WO2018128208A1 - Asphalt composition and asphalt paving method using same - Google Patents

Asphalt composition and asphalt paving method using same Download PDF

Info

Publication number
WO2018128208A1
WO2018128208A1 PCT/KR2017/000233 KR2017000233W WO2018128208A1 WO 2018128208 A1 WO2018128208 A1 WO 2018128208A1 KR 2017000233 W KR2017000233 W KR 2017000233W WO 2018128208 A1 WO2018128208 A1 WO 2018128208A1
Authority
WO
WIPO (PCT)
Prior art keywords
asphalt
asphalt composition
weight
composition
aggregate
Prior art date
Application number
PCT/KR2017/000233
Other languages
French (fr)
Korean (ko)
Inventor
김현욱
권수안
Original Assignee
한국건설기술연구원
주식회사 포스코건설
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국건설기술연구원, 주식회사 포스코건설 filed Critical 한국건설기술연구원
Priority to PCT/KR2017/000233 priority Critical patent/WO2018128208A1/en
Publication of WO2018128208A1 publication Critical patent/WO2018128208A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/16Waste materials; Refuse from building or ceramic industry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/12Nitrogen containing compounds organic derivatives of hydrazine
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/26Bituminous materials, e.g. tar, pitch
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/18Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/32Coherent pavings made in situ made of road-metal and binders of courses of different kind made in situ
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to the field of civil engineering, and more particularly, to an asphalt composition and an asphalt pavement method using the same.
  • wastes contain a large amount of effective resources, such as iron, carbon, and limestone, which can be recycled to aggregate.
  • slag aggregates satisfy the domestic road aggregate standards such as density and abrasion, and the Marshall Stability value of asphalt mixture using slag aggregate It was found to meet the mixture criteria for surface and substrate.
  • the slag aggregate can be fully utilized for asphalt concrete for roads.
  • the present invention is derived to solve the above problems, excellent durability, water resistance, strength, excellent adhesion, shortening traffic control time, excellent workability, economical asphalt composition and asphalt paving method using the same Its purpose is to provide.
  • the present invention is an asphalt composition containing an aggregate containing a steelmaking slag having a maximum particle diameter of 10mm, the synthetic particle size is 10mm, 5mm, 2.5mm, 1.2mm, 0.6mm, 0.3mm, 0.15mm , 0.08mm, 98-99.7%, 75-80%, 45-57%, 27-40%, 17-27%, 10-16%, 7-9%, 4-6% asphalt composition, respectively present.
  • Asphalt composition of the present invention is 90 to 97% by weight of the aggregate; Filler 1 to 6% by weight; It is preferred to include a binder; 1 to 7% by weight.
  • the aggregate is 0.15 parts by weight of steelmaking slag based on the aggregate; Circulating aggregate 0.15 parts by weight; And general aggregate 0.7 parts by weight; It is preferable to include.
  • the filler is preferably any one of limestone powder, portland cement, slaked lime, recovered dust or a mixture of two or more.
  • the binder is 85 to 95% by weight of general asphalt; 2-7 wt% SBS modifier; It is preferable to include; 2 to 8% by weight emulsifier.
  • the general asphalt is 5 to 15 parts by weight of saturated hydrocarbon; 30 to 45 parts by weight of aromatics; 30 to 45 parts by weight of resin; It is preferable to include; 5 to 20 parts by weight of asphaltenes.
  • the binder is 85 to 95% by weight of general asphalt; 0.1-10% by weight of the neutralizing additive; Corrosion inhibitor 0.05-2% by weight; And 1 to 20% by weight reinforcing agent; It is preferable to include.
  • the neutralizing additive preferably includes a wax component additive and a polyetheramine component additive.
  • the mixing weight ratio of the wax component additive to the polyetheramine component additive is preferably 1: 0.2 to 1: 1.
  • the wax component additive is either a polyethylene wax having a melting point of 60 ° C. or more, or a synthetic wax synthesized by a Fischer-Tropsh process, and the polyetheramine component preferably has a molecular weight of 800 or more.
  • the polyetheramine component preferably comprises ether functional groups formed by ethylene oxide and propylene oxide.
  • the corrosion inhibitor is preferably any one of a phenol-based corrosion inhibitor, an amine corrosion inhibitor or a sulfur-based corrosion inhibitor.
  • the reinforcing agent is a by-product of the vacuum distillation process, and the by-product of the vacuum distillation process is preferably in the form of a hydrocarbon compound having an aromatic content of 50% or more produced in the middle stage of the vacuum distillation process.
  • the by-product of the vacuum distillation process has a flash point of 230 ° C. or higher according to ASTM D93, and a viscosity (60 ° C.) of ASTM D2171 of 1,000 centipoise (cP) or less.
  • porosity is 3.5 to 7%.
  • Asphalt pavement method using an asphalt composition manufacturing step of mixing the asphalt composition; A pretreatment step of removing foreign matter from the asphalt pavement surface; It includes; laying step of laying the asphalt composition on the outer surface of the asphalt pavement surface.
  • the manufacturing step is preferably such that the mixing temperature of the asphalt composition is 130 ⁇ 140 °C.
  • Another asphalt pavement method using an asphalt composition is a manufacturing step of mixing the asphalt composition to form a base layer and a surface layer, respectively; A base layer forming step of forming the base layer by pouring the asphalt composition in a region for paving the asphalt; A bitumen material placing step of depositing a bitumen material on the base layer; And a surface layer forming step of forming the surface layer by pouring the asphalt composition on top of the laid bitumen material.
  • the mixing temperature of the asphalt composition for forming the base layer is 130 to 185 ° C, and the compaction temperature is preferably 115 to 150 ° C.
  • the manufacturing step is preferably a mixing temperature of the asphalt composition for forming the surface layer is 130 ⁇ 140 °C, compaction temperature is 115 ⁇ 125 °C.
  • the base layer forming step is preferably such that the thickness of the base layer is 8 ⁇ 12cm.
  • the surface layer forming step is preferably such that the thickness of the surface layer is 3 ⁇ 7cm.
  • the present invention provides excellent durability, water resistance, strength, excellent adhesion, shortening traffic control time, excellent workability, economical asphalt composition and asphalt paving method using the same.
  • 1 is a graph showing the synthetic particle size of the asphalt mixture of the present invention.
  • Figure 2 is a graph showing the composite particle size of the asphalt mixture of the present invention including recycled aggregate
  • 5 is a graph showing the results of measuring strain strength.
  • 6 is a graph showing the results of indirect tensile strength measurement.
  • the present invention is an asphalt composition containing an aggregate containing steelmaking slag having a maximum particle diameter of 10mm, the synthetic particle size is 10mm, 5mm, 2.5mm, 1.2mm, 0.6mm, 0.3mm, 0.15mm, 0.08mm, respectively. 98 ⁇ 99.7%, 75 ⁇ 80%, 45 ⁇ 57%, 27-40%, 17 ⁇ 27%, 10-16%, 7-9%, 4-6%.
  • Table 1 and FIG. 1 is a table and a graph showing the above synthetic particle size distribution.
  • Asphalt composition in which steelmaking slag is mixed has been developed in Korea, but a composition based on the synthetic particle size of aggregate having a maximum particle diameter of 10 mm has not been developed.
  • the biggest feature is that the performance of the asphalt composition incorporating steelmaking slag can be maximized.
  • the adhesion to the pavement material is excellent, there is an advantage that can increase the various finishing and non-slip effect through the thin layer pavement.
  • Asphalt composition as above is 90 to 97% by weight aggregate; Filler 1 to 6% by weight; It comprises a binder; 1 to 7% by weight.
  • Table 2 shows the above component combination ratio.
  • Above aggregate is 0.15 parts by weight of steelmaking slag; Circulating aggregate 0.15 parts by weight; And general aggregate 0.7 parts by weight; can be used in a configuration including.
  • Table 3 and Figure 2 is a table and graph showing the distribution of synthetic particle size of the aggregate containing circulating aggregate.
  • the filler may be any one of limestone powder, portland cement, slaked lime, recovered dust or a mixture of two or more.
  • the recovered dust is subjected to a Percent of Rigden Voids (PRV) test to use the appropriate number of dust.
  • PRV Percent of Rigden Voids
  • the binder is 85 to 95% by weight of general asphalt; 2-7 wt% SBS modifier; Emulsifier 2 ⁇ 8% by weight; is configured to include.
  • Table 4 shows the above component combination ratio.
  • the general asphalt is 5 to 15 parts by weight of saturated hydrocarbon; 30 to 45 parts by weight of aromatics; 30 to 45 parts by weight of resin; 5 to 20 parts by weight of asphaltenes; is configured to include.
  • Table 5 shows the above component combination ratio.
  • binder is 85 to 95% by weight of general asphalt; 0.1-10% by weight of the neutralizing additive; Corrosion inhibitor 0.05-2% by weight; And a reinforcing agent 1 to 20% by weight; a binder containing can be used.
  • the neutralizing additive may include a wax component additive and a polyetheramine component additive, and a mixing weight ratio of the wax component additive to the polyetheramine component additive may be 1: 0.2 to 1: 1.
  • the wax component and the polyetheramine component have a complementary function.
  • the wax component plays a role of preventing the deterioration of high temperature performance by improving plastic deformation resistance
  • the polyetheramine component plays a role of preventing degradation of low temperature performance by improving crack resistance.
  • the wax component additive is either a polyethylene wax having a melting point of 60 ° C. or more, or a synthetic wax synthesized by a Fischer-Tropsh process, and the polyetheramine component preferably has a molecular weight of 800 or more.
  • the polyetheramine component in the neutralizing additive preferably comprises ether functional groups formed by ethylene oxide and propylene oxide.
  • the corrosion inhibitor is any one of a phenol-based corrosion inhibitor, an amine corrosion inhibitor or a sulfur-based corrosion inhibitor.
  • the above corrosion inhibitors prevent the corrosion of the slag aggregates by preventing the oxidation of the asphalt evenly coated in the slag aggregates having a rough surface and a lot of pores.
  • the adjuvant is a by-product of the vacuum distillation process, and the by-product of the vacuum distillation process is preferably in the form of a hydrocarbon compound having an aromatic content of 50% or more produced in the intermediate stage of the vacuum distillation process.
  • the by-product of the vacuum distillation process preferably has a flash point of 230 ° C. or higher according to ASTM D93 and a viscosity (60 ° C.) of ASTM D2171 of 1,000 centipoise (cP) or less.
  • the reinforcing agent is a physical reinforcing agent, and is added to the asphalt composition using recycled aggregate to reinforce the stiffness and penetration of the asphalt composition.
  • the reinforcing agent of the present invention improves fatigue cracking resistance by minimizing heterogeneity with asphalt raw materials possessed by conventional vegetable oils.
  • the asphalt composition of this invention is 3.5 to 7% of porosity.
  • the middle temperature asphalt pavement method may be performed using the asphalt composition of the present invention.
  • Asphalt paving method can be made by the following process.
  • the mixing temperature of the asphalt composition is 130 to 140 ° C.
  • the asphalt pavement method of the present invention can be carried out by the method of forming the base layer and the surface layer of the asphalt structure as follows.
  • the mixing temperature of the asphalt composition for forming the base layer is 130 to 185 ° C, and the compaction temperature is 115 to 150 ° C.
  • the mixing temperature of the asphalt composition for forming a surface layer is 130-140 degreeC, and compaction temperature may be 115-125 degreeC.
  • the base layer forming step of forming the base layer by pouring the asphalt composition in the area for asphalt pavement is made.
  • the thickness of a base layer into 8-12 cm.
  • step of installing bitumen material is carried out to install the bitumen material on top of the base layer.
  • the bitumen laying step above is a process for solving the problem of penetration of the tack coat and mixing with the base material.
  • a surface layer forming step is performed in which an asphalt composition is poured on top of the laid bitumen material to form a surface layer.
  • the surface layer be 3-7 cm in thickness.
  • Asphalt pavement method made of such a process has the advantage that it is easy in construction, and excellent in performance, mid-temperature thin-layer pavement in terms of functionality, construction, and economics.
  • the specimens were prepared at the optimum asphalt content (OAC) according to the component blend ratio proposed in the present invention, and thus plastic deformation resistance and crack resistance were obtained. (resistant of cracking) and the like.
  • the general mixture using the asphalt mixture and granite crushed stone of the present invention was prepared as a specimen, and the performance was compared and analyzed according to the deformation strength test, the indirect tensile strength test, and the wheel tracking test.
  • the composite particle size was applied to the coarse aggregate maximum size of 10mm standard, the particle size determined by synthesizing each aggregate is shown in the graph shown in Table 8 and FIG.
  • the specimen was fabricated using the OAC determined based on the mixed design data provided by Gyeonggi University. The specimens were produced with 150mm diameter and 100mm specimens.
  • Deformation strength test method is the same as the compaction direction in the specimen production and the loading direction of the load in the fracture test, and the resistance to plastic deformation of the asphalt mixture can be more overview, considering the axial compression and shear resistance.
  • the strain strength test of asphalt concrete was calculated by reading the maximum load (P) and the vertical strain (y) pressed from the surface at the load-strain curve obtained by loading the specimens taken out of the 60 ° C water bath.
  • Deformation strength test was carried out by setting specimens in the Kim Test assembly.
  • Indirect tensile strength tests can be used to predict crack initiation resistance by providing tensile strength and tensile strain useful for characterizing asphalt mixtures.
  • the indirect tensile strength test is calculated by measuring the maximum load at break by applying load to the specimen with a concave load strip with a diameter of 100 mm inside the specimen.
  • FIG. 4 is a schematic diagram of the indirect tensile strength, the indirect tensile strength test was carried out through the specimen.
  • a slab specimen of 305 x 305 x 50 mm was prepared with a roller press compactor to achieve a porosity of 4% in order to perform a repeat driving test.
  • the prepared specimens were tested after 6 hours storage at 60 °C after room temperature curing for 24 hours.
  • the amount of settlement according to 2,520 repeated runs (time and number of passes) for 60 minutes was measured at a test temperature of 60 ° C., a loading load of 686 kN (70 kg) and a number of passes of 42 times / min.
  • the wheel is made of steel, diameter 200 mm, width 50 mm and one stroke stroke 230 mm (KS F 2374).
  • the deformation strength of the general granite aggregate mixture was 4.05 MPa, which is higher than the standard 3.2.
  • the modified H-PMA, WMRA mixture is 5.0, 4.54 MPa was shown to satisfy the general 3.2 standard, Ministry of Land, Infrastructure and Transport, 4.25 MPa for heavy vehicles.
  • the mixture showed the highest tensile strength of 3.39 MPa and the slag AP-5, H-PMA and WMRA mixtures showed 2.54, 2.72 and 2.3 MPa, respectively.
  • the indirect tensile strength at 25 and 40 ° C was about 70% at 0.49 and 0.18 MPa for the slag AP-5 mixture compared to 0.72 and 0.25 MPa for the general mixture.
  • the tensile strength of the asphalt mixture according to the present invention shows that the H-PMA and WMRA mixtures have values of 0.95 and 0.84 MPa, respectively, increasing by 31 and 17%, respectively.
  • Tensile strength of H-PMA and WMRA mixture was about 15% higher than that of H-PMA mixture.
  • the dynamic stability of the general slag mixture was 242 pass / mm, which was 50% higher than that of 530 of the general mixture.
  • the dynamic stability of the H-PMA mixture was 1,491 pass / mm, which appears to be an increase in the plastic deformation resistance with the use of modified asphalt.
  • Table 12 shows the strain strength results of specimens prepared using PG76-22 (WMRA) binder with aggregates containing recycled aggregates.
  • the strain strength satisfies the 4.25 MPa standard, which is the standard for heavy vehicles.
  • Table 13 shows the results of dynamic stability testing of specimens prepared using PG76-22 (WMRA) binders with aggregates containing recycled aggregates.
  • the dynamic stability according to an embodiment of the present invention is 4128, and it can be confirmed that the Korea Highway Corporation satisfies the dynamic stability standard of 2500.
  • Table 14 shows the recovery modulus (M R ) test results of specimens prepared using PG76-22 (WMRA) binder together with aggregates containing recycled aggregates.

Abstract

The present invention relates to an asphalt composition in which aggregates including steel slag having a maximum particle diameter of 10 mm are mixed, and provides: an asphalt composition of which the combined gradation is respectively 98-99.7%, 75-80%, 45-57%, 27-40%, 17-27%, 10-16%, 7-9%, and 4-6% when sieve sizes are 10 mm, 5 mm, 2.5 mm, 1.2 mm, 0.6 mm, 0.3 mm, 0.15 mm, and 0.08 mm; and an asphalt paving method using the same, thereby having excellent durability, water resistance, and strength, and superior adhesive strength, shortening traffic control time, having good constructability, and being economical.

Description

아스팔트 조성물 및 이를 이용한 아스팔트 포장공법Asphalt composition and asphalt pavement method using the same
본 발명은 토목, 기술분야에 관한 것으로서, 상세하게는 아스팔트 조성물 및 이를 이용한 아스팔트 포장공법에 관한 것이다.The present invention relates to the field of civil engineering, and more particularly, to an asphalt composition and an asphalt pavement method using the same.
국내에서 제철공정에서 발생하는 폐기물은 주 제품의 50%에 달하며 2015년 기준 약 2,800 여만 톤의 막대한 양이 발생하고 있다.In Korea, the amount of waste generated from the steelmaking process accounts for 50% of the main products, generating about 28 million tons in 2015.
이러한 폐기물은 철, 탄소, 석회석 등의 재활용이 가능한 유효 자원을 다량 함유하고 있어, 골재로의 재활용이 가능하다.These wastes contain a large amount of effective resources, such as iron, carbon, and limestone, which can be recycled to aggregate.
이미 미국, 호주, 캐나다, 유럽 등에서는 슬래그를 우수한 골재로 재가공하여 고부가가치의 아스팔트 및 시멘트 콘크리트용 골재로 사용하고 있다.Already in the United States, Australia, Canada, Europe, slag is reprocessed into excellent aggregates and used as aggregates for high value-added asphalt and cement concrete.
국내의 경우, 최근 자연환경보전에 관한 법률이 강화되어 도로포장용 골재 채취 및 석산의 신규개발이 어려워져 양질의 골재 수급이 어렵고, 지역에 따라 골재 파동이 발생하는 경우도 있다.In Korea, the law on conservation of natural environment has recently been strengthened, making it difficult to collect aggregates for road paving and new development of quarries, which makes it difficult to supply high-quality aggregates.
이러한 시대적 요구에 부합하여 제철소에서 부산물로 발생하는 슬래그를 골재로 재가공하여 도로포장재료로 활용하고자 하는 노력이 활발히 추진되고 있다.In order to meet the demands of the times, efforts are being actively made to reprocess slag generated as a by-product in steel mills as aggregates and to use it as road paving materials.
선행연구에 의하면, 슬래그 골재는 밀도 (density), 마모감량 (abrasion) 등의 기준이 국내의 도로용 골재 기준을 충분히 만족하며, 슬래그 골재를 사용한 아스팔트 혼합물의 마샬안정도 (Marshall Stability) 값은 도로용 표층 및 기층용 혼합물 기준을 만족하는 것으로 나타났다.According to the previous study, slag aggregates satisfy the domestic road aggregate standards such as density and abrasion, and the Marshall Stability value of asphalt mixture using slag aggregate It was found to meet the mixture criteria for surface and substrate.
또한, 소성변형 저항성 (rutting resistance)은 일반 쇄석골재 (crush run) 혼합물에 비하여 슬래그 골재를 사용한 아스팔트 혼합물이 우수한 것을 확인할 수 있다.In addition, the rutting resistance can be seen that the asphalt mixture using the slag aggregate is superior to the general crush run (crush run) mixture.
따라서, 슬래그 골재는 도로용 아스팔트 콘크리트에 충분히 활용이 가능한 것이다.Therefore, the slag aggregate can be fully utilized for asphalt concrete for roads.
하지만 국내의 슬래그 재활용 분야의 경우, 슬래그 미분말 및 도로용 노반재로의 단순 사용에 그치고 있어 외국에 비하여 사용방법 및 활용도 측면에서 미비한 실정이다.However, in the domestic slag recycling field, it is merely used as a fine slag powder and roadbed material for road use, which is insufficient in terms of usage and utilization compared to foreign countries.
또한, 슬래그 골재의 아스팔트 배합의 경우, 슬래그 골재 표면의 특성으로 인한 불완전 코팅 발생하는 등 문제점이 있으므로, 이러한 문제점을 해결하고 잔류 아스팔트의 물성을 회복시키기 위한 방안이 필요하다.In addition, in the case of the asphalt mixture of slag aggregate, there is a problem such as incomplete coating occurs due to the characteristics of the surface of the slag aggregate, there is a need for a solution to solve this problem and to restore the properties of the residual asphalt.
본 발명은 상기와 같은 문제점을 해결하기 위하여 도출된 것으로서, 내구성, 내수성, 강도가 우수하며 접착력이 뛰어나고, 교통통제시간을 단축시키며, 시공성이 우수하고, 경제적인 아스팔트 조성물 및 이를 이용한 아스팔트 포장공법을 제공하는 것을 그 목적으로 한다.The present invention is derived to solve the above problems, excellent durability, water resistance, strength, excellent adhesion, shortening traffic control time, excellent workability, economical asphalt composition and asphalt paving method using the same Its purpose is to provide.
상기 과제의 해결을 위하여, 본 발명은 최대입경이 10mm인 제강슬래그를 포함하는 골재가 혼입된 아스팔트 조성물로서, 합성입도는 체크기 10mm, 5mm, 2.5mm, 1.2mm, 0.6mm, 0.3mm, 0.15mm, 0.08mm일 경우, 각각 98~99.7%, 75~80%, 45~57%, 27~40%, 17~27%, 10~16%, 7~9%, 4~6%인 아스팔트 조성물을 제시한다.In order to solve the above problems, the present invention is an asphalt composition containing an aggregate containing a steelmaking slag having a maximum particle diameter of 10mm, the synthetic particle size is 10mm, 5mm, 2.5mm, 1.2mm, 0.6mm, 0.3mm, 0.15mm , 0.08mm, 98-99.7%, 75-80%, 45-57%, 27-40%, 17-27%, 10-16%, 7-9%, 4-6% asphalt composition, respectively present.
본 발명의 아스팔트 조성물은 상기 골재 90~97 중량%; 채움재 1~6 중량%; 바인더 1~7 중량%;를 포함하는 것이 바람직하다.Asphalt composition of the present invention is 90 to 97% by weight of the aggregate; Filler 1 to 6% by weight; It is preferred to include a binder; 1 to 7% by weight.
상기 골재는 상기 골재를 기준으로 제강슬래그 0.15 중량부; 순환골재 0.15 중량부; 및 일반골재 0.7 중량부;를 포함하는 것이 바람직하다.The aggregate is 0.15 parts by weight of steelmaking slag based on the aggregate; Circulating aggregate 0.15 parts by weight; And general aggregate 0.7 parts by weight; It is preferable to include.
상기 채움재는 석회석분, 포틀랜드 시멘트, 소석회, 회수 더스트 중 어느 하나 또는 2 이상의 혼합물인 것이 바람직하다.The filler is preferably any one of limestone powder, portland cement, slaked lime, recovered dust or a mixture of two or more.
상기 바인더는 일반 아스팔트 85~95 중량%; SBS 개질제 2~7 중량%; 유화제 2~8 중량%;를 포함하는 것이 바람직하다.The binder is 85 to 95% by weight of general asphalt; 2-7 wt% SBS modifier; It is preferable to include; 2 to 8% by weight emulsifier.
상기 일반 아스팔트는 포화탄화수소 5~15 중량부; 방향족 30~45 중량부; 레진 30~45 중량부; 아스팔텐 5~20 중량부;를 포함하는 것이 바람직하다.The general asphalt is 5 to 15 parts by weight of saturated hydrocarbon; 30 to 45 parts by weight of aromatics; 30 to 45 parts by weight of resin; It is preferable to include; 5 to 20 parts by weight of asphaltenes.
상기 바인더는 일반 아스팔트 85~95 중량%; 중온화 첨가제 0.1~10 중량%; 부식방지제 0.05~2 중량%; 및 보강제 1~20 중량%;를 포함하는 것이 바람직하다.The binder is 85 to 95% by weight of general asphalt; 0.1-10% by weight of the neutralizing additive; Corrosion inhibitor 0.05-2% by weight; And 1 to 20% by weight reinforcing agent; It is preferable to include.
상기 중온화 첨가제는 왁스성분 첨가제 및 폴리에테르아민 성분 첨가제를 포함하는 것이 바람직하다.The neutralizing additive preferably includes a wax component additive and a polyetheramine component additive.
상기 왁스성분 첨가제 대 폴리에테르아민 성분 첨가제의 혼합 중량비는 1:0.2~1:1인 것이 바람직하다.The mixing weight ratio of the wax component additive to the polyetheramine component additive is preferably 1: 0.2 to 1: 1.
상기 왁스성분 첨가제는 용융점이 60℃ 이상인 폴리에틸렌 왁스 또는 피셔-트롭쉬(fischer-Tropsh) 공정에 의해 합성된 합성 왁스 중 어느 하나이고, 상기 폴리에테르아민 성분은 800 이상의 분자량을 가지는 것이 바람직하다.The wax component additive is either a polyethylene wax having a melting point of 60 ° C. or more, or a synthetic wax synthesized by a Fischer-Tropsh process, and the polyetheramine component preferably has a molecular weight of 800 or more.
상기 폴리에테르아민 성분은 에틸렌 옥사이드 및 프로필렌 옥사이드에 의해 형성된 에테르 작용기를 포함하는 것이 바람직하다.The polyetheramine component preferably comprises ether functional groups formed by ethylene oxide and propylene oxide.
상기 부식방지제는 폐놀계 부식방지제, 아민계 부식 방지제 또는 유황계 부식방지제 중 어느 하나인 것이 바람직하다.The corrosion inhibitor is preferably any one of a phenol-based corrosion inhibitor, an amine corrosion inhibitor or a sulfur-based corrosion inhibitor.
상기 보강제는 감압증류공정의 부산물이고, 상기 감압증류공정의 부산물은 감압증류공정의 중간 단에서 생산되는 방향족 함량이 50% 이상인 탄화수소 화합물 형태인 것이 바람직하다.The reinforcing agent is a by-product of the vacuum distillation process, and the by-product of the vacuum distillation process is preferably in the form of a hydrocarbon compound having an aromatic content of 50% or more produced in the middle stage of the vacuum distillation process.
상기 감압증류공정의 부산물은 ASTM D93에 의한 인화점이 230℃ 이상이고, ASTM D2171에 의한 점도(60℃)가 1,000 센티포아즈(cP) 이하인 것이 바람직하다.The by-product of the vacuum distillation process has a flash point of 230 ° C. or higher according to ASTM D93, and a viscosity (60 ° C.) of ASTM D2171 of 1,000 centipoise (cP) or less.
본 발명의 아스팔트 조성물은 공극율은 3.5~7%인 것이 바람직하다.As for the asphalt composition of this invention, it is preferable that porosity is 3.5 to 7%.
본 발명의 일 실시 예에 따른 아스팔트 조성물을 이용한 아스팔트 포장공법은 상기 아스팔트 조성물을 혼합하여 제조하는 제조단계; 아스팔트 포장면의 이물질을 제거하는 전처리 단계; 상기 아스팔트 포장면의 외면에 상기 아스팔트 조성물을 포설하는 포설단계;를 포한한다.Asphalt pavement method using an asphalt composition according to an embodiment of the present invention manufacturing step of mixing the asphalt composition; A pretreatment step of removing foreign matter from the asphalt pavement surface; It includes; laying step of laying the asphalt composition on the outer surface of the asphalt pavement surface.
상기 제조단계는 상기 아스팔트 조성물의 혼합온도가 130~140℃가 되도록 하는 것이 바람직하다.The manufacturing step is preferably such that the mixing temperature of the asphalt composition is 130 ~ 140 ℃.
본 발명의 일 실시 예에 따른 아스팔트 조성물을 이용한 또 다른 아스팔트 포장공법은 기층 및 표층을 형성하기 위한 상기 아스팔트 조성물을 각각 혼합하여 제조하는 제조단계; 상기 아스팔트 포장을 하기 위한 영역에 상기 아스팔트 조성물을 타설하여 상기 기층을 형성하는 기층 형성단계; 상기 기층의 상부에 역청재료를 포설하는 역청재료 포설단계; 상기 포설한 역청재료의 상부에 상기 아스팔트 조성물을 타설하여 상기 표층을 형성하는 표층 형성단계;를 포함한다.Another asphalt pavement method using an asphalt composition according to an embodiment of the present invention is a manufacturing step of mixing the asphalt composition to form a base layer and a surface layer, respectively; A base layer forming step of forming the base layer by pouring the asphalt composition in a region for paving the asphalt; A bitumen material placing step of depositing a bitumen material on the base layer; And a surface layer forming step of forming the surface layer by pouring the asphalt composition on top of the laid bitumen material.
상기 제조단계는 상기 기층을 형성하기 위한 아스팔트 조성물의 혼합온도는 130~185℃이며, 다짐온도는 115~150℃가 되도록 하는 것이 바람직하다.In the manufacturing step, the mixing temperature of the asphalt composition for forming the base layer is 130 to 185 ° C, and the compaction temperature is preferably 115 to 150 ° C.
상기 제조단계는 상기 표층을 형성하기 위한 아스팔트 조성물의 혼합온도는 130~140℃이며, 다짐온도는 115~125℃가 되도록 하는 것이 바람직하다.The manufacturing step is preferably a mixing temperature of the asphalt composition for forming the surface layer is 130 ~ 140 ℃, compaction temperature is 115 ~ 125 ℃.
상기 기층 형성단계는 상기 기층의 두께가 8~12cm가 되도록 하는 것이 바람직하다.The base layer forming step is preferably such that the thickness of the base layer is 8 ~ 12cm.
상기 표층 형성단계는 상기 표층의 두께가 3~7cm가 되도록 하는 것이 바람직하다.The surface layer forming step is preferably such that the thickness of the surface layer is 3 ~ 7cm.
본 발명은 내구성, 내수성, 강도가 우수하며 접착력이 뛰어나고, 교통통제시간을 단축하며, 시공성이 우수하고, 경제적인 아스팔트 조성물 및 이를 이용한 아스팔트 포장공법을 제시한다.The present invention provides excellent durability, water resistance, strength, excellent adhesion, shortening traffic control time, excellent workability, economical asphalt composition and asphalt paving method using the same.
도 1은 본 발명의 아스팔트 혼합물의 합성입도를 나타낸 그래프.1 is a graph showing the synthetic particle size of the asphalt mixture of the present invention.
도 2는 순환골재를 포함하는 본 발명의 아스팔트 혼합물의 합성입도를 나타낸 그래프Figure 2 is a graph showing the composite particle size of the asphalt mixture of the present invention including recycled aggregate
도 3 이하는 본 발명의 효과를 검증하기 위한 실험결과로서,3 is an experimental result for verifying the effect of the present invention,
도 4는 간접인장강도의 모사도.4 is a schematic diagram of the indirect tensile strength.
도 5은 변형강도 측정 결과를 나타낸 그래프.5 is a graph showing the results of measuring strain strength.
도 6은 간접인장강도 측정 결과를 나타낸 그래프.6 is a graph showing the results of indirect tensile strength measurement.
도 7은 Wheel tracking 시험결과 동적안정도를 측정한 결과를 나타낸 그래프.7 is a graph showing the results of measuring the dynamic stability of the wheel tracking test results.
이하, 첨부표 및 첨부도면을 참조하여 본 발명의 실시예에 관하여 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the attached table and the accompanying drawings.
본 발명은 최대입경이 10mm인 제강슬래그를 포함하는 골재가 혼입된 아스팔트 조성물로서, 합성입도는 체크기 10mm, 5mm, 2.5mm, 1.2mm, 0.6mm, 0.3mm, 0.15mm, 0.08mm일 경우, 각각 98~99.7%, 75~80%, 45~57%, 27~40%, 17~27%, 10~16%, 7~9%, 4~6%인 것이 특징이다.The present invention is an asphalt composition containing an aggregate containing steelmaking slag having a maximum particle diameter of 10mm, the synthetic particle size is 10mm, 5mm, 2.5mm, 1.2mm, 0.6mm, 0.3mm, 0.15mm, 0.08mm, respectively. 98 ~ 99.7%, 75 ~ 80%, 45 ~ 57%, 27-40%, 17 ~ 27%, 10-16%, 7-9%, 4-6%.
표 1 및 도 1은 위의 합성입도 분포를 나타낸 표 및 그래프이다.Table 1 and FIG. 1 is a table and a graph showing the above synthetic particle size distribution.
Figure PCTKR2017000233-appb-T000001
Figure PCTKR2017000233-appb-T000001
국내에는 제강슬래그가 혼입된 아스팔트 조성물은 개발되어 있지만, 최대입경이 10mm인 골재의 합성입도를 기준으로 한 조성물은 개발된 바가 없다.Asphalt composition in which steelmaking slag is mixed has been developed in Korea, but a composition based on the synthetic particle size of aggregate having a maximum particle diameter of 10 mm has not been developed.
따라서, 본 발명에서는 10mm 밀입도 혼합물의 합성입도 기준을 제시함으로써, 제강슬래그가 혼입된 아스팔트 조성물의 성능을 극대화할 수 있다는 점이 가장 큰 특징이다.Therefore, in the present invention, by presenting the synthetic particle size standards of the 10 mm dense mixture, the biggest feature is that the performance of the asphalt composition incorporating steelmaking slag can be maximized.
보다 구체적으로, 본 발명의 아스팔트 조성물을 통해 얻을 수 있는 장점은 다음과 같다.More specifically, the advantages obtained through the asphalt composition of the present invention are as follows.
첫째, 제강슬래그가 혼입됨으로써, 아스팔트의 소성변형 저항성 및 균열 저항성이 향상되고, 강도, 내구성, 내수성이 뛰어나므로 도로용 아스팔트 콘크리트로서의 성능을 효과적으로 발휘할 수 있다는 장점이 있다.First, by mixing steelmaking slag, the plastic deformation resistance and crack resistance of the asphalt is improved, and the strength, durability, and water resistance are excellent, so that the performance as asphalt concrete for roads can be effectively exhibited.
아울러, 본 발명에서는 10mm 밀입도 합성입도 기준을 명확히 제시함에 따라, 위의 장점을 보다 극대화할 수 있다.In addition, in the present invention, by clearly presenting the 10 mm compactness synthetic particle size standards, it is possible to maximize the above advantages more.
둘째, 제강슬래그를 아스팔트 골재로서 사용함으로써, 제조공정에서 발생하는 이산화탄소를 저감시켜 친환경적이며, 경제적이라는 장점이 있다.Secondly, by using steelmaking slag as an asphalt aggregate, carbon dioxide generated in the manufacturing process is reduced to have an advantage of being environmentally friendly and economical.
셋째, 본 발명의 아스팔트 조성물을 이용하여 아스팔트 포장을 할 경우, 시공성이 뛰어남과 아울러, 중온화 기술이 적용되므로 교통통제시간을 단축할 수 있다는 장점이 있다.Third, when the asphalt pavement using the asphalt composition of the present invention, there is an advantage in that the construction time is excellent, and the traffic control time can be shortened because the medium temperature technology is applied.
넷째, 본 발명의 아스팔트 조성물을 이용하여 아스팔트 포장을 할 경우, 포장재에 대하여 접착력이 우수하고, 박층 포장을 통해 다양한 마감효과와 논슬립 효과를 증대시킬 수 있다는 장점이 있다.Fourth, when the asphalt pavement using the asphalt composition of the present invention, the adhesion to the pavement material is excellent, there is an advantage that can increase the various finishing and non-slip effect through the thin layer pavement.
위와 같은 아스팔트 조성물은 골재 90~97 중량%; 채움재 1~6 중량%; 바인더 1~7 중량%;를 포함하여 구성된다.Asphalt composition as above is 90 to 97% by weight aggregate; Filler 1 to 6% by weight; It comprises a binder; 1 to 7% by weight.
표 2는 위의 성분 배합비를 나타낸 것이다.Table 2 shows the above component combination ratio.
Figure PCTKR2017000233-appb-T000002
Figure PCTKR2017000233-appb-T000002
위 골재(골재를 기준으로)는 제강슬래그 0.15 중량부; 순환골재 0.15 중량부; 및 일반골재 0.7 중량부;를 포함하는 구성으로 사용할 수 있다.Above aggregate (based on aggregate) is 0.15 parts by weight of steelmaking slag; Circulating aggregate 0.15 parts by weight; And general aggregate 0.7 parts by weight; can be used in a configuration including.
이 경우, 순환골재를 사용하여 환경오염원을 줄이고, 경제성을 향상시킬 수 있다.In this case, it is possible to reduce the environmental pollution source using the recycled aggregate, improve the economics.
표 3 및 도 2는 순환골재가 포함된 골재의 합성입도 분포를 나타낸 표 및 그래프이다.Table 3 and Figure 2 is a table and graph showing the distribution of synthetic particle size of the aggregate containing circulating aggregate.
Figure PCTKR2017000233-appb-T000003
Figure PCTKR2017000233-appb-T000003
위의 채움재는 석회석분, 포틀랜드 시멘트, 소석회, 회수 더스트 중 어느 하나 또는 2 이상의 혼합물을 사용할 수 있다.The filler may be any one of limestone powder, portland cement, slaked lime, recovered dust or a mixture of two or more.
여기서, 회수 더스트는 PRV(Percent of Rigden Voids) 시험을 시행하여 적합한 횟수 더스트를 사용한다.Here, the recovered dust is subjected to a Percent of Rigden Voids (PRV) test to use the appropriate number of dust.
또한, 바인더는 일반 아스팔트 85~95 중량%; SBS 개질제 2~7 중량%; 유화제 2~8 중량%;를 포함하여 구성된다.In addition, the binder is 85 to 95% by weight of general asphalt; 2-7 wt% SBS modifier; Emulsifier 2 ~ 8% by weight; is configured to include.
표 4은 위의 성분 배합비를 나타낸 것이다.Table 4 shows the above component combination ratio.
Figure PCTKR2017000233-appb-T000004
Figure PCTKR2017000233-appb-T000004
여기서, 일반 아스팔트는 포화탄화수소 5~15 중량부; 방향족 30~45 중량부; 레진 30~45 중량부; 아스팔텐 5~20 중량부;를 포함하여 구성된다.Here, the general asphalt is 5 to 15 parts by weight of saturated hydrocarbon; 30 to 45 parts by weight of aromatics; 30 to 45 parts by weight of resin; 5 to 20 parts by weight of asphaltenes; is configured to include.
표 5는 위의 성분 배합비를 나타낸 것이다.Table 5 shows the above component combination ratio.
Figure PCTKR2017000233-appb-T000005
Figure PCTKR2017000233-appb-T000005
위 바인더는 일반 아스팔트 85~95 중량%; 중온화 첨가제 0.1~10 중량%; 부식방지제 0.05~2 중량%; 및 보강제 1~20 중량%;를 포함하는 바인더를 사용할 수 있다.Above binder is 85 to 95% by weight of general asphalt; 0.1-10% by weight of the neutralizing additive; Corrosion inhibitor 0.05-2% by weight; And a reinforcing agent 1 to 20% by weight; a binder containing can be used.
이때, 중온화 첨가제는 왁스성분 첨가제 및 폴리에테르아민 성분 첨가제를 포함하고, 왁스성분 첨가제 대 폴리에테르아민 성분 첨가제의 혼합 중량비는 1:0.2~1:1인 것을 사용할 수 있다.In this case, the neutralizing additive may include a wax component additive and a polyetheramine component additive, and a mixing weight ratio of the wax component additive to the polyetheramine component additive may be 1: 0.2 to 1: 1.
왁스 성분과 폴리에테르아민 성분은 상호 보완적 기능을 가진다. The wax component and the polyetheramine component have a complementary function.
왁스 성분은 소성변형 저항성을 향상시켜 고온 성능의 저하를 방지하는 역활을 하고, 폴리에테르아민 성분은 균열 저항성을 향상시켜 저온 성능의 저하를 방지하는 역활을 한다.The wax component plays a role of preventing the deterioration of high temperature performance by improving plastic deformation resistance, and the polyetheramine component plays a role of preventing degradation of low temperature performance by improving crack resistance.
왁스성분 첨가제는 용융점이 60℃ 이상인 폴리에틸렌 왁스 또는 피셔-트롭쉬(fischer-Tropsh) 공정에 의해 합성된 합성 왁스 중 어느 하나이고, 상기 폴리에테르아민 성분은 800 이상의 분자량을 가지는 것이 바람직하다.The wax component additive is either a polyethylene wax having a melting point of 60 ° C. or more, or a synthetic wax synthesized by a Fischer-Tropsh process, and the polyetheramine component preferably has a molecular weight of 800 or more.
중온화 첨가제 중 폴리에테르아민 성분은 에틸렌 옥사이드 및 프로필렌 옥사이드에 의해 형성된 에테르 작용기를 포함하는 것이 바람직하다.The polyetheramine component in the neutralizing additive preferably comprises ether functional groups formed by ethylene oxide and propylene oxide.
부식방지제는 폐놀계 부식방지제, 아민계 부식 방지제 또는 유황계 부식방지제 중 어느 하나인 것이 바람직하다.It is preferable that the corrosion inhibitor is any one of a phenol-based corrosion inhibitor, an amine corrosion inhibitor or a sulfur-based corrosion inhibitor.
위 부식방지제는 표면이 거칠고 포어(pore)가 많은 슬래그 골재 내에 아스팔트가 고르게 코팅되도록 함과 동시에 산화를 억제하여 슬래그 골재의 부식을 방지한다.The above corrosion inhibitors prevent the corrosion of the slag aggregates by preventing the oxidation of the asphalt evenly coated in the slag aggregates having a rough surface and a lot of pores.
보강제는 감압증류공정의 부산물이고, 감압증류공정의 부산물은 감압증류공정의 중간 단에서 생산되는 방향족 함량이 50% 이상인 탄화수소 화합물 형태인 것이 바람직하다.The adjuvant is a by-product of the vacuum distillation process, and the by-product of the vacuum distillation process is preferably in the form of a hydrocarbon compound having an aromatic content of 50% or more produced in the intermediate stage of the vacuum distillation process.
감압증류공정의 부산물은 ASTM D93에 의한 인화점이 230℃ 이상이고, ASTM D2171에 의한 점도(60℃)가 1,000 센티포아즈(cP) 이하인 것이 바람직하다.The by-product of the vacuum distillation process preferably has a flash point of 230 ° C. or higher according to ASTM D93 and a viscosity (60 ° C.) of ASTM D2171 of 1,000 centipoise (cP) or less.
보강제는 물리력 보강제로서, 순환골재를 사용하는 아스팔트 조성물에 첨가되어 아스팔트 조성물의 스티프니스(stiffness) 및 침입도를 보강시켜 준다.The reinforcing agent is a physical reinforcing agent, and is added to the asphalt composition using recycled aggregate to reinforce the stiffness and penetration of the asphalt composition.
또한, 본 발명의 보강제는 기존의 식물성 오일류가 가진 아스팔트 원료와의 이질성을 최소화 하여 피로균열저항성을 향상시킨다.In addition, the reinforcing agent of the present invention improves fatigue cracking resistance by minimizing heterogeneity with asphalt raw materials possessed by conventional vegetable oils.
본 발명의 아스팔트 조성물은 공극율 3.5~7%인 것이 바람직하다.It is preferable that the asphalt composition of this invention is 3.5 to 7% of porosity.
앞서 설명한 바와 같이 본 발명의 아스팔트 조성물을 이용하여 중온 박층 아스팔트 포장공법을 실시할 수 있다.As described above, the middle temperature asphalt pavement method may be performed using the asphalt composition of the present invention.
아스팔트 포장공법은 다음과 같은 공정으로 이루어질 수 있다.Asphalt paving method can be made by the following process.
먼저, 아스팔트 조성물을 혼합하여 제조하는 제조단계와 아스팔트 포장면의 이물질을 제거하는 전처리 단계가 이루어진다.First, a manufacturing step of mixing and preparing an asphalt composition and a pretreatment step of removing foreign matter from the asphalt pavement surface are performed.
이 때, 아스팔트 조성물의 혼합온도는 130~140℃가 되도록 하는 것이 바람직하다.At this time, it is preferable that the mixing temperature of the asphalt composition is 130 to 140 ° C.
그리고 아스팔트 포장면의 외면에 아스팔트 조성물을 포설하는 포설단계가 이루어진다.And the laying step of laying the asphalt composition on the outer surface of the asphalt pavement surface.
또한, 본 발명의 아스팔트 포장공법은 다음과 같이 아스팔트 구조물의 기층 및 표층을 형성하는 방법으로 실시할 수 있다.In addition, the asphalt pavement method of the present invention can be carried out by the method of forming the base layer and the surface layer of the asphalt structure as follows.
먼저, 기층 및 표층을 형성하기 위한 아스팔트 조성물을 각각 혼합하여 제조하는 제조단계가 이루어진다.First, a manufacturing step of mixing and manufacturing the asphalt compositions for forming the base layer and the surface layer is made.
이때, 기층을 형성하기 위한 아스팔트 조성물의 혼합온도는 130~185℃이며, 다짐온도는 115~150℃가 되도록 하는 것이 바람직하다.At this time, it is preferable that the mixing temperature of the asphalt composition for forming the base layer is 130 to 185 ° C, and the compaction temperature is 115 to 150 ° C.
또한, 표층을 형성하기 위한 아스팔트 조성물의 혼합온도는 130~140℃이며, 다짐온도는 115~125℃가 되도록 하는 것이 바람직하다.In addition, it is preferable that the mixing temperature of the asphalt composition for forming a surface layer is 130-140 degreeC, and compaction temperature may be 115-125 degreeC.
다음으로, 아스팔트 포장을 하기 위한 영역에 아스팔트 조성물을 타설하여 상기 기층을 형성하는 기층 형성단계가 이루어진다.Next, the base layer forming step of forming the base layer by pouring the asphalt composition in the area for asphalt pavement is made.
여기서, 기층의 두께는 8~12cm가 되도록 하는 것이 바람직하다.Here, it is preferable to make the thickness of a base layer into 8-12 cm.
그리고 기층의 상부에 역청재료를 포설하는 역청재료 포설단계가 이루어진다.And the step of installing bitumen material is carried out to install the bitumen material on top of the base layer.
위의 역청재료 포설단계는 택코트의 침투 및 기층재료와의 혼합문제를 해결하기 위한 공정이라 할 수 있다.The bitumen laying step above is a process for solving the problem of penetration of the tack coat and mixing with the base material.
역청재료를 포설하고 1~2시간이 경과한 이후, 포설한 역청재료의 상부에 아스팔트 조성물을 타설하여 표층을 형성하는 표층 형성단계가 이루어진다.After 1 to 2 hours have elapsed after laying the bitumen material, a surface layer forming step is performed in which an asphalt composition is poured on top of the laid bitumen material to form a surface layer.
이 때, 표층은 두께가 3~7cm가 되도록 하는 것이 바람직하다.At this time, it is preferable that the surface layer be 3-7 cm in thickness.
이와 같은 공정으로 이루어진 아스팔트 포장공법은 시공이 용이하고, 성능이 뛰어난 중온 박층 도로포장을 구현하므로 기능적, 시공적, 경제적 측면에서 유리하다는 장점이 있다.Asphalt pavement method made of such a process has the advantage that it is easy in construction, and excellent in performance, mid-temperature thin-layer pavement in terms of functionality, construction, and economics.
이하, 본 발명의 효과를 알아보기 위한 실험예에 관하여 설명한다.Hereinafter, an experimental example for examining the effects of the present invention will be described.
본 발명의 골재로서 제강슬래그가 혼입된 아스팔트 조성물의 성능을 검증하기 위하여, 본 발명에서 제시하는 성분 배합비에 따라 최적아스팔트 함량 (optimum asphalt content: OAC)으로 공시체를 제조하여, 소성변형 저항성, 균열저항성 (resistant of cracking) 등을 평가하였다.In order to verify the performance of the asphalt composition in which steelmaking slag is mixed as the aggregate of the present invention, the specimens were prepared at the optimum asphalt content (OAC) according to the component blend ratio proposed in the present invention, and thus plastic deformation resistance and crack resistance were obtained. (resistant of cracking) and the like.
즉, 본 발명의 아스팔트 혼합물과 화강암 쇄석을 사용한 일반혼합물을 공시체로 제조하여 변형강도 시험, 간접인장강도 시험, 휠 트랙킹 시험을 수행함에 따라 성능을 평가하여 비교, 분석하였다.That is, the general mixture using the asphalt mixture and granite crushed stone of the present invention was prepared as a specimen, and the performance was compared and analyzed according to the deformation strength test, the indirect tensile strength test, and the wheel tracking test.
표 6에 나타낸 바와 같이, 공시체 제작에 사용한 아스팔트는 PG64-22 (pen. 60-80), PG76-22(HMA), PG76-22 (WMRA) 3종을 사용하였다.As shown in Table 6, three types of asphalt were used for preparing the specimens, PG64-22 (pen. 60-80), PG76-22 (HMA), and PG76-22 (WMRA).
Figure PCTKR2017000233-appb-T000006
Figure PCTKR2017000233-appb-T000006
표 7에 나타낸 바와 같이, 골재는 굵은 골재 최대치수 10mm의 슬래그 굵은 골재와 슬래그 잔골재를 사용하였고, 비교를 위하여 강원도 횡성지역의 화강암 (granite) 쇄석을 사용하였으며, 채움재(mineral filler)로 석회석분(limestone powder)을 사용하였다.As shown in Table 7, the aggregate used slag coarse aggregate and slag fine aggregate with the maximum size of coarse aggregate 10mm, and used granite crushed stone in Hoengseong-gun, Gangwon-do for comparison, and limestone powder (mineral filler) limestone powder) was used.
Figure PCTKR2017000233-appb-T000007
Figure PCTKR2017000233-appb-T000007
배합설계의 경우, 합성입도는 굵은 골재 최대치수 10mm 기준을 적용하였고, 각 골재를 합성하여 결정된 입도는 표 8 및 도 3에 도시된 그래프와 같다.In the case of the compound design, the composite particle size was applied to the coarse aggregate maximum size of 10mm standard, the particle size determined by synthesizing each aggregate is shown in the graph shown in Table 8 and FIG.
Figure PCTKR2017000233-appb-T000008
Figure PCTKR2017000233-appb-T000008
공시체 제조는 경기대에서 제공한 배합설계 자료를 근거로 결정한 OAC를 적용하였으며, 공시체는 직경 150mm 와 100mm 공시체를 제작하였다.The specimen was fabricated using the OAC determined based on the mixed design data provided by Gyeonggi University. The specimens were produced with 150mm diameter and 100mm specimens.
골재의 수급 여건에 따라 150mm에서 100mm로 변경하여 제작하였다.According to the supply and demand conditions of the aggregate was produced by changing from 150mm to 100mm.
본 검증시험은 공시체를 제작한 후 PINE사의 선회다짐기 (superpave gyratory compactor)를 사용하여 실시하였다.This verification test was carried out using PINE's superpave gyratory compactor after the specimen was prepared.
혼합물 제조 시, 골재 및 아스팔트 가열 단기노화(short term aging) 온도 및 시간은 표 9에 나타낸 바와 같다.In preparing the mixtures, aggregate and asphalt heating short term aging temperatures and times are shown in Table 9.
Figure PCTKR2017000233-appb-T000009
Figure PCTKR2017000233-appb-T000009
먼저, 변형강도(deformation strength: SD) 시험을 실시하였다.First, the deformation strength (SD) test was performed.
아스팔트 혼합물의 변형강도는 소성변형 (rutting) 특성과 높은 상관관계를 나타내는 특성치로서 배합설계의 중요 변수 중 하나이다 (R2=0.9 이상).Deformation strength of asphalt mixtures is one of the important variables in formulation design (R2 = 0.9 or more), which is a characteristic value that correlates well with the rutting properties.
변형강도 시험방법은 공시체 제조 시 다짐 방향과 파괴 시험 시 하중의 재하 방향이 동일하고, 축 방향 압축 및 전단에 대한 저항이 고려되어 아스팔트 혼합물의 소성변형에 대한 저항성을 보다 개관적으로 평가할 수 있다.Deformation strength test method is the same as the compaction direction in the specimen production and the loading direction of the load in the fracture test, and the resistance to plastic deformation of the asphalt mixture can be more overview, considering the axial compression and shear resistance.
또한, 변형강도 시험의 객관성을 인정하여 국토해양부 지침에는 마샬 안정도와 변형강도 기준을 병행하여 적용할 수 있도록 하고 있다.In addition, in recognition of the objectivity of the strain test, the Ministry of Land, Transport and Maritime Affairs guides the application of Marshall stability and strain strength in parallel.
아스팔트 콘크리트의 변형강도 시험은 60℃ 수조에서 꺼낸 공시체에 하중을 가하여 얻은 하중-변형 곡선에서 최대 하중 (P)과 이때 표면으로부터 눌려 들어간 수직변형 (y)을 읽어 계산하였다.The strain strength test of asphalt concrete was calculated by reading the maximum load (P) and the vertical strain (y) pressed from the surface at the load-strain curve obtained by loading the specimens taken out of the 60 ° C water bath.
변형강도 시험은 Kim Test 어셈블리에 공시체를 세팅하여 실시하였다.Deformation strength test was carried out by setting specimens in the Kim Test assembly.
다음으로, 간접인장강도(Indirect tensile strength: ITS) 시험을 실시하였다.Next, an indirect tensile strength (ITS) test was performed.
간접인장강도 시험은 아스팔트 혼합물을 특성화하는 데 있어서 유용한 인장강도와 인장변형률을 제공하여 균열발생 저항을 예측하는데 활용할 수 있다.Indirect tensile strength tests can be used to predict crack initiation resistance by providing tensile strength and tensile strain useful for characterizing asphalt mixtures.
본 연구에서 간접인장강도 시험은 5, 25, 40℃의 온도에서 3종의 바인더 혼합물에 대하여 수행하였다.Indirect tensile strength tests were performed on three binder mixtures at temperatures of 5, 25 and 40 ° C.
간접인장강도 시험은 공시체를 안쪽이 직경 100㎜로 오목한 하중 스트립을 공시체 상하 중심에 대고 하중을 가하여 파괴 시의 최대 하중을 측정하여 계산한다.The indirect tensile strength test is calculated by measuring the maximum load at break by applying load to the specimen with a concave load strip with a diameter of 100 mm inside the specimen.
도 4은 간접인장강도의 모사도로서, 공시체를 거치하여 간접인장강도 시험을 실시하였다.4 is a schematic diagram of the indirect tensile strength, the indirect tensile strength test was carried out through the specimen.
다음으로, Wheel tracking 시험에 의한 동적안정도 (dynamic stability)를 시험하였다.Next, the dynamic stability by the wheel tracking test was tested.
본 발명에서는 반복주행 시험을 수행하기 위하여 305×305×50㎜의 슬래브 공시체를 롤러 압축 다짐기 (roller press compactor)로 공극률 4%를 목표하여 제조하였다.In the present invention, a slab specimen of 305 x 305 x 50 mm was prepared with a roller press compactor to achieve a porosity of 4% in order to perform a repeat driving test.
제조된 공시체는 24시간 상온 양생 후 60℃에 6시간 보관 후 시험하였다. 시험 온도 60℃, 재하 윤하중 686kN (70kg), 통과횟수 42회/min로 60분 동안 2,520회 반복주행 (시간과 통과횟수)에 따른 침하량을 측정하였다. 바퀴의 재질은 강재, 직경 200㎜, 폭 50㎜이고 1회 왕복거리 (stroke)는 230㎜이다(KS F 2374). The prepared specimens were tested after 6 hours storage at 60 ℃ after room temperature curing for 24 hours. The amount of settlement according to 2,520 repeated runs (time and number of passes) for 60 minutes was measured at a test temperature of 60 ° C., a loading load of 686 kN (70 kg) and a number of passes of 42 times / min. The wheel is made of steel, diameter 200 mm, width 50 mm and one stroke stroke 230 mm (KS F 2374).
위와 같이 실험한 결과는 다음과 같다.The result of the experiment as above is as follows.
먼저, 변형강도의 경우, 화강암 골재를 사용한 일반 혼합물과 슬래그 골재를 사용한 일반 및 H-PMA, WMRA 혼합물의 변형강도는 표 10, 도 5에 나타낸 바와 같다. First, in the case of the deformation strength, the deformation strength of the general mixture using the granite aggregate and the slag aggregate and the normal and H-PMA, WMRA mixture is shown in Table 10, FIG.
Figure PCTKR2017000233-appb-T000010
Figure PCTKR2017000233-appb-T000010
일반 화강암골재 혼합물의 변형강도는 4.05 MPa로 일반 혼합물 기준인 3.2를 상회하는 값을 보였다.The deformation strength of the general granite aggregate mixture was 4.05 MPa, which is higher than the standard 3.2.
본 발명의 아스팔트 혼합물의 경우 일반은 3.96, 개질인 경우 H-PMA, WMRA 혼합물이 5.0, 4.54 MPa을 나타내 국토교통부 기준인 일반 3.2, 중차량용 4.25 MPa을 만족하는 값을 나타내었다.In the case of the asphalt mixture of the present invention is 3.96, the modified H-PMA, WMRA mixture is 5.0, 4.54 MPa was shown to satisfy the general 3.2 standard, Ministry of Land, Infrastructure and Transport, 4.25 MPa for heavy vehicles.
즉, 본 발명에 따른 아스팔트 혼합물의 경우, 비교용 화강암 일반 혼합물보다 높은 변형강도를 나타냈고, 변형강도는 유사한 값을 나타낸 것을 확인할 수 있다.That is, in the case of the asphalt mixture according to the present invention, it showed a higher deformation strength than the comparative granite general mixture, it can be seen that the deformation strength showed a similar value.
간접인장강도를 시험한 결과는 다음과 같다.The results of testing the indirect tensile strength are as follows.
표 11, 도 6에 나타낸 바와 같이, 슬래그 및 일반 아스팔트 혼합물의 간접인장강도는 온도가 증가하면서 감소하였다.As shown in Table 11, Figure 6, the indirect tensile strength of slag and general asphalt mixture decreased with increasing temperature.
Figure PCTKR2017000233-appb-T000011
Figure PCTKR2017000233-appb-T000011
5℃에서 일반 혼합물이 3.39 MPa의 인장강도를 나타내 가장 높은 값을 보였고, 슬래그 AP-5, H-PMA, WMRA 혼합물은 각각 2.54, 2.72, 2.3 MPa을 나타내었다.At 5 ° C, the mixture showed the highest tensile strength of 3.39 MPa and the slag AP-5, H-PMA and WMRA mixtures showed 2.54, 2.72 and 2.3 MPa, respectively.
25, 40℃에서 간접인장강도는 일반 혼합물의 0.72, 0.25 MPa 수준에 비하여 슬래그 AP-5 혼합물은 0.49, 0.18 MPa로 약 70% 수준의 값을 나타내었다.The indirect tensile strength at 25 and 40 ° C was about 70% at 0.49 and 0.18 MPa for the slag AP-5 mixture compared to 0.72 and 0.25 MPa for the general mixture.
하지만, 본 발명에 따른 아스팔트 혼합물의 인장강도는 H-PMA, WMRA 혼합물이 각각 0.95, 0.84 MPa의 값을 나타내 각각 31, 17% 증가하는 것으로 나타나 개질 효과가 큰 것을 보인다.However, the tensile strength of the asphalt mixture according to the present invention shows that the H-PMA and WMRA mixtures have values of 0.95 and 0.84 MPa, respectively, increasing by 31 and 17%, respectively.
H-PMA와 WMRA 혼합물의 인장강도는 H-PMA 혼합물이 약 15% 정도 높은 값을 나타내었다.Tensile strength of H-PMA and WMRA mixture was about 15% higher than that of H-PMA mixture.
다음으로 동적 안정도 시험결과는 다음과 같다.Next, dynamic stability test results are as follows.
Wheel tracking 시험결과 동적안정도를 도 6에 나타내었다.Wheel stability test results show dynamic stability in FIG. 6.
일반 슬래그 혼합물의 동적안정도는 242pass/mm로 나타나 일반 혼합물의 530에 비하여 50% 수준을 보였다.The dynamic stability of the general slag mixture was 242 pass / mm, which was 50% higher than that of 530 of the general mixture.
하지만 슬래그 AP-5 혼합물의 공극률이 5.8로 나타나 부족한 다짐이 원인인 것으로 판단되었다.However, the porosity of the slag AP-5 mixture was 5.8.
H-PMA 혼합물의 동적안정도는 1,491 pass/mm로 개질 아스팔트 사용에 따른 소성변형 저항성의 증가로 나타난 것으로 보인다.The dynamic stability of the H-PMA mixture was 1,491 pass / mm, which appears to be an increase in the plastic deformation resistance with the use of modified asphalt.
WMRA 혼합물의 경우 동적안정도는 1,666pass/mm로 소성변형성의 증가가 나타났다.In the case of the WMRA mixture, the dynamic stability was increased to 1,666 pass / mm.
위와 같이, 본 발명의 아스팔트 조성물의 효과를 검증하기 위한 실험 결과, 변형강도, 인장강도, 동적안정도 모두 뛰어나므로, 우수한 성능의 도로포장을 확보할 수 있다는 것을 확인하였다.As described above, as a result of the experiment for verifying the effect of the asphalt composition of the present invention, because it is excellent in all the deformation strength, tensile strength, dynamic stability, it was confirmed that the road paving of excellent performance can be secured.
표 12는 순환골재가 포함된 골재와 함께 PG76-22(WMRA) 바인더를 사용하여 제조한 공시체의 변형강도 결과이다.Table 12 shows the strain strength results of specimens prepared using PG76-22 (WMRA) binder with aggregates containing recycled aggregates.
AggAgg BinderBinder OAC(%)OAC (%) Density(g/㎤)Density (g / cm 3) Air Voids(%)Air Voids (%) VMA(%)VMA (%) VFA(%)VFA (%) SD(MPa)S D (MPa)
제강슬래그(15%)순환골재 (15%)일반골재(70%)Steelmaking slag (15%) Circulating aggregate (15%) General aggregate (70%) WMRAPG76-22WMRAPG76-22 5.65.6 2.4542.454 3.43.4 16.716.7 79.879.8 6.866.86
2.4562.456 3.33.3 16.616.6 80.380.3
2.4532.453 3.43.4 16.716.7 79.879.8
위 시험결과와 같이 변형강도는 국토교통부의 중차량 기준인 4.25MPa 기준을 만족한다.As shown in the test results above, the strain strength satisfies the 4.25 MPa standard, which is the standard for heavy vehicles.
표 13은 순환골재가 포함된 골재와 함께 PG76-22(WMRA) 바인더를 사용하여 제조한 공시체의 동적안정도 시험결과이다.Table 13 shows the results of dynamic stability testing of specimens prepared using PG76-22 (WMRA) binders with aggregates containing recycled aggregates.
AggAgg BinderBinder 45분 변형량(mm)45 min deformation (mm) 최종침하량(mm)Final settlement (mm) DSKS(pass/mm)DS KS (pass / mm) DSNEW(pass/mm)DS NEW (pass / mm) 변형속도(mm/min)Strain rate (mm / min)
제강슬래그(15%)순환골재 (15%)일반골재(70%)Steelmaking slag (15%) Circulating aggregate (15%) General aggregate (70%) WMRAPG76-22WMRAPG76-22 2.132.13 2.282.28 41284128 28762876 0.01020.0102
위 시험결과와 같이 본 발명의 일 실시 예에 따른 동적안정도는 4128로서, 한국도로공사 동적안정도 기준인 2500을 만족하는 것을 확인할 수 있다.As shown in the above test results, the dynamic stability according to an embodiment of the present invention is 4128, and it can be confirmed that the Korea Highway Corporation satisfies the dynamic stability standard of 2500.
표 14는 순환골재가 포함된 골재와 함께 PG76-22(WMRA) 바인더를 사용하여 제조한 공시체의 회복탄성계수(MR) 시험결과이다.Table 14 shows the recovery modulus (M R ) test results of specimens prepared using PG76-22 (WMRA) binder together with aggregates containing recycled aggregates.
Agg.Agg. BinderBinder APCont.(%)APCont. (%) AirVoids(%)AirVoids (%) 5℃5 ℃ 25℃25 ℃ 45℃45 ℃
MR M R MR M R MR M R
제강슬래그(15%)순환골재 (15%)일반골재(70%)Steelmaking slag (15%) Circulating aggregate (15%) General aggregate (70%) WMRAPG76-22WMRAPG76-22 5.65.6 3.43.4 20,20820,208 12,64012,640 1,3721,372
이상은 본 발명에 의해 구현될 수 있는 바람직한 실시예의 일부에 관하여 설명한 것에 불과하므로, 주지된 바와 같이 본 발명의 범위는 위의 실시예에 한정되어 해석되어서는 안 될 것이며, 위에서 설명된 본 발명의 기술적 사상과 그 근본을 함께 하는 기술적 사상은 모두 본 발명의 범위에 포함된다고 할 것이다.Since the above has been described only with respect to some of the preferred embodiments that can be implemented by the present invention, the scope of the present invention, as is well known, should not be construed as limited to the above embodiments, the present invention described above It will be said that both the technical idea and the technical idea which together with the base are included in the scope of the present invention.

Claims (22)

  1. 최대입경이 10mm인 제강슬래그를 포함하는 골재가 혼입된 아스팔트 조성물로서,Asphalt composition incorporating aggregate containing steelmaking slag having a maximum particle diameter of 10mm,
    합성입도는Composite particle size
    체크기 10mm, 5mm, 2.5mm, 1.2mm, 0.6mm, 0.3mm, 0.15mm, 0.08mm일 경우, 각각 98~99.7%, 75~80%, 45~57%, 27~40%, 17~27%, 10~16%, 7~9%, 4~6%인 것을 특징으로 하는 아스팔트 조성물.For checkers 10mm, 5mm, 2.5mm, 1.2mm, 0.6mm, 0.3mm, 0.15mm, 0.08mm, 98 ~ 99.7%, 75 ~ 80%, 45 ~ 57%, 27-40%, 17 ~ 27%, respectively , 10-16%, 7-9%, 4-6% asphalt composition.
  2. 제 1항에 있어서,The method of claim 1,
    상기 골재 90~97 중량%;90 to 97% by weight of the aggregate;
    채움재 1~6 중량%;Filler 1 to 6% by weight;
    바인더 1~7 중량%;를Binders 1-7 wt%;
    포함하는 것을 특징으로 하는 아스팔트 조성물.Asphalt composition comprising a.
  3. 제 2항에 있어서,The method of claim 2,
    상기 골재는The aggregate is
    상기 골재를 기준으로 제강슬래그 0.15 중량부;0.15 parts by weight of steelmaking slag based on the aggregate;
    순환골재 0.15 중량부; 및 Circulating aggregate 0.15 parts by weight; And
    일반골재 0.7 중량부;를 포함하는 것을 특징으로 하는 아스팔트 조성물.Asphalt composition, comprising 0.7 parts by weight of general aggregate.
  4. 제 2항에 있어서,The method of claim 2,
    상기 채움재는The filler is
    석회석분, 포틀랜드 시멘트, 소석회, 회수 더스트 중 어느 하나 또는 2 이상의 혼합물인 것을 특징으로 하는 아스팔트 조성물.Asphalt composition, characterized in that the limestone powder, Portland cement, slaked lime, recovered dust any one or a mixture of two or more.
  5. 제 2항에 있어서,The method of claim 2,
    상기 바인더는The binder is
    일반 아스팔트 85~95 중량%;General asphalt 85 to 95% by weight;
    SBS 개질제 2~7 중량%;2-7 wt% SBS modifier;
    유화제 2~8 중량%;를Emulsifier 2-8 wt%;
    포함하는 것을 특징으로 아스팔트 조성물.Asphalt composition comprising a.
  6. 제 5항에 있어서,The method of claim 5,
    상기 일반 아스팔트는The general asphalt
    포화탄화수소 5~15 중량부;5-15 parts by weight of saturated hydrocarbon;
    방향족 30~45 중량부;30 to 45 parts by weight of aromatics;
    레진 30~45 중량부;30 to 45 parts by weight of resin;
    아스팔텐 5~20 중량부;를5 to 20 parts by weight of asphaltenes;
    포함하는 것을 특징으로 하는 아스팔트 조성물.Asphalt composition comprising a.
  7. 제 2항에 있어서,The method of claim 2,
    상기 바인더는The binder is
    일반 아스팔트 85~95 중량%;General asphalt 85 to 95% by weight;
    중온화 첨가제 0.1~10 중량%;0.1-10% by weight of the neutralizing additive;
    부식방지제 0.05~2 중량%; 및 Corrosion inhibitor 0.05-2% by weight; And
    보강제 1~20 중량%;를 포함하는 것을 특징으로 아스팔트 조성물.Asphalt composition, characterized in that it comprises a;
  8. 제 7항에 있어서,The method of claim 7, wherein
    상기 중온화 첨가제는 왁스성분 첨가제 및 폴리에테르아민 성분 첨가제를 포함하는 것을 특징으로 하는 아스팔트 조성물.The neutralizing additive is asphalt composition comprising a wax component additive and a polyetheramine component additive.
  9. 제 8항에 있어서,The method of claim 8,
    상기 왁스성분 첨가제 대 폴리에테르아민 성분 첨가제의 혼합 중량비는 1:0.2~1:1인 것을 특징으로 하는 아스팔트 조성물.Asphalt composition, characterized in that the mixing weight ratio of the wax component additive to the polyetheramine component additive is 1: 0.2 to 1: 1.
  10. 제 8항에 있어서,The method of claim 8,
    상기 왁스성분 첨가제는 용융점이 60℃ 이상인 폴리에틸렌 왁스 또는 피셔-트롭쉬(fischer-Tropsh) 공정에 의해 합성된 합성 왁스 중 어느 하나이고, 상기 폴리에테르아민 성분은 800 이상의 분자량을 가지는 것을 특징으로 하는 아스팔트 조성물.The wax component additive is any one of a polyethylene wax having a melting point of 60 ° C. or more or a synthetic wax synthesized by a Fischer-Tropsh process, and the polyetheramine component has an molecular weight of 800 or more. Composition.
  11. 제 8항에 있어서,The method of claim 8,
    상기 폴리에테르아민 성분은 에틸렌 옥사이드 및 프로필렌 옥사이드에 의해 형성된 에테르 작용기를 포함하는 것을 특징으로 하는 아스팔트 조성물.The polyetheramine component is characterized in that it comprises an ether functional group formed by ethylene oxide and propylene oxide.
  12. 제 7항에 있어서,The method of claim 7, wherein
    상기 부식방지제는 폐놀계 부식방지제, 아민계 부식 방지제 또는 유황계 부식방지제 중 어느 하나인 것을 특징으로 하는 아스팔트 조성물.The preservative is an asphalt composition, characterized in that any one of the phenol-based corrosion inhibitor, amine-based corrosion inhibitor or sulfur-based corrosion inhibitor.
  13. 제 7항에 있어서,The method of claim 7, wherein
    상기 보강제는 감압증류공정의 부산물이고, 상기 감압증류공정의 부산물은 감압증류공정의 중간 단에서 생산되는 방향족 함량이 50% 이상인 탄화수소 화합물 형태인 것을 특징으로 하는 아스팔트 조성물.The reinforcing agent is a by-product of the reduced pressure distillation process, and the by-product of the reduced pressure distillation process is an asphalt composition, characterized in that the hydrocarbon compound in the form of an aromatic content of 50% or more produced in the intermediate stage of the reduced pressure distillation process.
  14. 제 13항에 있어서,The method of claim 13,
    상기 감압증류공정의 부산물은 ASTM D93에 의한 인화점이 230℃ 이상이고, ASTM D2171에 의한 점도(60℃)가 1,000 센티포아즈(cP) 이하인 것을 특징으로 하는 아스팔트 조성물.The by-product of the vacuum distillation process has a flash point of 230 ° C. or higher according to ASTM D93, and an asphalt composition according to ASTM D2171 having a viscosity (60 ° C.) of 1,000 centipoise (cP) or less.
  15. 제 1항에 있어서,The method of claim 1,
    공극율은 3.5~7%인 것을 특징으로 하는 아스팔트 조성물.Asphalt composition, characterized in that the porosity is 3.5-7%.
  16. 제 1항 내지 제 15항 중 어느 한 항의 아스팔트 조성물을 이용한 아스팔트 포장공법으로서,As asphalt paving method using the asphalt composition of any one of claims 1 to 15,
    상기 아스팔트 조성물을 혼합하여 제조하는 제조단계;A manufacturing step of mixing and manufacturing the asphalt composition;
    아스팔트 포장면의 이물질을 제거하는 전처리 단계;A pretreatment step of removing foreign matter from the asphalt pavement surface;
    상기 아스팔트 포장면의 외면에 상기 아스팔트 조성물을 포설하는 포설단계;를A laying step of laying the asphalt composition on an outer surface of the asphalt pavement surface;
    포함하는 것을 특징으로 하는 아스팔트 포장공법.Asphalt pavement method characterized in that it comprises.
  17. 제 16항에 있어서,The method of claim 16,
    상기 제조단계는The manufacturing step
    상기 아스팔트 조성물의 혼합온도가 130~140℃가 되도록 하는 것을 특징으로 하는 아스팔트 포장공법.Asphalt paving method, characterized in that the mixing temperature of the asphalt composition is 130 ~ 140 ℃.
  18. 제 1항 내지 제 15항 중 어느 한 항의 아스팔트 조성물을 이용한 아스팔트 포장공법으로서,As asphalt paving method using the asphalt composition of any one of claims 1 to 15,
    기층 및 표층을 형성하기 위한 상기 아스팔트 조성물을 각각 혼합하여 제조하는 제조단계;A manufacturing step of mixing the asphalt compositions for forming a base layer and a surface layer, respectively;
    상기 아스팔트 포장을 하기 위한 영역에 상기 아스팔트 조성물을 타설하여 상기 기층을 형성하는 기층 형성단계;A base layer forming step of forming the base layer by pouring the asphalt composition in a region for paving the asphalt;
    상기 기층의 상부에 역청재료를 포설하는 역청재료 포설단계;A bitumen material placing step of depositing a bitumen material on the base layer;
    상기 포설한 역청재료의 상부에 상기 아스팔트 조성물을 타설하여 상기 표층을 형성하는 표층 형성단계;를A surface layer forming step of forming the surface layer by pouring the asphalt composition on top of the laid bitumen material;
    포함하는 것을 특징으로 하는 아스팔트 포장공법.Asphalt pavement method characterized in that it comprises.
  19. 제 18항에 있어서,The method of claim 18,
    상기 제조단계는The manufacturing step
    상기 기층을 형성하기 위한 아스팔트 조성물의 혼합온도는 130~185℃이며,The mixing temperature of the asphalt composition for forming the base layer is 130 ~ 185 ℃,
    다짐온도는 115~150℃가 되도록 하는 것을 특징으로 하는 아스팔트 포장공법.Asphalt pavement method characterized in that the compaction temperature to be 115 ~ 150 ℃.
  20. 제 18항에 있어서,The method of claim 18,
    상기 제조단계는The manufacturing step
    상기 표층을 형성하기 위한 아스팔트 조성물의 혼합온도는 130~140℃이며,The mixing temperature of the asphalt composition for forming the surface layer is 130 ~ 140 ℃,
    다짐온도는 115~125℃가 되도록 하는 것을 특징으로 하는 아스팔트 포장공법.Asphalt pavement method characterized in that the compaction temperature to be 115 ~ 125 ℃.
  21. 제 18항에 있어서,The method of claim 18,
    상기 기층 형성단계는The base layer forming step
    상기 기층의 두께가 8~12cm가 되도록 하는 것을 특징으로 하는 아스팔트 포장공법.Asphalt pavement method characterized in that the thickness of the base layer to be 8 ~ 12cm.
  22. 제 18항에 있어서,The method of claim 18,
    상기 표층 형성단계는The surface layer forming step
    상기 표층의 두께가 3~7cm가 되도록 하는 것을 특징으로 하는 아스팔트 포장공법.Asphalt pavement method, characterized in that the thickness of the surface layer is 3 ~ 7cm.
PCT/KR2017/000233 2017-01-06 2017-01-06 Asphalt composition and asphalt paving method using same WO2018128208A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/000233 WO2018128208A1 (en) 2017-01-06 2017-01-06 Asphalt composition and asphalt paving method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/000233 WO2018128208A1 (en) 2017-01-06 2017-01-06 Asphalt composition and asphalt paving method using same

Publications (1)

Publication Number Publication Date
WO2018128208A1 true WO2018128208A1 (en) 2018-07-12

Family

ID=62789479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000233 WO2018128208A1 (en) 2017-01-06 2017-01-06 Asphalt composition and asphalt paving method using same

Country Status (1)

Country Link
WO (1) WO2018128208A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111747684A (en) * 2020-06-29 2020-10-09 上海佳砼新材料科技发展有限公司 Rubber asphalt mixture using steel slag as coarse aggregate and preparation method thereof
CN113250036A (en) * 2021-06-18 2021-08-13 中冶宝钢技术服务有限公司 Method for preparing asphalt synchronous macadam upper seal layer by using steel slag
WO2023020630A1 (en) * 2022-04-29 2023-02-23 中铁四局集团第一工程有限公司 Construction method for upper surface course made of steel slag-asphalt mixture

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100795184B1 (en) * 2006-09-08 2008-01-16 인천선강(주) The asphalt concrete which and uses this uses the oxidized slag as the electricity
KR100812354B1 (en) * 2007-01-18 2008-03-10 (주)한동재생공사 Method of pavement for preventing cracks
KR100840708B1 (en) * 2007-12-14 2008-06-24 한국투수개발 주식회사 Asphalt modifier containing blowing agent and asphalt composition containing thereof
KR101188092B1 (en) * 2012-04-30 2012-10-04 서울특별시 Modified asphalt concrete using di methyl phenol
KR101663584B1 (en) * 2016-03-29 2016-10-07 주식회사 한국도로기술 Asphalt Concrete Composition of Improving Durability for Paving Using Seaweeds and Constructing Methods Using Thereof
KR101672823B1 (en) * 2016-08-02 2016-11-04 주식회사 한수도로산업 Modified nonvolatile cold asphalt binder and recycled asphalt mixture using thereof
KR20170007104A (en) * 2015-07-09 2017-01-18 한국건설기술연구원 Asphalt mixtures and pavement construction method using the same thing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100795184B1 (en) * 2006-09-08 2008-01-16 인천선강(주) The asphalt concrete which and uses this uses the oxidized slag as the electricity
KR100812354B1 (en) * 2007-01-18 2008-03-10 (주)한동재생공사 Method of pavement for preventing cracks
KR100840708B1 (en) * 2007-12-14 2008-06-24 한국투수개발 주식회사 Asphalt modifier containing blowing agent and asphalt composition containing thereof
KR101188092B1 (en) * 2012-04-30 2012-10-04 서울특별시 Modified asphalt concrete using di methyl phenol
KR20170007104A (en) * 2015-07-09 2017-01-18 한국건설기술연구원 Asphalt mixtures and pavement construction method using the same thing
KR101663584B1 (en) * 2016-03-29 2016-10-07 주식회사 한국도로기술 Asphalt Concrete Composition of Improving Durability for Paving Using Seaweeds and Constructing Methods Using Thereof
KR101672823B1 (en) * 2016-08-02 2016-11-04 주식회사 한수도로산업 Modified nonvolatile cold asphalt binder and recycled asphalt mixture using thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111747684A (en) * 2020-06-29 2020-10-09 上海佳砼新材料科技发展有限公司 Rubber asphalt mixture using steel slag as coarse aggregate and preparation method thereof
CN113250036A (en) * 2021-06-18 2021-08-13 中冶宝钢技术服务有限公司 Method for preparing asphalt synchronous macadam upper seal layer by using steel slag
WO2023020630A1 (en) * 2022-04-29 2023-02-23 中铁四局集团第一工程有限公司 Construction method for upper surface course made of steel slag-asphalt mixture

Similar Documents

Publication Publication Date Title
WO2018128208A1 (en) Asphalt composition and asphalt paving method using same
WO2018030728A1 (en) Ultra-high-performance fiber-reinforced concrete and manufacturing method therefor
CN1215231C (en) Road reinforcing sheet, structure of asphalt reinforced pavement and method for paving road
KR101849311B1 (en) Asphalt mixtures and pavement construction method using the same thing
KR101460632B1 (en) Rapid hardening concrete composition for road repair containing steelmaking reducing slag powder and method of pave a road using the same
WO2011108856A9 (en) Thermal insulator using closed cell expanded perlite
WO2016111438A1 (en) Recycled cold semi-rigid asphalt concrete composition and method for preparing same
KR101181861B1 (en) Reclaimed asphalt concrete mixture at room temperature containing additive
KR100998881B1 (en) Composition of recycled asphalt concrete
KR102324071B1 (en) Method for manufacturing recycling room temperature asphalt concrete
KR20050031097A (en) Manufacturing methods of ultra rapid hardening and high ductile concrete
KR102478619B1 (en) Sand mastic asphalt concrete composition for thin overlay coating comprising high grade asphalt binder, and constructing method of thin overlay water-inpermeable pavement using the same
WO2016105059A1 (en) High-strength steel having excellent resistance to brittle crack propagation, and production method therefor
CN101885870A (en) High-viscosity thin-layer bituminous mixture modifier and application thereof
WO2012047012A2 (en) Expanded perlite thermal insulation material using a thermosetting resin, a production method for the same and a product using the same
US10988617B2 (en) Hybrid composition and method for the repair and maintenance of asphalt and concrete surfaceways
KR102425854B1 (en) Polymer concrete composition and construction method for pavement on bridge-deck using the same
WO2018216932A1 (en) Method for manufacturing foam molded product
WO2021149839A1 (en) Modified sulfur and preparation method therefor
WO2021172741A1 (en) Pipe fixing device and method for manufacturing same
WO2018079868A1 (en) Low-shrinkage and low-carbon green cement composition comprising carbon-mineralized fly ash and early strength type expansion agent, and concrete having same applied thereto
KR101136810B1 (en) A high durable epoxy asphalt pavement materials
KR100872518B1 (en) A repairing mortar composition containing polymer and repairing method using the same
Jaskula et al. Durable poroelastic wearing course SEPOR with highly modified bitumen
US6858075B1 (en) Thin concrete repair composition for alkali-aggregate reaction affected concrete

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.10.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17889824

Country of ref document: EP

Kind code of ref document: A1