WO2012047012A2 - Expanded perlite thermal insulation material using a thermosetting resin, a production method for the same and a product using the same - Google Patents

Expanded perlite thermal insulation material using a thermosetting resin, a production method for the same and a product using the same Download PDF

Info

Publication number
WO2012047012A2
WO2012047012A2 PCT/KR2011/007364 KR2011007364W WO2012047012A2 WO 2012047012 A2 WO2012047012 A2 WO 2012047012A2 KR 2011007364 W KR2011007364 W KR 2011007364W WO 2012047012 A2 WO2012047012 A2 WO 2012047012A2
Authority
WO
WIPO (PCT)
Prior art keywords
expanded perlite
thermosetting resin
insulating material
heat insulating
weight
Prior art date
Application number
PCT/KR2011/007364
Other languages
French (fr)
Korean (ko)
Other versions
WO2012047012A3 (en
Inventor
백범규
이상윤
강태윤
Original Assignee
주식회사 경동세라텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 경동세라텍 filed Critical 주식회사 경동세라텍
Publication of WO2012047012A2 publication Critical patent/WO2012047012A2/en
Publication of WO2012047012A3 publication Critical patent/WO2012047012A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0085Use of fibrous compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/24Thermosetting resins

Definitions

  • the present invention relates to an insulated perlite heat insulating material using a thermosetting resin, which is formed by bonding an expanded perlite using a thermosetting resin, forming a heat treatment, and improving the workability due to low density as well as reducing the thickness of the insulating material with excellent thermal conductivity to reduce the material and energy costs.
  • the present invention relates to a heat insulating material, a method for manufacturing the same, and a product using the same, which can reduce and reduce an installation space area.
  • Mainly used for industrial thermal insulation includes inorganic fiber-based, powder-based, foam-based insulation.
  • Fibrous insulation is produced using glass fibers made of glass mineral materials such as silica sand, limestone, feldspar, and soda ash, and mineral fibers such as rock wool, alumina fibers, zirconia fibers and carbon fibers made of blast furnace slag and basalt materials. .
  • Korean Patent Publication No. 10-0522568 “Water-repellent insulating pipe using glass fiber and its manufacturing method”
  • Korean Patent Publication No. 10-0760003 “Round-type glass fiber insulating material for insulating device and its manufacturing method”, etc. As is known, it is prepared by mating using glass long fibers in the inorganic fiber group, needle-punching this mat again in several layers, and impregnating and adhering a binder.
  • Products manufactured in this way have the advantage of ease of transport and low thermal conductivity compared to the conventional inorganic fiber-based heat insulator due to the characteristics of the fiber type, but has a disadvantage in that the thermal characteristics are not uniform due to the large density variation of the product.
  • the dust of the glass fiber generated during the construction is harmful to the human body to avoid this phenomenon in the workplace.
  • Powder-based insulation uses calcium silicate, diatomaceous earth, basic magnesium carbonate and the like.
  • the calcium silicate heat insulating material that is frequently used is a product obtained by hydrothermally reacting diatomaceous earth and slaked lime with excess water, wet molding in a slurry state, and hardening by heating under high pressure in an autoclave.
  • Foam-based insulation is an insulator using expanded vermiculite or expanded perlite, the expanded perlite insulation is mainly used for industrial purposes.
  • Expanded perlite insulation has been used throughout industrial insulation due to its simple manufacturing process, high productivity and low material costs.
  • silicate-based binder which is an inorganic binder used for expanded perlite insulation, has a disadvantage of high thermal conductivity and low adhesive strength in an amorphous form.As a liquid form, the amount of binder is increased because the binder is absorbed into the cell when mixed with expanded perlite. As a result, the thermal conductivity becomes higher.
  • liquid silicate-based binder causes the expanded perlite surface to contain an excessive amount of water by the binder, and as a result of reduced particle flow due to moisture, it is not easy to fill voids between the particles. In this state, density variation occurs in each part, and excessive fracture and porosity of the cell are increased in the molding process of the insulating material through compression, resulting in an increase in thermal conductivity and cracking.
  • the liquid binder does not have its own volume, the gap between the particles and the particles cannot be filled, and even if the binder is increased, the voids still exist, so that the compression ratio can be increased to minimize the voids. This results in more crushing of the particles and a higher density of the shaped body and an additional increase in thermal conductivity.
  • liquid silicate-based binder shrinks at a high temperature of 500 ° C. or higher, and there is a risk of deformation and cracking of the molded body.
  • liquid binder is made of 70% or more of water, even if the drying process is sufficiently performed, it is difficult to completely dry the thermal conductivity is further increased by the remaining moisture.
  • organic curable binders cannot be used at high temperatures, and due to the use of expanded vermiculite having high density and poor thermal conductivity, the overall thermal conductivity is increased, the density of the insulation is increased, and the strength is decreased if sufficient compression is not accompanied. There is this.
  • the present invention is to solve the above problems in molding the expanded perlite insulation, the present invention is bonded by using a powdery thermosetting binder, by performing a high temperature heat treatment process additionally by carbonizing the expanded perlite molded body, Since the gap between the gap can be filled with a powdery binder, sufficient bonding strength between particles can be ensured even without overcompression, thereby improving the thermal conductivity by preventing density increase and particle crushing due to compression, and performing the heat treatment process. Accordingly, an object of the present invention is to provide an expanded perlite heat insulating material using a thermosetting resin that can block thermal decomposition, which is a problem of organic matter, and ensure thermal stability at high temperature.
  • the present invention has a very high adhesive strength compared to the liquid silicate-based binder by using a powdery thermosetting resin, and because there is no absorption by the expanded perlite, it is possible to secure a high adhesive strength even at a low compression ratio to a lower density It is an object of the present invention to provide an expanded perlite heat insulating material using a thermosetting resin that can be formed to improve workability and further improve thermal conductivity.
  • the present invention solves particle flowability, which is a problem of liquid silicate-based binders, to reduce porosity and density variation, thereby minimizing breakage of cells during compression, and is due to an extremely low moisture content of powdered resin.
  • the purpose is to provide an expanded perlite insulation using a thermosetting resin that can solve the increase in thermal conductivity due to residual moisture.
  • the expanded perlite insulation using the thermosetting resin according to the present invention comprises 10 to 84% by weight of expanded perlite, 15 to 85% by weight of an organic curable powder binder, and 0.25 to 5% by weight of reinforcing fiber prepared by drying the ore after expansion. It features.
  • the expanded perlite heat insulating material using the thermosetting resin further includes 5 to 200 parts by weight of a reinforcing agent based on 100 parts by weight of the organic curable powder binder.
  • Method for producing an expanded perlite heat insulating material using a thermosetting resin comprises the first step of producing expanded perlite by drying and expanding the ore; A second step of preparing a mixture by mixing 10 to 84% by weight of the expanded perlite prepared in the first step, 15 to 85% by weight of the organic curable powder binder, and 0.25 to 5% by weight of the reinforcing fiber; A third step of compressing or extruding the mixture prepared in the second step to form a molded article and first curing the molded article; And a fourth step of post-curing the primary cured molded body in the third step.
  • the product using the expanded perlite heat insulating material using the thermosetting resin according to the present invention is the expanded perlite heat insulating material using the above-mentioned thermosetting resin, the expanded perlite heat insulating material using the thermosetting resin is characterized in that it is used as a core material of a heat insulating material or a vacuum insulating material.
  • the heat insulating material of the present invention by filling the maximally close by using the expanded perlite to minimize the gap between the particles to improve the workability due to the low density and to reduce the thickness of the heat insulating material to reduce the material and energy costs and the installation space area
  • a heat insulator to reduce the temperature it can be used in high temperature and low temperature conditions and can be applied in various forms.
  • Expanded perlite heat insulating material using a thermosetting resin according to the present invention for achieving the above object comprises 10 to 84% by weight of expanded perlite, 15 to 85% by weight of the organic curable powder binder and 0.25 to 5% by weight of reinforcing fibers.
  • the expanded perlite is prepared by drying the perlite ore and then expanding it.
  • the perlite ore is at least one selected from perlite, obsidian, pine rock, and pumice. If the expanded perlite is less than 10% by weight, there is a problem that the thermal conductivity is sharply increased, and if it exceeds 84% by weight, there is a problem that the mechanical properties are reduced.
  • the shape of the particles of the expanded perlite but preferably the active ingredient of the closed cell expanded perlite includes 50% by weight or more based on the total weight of the expanded perlite.
  • the organic curable powder binder may be mixed in an amount of 15 to 85% by weight, preferably 20 to 50% by weight based on the total weight%, and when it is 15% by weight or less, it is difficult to secure the adhesive strength. Although it can be secured, problems such as an increase in material cost and thermal conductivity due to the mixing of excess organic materials occur.
  • the organic curable powder binder may use a phenol novolak resin, but is not particularly limited, and may be a melamine resin, an epoxy resin, or a silicone resin, which is transformed into a powder, and is formed of a polymer through thermal curing to secure mechanical properties. It may include all resins that can be.
  • the reinforcing fiber uses a reinforcing fiber having a length of 5 to 30 mm to reinforce the formability, bending strength, and workability of the expanded perlite insulation. Reinforcing fibers are used in combination with inorganic fibers or organic fibers, respectively.
  • a reinforcing agent may be used to further lower the strength or thermal conductivity.
  • fumed silica and airgel of less than 50 ⁇ m may be used, which is formed of nanometer-sized ultra fine cells having excellent thermal conductivity, thereby filling gaps when mixed with expanded perlite. Even if the molding compression ratio is reduced, a compact molding state can be obtained, thereby improving the strength and securing a low thermal conductivity .
  • the expanded perlite insulation using the thermosetting resin according to the present invention may further comprise a reinforcing agent.
  • the reinforcing agent may be mixed in an amount of 5 to 200 parts by weight, preferably 10 to 70 parts by weight, based on 100 parts by weight of the organic curable powder binder, and when the reinforcing agent is 5 parts by weight or less, it shows a reduction in thermal decomposition and reinforcement of strength. It is difficult, if more than 200 parts by weight can play a role as a reinforcing agent, but the problem that the thermal conductivity is rapidly increased.
  • the expanded perlite insulation using the thermosetting resin according to the present invention may further include a water repellent.
  • the water repellent in the present invention uses a powdery water repellent.
  • Method for producing an expanded perlite heat insulating material using a thermosetting resin comprises the first step of producing expanded perlite by drying and expanding the ore; A second step of preparing a mixture by mixing 10 to 84% by weight of the expanded perlite prepared in the first step, 15 to 85% by weight of the organic curable powder binder, and 0.25 to 5% by weight of the reinforcing fiber; A third step of heating the mixture prepared in the second step to form a molded body and first curing the molded body; And a fourth step of post-curing or post-curing and heat-treating the first cured molded body in the third step.
  • the first step of producing expanded perlite the surface is vitrified when a high temperature flame is encountered in the firing process by using water, which is commonly called crystal water, inside natural minerals such as pearl rock, pine rock, obsidian and pumice stone.
  • the water inside is vaporized and expanded.
  • the expansion may be performed using a direct flame method or an indirect flame method, and may be prepared by expanding at a time according to a specific particle size distribution range or by separately expanding each particle size and then mixing them.
  • the shape of the expanded perlite particles is characterized in accordance with the size of the particles before the expansion and the degree of internal crystallization according to the distribution and degree of drying, wherein the shape of the cell is bursting the surface of the particle while the water is over-expanded Figure 1
  • the hollow cell may be manufactured in the form of an open cell having a needle structure, or the particle surface may be closed as shown in FIG. 2.
  • the open cell perlite and the closed cell perlite have a characteristic difference depending on the shape.
  • the inside of the particles is open, and the inside of the particles is also composed of a myriad of cells, which have a large specific surface area and have a gaseous and liquid substance.
  • Closed cell perlite does not have a higher specific surface area than open cells, but has excellent surface breaking strength and excellent particle breaking strength and excellent inter-particle flowability.
  • the molded article formed of the closed cell perlite has a somewhat better mechanical properties and thermal conductivity than the open cell perlite molded article.
  • the strength of the closed cell perlite is excellent and the particle breaking strength is maintained even when expanded to a lower density.
  • the expanded cell perlite is expanded to a lower density, overexpansion of the particles occurs and the crushing of the particles increases, resulting in 40 Kg / m3 It is difficult to manufacture and use below.
  • the open cell perlite has a disadvantage compared to the closed cell perlite, and may be selectively used according to the required physical properties and the intended use of the molded product to be manufactured, and the mixed closed cell and open cell perlite may be used. It is also possible.
  • the active ingredient of the closed cell is 50% by weight or more based on the total weight of the expanded perlite.
  • the particle size composition of the closed cell perlite is 15 ⁇ 10% by weight of particles larger than 400 ⁇ m, 40 ⁇ 15% by weight of 400-250 ⁇ m particles, 20 ⁇ 10% by weight of 250-160 ⁇ m particles, and particles less than 160 ⁇ m based on the weight of expanded perlite.
  • the particle size distribution of 30 ⁇ 15% by weight had a good filling rate, and the thermal conductivity and strength of the prepared molded body were the best.
  • Stages 3 and 4 can be given different conditions to maximize their effectiveness.
  • the third step is a step of performing molding and primary curing, a method of curing during intermittent compression molding, which is a manufacturing method of a conventional expanded perlite insulation, or a method of continuous extrusion molding.
  • only the first curing may be performed in the third step and the post-curing may be performed in the fourth step.
  • heat treatment processes such as carbonization, activation, and silicon carbide may be applied during post-curing.
  • the production of the heat insulating material using the conventional liquid binder was possible only by compression molding, by using a powder-curable binder, not only general compression molding is possible This has the advantage that continuous extrusion molding is also possible.
  • the flowability expressed here means that the effect of the frictional force and the angle of repose of the particles and particles is low, so that the positional movement is easy). While this is low in use constraints, the powder curable binder is excellent in flowability and can be used in various processes.
  • the viscosity and the surface tension of the expanded perlite particles are increased by the adhesive force and moisture of the binder, and the viscosity and the surface tension increase to produce cohesion between particles.
  • the molding of the mixture of the liquid binder and the expanded perlite has to inject the mixture into the molding mold according to the required shape and perform compression molding. Since the compaction is not easy to compact, the particle crushing rate is increased. As the density deviation of each part and the porosity increase, the strength and hardness of the molded body decrease and the thermal conductivity increases.
  • the liquid binder does not have a volume and remains coated on the surface of the expanded perlite, the voids between the particles and the particles cannot be filled during compression molding. In order to achieve maximum contact, this requires a high compression ratio, which leads to severe crushing of the particles, and a rapid increase in thermal conductivity due to an increase in the density of the molded body as the compression ratio increases.
  • thermosetting organic-based powder binder is present in a powder form at room temperature, and when raised above a predetermined temperature, the thermosetting organic powder binder becomes viscous and becomes viscous, and hardens at a specific temperature or more to exhibit adhesive strength.
  • the binder does not have moisture and viscosity, so the perlite is secured, and the extruded materials can be extruded while maintaining a smooth conveyance and body density in a continuous extrusion cylinder. Therefore, sufficient adhesive strength can be ensured.
  • the third step may be performed after the method of filling the body of the mixture in the second stage by vibrating or impacting the body.
  • the powder binder has an advantage that the melting and curing reaction according to the temperature, so that the required shape and production rate can be determined by performing a temperature gradient for each part of the extrusion cylinder.
  • the same compression molding is possible as before, and excellent physical properties can be realized compared to the existing heat insulating material.
  • Increased flowability and smooth body milling due to the use of powder binders can apply uniform pressurization during compression, thereby reducing particle crushing rate, minimizing density variation and minimizing porosity of each part, thereby maximizing the strength and hardness of the molded body and excellent thermal conductivity.
  • the body can be smoother even under a short period of vibration conditions, thereby ensuring excellent physical properties while suppressing a decrease in productivity.
  • the powder binder has its own volume, so that the powder binder is located in the voids between the expanded perlite particles, thereby filling the voids, exhibiting sufficient adhesion even at a low compression ratio, and having a very low water content. It is possible to solve the increase in the thermal conductivity due to the residual moisture.
  • the curing temperature of the three steps can be carried out in the range of 80 to 300 °C, if the curing temperature is less than 80 °C or hard curing is required for a long time, if the curing temperature is more than 300 °C rapid curing is made Therefore, problems such as a decrease in adhesive strength occur.
  • only the first curing may be performed in the third step and the post-curing may be performed in the fourth step.
  • heat treatment may be further performed to maximize thermal stability in the high temperature region of the insulation.
  • the production of expanded perlite insulation using a powder binder can change the manufacturing process in various forms in order to maximize productivity.
  • the surface of the molded body is first cured to support the shape.
  • post-curing may be performed at a high temperature of 80 to 300 ° C. to completely cure the primary cured molded body.
  • thermosetting powder binder used in the present invention, and the binder is easily melted and cured in a short time according to the temperature rise, and has a specific temperature range in which melting and curing occur, thereby constituting a manufacturing process.
  • the binder can be easily configured in the desired form and section, it can be adjusted to various types of manufacturing conditions.
  • a heat treatment process may be added in addition to the post-curing process to maximize thermal stability at high temperature, improve mechanical properties, and reduce thermal conductivity of the expanded perlite insulation material using the curable powder binder.
  • Adding reinforcing agents can achieve higher heat resistance and mechanical properties.
  • Examples of the heat treatment include carbonization under the atmosphere, carbonization under anoxic, activation and silicon carbide.
  • the post-curing is carried out at 80 °C to 300 °C, while the heat treatment is carried out while raising the temperature range of 80 °C to 1100 °C.
  • the reason for the low temperature to the high temperature is that heat deformation may occur when directly affected by the high temperature, and the temperature distribution varies depending on the characteristics of the organic powder binder used.
  • Post-curing conditions can be carried out from the curing conditions of 80 °C in order to allow the normal hardening of the temporarily cured molded body to proceed again, and also proceeds to the maximum curing section of 300 °C. At this time, it heats up to 1100 degreeC at the time of advancing to heat processing conditions. If the temperature exceeds 1100 ° C., excessive heat treatment may cause deformation and decrease in strength. Therefore, when only the post-cure proceeds from 80 °C to 300 °C, if the post-hardening and heat treatment are carried out together can rise from 80 °C to 1100 °C. However, the heat treatment temperature is possible up to 1100 °C, and it is used to adjust the temperature below 1100 °C according to the actual desired physical properties. In addition, the rate of temperature rise is carried out within a range that does not overdo the process.
  • Organic binders in particular thermosetting binders, can secure superior adhesion compared to inorganic binders, and have the advantage of ensuring low density, excellent mechanical properties and thermal conductivity even when the amount of use is reduced, while decomposition of organic materials occurs as the temperature rises. The mechanical properties of the manufactured molded article is reduced and cracks and shrinkage occur.
  • a representative example of the powdered organic binder mentioned in the present invention may be a novolak phenol resin, and the fully cured novolak phenol cured product can secure high thermal stability compared to other organic binders, but this is also a high temperature of 350 ° C or higher. It is difficult to secure thermal stability.
  • industrial high-temperature insulation materials are often used at a temperature of 200 °C or more, in the case of the insulation material made of a thermosetting binder, there is a risk that the physical properties of the insulation material is sharply worsened or cracks due to the long-term thermal stability is reduced. .
  • the problem of the high temperature thermal stability can be solved by heat-treating the powder-type thermosetting resin to a high temperature to replace the resin with a strong carbon-carbon structure to secure high thermal stability, that is, to form carbonization.
  • This carbonization process can be divided into a carbonization process in atmospheric conditions performed in the presence of oxygen, and a carbonization process in anoxic conditions carried out by blocking oxygen inflow.
  • carbonization can proceed without additional equipment for removing oxygen.However, when carbonization temperature is within the range of 80 ⁇ 400 °C and exceeds 400 °C, expansion of chain structure On the other hand, the cracking of the molded product may occur due to overheating. On the other hand, carbonization under anoxic conditions requires additional facilities to remove oxygen, but the carbonization temperature is in the range of 80 to 1100 ° C, and is short for high temperature. It has the advantage of being able to carry out carbonization.
  • an inorganic reinforcing agent that can be melted at a high temperature may be mixed.
  • Inorganic substances such as boric acid are present in powder form at room temperature, and melt with increasing temperature to form a liquid phase, and solidify at a higher temperature to form a diaphragm.
  • the adhesive force by the organic binder is primarily secured, and the carbon-carbon bond of the organic binder is progressed through high temperature heat treatment under atmospheric conditions.
  • the inorganic reinforcing agent is solidified through the melting process, so that the inorganic reinforcing agent forms a diaphragm on the surface of the organic cured product forming the carbon-carbon bond structure.
  • an organic cured product having a carbon-carbon bond structure inside and a composite structure having an inorganic diaphragm having high thermal stability outside forms a high temperature by preventing thermal decomposition that may occur when the structure is changed to a carbon-carbon bond form.
  • Thermal stability is increased, and through the double bonds of carbon-carbon bonds and inorganic melt bonds to enhance the adhesive strength can improve the overall mechanical properties.
  • the inorganic reinforcing agent may be mixed 5 to 35% by weight, preferably 10 to 30% by weight based on the total weight%, less than 5% by weight is difficult to show the reduction of thermal decomposition and reinforcement of strength, when more than 35% by weight
  • the role as a reinforcing agent can play a sufficient role, but a problem arises in that the thermal conductivity increases rapidly.
  • the inorganic reinforcing agent may use boric acid, but is not particularly limited, and may use phosphorus or a boron compound, and forms a diaphragm according to high temperature such as ammonium phosphate, aluminum phosphate, zinc phosphate, and boric acid which is an acid compound of boron. It may include all of the phosphorus or boron compound. Inorganic reinforcing agents may be used individually or in combination.
  • thermosetting resin is prevented to the maximum, the reduction of mechanical properties due to the rapid temperature increase of the molded body is prevented, and the specific surface area is prevented by preventing the closing of particle pores. It is possible to form increased carbon bodies.
  • the cross-linked structure of the organic cured product secures a strong bonding force by forming a carbon-carbon structure through heat treatment, but a part of the carbon body, that is, the methyl (CH 2 ) group, which forms the cross-linked structure with oxygen inflow is incinerated.
  • Carbonization yield meaning yield indicating the degree of carbonization relative to the total weight of organic cured product
  • fine cells generated by carbonization are also collapsed through pyrolysis. As a result, it is difficult to maximize the specific surface area.
  • the process is carried out by inflow of steam in the heat treatment process in the range of 600 to 1100 °C, or inert gas carbon dioxide after the carbonization process.
  • the silicon carbide molded body can be formed by reacting silicon or silicon-containing gas in a carbonized molded body under conditions of an inert gas and a high temperature of 1000 to 1100 ° C., and the silicon carbide structure formed as described above has higher Mechanical properties, thermal stability and low thermal conductivity can be obtained.
  • the silane monomer system may be coated on the surface of the expanded perlite particles in order to improve the water repellency, the water absorption rate, the flowability, and the like of the insulation prepared by the expanded perlite and the organic curable binder as described above.
  • Silane-based monomers have alkoxy groups that induce a chemical bond with the ferrite at the end and an alkyl group having a water repellent property.
  • the silane monomer extends to the outside like a twig or a hairball on the entire surface of the ferrite to form a layer, thereby improving the frictional resistance of the surface. By lowering the flowability, the fluidity is better when it is added to the compression molding process, and the effect of permanently repelling the water is obtained.
  • titanate-based or zirconate-based reinforcing strength may be used as well as organic silane, and more specifically, isooctyltrimethoxysilane (i-octyltrimethoxysilane ), Methyltrimethoxysilane, octyltriethoxysilane, 3-aminopropyltriethoxysilane, 3-glycidyloxytriethoxysilane , 3-methacryloxypropyltrimethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, vinyltri (2-methoxy-ethoxy) silane [vinyltri ( Organosilane coupling agents including 2-methoxy-ethoxy) silane and neopentyl (diallyl) oxy, trineodecanoyl titanate [neopentyl (diallyl)
  • the coupling agent is in the form of a liquid phase, and the liquid is sprayed onto the expanded perlite surface, and then heated or dried to combine with the expanded perlite surface through a chemical reaction to form a coating film.
  • the powder-type silicone-based water repellent in the production of the insulating material by mixing the expanded perlite and the organic curable powder binder, may be mixed and molded before molding in order to improve the water repellency of the molded body and reduce the water absorption.
  • the powdered water repellent is present in powder form at room temperature, so that it is possible to smoothly carry out the filling of the expanded perlite particles before compression, and the powdered water repellent is also melted at the same time when the organic curable binder is melted according to the elevated temperature. Improves, reinforces the water repellency of the formed molded body and reduces the water absorption.
  • a liquid water repellent may be applied to the surface of the heat insulating material or the molded body may be immersed in the water repellent solution to secure additional water repellency and water absorption.
  • the liquid water repellent may be used in combination with the water repellent in the form of securing water repellency through drying at room temperature, or in the form of securing a higher water repellency through additional drying.
  • the expanded perlite insulation in the present invention includes a reinforcing fiber having a length of 5 ⁇ 30mm. Reinforcing fibers are used in combination with inorganic fibers or organic fibers, respectively.
  • reinforcing agents may be used to further lower the strength or thermal conductivity.
  • fumed silica of less than 50 ⁇ m, aerogels, and white carbon can be used, which are formed of nanometer-sized ultrafine cells with excellent thermal conductivity, and when mixed with expanded perlite, Even if the gap is filled to reduce the molding compression ratio, it has a compact molding state, thereby improving the strength and securing a low thermal conductivity.
  • a radiation shield may be used to further lower the thermal conductivity.
  • the molded product produced by carbonizing or activating the expanded perlite insulation having a hardening structure by an organic binder has a cell structure of a multiple cell structure having both a cell of perlite and a carbonized fine cell.
  • a binder By forming a binder, it can be applied to various applications requiring low thermal conductivity and high specific surface area, and in particular, can be used as a core material of a thermal insulation material or a vacuum insulation material.
  • Vacuum Insulation Panel has a microporous insulation material as an inner core material in a panel made of a closed type, and vacuums the inside to remove heat transfer by conduction and convection, and thus extremely low thermal conductivity (0.005 W). / mK).
  • Determining the performance of a vacuum insulator i.e. low thermal conductivity, is the key to the core material, and inorganic fibrous materials are currently used as the core material of the vacuum insulator, which is a mat produced by the multi-orientation and multilayer adhesion of inorganic fibers. It has a high specific surface area in the form of, and it is easy to secure excellent thermal conductivity and stability in use due to low risk of destruction by impact.
  • the vacuum insulating material of the inorganic fibrous material is easily changed in volume, if the volume changes over time, there is a high possibility that the vacuum is broken and a decrease in the degree of vacuum occurs, and thus the thermal conductivity rapidly increases.
  • the carbonized expanded perlite insulation prepared according to the present invention when used as the inner core of the vacuum insulation, the cells of the expanded perlite and the open ultrafine cells produced by carbonization and activation are used. It has a multi-composite structure to obtain a high mechanical strength molded body with a high specific surface area and independent cells, which prevents further volume change, reducing the vacuum degree, and even at low vacuum levels due to the high specific surface area and independent cell structure. It can have excellent thermal conductivity.
  • 100 g of the novolak phenolic powder is expanded to 100% by weight of the expanded perlite, 1.5% by weight to the weight of the expanded perlite, and 0.5% by weight of the silicone-based water repellent is added to the weight of the expanded perlite into 1000 g of the closed cell expanded perlite prepared as described above. The mixture was prepared.
  • the density of the prepared mixture was 65Kg / m3, 527g of the mixture was compressed to about 1.8 times the initial volume was molded into a size X horizontal X height X height 300X300X50mm (volume 4.5L).
  • the compression ratio is not artificially adjusted, but is a compression ratio that is generated when the mixture is put into a molded mold heated to 200 ° C. in a volume of 4.5 L based on the bulk volume, and the following Examples and Comparative Examples are also the same. )
  • the compacted molded body was heated at 200 ° C. for 1 minute to be primarily cured and then demolded, and the demolded molded body was subjected to post-curing for 1 hour in a 200 ° C. hot air dryer to have an expanded perlite insulation material having a density of 115 ⁇ 5 Kg / m 3. Was prepared.
  • the compacted molded body was heated at 200 ° C. for 1 hour to proceed to safety hardening to prepare expanded perlite insulation 2 having a density of 115 ⁇ 5 Kg / m 3.
  • the mixture is prepared in the ratio of each component in Example 1, but a sufficient amount to mix the continuous process, the temperature inside the extrusion cylinder in each of three stages, the initial section is room temperature ⁇ 40 °C, intermediate section 80 ⁇ 120 °C, the latter section is maintained at 120 ⁇ 150 °C, the mold temperature of the final discharge portion was maintained at 150 ⁇ 200 °C.
  • the single-sided extrusion molding machine made the shape of a discharge part metal mold
  • the rotational speed of the screw was set such that the length of the molded body discharged from the discharge part was introduced into the present extrusion molding machine at a feeding speed of 0.2 L / sec through the hopper.
  • the molded object discharged by this was cut
  • the cut molded product was cured in a hot air dryer at 200 ° C. for 1 hour to prepare an expanded perlite insulating material 3 having a density of 115 ⁇ 5 Kg / m 3.
  • the manufactured molded article showed a density similar to that obtained by compression 1.8 times in compression molding.
  • Perlite crystallization density 40Kg / m3, 15% by weight of 800 ⁇ m over-particles based on the total weight of expanded perlite, 40% by weight of 500 ⁇ m particles at 800 ⁇ m, 20% by weight of 250 ⁇ m particles at 500 ⁇ m, at 250 ⁇ m
  • the particle size distribution of 10 wt% of the 160 ⁇ m particles and less than 160 ⁇ m of the particles was 15 wt%, to prepare an open cell expanded perlite having a ratio of open cells of 70 wt% to the total weight.
  • 100 g of the novolak phenolic powder is expanded to 100% by weight of the expanded perlite, inorganic fibers 1.5% to the weight of the expanded perlite, and 0.5% by weight of the silicone-based water repellent to 0.5% by weight of the expanded perlite into the open cell expanded perlite prepared as described above.
  • To prepare a mixed material 100 g of the novolak phenolic powder is expanded to 100% by weight of the expanded perlite, inorganic fibers 1.5% to the weight of the expanded perlite, and 0.5% by weight of the silicone-based water repellent to 0.5% by weight of the expanded perlite into the open cell expanded perlite prepared as described above.
  • the prepared mixture had a density of 72 Kg / m 3, and 583 g of the mixture was compressed to about 1.8 times the initial volume to form a horizontal X vertical X height 300 X 300 X 50 mm (volume 4.5 L).
  • the compressed molded product was first cured by heating at 200 ° C. for 1 minute, followed by demolding.
  • the expanded molded product was then cured in a 200 ° C. hot air dryer for 1 hour to prepare expanded perlite insulation 4 having a density of 125 ⁇ 5 Kg / m 3. It was.
  • An expanded perlite having 50 wt% closed cell expanded perlite and 50 wt% open cell expanded perlite was prepared, and the density of the mixed perlite was 35 Kg / m 3.
  • 100 g of the novolak phenolic powder is added to the mixed expanded perlite by weight of 100% by weight of the expanded perlite, 1.5% by weight of inorganic fiber is added to the weight of the expanded perlite, and 0.5% by weight of the silicon-based water repellent is added to the expanded perlite.
  • the density of the prepared mixture was 70Kg / m3, 567g of the mixture was compressed to about 1.8 times the initial volume was molded into a size X horizontal X height X height 300X300X50mm (volume 4.5L).
  • the compressed molded product was first cured by heating at 200 ° C. for 1 minute, followed by demolding.
  • the expanded molded product was then cured in a 200 ° C. hot air dryer for 1 hour to prepare expanded perlite insulation 5 having a density of 120 ⁇ 5 Kg / m 3. It was.
  • methyltrimethoxysilane was prepared by coating 0.5 wt% of the expanded perlite by weight.
  • 100 g of the novolac phenolic powder is expanded to 100% by weight of the expanded perlite, 1.5% by weight to the weight of the expanded perlite, and 0.5% by weight of the silicon-based water repellent is added to the coated closed cell expanded perlite and 0.5% by weight to the weight of the expanded perlite.
  • the prepared mixture had a density of 65 Kg / m 3, and 527 g of the mixture was compressed to about 1.8 times its initial volume and molded into 300 ⁇ 300 ⁇ 50 mm (volume 4.5L).
  • the compacted molded body was cured by heating at 200 ° C. for 1 minute and then demolded, and the demolded molded body was subjected to post-curing for 1 hour in a 200 ° C. hot air dryer to prepare an expanded perlite insulating material 6 having a density of 115 ⁇ 5 Kg / m 3.
  • Example 2 the expanded perlite in the form of a closed cell having a density of 30 Kg / m 3 was prepared.
  • the density of the prepared mixture was 66Kg / m 3, and 535g of the mixture was compressed to about 1.8 times the initial volume to form a 300 ⁇ 300 ⁇ 50 mm (volume 4.5L).
  • the compressed molded product was first cured by heating at 200 ° C. for 1 minute, followed by demolding.
  • the expanded molded product was then cured in a 200 ° C. hot air dryer for 1 hour to prepare expanded perlite insulation 7 having a density of 115 ⁇ 5 Kg / m 3. It was.
  • Example 8 Manufacture of Insulation Material 8 Using Expanded Perlite and Organic Curable Powder Binder of the Present Invention
  • Example 2 the expanded perlite in the form of a closed cell having a density of 30 Kg / m 3 was prepared.
  • Expanded novolak phenol powder to 1000 g of the manufactured closed cell expanded perlite, expanded 95% by weight of the perlite weight, expanded airgel with a strength enhancer, 5% by weight of the perlite weight, expanded inorganic fiber 1.5% by weight of the perlite weight, and expanded silicone powder water repellent 0.5 wt% of the weight of the perlite was added and mixed to prepare a mixture.
  • the prepared mixture had a density of 65 Kg / m 3, and 526 g of the mixture was compressed to about 1.8 times its initial volume to form a 300 ⁇ 300 ⁇ 50 mm (volume 4.5L).
  • the compressed molded product was first cured by heating at 200 ° C. for 1 minute, followed by demolding, and the demolded molded product was subjected to post-curing for 1 hour in a 200 ° C. hot air dryer to prepare expanded perlite insulating material 8 having a density of 115 ⁇ 5 Kg / m 3. It was.
  • Example 2 the expanded perlite in the form of a closed cell having a density of 30 Kg / m 3 was prepared.
  • the prepared mixture had a density of 70 Kg / m 3, and 567 g of the mixture was compressed to about 1.8 times its initial volume and molded into 300 ⁇ 300 ⁇ 50 mm (volume 4.5L).
  • the powder repellent was prepared in the same process as in Example 9 with a mixed material not mixed.
  • a silicone-based water repellent solution diluted to 1% solids was prepared, and 5 g per 0.01 m 2 of the molded article cross-sectional area was applied to the prepared water-repellent solution.
  • the molded article coated with the water repellent solution was dried at room temperature for one day at a place with good ventilation to prepare an expanded perlite insulation 10 having a density of 125 ⁇ 5 Kg / m 3.
  • Example 9 In the same manner as in Example 10, but mixed in each component ratio, instead of the closed cell expansion perlite mixed using an open cell expansion perlite, a molded article was prepared in the same process as in Example 9. A silicone-based water repellent solution diluted to 1% solids was prepared, and 5 g per 0.01 m 2 of the molded article cross-sectional area was applied to the prepared water-repellent solution.
  • the molded article coated with the water repellent solution was dried at room temperature for one day at a place with good ventilation to prepare an expanded perlite insulation 11 having a density of 130 ⁇ 5 Kg / m 3.
  • the compressed compact was heated at 200 ° C. for 1 minute to be primarily cured, and then demolded.
  • the deformed compact was placed in a chamber in which oxygen was blocked and purged with nitrogen to maintain dissolved oxygen within the chamber at 200% or less.
  • the surface temperature of the molded body was a temperature range from room temperature to 50 °C, through which the expanded perlite insulation 12 having a density of 115 ⁇ 5 Kg / m3 was prepared.
  • the powder repellent was prepared in the same process as in Example 12 with a mixed material not mixed.
  • a silicone-based water repellent solution diluted to 1% solids was prepared, and 5 g per 0.01 m 2 of the molded article cross-sectional area was applied to the water-repellent solution prepared in the molded product.
  • the carbonized molded article coated with the water repellent solution was dried at room temperature for one day at a place with good ventilation to prepare an expanded perlite insulation 13 having a density of 115 ⁇ 5 Kg / m 3.
  • Example 14 Manufacture of Insulation Material 14 Using Expanded Perlite and Organic Curable Powder Binder of the Present Invention
  • Example 12 In the same manner as in Example 13, but mixed in each component ratio, but instead of the closed cell expansion perlite, the mixture was prepared in the open cell expansion perlite prepared in Example 4 and the molded body was prepared in the same process as in Example 12. A silicone-based water repellent solution diluted to 1% solids was prepared, and 5 g per 0.01 m 2 of the molded article cross-sectional area was applied to the water-repellent solution prepared in the molded product.
  • the carbonized molded article coated with the water repellent solution was dried at room temperature for one day at a place with good ventilation to prepare a surface-water-reinforced expanded expanded ferrite insulation 14 having a density of 125 ⁇ 5 Kg / m 3.
  • a molded article prepared in the same manner as in Example 12 was heated to 1000 ° C. under an inert gas, and silicon-containing gas was introduced to prepare a silicon carbide expanded perlite insulating material 15.
  • Example 16 Manufacture of Insulation Material 16 Using Expanded Perlite and Organic Curable Powder Binder of the Present Invention
  • the molded article manufactured in the same manner as in Example 12 was activated with saturated steam for 1 hour at 600 ° C. in a steam atmosphere, and the inside of the three-sided sealed body having a width of 420 ⁇ 420 mm in width X length was put in a vacuum packing material of a composite material. And a vacuum pressure of 3 torr was formed and then sealed to prepare a vacuum insulator 16.
  • Density 30 Kg / m 3 using perlite crystallization based on the total weight of the expanded perlite, particles larger than 400 ⁇ m-15 wt%, 400 to 250 ⁇ m particles-40 wt%, 250 to 160 ⁇ m particles-20 wt%, 160 ⁇ m
  • An expanded perlite was prepared having a particle size distribution of less than 30% by weight and a closed cell proportion of 70% by weight.
  • a liquid inorganic binder was prepared by mixing a silicon-based liquid water repellent agent with 0.5 wt% of sodium silicate in 1000 g of 33 Be 'sodium silicate.
  • the formed article was dried in a 200 ° C. hot air dryer for 4 hours to prepare an insulating material 1 using expanded perlite and sodium silicate in an open cell having a density of 130 ⁇ 5 Kg / m 3.
  • Perlite crystallization density 40Kg / m3, 15% by weight of 800 ⁇ m over-particles based on the total weight of expanded perlite, 40% by weight of 500 ⁇ m particles at 800 ⁇ m, 20% by weight of 250 ⁇ m particles at 500 ⁇ m, at 250 ⁇ m
  • the particle size distribution of 10 wt% of 160 ⁇ m particles and less than 160 ⁇ m particles was 15 wt%, to prepare an open cell expanded perlite having an open cell ratio of 70 wt% to the total weight.
  • a liquid inorganic binder was prepared by mixing a silicon-based liquid water repellent agent with 0.5 wt% of sodium silicate in 1000 g of 33 Be 'sodium silicate.
  • the formed article was dried in a 200 ° C. hot air dryer for 4 hours to prepare an insulating material 2 using expanded perlite and sodium silicate in an open cell having a density of 150 ⁇ 5 Kg / m 3.
  • the formed article was dried in a 200 ° C. hot air dryer for 4 hours to prepare an insulating material 3 using expanded perlite and sodium silicate in an open cell having a density of 130 ⁇ 5 Kg / m 3.
  • Example 1 Table 1 division Molding Compression Ratio Contraction rate Thermal Conductivity (W / mK) Flexural strength (N / cm2) Water repellency 20 °C 70 °C 200 °C Example 1 1.8 2% or more - 0.0454 0.0585 44.3 More than 98%
  • Example 2 1.8 - 0.0447 0.0578 45.4
  • Example 3 1.8 - 0.0463 0.0591 43.3
  • Example 4 1.8 - 0.0495 0.0624 40.5
  • Example 5 1.8 - 0.0469 0.0574 42.1
  • Example 6 1.8 - 0.0448 0.0568 43.8
  • Example 7 1.8 - 0.0401 0.0537 47.4
  • Example 8 1.8 - 0.0378 0.0515 46.2
  • Example 9 1.8 Within 1% - 0.0431 0.0552 45.1
  • Example 10 1.8 - 0.0437 0.0560 46.3
  • Example 11 1.8 - 0.0461 0.0584 43.4
  • Example 12 1.8 Within 0.5% - 0.0441 0.0522
  • Example 1 0.5 to 2
  • Example 4 5 to 10
  • Example 10 70-120
  • Example 11 100 to 150
  • Example 13 300 to 700
  • Example 14 550-850
  • Example 16 1200 to 1700
  • Examples 1 to 16 of the present invention prepared using the expanded perlite and the powdered organic binder have a lower density than Comparative Examples 1 to 3 using liquid sodium silicate, which is a conventional binder. Flexural strength was measured to be higher than 40 ⁇ 80%.
  • the thermal conductivity was lower than 15% in the temperature range of 70 °C, and the thermal conductivity was lower than 20% in the 200 °C range, which is the actual range of industrial insulation.
  • the density of the heat insulating material is low, even if the temperature rises, heat transfer is suppressed compared to the existing heat insulating material, and the thermal conductivity is lowered in the high-temperature section.
  • the conventional binder inorganic silicate silica is amorphous, and the heat transfer is high due to the temperature rise. In the case of the organic curing binder, low heat transfer and little residual moisture indicate that an additional reduction in thermal conductivity can be achieved.
  • Example 1 which performs only the primary curing in the three steps of compression and molding, and post-cure in the fourth step, and Example 2, which performs the complete curing in the third step, and Example 3, which are extruded, have similar bow shrinkage, flexural strength, and thermal conductivity. Indicated.
  • Examples 9 to 14 which were subjected to the heat treatment of the prepared molded body, exhibited lower bow shrinkage, lower thermal conductivity, and overall higher bending strength than those of Examples 1 to 8, which were not subjected to heat treatment.
  • Examples 10 to 11 and 13 to 14 which applied a liquid repellent agent to a molded article prepared by heat treatment, had a water repellency similar to those of Examples 9 and 12 in which a water repellent was mixed before molding, since the water repellent was dry-bonded on the surface of the insulating material. As a result, the flexural strength also increased slightly.
  • Example 10 and Example 13 subjected to the heat treatment showed a higher specific surface area than Example 1, and Example 11 and Example 14, which heat-treated the molded body made of open cell perlite, were closed cell perlite. When prepared with a higher specific surface area was shown.
  • Example 1 which does not perform carbonization of the organic cured product, most of the organic cured products have a closed structure, and in Example 10 that undergoes heat treatment and Example 13, which undergoes carbonization, organic curing In the process of carbonization of water, it shows that the formation of countless micropores and the pores generated are preserved undisintegrated.
  • Examples 11 and 14 made of open cell perlite have a large number of pores of the particles themselves and have a large specific surface area. Greater effect.
  • Example 16 by additionally performing activation through water vapor on the carbonized molded body as in Example 16, the surface of the carbon body could be eroded to generate extremely fine pores.
  • the heat insulating material manufactured through carbonization and activation of specific surface area which is a measure of the effect of the core material of vacuum insulation material, can satisfy the condition, and 0.003 W / at 20 ° C as measured thermal conductivity. It showed excellent thermal conductivity of mK, which means that it has a high specific surface area and can form a composite structure of excellent mechanical strength having a cell structure of perlite at the same time, thereby serving as a vacuum insulator. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Building Environments (AREA)
  • Thermal Insulation (AREA)

Abstract

The present invention relates to an expanded perlite thermal insulation material using a thermosetting resin, wherein the thermal insulation material is formed by using a thermosetting resin to adhere expanded perlite and then a heat treatment is carried out, thereby reducing the thickness of the thermal insulation material because of outstanding thermal conductivity not to mention improved workability due to low density, such that it is possible to economise on material and energy costs and to reduce the equipment installation area. The present invention also relates to a production method for the thermal insulation material and to a product using the thermal insulation material.

Description

열경화성 수지를 이용한 팽창 퍼라이트 단열재, 이의 제조방법 및 이를 이용한 제품Expanded perlite insulation using thermosetting resin, manufacturing method thereof and product using same
본 발명은 열경화성 수지를 이용한 팽창 퍼라이트 단열재에 관한 것으로, 열경화성 수지를 이용하여 팽창 퍼라이트를 접착시켜 성형하고 열처리함으로써 낮은 밀도에 의한 시공성 향상은 물론 우수한 열전도율로 단열재의 두께를 얇게 하여 자재 및 에너지 비용을 절감하고 설비 설치 공간 면적을 줄일 수 있는 단열재, 이의 제조방법 및 이를 이용한 제품에 관한 것이다.The present invention relates to an insulated perlite heat insulating material using a thermosetting resin, which is formed by bonding an expanded perlite using a thermosetting resin, forming a heat treatment, and improving the workability due to low density as well as reducing the thickness of the insulating material with excellent thermal conductivity to reduce the material and energy costs. The present invention relates to a heat insulating material, a method for manufacturing the same, and a product using the same, which can reduce and reduce an installation space area.
석유화학, 발전소, 제철소 등 플랜트 산업에 있어서, 그 생산 공정 및 라인은 복잡한 구조로 이루어져 있다. 특히, 고온이나 저온의 유체를 저장하거나, 이송하는 라인을 많이 사용하고 있다.In the plant industry, such as petrochemicals, power plants, and steel mills, the production process and lines have a complicated structure. In particular, many lines which store or convey a fluid of high temperature or low temperature are used.
산업용 단열재는 이러한 고온이나 저온부의 플랜트 산업에 있어서 에너지의 손실을 방지할 뿐만 아니라 제품의 품질과 밀접한 관계를 갖고 있어 매우 중요한 역할을 하고 있다.Industrial insulation plays a very important role in the high and low temperature plant industry as well as preventing energy loss and having a close relationship with product quality.
특히, 에너지를 대부분 수입에 의존해 사용하고 있는 국가들은 고유가로 인한 에너지 절감과 기후변화 협약에 의한 탄소 배출 규제 등의 영향으로 산업 전반에 걸쳐 민감하게 대처하고 있다. 이러한 추세에 의해 산업 플랜트에 사용되고 있는 단열재도 여러 분야의 소재의 개발과 성능 향상을 위한 연구와 노력이 지속되었다.In particular, countries that rely mostly on imports for energy are sensitive to the industry as a result of energy savings due to high oil prices and the regulation of carbon emissions under climate change agreements. As a result of this trend, research and efforts to improve the performance and development of materials for various fields of insulation materials used in industrial plants have been continued.
산업용 단열재에 주로 사용되는 것에는 무기질의 섬유계, 분말계, 발포계 단열재가 있다. 섬유계 단열재는, 규사, 석회석, 장석, 소다회 등 유리계 광물질을 재료로 하는 유리면과 고로슬래그 및 현무암을 재료로 하는 암면, 알루미나계 섬유, 지르코니아 섬유, 탄소섬유 등의 무기질 섬유를 이용하여 제조된다.Mainly used for industrial thermal insulation includes inorganic fiber-based, powder-based, foam-based insulation. Fibrous insulation is produced using glass fibers made of glass mineral materials such as silica sand, limestone, feldspar, and soda ash, and mineral fibers such as rock wool, alumina fibers, zirconia fibers and carbon fibers made of blast furnace slag and basalt materials. .
한국등록특허공보 제10-0522568호 “유리섬유를 이용한 발수성 단열 파이프 및 그 제조방법”, 한국등록특허공보 제10-0760003호 “장치물 보온용 라운드형 유리섬유 단열재 및 그 제조방법” 등 다수 자료에서 공지된 바와 같이, 무기질 섬유군 중 유리 장섬유를 이용하여 매트화하여, 이 매트를 여러 겹으로 다시 니들 펀칭하고, 바인더를 함침, 접착시켜 제조한다.In Korean Patent Publication No. 10-0522568, “Water-repellent insulating pipe using glass fiber and its manufacturing method”, Korean Patent Publication No. 10-0760003 “Round-type glass fiber insulating material for insulating device and its manufacturing method”, etc. As is known, it is prepared by mating using glass long fibers in the inorganic fiber group, needle-punching this mat again in several layers, and impregnating and adhering a binder.
이러한 방법으로 제조한 제품은 섬유 형태의 특성상 운반이 편하고 기존의 무기질 섬유계 단열재에 비해 열전도율이 낮은 이점은 있으나, 제품의 밀도 편차가 많아 열적 특성이 균일하지 않는 단점이 있다.Products manufactured in this way have the advantage of ease of transport and low thermal conductivity compared to the conventional inorganic fiber-based heat insulator due to the characteristics of the fiber type, but has a disadvantage in that the thermal characteristics are not uniform due to the large density variation of the product.
특히 수분에 매우 취약해서 표면을 발수처리 하여도 섬유의 특성상 절단면 등으로 수분이 쉽게 침투하여 여러 겹의 매트가 벌어지는 현상과 이로 인해 열전도율이 급격히 높아지고 제품의 내구성이 떨어지는 문제가 발생한다.Particularly, it is very vulnerable to moisture, so even if the surface is water repellent, moisture penetrates easily into the cutting surface and the like, so that multiple layers of mats are opened, resulting in rapid thermal conductivity and poor durability of the product.
또한, 시공 시 발생되는 유리섬유의 분진은 인체에 유해하여 작업현장에서 이를 기피하는 현상도 발생한다.In addition, the dust of the glass fiber generated during the construction is harmful to the human body to avoid this phenomenon in the workplace.
분말계 단열재는 칼슘실리케이트, 규조토, 염기성 탄산 마그네슘등을 사용한다.Powder-based insulation uses calcium silicate, diatomaceous earth, basic magnesium carbonate and the like.
특히 그 중에서 많이 사용되는 칼슘실리케이트 단열재는, 규조토와 소석회를 과량의 물로 수열 반응 시킨 후 슬러리 상태로 습식 성형하여, 오토클레이브에서 고압 가열하여 경화시킨 제품이다.In particular, the calcium silicate heat insulating material that is frequently used is a product obtained by hydrothermally reacting diatomaceous earth and slaked lime with excess water, wet molding in a slurry state, and hardening by heating under high pressure in an autoclave.
경화 시 결정 구조에 따라 토버모라이트(Tobermorite)와 조노트라이트(Xonotlite) 형상으로 강도가 우수하고, 결정 형상에 따라 열전도율이 낮아지는 이점이 있으나, 경화에 따른 제조공정이 복잡하여 생산성이 낮고, 특히 토버모라이트의 경우는 발수 성능을 형성시킬 수가 없는 문제점이 있다.It has the advantage of excellent strength in the shape of Tobermorite and Xonotlite depending on the crystal structure at the time of curing, and low thermal conductivity depending on the crystal shape, but the productivity is low due to the complicated manufacturing process due to the curing. In particular, in the case of Tobermorite, there is a problem that can not form a water repellent performance.
발포계 단열재는 팽창 질석이나, 팽창 퍼라이트를 사용하는 단열재로, 산업용으로 팽창 퍼라이트 단열재가 주로 사용된다.Foam-based insulation is an insulator using expanded vermiculite or expanded perlite, the expanded perlite insulation is mainly used for industrial purposes.
팽창 퍼라이트 단열재는 제조 공정이 간단하고, 생산성도 높으며 재료비가 싼 이점에 의해 산업용 단열재 전반에 걸쳐 사용되고 왔다.Expanded perlite insulation has been used throughout industrial insulation due to its simple manufacturing process, high productivity and low material costs.
그러나 팽창 퍼라이트 단열재에 사용하는 무기질 바인더인 규산염계 바인더는 비정질 형태로 열전도율 높고 접착강도가 낮은 단점을 지니고 있으며, 액상의 형태이므로 팽창 퍼라이트와 혼합 시 셀 내부로 바인더가 흡수되기 때문에 바인더 사용량이 늘어나게 되고, 이에 따라 열전도율이 보다 높아지게 된다. However, silicate-based binder, which is an inorganic binder used for expanded perlite insulation, has a disadvantage of high thermal conductivity and low adhesive strength in an amorphous form.As a liquid form, the amount of binder is increased because the binder is absorbed into the cell when mixed with expanded perlite. As a result, the thermal conductivity becomes higher.
뿐만 아니라, 액상의 규산염계 바인더를 사용함에 따라 팽창 퍼라이트 표면이 바인더에 의해 과량의 수분을 함유한 상태가 되고, 수분에 의한 입자 흐름성 감소로 따라 입자와 입자 사이의 공극 충전이 용이하지 못하게 되고 부위별 밀도 편차가 발생하게 되어 상기 상태에서 압축을 통한 단열재의 성형과정에서 셀의 과다한 파쇄와 공극률이 증가하게 되어 열전도율의 증가와 균열 등이 문제점이 초래된다.In addition, the use of a liquid silicate-based binder causes the expanded perlite surface to contain an excessive amount of water by the binder, and as a result of reduced particle flow due to moisture, it is not easy to fill voids between the particles. In this state, density variation occurs in each part, and excessive fracture and porosity of the cell are increased in the molding process of the insulating material through compression, resulting in an increase in thermal conductivity and cracking.
또한 액상바인더는 자체의 부피를 가지고 있지 않으므로, 입자와 입자간의 공극을 메울 수 없고, 바인더를 증량하더라도 상기 공극은 여전히 존재하므로, 본 공극을 최소화하기 위하여 압축비를 증가시킬 수 밖에 없다. 이에 따라 입자의 파쇄와 성형체의 밀도는 보다 증가하고 추가적인 열전도율의 증가를 초래한다.In addition, since the liquid binder does not have its own volume, the gap between the particles and the particles cannot be filled, and even if the binder is increased, the voids still exist, so that the compression ratio can be increased to minimize the voids. This results in more crushing of the particles and a higher density of the shaped body and an additional increase in thermal conductivity.
이와 더불어, 액상의 규산염계 바인더는 500℃ 이상의 고온에서는 수축이 일어나게 되고, 이에 따라 성형체의 변형과 균열이 발생할 위험이 있다.In addition, the liquid silicate-based binder shrinks at a high temperature of 500 ° C. or higher, and there is a risk of deformation and cracking of the molded body.
뿐만 아니라, 액상 바인더는 70% 이상이 수분으로 이루어져 있기 때문에, 건조 공정을 충분히 실시한다 하더라도 완전건조가 어려워 잔존 수분에 의해 열전도율은 보다 증가하게 된다.In addition, since the liquid binder is made of 70% or more of water, even if the drying process is sufficiently performed, it is difficult to completely dry the thermal conductivity is further increased by the remaining moisture.
이러한 팽창 퍼라이트와 액상 규산염계 바인더의 사용에 따른 문제점을 해결하기 위해 다각도로 연구 개발되고 있으나, 제조공법에 치중하여 압축 성형에 따른 열전도율 저하를 극복 하는데 한계가 있으며, 강도 보강을 위해서 건조공정에서 액상 바인더를 소성 또는 경화시키는 방법 등이 제시되었으나, 제조공정이 복잡해지고 제조비용이 상승하는 문제점 등이 있다. In order to solve the problems caused by the use of expanded perlite and liquid silicate-based binders, researches have been developed in various angles, but there is a limit in overcoming the thermal conductivity degradation due to compression molding due to the manufacturing process. Although a method of baking or curing the binder has been proposed, there are problems in that the manufacturing process becomes complicated and the manufacturing cost increases.
또한, 팽창 퍼라이트와 기타 재료의 혼용을 통한 문제 해결 방법들이 제시되어 있는데,In addition, there are solutions to problems through the use of expanded perlite and other materials.
한국등록특허공보 제10-0695910호 “고강도 질석보드” 등 다수 자료에서 공지된 바와 같이 발포계 단열재인 팽창 질석을 주제로 하고 팽창 퍼라이트 등을 보강제 혼합하고 유기 경화형 바인더로 접착시켜 고강도의 단열재를 제조하는 기술들이 제시되었다.As known from many materials, such as Korean Patent Publication No. 10-0695910, "High Strength Vermiculite Board", the expansion of vermiculite, which is a foam-based insulation material, is made of reinforcement mixed with expanded perlite, etc. Techniques were proposed.
그러나 유기 경화형 바인더는 고온에서 사용할 수 없고, 밀도가 높고 열전도율이 나쁜 팽창 질석을 사용함으로써, 전체적인 열전도율 상승을 초래하고, 단열재의 밀도가 상승하며, 충분한 압축이 수반되지 못하면 강도가 감소하는 등의 문제점이 있다.However, organic curable binders cannot be used at high temperatures, and due to the use of expanded vermiculite having high density and poor thermal conductivity, the overall thermal conductivity is increased, the density of the insulation is increased, and the strength is decreased if sufficient compression is not accompanied. There is this.
이에 본 발명은 팽창 퍼라이트 보온재를 성형함에 있어 상기한 문제점을 해결하기 위한 것으로, 본 발명은 분말상의 열경화성 바인더를 사용하여 접착하고, 고온의 열처리 공정을 추가적으로 수행하여 팽창 퍼라이트 성형체를 탄소화 함으로써, 입자간의 공극을 분말상의 바인더로 메울 수 있어, 과압축을 하지 않더라도 입자와 입자간 결합력을 충분히 보장할 수 있으므로, 압축에 따른 밀도 상승과 입자 파쇄를 방지하여 열전도율을 향상시킬 수 있고, 열처리 공정을 수행함에 따라 유기물의 문제점인 열분해를 차단할 수 있어 고온에서의 열안정성을 확보할 수 있는 열경화성 수지를 이용한 팽창 퍼라이트 단열재를 제공함에 그 목적이 있다.Accordingly, the present invention is to solve the above problems in molding the expanded perlite insulation, the present invention is bonded by using a powdery thermosetting binder, by performing a high temperature heat treatment process additionally by carbonizing the expanded perlite molded body, Since the gap between the gap can be filled with a powdery binder, sufficient bonding strength between particles can be ensured even without overcompression, thereby improving the thermal conductivity by preventing density increase and particle crushing due to compression, and performing the heat treatment process. Accordingly, an object of the present invention is to provide an expanded perlite heat insulating material using a thermosetting resin that can block thermal decomposition, which is a problem of organic matter, and ensure thermal stability at high temperature.
뿐만 아니라, 본 발명은 분말상의 열경화성 수지를 사용함으로서 액상의 규산염계 바인더에 비해 대단히 높은 접착력을 가지고 있고, 팽창퍼라이트에 의한 흡수가 없기 때문에 낮은 압축비로도 높은 접착력을 확보할 수 있어 보다 낮은 밀도로 성형이 가능하여 시공성 향상과 추가적인 열전도율 향상을 이룰 수 있는 열경화성 수지를 이용한 팽창 퍼라이트 단열재를 제공함에 그 목적이 있다. In addition, the present invention has a very high adhesive strength compared to the liquid silicate-based binder by using a powdery thermosetting resin, and because there is no absorption by the expanded perlite, it is possible to secure a high adhesive strength even at a low compression ratio to a lower density It is an object of the present invention to provide an expanded perlite heat insulating material using a thermosetting resin that can be formed to improve workability and further improve thermal conductivity.
이와 더불어 본 발명은 액상 규산염계 바인더가 가지고 있는 문제점인 입자 흐름성을 해결하여 공극률과 밀도 편차를 감소시켜 압축 시 셀(cell)의 파괴를 최소화하고, 분말상 수지의 수분 함유량이 극히 낮은 이점에 기인하여 잔존수분에 의한 열전도율 증가를 해결할 수 있는 열경화성 수지를 이용한 팽창 퍼라이트 단열재를 제공함에 그 목적이 있다. In addition, the present invention solves particle flowability, which is a problem of liquid silicate-based binders, to reduce porosity and density variation, thereby minimizing breakage of cells during compression, and is due to an extremely low moisture content of powdered resin. The purpose is to provide an expanded perlite insulation using a thermosetting resin that can solve the increase in thermal conductivity due to residual moisture.
본 발명에 의한 열경화성 수지를 이용한 팽창 퍼라이트 단열재는 원광을 건조시킨 후 팽창시켜 제조된 팽창 퍼라이트 10~84 중량%, 유기계 경화형 분말 바인더 15~85 중량% 및 보강섬유 0.25 ~ 5 중량% 을 포함하는 것을 특징으로 한다.The expanded perlite insulation using the thermosetting resin according to the present invention comprises 10 to 84% by weight of expanded perlite, 15 to 85% by weight of an organic curable powder binder, and 0.25 to 5% by weight of reinforcing fiber prepared by drying the ore after expansion. It features.
본 발명의 다른 바람직한 특징에 의하면, 상기 열경화성 수지를 이용한 팽창 퍼라이트 단열재는 상기 유기계 경화형 분말 바인더 100중량부에 대하여 5~200중량부의 보강제를 추가로 포함하고 있다.According to another preferred feature of the present invention, the expanded perlite heat insulating material using the thermosetting resin further includes 5 to 200 parts by weight of a reinforcing agent based on 100 parts by weight of the organic curable powder binder.
본 발명에 의한 열경화성 수지를 이용한 팽창 퍼라이트 단열재의 제조방법은 원광을 건조 후 팽창시켜 팽창 퍼라이트를 제조하는 제 1단계; 상기 제 1단계에서 제조한 팽창 퍼라이트 10~84 중량%, 유기계 경화형 분말 바인더 15~85 중량% 및 보강섬유 0.25 ~ 5 중량% 를 혼합하여 혼합재를 제조하는 제 2단계; 상기 제 2단계에서 제조한 혼합재를 압축 또는 압출하여 성형체를 만들고 상기 성형체를 일차 경화시키는 제 3단계; 및 상기 제 3단계에서 일차 경화된 성형체를 후경화시키는 제 4단계를 포함하는 것을 특징으로 한다.Method for producing an expanded perlite heat insulating material using a thermosetting resin according to the present invention comprises the first step of producing expanded perlite by drying and expanding the ore; A second step of preparing a mixture by mixing 10 to 84% by weight of the expanded perlite prepared in the first step, 15 to 85% by weight of the organic curable powder binder, and 0.25 to 5% by weight of the reinforcing fiber; A third step of compressing or extruding the mixture prepared in the second step to form a molded article and first curing the molded article; And a fourth step of post-curing the primary cured molded body in the third step.
본 발명에 의한 열경화성 수지를 이용한 팽창 퍼라이트 단열재를 이용한 제품은 상기된 열경화성 수지를 이용한 팽창 퍼라이트 단열재로서, 상기 열경화성 수지를 이용한 팽창 퍼라이트 단열재는 보온재 또는 진공단열재의 심재로 사용되는 것을 특징으로 한다.The product using the expanded perlite heat insulating material using the thermosetting resin according to the present invention is the expanded perlite heat insulating material using the above-mentioned thermosetting resin, the expanded perlite heat insulating material using the thermosetting resin is characterized in that it is used as a core material of a heat insulating material or a vacuum insulating material.
상기 해결 수단에 의해, 본 발명의 단열재는 팽창 퍼라이트를 이용하여 최대한 체밀 충전시켜 입자간의 공극을 최소화함으로써 낮은 밀도에 의한 시공성 향상과 단열재의 두께를 얇게 하여 자재 및 에너지 비용을 절감하고 설비 설치 공간 면적을 줄일 수 있는 단열재로서 고온, 저온 조건에서 사용 및 다양한 형태로의 응용을 할 수 있다.By means of the above solution, the heat insulating material of the present invention by filling the maximally close by using the expanded perlite to minimize the gap between the particles to improve the workability due to the low density and to reduce the thickness of the heat insulating material to reduce the material and energy costs and the installation space area As a heat insulator to reduce the temperature, it can be used in high temperature and low temperature conditions and can be applied in various forms.
도 1은 열린 셀 팽창 퍼라이트를 나타낸 도면, 1 shows an open cell expansion perlite,
(A) : 800㎛ 초과 (30배율)     (B) : 800~500㎛ (32배율) (A): more than 800㎛ (30 magnification) (B): 800 ~ 500㎛ (32 magnification)
(C) : 500~400㎛ (32배율)      (D) : 400~250㎛ (48배율)(C): 500 ~ 400㎛ (32 magnifications) (D): 400 ~ 250㎛ (48 magnifications)
(E) : 250~160㎛ (84배율)      (F) : 160~63㎛ (100배율) (E): 250 ~ 160㎛ (84 magnification) (F): 160 ~ 63㎛ (100 magnification)
(G) : 63㎛ (100배율) (G): 63㎛ (100 magnification)
도 2는 닫힌 셀 팽창 퍼라이트를 나타낸 도면. 2 shows a closed cell expansion perlite.
(A) : 400㎛ 초과 (32배율)     (B) : 400~250㎛ (48배율) (A): 400 µm or more (32 magnifications) (B): 400 to 250 µm (48 magnifications)
(C) : 250~160㎛ (84배율)      (D) : 160~63㎛ (100배율) (C): 250 ~ 160㎛ (84 magnification) (D): 160 ~ 63㎛ (100 magnification)
(E) : 63㎛ (100배율) (E): 63㎛ (100 magnification)
이하 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, described in detail with reference to the accompanying drawings, preferred embodiments of the present invention.
상기 목적을 달성하기 위한 본 발명에 의한 열경화성 수지를 이용한 팽창 퍼라이트 단열재는 팽창 퍼라이트 10~84 중량%, 유기계 경화형 분말 바인더 15~85 중량 % 및 보강섬유 0.25~5 중량%를 포함한다.Expanded perlite heat insulating material using a thermosetting resin according to the present invention for achieving the above object comprises 10 to 84% by weight of expanded perlite, 15 to 85% by weight of the organic curable powder binder and 0.25 to 5% by weight of reinforcing fibers.
팽창 퍼라이트는 퍼라이트 원광을 건조시킨 후 팽창시켜 제조된 것으로서, 퍼라이트 원광은 진주암, 흑요석, 송지암, 경석 중 선택된 1종 이상이다. 여기서 팽창 퍼라이트가 10중량% 미만이면 열전도율이 급격히 증가하는 문제가 있고, 84중량% 초과하면 기계적 물성이 감소하는 문제가 있다. 팽창 퍼라이트의 입자의 형태에 대해서는 특별한 제한은 없지만, 바람직하게는 닫힌 셀 팽창 퍼라이트의 유효성분은 전체 팽창 퍼라이트 중량을 기준으로 50 중량% 이상 포함한다.The expanded perlite is prepared by drying the perlite ore and then expanding it. The perlite ore is at least one selected from perlite, obsidian, pine rock, and pumice. If the expanded perlite is less than 10% by weight, there is a problem that the thermal conductivity is sharply increased, and if it exceeds 84% by weight, there is a problem that the mechanical properties are reduced. There is no particular limitation on the shape of the particles of the expanded perlite, but preferably the active ingredient of the closed cell expanded perlite includes 50% by weight or more based on the total weight of the expanded perlite.
유기계 경화형 분말 바인더는 전체 중량% 대비 15~85 중량%, 바람직하게는 20~50 중량%를 혼합할 수 있으며, 15 중량% 이하일 경우 접착 강도의 확보가 어렵고, 85 중량% 이상일 경우 높은 접착 강도는 확보할 수 있으나, 과다한 유기물의 혼용에 따른 재료비 및 열전도율의 상승 등의 문제가 발생한다.The organic curable powder binder may be mixed in an amount of 15 to 85% by weight, preferably 20 to 50% by weight based on the total weight%, and when it is 15% by weight or less, it is difficult to secure the adhesive strength. Although it can be secured, problems such as an increase in material cost and thermal conductivity due to the mixing of excess organic materials occur.
유기계 경화형 분말 바인더는 페놀 노볼락 수지를 사용할 수 있으나, 특징적으로 한정하는 것은 아니며, 분말로 변형된 멜라민 수지, 에폭시 수지, 실리콘 수지를 사용할 수도 있고, 열경화를 통해 고분자로 생성되어 기계적 물성을 확보할 수 있는 수지를 모두 포함할 수 있다. The organic curable powder binder may use a phenol novolak resin, but is not particularly limited, and may be a melamine resin, an epoxy resin, or a silicone resin, which is transformed into a powder, and is formed of a polymer through thermal curing to secure mechanical properties. It may include all resins that can be.
보강섬유는 팽창 퍼라이트 단열재의 성형성, 휨강도, 시공성 등을 보강하기 위해서는 길이가 5 ~ 30mm 인 보강섬유를 사용한다. 보강섬유는 무기질계 섬유나 유기질계 섬유를 각각 사용하거나 혼용하여 사용한다.The reinforcing fiber uses a reinforcing fiber having a length of 5 to 30 mm to reinforce the formability, bending strength, and workability of the expanded perlite insulation. Reinforcing fibers are used in combination with inorganic fibers or organic fibers, respectively.
또한, 강도나 열전도율 추가적으로 낮추기 위한 보강제를 사용할 수 있다.In addition, a reinforcing agent may be used to further lower the strength or thermal conductivity.
강도를 보강하기 위해 50㎛ 미만의 흄드실리카나, 에어로겔 등을 사용할 수 있는데, 이는 열전도율이 우수한 나노미터 크기의 초미립 셀(cell)로 형성되어 있어, 팽창 퍼라이트와 혼합 시 입자간 틈을 메워 성형 압축률을 줄이더라도 치밀한 성형상태를 갖게 되어 강도가 향상되고, 낮은 열전도율을 확보할 수 있다. In order to reinforce the strength, fumed silica and airgel of less than 50 μm may be used, which is formed of nanometer-sized ultra fine cells having excellent thermal conductivity, thereby filling gaps when mixed with expanded perlite. Even if the molding compression ratio is reduced, a compact molding state can be obtained, thereby improving the strength and securing a low thermal conductivity .
한편, 본 발명에 의한 열경화성 수지를 이용한 팽창 퍼라이트 단열재는 보강제를 추가로 포함할 수 있다. 보강제는 상기 유기계 경화형 분말 바인더 100중량부에 대하여 5~200중량부, 바람직하게는 10~70 중량부를 추가로 혼합할 수 있으며, 보강제가 5중량부 이하일 경우 열분해의 감소와 강도의 보강을 나타내기 어렵고, 200중량부 이상일 경우 보강제로써의 역할은 충분히 수행할 수 있으나, 열전도율이 급격히 증가하는 문제가 발생한다.On the other hand, the expanded perlite insulation using the thermosetting resin according to the present invention may further comprise a reinforcing agent. The reinforcing agent may be mixed in an amount of 5 to 200 parts by weight, preferably 10 to 70 parts by weight, based on 100 parts by weight of the organic curable powder binder, and when the reinforcing agent is 5 parts by weight or less, it shows a reduction in thermal decomposition and reinforcement of strength. It is difficult, if more than 200 parts by weight can play a role as a reinforcing agent, but the problem that the thermal conductivity is rapidly increased.
또한 본 발명에 의한 열경화성 수지를 이용한 팽창 퍼라이트 단열재는 발수제를 추가로 포함할 수 있다. 본 발명에서의 발수제는 분말상의 발수제를 사용한다.In addition, the expanded perlite insulation using the thermosetting resin according to the present invention may further include a water repellent. The water repellent in the present invention uses a powdery water repellent.
다음으로 본 발명에 의한 열경화성 수지를 이용한 팽창 퍼라이트 단열재의 제조방법에 대하여 설명한다.Next, the manufacturing method of the expanded perlite heat insulating material using the thermosetting resin by this invention is demonstrated.
본 발명에 의한 열경화성 수지를 이용한 팽창 퍼라이트 단열재의 제조방법은 원광을 건조 후 팽창시켜 팽창 퍼라이트를 제조하는 제 1단계; 상기 제 1단계에서 제조한 팽창 퍼라이트 10~84 중량%, 유기계 경화형 분말 바인더 15~85 중량% 및 보강섬유 0.25 ~ 5 중량%를 혼합하여 혼합재를 제조하는 제 2단계; 상기 제 2단계에서 제조한 혼합재를 가열하여 성형체를 만들고 상기 성형체를 일차 경화시키는 제 3단계; 및 상기 제 3단계에서 일차 경화된 성형체를 후경화 또는 후경화 및 열처리하는 제4단계를 포함한다.Method for producing an expanded perlite heat insulating material using a thermosetting resin according to the present invention comprises the first step of producing expanded perlite by drying and expanding the ore; A second step of preparing a mixture by mixing 10 to 84% by weight of the expanded perlite prepared in the first step, 15 to 85% by weight of the organic curable powder binder, and 0.25 to 5% by weight of the reinforcing fiber; A third step of heating the mixture prepared in the second step to form a molded body and first curing the molded body; And a fourth step of post-curing or post-curing and heat-treating the first cured molded body in the third step.
이하 본 발명의 제조방법에 대하여 자세히 설명한다.Hereinafter, the manufacturing method of the present invention will be described in detail.
팽창 퍼라이트를 제조하는 1단계를 보다 자세히 설명하면, 통상적으로 진주암, 송지암, 흑요석, 경석 등의 천연 광물의 내부에 결정수라 불리는 수분을 이용하여, 소성공정에서 고온의 화염을 맞으면 표면은 유리질화 되고 내부의 수분이 증기화 하여 팽창된다.In more detail, the first step of producing expanded perlite, the surface is vitrified when a high temperature flame is encountered in the firing process by using water, which is commonly called crystal water, inside natural minerals such as pearl rock, pine rock, obsidian and pumice stone. The water inside is vaporized and expanded.
여기서 팽창은 직접화염법 또는 간접화염법을 사용하되, 일정한 입도분포범위에 맞춰 한번에 팽창시켜 제조하는 방법 또는 입자 크기별로 따로 팽창시킨 후 이를 혼합하여 제조하는 방법을 이용하여 실시된다.In this case, the expansion may be performed using a direct flame method or an indirect flame method, and may be prepared by expanding at a time according to a specific particle size distribution range or by separately expanding each particle size and then mixing them.
상기 팽창된 퍼라이트 입자의 형태는 팽창 전 입자의 크기와 분포 및 건조 정도에 따른 내부 결정수의 정도에 따라 특징적으로 이루어지며, 이때 셀의 형태는 내부의 수분이 과 팽창되면서 입자 표면이 터져 도 1과 같이 침상구조의 열린 셀 형태로 제조되거나, 도 2와 같이 입자 표면이 닫힌 형태의 중공형 셀을 제조할 수 있다.The shape of the expanded perlite particles is characterized in accordance with the size of the particles before the expansion and the degree of internal crystallization according to the distribution and degree of drying, wherein the shape of the cell is bursting the surface of the particle while the water is over-expanded Figure 1 As described above, the hollow cell may be manufactured in the form of an open cell having a needle structure, or the particle surface may be closed as shown in FIG. 2.
상기 열린 셀 퍼라이트와 닫힌 셀 퍼라이트는 형상에 따라 특징적인 차이점을 갖는데, 열린 셀 퍼라이트의 경우, 입자의 내부가 열려 있고, 그 입자 내부 또한 무수한 셀로 구성되어 있어 넓은 비표면적을 가지고 기체 및 액체상의 물질에 대한 높은 흡착성을 가지는 반면 닫힌 셀 퍼라이트는 열린 셀에 비해 높은 비표면적을 가지지는 않으나, 표면이 터지지 않고, 외벽이 견고한 중공체의 형태에 따라 입자의 파괴 강도가 우수하고, 입자간 흐름성이 우수함에 따라 체밀충전이 원활하여, 닫힌 셀 퍼라이트로 형성된 성형체의 경우 열린 셀 퍼라이트 성형체 대비 다소 우수한 기계적 물성과 열전도율을 가진다.The open cell perlite and the closed cell perlite have a characteristic difference depending on the shape. In the case of the open cell perlite, the inside of the particles is open, and the inside of the particles is also composed of a myriad of cells, which have a large specific surface area and have a gaseous and liquid substance. Closed cell perlite does not have a higher specific surface area than open cells, but has excellent surface breaking strength and excellent particle breaking strength and excellent inter-particle flowability. In accordance with the smooth body filling, the molded article formed of the closed cell perlite has a somewhat better mechanical properties and thermal conductivity than the open cell perlite molded article.
또한, 닫힌 셀 퍼라이트 입자 강도가 우수하여 좀더 낮은 밀도로 팽창시키더라도 입자 파괴강도가 유지되나, 열린 셀 퍼라이트는 낮은 밀도로 팽창시키면 입자의 과팽창이 발생하고 입자의 파쇄가 증가하므로 40 Kg/㎥ 이하로 제조하여 사용하기 어렵다.In addition, the strength of the closed cell perlite is excellent and the particle breaking strength is maintained even when expanded to a lower density. However, when the expanded cell perlite is expanded to a lower density, overexpansion of the particles occurs and the crushing of the particles increases, resulting in 40 Kg / ㎥ It is difficult to manufacture and use below.
하지만, 상기의 열린 셀 퍼라이트가 닫힌 셀 퍼라이트 대비 단점을 지니고 있음을 의미하는 것은 아니며, 제조하고자 하는 성형체의 요구 물성과 사용 목적에 따라 선택적으로 사용될 수 있고, 닫힌 셀과 열린 셀 퍼라이트를 혼합하여 사용하는 것 또한 가능하다.However, this does not mean that the open cell perlite has a disadvantage compared to the closed cell perlite, and may be selectively used according to the required physical properties and the intended use of the molded product to be manufactured, and the mixed closed cell and open cell perlite may be used. It is also possible.
닫힌 셀 팽창 퍼라이트에 있어서 열린 셀의 함유비율에 대해서는 특별한 제한은 없지만, 그 열전도율에 대한 기능과 효과를 볼 때, 닫힌 셀의 유효성분이 전체 팽창 퍼라이트 중량 대비 50 중량% 이상 되는 것이 바람직하다. There is no particular limitation on the content of the open cells in the closed cell expanded perlite, but in view of the function and effect on the thermal conductivity, it is preferable that the active ingredient of the closed cell is 50% by weight or more based on the total weight of the expanded perlite.
또한, 닫힌 셀 퍼라이트의 입도 구성이 팽창 퍼라이트 중량 기준으로 400㎛ 초과 입자 15±10 중량%, 400~250㎛입자 40±15 중량%, 250~160㎛입자 20±10 중량%, 160㎛ 미만 입자 30±15 중량% 입도분포가 충전율이 좋았고, 제조된 성형체의 열전도율 및 강도 등이 가장 우수하였다.In addition, the particle size composition of the closed cell perlite is 15 ± 10% by weight of particles larger than 400 μm, 40 ± 15% by weight of 400-250 μm particles, 20 ± 10% by weight of 250-160 μm particles, and particles less than 160 μm based on the weight of expanded perlite. The particle size distribution of 30 ± 15% by weight had a good filling rate, and the thermal conductivity and strength of the prepared molded body were the best.
3단계와 4단계는 그 효과를 극대화 하기 위하여 여러 조건을 부여할 수 있다.Stages 3 and 4 can be given different conditions to maximize their effectiveness.
먼저 3단계는 성형 및 일차 경화를 실시하는 단계로, 기존의 팽창 퍼라이트 단열재의 제조 공법인 단속식 압축 성형시 경화시키는 방법이나, 연속식 압출 성형하는 방법도 가능하다.First, the third step is a step of performing molding and primary curing, a method of curing during intermittent compression molding, which is a manufacturing method of a conventional expanded perlite insulation, or a method of continuous extrusion molding.
제 4단계는 생산성 극대화를 위하여 3단계에서 일차 경화만 실시하고 4단계에서 후경화를 실시할 수 있다.In the fourth step, in order to maximize productivity, only the first curing may be performed in the third step and the post-curing may be performed in the fourth step.
또한, 제 4단계에서 단열재의 고온영역에서의 열안정성을 극대화하기 위하여 후경화시 탄소화, 활성화, 탄화규소화 공정 등의 열처리 공정를 부여할 수 있다.In addition, in the fourth step, in order to maximize thermal stability in the high temperature region of the heat insulating material, heat treatment processes such as carbonization, activation, and silicon carbide may be applied during post-curing.
단열재를 성형 및 일차 경화하는 3단계를 보다 상세히 설명하면, 기존의 액상 바인더를 이용한 단열재의 제조는, 압축 성형에 의한 성형만이 가능하였으나, 분말 경화형 바인더를 사용함으로써, 일반적인 압축 성형도 가능할 뿐만 아니라, 연속식 압출 성형도 가능하다는 이점을 가진다.Referring to the three steps of forming and primary curing the heat insulating material in more detail, the production of the heat insulating material using the conventional liquid binder was possible only by compression molding, by using a powder-curable binder, not only general compression molding is possible This has the advantage that continuous extrusion molding is also possible.
이는, 혼합재 제조 시, 기존의 액상 무기질 바인더를 사용하는 팽창 퍼라이트 혼합재의 경우 입자의 흐름성(여기서 표현하는 흐름성이란 입자와 입자의 마찰력 및 안식각의 영향이 낮아, 위치 이동이 쉽게 이루어짐을 말한다)이 낮아 사용상 제약이 따르는 반면, 분말 경화형 바인더는 흐름성이 우수하여 다양한 공정으로 사용 가능하다는 것이다.This means that when the mixture is manufactured, the flowability of particles in the case of the expanded perlite mixture using the conventional liquid inorganic binder (the flowability expressed here means that the effect of the frictional force and the angle of repose of the particles and particles is low, so that the positional movement is easy). While this is low in use constraints, the powder curable binder is excellent in flowability and can be used in various processes.
액상 바인더는 혼합 시 팽창 퍼라이트 계면과 접착되는데, 이때 바인더의 접착력과 수분에 의해 팽창퍼라이트 입자의 점성을 가짐과 동시에 표면장력이 증가되고, 점성과 표면장력의 증가는 입자간 응집력을 생성시킨다.When the liquid binder is mixed with the expanded perlite interface, the viscosity and the surface tension of the expanded perlite particles are increased by the adhesive force and moisture of the binder, and the viscosity and the surface tension increase to produce cohesion between particles.
상기 응집력의 발생에 따라 흐름성이 감소하여 체밀이 용이하지 않고, 체밀이 용이하지 않은 상태에서 압출 성형하게 되면, 압출 실린더 내부에서 입자의 이송이 원활하지 않으며, 이에 따라 요구하는 형상을 구현하기 어려워지고, 접착 강도가 나빠지는 등의 문제점이 발생한다.When the cohesive force is reduced, the flowability decreases, so that body milling is not easy, and when extrusion is performed in a state in which the body milling is not easy, the transfer of particles in the extrusion cylinder is not smooth, and thus, it is difficult to realize a required shape. Problems such as loss of adhesion strength and adhesion strength.
따라서 액상 바인더와 팽창 퍼라이트의 혼합재의 성형은 요구하는 형상에 따른 성형 몰드에 혼합재를 투입하고 압축 성형을 실시 할 수밖에 없으며, 상기 압축 성형 시에도 체밀이 용이하지 않은 상태에서 압축되므로, 입자 파쇄율 증가, 부위별 밀도 편차 발생 및 공극율 증가에 따라 성형체의 강도 및 경도의 감소와 열전도율의 증가가 발생한다.Therefore, the molding of the mixture of the liquid binder and the expanded perlite has to inject the mixture into the molding mold according to the required shape and perform compression molding. Since the compaction is not easy to compact, the particle crushing rate is increased. As the density deviation of each part and the porosity increase, the strength and hardness of the molded body decrease and the thermal conductivity increases.
뿐만 아니라, 액상 바인더는 부피를 가지고 있지 않고, 다만 팽창 퍼라이트 표면에 코팅된 상태로 유지되므로, 압축성형 시 입자와 입자간의 빈 공극을 메울 수 없어, 접착력을 충분히 발휘하기 위해서는 입자와 입자간 계면이 최대한 접촉될 수 있도록 하여야만 하는데, 이를 위해서는 높은 압축비를 가할 수 밖에 없어 입자의 파쇄가 심해지고, 압축비 상승에 따른 성형체의 밀도 증가로 열전도율은 급격히 증가한다.In addition, since the liquid binder does not have a volume and remains coated on the surface of the expanded perlite, the voids between the particles and the particles cannot be filled during compression molding. In order to achieve maximum contact, this requires a high compression ratio, which leads to severe crushing of the particles, and a rapid increase in thermal conductivity due to an increase in the density of the molded body as the compression ratio increases.
상기의 압축 성형 시 체밀충전을 보완하기 위하여, 혼합재에 진동을 발생시켜 체밀율을 높이기도 하나, 입지간 응집력이 높아, 진동에 따른 체밀은 일정 범위 이상은 이루어지지 않으며, 충분한 체밀을 위해서는 장시간의 진동 공정이 요구되므로, 생산성이 나빠지게 된다.In order to compensate for the filling of the compaction during the compression molding, vibration is generated in the mixed material to increase the compactness ratio, but the cohesion force between the locations is high, and the compactness due to the vibration does not occur over a certain range, Since a vibrating process is required, productivity becomes worse.
반면에, 열경화성 유기계 분말 바인더는 상온에서 분말상으로 존재하며, 일정 온도 이상으로 상승되면 분말상에서 액상으로 변하여 점성을 지니게 되고, 그 이상의 특정온도에서 경화하여 접착력을 발휘하게 된다.On the other hand, the thermosetting organic-based powder binder is present in a powder form at room temperature, and when raised above a predetermined temperature, the thermosetting organic powder binder becomes viscous and becomes viscous, and hardens at a specific temperature or more to exhibit adhesive strength.
따라서, 팽창 퍼라이트와 분말 바인더를 상온에서 혼합하면, 바인더는 수분과 점성이 존재하지 않으므로 퍼라이트는 흐름성이 확보되어, 연속식 압출 실린더 내에서 원활한 혼합재의 이송과 체밀을 유지한 상태로 압출할 수 있으므로, 충분한 접착 강도를 확보할 수 있다.Therefore, when the expanded perlite and the powder binder are mixed at room temperature, the binder does not have moisture and viscosity, so the perlite is secured, and the extruded materials can be extruded while maintaining a smooth conveyance and body density in a continuous extrusion cylinder. Therefore, sufficient adhesive strength can be ensured.
다만, 체밀충전의 효율을 더 높이기 위해 제2단계에서의 혼합재에 진동이나 충격을 주어 체밀충전방법을 더 거친 후에 제3단계를 진행하는 것도 가능하다.However, in order to further increase the efficiency of the filling of the body, the third step may be performed after the method of filling the body of the mixture in the second stage by vibrating or impacting the body.
또한, 분말 바인더는 온도에 따른 용융과 경화 반응이 이루어지므로, 압출 실린더의 부위별 온도 구배를 실시하여 요구되는 형태와 생산속도를 결정할 수 있다는 이점을 가지고 있다. In addition, the powder binder has an advantage that the melting and curing reaction according to the temperature, so that the required shape and production rate can be determined by performing a temperature gradient for each part of the extrusion cylinder.
더불어, 기존과 동일한 압축 성형도 가능하며 기존의 단열재 대비 우수한 물성을 구현할 수 있다. 분말 바인더 사용에 따른 흐름성의 증가와 원활한 체밀은 압축시 균일한 가압을 가할 수 있어, 입자 파쇄율이 감소하고, 부위별 밀도 편차 억제 및 공극율을 최소화하여 성형체의 강도 및 경도의 극대화와 우수한 열전도율을 확보할 수 있으며, 체밀율의 극대화를 위해 진동을 가할 경우에도, 단시간의 진동 조건에서도 체밀이 보다 원활하게 이루어져 생산성의 저하를 억제하면서도 우수한 물성을 확보할 수 있다.In addition, the same compression molding is possible as before, and excellent physical properties can be realized compared to the existing heat insulating material. Increased flowability and smooth body milling due to the use of powder binders can apply uniform pressurization during compression, thereby reducing particle crushing rate, minimizing density variation and minimizing porosity of each part, thereby maximizing the strength and hardness of the molded body and excellent thermal conductivity. In addition, even when the vibration is applied to maximize the body ratio, the body can be smoother even under a short period of vibration conditions, thereby ensuring excellent physical properties while suppressing a decrease in productivity.
뿐만 아니라, 분말 바인더는 자체의 부피를 지니고 있어, 팽창 퍼라이트 입자간 공극에 분말 바인더가 위치함으로써 공극을 메우게 되고, 낮은 압축비에서도 충분한 접착력을 발휘할 수 있고, 수분 함유율이 극히 낮은 분말 바인더의 특성으로 잔존 수분에 의한 열전도율 상승을 해결할 수 있다.In addition, the powder binder has its own volume, so that the powder binder is located in the voids between the expanded perlite particles, thereby filling the voids, exhibiting sufficient adhesion even at a low compression ratio, and having a very low water content. It is possible to solve the increase in the thermal conductivity due to the residual moisture.
또한, 본 3단계의 경화 온도는 80 내지 300 ℃ 범위에서 수행할 수 있으며, 80℃ 이하일 경우 충분한 경화반응이 이루어지기 어렵거나 장시간의 경화 공정이 필요하며, 300℃ 이상일 경우 급격한 경화반응이 이루어짐에 따라 접착 강도가 감소하는 등의 문제가 발생한다.In addition, the curing temperature of the three steps can be carried out in the range of 80 to 300 ℃, if the curing temperature is less than 80 ℃ or hard curing is required for a long time, if the curing temperature is more than 300 ℃ rapid curing is made Therefore, problems such as a decrease in adhesive strength occur.
제 4단계는 생산성 극대화를 위하여 3단계에서 일차 경화만 실시하고 4단계에서 후경화를 실시할 수 있다.In the fourth step, in order to maximize productivity, only the first curing may be performed in the third step and the post-curing may be performed in the fourth step.
또한, 제 4단계에서 단열재의 고온영역에서의 열안정성을 극대화하기 위하여 열처리를 추가로 실시할 수 있다.In addition, in the fourth step, heat treatment may be further performed to maximize thermal stability in the high temperature region of the insulation.
후경화 또는 후경화 및 열처리를 실시하는 4단계에 대하여 보다 상세히 설명하면, 분말 바인더를 이용한 팽창 퍼라이트 단열재의 제조는 생산성의 극대화를 위하여 다양한 형태로 제조 공정을 변화시킬 수 있다.In more detail with respect to the four steps of performing the post-cure or post-cure and heat treatment, the production of expanded perlite insulation using a powder binder can change the manufacturing process in various forms in order to maximize productivity.
우선, 혼합재를 성형 및 경화하는 3단계에서 생산성의 극대화를 위해 압축 또는 연속식 압출 성형 시에 80~300℃의 고온으로 단시간 압축 또는 압출함으로써, 성형체의 표면을 일차 경화하여 형상을 지지하고, 4단계로 80~300℃의 고온으로 후경화를 수행하여 일차 경화된 성형체를 완전 경화시킬 수 있다.First, in order to maximize productivity in the three steps of molding and curing the mixed material, by compression or extrusion for a short time at a high temperature of 80 to 300 ° C. during compression or continuous extrusion, the surface of the molded body is first cured to support the shape. In the step, post-curing may be performed at a high temperature of 80 to 300 ° C. to completely cure the primary cured molded body.
이에 따라, 성형시 충분한 경화를 위하여, 금형이나 압출 실린더 내부에서 장시간 가열 공정이 생략됨에 따른 생산성의 감소를 해결하면서도 우수한 물성을 확보할 수 있다.Accordingly, in order to sufficiently cure during molding, it is possible to secure excellent physical properties while solving a decrease in productivity due to a long heating process being omitted in the mold or the extrusion cylinder.
이는, 본 발명에서 사용되는 열경화성 분말 바인더에 의한 특성으로, 온도 상승에 따른 바인더의 용융과 경화가 단시간에 용이하게 이루어지고, 용융과 경화가 발생하는 특정 온도 범위를 가지고 있어, 제조 공정을 구성할 때 원하는 형태 및 구간으로 용이하게 구성할 수 있으므로, 다양한 형태의 제조 조건으로 조절할 수 있는 것이다.This is a property of the thermosetting powder binder used in the present invention, and the binder is easily melted and cured in a short time according to the temperature rise, and has a specific temperature range in which melting and curing occur, thereby constituting a manufacturing process. When it can be easily configured in the desired form and section, it can be adjusted to various types of manufacturing conditions.
또한, 제 4단계에서 후경화 공정과 더불어 열처리 공정을 추가하여 경화형 분말 바인더를 이용한 팽창 퍼라이트 단열재의 고온에서의 열안정성의 극대화와 기계적 물성의 향상 및 열전도율 감소를 확보할 수 있으며, 혼합재 제조 시 무기보강제를 추가할 경우 보다 높은 내열성과 기계적 물성을 확보할 수 있다. 열처리에는 대기하에서의 탄소화, 무산소하에서의 탄소화, 활성화 및 탄화규소화공정을 들 수 있다. 이때, 후경화만 진행할 때는 80℃에서 300℃에서 실시하나, 열처리를 실시할 경우는 80℃에서 1100℃의 온도 범위로 상승시키면서 실시한다. 낮은 온도부터 높은 온도로 실시하는 이유는, 높은 온도에 바로 영향을 받을 경우 열변형이 발생될수 있고, 사용하는 유기 분말형 바인더의 특성에 따라, 그 온도 분포가 달라지기 때문이다.In addition, in the fourth step, a heat treatment process may be added in addition to the post-curing process to maximize thermal stability at high temperature, improve mechanical properties, and reduce thermal conductivity of the expanded perlite insulation material using the curable powder binder. Adding reinforcing agents can achieve higher heat resistance and mechanical properties. Examples of the heat treatment include carbonization under the atmosphere, carbonization under anoxic, activation and silicon carbide. At this time, only the post-curing is carried out at 80 ℃ to 300 ℃, while the heat treatment is carried out while raising the temperature range of 80 ℃ to 1100 ℃. The reason for the low temperature to the high temperature is that heat deformation may occur when directly affected by the high temperature, and the temperature distribution varies depending on the characteristics of the organic powder binder used.
후경화 조건은 가경화된 성형체를 다시 정상적인 경화가 진행되도록 하기 위해 경화조건인 80℃부터 실시 가능하며, 또한 최대 경화구간인 300℃까지 진행한다. 이때 열처리 조건까지 진행시에 1100℃까지 가열한다. 1100℃를 초과할 경우는 과다한 열처리에 변형과 강도 저하가 발생될수 있다. 따라서 후경화만 진행할 경우는 80℃에서 300℃까지, 후경화와 열처리를 같이 실시할 경우는 80℃에서 1100℃까지 상승 가능하다. 다만, 열처리 온도는 최대 1100℃까지 가능한 것이지, 실제 원하는 물성에 따라 1100℃이하의 온도로 조정하여 사용한다. 또한 온도의 상승 속도는 공정에 무리가 가지 않는 범위내에서 실시한다.Post-curing conditions can be carried out from the curing conditions of 80 ℃ in order to allow the normal hardening of the temporarily cured molded body to proceed again, and also proceeds to the maximum curing section of 300 ℃. At this time, it heats up to 1100 degreeC at the time of advancing to heat processing conditions. If the temperature exceeds 1100 ° C., excessive heat treatment may cause deformation and decrease in strength. Therefore, when only the post-cure proceeds from 80 ℃ to 300 ℃, if the post-hardening and heat treatment are carried out together can rise from 80 ℃ to 1100 ℃. However, the heat treatment temperature is possible up to 1100 ℃, and it is used to adjust the temperature below 1100 ℃ according to the actual desired physical properties. In addition, the rate of temperature rise is carried out within a range that does not overdo the process.
유기계 바인더, 특히 열경화성 바인더는 무기계 바인더에 비해 우수한 접착력을 확보할 수 있어, 사용량을 감소하더라도 낮은 밀도와 우수한 기계적 물성 및 열전도율을 확보할 수 있는 장점을 가진 반면, 온도 상승에 따라 유기물의 분해가 발생되어 제조된 성형체의 기계적 물성이 감소하고 균열과 수축이 발생하는 단점을 지니고 있다.Organic binders, in particular thermosetting binders, can secure superior adhesion compared to inorganic binders, and have the advantage of ensuring low density, excellent mechanical properties and thermal conductivity even when the amount of use is reduced, while decomposition of organic materials occurs as the temperature rises. The mechanical properties of the manufactured molded article is reduced and cracks and shrinkage occur.
본 발명에서 언급한 분말형 유기계 바인더의 대표적인 예로 노볼락 페놀 수지를 들 수 있는데, 완전 경화된 노볼락 페놀 경화물은 다른 유기계 바인더에 비해 높은 열안정성을 확보할 수 있으나, 이 또한 350℃ 이상의 고온에서는 열안정성을 확보하기 어렵다.A representative example of the powdered organic binder mentioned in the present invention may be a novolak phenol resin, and the fully cured novolak phenol cured product can secure high thermal stability compared to other organic binders, but this is also a high temperature of 350 ° C or higher. It is difficult to secure thermal stability.
특히, 산업용 고온 단열재의 경우, 200℃ 이상의 온도 조건에서 사용하는 경우가 많아, 열경화성 바인더로 제조된 단열재의 경우, 장기적인 열안정성의 감소로 단열재의 물성이 급격히 나빠지거나, 균열이 발생할 위험을 지니고 있다.In particular, industrial high-temperature insulation materials are often used at a temperature of 200 ℃ or more, in the case of the insulation material made of a thermosetting binder, there is a risk that the physical properties of the insulation material is sharply worsened or cracks due to the long-term thermal stability is reduced. .
상기의 고온 열안정성의 문제점은 분말형 열경화성 수지를 고온으로 열처리하여 수지의 가교구조가 강한 탄소-탄소 구조로의 치환되어 높은 열안정성을 확보하게 되는 즉, 탄소화를 형성함으로써 해결할 수 있다.The problem of the high temperature thermal stability can be solved by heat-treating the powder-type thermosetting resin to a high temperature to replace the resin with a strong carbon-carbon structure to secure high thermal stability, that is, to form carbonization.
본 탄소화 공정은 산소의 존재 하에서 실시하는 대기조건에서의 탄소화 공정과, 산소 유입을 차단하여 실시하는 무산소 조건에서의 탄소화 공정으로 나눌 수 있다.This carbonization process can be divided into a carbonization process in atmospheric conditions performed in the presence of oxygen, and a carbonization process in anoxic conditions carried out by blocking oxygen inflow.
산소조건에서 탄소화를 진행하는 경우는 산소의 제거를 위한 추가적인 설비 없이도 탄소화를 진행할 수 있다는 장점을 가지나, 탄화 가능 온도가 80~400℃ 범위 이내로, 400℃를 초과할 경우, 사슬구조의 팽창과 발열 등에 따라 성형체의 균열 등이 발생할 수 있다는 단점이 있는 반면, 무산소 조건에서의 탄소화는 산소를 제거하기는 위한 추가적인 설비가 있어야 하나, 탄화 가능 온도가 80~1100℃ 범위로, 고온에서 단시간에 탄소화를 수행할 수 있다는 장점을 지닌다.In case of carbonization under oxygen condition, carbonization can proceed without additional equipment for removing oxygen.However, when carbonization temperature is within the range of 80 ~ 400 ℃ and exceeds 400 ℃, expansion of chain structure On the other hand, the cracking of the molded product may occur due to overheating. On the other hand, carbonization under anoxic conditions requires additional facilities to remove oxygen, but the carbonization temperature is in the range of 80 to 1100 ° C, and is short for high temperature. It has the advantage of being able to carry out carbonization.
그러나 대기 조건에서 고온의 탄소화 시, 적정한 압력을 확보하기 어려운 경우, 탄소-탄소 결합구조의 생성과정에서 유기물의 열분해가 이루어지고 이에 따라 기계적 강도의 감소가 발생할 위험이 있는데, 팽창 퍼라이트로 제조된 단열재는 고압을 가하게 되면, 단열효율을 나타내는 셀(cell)의 파괴가 발생하므로, 충분한 압력을 가해줄 수 없는 문제점이 있다.However, when high temperature carbonization is difficult in the atmospheric conditions, it is difficult to secure an appropriate pressure, there is a risk that thermal decomposition of organic matter occurs in the process of forming a carbon-carbon bond structure, thereby reducing the mechanical strength. When the heat insulating material is applied with high pressure, breakage of a cell showing heat insulating efficiency occurs, and thus there is a problem in that sufficient pressure cannot be applied.
이러한 대지 조건에서 탄소화 시의 문제점을 해결하기 위해 고온에서 용융 가능한 무기계 보강제를 혼용할 수 있다.In order to solve the problem of carbonization under these earth conditions, an inorganic reinforcing agent that can be melted at a high temperature may be mixed.
붕산과 같은 무기물은 상온에서 분말상으로 존재하며, 온도의 상승에 따라 용융되어 액상의 형태를 지니며, 보다 높은 온도에서 고화되어 격막을 형성한다.Inorganic substances such as boric acid are present in powder form at room temperature, and melt with increasing temperature to form a liquid phase, and solidify at a higher temperature to form a diaphragm.
따라서, 팽창 퍼라이트와 분말형 유기계 바인더 그리고 용융 가능한 무기계 보강제를 혼합하여 성형함으로써, 일차적으로 유기계 바인더에 의한 접착력을 확보하고, 대기조건에서 고온의 열처리를 통해 유기계 바인더의 탄소-탄소 결합을 진행함과 동시에 무기계 보강제가 용융 과정을 거쳐 고화됨으로써, 무기계 보강제가 탄소-탄소 결합 구조를 이루는 유기계 경화물 표면에 격막을 형성하게 된다.Therefore, by mixing and molding the expanded perlite, the powdered organic binder and the meltable inorganic reinforcing agent, the adhesive force by the organic binder is primarily secured, and the carbon-carbon bond of the organic binder is progressed through high temperature heat treatment under atmospheric conditions. At the same time, the inorganic reinforcing agent is solidified through the melting process, so that the inorganic reinforcing agent forms a diaphragm on the surface of the organic cured product forming the carbon-carbon bond structure.
이에 따라 내부는 탄소-탄소 결합 구조를 지닌 유기 경화물, 외부는 열안정성이 높은 무기계 격막을 가진 복합구조를 형성하게 되어, 탄소-탄소 결합형태로의 구조 변화 시 발생할 수 있는 열분해를 방지함으로써 고온 열안정성이 증가되고, 탄소-탄소 결합 및 무기물의 용융 결합의 이중 결합을 통해 접착강도를 보강하여 전체적인 기계적 물성을 향상시킬 수 있다.As a result, an organic cured product having a carbon-carbon bond structure inside and a composite structure having an inorganic diaphragm having high thermal stability outside forms a high temperature by preventing thermal decomposition that may occur when the structure is changed to a carbon-carbon bond form. Thermal stability is increased, and through the double bonds of carbon-carbon bonds and inorganic melt bonds to enhance the adhesive strength can improve the overall mechanical properties.
상기 무기 보강제는 전체 중량% 대비 5~35 중량%, 바람직하게는 10~30 중량%를 혼합할 수 있으며, 5 중량% 이하일 경우 열분해의 감소와 강도의 보강을 나타내기 어렵고, 35 중량% 이상일 경우 보강제로써의 역할은 충분히 수행할 수 있으나, 열전도율이 급격히 증가하는 문제가 발생한다.The inorganic reinforcing agent may be mixed 5 to 35% by weight, preferably 10 to 30% by weight based on the total weight%, less than 5% by weight is difficult to show the reduction of thermal decomposition and reinforcement of strength, when more than 35% by weight The role as a reinforcing agent can play a sufficient role, but a problem arises in that the thermal conductivity increases rapidly.
본 발명에서 무기 보강제는 붕산을 사용할 수 있으나, 특징적으로 한정하는 것은 아니며, 인 또는 붕소화합물을 사용할 수 있으며, 인산 암모늄, 인산 알루미늄, 인산 아연, 붕소의 산 화합물인 붕산 등 고온에 따른 격막을 형성할 수 있는 인 또는 붕소 화합물을 모두 포함할 수 있다. 무기 보강제는 각각 사용하거나 혼용하여 사용할 수 있다.In the present invention, the inorganic reinforcing agent may use boric acid, but is not particularly limited, and may use phosphorus or a boron compound, and forms a diaphragm according to high temperature such as ammonium phosphate, aluminum phosphate, zinc phosphate, and boric acid which is an acid compound of boron. It may include all of the phosphorus or boron compound. Inorganic reinforcing agents may be used individually or in combination.
더불어, 무산소 조건에서 탄소화를 수행함으로써, 열경화성 수지의 가교구조의 산화를 최대한 방지하고, 성형체의 급격한 온도 증가에 따른 기계적 물성의 감소를 억제함과 동시에 입자 기공의 폐쇄 현상을 막아 비표면적이 크게 증가된 탄소체를 형성할 수 있다.In addition, by performing carbonization under anoxic conditions, the crosslinked structure of the thermosetting resin is prevented to the maximum, the reduction of mechanical properties due to the rapid temperature increase of the molded body is prevented, and the specific surface area is prevented by preventing the closing of particle pores. It is possible to form increased carbon bodies.
일반적으로 유기 경화물의 가교구조는 열처리를 통해 탄소-탄소 구조의 형성으로 강한 결합력을 확보하지만, 산소 유입에 따라 가교구조를 형성하는 탄소체 즉, 메틸(CH2)기의 일부는 회화(灰化)가 발생하여 열분해가 이루어져 탄화수율(전체 유기 경화물 중량 대비 탄소화 정도를 나타내는 수율을 의미함)은 일정 수준 이상 확보되지 않고, 탄소화에 의해 생성되는 미세 셀(cell) 또한 열분해를 통해 붕괴됨으로써, 비표면적의 극대화를 이루기 어렵다.In general, the cross-linked structure of the organic cured product secures a strong bonding force by forming a carbon-carbon structure through heat treatment, but a part of the carbon body, that is, the methyl (CH 2 ) group, which forms the cross-linked structure with oxygen inflow is incinerated. Carbonization yield (meaning yield indicating the degree of carbonization relative to the total weight of organic cured product) is not secured to a certain level, and fine cells generated by carbonization are also collapsed through pyrolysis. As a result, it is difficult to maximize the specific surface area.
이에 무산소 조건에서 열처리 공정을 수햄함으로써, 탄소-탄소 구조의 형성과정에서 산화에 따른 열분해를 억제하여 탄화수율이 증가하여 결합력의 극대화를 이룰 수 있고, 탄소화에 의해 생성된 미세 셀(cell)의 붕괴를 억제하여 성형체 내부 비표면적의 극대화를 이룰 수 있다.Therefore, by heat treatment process under anoxic conditions, it is possible to suppress the thermal decomposition due to oxidation in the process of forming the carbon-carbon structure to increase the carbonization yield to maximize the bonding force, the fine cell produced by carbonization By suppressing collapse, maximization of the specific surface area within the molded body can be achieved.
또한, 고온의 열처리를 통한 탄소화 과정에서 탄소체의 표면을 침식시킴으로써, 미세 다공성 구조를 증가시켜 비표면적을 극도로 증가시키는 활성화 공정을 수행할 수 있다. 상기 공정은 600 내지 1100℃ 범위의 열처리 공정에서 스팀의 유입이나, 불활성 기체인 이산화탄소를 탄소화 과정 후에 유입시켜 이루어진다.In addition, by eroding the surface of the carbon body in the carbonization process through a high temperature heat treatment, it is possible to perform an activation process to increase the microporous structure to extremely increase the specific surface area. The process is carried out by inflow of steam in the heat treatment process in the range of 600 to 1100 ℃, or inert gas carbon dioxide after the carbonization process.
이와 더불어, 불활성 기체의 조건과 1000 내지 1100℃의 고온 조건으로 탄소화되는 성형체에 규소 또는 규소를 함유하는 가스와 반응시킴으로써 탄화규소성형체를 형성할 수 있으며, 상기와 같이 형성된 탄화규소 구조는 보다 높은 기계적 물성과 열안정성 및 낮은 열전도율을 확보할 수 있다.In addition, the silicon carbide molded body can be formed by reacting silicon or silicon-containing gas in a carbonized molded body under conditions of an inert gas and a high temperature of 1000 to 1100 ° C., and the silicon carbide structure formed as described above has higher Mechanical properties, thermal stability and low thermal conductivity can be obtained.
상기에서 설명한 팽창 퍼라이트와 유기 경화형 바인더에 의해 제조되는 단열재의 발수성 향상 및 흡수율 감소, 흐름성 등을 향상시키기 위하여 팽창 퍼라이트 입자 표면을 실란 모노머 계통을 코팅할 수 있다.The silane monomer system may be coated on the surface of the expanded perlite particles in order to improve the water repellency, the water absorption rate, the flowability, and the like of the insulation prepared by the expanded perlite and the organic curable binder as described above.
실란계 모노머는 말단에 퍼라이트와 화학적 결합을 유도하는 알콕시를 갖고 꼬리는 발수 특성을 나타내는 알킬기가 있어서, 퍼라이트 표면 전체에서 나뭇가지나 털복숭이처럼 외부로 뻗어 나와 하나의 층을 형성하여, 표면의 마찰 저항을 낮추게 됨으로써 흐름성이 향상되어 압축성형 공정에 투입 시 체밀충전이 보다 잘 되고, 발수특성을 영구적으로 갖는 효과를 얻는다.Silane-based monomers have alkoxy groups that induce a chemical bond with the ferrite at the end and an alkyl group having a water repellent property. The silane monomer extends to the outside like a twig or a hairball on the entire surface of the ferrite to form a layer, thereby improving the frictional resistance of the surface. By lowering the flowability, the fluidity is better when it is added to the compression molding process, and the effect of permanently repelling the water is obtained.
본 발명에서 발수성능을 나타내는 목적인 표면 코팅에 의한 발수제로 유기 실란 뿐 아니라 강도를 보강할 수 있는 티타네이트계, 지르코네이트계를 사용할 수 있는데, 보다 상세하게는 이소옥틸트리메톡시실란 (i-octyltrimethoxysilane), 메틸트리메톡시실란(Methyltrimethoxysilane), 옥틸트리에톡시실란(Octyltriethoxysilane), 3-아미노프로필트리에톡시실란(3-aminopropyltriethoxysilane), 3-글리시딜옥시프로필트리메톡시실란 (3-glycidyloxytriethoxysilane), 3-메타크릴옥시프로필트리메톡시실란(3-methacryloxypropyltrimethoxysilane), 비닐트리에톡시실란(vinyltriethoxysilane), 비닐트리메톡시실란 (vinyltrimethoxysilane), 비닐트리(2-메톡시-에톡시)실란 [vinyltri(2-methoxy-ethoxy)silane 등을 포함하는 유기실란계 커플링제와 네오펜틸(디알릴)옥시, 트리네오데카노닐티타네이트[neopentyl(diallyl)oxy, trineodecanotitanate], 네오페닐(디알릴)옥시,트릴(도데실)벤젠-술포닐티타네이트[neopentyl(diallyl)oxy, tri(dodecyl)benzene-sulfonyl titanate],tri(dioctyl)phosphate titanate], 네오페닐(디알릴)옥시,트리(디옥틸)피로-포스페이토티나에니트[neopentyl(diallyl)oxy,tri(dioctyl)pyro-phsophato titanate], 네오펜틸디알릴옥시,트리(N-에틸렌디아미노)에틸티타네이트[neopentyl((diallyl)oxy, tri(N-ethylenediamino)ethyl titanate], 네오펜틸디알릴옥시,트리(m-아미노)페닐티타네이트[neopentyl(diallyl)oxy,tri(m-amino)pentyl titanate] 등을 포함하는 티타네이트계 커플링제와 네오펜틸(디알릴)옥시,트리네오데카노닐지르코네이트[neopentyl(diallyl)oxy,trineodecano zirconate], 네오페닐(디알릴)옥시,트릴(도데실)벤젠-술포닐지르코네이트[neopentyl(diallyl)oxy,tri(dodecyl)benzene-sulfonyl zirconate], 네오페닐(디알릴)옥시,트리(디옥틸)포스페이토지로코네이트 [neopentyl(diallyl)oxy,tri(dioctyl)phosphate ziroconate], 네오페닐(디알릴)옥시,트리(디옥틸)피로-포스페이토지로코네이트[neopentyl(diallyl)oxy,tri(dioctyl)pyro-phosphato ziroconate], 네오펜틸디알릴옥시, 트리(디옥틸)피로-포스페이토지로코네이트[neopentyl(diallyl)oxy,tri(dioctyl)pyro-phosphato zirconate], 네오펜틸디알릴옥시,트리(N-에틸렌디아미노)에틸지로코네이트 [neopentyl(diallyl)oxy,tri(N-ethylenediamino)ethyl zirconate], 네오펜틸디알릴옥시,트리(m-아미노)페닐지르코네이트[neopentyl(diallyl)oxy,tri(m-amino)phenyl zirconate] 등을 포함하는 지로코네이트계 커플링제등을 포함한다.In the present invention, as a water repellent agent by surface coating for the purpose of showing water repellency, titanate-based or zirconate-based reinforcing strength may be used as well as organic silane, and more specifically, isooctyltrimethoxysilane (i-octyltrimethoxysilane ), Methyltrimethoxysilane, octyltriethoxysilane, 3-aminopropyltriethoxysilane, 3-glycidyloxytriethoxysilane , 3-methacryloxypropyltrimethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, vinyltri (2-methoxy-ethoxy) silane [vinyltri ( Organosilane coupling agents including 2-methoxy-ethoxy) silane and neopentyl (diallyl) oxy, trineodecanoyl titanate [neopentyl (diallyl) oxy, trineodecanotitana te], neophenyl (diallyl) oxy, tril (dodecyl) benzene-sulfonyl titanate [neopentyl (diallyl) oxy, tri (dodecyl) benzene-sulfonyl titanate], tri (dioctyl) phosphate titanate], neophenyl ( Diallyl) oxy, tri (dioctyl) pyro-phosphatotinaniate [neopentyl (diallyl) oxy, tri (dioctyl) pyro-phsophato titanate], neopentyldiallyloxy, tri (N-ethylenediamino) ethyl Titanate [neopentyl ((diallyl) oxy, tri (N-ethylenediamino) ethyl titanate], neopentyldiallyloxy, tri (m-amino) phenyl titanate [neopentyl (diallyl) oxy, tri (m-amino) pentyl titanate Titanate-based coupling agents including neopentyl (diallyl) oxy, trineodecanonyl zirconate [neopentyl (diallyl) oxy, trineodecano zirconate], neophenyl (diallyl) oxy, tril (dodecyl) ) Neopentyl (diallyl) oxy, tri (dodecyl) benzene-sulfonyl zirconate], neophenyl (diallyl) oxy, tri (dioctyl) phosphatojiroconate [neopentyl ( diallyl) oxy, tri (dioctyl) phosphate ziroconate], neophenyl (diallyl) oxy, tri (dioctyl) pyro-phosphatojiroconate [neopentyl (diallyl) oxy, tri (dioctyl) pyro-phosphato ziroconate], neo Pentyldiallyloxy, tri (dioctyl) pyro-phosphatojiroconate [neopentyl (diallyl) oxy, tri (dioctyl) pyro-phosphato zirconate], neopentyldiallyloxy, tri (N-ethylenediamino) ethyljiro Neopentyl (diallyl) oxy, tri (N-ethylenediamino) ethyl zirconate], neopentyldiallyloxy, tri (m-amino) phenylzirconate [neopentyl (diallyl) oxy, tri (m-amino) phenyl zirconate ] A giroconate coupling agent etc. containing these etc. are included.
상기 커플링제는 액상의 형태를 지니며, 이 액상을 팽창 퍼라이트 표면에 분무한 후 가열 또는 건조함으로써 화학적 반응을 통하여 팽창 퍼라이트 표면과 결합되어 코팅막을 형성함을 특징으로 한다.The coupling agent is in the form of a liquid phase, and the liquid is sprayed onto the expanded perlite surface, and then heated or dried to combine with the expanded perlite surface through a chemical reaction to form a coating film.
본 발명에서 팽창 퍼라이트와 유기 경화형 분말 바인더를 혼합하여 단열재를 제조함에 있어, 성형체의 발수성의 향상 및 흡수율의 감소를 위하여 성형 전에 분말형의 실리콘계 발수제를 혼합하여 성형할 수 있다.In the present invention, in the production of the insulating material by mixing the expanded perlite and the organic curable powder binder, the powder-type silicone-based water repellent may be mixed and molded before molding in order to improve the water repellency of the molded body and reduce the water absorption.
분말형 발수제는 상온에서 분말상으로 존재하여, 압축전에 팽창 퍼라이트 입자간 체밀충전을 원활히 수행할 수 있으며, 승온에 따른 유기 경화형 바인더의 용융 시 분말형 발수제도 동시에 용융되어 유기 바인더의 흐름성과 접착성을 향상시키고, 제조된 성형체의 발수성 보강하고 흡수율을 감소시킨다.The powdered water repellent is present in powder form at room temperature, so that it is possible to smoothly carry out the filling of the expanded perlite particles before compression, and the powdered water repellent is also melted at the same time when the organic curable binder is melted according to the elevated temperature. Improves, reinforces the water repellency of the formed molded body and reduces the water absorption.
또한, 팽창 퍼라이트 단열재의 성형 후 단열재 표면에 액상의 발수제를 도포하거나 성형체를 발수제 용액에 침지시켜 추가적인 발수성과 흡수율 감소를 확보할 수 있다. 액상 발수제는 상온 건조를 통해 발수성을 확보하는 형태나, 추가적인 건조를 통해 보다 높은 발수성을 확보하는 형태의 발수제를 각각 사용하거나 혼용하여 사용할 수 있다.In addition, after molding of the expanded perlite insulation material, a liquid water repellent may be applied to the surface of the heat insulating material or the molded body may be immersed in the water repellent solution to secure additional water repellency and water absorption. The liquid water repellent may be used in combination with the water repellent in the form of securing water repellency through drying at room temperature, or in the form of securing a higher water repellency through additional drying.
본 발명에서 팽창 퍼라이트 단열재의 성형성, 휨강도, 시공성 등을 보강하기 위해서는 길이가 5 ~ 30mm 인 보강섬유를 포함한다. 보강섬유는 무기질계 섬유나 유기질계 섬유를 각각 사용하거나 혼용하여 사용한다.In order to reinforce the formability, bending strength, workability, etc. of the expanded perlite insulation in the present invention includes a reinforcing fiber having a length of 5 ~ 30mm. Reinforcing fibers are used in combination with inorganic fibers or organic fibers, respectively.
또한, 강도나 열전도율 추가적으로 낮추기 위한 다른 종류의 보강제를 사용할 수 있다.In addition, other types of reinforcing agents may be used to further lower the strength or thermal conductivity.
강도를 보강하기 위해 50㎛ 미만의 흄드실리카나, 에어로겔 및 화이트카본 등을 사용할 수 있는데, 이는 열전도율이 우수한 나노미터 크기의 초미립 셀(cell)로 형성되어 있어, 팽창 퍼라이트와 혼합 시 입자간 틈을 메워 성형 압축률을 줄이더라도 치밀한 성형상태를 갖게 되어 강도가 향상되고, 낮은 열전도율을 확보할 수 있다.To reinforce the strength, fumed silica of less than 50 μm, aerogels, and white carbon can be used, which are formed of nanometer-sized ultrafine cells with excellent thermal conductivity, and when mixed with expanded perlite, Even if the gap is filled to reduce the molding compression ratio, it has a compact molding state, thereby improving the strength and securing a low thermal conductivity.
또한, 추가적으로 열전도율을 낮추기 위해 복사열 차단제를 사용할 수 있다.In addition, a radiation shield may be used to further lower the thermal conductivity.
이는 팽창 퍼라이트의 경우 고온으로 갈수록 복사의 영향이 커지고, 그 복사에 대한 영향을 차단하는데 한계가 있어, 추가적으로 복사를 차단하는 물질을 첨가함으로써, 열전도율을 더욱 낮출 수 있다.This is because in the case of expanded perlite, the effect of radiation increases as the temperature gets higher, and there is a limit to blocking the effect on the radiation. Further, by adding a material that blocks the radiation, the thermal conductivity can be further lowered.
특히 이는 고온 영역에서 더 큰 효과를 본다.In particular it sees a greater effect in the high temperature region.
본 발명에서 유기 바인더에 의한 경화구조를 가진 팽창 퍼라이트 단열재를 탄소화 또는 활성화 함으로써 제조되는 성형체는 퍼라이트의 셀(cell)과 탄소화된 미세 셀(cell)을 동시에 지닌 다중 복합 셀(cell)구조의 결합체를 이룸으로써, 낮은 열전도율과 높은 비표면적을 요구하는 다양한 용도로 적용될 수 있으며, 특히 보온재나 진공 단열재의 심재로 사용될 수 있다.In the present invention, the molded product produced by carbonizing or activating the expanded perlite insulation having a hardening structure by an organic binder has a cell structure of a multiple cell structure having both a cell of perlite and a carbonized fine cell. By forming a binder, it can be applied to various applications requiring low thermal conductivity and high specific surface area, and in particular, can be used as a core material of a thermal insulation material or a vacuum insulation material.
진공 단열재(Vacuum Insulation Panel)는 밀폐형으로 제작된 패널에 미세기공 절연물질(Microporous insulation material)을 내부 심재로 하고, 내부를 진공 처리하여 전도와 대류에 의한 열전달을 제거함으로써, 극히 낮은 열전도율(0.005 W/mK)을 가지는 단열재를 말한다.Vacuum Insulation Panel has a microporous insulation material as an inner core material in a panel made of a closed type, and vacuums the inside to remove heat transfer by conduction and convection, and thus extremely low thermal conductivity (0.005 W). / mK).
이와 같은 진공 단열재는 극도로 낮은 열전도율에 기인하여, 건축물 단열재, 냉장고, 특소포장 용기 등에 적용되어 에너지 절감 및 녹색성장 제품으로 각광받고 있으며, 에너지의 소모를 최소화 함을 목적으로 하는 패시브 하우스(Passive house)설계에도 필수적인 단열재로 유럽 및 미국 등의 선진국에서는 이미 적용되어 상용화 되고 있다.Such vacuum insulation materials are applied to building insulation materials, refrigerators, special packaging containers, etc. due to their extremely low thermal conductivity, and are attracting attention as energy saving and green growth products. Passive house aims to minimize energy consumption. As an insulator necessary for design, it has already been applied and commercialized in developed countries such as Europe and the United States.
진공 단열재의 성능, 즉 낮은 열전도율을 결정하는 것은 내부 심재(Core material)가 관건이며, 현재 무기질 섬유상 물질이 대표적인 진공 단열재의 심재로 사용되고 있는데, 이는 무기질 섬유의 다중 배향 및 다층 접착에 따라 생성된 매트의 형태로 높은 비표면적을 가지고 있으며, 충격에 의한 파괴 위험이 낮아 우수한 열전도율의 확보와 사용상 안정성 확보가 용이하기 때문이다.Determining the performance of a vacuum insulator, i.e. low thermal conductivity, is the key to the core material, and inorganic fibrous materials are currently used as the core material of the vacuum insulator, which is a mat produced by the multi-orientation and multilayer adhesion of inorganic fibers. It has a high specific surface area in the form of, and it is easy to secure excellent thermal conductivity and stability in use due to low risk of destruction by impact.
그러나 무기질 섬유상 물질의 진공 단열재는 부피가 변하기 쉽게 때문에, 시간 경과에 따라 부피가 변하면 진공이 깨져 진공도의 감소가 일어날 가능성이 높고, 이에 따라 열전도율은 급격히 증가한다. However, since the vacuum insulating material of the inorganic fibrous material is easily changed in volume, if the volume changes over time, there is a high possibility that the vacuum is broken and a decrease in the degree of vacuum occurs, and thus the thermal conductivity rapidly increases.
이와 더불어, 일반 팽창 퍼라이트를 사용 시, 충전된 팽창 퍼라이트의 침하가 발생하고, 부피 변화에 의해 진공도가 낮아져 열전도율이 급격하게 나빠지는 문제점을 해소하기 위해, 분쇄한 팽창 퍼라이트를 내부에 충전하고 밀폐시킨 후 진공 상태를 형성하여 진공 단열재를 제조하는 기술도 공개되어 있으나, 이는 미세한 입자로 인해 진공 공정의 작업효율이 떨어지고, 흄드 실리카 등에 비해 상대적으로 열전도율이 저하된다.In addition, when using the general expansion perlite, the settlement of the charged expansion perlite occurs, the vacuum degree is lowered by the volume change, so as to solve the problem that the thermal conductivity sharply worsens, the crushed expansion perlite is filled and sealed inside Thereafter, a technique of manufacturing a vacuum insulator by forming a vacuum state is also disclosed. However, since the fine particles reduce work efficiency of the vacuum process, the thermal conductivity is relatively lower than that of fumed silica.
반면, 본 발명에 의해 제조한 탄소화된 팽창 퍼라이트 단열재를 진공 단열재의 내부 심재로 사용할 경우, 팽창 퍼라이트의 셀(cell)과 탄소화와 활성화에 의해 생성된 열린 형태의 초미세 셀(cell)의 다중복합구조를 가져 높은 비표면적과 독립된 셀을 가진 기계적 강도가 높은 성형체를 확보할 수 있어, 추가적인 부피 변화를 막아 진공도의 감소를 억제하고, 높은 비표면적과 독립된 셀의 복합구조에 따라 낮은 진공도에서도 우수한 열전도율을 가질 수 있다.On the other hand, when the carbonized expanded perlite insulation prepared according to the present invention is used as the inner core of the vacuum insulation, the cells of the expanded perlite and the open ultrafine cells produced by carbonization and activation are used. It has a multi-composite structure to obtain a high mechanical strength molded body with a high specific surface area and independent cells, which prevents further volume change, reducing the vacuum degree, and even at low vacuum levels due to the high specific surface area and independent cell structure. It can have excellent thermal conductivity.
상기 언급한 내용을 근거로 보다 더 자세히 설명하기 위해, 아래와 같은 실시예와 실험예를 통해 상세히 설명하나, 이들이 본 발명의 범위를 제한하는 것은 아니다.In order to explain in more detail based on the above-mentioned contents, it will be described in detail through the following Examples and Experimental Examples, but these do not limit the scope of the present invention.
<실시예 1> 본 발명의 팽창 퍼라이트와 유기 경화형 분말 바인더를 이용한 단열재 1 제조Example 1 Preparation of Insulation Material 1 Using Expanded Perlite and Organic Curable Powder Binder of the Present Invention
퍼라이트 정석을 사용하여, 밀도 30Kg/㎥이고, 팽창 퍼라이트 전체 중량을 기준으로 400㎛ 초과 입자- 15중량%, 400~250㎛ 입자- 40중량%, 250~160㎛ 입자- 20중량%, 160㎛미만 입자- 30중량%로 입도 분포 되고, 닫힌 셀의 비율이 전체 중량 대비 70 중량%를 갖는 팽창 퍼라이트를 제조하였다.Density 30 Kg / m 3 using perlite crystallization, based on the total weight of the expanded perlite, particles larger than 400 μm-15 wt%, 400 to 250 μm particles-40 wt%, 250 to 160 μm particles-20 wt%, 160 μm Expanded perlite was prepared having a particle size distribution of less than 30% by weight and a closed cell proportion of 70% by weight.
상기와 같이 제조된 닫힌 셀 팽창 퍼라이트 1000g에 노볼락 페놀 분말을 팽창 퍼라이트 중량 대비 100중량%, 무기질 섬유를 팽창 퍼라이트 중량대비 1.5 중량%, 실리콘계 분말 발수제를 팽창 퍼라이트 중량 대비 0.5 중량%를 넣고 혼합하여 혼합재를 제조하였다.100 g of the novolak phenolic powder is expanded to 100% by weight of the expanded perlite, 1.5% by weight to the weight of the expanded perlite, and 0.5% by weight of the silicone-based water repellent is added to the weight of the expanded perlite into 1000 g of the closed cell expanded perlite prepared as described above. The mixture was prepared.
상기 제조된 혼합재의 밀도는 65Kg/㎥이고, 혼합재 527g을 초기 부피의 약 1.8배 압축하여 가로X세로X높이 300X300X50mm (부피 4.5L) 크기로 성형하였다. (여기서 압축비는 인위적으로 조정한 것이 아니라, 상기 혼합량을 200℃ 가열된 성형몰드에 투입했을 때 벌크상태 부피를 기준으로 성형체 4.5L 부피로 제조시 발생하는 압축비로, 이하 실시예 및 비교예도 동일함)The density of the prepared mixture was 65Kg / ㎥, 527g of the mixture was compressed to about 1.8 times the initial volume was molded into a size X horizontal X height X height 300X300X50mm (volume 4.5L). Here, the compression ratio is not artificially adjusted, but is a compression ratio that is generated when the mixture is put into a molded mold heated to 200 ° C. in a volume of 4.5 L based on the bulk volume, and the following Examples and Comparative Examples are also the same. )
이때, 압축된 성형체를 200℃에서 1분간 가열하여 1차 경화한 후 탈형하여, 탈형된 성형체를 200℃ 열풍 건조기에서 1시간 후경화를 진행시켜 밀도 115 ± 5 Kg/㎥를 갖는 팽창 퍼라이트 단열재 1을 제조하였다.At this time, the compacted molded body was heated at 200 ° C. for 1 minute to be primarily cured and then demolded, and the demolded molded body was subjected to post-curing for 1 hour in a 200 ° C. hot air dryer to have an expanded perlite insulation material having a density of 115 ± 5 Kg / m 3. Was prepared.
<실시예 2> 본 발명의 팽창 퍼라이트와 유기 경화형 분말 바인더를 이용한 단열재 2 제조Example 2 Preparation of Insulation Material 2 Using Expanded Perlite and Organic Curing Powder Binder of the Present Invention
상기 실시예 1에서 제조한 혼합재 527g을 초기 부피의 약 1.8배 압축하여 300X300X50mm (부피 4.5L) 크기로 성형하였다.527 g of the mixture prepared in Example 1 was compressed to about 1.8 times the initial volume and molded into a size of 300 × 300 × 50 mm (volume 4.5L).
압축된 성형체를 200℃에서 1시간 동안 가열하여 안전경화를 진행시켜 밀도 115 ± 5 Kg/㎥를 갖는 팽창 퍼라이트 단열재 2를 제조하였다.The compacted molded body was heated at 200 ° C. for 1 hour to proceed to safety hardening to prepare expanded perlite insulation 2 having a density of 115 ± 5 Kg / m 3.
<실시예 3> 본 발명의 팽창 퍼라이트와 유기 경화형 분말 바인더를 이용한 단열재 3 제조Example 3 Preparation of Insulation Material 3 Using Expanded Perlite and Organic Curable Powder Binder of the Present Invention
상기 실시예 1에서의 각 성분의 비율로 혼합재를 제조하되, 연속식 공정을 진행할 수 있도록 충분한 양을 혼합하고, 압출 실린더 내부의 온도를 각 3단계로 하여 초기 구간은 상온~40℃, 중간 구간 80~120℃, 후기 구간은 120~150℃으로 유지되며, 최종 토출부의 금형 온도가 150~200℃로 유지되도록 하였다.The mixture is prepared in the ratio of each component in Example 1, but a sufficient amount to mix the continuous process, the temperature inside the extrusion cylinder in each of three stages, the initial section is room temperature ~ 40 ℃, intermediate section 80 ~ 120 ℃, the latter section is maintained at 120 ~ 150 ℃, the mold temperature of the final discharge portion was maintained at 150 ~ 200 ℃.
토출부 금형의 형태는 가로 300mm, 높이 50mm로 하는 단축 압출 성형기를 준비하였다. 본 압출 성형기에 상기 혼합재를 호퍼를 통하여 0.2L/sec의 투입속도로 투입하여 토출부에서 토출되는 성형체의 길이는 초당 7.5~8mm가 되도록 스크류의 회전속도를 설정하였다. 이에 토출되는 성형체를 길이 300mm 단위로 절단하였다.The single-sided extrusion molding machine made the shape of a discharge part metal mold | die 300 mm in width and 50 mm in height. The rotational speed of the screw was set such that the length of the molded body discharged from the discharge part was introduced into the present extrusion molding machine at a feeding speed of 0.2 L / sec through the hopper. The molded object discharged by this was cut | disconnected in 300 mm length unit.
상기 절단된 성형체를 200℃ 열풍 건조기에서 1시간 후경화를 진행시켜 밀도 115 ± 5 Kg/㎥를 갖는 팽창 퍼라이트 단열재 3을 제조하였다. 이때, 제조된 성형체는 압축성형에서 1.8배로 압축한 경우와 유사한 밀도를 나타내었다.The cut molded product was cured in a hot air dryer at 200 ° C. for 1 hour to prepare an expanded perlite insulating material 3 having a density of 115 ± 5 Kg / m 3. In this case, the manufactured molded article showed a density similar to that obtained by compression 1.8 times in compression molding.
<실시예 4> 본 발명의 팽창 퍼라이트와 유기 경화형 분말 바인더를 이용한 단열재 4 제조Example 4 Preparation of Insulation Material 4 Using Expanded Perlite and Organic Curable Powder Binder of the Present Invention
퍼라이트 정석을 사용하며, 밀도 40Kg/㎥이고, 팽창 퍼라이트 전체중량을 기준으로 800㎛초과입자 15중량%, 800㎛에서 500㎛입자 40중량%, 500㎛에서 250㎛입자 20중량%, 250㎛에서 160㎛입자 10중량%, 160㎛미만 입자는 15중량%로 입도분포 되고, 열린 셀의 비율이 전체 중량 대비 70 중량%를 갖는 열린 셀 팽창 퍼라이트를 제조하였다.Perlite crystallization, density 40Kg / ㎥, 15% by weight of 800㎛ over-particles based on the total weight of expanded perlite, 40% by weight of 500㎛ particles at 800㎛, 20% by weight of 250㎛ particles at 500㎛, at 250㎛ The particle size distribution of 10 wt% of the 160 μm particles and less than 160 μm of the particles was 15 wt%, to prepare an open cell expanded perlite having a ratio of open cells of 70 wt% to the total weight.
상기와 같이 제조된 열린 셀 팽창 퍼라이트 1000g에 노볼락 페놀 분말을 팽창 퍼라이트 중량 대비 100중량%, 무기질 섬유를 상기 팽창 퍼라이트 중량대비 1.5중량%, 실리콘계 분말 발수제를 팽창 퍼라이트 중량 대비 0.5중량%를 넣고 혼합하여 혼합재를 제조하였다.100 g of the novolak phenolic powder is expanded to 100% by weight of the expanded perlite, inorganic fibers 1.5% to the weight of the expanded perlite, and 0.5% by weight of the silicone-based water repellent to 0.5% by weight of the expanded perlite into the open cell expanded perlite prepared as described above. To prepare a mixed material.
상기 제조된 혼합재의 밀도는 72Kg/㎥이고, 혼합재 583g을 초기 부피의 약 1.8배 압축하여 가로X세로X높이 300X300X50mm (부피 4.5L) 크기로 성형하였다.The prepared mixture had a density of 72 Kg / m 3, and 583 g of the mixture was compressed to about 1.8 times the initial volume to form a horizontal X vertical X height 300 X 300 X 50 mm (volume 4.5 L).
압축된 성형체를 200℃에서 1분간 가열하여 1차 경화한 후 탈형하여, 탈형된 성형체를 200℃ 열풍 건조기에서 1시간 후경화를 진행시켜 밀도 125 ± 5 Kg/㎥를 갖는 팽창 퍼라이트 단열재 4를 제조하였다.The compressed molded product was first cured by heating at 200 ° C. for 1 minute, followed by demolding. The expanded molded product was then cured in a 200 ° C. hot air dryer for 1 hour to prepare expanded perlite insulation 4 having a density of 125 ± 5 Kg / m 3. It was.
<실시예 5> 본 발명의 팽창 퍼라이트와 유기 경화형 분말 바인더를 이용한 단열재 5 제조Example 5 Insulation 5 Preparation Using Expanded Perlite and Organic Curable Powder Binder of the Present Invention
닫힌 셀 팽창퍼라이트 50 중량%와 열린 셀 팽창 퍼라이트 50 중량%를 갖는 팽창 퍼라이트를 제조하였으며, 혼합 퍼라이트의 밀도는 35Kg/㎥ 이었다.An expanded perlite having 50 wt% closed cell expanded perlite and 50 wt% open cell expanded perlite was prepared, and the density of the mixed perlite was 35 Kg / m 3.
상기의 혼합된 팽창 퍼라이트 1000g에 노볼락 페놀 분말을 팽창 퍼라이트 중량 대비 100중량%, 무기질 섬유를 상기 팽창 퍼라이트 중량 대비 1.5 중량%, 실리콘계 분말 발수제를 팽창 퍼라이트 중량 대비 0.5 중량%를 넣고 혼합하여 혼합재를 제조하였다.100 g of the novolak phenolic powder is added to the mixed expanded perlite by weight of 100% by weight of the expanded perlite, 1.5% by weight of inorganic fiber is added to the weight of the expanded perlite, and 0.5% by weight of the silicon-based water repellent is added to the expanded perlite. Prepared.
제조된 혼합재의 밀도는 70Kg/㎥이고, 혼합재 567g을 초기 부피의 약 1.8배 압축하여 가로X세로X높이 300X300X50mm (부피 4.5L) 크기로 성형하였다.The density of the prepared mixture was 70Kg / ㎥, 567g of the mixture was compressed to about 1.8 times the initial volume was molded into a size X horizontal X height X height 300X300X50mm (volume 4.5L).
압축된 성형체를 200℃에서 1분간 가열하여 1차 경화한 후 탈형하여, 탈형된 성형체를 200℃ 열풍 건조기에서 1시간 후경화를 진행시켜 밀도 120 ± 5 Kg/㎥를 갖는 팽창 퍼라이트 단열재 5를 제조하였다.The compressed molded product was first cured by heating at 200 ° C. for 1 minute, followed by demolding. The expanded molded product was then cured in a 200 ° C. hot air dryer for 1 hour to prepare expanded perlite insulation 5 having a density of 120 ± 5 Kg / m 3. It was.
<실시예 6> 본 발명의 팽창 퍼라이트와 유기 경화형 분말 바인더를 이용한 단열재 6 제조Example 6 Insulation 6 Preparation Using Expanded Perlite and Organic Curable Powder Binder of the Present Invention
상기 실시예 1에서 제조된 밀도가 30Kg/㎥인 닫힌 셀 형태의 팽창 퍼라이트에 메틸트리메톡시실란(Methyltrimethoxysilane)을 팽창 퍼라이트 중량대비 0.5 중량%를 코팅하여 제조하였다.In the closed cell expanded perlite having a density of 30 Kg / m 3 prepared in Example 1, methyltrimethoxysilane was prepared by coating 0.5 wt% of the expanded perlite by weight.
상기 코팅된 닫힌 셀 팽창 퍼라이트 1000g에 노볼락 페놀 분말을 팽창 퍼라이트 중량 대비 100중량%, 무기질 섬유를 팽창 퍼라이트 중량대비 1.5중량%, 실리콘계 분말 발수제를 팽창 퍼라이트 중량 대비 0.5중량%를 넣고 혼합하여 혼합재를 제조하였다.100 g of the novolac phenolic powder is expanded to 100% by weight of the expanded perlite, 1.5% by weight to the weight of the expanded perlite, and 0.5% by weight of the silicon-based water repellent is added to the coated closed cell expanded perlite and 0.5% by weight to the weight of the expanded perlite. Prepared.
상기 제조된 혼합재의 밀도는 65Kg/㎥이고, 혼합재 527g을 초기 부피의 약 1.8배 압축하여 300X300X50mm (부피 4.5L) 크기로 성형하였다.The prepared mixture had a density of 65 Kg / m 3, and 527 g of the mixture was compressed to about 1.8 times its initial volume and molded into 300 × 300 × 50 mm (volume 4.5L).
압축된 성형체를 200℃에서 1분간 가열하여 경화한 후 탈형하여, 탈형된 성형체를 200℃ 열풍 건조기에서 1시간 후경화를 진행시켜 밀도 115 ± 5 Kg/㎥를 갖는 팽창 퍼라이트 단열재 6을 제조하였다.The compacted molded body was cured by heating at 200 ° C. for 1 minute and then demolded, and the demolded molded body was subjected to post-curing for 1 hour in a 200 ° C. hot air dryer to prepare an expanded perlite insulating material 6 having a density of 115 ± 5 Kg / m 3.
<실시예 7> 본 발명의 팽창 퍼라이트와 유기 경화형 분말 바인더를 이용한 단열재 7 제조<Example 7> Preparation of the heat insulating material 7 using the expanded perlite and the organic curable powder binder of the present invention
상기 실시예 1에서와 같이 밀도가 30Kg/㎥인 닫힌 셀 형태의 팽창 퍼라이트를 제조하였다.As in Example 1, the expanded perlite in the form of a closed cell having a density of 30 Kg / m 3 was prepared.
제조된 닫힌 셀 팽창 퍼라이트 1000g에 노볼락 페놀 분말을 팽창 퍼라이트 중량 대비 90중량%, 보강제로 흄드 실리카를 팽창 퍼라이트 중량대비 10 중량%, 무기질 섬유를 팽창 퍼라이트 중량대비 1.5중량%, 실리콘계 분말 발수제를 팽창 퍼라이트 중량 대비 0.5중량%를 넣고 혼합하여 혼합재를 제조하였다.Expanded novolak phenol powder to 1000 g of the prepared closed cell expansion perlite, 90% by weight of the perlite, 10% by weight of the fumed silica as a reinforcing agent, 10% by weight of the inorganic fiber, 1.5% by weight of the perlite, and silicone-based water repellent 0.5 wt% of the weight of the perlite was added and mixed to prepare a mixture.
제조된 혼합재의 밀도는 66Kg/㎥이고, 혼합재 535g을 초기 부피의 약 1.8배 압축하여 300X300X50mm (부피 4.5L) 크기로 성형하였다.The density of the prepared mixture was 66Kg / m 3, and 535g of the mixture was compressed to about 1.8 times the initial volume to form a 300 × 300 × 50 mm (volume 4.5L).
압축된 성형체를 200℃에서 1분간 가열하여 1차 경화한 후 탈형하여, 탈형된 성형체를 200℃ 열풍 건조기에서 1시간 후경화를 진행시켜 밀도 115 ± 5 Kg/㎥를 갖는 팽창 퍼라이트 단열재 7을 제조하였다.The compressed molded product was first cured by heating at 200 ° C. for 1 minute, followed by demolding. The expanded molded product was then cured in a 200 ° C. hot air dryer for 1 hour to prepare expanded perlite insulation 7 having a density of 115 ± 5 Kg / m 3. It was.
<실시예 8> 본 발명의 팽창 퍼라이트와 유기 경화형 분말 바인더를 이용한 단열재 8 제조Example 8 Manufacture of Insulation Material 8 Using Expanded Perlite and Organic Curable Powder Binder of the Present Invention
상기 실시예 1에서와 같이 밀도가 30Kg/㎥인 닫힌 셀 형태의 팽창 퍼라이트를 제조하였다.As in Example 1, the expanded perlite in the form of a closed cell having a density of 30 Kg / m 3 was prepared.
제조된 닫힌 셀 팽창 퍼라이트 1000g에 노볼락 페놀 분말을 팽창 퍼라이트 중량 대비 95 중량%, 강도보강제로 에어로겔을 팽창 퍼라이트 중량대비 5 중량%, 무기질 섬유를 팽창 퍼라이트 중량대비 1.5 중량%, 실리콘계 분말 발수제를 팽창 퍼라이트 중량 대비 0.5 중량%를 넣고 혼합하여 혼합재를 제조하였다.Expanded novolak phenol powder to 1000 g of the manufactured closed cell expanded perlite, expanded 95% by weight of the perlite weight, expanded airgel with a strength enhancer, 5% by weight of the perlite weight, expanded inorganic fiber 1.5% by weight of the perlite weight, and expanded silicone powder water repellent 0.5 wt% of the weight of the perlite was added and mixed to prepare a mixture.
상기 제조된 혼합재의 밀도는 65Kg/㎥이고, 혼합재 526g을 초기 부피의 약 1.8배 압축하여 300X300X50mm (부피 4.5L) 크기로 성형하였다.The prepared mixture had a density of 65 Kg / m 3, and 526 g of the mixture was compressed to about 1.8 times its initial volume to form a 300 × 300 × 50 mm (volume 4.5L).
압축된 성형체를 200℃에서 1분간 가열하여 1차 경화한 후 탈형하여, 탈형된 성형체를 200℃ 열풍 건조기에서 1시간 후경화를 진행시켜 밀도 115 ± 5 Kg/㎥를 갖는 팽창 퍼라이트 단열재 8을 제조하였다.The compressed molded product was first cured by heating at 200 ° C. for 1 minute, followed by demolding, and the demolded molded product was subjected to post-curing for 1 hour in a 200 ° C. hot air dryer to prepare expanded perlite insulating material 8 having a density of 115 ± 5 Kg / m 3. It was.
<실시예 9> 본 발명의 팽창 퍼라이트와 유기 경화형 분말 바인더를 이용한 단열재 9 제조Example 9 Preparation of Insulation Material 9 Using Expanded Perlite and Organic Curable Powder Binder of the Present Invention
상기 실시예 1에서와 같이 밀도가 30Kg/㎥인 닫힌 셀 형태의 팽창 퍼라이트를 제조하였다.As in Example 1, the expanded perlite in the form of a closed cell having a density of 30 Kg / m 3 was prepared.
제조된 닫힌 셀 팽창 퍼라이트 1000g에 노볼락 페놀 분말을 팽창 퍼라이트 중량 대비 100중량%, 무기보강제로 붕산을 팽창 퍼라이트 중량대비 30 중량%, 무기질 섬유를 팽창 퍼라이트 중량대비 1.5중량%, 실리콘계 분말 발수제를 팽창 퍼라이트 중량 대비 0.5중량%를 넣고 혼합하여 혼합재를 제조하였다.Expanded novolak phenolic powder to 1000 g of the prepared closed cell expanded perlite, expanded 100% by weight of the perlite, expanded boric acid by inorganic reinforcing agent, 30% by weight of the perlite, expanded inorganic fiber 1.5% by weight of the perlite, and expanded silicone-based water repellent 0.5 wt% of the weight of the perlite was added and mixed to prepare a mixture.
상기 제조된 혼합재의 밀도는 70Kg/㎥이고, 혼합재 567g을 초기 부피의 약 1.8배 압축하여 300X300X50mm (부피 4.5L) 크기로 성형하였다.The prepared mixture had a density of 70 Kg / m 3, and 567 g of the mixture was compressed to about 1.8 times its initial volume and molded into 300 × 300 × 50 mm (volume 4.5L).
압축된 성형체를 200℃에서 1분간 가열하여 1차 경화한 후 탈형하고, 탈형된 성형체를 열풍 건조기에 투입하여 초기온도 200℃부터 350℃까지 1시간에 걸쳐 승온하여 후경화 및 열처리를 실시하고, 1시간 동안 자연냉각을 실시한 후 열풍기에서 배출하였다. 이때 성형체의 표면온도는 상온에서 50℃ 온도범위였다. 이를 통해 밀도 125 ± 5 Kg/㎥를 갖는 팽창 퍼라이트 단열재 9를 제조하였다.After the compacted molded body was heated at 200 ° C. for 1 minute for primary curing, demolding was carried out, and the demolded molded body was put into a hot air dryer to raise the temperature from an initial temperature of 200 ° C. to 350 ° C. over 1 hour to conduct post curing and heat treatment. Natural cooling was performed for 1 hour and then discharged from a hot air fan. At this time, the surface temperature of the molded body was a temperature range of 50 ℃ at room temperature. This produced an expanded perlite insulation 9 having a density of 125 ± 5 Kg / ㎥.
<실시예 10> 본 발명의 팽창 퍼라이트와 유기 경화형 분말 바인더를 이용한 단열재 10 제조<Example 10> Preparation of the heat insulating material 10 using the expanded perlite and the organic curable powder binder of the present invention
상기 실시예 9와 동일하게 각 성분비로 혼합하되, 분말 발수제는 혼합하지 않은 혼합재로 실시예 9와 동일한 공정으로 성형체를 제조하였다. 고형분 1%로 희석된 실리콘계 발수제 용액을 제조하고, 상기 제조된 성형체에 제조된 발수제 용액을 성형체 단면적 0.01㎡ 당 5g을 도포하였다.In the same manner as in Example 9, but mixed in each component ratio, the powder repellent was prepared in the same process as in Example 9 with a mixed material not mixed. A silicone-based water repellent solution diluted to 1% solids was prepared, and 5 g per 0.01 m 2 of the molded article cross-sectional area was applied to the prepared water-repellent solution.
상기 발수제 용액이 도포된 성형체를 통풍이 원활한 장소에서 1일간 상온 건조를 실시하여 밀도 125 ± 5 Kg/㎥를 갖는 팽창 퍼라이트 단열재 10을 제조하였다.The molded article coated with the water repellent solution was dried at room temperature for one day at a place with good ventilation to prepare an expanded perlite insulation 10 having a density of 125 ± 5 Kg / m 3.
<실시예 11> 본 발명의 팽창 퍼라이트와 유기 경화형 분말 바인더를 이용한 단열재 11 제조Example 11 Manufacture of Insulation Material 11 Using Expanded Perlite and Organic Curable Powder Binder of the Present Invention
상기 실시예 10과 동일하게 각 성분비로 혼합하되, 닫힌 셀 팽창퍼라이트 대신 열린 셀 팽창퍼라이트를 이용하여 혼합하고, 실시예 9와 동일한 공정으로 성형체를 제조하였다. 고형분 1%로 희석된 실리콘계 발수제 용액을 제조하고, 상기 제조된 성형체에 제조된 발수제 용액을 성형체 단면적 0.01㎡ 당 5g을 도포하였다.In the same manner as in Example 10, but mixed in each component ratio, instead of the closed cell expansion perlite mixed using an open cell expansion perlite, a molded article was prepared in the same process as in Example 9. A silicone-based water repellent solution diluted to 1% solids was prepared, and 5 g per 0.01 m 2 of the molded article cross-sectional area was applied to the prepared water-repellent solution.
상기 발수제 용액이 도포된 성형체를 통풍이 원활한 장소에서 1일간 상온 건조를 실시하여 밀도 130 ± 5 Kg/㎥를 갖는 팽창 퍼라이트 단열재 11을 제조하였다.The molded article coated with the water repellent solution was dried at room temperature for one day at a place with good ventilation to prepare an expanded perlite insulation 11 having a density of 130 ± 5 Kg / m 3.
<실시예 12> 본 발명의 팽창 퍼라이트와 유기 경화형 분말 바인더를 이용한 단열재 12 제조Example 12 Preparation of Insulation Material 12 Using Expanded Perlite and Organic Curable Powder Binder of the Present Invention
상기 실시예 1에서 제조한 혼합재 527g을 초기 부피의 약 1.8배 압축하여 300X300X50mm (부피 4.5L) 크기로 성형하였다.527 g of the mixture prepared in Example 1 was compressed to about 1.8 times the initial volume and molded into a size of 300 × 300 × 50 mm (volume 4.5L).
압축된 성형체를 200℃에서 1분간 가열하여 1차 경화한 후 탈형하여, 탈형된 성형체를 산소 유입이 차단된 챔버에 투입하고 질소 퍼지하여 챔버내 용존산소를 0.5%이하로 유지시킨 상태에서 200℃부터 500℃까지 2시간에 걸쳐 승온하고, 1시간 동안 500℃를 유지한 후, 2시간에 걸쳐 자연 냉각하여 후경화 및 탄소화를 실시하였다. 이때 성형체의 표면온도는 상온~50℃ 온도범위였으며, 이를 통해 밀도 115 ± 5 Kg/㎥를 갖는 팽창 퍼라이트 단열재 12를 제조하였다.The compressed compact was heated at 200 ° C. for 1 minute to be primarily cured, and then demolded. The deformed compact was placed in a chamber in which oxygen was blocked and purged with nitrogen to maintain dissolved oxygen within the chamber at 200% or less. To 500 ° C. over 2 hours, and maintained at 500 ° C. for 1 hour, followed by natural cooling over 2 hours to carry out post curing and carbonization. At this time, the surface temperature of the molded body was a temperature range from room temperature to 50 ℃, through which the expanded perlite insulation 12 having a density of 115 ± 5 Kg / ㎥ was prepared.
<실시예 13> 본 발명의 팽창 퍼라이트와 유기 경화형 분말 바인더를 이용한 단열재 13 제조Example 13 Manufacture of Insulation Material 13 Using Expanded Perlite and Organic Curable Powder Binder of the Present Invention
상기 실시예 12와 동일하게 각 성분비로 혼합하되, 분말 발수제는 혼합하지 않은 혼합재로 실시예 12와 동일한 공정으로 성형체를 제조하였다. 고형분 1%로 희석된 실리콘계 발수제 용액을 제조하고, 성형체에 제조된 발수제 용액을 성형체 단면적 0.01㎡ 당 5g을 도포하였다.In the same manner as in Example 12, but mixed in each component ratio, the powder repellent was prepared in the same process as in Example 12 with a mixed material not mixed. A silicone-based water repellent solution diluted to 1% solids was prepared, and 5 g per 0.01 m 2 of the molded article cross-sectional area was applied to the water-repellent solution prepared in the molded product.
상기 발수제 용액이 도포된 탄소화 처리된 성형체를 통풍이 원활한 장소에서 1일간 상온 건조를 실시하여 밀도 115 ± 5 Kg/㎥를 갖는 팽창 퍼라이트 단열재 13을 제조하였다.The carbonized molded article coated with the water repellent solution was dried at room temperature for one day at a place with good ventilation to prepare an expanded perlite insulation 13 having a density of 115 ± 5 Kg / m 3.
<실시예 14> 본 발명의 팽창 퍼라이트와 유기 경화형 분말 바인더를 이용한 단열재 14 제조Example 14 Manufacture of Insulation Material 14 Using Expanded Perlite and Organic Curable Powder Binder of the Present Invention
상기 실시예 13과 동일하게 각 성분비로 혼합하되, 닫힌 셀 팽창 퍼라이트 대신 실시예 4에서 제조된 열린 셀 팽창 퍼라이트로 혼합재를 제조하고 실시예 12와 동일한 공정으로 성형체를 제조하였다. 고형분 1%로 희석된 실리콘계 발수제 용액을 제조하고, 성형체에 제조된 발수제 용액을 성형체 단면적 0.01㎡ 당 5g을 도포하였다.In the same manner as in Example 13, but mixed in each component ratio, but instead of the closed cell expansion perlite, the mixture was prepared in the open cell expansion perlite prepared in Example 4 and the molded body was prepared in the same process as in Example 12. A silicone-based water repellent solution diluted to 1% solids was prepared, and 5 g per 0.01 m 2 of the molded article cross-sectional area was applied to the water-repellent solution prepared in the molded product.
상기 발수제 용액이 도포된 탄소화 처리된 성형체를 통풍이 원활한 장소에서 1일간 상온 건조를 실시하여 밀도 125 ± 5 Kg/㎥를 갖는 표면 발수 보강 처리된 팽창 퍼라이트 단열재 14를 제조하였다.The carbonized molded article coated with the water repellent solution was dried at room temperature for one day at a place with good ventilation to prepare a surface-water-reinforced expanded expanded ferrite insulation 14 having a density of 125 ± 5 Kg / m 3.
<실시예 15> 본 발명의 팽창 퍼라이트와 유기 경화형 분말 바인더를 이용한 단열재 15 제조Example 15 Manufacture of Insulation Material 15 Using Expanded Perlite and Organic Curable Powder Binder of the Present Invention
상기 실시예 12와 동일하게 제조한 성형체를 불활성 기체 하에서 1000℃까지 승온시키고, 규소를 함유한 가스를 투입하여 탄화규소화된 팽창 퍼라이트 단열재 15를 제조하였다. A molded article prepared in the same manner as in Example 12 was heated to 1000 ° C. under an inert gas, and silicon-containing gas was introduced to prepare a silicon carbide expanded perlite insulating material 15.
<실시예 16> 본 발명의 팽창 퍼라이트와 유기 경화형 분말 바인더를 이용한 단열재 16 제조Example 16 Manufacture of Insulation Material 16 Using Expanded Perlite and Organic Curable Powder Binder of the Present Invention
상기 실시예 12와 동일하게 제조한 성형체를 수증기 분위기에서, 600℃ 1시간 동안 포화 수증기로 활성화 처리하고, 제조된 성형체를 가로X세로 420X420mm의 삼면이 밀폐된 내부는 복합재질의 진공 패킹재에 투입하고 3 torr의 진공압력을 형성한 후 밀봉하여 진공 단열재 16을 제조하였다. The molded article manufactured in the same manner as in Example 12 was activated with saturated steam for 1 hour at 600 ° C. in a steam atmosphere, and the inside of the three-sided sealed body having a width of 420 × 420 mm in width X length was put in a vacuum packing material of a composite material. And a vacuum pressure of 3 torr was formed and then sealed to prepare a vacuum insulator 16.
<비교예 1> 본 발명의 팽창 퍼라이트와 무기계 액상 바인더인 규산소다를 이용한 단열재 1 제조Comparative Example 1 Preparation of Insulation Material 1 Using Expanded Perlite and Sodium Silicate as an Inorganic Liquid Binder
퍼라이트 정석을 사용하여, 밀도 30Kg/㎥이고, 팽창 퍼라이트 전체 중량을 기준으로 400㎛ 초과 입자- 15중량%, 400~250㎛ 입자- 40중량%, 250~160㎛ 입자- 20중량%, 160㎛미만 입자- 30중량%로 입도 분포 되고, 닫힌 셀의 비율이 전체 중량대비 70 중량%를 갖는 팽창 퍼라이트를 제조하였다.Density 30 Kg / m 3 using perlite crystallization, based on the total weight of the expanded perlite, particles larger than 400 μm-15 wt%, 400 to 250 μm particles-40 wt%, 250 to 160 μm particles-20 wt%, 160 μm An expanded perlite was prepared having a particle size distribution of less than 30% by weight and a closed cell proportion of 70% by weight.
33 Be' 규산소다 1000g에 실리콘계 액상 발수제를 규산소다 중량대비 0.5중량%를 넣고 혼합하여 액상 무기질 바인더를 제조하였다.A liquid inorganic binder was prepared by mixing a silicon-based liquid water repellent agent with 0.5 wt% of sodium silicate in 1000 g of 33 Be 'sodium silicate.
상기 제조된 혼합물 433g과 상기 제조된 액상 무기질 바인더 413g을 혼합한 후 초기 부피의 약 3.2배를 압축하여 300X300X50mm 크기의 성형체를 제조하였다.433 g of the mixture prepared above and 413 g of the prepared liquid inorganic binder were mixed, and about 3.2 times the initial volume was compressed to prepare a molded article having a size of 300 × 300 × 50 mm.
제조된 성형체를 200℃ 열풍 건조기에 4시간 건조시켜 밀도 130 ± 5 Kg/㎥를 갖는 열린 셀의 팽창 퍼라이트와 규산소다를 이용한 단열재 1을 제조하였다.The formed article was dried in a 200 ° C. hot air dryer for 4 hours to prepare an insulating material 1 using expanded perlite and sodium silicate in an open cell having a density of 130 ± 5 Kg / m 3.
<비교예 2> 본 발명의 팽창 퍼라이트와 무기계 액상 바인더인 규산소다를 이용한 단열재 2 제조<Comparative Example 2> Preparation of the heat insulating material 2 using the expanded perlite of the present invention and sodium silicate which is an inorganic liquid binder
퍼라이트 정석을 사용하며, 밀도 40Kg/㎥이고, 팽창 퍼라이트 전체중량을 기준으로 800㎛초과입자 15중량%, 800㎛에서 500㎛입자 40중량%, 500㎛에서 250㎛입자 20중량%, 250㎛에서 160㎛입자 10중량%, 160㎛미만 입자는 15중량%로 입도분포 되고, 열린 셀의 비율이 전체 중량대비 70 중량%를 갖는 열린 셀 팽창 퍼라이트를 제조하였다.Perlite crystallization, density 40Kg / ㎥, 15% by weight of 800㎛ over-particles based on the total weight of expanded perlite, 40% by weight of 500㎛ particles at 800㎛, 20% by weight of 250㎛ particles at 500㎛, at 250㎛ The particle size distribution of 10 wt% of 160 μm particles and less than 160 μm particles was 15 wt%, to prepare an open cell expanded perlite having an open cell ratio of 70 wt% to the total weight.
33 Be' 규산소다 1000g에 실리콘계 액상 발수제를 규산소다 중량대비 0.5중량%를 넣고 혼합하여 액상 무기질 바인더를 제조하였다.A liquid inorganic binder was prepared by mixing a silicon-based liquid water repellent agent with 0.5 wt% of sodium silicate in 1000 g of 33 Be 'sodium silicate.
상기 제조된 혼합물 576g과 상기 제조된 액상 무기질 바인더 413g을 혼합한 후 초기 부피의 약 3.2배를 압축하여 300X300X50mm 크기의 성형체를 제조하였다.After mixing 576 g of the mixture prepared above and 413 g of the prepared liquid inorganic binder, a compact of 300 × 300 × 50 mm was manufactured by compressing about 3.2 times the initial volume.
제조된 성형체를 200℃ 열풍 건조기에 4시간 건조시켜 밀도 150 ± 5 Kg/㎥를 갖는 열린 셀의 팽창 퍼라이트와 규산소다를 이용한 단열재 2를 제조하였다.The formed article was dried in a 200 ° C. hot air dryer for 4 hours to prepare an insulating material 2 using expanded perlite and sodium silicate in an open cell having a density of 150 ± 5 Kg / m 3.
<비교예 3> 본 발명의 팽창 퍼라이트와 무기계 액상 바인더인 규산소다를 이용한 단열재 3 제조Comparative Example 3 Production of Insulation Material 3 Using Expanded Perlite and Sodium Silicate as an Inorganic Liquid Binder
상기 비교예2에서 제조된 밀도가 30Kg/㎥인 닫힌 셀 팽창 퍼라이트에 메틸트리메톡시실란(Methyltrimethoxysilane)을 팽창 퍼라이트 중량대비 0.5중량%를 코팅하여 제조하였다.In the closed cell expanded perlite having a density of 30 Kg / m 3 prepared in Comparative Example 2, methyltrimethoxysilane was prepared by coating 0.5% by weight of the expanded perlite.
상기 코팅된 닫힌 셀 팽창 퍼라이트 1000g 무기질 섬유를 팽창 퍼라이트 중량대비 1.5중량%를 넣고 혼합하여 혼합재를 제조하였다.1000 g of the coated closed cell expanded perlite inorganic fiber was added and mixed with 1.5 wt% of the expanded perlite to prepare a mixed material.
33 Be'규산소다 1000g 단독을 액상 무기질 바인더로 준비하였다.1000 g of 33 Be 'sodium silicate alone was prepared as a liquid inorganic binder.
상기 혼합재 433g과 상기 액상 무기질 바인더 413g을 혼합하여 초기 부피의 약 3.1배를 압축하여 300X300X50mm 크기의 성형체를 제조하였다.433 g of the mixture and 413 g of the liquid inorganic binder were mixed to compress a size of about 3.1 times the initial volume to prepare a molded body having a size of 300 × 300 × 50 mm.
제조된 성형체를 200℃ 열풍 건조기에 4시간 건조시켜 밀도 130 ± 5 Kg/㎥를 갖는 열린 셀의 팽창 퍼라이트와 규산소다를 이용한 단열재 3을 제조하였다.The formed article was dried in a 200 ° C. hot air dryer for 4 hours to prepare an insulating material 3 using expanded perlite and sodium silicate in an open cell having a density of 130 ± 5 Kg / m 3.
<실험예 1> 팽창 퍼라이트 단열재의 특성 분석Experimental Example 1 Characterization of Expanded Perlite Insulation
상기 실시예와 비교예를 KS F 4714에 의거하여, 열전도율, 휨강도, 선수축율, 발수도를 측정 분석하여 아래의 표 1에 나타내었다.Based on the KS F 4714, the Examples and Comparative Examples were measured and analyzed for thermal conductivity, flexural strength, bowing factor, and water repellency, and are shown in Table 1 below.
표 1
구분 성형압축비 선수축율 열전도율(W/mK) 휨강도(N/㎠) 발수도
20℃ 70℃ 200℃
실시예 1 1.8 2% 이상 - 0.0454 0.0585 44.3 98%이상
실시예 2 1.8 - 0.0447 0.0578 45.4
실시예 3 1.8 - 0.0463 0.0591 43.3
실시예 4 1.8 - 0.0495 0.0624 40.5
실시예 5 1.8 - 0.0469 0.0574 42.1
실시예 6 1.8 - 0.0448 0.0568 43.8
실시예 7 1.8 - 0.0401 0.0537 47.4
실시예 8 1.8 - 0.0378 0.0515 46.2
실시예 9 1.8 1% 이내 - 0.0431 0.0552 45.1
실시예 10 1.8 - 0.0437 0.0560 46.3
실시예 11 1.8 - 0.0461 0.0584 43.4
실시예 12 1.8 0.5% 이내 - 0.0441 0.0522 42.1
실시예 13 1.8 - 0.0416 0.0534 46.3
실시예 14 1.8 - 0.0447 0.0548 43.6
실시예 15 1.8 - 0.0450 0.0551 54.3
실시예 16 1.8 0.003 - - 42.1
비교예 1 3.2 2% 이내 - 0.052 0.073 26.4
비교예 2 3.2 0.055 0.077 23.1
비교예 3 3.1 - 0.051 0.070 26.1
Table 1
division Molding Compression Ratio Contraction rate Thermal Conductivity (W / mK) Flexural strength (N / ㎠) Water repellency
20 ℃ 70 ℃ 200 ℃
Example 1 1.8 2% or more - 0.0454 0.0585 44.3 More than 98%
Example 2 1.8 - 0.0447 0.0578 45.4
Example 3 1.8 - 0.0463 0.0591 43.3
Example 4 1.8 - 0.0495 0.0624 40.5
Example 5 1.8 - 0.0469 0.0574 42.1
Example 6 1.8 - 0.0448 0.0568 43.8
Example 7 1.8 - 0.0401 0.0537 47.4
Example 8 1.8 - 0.0378 0.0515 46.2
Example 9 1.8 Within 1% - 0.0431 0.0552 45.1
Example 10 1.8 - 0.0437 0.0560 46.3
Example 11 1.8 - 0.0461 0.0584 43.4
Example 12 1.8 Within 0.5% - 0.0441 0.0522 42.1
Example 13 1.8 - 0.0416 0.0534 46.3
Example 14 1.8 - 0.0447 0.0548 43.6
Example 15 1.8 - 0.0450 0.0551 54.3
Example 16 1.8 0.003 - - 42.1
Comparative Example 1 3.2 Within 2% - 0.052 0.073 26.4
Comparative Example 2 3.2 0.055 0.077 23.1
Comparative Example 3 3.1 - 0.051 0.070 26.1
또한, 팽창 퍼라이트 종류와 열처리, 활성화 공정에 따른 효과를 추가로 비교하기 위해 비표면적 측정기를 이용하여 측정하였으며 아래의 표 2에 나타내었다.In addition, in order to further compare the effect of the expansion perlite type, heat treatment, activation process was measured using a specific surface area meter and are shown in Table 2 below.
표 2
구분 비표면적 (㎡/g)
실시예 1 0.5 ~ 2
실시예 4 5 ~ 10
실시예 10 70 ~ 120
실시예 11 100 ~ 150
실시예 13 300 ~ 700
실시예 14 550 ~ 850
실시예 16 1200 ~ 1700
TABLE 2
division Specific surface area (㎡ / g)
Example 1 0.5 to 2
Example 4 5 to 10
Example 10 70-120
Example 11 100 to 150
Example 13 300 to 700
Example 14 550-850
Example 16 1200 to 1700
상기 표 1에 나타나 있듯이, 팽창 퍼라이트와 분말형 유기 바인더를 사용하여 제조된 본 발명의 실시예 1~16은 기존의 바인더인 액상 규산소다를 사용한 비교예 1~3에 비하여 밀도가 낮은데도 불구하고 휨강도가 40~80% 이상 높게 측정되었다.As shown in Table 1, Examples 1 to 16 of the present invention prepared using the expanded perlite and the powdered organic binder have a lower density than Comparative Examples 1 to 3 using liquid sodium silicate, which is a conventional binder. Flexural strength was measured to be higher than 40 ~ 80%.
열전도율에 있어서도 70℃ 온도구간에서 15% 이상 낮은 열전도율을 나타내었으며, 더욱이 실제 산업용 단열재 주 사용범위인 200℃ 구간에서는 20% 이상 낮은 열전도율을 나타내었다.In the thermal conductivity, the thermal conductivity was lower than 15% in the temperature range of 70 ℃, and the thermal conductivity was lower than 20% in the 200 ℃ range, which is the actual range of industrial insulation.
이는 단열재의 밀도가 낮아 온도가 상승하더라도 기존의 단열재에 비해 열전달이 억제되어 고온구간에서 열전도율이 낮아지게 되고, 이와 더불어 기존의 바인더인 무기계 규산소다는 비정질성으로 온도 상승에 따른 열전달이 높은 반면, 유기계 경화 바인더의 경우 열전달이 낮고 잔류 수분이 거의 없어 추가적인 열전도율 감소를 이룰 수 있음을 나타낸다.This is because the density of the heat insulating material is low, even if the temperature rises, heat transfer is suppressed compared to the existing heat insulating material, and the thermal conductivity is lowered in the high-temperature section. In addition, the conventional binder inorganic silicate silica is amorphous, and the heat transfer is high due to the temperature rise. In the case of the organic curing binder, low heat transfer and little residual moisture indicate that an additional reduction in thermal conductivity can be achieved.
또한 과도한 압축을 하지 않았기 때문에 입자의 깨짐이 방지되어 단열의 손실이 줄어들었다.In addition, due to the lack of excessive compression, the particles are prevented from breaking and the loss of thermal insulation is reduced.
압축 및 성형하는 3단계에서 일차 경화만을 실시하고 4단계에서 후경화를 진행하는 실시예 1과 3단계에서 완전 경화를 실시하는 실시예 2 및 압출 성형한 실시예 3은 유사한 선수축율 과 휨강도 및 열전도율을 나타내었다.Example 1, which performs only the primary curing in the three steps of compression and molding, and post-cure in the fourth step, and Example 2, which performs the complete curing in the third step, and Example 3, which are extruded, have similar bow shrinkage, flexural strength, and thermal conductivity. Indicated.
이는 경화형 분말 바인더를 사용한 팽창 퍼라이트 단열재의 경우, 제조하고자 하는 형태와 용도 및 생산성에 따라 제조 공법을 달리하여도 우수한 물성을 확보할 수 있음을 나타낸다.This indicates that in the case of an expanded perlite heat insulating material using a curable powder binder, excellent physical properties can be secured even if the manufacturing method is changed depending on the form, use, and productivity to be manufactured.
제조된 성형체의 열처리를 수행한 실시예 9내지 14은 열처리를 수행하지 않은 실시예 1 내지 8 보다 낮은 선수축율과 낮은 열전도율 그리고 전체적으로 높은 휨강도를 나타내었다.Examples 9 to 14, which were subjected to the heat treatment of the prepared molded body, exhibited lower bow shrinkage, lower thermal conductivity, and overall higher bending strength than those of Examples 1 to 8, which were not subjected to heat treatment.
이는 유기 바인더의 가교구조를 열처리를 통하여 탄소-탄소 결합을 이루어 열적 안정성이 증가하여 선수축률이 낮아졌고, 기계적 물성이 증가하였으며 탄소화에 따른 미세 셀의 생성으로 열전도율이 감소한 것이다.This is because the thermal stability of the organic binder cross-linked structure through the carbon-carbon bonds to increase the thermal stability was lowered, the mechanical properties increased and the thermal conductivity was reduced due to the formation of fine cells by carbonization.
열처리에 의해 제조된 성형체에 액상 발수제 도포를 수행한 실시예 10~11 및 13~14는 발수제를 성형 전에 혼용한 실시예 9 및 12와 유사한 발수도를 나타내었으며, 발수제가 단열재 표면에서 건조 접착됨에 따라 휨강도 또한 다소 증가하였다.Examples 10 to 11 and 13 to 14, which applied a liquid repellent agent to a molded article prepared by heat treatment, had a water repellency similar to those of Examples 9 and 12 in which a water repellent was mixed before molding, since the water repellent was dry-bonded on the surface of the insulating material. As a result, the flexural strength also increased slightly.
표 2에서 볼 수 있듯이, 열처리를 실시한 실시예 10와 실시예 13은 실시예 1 대비 높은 비표면적을 나타내었으며, 열린 셀 퍼라이트로 제조된 성형체를 열처리한 실시예 11과 실시예 14는 닫힌 셀 퍼라이트로 제조된 경우 보다 높은 비표면적을 나타내었다.As can be seen from Table 2, Example 10 and Example 13 subjected to the heat treatment showed a higher specific surface area than Example 1, and Example 11 and Example 14, which heat-treated the molded body made of open cell perlite, were closed cell perlite. When prepared with a higher specific surface area was shown.
이는 유기 경화물의 탄소화를 수행하지 않는 실시예 1의 경우 유기 경화물은 대부분이 밀폐된 구조를 이루고 있음을 나타내며, 열처리를 수행한 실시예 10와 탄소화를 진행한 실시예 13의 경우 유기 경화물의 탄소화 과정에서 무수히 많은 미세 기공의 생성과 생성된 기공이 붕괴되지 않은 상태로 보존되었음을 나타내는 것이고, 열린 셀 퍼라이트로 제조된 실시예 11과 14는 입자 자체의 기공이 무수히 많고, 비표면적이 넓어 보다 큰 효과를 나타낸 것이다. This indicates that, in Example 1, which does not perform carbonization of the organic cured product, most of the organic cured products have a closed structure, and in Example 10 that undergoes heat treatment and Example 13, which undergoes carbonization, organic curing In the process of carbonization of water, it shows that the formation of countless micropores and the pores generated are preserved undisintegrated. Examples 11 and 14 made of open cell perlite have a large number of pores of the particles themselves and have a large specific surface area. Greater effect.
더불어 실시예 16과 같이 탄소화된 성형체에 수증기를 통한 활성화를 추가적으로 수행함으로써, 탄소체의 표면을 침식시켜 미세 기공을 극도로 생성시킬 수 있었다.In addition, by additionally performing activation through water vapor on the carbonized molded body as in Example 16, the surface of the carbon body could be eroded to generate extremely fine pores.
이는 진공단열재 코어 물질(core material)의 효과를 나타내는 척도인 비표면적을 탄소화 및 활성화를 통하여 제조된 단열재가 그 조건을 만족할 수 있음을 의미하며, 측정된 열전도율과 같이 20℃ 조건에서 0.003 W/mK의 우수한 열전도율을 나타내었고, 이는 높은 비표면적을 확보하고 있음과 더불어, 내부에 퍼라이트의 셀 구조를 동시에 가지는 기계적 강도가 우수한 복합구조를 형성함으로써, 진공 단열재의 역할을 수행할 수 있음을 의미한다.This means that the heat insulating material manufactured through carbonization and activation of specific surface area, which is a measure of the effect of the core material of vacuum insulation material, can satisfy the condition, and 0.003 W / at 20 ° C as measured thermal conductivity. It showed excellent thermal conductivity of mK, which means that it has a high specific surface area and can form a composite structure of excellent mechanical strength having a cell structure of perlite at the same time, thereby serving as a vacuum insulator. .
상기 실시예 및 실험예, 특히 구조적 형태 등이 설명되었으나, 이는 이들의 범위를 제한하는 것은 아니며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면, 본 발명의 원칙을 벗어나지 않는 범위에서 변형 가능함을 알 수 있다.Although the above embodiments and experimental examples, in particular structural forms and the like have been described, this does not limit the scope thereof, and those skilled in the art to which the present invention pertains may be modified without departing from the principles of the present invention. It can be seen that.

Claims (31)

  1. 원광을 건조시킨 후 팽창시켜 제조된 팽창 퍼라이트 10~84 중량%, 유기계 경화형 분말 바인더 15~85 중량% 및 보강섬유 0.25 ~ 5 중량% 을 포함하는 것을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재.An expanded perlite heat insulating material using a thermosetting resin, characterized in that it comprises 10 to 84% by weight of expanded perlite, 15 to 85% by weight of an organic curable powder binder, and 0.25 to 5% by weight of reinforcing fibers prepared by drying the ore.
  2. 제1항에 있어서, 상기 열경화성 수지를 이용한 팽창 퍼라이트 단열재는 상기 유기계 경화형 분말 바인더 100중량부에 대하여 5~200중량부의 보강제를 추가로 포함하고 있는 것을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재.The expanded perlite heat insulating material according to claim 1, wherein the expanded perlite heat insulating material using the thermosetting resin further includes 5 to 200 parts by weight of a reinforcing agent based on 100 parts by weight of the organic curable powder binder.
  3. 제 1항에 있어서, The method of claim 1,
    상기 팽창 퍼라이트 중 닫힌 셀 팽창 퍼라이트의 유효성분은 전체 팽창 퍼라이트 중량을 기준으로 50 중량% 이상 포함됨을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재. The expanded perlite thermal insulation material using a thermosetting resin, characterized in that the active ingredient of the closed cell expanded perlite of the expanded perlite is included by 50% by weight or more based on the total weight of the expanded perlite.
  4. 제 1항에 있어서, The method of claim 1,
    상기 원광은 진주암, 흑요석, 송지암, 경석 중 선택된 1종 이상인 것을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재. The ore is expanded perlite heat insulating material using a thermosetting resin, characterized in that at least one selected from pearl rock, obsidian, pine rock, and pumice.
  5. 제 1항에 있어서, The method of claim 1,
    상기 유기계 경화형 분말 바인더는 노볼락 페놀 수지 또는 분말 형태로 변형된 멜라민 수지, 에폭시 수지, 실리콘 수지 중 선택된 1종 이상인 것을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재. The organic-based curable powder binder is a novolak phenol resin or expanded perlite heat insulating material using a thermosetting resin, characterized in that at least one selected from melamine resin, epoxy resin, silicone resin modified in powder form.
  6. 제 1항에 있어서, The method of claim 1,
    상기 보강섬유는 무기질계 또는 유기질계 섬유 중 선택된 1종 이상인 것을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재. The reinforcing fibers are expanded perlite heat insulating material using a thermosetting resin, characterized in that at least one selected from inorganic or organic fibers.
  7. 제 2항에 있어서, The method of claim 2,
    상기 보강제는 무기질계 보강제를 사용하는 것을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재. The reinforcing agent is an expanded perlite heat insulating material using a thermosetting resin, characterized in that using an inorganic reinforcing agent.
  8. 제 7항에 있어서, The method of claim 7, wherein
    상기 무기질계 보강제는 인산암모늄, 인산알루미늄, 인산아연, 붕산, 붕소, 붕사 중 선택된 1종 이상인 것을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재. The inorganic reinforcing agent is an expanded perlite heat insulating material using a thermosetting resin, characterized in that at least one selected from ammonium phosphate, aluminum phosphate, zinc phosphate, boric acid, boron, borax.
  9. 제 7항에 있어서, The method of claim 7, wherein
    상기 무기질계 보강제는 흄드 실리카, 에어로겔 또는 화이트 카본 중 선택된 1종 이상인 것을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재. The inorganic reinforcing agent is expanded perlite heat insulating material using a thermosetting resin, characterized in that at least one selected from fumed silica, aerogels or white carbon.
  10. 제 1항에 있어서,The method of claim 1,
    상기 열경화성 수지를 이용한 팽창 퍼라이트 단열재는 분말상의 발수제를 추가로 포함하고 것을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재.The expanded perlite insulation using the thermosetting resin further comprises a powdery water repellent, the expanded perlite insulation using a thermosetting resin.
  11. 제 1항에 있어서,The method of claim 1,
    상기 팽창 퍼라이트 표면에 유리 실란계 커플링제, 티타네이트계 커플링제, 지르코네이트계 커플링제 중 선택된 1종의 코팅막이 더 구성됨을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재. The expanded perlite heat insulating material using a thermosetting resin, characterized in that the surface of the expanded perlite further comprises one coating film selected from a glass silane coupling agent, titanate coupling agent, zirconate coupling agent.
  12. 원광을 건조 후 팽창시켜 팽창 퍼라이트를 제조하는 제 1단계; A first step of preparing expanded perlite by drying and expanding the ore;
    상기 제 1단계에서 제조한 팽창 퍼라이트 10~84 중량%, 유기계 경화형 분말 바인더 15~85 중량% 및 보강섬유 0.25 ~ 5 중량% 를 혼합하여 혼합재를 제조하는 제 2단계; A second step of preparing a mixture by mixing 10 to 84 wt% of the expanded perlite prepared in the first step, 15 to 85 wt% of the organic curing powder binder, and 0.25 to 5 wt% of the reinforcing fiber;
    상기 제 2단계에서 제조한 혼합재를 압축 또는 압출하여 성형체를 만들고 상기 성형체를 일차 경화시키는 제 3단계; 및 A third step of compressing or extruding the mixture prepared in the second step to form a molded article and first curing the molded article; And
    상기 제 3단계에서 일차 경화된 성형체를 후경화시키는 제 4단계를 포함하는 것을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재의 제조방법.And a fourth step of post-curing the primary-cured molded body in the third step.
  13. 제 12항에 있어서, The method of claim 12,
    상기 제 1단계의 팽창 퍼라이트 제조시, 일정한 입도분포범위에 맞춰 한번에 팽창시켜 제조하는 방법 또는 입자 크기별로 따로 팽창시킨 후 이를 혼합하여 제조하는 방법 중 선택된 1종으로 제조하는 것을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재의 제조방법. When preparing the expanded perlite of the first step, the thermosetting resin, characterized in that it is prepared by one of the method of manufacturing by expanding at a time according to a certain particle size distribution range or by separately expanding and then mixing them for each particle size prepared Method for producing an expanded perlite insulation used.
  14. 제 12항에 있어서, The method of claim 12,
    상기 제 1단계의 팽창 퍼라이트 제조시, 직접화염법 또는 간접화염법 중 선택된 1종 이상으로 팽창되는 것을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재의 제조방법. Method of manufacturing an expanded perlite heat insulating material using a thermosetting resin, characterized in that when the expanded perlite of the first step is expanded to at least one selected from a direct flame method or an indirect flame method.
  15. 제 12항에 있어서,The method of claim 12,
    상기 제 3단계의 성형체 제조시, 압축성형 또는 연속식 압출 성형 중 선택된 1종 이상으로 제조하는 것을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재의 제조방법.Method for producing an expanded perlite insulation using a thermosetting resin, characterized in that for producing the molded article of the third step, at least one selected from compression molding or continuous extrusion molding.
  16. 제 12항에 있어서, The method of claim 12,
    상기 제 3단계의 성형체 제조시, 제 2단계의 혼합재를 진동이나 충격을 주어 체밀충전 방법을 더 거친 후, 상기 제3단계를 진행하는 것을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재의 제조방법.In the manufacturing of the molded article of the third step, after passing through the body filling method by vibrating or impacting the mixture of the second step, and then proceeding to the third step, the method of producing an expanded perlite heat insulating material using a thermosetting resin.
  17. 제 12항에 있어서, The method of claim 12,
    상기 제 2단계의 혼합물 제조시, 유기 경화형 분말 바인더는 노볼락 페놀 수지 또는 분말 형태로 변형된 멜라민 수지, 에폭시 수지, 실리콘 수지 중 선택된 1종 이상인 것을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재의 제조방법. In the preparation of the mixture of the second step, the organic curable powder binder is novolak phenol resin or the production of expanded perlite heat insulating material using a thermosetting resin, characterized in that at least one selected from melamine resin, epoxy resin, silicone resin modified in powder form Way.
  18. 제 12항에 있어서, The method of claim 12,
    상기 제 2단계의 혼합물 제조시, 보강섬유로 무기질계 섬유 또는 유기질계 섬유 중 선택된 1종 이상을 사용하는 것을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재의 제조방법.In the preparation of the mixture of the second step, a method for producing an expanded perlite heat insulating material using a thermosetting resin, characterized in that at least one selected from inorganic fibers or organic fibers as a reinforcing fiber.
  19. 제 12항에 있어서, The method of claim 12,
    상기 제 2단계의 혼합물 제조 시, 열 용융되어 고화되는 특징을 가진 보강제를 상기 유기계 경화형 분말 바인더 100중량부에 대하여 5~200중량부의 비율로 추가로 포함시키는 것을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재의 제조방법. When preparing the mixture of the second step, the expanded perlite using a thermosetting resin, characterized in that it further comprises a reinforcing agent having a feature that is heat-melted and solidified in a ratio of 5 to 200 parts by weight based on 100 parts by weight of the organic curable powder binder. Method of manufacturing insulation.
  20. 제 19항에 있어서, The method of claim 19,
    상기 보강제로는 인산암모늄, 인산알루미늄, 인산아연, 붕산, 붕소, 붕사 중 선택된 1종 이상을 사용하는 것을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재의 제조방법. The reinforcing agent is a method of producing an expanded perlite heat insulating material using a thermosetting resin, characterized in that at least one selected from ammonium phosphate, aluminum phosphate, zinc phosphate, boric acid, boron, borax.
  21. 제 12항에 있어서, The method of claim 12,
    상기 제 2단계의 혼합물 제조시, 분말상의 발수제를 더 첨가하여 제조하는 것을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재의 제조방법. In the preparation of the mixture of the second step, a method of manufacturing an expanded perlite heat insulating material using a thermosetting resin, characterized in that the powder is further prepared by adding a water repellent.
  22. 제 12항에 있어서, The method of claim 12,
    상기 제 2단계의 혼합물 제조 시, 보강제로 흄드 실리카나, 에어로겔 또는 화이트 카본 중 선택된 1종 이상을 더 첨가하여 제조하는 것을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재의 제조방법. In the preparation of the mixture of the second step, a method of manufacturing expanded perlite heat insulating material using a thermosetting resin, characterized in that the addition of at least one selected from fumed silica, airgel or white carbon as a reinforcing agent.
  23. 제 12항에 있어서, The method of claim 12,
    상기 제 3단계의 경화 시, 80 내지 300℃ 범위의 온도로 일차 경화를 수행하는 것을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재의 제조방법. When the hardening of the third step, the primary curing at a temperature in the range of 80 to 300 ℃ characterized in that the manufacturing method of the expanded perlite heat insulating material using a thermosetting resin.
  24. 제 12항에 있어서, The method of claim 12,
    상기 제 4단계의 후경화 시, 80 내지 300℃ 범위의 온도로 후경화를 수행하는 것을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재의 제조방법. When the post-cure of the fourth step, the post-curing at a temperature in the range of 80 to 300 ℃, the method of producing an expanded perlite heat insulating material using a thermosetting resin, characterized in that.
  25. 제 12항에 있어서,The method of claim 12,
    상기 제 4단계의 후경화 시, 추가적인 열처리를 수행하는 것을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재의 제조방법. The post-curing of the fourth step, the method of manufacturing an expanded perlite insulation using a thermosetting resin, characterized in that for performing additional heat treatment.
  26. 제 25항에 있어서, The method of claim 25,
    상기 열처리는 무산소 조건에서 80 내지 1100℃ 범위의 온도로 탄소화를 수행하는 것을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재의 제조방법. The heat treatment is a method of producing an expanded perlite heat insulating material using a thermosetting resin, characterized in that the carbonization is performed at a temperature in the range of 80 to 1100 ℃ in anoxic conditions.
  27. 제 25항에 있어서,The method of claim 25,
    상기 열처리는 대기존재 하에서 80 내지 400℃ 범위의 온도로 탄소화를 수행하는 것을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재의 제조방법.The heat treatment is in the air Process for producing an expanded perlite insulation using a thermosetting resin characterized in that the carbonization is carried out at a temperature in the range of 80 to 400 ℃.
  28. 제25항 또는 제26항에 있어서,The method of claim 25 or 26,
    상기 탄소화 수행 후에, 스팀 또는 이산화탄소를 유입시키는 활성화공정을 추가로 수행하는 것을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재의 제조방법.After the carbonization, the production method of the expanded perlite heat insulating material using a thermosetting resin, characterized in that for further performing an activation process for introducing steam or carbon dioxide.
  29. 제25항 또는 제26항에 있어서,The method of claim 25 or 26,
    상기 탄소화 수행 후에, 규소 또는 규소를 포함한 가스를 유입시키는 탄화규소화공정을 추가로 수행하는 것을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재의 제조방법.After the carbonization is carried out, the method of producing an expanded perlite heat insulating material using a thermosetting resin, characterized in that further performing a silicon carbide step of introducing a gas containing silicon or silicon.
  30. 제 12항에 있어서,The method of claim 12,
    상기 제 4단계의 후경화 후, 제조된 성형체의 표면을 발수제로 도포하고 건조하여 단열재를 제조하는 것을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재의 제조방법.After the post-curing of the fourth step, the surface of the prepared molded article is coated with a water repellent and dried to prepare a heat insulating material, characterized in that the manufacturing method of expanded perlite heat insulating material using a thermosetting resin.
  31. 제1항 내지 제11항 중의 어느 하나의 항에 의한 열경화성 수지를 이용한 팽창 퍼라이트 단열재로서, 상기 열경화성 수지를 이용한 팽창 퍼라이트 단열재는 보온재 또는 진공단열재의 심재로 사용되는 것을 특징으로 하는 열경화성 수지를 이용한 팽창 퍼라이트 단열재를 이용한 제품.The expanded perlite heat insulating material using the thermosetting resin according to any one of claims 1 to 11, wherein the expanded perlite heat insulating material using the thermosetting resin is used as a core material of a heat insulating material or a vacuum heat insulating material. Products using perlite insulation.
PCT/KR2011/007364 2010-10-06 2011-10-05 Expanded perlite thermal insulation material using a thermosetting resin, a production method for the same and a product using the same WO2012047012A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0097269 2010-10-06
KR1020100097269A KR101242812B1 (en) 2010-10-06 2010-10-06 Heat insulation using expanded perlite by thermosetting resin, its manufacturing method and products using it

Publications (2)

Publication Number Publication Date
WO2012047012A2 true WO2012047012A2 (en) 2012-04-12
WO2012047012A3 WO2012047012A3 (en) 2012-06-07

Family

ID=45928216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/007364 WO2012047012A2 (en) 2010-10-06 2011-10-05 Expanded perlite thermal insulation material using a thermosetting resin, a production method for the same and a product using the same

Country Status (2)

Country Link
KR (1) KR101242812B1 (en)
WO (1) WO2012047012A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103764733A (en) * 2012-07-07 2014-04-30 迪睿合电子材料有限公司 Method for producing thermally conductive sheet
US9593797B2 (en) * 2015-01-30 2017-03-14 Johns Manville Hybrid high temperature insulation
WO2018056485A1 (en) * 2016-09-21 2018-03-29 (주)선한엠엔티 Multifunctional composite building panel

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101964956B1 (en) * 2017-11-22 2019-04-03 대한민국(산림청 국립산림과학원장) Forming material including charcoal with thermal conductors and manufacturing method thereof
CN107739168B (en) * 2017-11-29 2020-08-14 山东建筑大学 Flame-retardant thermal-insulation material containing expanded vermiculite with low thermal conductivity coefficient and preparation method thereof
CN107986733B (en) * 2017-11-29 2020-07-28 山东建筑大学 Flame-retardant heat-insulating material containing ceramic fiber modified expanded vermiculite and preparation method thereof
ES2937645B2 (en) 2021-09-29 2023-11-02 Clades Composites S L COMPOSITE CONSTRUCTION MATERIAL THAT COMPRISES A THERMOSTABLE RESIN AND A POROUS FILLER
ES2942461A1 (en) 2021-12-01 2023-06-01 Clades Composites S L COMPOSITE CONSTRUCTION MATERIAL COMPRISING A THERMOSTABLE RESIN AND SURFACE-TREATED FILLERS (Machine-translation by Google Translate, not legally binding)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6383224B1 (en) * 1998-12-17 2002-05-07 Benoist Girard Sas Prosthetic acetabulum fixing plate
US20030187513A1 (en) * 2002-03-26 2003-10-02 Durniak Todd D. System and method for delivering biological materials to a prosthesis implantation site
WO2010033473A2 (en) * 2008-09-18 2010-03-25 Smith & Nephew, Inc. Apparatus and method for addressing femoral acetabular impingement

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001051428A1 (en) 2000-01-13 2001-07-19 Balmoral Technologies (Proprietary) Limited Method of making a product from an expanded mineral
KR20030061541A (en) * 2002-01-14 2003-07-22 길애숙 Incombustible insulating material and preparing method of the same
KR101142170B1 (en) 2010-03-05 2012-05-03 주식회사 경동세라텍 Heat insulation using expanded perlite of closed cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6383224B1 (en) * 1998-12-17 2002-05-07 Benoist Girard Sas Prosthetic acetabulum fixing plate
US20030187513A1 (en) * 2002-03-26 2003-10-02 Durniak Todd D. System and method for delivering biological materials to a prosthesis implantation site
WO2010033473A2 (en) * 2008-09-18 2010-03-25 Smith & Nephew, Inc. Apparatus and method for addressing femoral acetabular impingement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103764733A (en) * 2012-07-07 2014-04-30 迪睿合电子材料有限公司 Method for producing thermally conductive sheet
CN103764733B (en) * 2012-07-07 2015-07-22 迪睿合电子材料有限公司 Method for producing thermally conductive sheet
US9593797B2 (en) * 2015-01-30 2017-03-14 Johns Manville Hybrid high temperature insulation
WO2018056485A1 (en) * 2016-09-21 2018-03-29 (주)선한엠엔티 Multifunctional composite building panel

Also Published As

Publication number Publication date
KR101242812B1 (en) 2013-03-12
KR20120035628A (en) 2012-04-16
WO2012047012A3 (en) 2012-06-07

Similar Documents

Publication Publication Date Title
WO2012047012A2 (en) Expanded perlite thermal insulation material using a thermosetting resin, a production method for the same and a product using the same
WO2011108856A2 (en) Thermal insulator using closed cell expanded perlite
WO2016159439A1 (en) Porous fiber-reinforced composite and method for preparing same
WO2021177541A1 (en) Method for repair and reinforcement of concrete structure using three-dimensional fibers
KR20140100446A (en) Fire protection mortar
KR19990044558A (en) Composites containing aerogels and adhesives, preparation methods thereof and uses thereof
WO2018216932A1 (en) Method for manufacturing foam molded product
WO2016105159A1 (en) Lightweight sound-absorbing refractory thermal insulating material using expanded graphite and swellable clay, and method for manufacturing same
WO2018208005A1 (en) Production method for silica aerogel blanket and silica aerogel blanket produced thereby
WO2021054644A1 (en) Aerogel blanket and manufacturing method therefor
CZ20012210A3 (en) Microporous heat-proofing body
KR102593723B1 (en) High-temperature wear-resistant ceramic glaze, high-temperature wear-resistant ceramic coating layer preform and its manufacturing method and application
WO2017069558A1 (en) Porous single resin fiber composite material and method for manufacturing porous single resin fiber composite material
WO2019216518A1 (en) Quasi-nonflammable finishing material composition, preparation method of same, and construction method using same
WO2019098519A1 (en) Low-dust silica aerogel blanket and method for manufacturing same
KR101179170B1 (en) Quartz Sand Nonflammable Material for Substituting Asbestos and Method for Preparing the Same
WO2017051963A1 (en) Carbon fiber electrode using carbon fiber and manufacturing method therefor
KR20110125913A (en) Bricks for interior containing stone sludge and methods for preparing thereof
WO2018128208A1 (en) Asphalt composition and asphalt paving method using same
WO2020242169A1 (en) Finishing material composition, and preparation method therefor and construction method using same
WO2018048276A1 (en) Porous fiber reinforced composite material and method for preparing same
WO2018221987A1 (en) Aerogel sheet and insulation material comprising same
KR940000727B1 (en) Cement-containing ceramic articles and method for production thereof
WO2021066482A1 (en) Silica sol, silica aerogel blanket manufactured using same, and method for manufacturing same
KR101909086B1 (en) Fiber mixed type calcium silicate inorganic insulations and fabrication method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830897

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11830897

Country of ref document: EP

Kind code of ref document: A2