 100 parts by weight of the phosphorus, the pentaerythritol-based compound from about 1 part by weight to about 50 parts by weight And about 1 part by weight to about 80 parts by weight of the melamine cyanurate. For example, compared to 100 parts by weight of the phosphorus, the pentaerythritol-based compound may include about 5 parts by weight to about 30 parts by weight, and the melamine cyanurate may include about 5 parts by weight to about 40 parts by weight.
상기 멜라민시아누레이트 대비 상기 펜타에리트리톨계 화합물의 함량이 상기 범위 미만인 경우 인과 멜라민시아누레이트와 함께 시너지 작용으로 형성하는 탄화막이 부족할 수 있고, 상기 범위를 초과하는 경우 반응하지 않고 남은 과량의 펜타에리트리톨계 화합물이 연소하면서 오히려 난연성을 저하되는 문제가 있을 수 있다.When the content of the pentaerythritol-based compound compared to the melamine cyanurate is less than the above range, a carbonized film formed by synergy with phosphorus and melamine cyanurate may be insufficient, and when it exceeds the above range, an excess of penta remaining without reacting As the erythritol-based compound burns, there may be a problem that the flame retardancy is lowered.
상기 복합 난연제는 상기 인, 상기 멜라민시아누레이트 및 상기 트리알킬포스페이트를 포함할 수 있으며, 상기 인 100 중량부 대비, 상기 멜라민시아누레이트를 약 1 중량부 내지 약 80 중량부 포함하고, 상기 트리알킬포스페이트를 약 1 중량부 내지 약 80 중량부 포함할 수 있다. 예를 들어, 상기 인 100 중량부 대비, 상기 멜라민시아누레이트를 약 5 중량부 내지 약 40 중량부 포함하고, 상기 트리알킬포스페이트를 약 5 중량부 내지 약 40 중량부 포함할 수 있다. The composite flame retardant may include the phosphorus, the melamine cyanurate, and the trialkyl phosphate, and the phosphorus, compared to 100 parts by weight of the melamine cyanurate, including about 1 part by weight to about 80 parts by weight of the tree, The alkyl phosphate may include about 1 part by weight to about 80 parts by weight. For example, compared to 100 parts by weight of the phosphorus, the melamine cyanurate may include about 5 parts by weight to about 40 parts by weight, and the trialkyl phosphate may include about 5 parts by weight to about 40 parts by weight.
상기 트리알킬포스페이트 대비 상기 멜라민시아누레이트의 함량이 상기 범위 미만인 경우 인과 트리알킬포스페이트와 함께 시너지 작용으로 형성하는 탄화막 형성이 부족한 문제가 있고, 상기 범위를 초과하는 경우 과량의 멜라민시아누레이트는 페놀 발포체의 셀 형성을 오히려 방해하여 열전도도를 저하시키는 문제가 있을 수 있다.When the content of the melamine cyanurate compared to the trialkyl phosphate is less than the above range, there is a problem of insufficient formation of a carbonized film formed by synergy with phosphorus and trialkyl phosphate, and when it exceeds the above range, the excess melamine cyanurate There may be a problem of lowering the thermal conductivity by rather hindering the cell formation of the phenolic foam.
상기 복합 난연제는 상기 인, 상기 펜타에리트리톨계 화합물 및 상기 트리알킬포스페이트를 포함할 수 있으며, 상기 인 100 중량부 대비, 상기 펜타에리트리톨계 화합물을 약 1 중량부 내지 약 50 중량부 포함하고, 상기 트리알킬포스페이트를 약 1 중량부 내지 약 80 중량부 포함할 수 있다. 예를 들어, 상기 인 100 중량부 대비, 상기 펜타에리트리톨계 화합물을 약 5 중량부 내지 약 30 중량부 포함하고, 상기 트리알킬포스페이트를 약 5 중량부 내지 약 40 중량부 포함할 수 있다. The composite flame retardant may include the phosphorus, the pentaerythritol-based compound, and the trialkyl phosphate, and the pentaerythritol-based compound to about 1 part by weight to about 50 parts by weight, compared to 100 parts by weight of the phosphorus, The trialkyl phosphate may include about 1 part by weight to about 80 parts by weight. For example, compared to 100 parts by weight of the phosphorus, the pentaerythritol-based compound may include about 5 parts by weight to about 30 parts by weight, and the trialkyl phosphate may include about 5 parts by weight to about 40 parts by weight.
상기 트리알킬포스페이트 대비 상기 펜타에리트리톨계 화합물의 함량이 상기 범위 미만인 경우 인과 트리알킬포스페이트와 함께 시너지 작용으로 형성하는 탄화막 형성이 부족할 수 있고, 상기 범위를 초과하는 경우 반응하지 않고 남은 과량의 펜타에리트리톨계 화합물이 연소하면서 오히려 난연성을 떨어뜨리는 문제가 있을 수 있다.When the content of the pentaerythritol-based compound compared to the trialkyl phosphate is less than the above range, the formation of a carbonized film formed by synergy with phosphorus and trialkyl phosphate may be insufficient, and when it exceeds the above range, the excess penta remaining without reacting As the erythritol-based compound is burned, there may be a problem of deteriorating flame retardancy.
상기 복합 난연제는 상기 인, 상기 펜타에리트리톨계 화합물, 상기 멜라민시아누레이트 및 상기 트리알킬포스페이트를 포함할 수 있으며, 상기 인 100 중량부 대비, 상기 펜타에리트리톨계 화합물을 약 1 중량부 내지 약 30 중량부 포함하고, 상기 멜라민시아누레이트를 약 1 중량부 내지 약 50 중량부 포함하고, 상기 트리알킬포스페이트를 약 1 중량부 내지 약 60 중량부 포함할 수 있다. 예를 들어, 상기 인 100 중량부 대비, 상기 펜타에리트리톨계 화합물을 약 3 중량부 내지 약 20 중량부 포함하고, 상기 멜라민시아누레이트를 약 5 중량부 내지 약 30 중량부 포함하고, 상기 트리알킬포스페이트를 약 5 중량부 내지 약 40 중량부 포함할 수 있다. The composite flame retardant may include the phosphorus, the pentaerythritol-based compound, the melamine cyanurate, and the trialkyl phosphate, compared to 100 parts by weight of the phosphorus, the pentaerythritol-based compound from about 1 part by weight to about 30 parts by weight, the melamine cyanurate may include about 1 part by weight to about 50 parts by weight, and the trialkyl phosphate may include about 1 part by weight to about 60 parts by weight. For example, compared to 100 parts by weight of the phosphorus, the pentaerythritol-based compound includes about 3 parts by weight to about 20 parts by weight, the melamine cyanurate contains about 5 parts by weight to about 30 parts by weight, and the tree The alkyl phosphate may include about 5 parts by weight to about 40 parts by weight.
상기 펜타에리트리톨계 화합물 대비, 상기 멜라민시아누레이트 및 상기 트리알킬 포스페이트의 중량비가 상기 범위 미만인 경우에는 제 1 난연제인 인과 작용하여 난연성 향상의 시너지 효과를 충분히 발휘하지 못하는 문제가 있고, 상기 멜라민시아누레이트 및 상기 트리알킬 포스페이트의 중량비가 상기 범위 초과인 경우에는 과량의 난연제로 인한 페놀 발포체의 셀 구조 형성을 방해하여 구조적으로 불안정해지고 단열성이 악화되는 문제가 있을 수 있다.Compared to the pentaerythritol-based compound, when the weight ratio of the melamine cyanurate and the trialkyl phosphate is less than the above range, there is a problem that the synergistic effect of improving flame retardancy is not sufficiently exhibited by acting with phosphorus as the first flame retardant, and the melamine city When the weight ratio of the anurate and the trialkyl phosphate exceeds the above range, the cell structure of the phenolic foam may be prevented due to excessive flame retardant, resulting in structural destabilization and deterioration of thermal insulation.
상기 열경화성 수지, 경화제, 발포제 및 복합 난연제를 포함하고, 상기 복합 난연제는 제1 난연제 및 제2 난연제를 포함하고, 상기 제1 난연제는 인(Phosphorus)이고, 상기 제2 난연제는 멜라민시아누레이트, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나를 포함하거나, 또는 멜라민시아누레이트, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나와 펜타에리트리톨계 화합물을 함께 포함하는 상기 열경화성 발포체는 KS L 9016에 따른 평균 온도 20℃에서 측정한 열전도율이 약 0.016 W/m·K 내지 약 0.029 W/m·K 이다. 예를 들어, 상기 열경화성 발포체는 KS L 9016에 따른 평균 온도 20℃에서 측정한 열전도율이 약 0.016 W/m·K 내지 약 0.025 W/m·K, 약 0.016 W/m·K 내지 약 0.023 W/m·K, 약 0.016 W/m·K 이상, 약 0.020 W/m·K 미만 또는 약 0.016 W/m·K 이상, 약 0.0195 W/m·K 미만 일 수 있다. 상기 열전도율은 발포체의 초기 단열성을 나타내는 것으로서, 상기 열경화성 발포체는 상기 복합 난연제를 포함하여, 난연성 뿐만 아니라, 단열성을 향상시킬 수 있다.The thermosetting resin, a curing agent, a blowing agent and a composite flame retardant, the composite flame retardant includes a first flame retardant and a second flame retardant, the first flame retardant is Phosphorus (Phosphorus), the second flame retardant is melamine cyanurate, The thermosetting comprising at least one selected from the group consisting of trialkyl phosphates and combinations thereof, or at least one selected from the group consisting of melamine cyanurate, trialkyl phosphates and combinations thereof, and a pentaerythritol-based compound. The foam has a thermal conductivity of about 0.016 W/m·K to about 0.029 W/m·K measured at an average temperature of 20° C. according to KS L 9016. For example, the thermosetting foam has a thermal conductivity of about 0.016 W/m·K to about 0.025 W/m·K, about 0.016 W/m·K to about 0.023 W/ measured at an average temperature of 20° C. according to KS L 9016. m·K, about 0.016 W/m·K or more, about 0.020 W/m·K or less, or about 0.016 W/m·K or more, and less than about 0.0195 W/m·K. The thermal conductivity indicates the initial thermal insulation of the foam, and the thermally curable foam includes the composite flame retardant, and may improve thermal insulation as well as flame retardancy.
그리고, 상기 열경화성 발포체는 EN13823에 따라, 70℃에서 7일 동안 건조시킨 뒤에 110℃에서 14일 동안 건조시킨 후, 평균 온도 20℃에서 측정한 열전도율이 약 0.017 W/m·K 내지 약 0.029 W/m·K 일 수 있다. 예를 들어, 약 0.017 W/m·K 내지 약 0.025 W/m·K 또는 약 0.017 W/m·K 이상, 약 0.023 W/m·K 미만 일 수 있다. 상기 열전도율은 발포체의 장기 단열성을 나타내는 것으로서, 상기 열경화성 발포체는 상기 복합 난연제를 포함하여 초기 단열성과 동일, 유사 범위의 장기 단열성을 나타낼 수 있다.And, the thermosetting foam according to EN13823, dried for 7 days at 70°C and then dried for 14 days at 110°C, the thermal conductivity measured at an average temperature of 20°C is about 0.017 W/mK to about 0.029 W/ It can be m·K. For example, it may be about 0.017 W/m·K to about 0.025 W/m·K or about 0.017 W/m·K or more and less than about 0.023 W/m·K. The thermal conductivity indicates long-term thermal insulation of the foam, and the thermal-curable foam may exhibit long-term thermal insulation of the same or similar range as the initial thermal insulation by including the composite flame retardant.
이와 동시에, 상기 열경화성 발포체는 KS F ISO 5660-1 에 따른 콘칼로리미터에 의한 10분간의 총 방출열량(THR600s)이 약 2.0 MJ/㎡ 내지 약 15 MJ/㎡ 일 수 있다. 예를 들어, 약 2.0 MJ/㎡ 내지 약 10.0 MJ/㎡ 또는 2.0 MJ/㎡ 내지 약 8.0 MJ/㎡ 미만일 수 있다. 즉, 상기 열경화성 발포체는 별도의 면재 없이도 준불연성에 가까운 우수한 난연성을 가질 수 있다. At the same time, the thermosetting foam may have a total heat emission rate (THR600s) of 10 minutes by a cone calorimeter according to KS F ISO 5660-1 from about 2.0 MJ/m 2 to about 15 MJ/m 2. For example, it may be about 2.0 MJ/m 2 to about 10.0 MJ/m 2 or 2.0 MJ/m 2 to less than about 8.0 MJ/m 2. That is, the thermosetting foam may have excellent flame retardancy close to semi-incombustibility even without a separate face material.
그리고, 상기 열경화성 발포체는 KS F ISO 5660-1 에 따른 콘칼로리미터에 의한 5분간의 총 방출열량(THR300s)이 약 1.0 MJ/㎡ 내지 약 12 MJ/㎡, 예를 들어, 약 1.0 MJ/㎡ 내지 약 7.5 MJ/㎡, 약 1.0 MJ/㎡ 내지 약 5 MJ/㎡ 또는 약 1.0 MJ/㎡ 이상, 약 4 MJ/㎡ 미만으로 우수한 난연성을 나타낼 수 있다. In addition, the thermosetting foam has a total heat emission rate (THR300s) of about 1.0 MJ/m 2 to about 12 MJ/m 2, for example, about 1.0 MJ/m 2 by concalimeter according to KS F ISO 5660-1. To about 7.5 MJ/m 2, about 1.0 MJ/m 2 to about 5 MJ/m 2 or about 1.0 MJ/m 2 or more, and less than about 4 MJ/m 2, it may exhibit excellent flame retardancy.
또한, 상기 열경화성 발포체의 독립기포율은 약 75% 내지 약 98%일 수 있다. 예를 들어, 상기 열경화성 발포체의 독립기포율은 약 80% 내지 약 95% 일 수 있다.In addition, the independent bubble rate of the thermosetting foam may be from about 75% to about 98%. For example, the independent bubble rate of the thermosetting foam may be from about 80% to about 95%.
일반적으로 난연성 향상을 위해 열경화성 발포체에 포스페이트 등의 인계 난연제를 사용하는 경우 난연성은 향상될 수 있으나, 발포과정에서 발포셀이 파괴되어 독립기포율이 낮아지고 단열성이 저하되는 문제가 있다. 반면, 상기 열경화성 발포체는 상기 복합 난연제를 포함하여 상기 범위의 높은 독립기포율을 유지할 수 있다. 그리고, 전술한 범위의 우수한 난연성 또는 준불연성과 함께, 우수한 단열성을 나타낼 수 있다.In general, when a phosphorus-based flame retardant such as phosphate is used in the thermosetting foam to improve the flame retardancy, the flame retardancy may be improved, but the foam cell is destroyed during the foaming process, resulting in a decrease in the independent bubble rate and a decrease in thermal insulation. On the other hand, the thermosetting foam can maintain a high independent bubble rate in the above range including the composite flame retardant. In addition, it is possible to exhibit excellent thermal insulation properties together with excellent flame retardancy or semi-incombustibility in the above-described range.
난연제로 일반적으로 사용하는 포스페이트 등의 인계 난연제의 경우, 열경화성 수지와 상용성이 떨어지고, 발포 셀 구조를 파괴하여 압축 강도 및 굴곡 파괴하중 등의 물성이 저하될 수 있다. 한편, 상기 열경화성 발포체는 상기 복합 난연제를 포함하여 열경화성 수지와 균일하게 혼합되고, 발포 셀 구조가 쉽게 파괴되지 않으며, 균일한 발포로 균일한 물성을 가질 수 있다. 또한, 상기 제1 난연제인 상기 인은 열경화성 발포체에서 필러로서 작용하여 상기 제2 난연제와 함께 상기 열경화성 발포체에 구조적 안정성을 부여하고 이와 함께 상기 범위의 우수한 압축강도 및 굴곡 파괴하중을 부여할 수 있다.In the case of phosphorus-based flame retardants such as phosphates commonly used as flame retardants, compatibility with the thermosetting resin is poor, and the foam cell structure may be destroyed to degrade physical properties such as compressive strength and flexural breaking load. On the other hand, the thermosetting foam is uniformly mixed with the thermosetting resin, including the composite flame retardant, the foam cell structure is not easily destroyed, it can have uniform properties by uniform foaming. In addition, the phosphorus, which is the first flame retardant, acts as a filler in the thermosetting foam to impart structural stability to the thermosetting foam together with the second flame retardant and, together with it, to provide excellent compressive strength and flexural breaking load in the above range.
구체적으로, 상기 열경화성 발포체는 KS M ISO 844 에 따른 압축강도가 약 80kPa 내지 약 300kPa 일 수 있다. 예를 들어, 약 150kPa 내지 약 230kPa 일 수 있다. Specifically, the thermosetting foam may have a compressive strength of about 80 kPa to about 300 kPa according to KS M ISO 844. For example, about 150 kPa to about 230 kPa Can be
상기 열경화성 발포체는 KS M ISO 4898에 따라, 250mm(L)Χ100mm(W)Χ20mm(T) 크기의 시편에 200mm 지지 간격, 50mm/min의 하중 집중 속도에서 상기 시편이 파단될 때까지의 최대 하중(N)인 굴곡 파괴하중(N)이 약 15 N 내지 약 50 N 일 수 있다. 예를 들어, 약 20 N 내지 약 50 N 일 수 있다. The thermosetting foam according to KS M ISO 4898, 200 mm support spacing on a specimen of 250 mm (L)✓100 mm (W)✓20 mm (T), the maximum load until the specimen breaks at a load concentration rate of 50 mm/min ( N), the flexural breaking load (N) may be from about 15 N to about 50 N. For example, it may be about 20 N to about 50 N.
그리고, 상기 열경화성 발포체는 하기 식 1에 의한 치수 변화율의 평균값이 0% 내지 1.0% 일 수 있다. 예를 들어, 상기 열경화성 발포체는 약 0% 내지 약 0.8% 또는 약 0% 내지 약 0.6% 의 평균 치수 변화율을 가질 수 있다.In addition, the thermosetting foam may have an average value of a dimensional change rate according to Equation 1 below from 0% to 1.0%. For example, the thermosetting foam may have an average dimensional change rate of about 0% to about 0.8% or about 0% to about 0.6%.
[식 1][Equation 1]
치수 변화율(%)=(초기 길이(a)-나중 길이(a'))/초기 길이(a) X 100Dimensional change rate (%)=(Initial length(a)-Last length(a'))/Initial length(a) X 100
상기 식 1에서, 상기 초기 길이(a)는 열경화성 발포체의 길이(L) 및 폭(W) 방향에 있어서 균등한 n개 지점의 각 선의 길이이고, 상기 나중 길이(a')는 상기 열경화성 발포체를 70℃ 오븐에서 48시간 방치시킨 후의 상기 각 지점의 각 선의 나중 길이(a')를 의미한다. 이때, n은 2 내지 5일 수 있다. n은 3 일 수 있다.In Equation 1, the initial length (a) is the length of each line at n points equal in the length (L) and width (W) directions of the thermosetting foam, and the later length (a') is the thermosetting foam. It means the later length (a') of each line at each point after leaving the oven at 70°C for 48 hours. At this time, n may be 2 to 5. n can be 3.
상기 열경화성 발포체는 난연제로 상기 복합 난연제를 포함하여 상기 범위 내의 치수 변화율을 가지는바, 우수한 치수 안정성을 갖는 것을 알 수 있다. 그에 따라 상기 열경화성 발포체는 우수한 열전도율을 나타내어, 장기 단열성이 더욱 효과적으로 향상될 수 있으면서 소정의 제품으로 적용시 가공성, 작업성이 더욱 우수할 수 있다.The thermosetting foam includes the composite flame retardant as a flame retardant, and thus has a dimensional change rate within the above range, and it can be seen that it has excellent dimensional stability. Accordingly, the thermosetting foam exhibits excellent thermal conductivity, so that long-term thermal insulation can be more effectively improved, and workability and workability can be more excellent when applied as a predetermined product.
그리고, 상기 열경화성 발포체는 KS M ISO 4589-2에 따른 산소지수가 약 32% 이상으로 우수한 난연성을 나타낼 수 있다. 구체적으로, 상기 열경화성 발포체의 산소지수는 약 32% 내지 약 60%, 약 36% 내지 약 60% 또는 약 43% 내지 약 60% 일 수 있다. 상기 열경화성 발포체는 상기 범위의 산소지수를 갖는 바, 화재시 쉽게 연소하지 않을 수 있고, 이에 따라 대피 시간 확보 등이 용이할 수 있다.In addition, the thermosetting foam may exhibit excellent flame retardancy with an oxygen index of about 32% or more according to KS M ISO 4589-2. Specifically, the oxygen index of the thermosetting foam may be about 32% to about 60%, about 36% to about 60% or about 43% to about 60%. Since the thermosetting foam has an oxygen index in the above range, it may not be easily burned in a fire, and thus it may be easy to secure an evacuation time.
본 발명의 다른 구현 예는 열경화성 수지를 포함하는 주제, 경화제, 발포제 및 복합 난연제를 포함하는 난연 조성물을 준비하는 단계; 상기 주제, 경화제, 발포제 및 난연 조성물을 교반하여 발포체 조성물을 제조하는 단계; 및 상기 발포체 조성물을 발포 경화하는 단계;를 포함하고, 상기 복합 난연제는 제1 난연제 및 제2 난연제를 포함하고, 상기 제1 난연제는 인(Phosphorus)이고, 상기 제2 난연제는 멜라민시아누레이트, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나를 포함하거나, 또는 멜라민시아누레이트, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나와 펜타에리트리톨계 화합물을 함께 포함하는 열경화성 발포체의 제조방법을 제공한다.Another embodiment of the present invention comprises the steps of preparing a flame retardant composition comprising a subject, a curing agent, a blowing agent and a composite flame retardant comprising a thermosetting resin; Preparing a foam composition by stirring the subject, a curing agent, a foaming agent, and a flame retardant composition; And foam-curing the foam composition; wherein the composite flame retardant includes a first flame retardant and a second flame retardant, the first flame retardant is phosphorus, and the second flame retardant is melamine cyanurate, A thermosetting foam comprising at least one selected from the group consisting of trialkylphosphates and combinations thereof, or at least one selected from the group consisting of melamine cyanurate, trialkylphosphates and combinations thereof, and a pentaerythritol-based compound. It provides a method of manufacturing.
상기 제조방법에 의해 전술한 바와 같이, 향상된 난연성과 동시에, 우수한 단열성 그리고, 우수한 압축강도, 치수 안정성 등의 물성을 갖는 상기 열경화성 발포체를 제조할 수 있다. 상기 열경화성 수지, 경화제, 발포제 및 복합 난연제에 관한 사항은 하기에서 특별히 기재한 것을 제외하고는 전술한 바와 같다.As described above by the above-described manufacturing method, it is possible to manufacture the thermosetting foam having improved flame retardancy, excellent thermal insulation properties, and excellent compressive strength and dimensional stability. Matters relating to the thermosetting resin, curing agent, foaming agent and composite flame retardant are as described above, except as specifically described below.
먼저, 열경화성 수지를 포함하는 주제, 경화제, 발포제 및 복합 난연제를 포함하는 난연 조성물을 준비하는 단계를 포함한다. 주제는 열경화성 수지 100 중량부 대비, 계면활성제 약 1 중량부 내지 약 5 중량부 및 우레아 약 3 중량부 내지 약 10 중량부를 포함할 수 있다. First, a step of preparing a flame retardant composition comprising a subject, a curing agent, a blowing agent, and a composite flame retardant, comprising a thermosetting resin. Subjects may include from about 1 part to about 5 parts by weight of surfactant and from about 3 parts to about 10 parts by weight of urea, relative to 100 parts by weight of thermosetting resin.
상기 복합 난연제는 인, 펜타에리트리톨계 화합물, 멜라민시아누레이트 및 이들의 조합으로 이루어진 군으로부터 선택된 하나의 고상 물질을 포함할 수 있고, 이때, 상기 복합 난연제는 유기 용매에 혼합된 난연 조성물의 형태로 발포체 조성물에 포함되어 적정의 흐름성을 갖고 생산 공정에 용이하게 투입되며, 열경화성 수지와 균일하게 혼합될 수 있다. 예를 들어, 상기 복합 난연제: 유기 용매는 약 2:1 내지 약 1:2의 중량비로 혼합되어 난연 조성물에 포함될 수 있으며, 상기 범위의 함량비로 혼합되어 복합 난연제의 난연성 향상 효과를 저하시키지 않을 수 있다. The composite flame retardant may include one solid material selected from the group consisting of phosphorus, pentaerythritol-based compounds, melamine cyanurate, and combinations thereof, wherein the composite flame retardant is in the form of a flame retardant composition mixed with an organic solvent. It is included in the furnace foam composition and has proper flowability and is easily introduced into the production process, and can be uniformly mixed with the thermosetting resin. For example, the composite flame retardant: the organic solvent may be mixed in a weight ratio of about 2:1 to about 1:2 to be included in the flame retardant composition, and may be mixed at a content ratio in the above range to not decrease the flame retardant enhancing effect of the composite flame retardant. have.
상기 유기 용매는 폴리올, 계면활성제, 폴리에틸렌글리콜, 에틸렌글리콜, 포스페이트계 화합물 및 이들의 조합으로 이루어진 군으로부터 선택된 저점도의 유기 용매일 수 있다. 상기 포스페이트계 화합물은 예를 들어, 트리스(1-클로로-2-프로필)포스페이트(Tris-(1-chloro-2-propyl)phosphate, TCPP), 트리스-(2-클로로에틸)포스페이트(Tris-(2-chloroethyl)phosphate, TCEP), 트리에틸포스페이트(Triethyl phosphate, TEP) 등 일 수 있다.The organic solvent may be a low-viscosity organic solvent selected from the group consisting of polyols, surfactants, polyethylene glycol, ethylene glycol, phosphate-based compounds, and combinations thereof. The phosphate-based compound is, for example, Tris(1-chloro-2-propyl)phosphate (TCP), Tris-(2-chloroethyl)phosphate (Tris-( 2-chloroethyl)phosphate, TCEP), and triethyl phosphate (TEP).
상기 유기 용매는 열경화성 수지 100중량부 대비 약 1 중량부 내지 약 15 중량부의 범위로 첨가될 수 있다. 상기 유기 용매의 함량이 상기 범위를 초과하는 경우 단열성이 저하되는 문제가 발생할 수 있다.The organic solvent may be added in a range of about 1 part by weight to about 15 parts by weight relative to 100 parts by weight of the thermosetting resin. When the content of the organic solvent exceeds the above range, a problem that thermal insulation is deteriorated may occur.
예를 들어, 상기 유기 용매는 TCPP, TCEP, TEP 및 이들의 조합으로 이루어진 군으로부터 선택된 하나의 제1 유기 용매와 폴리올, 계면활성제, 폴리에틸렌글리콜, 에틸렌글리콜 및 이들의 조합으로 이루어진 군으로부터 선택된 하나의 제2 유기 용매의 혼합 유기 용매일 수 있다. For example, the organic solvent is a first organic solvent selected from the group consisting of TCPP, TCEP, TEP and combinations thereof and one selected from the group consisting of polyol, surfactant, polyethylene glycol, ethylene glycol and combinations thereof. It may be a mixed organic solvent of the second organic solvent.
이때, 20℃에서, 상기 열경화성 수지의 점도(V1)와 상기 난연 조성물의 점도(V2)의 점도 차이(△V=|V1 - V2|)는 약 30,000 cps 이하 또는 약 20,000 cps 이하일 수 있다. 약 0 이상 약 10,000cps 이하일 수 있다. 상기 열경화성 수지의 점도(V1)와 상기 난연 조성물의 점도(V2)의 점도 차이(△V)를 상기 범위로 조절함으로써, 고상의 물질을 포함하는 복합 난연제가 발포체 제조 과정에서 침전되지 않고, 상기 열경화성 수지와 균일하게 잘 혼합되어 향상된 난연성과 함께 우수한 단열성을 나타낼 수 있다.At this time, at 20°C, the difference in viscosity (ΔV=|V1-V2|) between the viscosity (V1) of the thermosetting resin and the viscosity (V2) of the flame retardant composition may be about 30,000 cps or less or about 20,000 cps or less. It may be between about 0 and about 10,000 cps. By adjusting the viscosity difference (ΔV) between the viscosity (V1) of the thermosetting resin and the viscosity (V2) of the flame retardant composition to the above range, the composite flame retardant containing a solid material does not precipitate during the foam manufacturing process, and the thermosetting property It can be uniformly mixed well with the resin and exhibit excellent heat insulation with improved flame retardancy.
구체적으로, 상기 점도 차이(△V) 가 상기 범위를 초과하는 경우 복합 난연제와 열경화성 수지 등과의 균일한 혼합 및 발포가 어려워질 수 있고, 이에 따라 열경화성 발포체의 물성이 저하될 수 있다. 그리고, 상기 열경화성 수지 및 상기 난연 조성물 등을 포함하는 상기 발포체 조성물의 점도가 전체적으로 높아지면서 교반 믹서의 토크가 많이 걸리고, 발포체 조성물의 온도가 급격히 상승되어 발포체가 경화되기 전 발포제의 휘발량이 증가할 수 있고, 이에 따라 단열성이 저하 될 수 있다.Specifically, when the viscosity difference (ΔV) exceeds the above range, uniform mixing and foaming of the composite flame retardant and the thermosetting resin may be difficult, and accordingly, the physical properties of the thermosetting foam may deteriorate. In addition, as the viscosity of the foam composition including the thermosetting resin and the flame retardant composition increases, the torque of the stirring mixer takes a lot, and the temperature of the foam composition rises rapidly so that the volatilization amount of the foaming agent may increase before the foam is cured. And, accordingly, thermal insulation may be deteriorated.
그리고, 상기 열경화성 수지의 점도(V1)는 20℃에서, 약 1만cps 내지 약 8만cps, 약 1만cps 내지 약 5만cps 또는 약 2만cps 내지 약 5만cps 일 수 있다. 상기 점도 차이(△V)와 상기 열경화성 수지의 점도(V1)를 상기 범위로 조절하여 상기 복합 난연제가 분산된 열경화성 수지의 경화 반응 속도를 적절히 조절할 수 있다. 이에 따라, 구조적으로 안정적이면서, 적정의 가교 구조를 갖는 열경화성 발포체를 형성할 수 있어, 상기 열경화성 발포체는 향상된 난연성과 함께 우수한 단열성을 일정 수준으로 유지하고, 우수한 압축강도 등의 우수한 물성을 나타낼 수 있다.In addition, the viscosity (V1) of the thermosetting resin may be about 10,000 cps to about 80,000 cps, about 10,000 cps to about 50,000 cps, or about 20,000 cps to about 50,000 cps at 20°C. By adjusting the difference in viscosity (ΔV) and the viscosity (V1) of the thermosetting resin to the above range, the curing reaction rate of the thermosetting resin in which the composite flame retardant is dispersed can be appropriately adjusted. Accordingly, it is possible to form a thermosetting foam having a structurally stable and moderate cross-linking structure, and the thermosetting foam maintains excellent thermal insulation properties at a constant level with improved flame retardancy, and exhibits excellent physical properties such as excellent compressive strength. .
상기 발포제는 상기 열경화성 수지 약 100 중량부를 기준으로 약 5 중량부 내지 약 15 중량부가 되도록 포함될 수 있다. 상기 발포제를 상기 범위의 함량으로 포함함으로써, 상기 열경화성 수지에 분산된 상기 복합 난연제를 포함하는 발포체 조성물이 발포하는 과정에서 적정의 발포압으로 균일하게 발포하여 향상된 난연성, 단열성 및 압축 강도 등의 물성을 갖는 열경화성 발포체를 형성할 수 있다. 예를 들어, 발포제의 함량이 상기 범위를 초과하는 경우 발포 셀이 파괴되어 단열성이 저하되고, 발포체의 치수 변화율이 커지고, 압축 강도가 저하될 수 있다. The blowing agent may be included to be about 5 parts by weight to about 15 parts by weight based on about 100 parts by weight of the thermosetting resin. By including the blowing agent in the content of the above range, the foam composition comprising the composite flame retardant dispersed in the thermosetting resin uniformly foams at an appropriate blowing pressure in the process of foaming to improve physical properties such as improved flame retardancy, heat insulation and compressive strength. It is possible to form a thermosetting foam having. For example, when the content of the foaming agent exceeds the above range, the foam cell is destroyed and the heat insulating property is lowered, the dimensional change rate of the foam is increased, and the compressive strength may be lowered.
그리고, 상기 경화제는 열경화성 수지 100 중량부 대비, 약 15 내지 약 25 중량부의 함량으로 포함될 수 있다. 상기 경화제는 톨루엔술폰산 등의 물질을 용매에 혼합한 혼합물을 의미한다. 경화제를 상기 범위의 함량으로 포함하여 복합난연제를 포함하는 조성물에 있어서 발포 및 경화의 발런스를 적절히 조절할 수 있으며, 이에 따라 우수한 난연성과 함께, 단열성 및 우수한 압축강도 등의 물성을 부여할 수 있다.In addition, the curing agent may be included in an amount of about 15 to about 25 parts by weight compared to 100 parts by weight of the thermosetting resin. The curing agent refers to a mixture of a substance such as toluene sulfonic acid in a solvent. In a composition containing a composite flame retardant by including a curing agent in the above range, the balance of foaming and curing can be appropriately adjusted, and accordingly, physical properties such as heat insulation and excellent compressive strength can be imparted along with excellent flame retardancy.
그리고, 상기 열경화성 발포체의 제조방법은 상기 주제, 경화제, 발포제 및 난연 조성물을 교반하여 발포체 조성물을 제조하는 단계를 포함한다. 상기 열경화성 발포체의 제조방법은 복합 난연제를 포함하는 난연 조성물을 열경화성 수지를 포함하는 주제와 별도로 분리하여 혼합 및 교반할 수 있다. 이에 따라, 열경화성 수지를 포함하는 주제의 점도가 급격히 상승하는 것을 방지할 수 있고, 전술한 물성을 갖는 열경화성 발포체를 쉽게 제조할 수 있다.And, the method for manufacturing the thermosetting foam includes the steps of preparing the foam composition by stirring the subject, the curing agent, the foaming agent and the flame retardant composition. In the method of manufacturing the thermosetting foam, the flame retardant composition containing the composite flame retardant can be separately mixed and stirred by separating from the subject containing the thermosetting resin. Accordingly, it is possible to prevent the viscosity of the subject containing the thermosetting resin from rapidly increasing, and the thermosetting foam having the above-described physical properties can be easily produced.
그리고, 상기 열경화성 발포체의 제조방법은 상기 발포체 조성물을 발포 경화하는 단계;를 포함한다. 상기 열경화성 발포체는 예를 들어, 약 50℃ 내지 약 90℃의 온도 조건 하에서 발포 및 경화될 수 있다. 또한, 상기 발포 및 경화는 약 2분 내지 약 20분의 시간 동안 수행될 수 있으나, 이에 제한되지 아니하고, 발명의 목적 및 용도에 따라 적절히 달라질 수 있다. And, the method of manufacturing the thermosetting foam comprises the step of foam-curing the foam composition. The thermosetting foam can be foamed and cured, for example, under temperature conditions from about 50°C to about 90°C. In addition, the foaming and curing may be performed for a time of about 2 minutes to about 20 minutes, but is not limited thereto, and may be appropriately changed according to the purpose and use of the invention.
본 발명의 또 다른 구현 예는 상기 열경화성 발포체를 포함하는 단열재를 제공한다.Another embodiment of the present invention provides a heat insulating material comprising the thermosetting foam.
상기 열경화성 발포체는 예를 들어, 건축용 단열재의 용도로 적용될 수 있고, 그에 따라 건축용 단열재로서 요구되는 우수한 단열성과 함께 현저히 향상된 난연성을 동시에 만족시킬 수 있다. 그리고, 우수한 압축강도, 굴곡 파괴하중(N), 치수 안정성 및 높은 산소 지수 등을 가질 수 있다.The thermosetting foam can be applied, for example, to the use of a building insulation material, and accordingly, can simultaneously satisfy a significantly improved flame retardancy along with excellent heat insulation required as a building insulation material. And, it can have excellent compressive strength, flexural breaking load (N), dimensional stability, and high oxygen index.
상기 건축용 단열재는 예를 들어, 상기 열경화성 발포체의 일면 또는 양면상에 면재를 더 포함할 수 있고, 상기 면재로 알루미늄을 포함하여 난연성을 더욱 향상시킬 수 있다.The building insulation material may further include, for example, a face material on one side or both sides of the thermosetting foam, and further include aluminum as the face material to further improve flame retardancy.
(실시예) (Example)
실시예 1: Example 1:
20℃에서 점도가 3만cps 범위인 레졸 수지 100중량부, 에톡시화 반응시킨 피마자유 계면활성제 1 중량부 및 분말 형상 우레아 3.5 중량부를 혼합한 주제, 경화제로 톨루엔술폰산, 발포제로 시클로펜탄을 준비하였다. 그리고, 적인 및 멜라민시아누레이트의 복합 난연제를 피마자유 계면활성제: 에틸렌글리콜이 2:1의 중량비로 혼합한 유기 용매에 혼합하여 난연 조성물을 준비하였다. Toluenesulfonic acid as a curing agent and cyclopentane as a foaming agent were prepared by mixing 100 parts by weight of a resol resin having a viscosity of 30,000 cps at 20°C, 1 part by weight of castor oil surfactant subjected to an ethoxylation reaction, and 3.5 parts by weight of a powdery urea. . Then, a flame retardant composition was prepared by mixing a composite flame retardant of red and melamine cyanurate in an organic solvent in which a castor oil surfactant: ethylene glycol was mixed in a weight ratio of 2:1.
그리고, 상기 레졸 수지 100 중량부에 대하여, 상기 톨루엔술폰산 80중량%를 에틸렌클리콜 15중량% 및 물 5중량%에 혼합한 혼합물 18 중량부, 시클로펜탄 8 중량부와 함께, 상기 난연 조성물을 배관을 통해 교반기에 공급하고 교반하여 발포체 조성물을 제조하였다. And, with respect to 100 parts by weight of the resol resin, the toluene sulfonic acid 80 parts by weight of ethylene glycol 15% by weight and 5% by weight of a mixture of 18 parts by weight of the mixture, 8 parts by weight of cyclopentane, piping the flame retardant composition It was supplied to the stirrer through and stirred to prepare a foam composition.
그리고, 상기 교반된 발포체 조성물을 5 m/min 속도로 작동되는 케터필러에 투입하여 최종적으로 40kg/m3 밀도를 가지는 페놀 수지 발포체를 제조하였다. 이때, 상기 케터필러의 온도는 70℃이고, 두께는 50mm 가 되도록 하였다. Then, the stirred foam composition was introduced into a caterpillar operated at a speed of 5 m/min to finally prepare a phenolic resin foam having a density of 40 kg/m3. At this time, the temperature of the caterpillar was 70°C, and the thickness was 50 mm.
이때, 상기 난연 조성물에 포함된 적인, 멜라민시아누레이트의 함량과 유기 용매의 함량을 조절하여, 20℃에서, 상기 레졸 수지의 점도(V1)와 상기 난연 조성물의 점도(V2)의 점도 차이(△V=|V1 - V2|)가 1만cps 이내가 되도록 하였다. 상기 점도는 브룩필드 점도계(Brookfield 사, DV3T Rheometer, #63 스핀들)를 이용하여 측정하였다.At this time, by adjusting the content of the enemy, melamine cyanurate and organic solvent contained in the flame retardant composition, at 20 ℃, the viscosity difference between the viscosity of the resol resin (V1) and the viscosity of the flame retardant composition (V2) ( ΔV=|V1-V2|) was made to be within 10,000 cps. The viscosity was measured using a Brookfield viscometer (Brookfield, DV3T Rheometer, #63 spindle).
그리고, 최종적으로, 상기 페놀 수지 발포체는 상기 페놀 수지 발포체 100 중량부 대비, 적인 6 중량부와 멜라민시아누레이트 2 중량부를 포함하도록 하였다.And, finally, the phenolic resin foam was prepared to contain 6 parts by weight of red and 2 parts by weight of melamine cyanurate, relative to 100 parts by weight of the phenolic resin foam.
실시예 2: Example 2:
상기 적인 및 멜라민시아누레이트의 복합 난연제 대신에, 적인 및 트리에틸포스페이트의 복합 난연제를 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 페놀 발포체를 제조하였다. 그리고, 최종적으로, 상기 페놀 수지 발포체 100 중량부 대비, 적인 6 중량부 및 트리에틸포스페이트 2 중량부를 포함하도록 하였다.A phenolic foam was prepared in the same manner as in Example 1, except that a composite flame retardant of red and triethylphosphate was used instead of the composite flame retardant of red and melamine cyanurate. And, finally, compared to 100 parts by weight of the phenolic resin foam, it was made to include 6 parts by weight of red and 2 parts by weight of triethyl phosphate.
실시예 3: Example 3:
상기 적인 및 멜라민시아누레이트의 복합 난연제 대신에, 적인, 모노펜타에리트리톨 및 멜라민시아누레이트의 복합 난연제를 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 페놀 발포체를 제조하였다. 그리고, 최종적으로, 상기 페놀 수지 발포체 100 중량부 대비, 적인 6 중량부, 모노펜타에리트리톨 1 중량부 및 멜라민시아누레이트 1 중량부를 포함하도록 하였다.A phenolic foam was prepared in the same manner as in Example 1, except that a composite flame retardant of red, monopentaerythritol and melamine cyanurate was used instead of the composite flame retardant of red and melamine cyanurate. And, finally, compared to 100 parts by weight of the phenolic resin foam, it was made to include 6 parts by weight of red, 1 part by weight of monopentaerythritol and 1 part by weight of melamine cyanurate.
실시예 4: Example 4:
상기 적인 및 멜라민시아누레이트의 복합 난연제 대신에, 적인, 멜라민시아누레이트 및 트리에틸포스페이트의 복합 난연제를 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 페놀 발포체를 제조하였다. 그리고, 최종적으로, 상기 페놀 수지 발포체 100 중량부 대비, 적인 6 중량부, 멜라민시아누레이트 1 중량부 및 트리에틸포스페이트 1 중량부를 포함하도록 하였다.A phenolic foam was prepared in the same manner as in Example 1, except that a composite flame retardant of red, melamine cyanurate and triethylphosphate was used instead of the composite flame retardant of red and melamine cyanurate. And, finally, compared to 100 parts by weight of the phenolic resin foam, 6 parts by weight of red, 1 part by weight of melamine cyanurate and 1 part by weight of triethyl phosphate.
실시예 5: Example 5:
상기 적인 및 멜라민시아누레이트의 복합 난연제 대신에, 적인, 모노펜타에리트리톨 및 트리에틸포스페이트의 복합 난연제를 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 페놀 발포체를 제조하였다. 그리고, 최종적으로, 상기 페놀 수지 발포체 100 중량부 대비, 적인 6 중량부, 모노펜타에리트리톨 1 중량부 및 트리에틸포스페이트 1 중량부를 포함하도록 하였다.A phenolic foam was prepared in the same manner as in Example 1, except that a composite flame retardant of red, monopentaerythritol and triethylphosphate was used instead of the composite flame retardant of red and melamine cyanurate. And, finally, compared to 100 parts by weight of the phenolic resin foam, it was made to include 6 parts by weight of red, 1 part by weight of monopentaerythritol and 1 part by weight of triethyl phosphate.
실시예 6: Example 6:
상기 적인 및 멜라민시아누레이트의 복합 난연제 대신에, 적인, 모노펜타에리트리톨, 멜라민시아누레이트 및 트리에틸포스페이트의 복합 난연제를 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 페놀 발포체를 제조하였다. 그리고, 최종적으로, 상기 페놀 수지 발포체 100 중량부 대비, 적인 6 중량부, 모노펜타에리트리톨 0.3 중량부, 멜라민시아누레이트 0.7 중량부 및 트리에틸포스페이트 1 중량부를 포함하도록 하였다.A phenolic foam was prepared in the same manner as in Example 1, except that the composite flame retardant of red, monopentaerythritol, melamine cyanurate, and triethyl phosphate was used instead of the composite flame retardant of red and melamine cyanurate. And, finally, compared to 100 parts by weight of the phenolic resin foam, 6 parts by weight of red, 0.3 parts by weight of monopentaerythritol, 0.7 parts by weight of melamine cyanurate and 1 part by weight of triethyl phosphate.
비교예 1: Comparative Example 1:
상기 적인 및 멜라민시아누레이트의 복합 난연제 대신에, 멜라민시아누레이트만을 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 페놀 발포체를 제조하였다. 그리고, 최종적으로, 상기 페놀 수지 발포체 100 중량부 대비, 멜라민시아누레이트 8 중량부를 포함하도록 하였다.A phenolic foam was prepared in the same manner as in Example 1, except that only melamine cyanurate was used in place of the above-mentioned composite flame retardant of melamine cyanurate. And, finally, compared to 100 parts by weight of the phenolic resin foam, it was made to contain 8 parts by weight of melamine cyanurate.
비교예 2: Comparative Example 2:
상기 적인 및 멜라민시아누레이트의 복합 난연제 대신에, 펜타에리트리톨만을 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 페놀 발포체를 제조하였다. 그리고, 최종적으로, 상기 페놀 수지 발포체 100 중량부 대비, 펜타에리트리톨 8 중량부를 포함하도록 하였다.A phenolic foam was prepared in the same manner as in Example 1, except that only pentaerythritol was used instead of the above-mentioned composite flame retardant of melamine cyanurate. And, finally, compared to 100 parts by weight of the phenolic resin foam, it was made to include 8 parts by weight of pentaerythritol.
비교예 3: Comparative Example 3:
상기 적인 및 멜라민시아누레이트의 복합 난연제 대신에, 암모늄 폴리포스페이트 및 멜라민시아누레이트의 복합 난연제를 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 페놀 발포체를 제조하였다. 그리고, 최종적으로, 상기 페놀 수지 발포체 100 중량부 대비, 암모늄 폴리포스페이트 6 중량부 및 멜라민시아누레이트 2 중량부를 포함하도록 하였다.A phenolic foam was prepared in the same manner as in Example 1, except that the composite flame retardant of ammonium polyphosphate and melamine cyanurate was used instead of the above-mentioned composite flame retardant of melamine cyanurate. And finally, compared to 100 parts by weight of the phenolic resin foam, it was made to include 6 parts by weight of ammonium polyphosphate and 2 parts by weight of melamine cyanurate.
비교예 4: Comparative Example 4:
상기 적인 및 멜라민시아누레이트의 복합 난연제 대신에, 암모늄 폴리포스페이트 및 모노펜타에리트리톨의 복합 난연제를 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 페놀 발포체를 제조하였다. 그리고, 최종적으로, 상기 페놀 수지 발포체 100 중량부 대비, 암모늄 폴리포스페이트 6 중량부 및 모노펜타에리트리톨 2 중량부를 포함하도록 하였다.A phenolic foam was prepared in the same manner as in Example 1, except that the composite flame retardant of ammonium polyphosphate and monopentaerythritol was used instead of the composite flame retardant of the above and melamine cyanurate. And, finally, compared to 100 parts by weight of the phenolic resin foam, it was made to include 6 parts by weight of ammonium polyphosphate and 2 parts by weight of monopentaerythritol.
비교예 5:Comparative Example 5:
상기 적인 및 멜라민시아누레이트의 복합 난연제 대신에, 트리에틸포스페이트만을 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 페놀 발포체를 제조하였다. 그리고, 최종적으로, 상기 페놀 수지 발포체 100 중량부 대비, 트리에틸포스페이트 8 중량부를 포함하도록 하였다.A phenolic foam was prepared in the same manner as in Example 1, except that only the triethyl phosphate was used instead of the above-mentioned composite flame retardant of melamine cyanurate. And, finally, compared to 100 parts by weight of the phenolic resin foam, it was made to include 8 parts by weight of triethyl phosphate.
평가evaluation
실험예 1: 초기 열전도율(W/m·K) Experimental Example 1: Initial thermal conductivity ( W/mK )
실시예 및 비교예의 페놀 수지 발포체를 50㎜의 두께 및 300㎜×300㎜ 크기로 절단하여 시편을 준비하고, 상기 시편을 70℃에서 12시간으로 건조하여 전처리 하였다. 그리고, 상기 시편에 대해 KS L 9016(평판 열류계법 측정방법)의 측정 조건에 따라 평균 온도 20℃에서 HC-074-300(EKO社) 열전도율 기기를 사용하여 열전도율을 측정하고, 그 결과를 하기 표 1 에 기재하였다.The phenolic resin foams of Examples and Comparative Examples were cut to a thickness of 50 mm and a size of 300 mm×300 mm to prepare specimens, and the specimens were dried at 70° C. for 12 hours for pretreatment. Then, according to the measurement conditions of KS L 9016 (flat plate heat flow meter method) for the specimen, the thermal conductivity was measured using an HC-074-300 (EKO) thermal conductivity device at an average temperature of 20°C, and the results are shown in the table below. It was described in 1.
실험예 2: 장기 열전도율(W/m·K) Experimental Example 2: Long-term thermal conductivity ( W/mK )
실시예 및 비교예의 페놀 수지 발포체를 50㎜의 두께 및 300㎜×300㎜ 크기로 절단하여 시편을 준비하고, 상기 시편을 EN13823에 따라, 70℃에서 7일 동안 건조시킨 뒤에 110℃에서 14일 동안 건조시킨 후, 평균 온도 20℃에서 HC-074-300(EKO社) 열전도율 기기를 사용하여 열전도율을 측정하고, 그 결과를 하기 표 1 에 기재하였다.The phenolic resin foams of Examples and Comparative Examples were cut to a thickness of 50 mm and a size of 300 mm×300 mm to prepare specimens, and the specimens were dried for 7 days at 70° C. according to EN13823, followed by 14 days at 110° C. After drying, the thermal conductivity was measured using an HC-074-300 (EKO) thermal conductivity device at an average temperature of 20°C, and the results are shown in Table 1 below.
실험예 3: THR 300s(MJ/㎡) Experimental Example 3: THR 300s ( MJ/㎡ )
상기 실시예 및 비교예의 페놀 수지 발포체를 그리즐리 밴드쏘를 이용하여 100mm(L)Χ100mm(W)Χ50mm(T) 크기의 시편으로 제작하였다.The phenolic resin foams of the above examples and comparative examples were fabricated into specimens having a size of 100 mm(L)Χ100 mm(W)Χ50 mm(T) using a grizzly band saw.
그리고, KS F ISO 5660-1의 측정조건을 하기와 같이 맞추었다. 50kW/m2 복사열을 맞추어 콘히터의 온도는 700℃도로 하였고, Blower의 속도는 24L/min, 산소농도는 20.950%에서 시작하였다. 그리고, 콘칼로리미터 측정기(페스텍인터네서날)를 사용하여, 상기 시편에 50kW/m2 복사열을 5분간 적용하고 총방출열량(THR300)을 측정하였다. 그리고, 그 결과를 하기 표 1에 기재하였다. Then, the measurement conditions of KS F ISO 5660-1 were set as follows. The heat of the heater was set to 700°C by matching 50kW/m 2 radiant heat, the blower speed was 24L/min, and the oxygen concentration started at 20.950%. Then, using a cone-calorimeter (Fasttech International), 50 kW/m 2 radiant heat was applied to the specimen for 5 minutes, and the total amount of heat released (THR300) was measured. And the results are shown in Table 1 below.
실험예 4: THR 600s (MJ/㎡) Experimental Example 4: THR 600s ( MJ/㎡ )
콘칼로리미터 측정기(페스텍인터네서날)를 사용하여, 상기 시편에 50kW/m2 복사열을 10분간 적용하고 총방출열량(THR600)을 측정한 것을 제외하고는 실험예 3과 동일한 방법으로 측정하였다. 그리고, 그 결과를 하기 표 1에 기재하였다. It was measured in the same manner as in Experimental Example 3, except that 50 kW/m 2 radiant heat was applied to the specimen for 10 minutes and the total amount of heat released (THR600) was measured using a concalimeter meter (Festtech International). And the results are shown in Table 1 below.
실험예 5: 독립기포율(%)Experimental Example 5: Independent bubble rate (%)
실시예 및 비교예 각각의 페놀 수지 발포체를 2.5㎝(L)X2.5㎝ (W)X2.5㎝(T)로 절단하여 시편을 제조하였다. 그리고, KS M ISO 4590 측정방법으로 독립기포율 측정기기(Quantachrome, ULTRAPYC 1200e) 장비를 사용하여 측정하고 그 결과를 하기 표 1에 기재하였다.The phenol resin foam of each of the examples and comparative examples was cut into 2.5 cm (L) X 2.5 cm (W) X 2.5 cm (T) to prepare specimens. And, using the KS M ISO 4590 measurement method using an independent bubble rate measuring instrument (Quantachrome, ULTRAPYC 1200e) equipment and the results are shown in Table 1 below.
실험예 6: 압축 강도(kPa)Experimental Example 6: Compressive strength (kPa)
실시예 및 비교예의 페놀 수지 발포체를 50mm(L)Χ50mm(W)Χ50mm(T) 크기의 시편으로 준비하고, 상기 시편을 Lloyd instrument社 LF Plus 만능재료시험기(Universal Testing Machine)의 넓은 판 사이에 두고, UTM 장비에서 시편 두께의 10%㎜/min 속도로 설정하고, 압축강도 실험을 시작하여 두께가 감소되는 중에 나타나는 첫번째 압축 항복점에서의 강도를 기록하였다. 압축강도는 KS M ISO 844 규격의 방법으로 측정하였고, 그 결과를 하기 표 1에 기재하였다. The phenolic resin foams of Examples and Comparative Examples were prepared as specimens having a size of 50mm(L)Χ50mm(W)Χ50mm(T), and the specimens were placed between wide plates of a Lloyd instrument company LF Plus Universal Testing Machine. , UTM equipment was set at a rate of 10% mm/min of the specimen thickness, and the compressive strength experiment was started to record the strength at the first compressive yield point during the thickness reduction. Compressive strength was measured by the method of KS M ISO 844 standard, and the results are shown in Table 1 below.
실험예 7: 치수 안정성 (%)Experimental Example 7: Dimensional stability (%)
도 1은 본 발명의 열경화성 발포체의 치수 안정성을 측정하는 방법을 간략하게 나타낸 모식도이다.1 is a schematic view schematically showing a method for measuring dimensional stability of a thermosetting foam of the present invention.
실시예 및 비교예의 페놀 수지 발포체를 100mm(L)Χ100mm(W)Χ50mm(T) 크기의 시편으로 준비하였다. 그리고, 도 1과 같이, 시편의 길이(L) 및 폭(W) 방향에 있어서 균등한 n(n=3)개 지점에 선을 긋고, 25℃에서 상기 각각의 선의 초기 길이(a)를 측정하였다. The phenolic resin foams of Examples and Comparative Examples were prepared as specimens having a size of 100mm(L)Χ100mm(W)Χ50mm(T). Then, as shown in FIG. 1, a line is drawn at n (n=3) points equal in the length (L) and width (W) directions of the specimen, and the initial length (a) of each line is measured at 25°C. Did.
그리고, 상기 시편을 70℃ 오븐에서 48시간 방치시킨 후의 각 지점의 나중 길이(a')를 측정하고, 초기 치수에서 변화된 치수 변화율(%)을 하기 식 1에 의해 각각 측정하고, 그 평균 값을 표 1에 기재하였다. 치수안정성은 KS M ISO 2796 규격의 방법으로 측정하였다.Then, after the specimen was left in the oven at 70° C. for 48 hours, the later length (a′) of each point was measured, and the dimensional change rate (%) changed from the initial dimension was measured by Equation 1 below, and the average value thereof was measured. It is described in Table 1. Dimensional stability was measured by the method of KS M ISO 2796 standard.
[식 1][Equation 1]
치수 변화율(%)=(초기 길이(a)-나중 길이(a'))/초기 길이(a) X 100Dimensional change rate (%)=(Initial length(a)-Last length(a'))/Initial length(a) X 100
실험예 8: 산소 지수 (LOI)Experimental Example 8: Oxygen Index (LOI)
KS M ISO 4589-2 규격에서 규정된 시험 조건하에서 실시예 및 비교예의 발포체의 연소를 지속시키기 위해 요구되는 산소의 최소 농도를 측정하고, 그 결과를 하기 표 1에 기재하였다. 시험 결과값은 23±2℃ 온도에서 주입되는 산소 및 질소 혼합물에서 산소의 부피 퍼센트로 주어진다.Under the test conditions specified in the KS M ISO 4589-2 standard, the minimum concentration of oxygen required to sustain the combustion of the foams of Examples and Comparative Examples was measured, and the results are shown in Table 1 below. The test results are given as a percentage of the volume of oxygen in the oxygen and nitrogen mixture injected at a temperature of 23±2°C.
실험예 9: 굴곡 파괴 하중(N)Experimental Example 9: Flexural breaking load (N)
실시예 및 비교예의 페놀 수지 발포체를 250mm(L) Χ 100mm(W) Χ 20mm(T) 크기의 시편으로 준비하고, 상기 시편을 KS M ISO 4898에 따라, 200mm 지지 간격, 50mm/min의 하중 집중 속도에서 상기 시편이 파단 될 때까지의 최대 하중(N)을 측정하고 그 결과를 하기 표 1에 기재하였다.The phenolic resin foams of Examples and Comparative Examples were prepared as specimens having a size of 250 mm (L) Χ 100 mm (W) Χ 20 mm (T), and the specimens according to KS M ISO 4898, 200 mm support spacing, 50 mm/min load concentration The maximum load (N) from the velocity until the specimen fractured was measured and the results are shown in Table 1 below.
초기열전도율(W/m·K)Initial thermal conductivity (W/mK) 장기열전도율(W/m·K)Long-term thermal conductivity (W/mK) THR 300s(MJ/㎡)THR 300s (MJ/㎡) THR 600s(MJ/㎡)THR 600s (MJ/㎡) 독립기포율(%)Independent bubble rate (%) 압축 강도(kPa)Compressive strength (kPa) 치수안정성(%)Dimensional stability (%) 산소 지수 (LOI)Oxygen Index (LOI) 굴곡파괴하중(N)Flexural fracture load (N)
실시예1Example 1 0.019890.01989 0.022340.02234 3.63.6 6.66.6 85.685.6 184.2184.2 0.540.54 46.846.8 26.826.8
실시예2Example 2 0.019530.01953 0.021720.02172 4.54.5 7.57.5 86.786.7 174.2174.2 0.420.42 44.144.1 25.425.4
실시예3Example 3 0.019570.01957 0.020370.02037 3.83.8 5.85.8 88.988.9 210.5210.5 0.460.46 48.248.2 32.332.3
실시예4Example 4 0.019420.01942 0.021460.02146 3.43.4 5.65.6 89.489.4 178.6178.6 0.430.43 49.549.5 29.129.1
실시예5Example 5 0.019160.01916 0.020880.02088 4.24.2 6.26.2 90.490.4 196.5196.5 0.380.38 47.747.7 30.530.5
실시예6Example 6 0.019240.01924 0.019860.01986 3.03.0 4.34.3 90.190.1 201.5201.5 0.340.34 51.751.7 33.533.5
비교예1Comparative Example 1 0.023620.02362 0.028470.02847 12.412.4 19.819.8 78.278.2 138.5138.5 0.880.88 35.635.6 14.114.1
비교예2Comparative Example 2 0.019450.01945 0.021110.02111 14.814.8 24.624.6 89.489.4 187.2187.2 0.610.61 31.031.0 19.619.6
비교예3Comparative Example 3 0.031540.03154 0.033240.03324 3.93.9 7.77.7 8.58.5 112.2112.2 1.221.22 41.541.5 12.112.1
비교예4Comparative Example 4 0.029940.02994 0.032450.03245 5.25.2 9.59.5 10.410.4 124.5124.5 1.071.07 39.839.8 13.913.9
비교예5Comparative Example 5 0.023140.02314 0.030030.03003 14.614.6 22.722.7 64.864.8 105.2105.2 1.181.18 29.829.8 12.512.5
상기 표 1에서 보는 바와 같이, 실시예의 열경화성 발포체는 낮은 총방출열량, 높은 산소지수로 우수한 난연성을 나타내면서, 이와 함께, 우수한 초기 열전도율과 이와 유사범위의 장기 열전도율을 가져, 시간이 지나도 낮은 열전도율을 일정 수준으로 유지하는 것을 확인 할 수 있다. 또한, 실시예의 열경화성 발포체는 높은 독립기포율, 향상된 압축강도, 굴곡파괴하중 및 치수변화율을 동시에 만족하는 것을 확인할 수 있다. As shown in Table 1, the thermosetting foam of the embodiment exhibits excellent flame retardancy with low total emission heat and high oxygen index, and at the same time, has excellent initial thermal conductivity and long-term thermal conductivity in a similar range, and has a constant low thermal conductivity over time. You can see that it stays at the level. In addition, it can be seen that the thermosetting foam of the Example satisfies the high independent bubble rate, the improved compressive strength, the flexural fracture load, and the dimensional change rate at the same time.
이상과 같이 본 발명에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다. 아울러 앞서 본 발명의 실시예를 설명하면서 본 발명의 구성에 따른 작용 효과를 명시적으로 기재하여 설명하지 않았을 지라도, 해당 구성에 의해 예측 가능한 효과 또한 인정되어야 함은 당연하다.As described above, the present invention has been described with reference to the exemplified drawings, but the present invention is not limited by the examples and drawings disclosed in the present specification, and it is various by a person skilled in the art within the scope of the technical idea of the present invention. It is obvious that modifications can be made. In addition, although the operation and effect according to the configuration of the present invention has not been explicitly described while explaining the embodiment of the present invention, it is natural that the effect predictable by the configuration should also be recognized.

Claims (21)

  1. 열경화성 수지, 경화제, 발포제 및 복합 난연제를 포함하고,Thermosetting resin, curing agent, foaming agent and composite flame retardant,
    상기 복합 난연제는 제1 난연제 및 제2 난연제를 포함하고,The composite flame retardant comprises a first flame retardant and a second flame retardant,
    상기 제1 난연제는 인(Phosphorus)이고,The first flame retardant is Phosphorus,
    상기 제2 난연제는 멜라민시아누레이트, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나를 포함하거나, 또는 멜라민시아누레이트, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나와 펜타에리트리톨계 화합물을 함께 포함하는The second flame retardant comprises at least one selected from the group consisting of melamine cyanurate, trialkylphosphates and combinations thereof, or at least one selected from the group consisting of melamine cyanurate, trialkylphosphates and combinations thereof and penta Erythritol-based compound together
    열경화성 발포체.Thermosetting foam.
  2. 제1항에 있어서,According to claim 1,
    상기 복합 난연제는 상기 열경화성 발포체 100 중량부 대비 1 중량부 내지 20 중량부의 함량으로 포함하는The composite flame retardant is contained in an amount of 1 to 20 parts by weight compared to 100 parts by weight of the thermosetting foam
    열경화성 발포체.Thermosetting foam.
  3. 제1항에 있어서,According to claim 1,
    상기 제1 난연제는 상기 열경화성 발포체 100 중량부 대비 0.9 중량부 내지 15 중량부의 함량으로 포함하는The first flame retardant comprises 0.9 parts by weight to 15 parts by weight compared to 100 parts by weight of the thermosetting foam
    열경화성 발포체.Thermosetting foam.
  4. 제1항에 있어서, According to claim 1,
    상기 트리알킬포스페이트는 트리메틸포스페이트, 트리에틸포스페이트, 트리부틸포스페이트, 트리스(1-클로로 2-프로필)포스페이트, 트리(2-에틸헥실)포스페이트, 트리페닐포스테이트, 트리크레실포스페이트, 트리자일레닐포스페이트(trixylenyl phosphate), 트리스(이소프로필페닐)포스페이트, 트리스(페닐페닐)포스페이트, 트리나프틸포스페이트, 크레실디페닐포스페이트, 자일레닐디페닐포스페이트, 디페닐(2-에틸헥실)포스페이트, 디(이소프로필페닐)페닐포스페이트, 모노이소데실포스페이트) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나의 화합물을 포함하는 The trialkyl phosphate is trimethyl phosphate, triethyl phosphate, tributyl phosphate, tris (1-chloro 2-propyl) phosphate, tri (2-ethylhexyl) phosphate, triphenyl phosphate, tricresyl phosphate, tri xylenyl Phosphate (trixylenyl phosphate), tris (isopropylphenyl) phosphate, tris (phenylphenyl) phosphate, trinaphthyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, diphenyl (2-ethylhexyl) phosphate, di (iso Propylphenyl)phenylphosphate, monoisodecylphosphate) and combinations thereof.
    열경화성 발포체.Thermosetting foam.
  5. 제1항에 있어서,According to claim 1,
    상기 제2 난연제는 상기 열경화성 발포체 100 중량부 대비 0.1 중량부 내지 7 중량부의 함량으로 포함하는 The second flame retardant is contained in an amount of 0.1 to 7 parts by weight compared to 100 parts by weight of the thermosetting foam
    열경화성 발포체.Thermosetting foam.
  6. 제1항에 있어서,According to claim 1,
    상기 제1 난연제 대 상기 제2 난연제의 중량비가 1 : 0.05 내지 1 : 1.2 인The weight ratio of the first flame retardant to the second flame retardant is 1: 0.05 to 1: 1.2
    열경화성 발포체. Thermosetting foam.
  7. 제1항에 있어서,According to claim 1,
    상기 복합 난연제는 인 및 멜라민시아누레이트 화합물을 포함하고,The composite flame retardant includes phosphorus and melamine cyanurate compounds,
    상기 인 대 상기 멜라민시아누레이트 화합물의 중량비가 1 : 0.05 내지 1 : 0.8인The weight ratio of the phosphorus to the melamine cyanurate compound is 1: 0.05 to 1: 0.8
    열경화성 발포체.Thermosetting foam.
  8. 제1항에 있어서,According to claim 1,
    상기 복합 난연제는 인 및 트리알킬포스페이트를 포함하고,The composite flame retardant includes phosphorus and trialkyl phosphate,
    상기 인 대 상기 트리알킬포스페이트의 중량비가 1 : 0.05 내지 1 : 0.8인The weight ratio of the phosphorus to the trialkyl phosphate is 1: 0.05 to 1: 0.8
    열경화성 발포체.Thermosetting foam.
  9. 제1항에 있어서,According to claim 1,
    상기 복합 난연제는 인, 펜타에리트리톨계 화합물 및 멜라민시아누레이트를 포함하고,The composite flame retardant includes phosphorus, pentaerythritol-based compounds and melamine cyanurate,
    상기 인 100 중량부 대비, 상기 펜타에리트리톨계 화합물을 1 내지 50 중량부 포함하고, 상기 멜라민시아누레이트를 1 내지 80중량부 포함하는Compared to 100 parts by weight of the phosphorus, 1 to 50 parts by weight of the pentaerythritol-based compound, 1 to 80 parts by weight of the melamine cyanurate
    열경화성 발포체.Thermosetting foam.
  10. 제1항에 있어서,According to claim 1,
    상기 복합 난연제는 인, 멜라민시아누레이트 및 트리알킬포스페이트를 포함하고,The composite flame retardant includes phosphorus, melamine cyanurate and trialkyl phosphate,
    상기 인 100 중량부 대비, 상기 멜라민시아누레이트를 1 내지 80 중량부 포함하고, 상기 트리알킬포스페이트를 1 내지 80 중량부 포함하는Compared to 100 parts by weight of the phosphorus, the melamine cyanurate contains 1 to 80 parts by weight, and the trialkyl phosphate comprises 1 to 80 parts by weight
    열경화성 발포체.Thermosetting foam.
  11. 제1항에 있어서,According to claim 1,
    상기 복합 난연제는 인, 펜타에리트리톨계 화합물 및 트리알킬포스페이트를 포함하고,The composite flame retardant includes phosphorus, pentaerythritol-based compound and trialkyl phosphate,
    상기 인 100 중량부 대비, 상기 펜타에리트리톨계 화합물을 1 내지 50 중량부 포함하고, 상기 트리알킬포스페이트를 1 내지 80 중량부 포함하는Compared to 100 parts by weight of the phosphorus, 1 to 50 parts by weight of the pentaerythritol-based compound, and 1 to 80 parts by weight of the trialkyl phosphate
    열경화성 발포체.Thermosetting foam.
  12. 제1항에 있어서,According to claim 1,
    상기 복합 난연제는 인, 펜타에리트리톨계 화합물, 멜라민시아누레이트 및 트리알킬포스페이트를 포함하고,The composite flame retardant includes phosphorus, pentaerythritol-based compound, melamine cyanurate and trialkyl phosphate,
    상기 인 100 중량부 대비, 상기 펜타에리트리톨계 화합물을 1 내지 30 중량부 포함하고, 상기 멜라민시아누레이트를 1 내지 50 중량부 포함하고, 상기 트리알킬포스페이트를 1 내지 60 중량부 포함하는Compared to 100 parts by weight of the phosphorus, the pentaerythritol-based compound contains 1 to 30 parts by weight, the melamine cyanurate contains 1 to 50 parts by weight, and the trialkyl phosphate comprises 1 to 60 parts by weight
    열경화성 발포체.Thermosetting foam.
  13. 제1항에 있어서,According to claim 1,
    KS L 9016에 따른 평균 온도 20℃에서 측정한 열전도율이 0.016 W/m·K 내지 0.029 W/m·K 인Thermal conductivity measured at an average temperature of 20°C according to KS L 9016 is 0.016 W/mK to 0.029 W/mK
    열경화성 발포체.Thermosetting foam.
  14. 제1항에 있어서,According to claim 1,
    EN13823에 따라, 70℃에서 7일 동안 건조시킨 뒤에 110℃에서 14일 동안 건조시킨 후, 평균 온도 20℃에서 측정한 열전도율이 0.017 W/m·K 내지 0.029 W/m·K 인According to EN13823, after drying at 70°C for 7 days and then drying at 110°C for 14 days, the thermal conductivity measured at an average temperature of 20°C is 0.017 W/m·K to 0.029 W/m·K.
    열경화성 발포체.Thermosetting foam.
  15. 제1항에 있어서,According to claim 1,
    KS M ISO 844 에 따른 압축강도가 80kPa 내지 300kPa인Compression strength according to KS M ISO 844 is 80 kPa to 300 kPa
    열경화성 발포체. Thermosetting foam.
  16. 제1항에 있어서,According to claim 1,
    KS F ISO 5660-1 에 따른 콘칼로리미터에 의한 10분간의 총 방출열량(THR600s)이 2.0 MJ/㎡ 내지 15 MJ/㎡ 인Total calorific value (THR600s) of 10 minutes by cone calorimeter according to KS F ISO 5660-1 is 2.0 MJ/m 2 to 15 MJ/m 2
    열경화성 발포체.Thermosetting foam.
  17. 제1항에 있어서,According to claim 1,
    KS M ISO 4898에 따라, 250mm(L)Χ100mm(W)Χ20mm(T) 크기의 시편에 200mm 지지 간격, 50mm/min의 하중 집중 속도에서 상기 시편이 파단될 때까지의 최대 하중(N)인 굴곡 파괴하중(N)이 15 N 내지 50 N 인 Bending, according to KS M ISO 4898, to a specimen of size 250 mm (L)✓ 100 mm (W)✓20 mm (T) with a 200 mm support spacing and a load concentration rate of 50 mm/min until the specimen breaks Breaking load (N) of 15 N to 50 N
    열경화성 발포체.Thermosetting foam.
  18. 제1항에 있어서,According to claim 1,
    하기 식 1에 의한 치수 변화율의 평균값이 0% 내지 1.0% 인The average value of the rate of dimensional change according to Equation 1 below is 0% to 1.0%.
    열경화성 발포체:Thermosetting foam:
    [식 1][Equation 1]
    치수 변화율(%)=(초기 길이(a)-나중 길이(a'))/초기 길이(a) X 100Dimensional change rate (%)=(Initial length(a)-Last length(a'))/Initial length(a) X 100
    상기 식 1에서, 상기 초기 길이(a)는 열경화성 발포체의 길이(L) 및 폭(W) 방향에 있어서 균등한 n개 지점의 각 선의 길이이고, 상기 나중 길이(a')는 상기 열경화성 발포체를 70℃ 오븐에서 48시간 방치시킨 후의 상기 각 지점의 각 선의 나중 길이(a')를 의미한다.(n은 2 내지 5)In Equation 1, the initial length (a) is the length of each line at n points equal in the length (L) and width (W) directions of the thermosetting foam, and the later length (a') is the thermosetting foam. It means the later length (a') of each line at each point after leaving for 48 hours in a 70°C oven. (n is 2 to 5)
  19. 열경화성 수지를 포함하는 주제, 경화제, 발포제 및 복합 난연제를 포함하는 난연 조성물을 준비하는 단계;Preparing a flame retardant composition comprising a subject, a curing agent, a blowing agent, and a composite flame retardant comprising a thermosetting resin;
    상기 주제, 경화제, 발포제 및 난연 조성물을 교반하여 발포체 조성물을 제조하는 단계; 및Preparing a foam composition by stirring the subject, a curing agent, a foaming agent, and a flame retardant composition; And
    상기 발포체 조성물을 발포 경화하는 단계;를 포함하고,Including foaming step of the foam composition; includes,
    상기 복합 난연제는 제1 난연제 및 제2 난연제를 포함하고, The composite flame retardant comprises a first flame retardant and a second flame retardant,
    상기 제1 난연제는 인(Phosphorus)이고, 상기 제2 난연제는 멜라민시아누레이트, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나를 포함하거나, 또는 멜라민시아누레이트, 트리알킬포스페이트 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나와 펜타에리트리톨계 화합물을 함께 포함하는The first flame retardant is phosphorus (Phosphorus), the second flame retardant comprises at least one selected from the group consisting of melamine cyanurate, trialkylphosphate and combinations thereof, or melamine cyanurate, trialkylphosphate and these It comprises at least one selected from the group consisting of a pentaerythritol-based compound together
    열경화성 발포체의 제조방법.Method for manufacturing thermosetting foam.
  20. 제19항에 있어서,The method of claim 19,
    20℃에서, 상기 열경화성 수지의 점도(V1)와 상기 난연 조성물의 점도(V2)의 점도 차이(△V=|V1 - V2|)가 30,000 cps 이하인At 20°C, the difference in viscosity (ΔV=|V1-V2|) between the viscosity (V1) of the thermosetting resin and the viscosity (V2) of the flame retardant composition is 30,000 cps or less.
    열경화성 발포체의 제조방법.Method for manufacturing thermosetting foam.
  21. 제1항 내지 제18항 중 어느 한 항에 따른 열경화성 발포체를 포함하는 단열재.A heat insulating material comprising the thermosetting foam according to any one of claims 1 to 18.
PCT/KR2019/017321 2018-12-07 2019-12-09 Thermosetting foam, manufacturing method therefor, and insulator comprising same WO2020117029A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021531829A JP7355824B2 (en) 2018-12-07 2019-12-09 Thermosetting foam, manufacturing method thereof, and heat insulating material containing the same
CN201980080556.7A CN113490705B (en) 2018-12-07 2019-12-09 Thermosetting foam, method for producing same, and heat insulating material comprising same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2018-0157233 2018-12-07
KR20180157233 2018-12-07
KR10-2019-0082172 2019-07-08
KR1020190082172A KR20200070077A (en) 2018-12-07 2019-07-08 Thermosetting foam, method of producing the same, and insulating material
KR1020190162084A KR102580146B1 (en) 2018-12-07 2019-12-06 Thermosetting foam, method of producing the same, and insulating material
KR10-2019-0162084 2019-12-06

Publications (1)

Publication Number Publication Date
WO2020117029A1 true WO2020117029A1 (en) 2020-06-11

Family

ID=70975164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017321 WO2020117029A1 (en) 2018-12-07 2019-12-09 Thermosetting foam, manufacturing method therefor, and insulator comprising same

Country Status (2)

Country Link
JP (1) JP7355824B2 (en)
WO (1) WO2020117029A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021162528A1 (en) * 2020-02-11 2021-08-19 (주)엘지하우시스 Thermosetting foam and method for preparing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0859860A (en) * 1994-08-18 1996-03-05 Sumitomo Bakelite Co Ltd Production of flame-retardant phenol resin laminate
KR20100110560A (en) * 2009-04-03 2010-10-13 주식회사 유니버샬켐텍 Fire resisting material for the protection of steel construction
KR20120021819A (en) * 2010-08-18 2012-03-09 애경화학 주식회사 Flame retardant photocurable resin composition and photocurable sheet material comprising same
JP2013172049A (en) * 2012-02-22 2013-09-02 Tdk Corp Electromagnetic wave absorption sheet
KR20140023581A (en) * 2012-08-16 2014-02-27 (주)엘지하우시스 Thermosetting foaming body with superior adiabatic and flameproof effect and method for manufacturing the same
WO2018056433A1 (en) * 2016-09-26 2018-03-29 東レ株式会社 Electronic device housing and method for producing same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5091622A (en) * 1973-12-17 1975-07-22
JPH04266940A (en) * 1991-02-20 1992-09-22 Nippon Oil Co Ltd Epoxy resin composition for composite material, intermediate material and composite material
DE19651471A1 (en) * 1996-12-11 1998-06-18 Clariant Gmbh Flame retardant unsaturated polyester resins
JPH10182940A (en) * 1996-12-27 1998-07-07 Matsushita Electric Works Ltd Epoxy resin composition for sealing material and semiconductor device produced by using the composition
KR101515265B1 (en) 2012-01-19 2015-05-06 (주)엘지하우시스 Hvac duct using phenolic foam and method for fabricating the same
JP6240483B2 (en) 2013-11-26 2017-11-29 東邦テナックス株式会社 Foamed resin sheet, fiber-reinforced thermosetting resin composite molded body using the foamed resin sheet, and method for producing the same
EP3660084A1 (en) 2014-01-24 2020-06-03 Asahi Kasei Construction Materials Corporation Phenol resin foam body and method for producing same
JP6166830B2 (en) 2015-10-13 2017-07-19 積水化学工業株式会社 Phenolic resin foam board
JP6912174B2 (en) 2016-09-27 2021-07-28 積水化学工業株式会社 Urethane resin composition preparation system, method of manufacturing urethane molded product, and urethane molded product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0859860A (en) * 1994-08-18 1996-03-05 Sumitomo Bakelite Co Ltd Production of flame-retardant phenol resin laminate
KR20100110560A (en) * 2009-04-03 2010-10-13 주식회사 유니버샬켐텍 Fire resisting material for the protection of steel construction
KR20120021819A (en) * 2010-08-18 2012-03-09 애경화학 주식회사 Flame retardant photocurable resin composition and photocurable sheet material comprising same
JP2013172049A (en) * 2012-02-22 2013-09-02 Tdk Corp Electromagnetic wave absorption sheet
KR20140023581A (en) * 2012-08-16 2014-02-27 (주)엘지하우시스 Thermosetting foaming body with superior adiabatic and flameproof effect and method for manufacturing the same
WO2018056433A1 (en) * 2016-09-26 2018-03-29 東レ株式会社 Electronic device housing and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021162528A1 (en) * 2020-02-11 2021-08-19 (주)엘지하우시스 Thermosetting foam and method for preparing same

Also Published As

Publication number Publication date
JP2022513181A (en) 2022-02-07
JP7355824B2 (en) 2023-10-03

Similar Documents

Publication Publication Date Title
KR101249525B1 (en) Ceramifying composition for fire protection
Zhu et al. Synthesis and properties of rigid polyurethane foams synthesized from modified urea-formaldehyde resin
WO2020117029A1 (en) Thermosetting foam, manufacturing method therefor, and insulator comprising same
WO2012047012A2 (en) Expanded perlite thermal insulation material using a thermosetting resin, a production method for the same and a product using the same
KR102422819B1 (en) Phenol foam, method of producing the same, and insulating material
WO2012005424A1 (en) Flame retardant foam polystyrene bead and method for manufacturing same
WO2021162528A1 (en) Thermosetting foam and method for preparing same
KR102580146B1 (en) Thermosetting foam, method of producing the same, and insulating material
WO2012091381A2 (en) Foam polystyrene-based bead and method for manufacturing same
WO2010128797A2 (en) Expandable, incombustible polystyrene particles and preparation method thereof, and styropor made from the particles
Yu et al. Study on char reinforcing of different inorganic fillers for expandable fire resistance silicone rubber
WO2020076132A1 (en) Method for manufacturing thermosetting expanded foam having excellent flame retardancy, and thermosetting expanded foam using same
KR20220118623A (en) Flame Retardant Polyurethane Foam and a preparation method thereof
WO2021010802A1 (en) Thermoformable melamine foam and method for manufacturing same
Tian et al. Effect of char-forming agents rich in tertiary carbon on flame retardant properties of polypropylene
WO2021261912A1 (en) Method for preparing flame retardant resin and flame retardant composite plastic, and method for manufacturing flame retardant product by using same
WO2019066504A2 (en) Thermosetting foam and manufacturing method therefor
WO2021145492A1 (en) Phenol resin foam, method for producing same, and insulating material comprising same
WO2020045827A1 (en) Silicone rubber sponge composition
WO2023195753A1 (en) Building interior and exterior composite insulation material with semi-noncombustible performance, excellent flame retardancy and moisture proof performance, and enhanced energy efficiency
Gao Effect of β-cyclodextrin and ammonium polyphosphate on flame retardancy of jute/polypropylene composites
KR20200070133A (en) Phenol foam, method of producing the same, and insulating material
KR20240078797A (en) Phenolic foam enhanced semi-non-combustible and flame retardant
CN111978724A (en) Flame-retardant polyetherimide resin and preparation method thereof
WO2024029996A1 (en) Polymer compound composition with low caloric value and products using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894166

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021531829

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19894166

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/10/2021).

122 Ep: pct application non-entry in european phase

Ref document number: 19894166

Country of ref document: EP

Kind code of ref document: A1