WO2018030728A1 - Ultra-high-performance fiber-reinforced concrete and manufacturing method therefor - Google Patents
Ultra-high-performance fiber-reinforced concrete and manufacturing method therefor Download PDFInfo
- Publication number
- WO2018030728A1 WO2018030728A1 PCT/KR2017/008483 KR2017008483W WO2018030728A1 WO 2018030728 A1 WO2018030728 A1 WO 2018030728A1 KR 2017008483 W KR2017008483 W KR 2017008483W WO 2018030728 A1 WO2018030728 A1 WO 2018030728A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- crack
- reinforced concrete
- fiber
- high performance
- steel
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/04—Silica-rich materials; Silicates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B16/00—Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B16/04—Macromolecular compounds
- C04B16/06—Macromolecular compounds fibrous
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B16/00—Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B16/04—Macromolecular compounds
- C04B16/06—Macromolecular compounds fibrous
- C04B16/0616—Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B16/0666—Polystyrene
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B16/00—Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B16/04—Macromolecular compounds
- C04B16/08—Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/30—Water reducers, plasticisers, air-entrainers, flow improvers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/50—Defoamers, air detrainers
Definitions
- the present invention relates to an ultra-high performance fiber reinforced concrete and a method of manufacturing the same, and more particularly, to limit the shape coefficient of steel fiber to increase the fluidity without lowering the compressive strength and to artificially induce microcracks by crack derivatives.
- the present invention relates to an ultra-high performance fiber reinforced concrete and its manufacturing method for increasing tensile properties by having a strain hardening phenomenon and multiple fine crack distributions in tensile behavior.
- the compressive strength is 120 MPa or more
- the tensile strength is 5 MPa or more
- the flexural tensile strength There is an increasing demand for Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) with a strength of 30 MPa or more.
- UHPFRC Ultra-High Performance Fiber Reinforced Concrete
- Ultra-high performance fiber reinforced concrete has a very low water / binder ratio, formulation design based on the closest packing theory, excellent rheological properties using high performance water reducing agents, homogeneous properties and hydration formation using only fine aggregates without thick aggregates. High temperature curing conditions are basically required.
- the fiber reinforced concrete is not added to the fiber due to the lack of viscosity of the concrete because the fiber is added to the mixing of the general concrete, thereby failing to secure sufficient toughness.
- the fine particles of siliceous powder (specific surface area 2000,000 cm 2 / g) blended with fiber-reinforced concrete are much smaller than the cement particles (specific surface area 35,000 cm 2 / g).
- the main component has amorphous SiO 2 component
- the concrete structure is densified by producing calcium silicate (CSH) hydrate due to calcium hydroxide (Ca (OH) 2 ) and pozzolanic reaction produced by cement hydration.
- fiber reinforced concrete uses a high proportion of silica fine powder of 20-30% of cement weight to realize ultra high strength, the viscosity of concrete is increased and the production time of concrete is lengthened to secure predetermined fluidity.
- special mixers such as high speed mixers or shear mixers have to be used and expensive high performance sensitizers have to be used in large amounts, there is a case where the fibers are not evenly dispersed due to lack of fluidity.
- the cement composite is tough because the steel fiber is first drawn out from the concrete before the yield strength of the steel fiber is reached and fractured upon bending failure of the ultra-high performance fiber reinforced cement composite. You can see the effect.
- the durability of concrete is very closely related to the crack width.
- the self-healing performance of concrete depends on the crack width. In ultra-high fibre-reinforced concrete with low water binder ratio, controlling the crack width has a very close effect on durability and self-softening performance.
- the present invention is to solve such a conventional problem, it is an object of the present invention to secure the dispersibility of the fiber and at the same time tensile strength and strength to specify the shape coefficient of the steel fiber in order to secure the dispersibility of the conventional fiber reinforced concrete It is to improve toughness.
- Another object of the present invention is to improve the interfacial properties and adhesion deterioration phenomenon between the steel fibers and the cement matrix generated in the conventional fiber reinforced concrete, and to prevent a sudden decrease in tensile performance due to the occurrence of macro cracks.
- the ultra-high performance fiber reinforced concrete of the present invention is cement, zirconium-containing silica fine powder, fine aggregate, filler, shrinkage reducing agent, high performance water reducing agent, compounding water, macro steel fiber, micro steel fiber
- the specific surface area of the silica fine powder is in the range of 80,000 cm 2 / g or more and 150,000 cm 2 / g or less
- the shape coefficient of the steel fiber is 60 or more and 100 or less. It is preferable.
- the steel fiber of the present invention has the same shape factor, it is preferable that the steel fiber includes a relatively small diameter steel fiber.
- the micro steel fiber is mixed at 25% to 35%, and the macro steel fiber is mixed at 65% to 75%.
- the shape coefficient 80 (d0.2mm ⁇ L16mm) and 1.5% of the shape coefficient 100 (d0.2mm ⁇ L20mm).
- the ultra high performance fiber reinforced concrete of the present invention preferably further includes a crack inducer for inducing microcracks in the cement composite.
- the crack derivative of the present invention is preferably composed of polystyrene beads.
- the crack derivatives of the present invention are preferably mixed at 0.5 to 2% of the total volume.
- the crack derivative of the present invention preferably includes a first surface layer comprising a crack promoter applied to the surface to promote microcracking.
- the crack derivative of the present invention includes a second surface layer which is applied to the surface of the first surface layer and dissolved for a predetermined time by moisture.
- the method for producing ultra-high performance fiber reinforced concrete of the present invention is a cement composite by mixing at least one or more of cement, fine silica powder, fine aggregate, filler, shrinkage reducing agent, high performance water reducing agent, blended water, macro steel fiber, micro steel fiber, and antifoaming agent.
- the manufacturing method of the super high-performance fiber-reinforced concrete to be formed 25 parts by weight of fine silica powder having a specific surface area of 80,000 cm 2 / g or more and 150,000 cm 2 / g or less based on 100 parts by weight of cement, 20 parts by weight of filler, quartz sand It is preferable to make it mix by 110 weight part, to make the ratio of compounding water-binder to be 0.20, and to mix and manufacture steel fiber whose shape coefficient is 60 or more and 100 or less.
- Method for producing ultra-high performance fiber reinforced concrete of the present invention is a mortar manufacturing step of mixing evenly silica fine powder, quartz powder, quartz sand for 20 seconds to 30 seconds at a speed of 10 ⁇ 20rpm; A first mixing step of mixing the mortar with a blending water-binder ratio of 0.20 and mixing the high-performance water reducing agent, the antifoaming agent, and the shrinkage reducing agent with 1.9 parts by weight of the binder at a speed of 20-50 rpm in a mixer for 2 minutes to 5 minutes. And it is preferable to include a second mixing step of mixing the steel fiber for 1 minute to 3 minutes at a speed of 20 to 50 rpm.
- the second mixing step of the present invention preferably further comprises mixing a crack derivative for inducing microcracks in the cement composite.
- the crack derivative is preferably mixed at a ratio of 2 to 3% of the total volume.
- the specific surface area of the fine silica-like powder to control the fluidity of the cement composite, and the range of the shape coefficient of the steel fiber affecting the dispersion and compressive strength of the fiber It is limited in combination to secure the dispersibility of the steel fiber and the fluidity of the cement composite and at the same time has the advantage of improving the tensile strength and toughness.
- microcracks are artificially formed between the crack inductor and the cement matrix to induce the growth of large cracks into the microcracks, and the crack propagation is prevented by the tensile force of the microfibers around the crack inductor.
- the mixing ratio (volume) of the steel fibers required to secure the same performance can be reduced by about 0.5%, thereby reducing manufacturing costs and improving workability.
- 1 is a view showing a fracture state of ultra-high performance fiber reinforced concrete according to the prior art.
- Figure 2 is a graph illustrating the relationship between the fine silica powder specific surface area and the water adsorption amount of ultra-high performance fiber reinforced concrete according to the present invention.
- Figure 3 is a graph of the relationship between the specific surface area and fluidity or viscosity of the fine silica powder of ultra-high performance fiber reinforced concrete according to the present invention.
- Figure 4 is a graph illustrating the relationship between the specific surface area and the compressive strength of the fine silica powder of ultra-high performance fiber reinforced concrete according to the present invention.
- FIG. 5 is a graph illustrating the relationship between the specific surface area and the amount of high performance water reducing agent of the ultra high performance fiber reinforced concrete according to the present invention.
- Figure 6 is an evaluation of the material separation state by visual observation in the flow test (KS L 5105) of ultra-high performance fiber reinforced concrete according to the present invention.
- FIG. 7 is a graph illustrating the correlation between the shape coefficient of the steel fiber of the high-performance fiber reinforced concrete according to the present invention, the specific surface area of the fine silica powder and the compressive strength.
- FIG. 8 is a view showing a direct tensile test body and a tensile test device of ultra-high performance fiber reinforced concrete according to the present invention.
- FIG. 9 is a graph illustrating the relationship between the shape coefficient and tensile strength of steel fibers of ultra-high performance fiber reinforced concrete according to the present invention.
- Figure 10a is a schematic diagram showing the crack propagation state of a general ultra-high performance fiber reinforced concrete.
- Figure 10b is a graph showing the tensile behavior of the general ultra-high performance fiber reinforced concrete.
- 11a is a graph illustrating the relationship between the compressive strength and the tensile strength of the cement composite hybridized by the shape coefficients in the shape coefficient 60 of the steel fiber of the ultra-high performance fiber reinforced concrete according to the present invention.
- 11b is a graph illustrating the relationship between the compressive strength and the tensile strength of the cement composite hybridized by the shape coefficient of the steel fiber of the ultra-high performance fiber reinforced concrete according to the present invention.
- FIG. 12 is a view showing an embodiment of the crack inductor of ultra-high performance fiber reinforced concrete according to the present invention.
- V f 26% of the ultra-high performance fiber reinforced concrete according to the present invention.
- 15a and 15b are graphs showing the tensile behavior of ultra-high performance fiber reinforced concrete for the state containing no crack derivatives and 2% containing crack derivatives, respectively.
- Figure 16a and 16b is a view showing a cross-sectional state of the ultra-high performance fiber-reinforced concrete for the state that does not include the crack guide and 2% containing the crack guide.
- Figure 17 is a schematic diagram showing the microcracks propagation state of the crack inductor of ultra-high performance fiber reinforced concrete according to the present invention.
- FIG. 18 is an enlarged view of a portion of FIG.
- 19 is a cross-sectional view showing a crack derivative showing another embodiment of ultra-high performance fiber reinforced concrete according to the present invention.
- the present invention is a super high-performance fiber reinforced concrete formed by mixing at least one or more of cement, zirconium-containing silica fine powder, fine aggregate, filler, shrinkage reducing agent, high performance water reducing agent, blended water, steel fiber, and antifoaming agent,
- the specific surface area is in the range of 80,000 cm 2 / g or more and 150,000 cm 2 / g or less
- the shape factor of the steel fiber is 60 or more and 100 or less
- the steel fibers having a shape factor of 60 to 80 are mixed at a volume ratio of 25% to 35%
- the shape Steel fibers having a coefficient of 81 to 100 are mixed at a volume ratio of 65% to 75%
- a crack inducer for inducing microcracks in the cement composite is further included, and the crack inducer is applied to a surface to include a crack promoter for promoting microcracks. It provides an ultra-high performance fiber reinforced concrete comprising a first surface layer.
- first and second are intended to distinguish one component from another component, and the scope of rights should not be limited by these terms.
- first component may be named a second component, and similarly, the second component may also be named a first component.
- an identification code (e.g., a, b, c, etc.) is used for convenience of description, and the identification code does not describe the order of the steps, and each step clearly indicates a specific order in context. Unless stated otherwise, they may occur out of the order noted. That is, each step may occur in the same order as specified, may be performed substantially simultaneously, or may be performed in the reverse order.
- the present invention relates to a material design method for increasing proper fluidity while reducing excessive viscosity of ultra-high performance fiber reinforced concrete (hereinafter referred to as “UHPC”), and a material capable of increasing fluidity while lowering viscosity without decreasing compressive strength. And formulation design.
- UHPC ultra-high performance fiber reinforced concrete
- the tensile strength and toughness of the steel fiber increase as the shape factor (fiber length / diameter) of the steel fiber increases.
- the larger the steel fiber shape coefficient the worse the dispersibility of the fiber and the lower the tensile strength and toughness. Therefore, it is very important to select the shape coefficient of the steel fiber when manufacturing the UHPC.
- the siliceous fine powder has an excessive viscosity because the specific surface area is very high (200,000 cm 2 / g) and the water adsorption amount is very high (50 ⁇ 70 cm 3 / g) to absorb the blended water and high performance water reducing agent.
- the cement composite was prepared by the following method and the compressive strength and viscosity were measured.
- Manufacturing method 1 is based on 100 parts by weight of cement, 25 parts by weight of fine silica powder having a different specific surface area, 20 parts by weight of a filler of quartz powder (99% of SiO 2 , 4 ⁇ m average particle diameter) and 20 parts by weight of quartz sand having a particle size of 5 mm or less.
- Mortar was prepared by mixing 110 parts by weight and mixing evenly for 15 seconds at 15 rpm.
- the ratio of the mixture water-binding agent was 0.20, and the binder was 1.9 parts by weight of the high-performance water reducing agent, antifoaming agent, and shrinkage reducing agent at 30 rpm for 3 minutes.
- a steel fiber having a shape factor of 60 (diameter 0.2 mm, length 12 mm) was added to 2% of the cement composite and mixed for 2 minutes at a speed of 20 rpm to produce a steel fiber reinforced cement composite, which was described in the test method described below. Accordingly, a viscosity and slump flow test were performed.
- the cement composite was wet cured for 2 days, steam curing was performed at 90 ° C. for 3 days, and then the compressive strength was measured according to the test method described below.
- the plastic viscosity was measured using a Brookfield viscometer using a Linder spindle immediately after the fiber-reinforced cement composite was prepared for the viscosity test.
- the slump flow test measured the diameter of the concrete spread in a circular shape by KS F 2594.
- the compressive strength test was performed in accordance with KS F 2405 using ⁇ 100 * 200mm circumferential concrete specimens.
- Fig. According to the relationship graph of the specific surface area and compressive strength of the siliceous fine powder shown in Fig. 4, by a specific surface area 100,000cm 2 / g of the fine silica powder to be a reduction in the compressive strength very little, a specific surface area of 80,000 cm 2 / g UHPC using silica fine powder has a compressive strength of 186 MPa, which is about 8% higher than the specific surface area of 200,000 cm 2 / g, and the compressive strength of UHPC using silica fine powder with a specific surface area of 50,000 cm 2 / g is about 156 MPa. It can be confirmed that the strength decrease of about 33% occurs.
- UHPC can be produced with a compressive strength of 180 MPa or more when using a fine silica powder with a specific surface area of 80,000 cm 2 / g.
- the specific surface area of silica fine powder having no problem in compressive strength and fiber dispersibility in manufacturing UHPC ranges from 80,000 cm 2 / g to 150,000 cm 2 / g.
- cement composites were prepared by the following method and the compressive strength and viscosity were measured.
- the condition for optimizing the amount of expensive high performance water reducing agent is preferably 150,000 cm 2 / g or less of the specific surface area of the fine siliceous powder.
- the viscosity of the cement composite is lowered to improve the fluidity, thereby reducing the cost of manufacturing UHPC by reducing the amount of expensive high performance water reducing agent.
- the cement composite was prepared by the following method and the fiber dispersibility, compressive strength and tensile strength were measured.
- the diameter of 0.2 mm was fixed in the manufacturing method 1 described above, and the shape factors 50 (length 10 mm), 70 (length 14 mm), 80 (length 16 mm), 90 (length 18 mm), 100 (length 20 mm), Steel fiber with 110 (length 22mm) and 120 (length 24mm) was added to prepare a UHPC, and the dispersibility and compressive strength of the fiber were evaluated according to the following test method.
- the fiber dispersibility of the UHPC was evaluated for material separation by visual observation in a flow test (KS L 5105). By visual observation, it was evaluated by classifying the grade 1 (excellent), 2 (normal), 3 (defect) according to the fiber agglomeration state in the cement composite (see Fig. 6).
- Grade 1 is a state in which fibers are homogeneously dispersed in manufacturing UHPC
- Grade 2 is a state of fiber ball and material separation slightly
- Grade 3 is a very bad state of fiber dispersion due to fiber agglomeration. Divided into.
- the specific surface area of the fine siliceous powder the higher the amount of adsorption of the high-performance sensitizer and the blended water and the excessive viscosity to the UHPC.
- the shape factor of the steel fiber is 60 or less, there is no problem in dispersibility of the steel fiber regardless of the specific surface area of the fine silicate powder, but the steel fiber in UHPC using the fine silicate powder having a specific surface area of 180,000 cm 2 / g or more from the shape factor 70 Problems have been shown to occur in the dispersibility of. It was found that the fiber dispersibility of UHPC was lowered regardless of the specific surface area of fine silicate powder at the shape coefficient of steel fiber over 110. According to the above results, it can be seen that the specific surface area of the fine siliceous powder and the shape coefficient of the steel fiber should be specified dependently, not independently of each other.
- the compressive strength was hardly changed regardless of the specific surface area of the fine silica powder in the range of 50 to 100, but the fine silica powder was used when the shape coefficient of the steel fiber 110 was used. It can be seen that the compressive strength is lowered regardless of the specific surface area of. This is because when the shape coefficient of the steel fiber is larger than a certain amount, the fiber is not dispersed well when the UHPC is manufactured.
- the shape coefficient of the steel fiber which does not affect the compressive strength is preferably 100 or less.
- the direct tensile test used a direct tensile test specimen and a tensile test apparatus shown in FIG.
- the direct tension tester was manufactured with a hinge and supporting condition in consideration of the effects of secondary bending stress occurring during the test and the accuracy of the initial specimen mounting.
- the direct tensile test of the UHPC was carried out using a 300 kN universal material tester, loaded at a loading speed of 0.4 mm / min, and two LVDTs were installed at a range of 175 mm to measure displacement in a narrow cross section in the test specimen.
- the change in direct tensile strength between the shape coefficients 50 and 60 is large, and it is analyzed that the shape coefficient of the minimum steel fiber should be 60 or more in order to fully exhibit the crosslinking action of the steel fiber in the direct tensile strength behavior of UHPC.
- the direct tensile strength of the UHPC using the steel fiber having a shape factor of 110 was greatly reduced.
- Tensile strength is almost the same regardless of the specific surface area of fine silica powder at shape coefficients of 50 and 60, but when steel fibers with a shape coefficient of 70 or more are used, the tensile strength is large from the specific surface area of more than 180,000 cm 2 / g of fine silica powder. It tends to be lowered.
- the silicate fine powder has a specific surface area of more than 180,000cm 2 / g and the moisture adsorption amount is more than 47cm 2 / g, so that the amount of adsorption of high performance water sensitizer and blending water increases during the manufacturing process of UHPC.
- the UHPC was produced because the fiber dispersibility is irregular because of this decrease, and this phenomenon occurs even more than a certain number of steel fiber shape coefficient.
- the UHPC blend preferably has a shape coefficient of steel fiber in the range of 60 to 100 in the specific surface area of the fine siliceous powder of 80,000 cm 2 / g to 150,000 cm 2 / g.
- the specific surface area of the fine silica powder and the shape coefficient of the steel fiber are specified independently, not independently of each other.
- the cement composites were prepared by the following manufacturing method, and the compressive and direct tensile strengths were measured.
- the shape coefficient of the steel fiber is fixed to 100, and the diameter of the steel fiber is 0.16mm ⁇ length 16mm, diameter 0.18mm ⁇ length 18mm, diameter 0.20mm ⁇ length 20mm, diameter 0.22mm ⁇ length 22mm, diameter 0.25mm ⁇ length 25mm Set to.
- Sand is composed of 110 parts by weight and mixed evenly for 15 seconds at a speed of 15rpm to prepare a mortar. After mixing for 3 minutes at a speed of 30rpm, the steel fiber was added to 2% of the cement composite and mixed for 2 minutes at a speed of 20rpm to prepare a steel fiber reinforced cement composite, and then a slump flow test was performed. Then, the cement composite was wet cured for 2 days, and the compressive strength and direct tensile strength of steam curing at 90 ° C. for 3 days were measured.
- the adhesion area increases due to the increase of the specific surface area of the fiber mixed with the steel fiber and the cement composite. This is because the stress redistribution in the cement composite is caused by the crosslinking action of the fiber after cracking.
- the effect of the microfiber restrains the micro-cracking at the beginning of the crack during the direct tensile failure behavior, macro cracks having a certain size as the microcracks advance In the case of -cracking), the tensile energy and toughness of the fiber are greatly increased by the crosslinking action of the macrofiber.
- the shape factor of the fiber has little effect on the compressive strength
- UHPC hybridization of the microfiber and macrofiber is a shape factor 60 (d0.2mm ⁇ L13mm) that is used a lot in the existing UHPC It can be seen that the direct tensile strength is increased than when using the fiber.
- the mixing of the micro steel fibers in the range of 25% to 35% and the macro steel fibers in the range of 65% to 75% is advantageous for improving the direct tensile strength. .
- shape factor 80 (d0.2mm ⁇ L16mm) and shape factor 100 (d0.2mm ⁇ L20mm) than UHPC which hybridizes steel fibers of shape factor 60 (d0.2mm ⁇ L13mm) and shape factor 80 (d0.2mm ⁇ L16mm).
- Hybrid steel fiber is advantageous in terms of tensile steel performance, and it can be seen that incorporating a large proportion of macro steel fiber is more effective in increasing the direct tensile strength of UHPC.
- the hybrid steel fiber is advantageous to combine the steel fiber with the highest possible shape factor, in particular, the shape factor 80 (d0.2mm ⁇ L16mm) 0,5% and the shape factor 100 (d0.2mm ⁇ L20mm) 1.5
- the direct tensile strength of UHPC hybridized with% steel fiber is very high at 19.2 MPa, which is 143% higher than the existing UHPC tensile strength.
- Vf tensile strength
- Micro fiber Macro fiber
- B Incorporation Rate of Steel Fibers
- Vf Direct tensile strength
- micro-cracking occurs at the beginning of cracking in the UHPC, and then fracture starts as the microcracks develop into macro-cracking. .
- the microfibers confine the cracks, and when the major cracks are propagated, the tensile energy and toughness of the fibers are greatly increased by the crosslinking action of the macrofibers.
- concrete is prepared by mixing microfibers and macrofibers at an appropriate ratio, and artificially induces micro cracks by inserting a separate crack inductor capable of inducing the growth of microcracks, thereby improving adhesion to the surrounding cement matrix.
- a separate crack inductor capable of inducing the growth of microcracks, thereby improving adhesion to the surrounding cement matrix.
- cement composites were prepared by the following method and tensile strength and tensile behavior of cement composites were measured.
- cement, fine silica powder, fine aggregate, and filler are placed in a mixer and mixed at a speed of 15 rpm for 30 seconds. Then, the flowable mixture including the blended water, the high performance water reducing agent, and the antifoaming agent and the shrinkage reducing agent is added to the mixer, and mixed at a speed of 30 rpm for 3 minutes until the mixture is brought into a fluid state.
- the macro steel fibers, micro steel fibers, and crack derivatives are added to the mixer, followed by mixing at 20 rpm for 2 minutes.
- the crack derivative is preferably mixed at a rate of 0.5 to 2% of the total volume.
- ultra-high-performance fiber-reinforced concrete can be produced by curing by steam curing for 2 to 4 days at a temperature of 60 °C ⁇ 110 °C.
- a macro steel fiber having a diameter of 0.2 mm and a length of 19.5 mm (shape ratio 97.5) and a micro steel fiber having a diameter of 0.2 mm and a length of 16.3 mm were mixed, and a polystyrene bead having a three-dimensional shape having a particle diameter of 2 mm (see FIG. 12) was formed.
- Experimental results for ultra high-performance fiber reinforced concrete prepared by mixing 2% by volume.
- the microfibers constrain the microcracks and the major fissures are the interface between the cement matrix and the steel fiber even in the stress- swallowing section at the same time as the macrofibers crosslinking. It can be seen that the tensile strength and toughness are improved by minimizing fracture.
- Figure 15a is a graph showing the tensile behavior of the cement composite containing no crack derivatives
- Figure 15b is a graph showing the tensile behavior of the cement composite containing 1% crack derivatives.
- Figure 16a is a view showing a cross section of the cement composite containing no crack derivatives
- Figure 16b is a view showing a cross section of the cement composite containing 1% crack derivatives.
- the number of cracks was 12 and the average width of the cracks was 65 ⁇ m.
- the number of cracks was 18 and the average width of the cracks was 40 ⁇ m. Therefore, it can be seen that more microcracks are induced in the cement composite including the crack derivatives, and that the crack width is relatively small.
- the crack inductor 10 since the crack inductor 10 has low adhesive strength with the cement matrix, the first crack generated by the external force is induced by inducing microcracks in advance before cracks are generated in the cement hardened body.
- By inducing a large number of microcracks around the crack inductor 10 to form a strain hardening and a plurality of fine crack distribution serves to improve the tensile strength and toughness.
- the initial cracking during fracture behavior by direct tension is determined by the properties of the cement matrix rather than by the influence of fibers, and initial cracking occurs at the beginning of reloading at the interface with voids or foreign materials present in the cement matrix.
- the initial crack then connects or merges with progressively adjacent cracks to evolve into narrow, short microscopic cracks.
- cracks generated at the initial stage of loading progress or new cracks are additionally developed, which eventually develops into mat cracks, and local deformation occurs intensively.
- the first occurrence of the first crack may be a starting point for increasing the crack width and progressing from the microcracks to the major cracks.
- the crack derivative 10 mixed in the cement composite in advance forms microcracks between the cement matrix and the pre-formed microcracks during the curing process. This leads to the development of microcracks around the crack derivatives 10.
- the crack inductor 10 functions to improve the adhesion of the microfiber 20 to reduce the progress of the microcracks.
- the adhesion between the steel fibers and the cement matrix depends on the interfacial properties between the steel fibers and the matrix.
- the adhesion between the steel fibers and the cement matrix may be influenced by the adhesion between the continuous interface and the discontinuous interface.
- Some of the microfibers 20 may be cracked derivatives due to microcracks formed around the crack inductor 10. It may be located at the discontinuous interface where one end is exposed at the point of contact with 10).
- the continuous interface is only affected by the properties between the steel fiber and the cement matrix, but the discontinuous interface is also affected by the properties of the interface connection point, so the adhesion is relatively high.
- one end of the microfiber 20 exposed by the discontinuous interface has a characteristic that the adhesion is very high compared to the continuous interface because the end is bent or adhered at the discontinuous interface to act as a kind of ring.
- the crack inducer 10 forms microcracks in the surrounding cement matrix to induce the growth of large cracks into microcracks, and the microcracks induced around the crack inductor 10 are formed by the adhesion of the microfibers 20.
- the crack inducer 10 forms microcracks in the surrounding cement matrix to induce the growth of large cracks into microcracks, and the microcracks induced around the crack inductor 10 are formed by the adhesion of the microfibers 20.
- Figure 19 shows another embodiment of the crack inductor of the ultra-high performance fiber reinforced concrete of the present invention.
- Crack inducing body 10 may include a first surface layer 11 or a second surface layer 12 on the surface.
- the first surface layer 11 is a layer to which a cracking accelerator, such as a dehumidifier, is applied, so as to reduce the water-bonding material ratio around the crack derivative 10 during the concrete curing process, so that cracking is more smoothly generated.
- a cracking accelerator such as a dehumidifier
- the second surface layer 12 is a layer applied to the surface of the first surface layer 11 and is a surface layer dissolved for a predetermined time by moisture.
- the second surface layer 12 may delay the time that the first surface layer 11 is exposed during the concrete curing time so that the first surface layer 11 may be exposed in the curing state having a low moisture content so that the crack may be more smoothly generated. .
- Ultra high-performance fiber reinforced concrete of the present invention can be prepared by mixing at least one or more of cement, fine silica powder, fine aggregate, filler, shrinkage reducing agent, high performance water reducing agent, compounded water, macro steel fiber, micro steel fiber, antifoaming material.
- the specific surface area of the fine silica powder of the ultra-high performance fiber reinforced concrete of the present invention is in the range of 80,000 cm 2 / g or more and 150,000 cm 2 / g and preferably in the shape coefficient of the steel fiber of 60 or more and 100 or less.
- the specific surface area of the fine silica powder and the shape coefficient of the steel fiber are preferably specified dependently, and the steel fiber preferably has a relatively small diameter when the shape coefficient is the same.
- the steel fibers having a high shape coefficient with each other, in particular, the shape coefficient 80 (d0.2mm ⁇ L16mm) 0.5% and the shape coefficient 100 (d0.2mm ⁇ L20mm) 1.5% It is preferable to mix the steel fibers.
- the ultra-high performance fiber reinforced concrete of the present invention may further include a crack derivative for inducing artificial microcracks.
- the crack derivatives have a three-dimensional shape with a particle diameter of 2 to 5 mm, and may be formed in various shapes such as spheres and polyhedrons.
- the crack inductor is preferably a spherical body formed of polystyrene, and is preferably mixed at a ratio of 0.5 to 2% of the total volume.
- the surface of the crack derivative may be provided with a first surface layer having a dehumidifying function and a second surface layer applied to the surface of the first surface layer and dissolved for a predetermined time by moisture.
- Method of producing ultra high performance fiber reinforced concrete of the present invention is cement 100 parts by weight a specific surface area of the parts of the reference 80,000cm 2 / g or more 150,000cm (SiO 2 99% a 2 / g or less siliceous fine powder 25 parts by weight of quartz powder quality, 20 parts by weight of a filler having an average particle diameter of 4 ⁇ m) and 110 parts by weight of quartz sand having a particle size of 5 mm or less are mixed evenly for 20 seconds to 30 seconds at a speed of 10 to 20 rpm, preferably 15 rpm to prepare a mortar.
- the ratio of the mixing water-binder to the prepared mortar is 0.20, and the high-performance water reducing agent, the antifoaming agent, and the shrinkage reducing agent, which are 1.9 parts by weight of the binder, are mixed in a mixer at a speed of 20 to 50 rpm for 2 to 3 minutes.
- the steel fiber having a shape coefficient of 60 or more and 100 or less is added to 2% of the total volume of the cement composite and mixed for 1 minute to 3 minutes at a speed of 20 to 50 rpm.
- the crack derivatives may be mixed at a ratio of 0.5 to 2% of the total volume.
- ultra-high-performance fiber-reinforced concrete can be produced by curing by steam curing for 2 to 4 days at a temperature of 60 °C ⁇ 110 °C.
- the present invention relates to ultra-high performance fiber reinforced concrete and a method of manufacturing the same.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Civil Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
The present invention relates to an ultra-high-performance fiber-reinforced concrete and a manufacturing method therefor, wherein in a cement composite formed by mixing cement, a zirconium-containing silica micropowder, fine aggregate, a filler, a shrinkage-reducing agent, a high-performance water-reducing agent, mixing water, macro steel fiber, micro steel fiber, and an antifoaming agent, mixing is carried out such that the range of the specific surface area of the silica micropowder is 80,000-150,000 cm2/g, and the shape factor of the steel fiber is 60-100 and a crack inducer for inducing microcracks is mixed in a ratio of 0.5-2% with respect to the total volume.
Description
본 발명은 초고성능 섬유보강 콘크리트 및 그 제조방법에 관한 것으로, 더욱 상세하게는 강섬유의 형상계수를 한정하여 압축강도는 저하되지 않고 유동성을 높이도록 하고 균열 유도체에 의해 인공적으로 미세균열을 유도하여 직접 인장 거동에서 변형률 경화 현상과 다수 미세 균열분포를 가지도록 함으로써 인장특성을 증가시키기 위한 초고성능 섬유보강 콘크리트 및 그 제조방법에 관한 것이다.The present invention relates to an ultra-high performance fiber reinforced concrete and a method of manufacturing the same, and more particularly, to limit the shape coefficient of steel fiber to increase the fluidity without lowering the compressive strength and to artificially induce microcracks by crack derivatives. The present invention relates to an ultra-high performance fiber reinforced concrete and its manufacturing method for increasing tensile properties by having a strain hardening phenomenon and multiple fine crack distributions in tensile behavior.
구조물의 재료로서 경제성과 내구성이 우수한 콘크리트가 많이 사용되고 있지만, 자체 인장강도 및 휨강도가 작고, 균열이 발생하기 쉬운 결함을 가지고 있다.Although concrete, which is economically and durable, is widely used as a material for structures, it has defects that are small in its tensile strength and flexural strength and are prone to cracking.
따라서, 이러한 콘크리트의 문제점을 해결하기 위하여 시멘트 복합체에 강섬유 또는 유기섬유와 같은 다양한 섬유를 혼합한 섬유보강 콘크리트가 개발되고 있는데, 그 중에서도 압축강도가 120MPa 이상이고 인장강도가 5MPa 이상이며, 휨인장강도가 30MPa 이상인 초고성능 섬유 보강 콘크리트(UHPFRC: Ultra-High Performance Fiber Reinforced Concrete)에 대한 요구가 증가하고 있다.Therefore, in order to solve the problems of the concrete, fiber reinforced concrete in which various fibers such as steel fibers or organic fibers are mixed with the cement composite is being developed. Among them, the compressive strength is 120 MPa or more, the tensile strength is 5 MPa or more, and the flexural tensile strength There is an increasing demand for Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) with a strength of 30 MPa or more.
초고성능 섬유보강 콘크리트는 매우 낮은 물/결합재비를 가지고, 최밀 충전 이론에 근거한 배합설계, 고성능 감수제를 이용한 우수한 유변학적 특성, 굵은 골재를 사용하지 않고 잔골재만을 사용하여 형성되는 균질한 특성과 수화생성을 위한 고온양생 조건을 기본적으로 요구한다.Ultra-high performance fiber reinforced concrete has a very low water / binder ratio, formulation design based on the closest packing theory, excellent rheological properties using high performance water reducing agents, homogeneous properties and hydration formation using only fine aggregates without thick aggregates. High temperature curing conditions are basically required.
그러나, 이러한 섬유보강 콘크리트는 일반 콘크리트의 배합에 섬유를 투입하기 때문에 콘크리트의 점성 부족으로 인해 섬유를 다량 투입하지 못하고 이로 인해 충분한 인성을 확보하지 못한다. However, the fiber reinforced concrete is not added to the fiber due to the lack of viscosity of the concrete because the fiber is added to the mixing of the general concrete, thereby failing to secure sufficient toughness.
일반적으로 섬유보강 콘크리트에 배합되는 실리카질 미분말의 입자(비표면적 2000,000 cm2/g)는 시멘트 입자(비표면적 35,000 cm2/g)보다 매우 작아 시멘트의 입자 사이를 충전하는 마이크로 필러 효과와 주성분이 비결정의 SiO2 성분을 가지고 있어 시멘트 수화반응에 의해 생성되는 수산화 칼슘(Ca(OH)2)과 포졸란 반응으로 인해 칼슘실리케이트(C-S-H) 수화물을 생성함으로써 콘크리트 조직이 치밀화된다.In general, the fine particles of siliceous powder (specific surface area 2000,000 cm 2 / g) blended with fiber-reinforced concrete are much smaller than the cement particles (specific surface area 35,000 cm 2 / g). As the main component has amorphous SiO 2 component, the concrete structure is densified by producing calcium silicate (CSH) hydrate due to calcium hydroxide (Ca (OH) 2 ) and pozzolanic reaction produced by cement hydration.
그러나, 섬유보강 콘크리트는 초고강도를 구현하기 위해 실리카질 미분말을 시멘트 중량의 20~30% 정도로 많은 비율을 사용하기 때문에 콘크리트의 점성이 증가되어 소정의 유동성을 확보하기 위해 콘크리트의 제조시간이 길어지거나 고속 믹서 또는 전단믹서와 같은 특수한 믹서를 사용해야 하고, 고가의 고성능 감수제를 다량으로 사용해야 함에도 불구하고 유동성이 부족하여 섬유가 골고루 분산되지 않는 경우가 발생한다.However, since fiber reinforced concrete uses a high proportion of silica fine powder of 20-30% of cement weight to realize ultra high strength, the viscosity of concrete is increased and the production time of concrete is lengthened to secure predetermined fluidity. Although special mixers such as high speed mixers or shear mixers have to be used and expensive high performance sensitizers have to be used in large amounts, there is a case where the fibers are not evenly dispersed due to lack of fluidity.
이로 인하여 응결경화 시간이 길어져서 겨울철 공사에 불리하고, 수화반응의 활성화로 인해 자기수축이 증대되고, 섬유의 분산성이 나빠져서 섬유보강콘크리트의 우수한 고인성 특성을 확보하지 못할 뿐만 아니라 현장에서 섬유보강콘크리트의 다량 생산이 어렵고 제조비용이 증가하게 된다.Due to this, the condensation hardening time is long, which is disadvantageous for winter construction, and the self-shrinkage is increased due to the activation of the hydration reaction, and the dispersibility of the fiber is deteriorated. Mass production of concrete is difficult and manufacturing costs increase.
한편 콘크리트 구조체의 인성측면에 있어서는, 도 1에 도시된 바와 같이 초고성능 섬유보강 시멘트 복합체의 휨 파괴시에 강섬유의 항복강도에 도달되어 파단되기 전에 강섬유가 먼저 콘크리트로부터 인발되어 뽑히기 때문에 시멘트 복합체는 인성 효과를 볼 수 있다.On the other hand, in terms of the toughness of the concrete structure, as shown in Fig. 1, the cement composite is tough because the steel fiber is first drawn out from the concrete before the yield strength of the steel fiber is reached and fractured upon bending failure of the ultra-high performance fiber reinforced cement composite. You can see the effect.
이는 시멘트 복합체에서 섬유의 거동은 계면성상에 크게 의존하고, 이 거동을 지배하는 것은 섬유와 시멘트 매트릭스 사이의 부착성능 및 섬유의 파단 때문인 것을 알 수 있다. It can be seen that the behavior of the fiber in the cement composite is largely dependent on the interfacial phase, and the dominating behavior is due to the adhesion performance between the fiber and the cement matrix and the fracture of the fiber.
그리고, 콘크리트의 내구성은 균열폭과 매우 밀접하게 연관되어 있음을 알 수 있다. 콘크리트의 자체 균열 치유 성능(self-healing performance)은 균열폭에 좌우되는데, 낮은 물결합재비를 가지는 초고성능 섬유보강 콘크리트에서 균열폭을 제어하는 것은 내구성 향상 및 자체 연화 성능에 매우 밀접한 영향을 미친다.And, it can be seen that the durability of concrete is very closely related to the crack width. The self-healing performance of concrete depends on the crack width. In ultra-high fibre-reinforced concrete with low water binder ratio, controlling the crack width has a very close effect on durability and self-softening performance.
결국, 초고성능 섬유보강 콘크리트에서 섬유와 시멘트 매트릭스 사이의 계면 특성 및 부착성능과 콘크리트 자체의 균열폭을 제어함으로써 초고성능 섬유보강 콘크리트가 본질적으로 가지는 인장성능에 대한 개선이 필요한 시점이다.As a result, it is time to improve the tensile performance of the ultra-high-performance fiber reinforced concrete inherently by controlling the interfacial properties and adhesion between the fiber and the cement matrix and the crack width of the concrete itself.
본 발명은 이와 같은 종래의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 기존의 섬유보강 콘크리트의 분산성을 확보하기 위하여 강섬유의 형상계수를 특정함으로써 섬유의 분산성을 확보함과 동시에 인장강도 및 인성을 향상시키는 것이다.The present invention is to solve such a conventional problem, it is an object of the present invention to secure the dispersibility of the fiber and at the same time tensile strength and strength to specify the shape coefficient of the steel fiber in order to secure the dispersibility of the conventional fiber reinforced concrete It is to improve toughness.
본 발명의 다른 목적은 기존의 섬유보강 콘크리트에서 발생하는 강섬유와 시멘트 매트릭스간의 계면특성 및 부착력 저하 현상을 개선하고, 매크로 크랙 발생으로 인한 급격한 인장성능 저하를 방지하기 위한 것이다.Another object of the present invention is to improve the interfacial properties and adhesion deterioration phenomenon between the steel fibers and the cement matrix generated in the conventional fiber reinforced concrete, and to prevent a sudden decrease in tensile performance due to the occurrence of macro cracks.
이와 같은 목적을 달성하기 위한 본 발명의 특징에 의하면, 본 발명의 초고성능 섬유보강 콘크리트는 시멘트, 지르코늄 함유 실리카질 미분말, 잔골재, 충전재, 수축저감제, 고성능 감수제, 배합수, 매크로 강섬유, 마이크로 강섬유, 및 소포제 중 적어도 하나 이상을 혼합하여 형성된 시멘트 복합체에 있어서, 상기 실리카질 미분말의 비표면적의 범위는 80,000cm2/g 이상 150,000cm2/g 이하이고, 상기 강섬유의 형상계수는 60 이상 100 이하인 것이 바람직하다.According to the characteristics of the present invention for achieving the above object, the ultra-high performance fiber reinforced concrete of the present invention is cement, zirconium-containing silica fine powder, fine aggregate, filler, shrinkage reducing agent, high performance water reducing agent, compounding water, macro steel fiber, micro steel fiber In the cement composite formed by mixing at least one or more of an antifoaming agent, the specific surface area of the silica fine powder is in the range of 80,000 cm 2 / g or more and 150,000 cm 2 / g or less, and the shape coefficient of the steel fiber is 60 or more and 100 or less. It is preferable.
본 발명의 강섬유는 형상계수가 동일한 경우, 상대적으로 직경이 작은 강섬유를 포함하는 것이 바람직하다.When the steel fiber of the present invention has the same shape factor, it is preferable that the steel fiber includes a relatively small diameter steel fiber.
본 발명의 강섬유는 상기 마이크로 강섬유를 25% ~ 35%로 혼합하고, 상기 매크로 강섬유를 65% ~ 75%로 혼합하는 것이 바람직하다.In the steel fiber of the present invention, the micro steel fiber is mixed at 25% to 35%, and the macro steel fiber is mixed at 65% to 75%.
본 발명의 강섬유는 형상계수 80(d0.2mm × L16mm) 0.5%와 형상계수 100(d0.2mm × L20mm) 1.5%를 서로 혼합하는 것이 바람직하다.In the steel fiber of the present invention, it is preferable to mix 0.5% of the shape coefficient 80 (d0.2mm × L16mm) and 1.5% of the shape coefficient 100 (d0.2mm × L20mm).
본 발명의 초고성능 섬유보강 콘크리트에는 시멘트 복합체 내에 미세균열을 유도하기 위한 균열유도체가 더 포함되는 것이 바람직하다.The ultra high performance fiber reinforced concrete of the present invention preferably further includes a crack inducer for inducing microcracks in the cement composite.
본 발명의 균열유도체는 폴리스티렌 비드로 구성되는 것이 바람직하다.The crack derivative of the present invention is preferably composed of polystyrene beads.
본 발명의 균열유도체는 전체 체적의 0.5 ~ 2%로 혼합되는 것이 바람직하다.The crack derivatives of the present invention are preferably mixed at 0.5 to 2% of the total volume.
본 발명의 균열유도체는 표면에 도포되어 미세균열을 촉진하는 균열촉진제를 포함하는 제1 표면층을 포함하는 것이 바람직하다.The crack derivative of the present invention preferably includes a first surface layer comprising a crack promoter applied to the surface to promote microcracking.
본 발명의 균열유도체는 상기 제1 표면층의 표면에 도포되어 습기에 의해 일정시간 동안 용해되는 제2 표면층을 포함하는The crack derivative of the present invention includes a second surface layer which is applied to the surface of the first surface layer and dissolved for a predetermined time by moisture.
본 발명의 초고성능 섬유보강 콘크리트의 제조방법은 시멘트, 실리카질 미분말, 잔골재, 충전재, 수축저감제, 고성능 감수제, 배합수, 매크로 강섬유, 마이크로 강섬유, 및 소포제 중 적어도 하나 이상을 혼합하여 시멘트 복합체를 형성하는 초고성능 섬유보강 콘크리트의 제조방법에 있어서, 시멘트 100 중량부를 기준으로 비표면적이 80,000cm2/g 이상 150,000cm2/g 이하인 실리카질 미분말을 25 중량부, 충전재 20 중량부, 석영질 모래 110 중량부가 되도록 혼합하고, 배합수-결합재의 비가 0.20이 되도록 하고, 형상계수가 60 이상 100 이하인 강섬유를 혼합시켜 제조하는 것이 바람직하다.The method for producing ultra-high performance fiber reinforced concrete of the present invention is a cement composite by mixing at least one or more of cement, fine silica powder, fine aggregate, filler, shrinkage reducing agent, high performance water reducing agent, blended water, macro steel fiber, micro steel fiber, and antifoaming agent. In the manufacturing method of the super high-performance fiber-reinforced concrete to be formed, 25 parts by weight of fine silica powder having a specific surface area of 80,000 cm 2 / g or more and 150,000 cm 2 / g or less based on 100 parts by weight of cement, 20 parts by weight of filler, quartz sand It is preferable to make it mix by 110 weight part, to make the ratio of compounding water-binder to be 0.20, and to mix and manufacture steel fiber whose shape coefficient is 60 or more and 100 or less.
본 발명의 초고성능 섬유보강 콘크리트의 제조방법은 실리카질 미분말, 석영질 분말, 석영질 모래를 10 ~ 20rpm의 속도로 20초 ~ 30초 동안 골고루 혼합하는 모르타르 제조단계; 상기 모르타르에 배합수-결합재의 비가 0.20이 되도록 하고, 결합재의 1.9 중량부로 한 고성능 감수제, 소포제, 및 수축저감제를 믹서기에서 20 ~ 50rpm의 속도로 2분 ~ 5분 동안 혼합하는 제1 혼합단계;및 상기 강섬유를 투입하여 20 ~ 50 rpm의 속도로 1분 ~ 3분 동안 혼합하는 제2 혼합단계를 포함하는 것이 바람직하다.Method for producing ultra-high performance fiber reinforced concrete of the present invention is a mortar manufacturing step of mixing evenly silica fine powder, quartz powder, quartz sand for 20 seconds to 30 seconds at a speed of 10 ~ 20rpm; A first mixing step of mixing the mortar with a blending water-binder ratio of 0.20 and mixing the high-performance water reducing agent, the antifoaming agent, and the shrinkage reducing agent with 1.9 parts by weight of the binder at a speed of 20-50 rpm in a mixer for 2 minutes to 5 minutes. And it is preferable to include a second mixing step of mixing the steel fiber for 1 minute to 3 minutes at a speed of 20 to 50 rpm.
본 발명의 제2 혼합단계는 상기 시멘트 복합체 내에 미세균열을 유도하기 위한 균열유도체를 혼합하는 단계를 더 포함하는 것이 바람직하다.The second mixing step of the present invention preferably further comprises mixing a crack derivative for inducing microcracks in the cement composite.
본 발명의 제2 혼합단계는 상기 균열유도체를 전체 체적의 2 내지 3%의 비율로 혼합하는 것이 바람직하다.In the second mixing step of the present invention, the crack derivative is preferably mixed at a ratio of 2 to 3% of the total volume.
이와 같은 본 발명에 의한 초고성능 섬유보강 콘크리트 및 그 제조방법에 의하면, 시멘트 복합체의 유동성을 제어하는 실리카질 미분말의 비표면적과, 섬유의 분산성과 압축강도에 영향을 미치는 강섬유의 형상계수의 범위를 복합적으로 한정하여 강섬유의 분산성 및 시멘트 복합체의 유동성을 확보함과 동시에 인장강도 및 인성을 향상시킬 수 있는 이점이 있다.According to the ultra-high performance fiber-reinforced concrete and the manufacturing method thereof according to the present invention, the specific surface area of the fine silica-like powder to control the fluidity of the cement composite, and the range of the shape coefficient of the steel fiber affecting the dispersion and compressive strength of the fiber It is limited in combination to secure the dispersibility of the steel fiber and the fluidity of the cement composite and at the same time has the advantage of improving the tensile strength and toughness.
그리고, 기존의 고성능 섬유보강 콘크리트에 비해 점도가 저하되어 유동성이 향상되기 때문에 동일한 시공성을 확보하는데 필요한 고가의 고성능 감수제의 사용량을 줄일 수 있기 때문에 UHPC의 제조비용을 저감시킬 수 있는 이점이 있다.In addition, since the viscosity decreases compared to the existing high performance fiber reinforced concrete, the fluidity is improved, and thus, the amount of expensive high performance water reducing agent required to secure the same workability can be reduced, thereby reducing the manufacturing cost of the UHPC.
그리고, 균열유도체와 시멘트 매트릭스 사이에 인공적으로 형성된 미세균열에 의해 대균열의 진전을 미세균열 진전으로 유도하고 균열유도체 둘레에서 마이크로 섬유의 인장력에 의해 균열 진행이 저지됨으로써 콘크리트 구조체 전체의 인장성능 및 인성을 향상시킬 수 있는 이점이 있다.In addition, the microcracks are artificially formed between the crack inductor and the cement matrix to induce the growth of large cracks into the microcracks, and the crack propagation is prevented by the tensile force of the microfibers around the crack inductor. There is an advantage to improve.
또한, 균열유도체 둘레에서 마이크로 섬유의 일단이 불연속계면 특성의 영향을 받기 때문에 마이크로 섬유와 시멘트 매트릭스 사이에 부착력을 향상시킴으로써 균열폭을 제어하고 섬유의 인발 에너지를 증가시켜 인장강도 및 인성이 대폭 향상되는 이점이 있다.In addition, since one end of the microfiber around the crack inductor is affected by the discontinuous interface property, the adhesion strength between the microfiber and the cement matrix is improved, thereby controlling the crack width and increasing the pull energy of the fiber, thereby greatly improving tensile strength and toughness. There is this.
그리고, 기존 기술보다 인장강도를 향상시키기 때문에 동일한 성능을 확보하는데 필요한 강섬유의 혼입률(체적)을 0.5% 정도 저감시킬 수 있기 때문에 제조비용이 저감되고 시공성이 향상되는 이점이 있다.In addition, since the tensile strength is improved compared to the existing technology, the mixing ratio (volume) of the steel fibers required to secure the same performance can be reduced by about 0.5%, thereby reducing manufacturing costs and improving workability.
도 1은 종래기술에 의한 초고성능 섬유보강 콘크리트의 파단 상태를 나타낸 도면.1 is a view showing a fracture state of ultra-high performance fiber reinforced concrete according to the prior art.
도 2는 본 발명에 의한 초고성능 섬유보강 콘크리트의 실리카질 미분말 비표면적과 수분 흡착량 관계를 실험한 그래프.Figure 2 is a graph illustrating the relationship between the fine silica powder specific surface area and the water adsorption amount of ultra-high performance fiber reinforced concrete according to the present invention.
도 3은 본 발명에 의한 초고성능 섬유보강 콘크리트의 실리카질 미분말의 비표면적과 유동성 또는 점도의 관계를 실험한 그래프.Figure 3 is a graph of the relationship between the specific surface area and fluidity or viscosity of the fine silica powder of ultra-high performance fiber reinforced concrete according to the present invention.
도 4는 본 발명에 의한 초고성능 섬유보강 콘크리트의 실리카질 미분말의 비표면적과 압축강도의 관계를 실험한 그래프.Figure 4 is a graph illustrating the relationship between the specific surface area and the compressive strength of the fine silica powder of ultra-high performance fiber reinforced concrete according to the present invention.
도 5는 본 발명에 의한 초고성능 섬유보강 콘크리트의 비표면적과 고성능감수제 사용량의 관계를 실험한 그래프5 is a graph illustrating the relationship between the specific surface area and the amount of high performance water reducing agent of the ultra high performance fiber reinforced concrete according to the present invention.
도 6은 본 발명에 의한 초고성능 섬유보강 콘크리트의 플로우 시험(KS L 5105)에서 육안관찰에 의해 재료분리 상태를 평가한 도면.Figure 6 is an evaluation of the material separation state by visual observation in the flow test (KS L 5105) of ultra-high performance fiber reinforced concrete according to the present invention.
도 7은 본 발명에 의한 초고성능 섬유보강 콘크리트의 강섬유의 형상계수, 실리카질 미분말의 비표면적과 압축강도의 상관관계를 실험한 그래프.7 is a graph illustrating the correlation between the shape coefficient of the steel fiber of the high-performance fiber reinforced concrete according to the present invention, the specific surface area of the fine silica powder and the compressive strength.
도 8은 본 발명에 의한 초고성능 섬유보강 콘크리트의 직접인장 시험체와 인장시험장치를 보인 도면.8 is a view showing a direct tensile test body and a tensile test device of ultra-high performance fiber reinforced concrete according to the present invention.
도 9는 본 발명에 의한 초고성능 섬유보강 콘크리트의 강섬유의 형상계수와 인장강도의 관계를 실험한 그래프.9 is a graph illustrating the relationship between the shape coefficient and tensile strength of steel fibers of ultra-high performance fiber reinforced concrete according to the present invention.
도 10a는 일반적인 초고성능 섬유보강 콘크리트의 균열 진전 상태를 보인 도식도.Figure 10a is a schematic diagram showing the crack propagation state of a general ultra-high performance fiber reinforced concrete.
도 10b는 일반적인 초고성능 섬유보강 콘크리트의 인장거동을 보인 그래프.Figure 10b is a graph showing the tensile behavior of the general ultra-high performance fiber reinforced concrete.
도 11a는 본 발명에 의한 초고성능 섬유보강 콘크리트의 강섬유의 형상계수 60에서 형상계수별로 하이브리드된 시멘트복합체의 압축강도 및 인장강도 관계를 실험한 그래프.11a is a graph illustrating the relationship between the compressive strength and the tensile strength of the cement composite hybridized by the shape coefficients in the shape coefficient 60 of the steel fiber of the ultra-high performance fiber reinforced concrete according to the present invention.
도 11b는 본 발명에 의한 초고성능 섬유보강 콘크리트의 강섬유의 형상계수 80에서 형상계수별로 하이브리드된 시멘트복합체의 압축강도 및 인장강도 관계를 실험한 그래프.11b is a graph illustrating the relationship between the compressive strength and the tensile strength of the cement composite hybridized by the shape coefficient of the steel fiber of the ultra-high performance fiber reinforced concrete according to the present invention.
도 12는 본 발명에 의한 초고성능 섬유보강 콘크리트의 균열유도체의 일실시예를 보인 도면.12 is a view showing an embodiment of the crack inductor of ultra-high performance fiber reinforced concrete according to the present invention.
도 13은 본 발명에 의한 초고성능 섬유보강 콘크리트의 휨인장강도 및 등가 휨인장강도(Vf = 2%)를 보인 그래프.13 is a graph showing the flexural tensile strength and equivalent flexural tensile strength (V f = 2%) of the ultra-high performance fiber reinforced concrete according to the present invention.
도 14는 본 발명에 의한 초고성능 섬유보강 콘크리트의 휨응력-변형률(Vf = 2%) 상태를 보인 그래프.Figure 14 is a graph showing the bending stress-strain (V f = 2%) state of the ultra-high performance fiber reinforced concrete according to the present invention.
도 15a 및 15b는 균열유도체를 포함하지 않은 상태와 균열유도체를 2% 포함한 상태에 대한 초고성능 섬유보강 콘크리트의 인장거동을 각각 보인 그래프.15a and 15b are graphs showing the tensile behavior of ultra-high performance fiber reinforced concrete for the state containing no crack derivatives and 2% containing crack derivatives, respectively.
도 16a 및 16b는 균열유도체를 포함하지 않은 상태와 균열유도체를 2% 포함한 상태에 대한 초고성능 섬유보강 콘크리트의 단면 상태를 각각 보인 도면.Figure 16a and 16b is a view showing a cross-sectional state of the ultra-high performance fiber-reinforced concrete for the state that does not include the crack guide and 2% containing the crack guide.
도 17은 본 발명에 의한 초고성능 섬유보강 콘크리트의 균열유도체의 미세균열 진전 상태를 보인 도식도.Figure 17 is a schematic diagram showing the microcracks propagation state of the crack inductor of ultra-high performance fiber reinforced concrete according to the present invention.
도 18은 도 17의 일부분을 확대하여 보인 확대도.18 is an enlarged view of a portion of FIG.
도 19는 본 발명에 의한 초고성능 섬유보강 콘크리트의 다른 실시예를 보인 균열유도체의 단면도.19 is a cross-sectional view showing a crack derivative showing another embodiment of ultra-high performance fiber reinforced concrete according to the present invention.
본 발명은 시멘트, 지르코늄 함유 실리카질 미분말, 잔골재, 충전재, 수축저감제, 고성능 감수제, 배합수, 강섬유, 및 소포제 중 적어도 하나 이상을 혼합하여 형성된 초고성능 섬유보강 콘크리트에 있어서, 상기 실리카질 미분말의 비표면적의 범위는 80,000cm2/g 이상 150,000cm2/g 이하이고, 상기 강섬유의 형상계수는 60 이상 100 이하이고, 형상계수 60 ~ 80인 강섬유를 25% ~ 35% 체적비로 혼합하고, 형상계수 81 ~ 100인 강섬유를 65% ~ 75% 체적비로 혼합하고, 시멘트 복합체 내에 미세균열을 유도하기 위한 균열유도체가 더 포함되고, 상기 균열유도체는 표면에 도포되어 미세균열을 촉진하는 균열촉진제를 포함하는 제1 표면층을 포함하는 초고성능 섬유보강 콘크리트를 제공한다.The present invention is a super high-performance fiber reinforced concrete formed by mixing at least one or more of cement, zirconium-containing silica fine powder, fine aggregate, filler, shrinkage reducing agent, high performance water reducing agent, blended water, steel fiber, and antifoaming agent, The specific surface area is in the range of 80,000 cm 2 / g or more and 150,000 cm 2 / g or less, and the shape factor of the steel fiber is 60 or more and 100 or less, and the steel fibers having a shape factor of 60 to 80 are mixed at a volume ratio of 25% to 35%, and the shape Steel fibers having a coefficient of 81 to 100 are mixed at a volume ratio of 65% to 75%, and a crack inducer for inducing microcracks in the cement composite is further included, and the crack inducer is applied to a surface to include a crack promoter for promoting microcracks. It provides an ultra-high performance fiber reinforced concrete comprising a first surface layer.
본 발명에 관한 설명은 구조적 내지 기능적 설명을 위한 실시예에 불과하므로, 본 발명의 권리범위는 본문에 설명된 실시예에 의하여 제한되는 것으로 해석되어서는 아니 된다. 즉, 실시예는 다양한 변경이 가능하고 여러 가지 형태를 가질 수 있으므로 본 발명의 권리범위는 기술적 사상을 실현할 수 있는 균등물들을 포함하는 것으로 이해되어야 한다. 또한, 본 발명에서 제시된 목적 또는 효과는 특정 실시예가 이를 전부 포함하여야 한다거나 그러한 효과만을 포함하여야 한다는 의미는 아니므로, 본 발명의 권리범위는 이에 의하여 제한되는 것으로 이해되어서는 아니 될 것이다.Description of the present invention is only an embodiment for structural or functional description, the scope of the present invention should not be construed as limited by the embodiments described in the text. That is, since the embodiments may be variously modified and may have various forms, the scope of the present invention should be understood to include equivalents capable of realizing the technical idea. In addition, the objects or effects presented in the present invention does not mean that a specific embodiment should include all or only such effects, the scope of the present invention should not be understood as being limited thereby.
한편, 본 출원에서 서술되는 용어의 의미는 다음과 같이 이해되어야 할 것이다.On the other hand, the meaning of the terms described in the present application should be understood as follows.
"제1", "제2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위한 것으로, 이들 용어들에 의해 권리범위가 한정되어서는 아니 된다. 예를 들어, 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.Terms such as "first" and "second" are intended to distinguish one component from another component, and the scope of rights should not be limited by these terms. For example, the first component may be named a second component, and similarly, the second component may also be named a first component.
어떤 구성요소가 다른 구성요소에 "연결되어"있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결될 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어"있다고 언급된 때에는 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 한편, 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.When a component is referred to as being "connected" to another component, it should be understood that there may be other components in between, although it may be directly connected to the other component. On the other hand, when a component is referred to as being "directly connected" to another component, it should be understood that there is no other component in between. On the other hand, other expressions describing the relationship between the components, such as "between" and "immediately between" or "neighboring to" and "directly neighboring to", should be interpreted as well.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함하는 것으로 이해되어야 하고, "포함하다"또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이며, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Singular expressions should be understood to include plural expressions unless the context clearly indicates otherwise, and terms such as "comprise" or "have" refer to a feature, number, step, operation, component, part, or feature thereof. It is to be understood that the combination is intended to be present and does not exclude in advance the possibility of the presence or addition of one or more other features or numbers, steps, operations, components, parts or combinations thereof.
각 단계들에 있어 식별부호(예를 들어, a, b, c 등)는 설명의 편의를 위하여 사용되는 것으로 식별부호는 각 단계들의 순서를 설명하는 것이 아니며, 각 단계들은 문맥상 명백하게 특정 순서를 기재하지 않는 이상 명기된 순서와 다르게 일어날 수 있다. 즉, 각 단계들은 명기된 순서와 동일하게 일어날 수도 있고 실질적으로 동시에 수행될 수도 있으며 반대의 순서대로 수행될 수도 있다.In each step, an identification code (e.g., a, b, c, etc.) is used for convenience of description, and the identification code does not describe the order of the steps, and each step clearly indicates a specific order in context. Unless stated otherwise, they may occur out of the order noted. That is, each step may occur in the same order as specified, may be performed substantially simultaneously, or may be performed in the reverse order.
여기서 사용되는 모든 용어들은 다르게 정의되지 않는 한, 본 발명이 속하는 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한 이상적이거나 과도하게 형식적인 의미를 지니는 것으로 해석될 수 없다.All terms used herein have the same meaning as commonly understood by one of ordinary skill in the art unless otherwise defined. Generally, the terms defined in the dictionary used are to be interpreted to coincide with the meanings in the context of the related art, and should not be interpreted as having ideal or excessively formal meanings unless clearly defined in the present application.
본 발명은 초고성능 섬유보강콘크리트(이하, “UHPC”라 함)의 과도한 점성을 저하시키면서 적절한 유동성을 높이기 위한 재료 설계법에 대한 것으로서, 압축강도는 저하되지 않고 점성을 낮추면서 유동성을 높일 수 있는 재료 및 배합설계에 대한 것이다.The present invention relates to a material design method for increasing proper fluidity while reducing excessive viscosity of ultra-high performance fiber reinforced concrete (hereinafter referred to as “UHPC”), and a material capable of increasing fluidity while lowering viscosity without decreasing compressive strength. And formulation design.
일반적으로 섬유보강 콘크리트에서 섬유의 분산성만 확보되면 강섬유의 형상계수(섬유의 길이/직경)가 클수록 인장강도 및 인성이 향상된다. 그러나, 실제 UHPC 제조시에 강섬유의 형상계수가 클수록 섬유의 분산성이 나빠져서 인장강도 및 인성이 저하된다. 따라서, UHPC 제조시 강섬유의 형상계수의 선정이 매우 중요하다.In general, as long as the dispersion coefficient of the fiber is secured in the fiber reinforced concrete, the tensile strength and toughness of the steel fiber increase as the shape factor (fiber length / diameter) of the steel fiber increases. However, in actual production of UHPC, the larger the steel fiber shape coefficient, the worse the dispersibility of the fiber and the lower the tensile strength and toughness. Therefore, it is very important to select the shape coefficient of the steel fiber when manufacturing the UHPC.
기존의 UHPC는 형상계수 60(길이 12mm, 직경 0.2mm)인 강섬유를 많이 사용하고 있지만, 기존 UHPC에는 실리카질 미분말을 사용하기 때문에 형상계수가 60 이상의 강섬유를 사용할 경우에는 섬유의 분산성이 나빠져서 인장강도 및 인성이 오히려 저하된다.Conventional UHPC uses a lot of steel fibers with a shape factor of 60 (12 mm in length and 0.2 mm in diameter). However, since USiPC uses fine silica-like powders, when the steel fiber with a shape factor of 60 or more is used, the dispersibility of fibers deteriorates and tension Strength and toughness are rather lowered.
실리카질 미분말이 과도한 점성을 가지는 이유는 비표면적이 200,000cm2/g으로 매우 높고 수분 흡착량이 50 ~ 70 cm3/g으로 매우 높아 배합수와 고성능 감수제를 흡수하기 때문이다.The siliceous fine powder has an excessive viscosity because the specific surface area is very high (200,000 cm 2 / g) and the water adsorption amount is very high (50 ~ 70 cm 3 / g) to absorb the blended water and high performance water reducing agent.
따라서, 수분 흡착량이 작은 결합재 사용으로 배합수와 고성능 감수제의 흡수되는 양을 줄여서 UHPC의 점성을 낮추고 적절한 유동성을 확보할 필요가 있다.Therefore, it is necessary to reduce the viscosity of UHPC and to ensure proper fluidity by reducing the amount of water absorbed by the blending water and the high performance water reducing agent by using a binder having a small water adsorption amount.
(1) 실리카질 미분말의 비표면적 범위(1) Specific surface area range of fine siliceous powder
먼저, 실리카질 미분말의 비표면적이 UHPC의 유동성 또는 점도와 압축강도에 미치는 영향을 살펴보기 위하여 아래와 같은 방법에 의해 시멘트 복합체를 제조하고 압축강도 및 점도를 측정하였다.First, in order to examine the effect of the specific surface area of the silicate fine powder on the flowability or viscosity and compressive strength of UHPC, the cement composite was prepared by the following method and the compressive strength and viscosity were measured.
제조방법 1은 시멘트 100 중량부를 기준으로 비표면적이 다른 실리카질 미분말을 25 중량부, 석영질 분말(SiO2 99%, 평균입경 4μm)인 충전재를 20 중량부, 입자크기 5mm 이하인 석영질 모래를 110 중량부로 구성하여 15rpm 속도로 30초 동안 골고루 혼합하여 모르타르를 제조하고, 배합수-결합재의 비는 0.20, 결합재의 1.9 중량부로 한 고성능 감수제, 소포제, 수축저감제를 믹서기에서 30rpm 속도로 3분 동안 혼합한 후, 형상계수 60(직경 0.2mm, 길이 12mm)인 강섬유를 시멘트 복합체에 대해 2%를 투입하여 20rpm 속도로 2분 동안 혼합하여 강섬유 보강 시멘트 복합체를 제조하여 이하에서 설명하는 시험방법에 따라 점도, 슬럼프 플로우 시험을 실시하였다. Manufacturing method 1 is based on 100 parts by weight of cement, 25 parts by weight of fine silica powder having a different specific surface area, 20 parts by weight of a filler of quartz powder (99% of SiO 2 , 4 μm average particle diameter) and 20 parts by weight of quartz sand having a particle size of 5 mm or less. Mortar was prepared by mixing 110 parts by weight and mixing evenly for 15 seconds at 15 rpm. The ratio of the mixture water-binding agent was 0.20, and the binder was 1.9 parts by weight of the high-performance water reducing agent, antifoaming agent, and shrinkage reducing agent at 30 rpm for 3 minutes. After mixing for a while, a steel fiber having a shape factor of 60 (diameter 0.2 mm, length 12 mm) was added to 2% of the cement composite and mixed for 2 minutes at a speed of 20 rpm to produce a steel fiber reinforced cement composite, which was described in the test method described below. Accordingly, a viscosity and slump flow test were performed.
그리고, 상기 시멘트 복합체에 대해 2일 동안 습윤양생을 하고, 90℃에서 증기양생을 3일 동안 실시한 다음 후술하는 시험방법에 따라 압축강도를 측정하였다.Then, the cement composite was wet cured for 2 days, steam curing was performed at 90 ° C. for 3 days, and then the compressive strength was measured according to the test method described below.
시험방법은 점도시험의 경우 섬유보강 시멘트 복합체가 제조된 직후에 린더형 스핀들을 사용한 Brookfield 점도계를 이용하여 소성점도를 측정하였다. 그리고, 슬럼프 플로 시험은 KS F 2594에 의해 원형으로 넓게 퍼진 콘크리트의 지름을 측정하였다. 압축강도 시험은 Φ100 * 200mm 원주 콘크리트 시편을 이용하여 KS F 2405에 준하여 실시하였다.In the test method, the plastic viscosity was measured using a Brookfield viscometer using a Linder spindle immediately after the fiber-reinforced cement composite was prepared for the viscosity test. And, the slump flow test measured the diameter of the concrete spread in a circular shape by KS F 2594. The compressive strength test was performed in accordance with KS F 2405 using Φ100 * 200mm circumferential concrete specimens.
상기와 같은 실험결과에 따라 도 2에 도시된 실리카질 미분말 비표면적과 수분 흡착량 관계 그래프에 의하면, 비표면적이 150,000cm2/g 이하부터 수분 흡착량이 급격히 저하된 것을 확인할 수 있다.According to the results of the experiment as described above, according to the graph of the relationship between the fine silica powder specific surface area and the water adsorption amount shown in FIG. 2, it can be seen that the water adsorption amount is rapidly decreased from the specific surface area of 150,000 cm 2 / g or less.
그리고, 도 3에 도시된 실리카질 미분말의 비표면적과 유동성 또는 점도의 관계 그래프에 의하면, 비표면적이 클수록 슬럼프 플로는 작아지고 점도는 증가하는 경향이 있으며, 비표면적이 150,000cm2/g 이하부터 슬럼프 플로는 급격히 증가하고 점도가 저하된 것을 확인할 수 있다. And, according to the graph of the relationship between the specific surface area and fluidity or viscosity of the fine silica powder shown in Fig. 3, the larger the specific surface area, the smaller the slump flow and the higher the viscosity, and the specific surface area is 150,000 cm 2 / g or less. It can be seen that the slump flow increased rapidly and the viscosity decreased.
이는 수분 흡착량의 결과와 유사한데, 수분 흡착량이 작을 경우에는 배합수와 고성능 감수제의 흡착이 작아짐으로써 UHPC의 점도가 저하되어 슬럼프 플로가 증가하는 것으로 볼 수 있다.This is similar to the result of the water adsorption amount. When the water adsorption amount is small, the adsorption of the blended water and the high performance water reducing agent decreases, so that the viscosity of the UHPC decreases and the slump flow increases.
그리고, 도 4에 도시된 실리카질 미분말의 비표면적과 압축강도의 관계 그래프에 의하면, 실리카질 미분말의 비표면적 100,000cm2/g 까지는 압축강도의 감소가 거의 없고, 비표면적 80,000 cm2/g의 실리카질 미분말을 사용한 UHPC는 압축강도가 186MPa로 비표면적 200,000 cm2/g를 사용한 경우에 비해 약 8% 정도, 비표면적 50,000 cm2/g의 실리카질 미분말을 사용한 UHPC의 압축강도가 156MPa로 약 33% 정도의 강도 저하가 발생되는 것을 확인할 수 있다.And, Fig. According to the relationship graph of the specific surface area and compressive strength of the siliceous fine powder shown in Fig. 4, by a specific surface area 100,000cm 2 / g of the fine silica powder to be a reduction in the compressive strength very little, a specific surface area of 80,000 cm 2 / g UHPC using silica fine powder has a compressive strength of 186 MPa, which is about 8% higher than the specific surface area of 200,000 cm 2 / g, and the compressive strength of UHPC using silica fine powder with a specific surface area of 50,000 cm 2 / g is about 156 MPa. It can be confirmed that the strength decrease of about 33% occurs.
따라서, 상기 결과로부터 비표면적 80,000 cm2/g의 실리카질 미분말을 사용할 경우 압축강도 180MPa 이상의 UHPC 제조가 가능하다는 것을 알 수 있다.Accordingly, it can be seen from the above results that UHPC can be produced with a compressive strength of 180 MPa or more when using a fine silica powder with a specific surface area of 80,000 cm 2 / g.
상기와 같은 결과에 따라 UHPC 제조시 압축강도와 섬유의 분산성에 문제가 없는 실리카질 미분말의 비표면적의 범위는 80,000cm2/g에서 150,000cm2/g까지임을 확인할 수 있다.According to the above results, it can be seen that the specific surface area of silica fine powder having no problem in compressive strength and fiber dispersibility in manufacturing UHPC ranges from 80,000 cm 2 / g to 150,000 cm 2 / g.
(2) 실리카질 미분말의 비표면적에 따른 고성능 감수제 사용량(2) High performance water reducing agent according to specific surface area of fine silica powder
실리카질 미분말의 비표면적과 UHPC의 고성능 감수제 사용량의 관계를 살펴보기 위하여 아래와 같은 방법에 의해 시멘트 복합체를 제조하고 압축강도 및 점도를 측정하였다.In order to examine the relationship between the specific surface area of fine silica powder and the use of high performance water reducing agent of UHPC, cement composites were prepared by the following method and the compressive strength and viscosity were measured.
시멘트 100 중량부를 기준으로 비표면적이 다른 실리카질 미분말을 25 중량부, 석영질 분말(SiO2 99%, 평균입경 4μm)인 충전재를 20 중량부, 입자크기 5mm 이하인 석영질 모래를 110 중량부로 구성하였고, 배합수-결합재의 비는 0.20이다. 이 배합 조건에서 실리카지질 미분말의 비표면적에 따라 슬럼프 플로 650mm를 확보하는 데 필요한 고성능 감수제 사용량을 검토하였다. 고성능 감수제는 고형성분 30%의 폴리칼본산계를 사용하였다.25 parts by weight of fine silica powder having a specific surface area based on 100 parts by weight of cement, 20 parts by weight of a filler having a quartz powder (99% of SiO2, an average particle size of 4 μm), and 110 parts by weight of quartz sand having a particle size of 5 mm or less. , The ratio of the blended water-binding material is 0.20. Under these mixing conditions, the amount of high-performance water reducing agent required to secure slump flow of 650 mm was investigated according to the specific surface area of fine silica lipid powder. The high performance water reducing agent used a polycarboxylic acid system of 30% of the solid component.
이에 따른 실험결과가 도 5에 도시되어 있다. 도시된 바와 같이, 실리카질 미분말의 비표면적이 커질수록 일정 유동성을 확보하는 데 요구되는 고성능 감수제 사용량도 증가하는 것으로 나타났다. 특히 비표면적 180,000 cm2/g부터 고성능 감수제의 사용량이 급격히 증가하고 있다. 예를 들어 비표면적 230,000 cm2/g의 실리카질 미분말을 사용한 UHPC은 비표면적 80,000 cm2/g의 실리카질 미분말을 사용하는 UHPC보다 동일한 시공성을 확보하는 데 고성능 감수제 사용량이 2.09 배 더 필요한 것으로 나타났다. The experimental results are shown in FIG. 5. As shown, the larger the specific surface area of the fine silica powder, the higher the amount of high performance water reducing agent required to secure a certain fluidity. In particular, the use of high performance water reducing agents has increased rapidly from the specific surface area of 180,000 cm 2 / g. For example, UHPC using silicate powder with a specific surface area of 230,000 cm 2 / g requires 2.09 times more high-performance water reducing agent to achieve the same workability than UHPC using silicate powder with a specific surface area of 80,000 cm 2 / g. .
따라서, 고가의 고성능 감수제의 사용량을 최적화하기 위한 조건은 실리카질 미분말의 비표면적인 150,000 cm2/g 이하인 것이 바람직하다.Therefore, the condition for optimizing the amount of expensive high performance water reducing agent is preferably 150,000 cm 2 / g or less of the specific surface area of the fine siliceous powder.
이처럼 적절한 비표면적을 가진 실리카질 미분말을 사용할 경우에는 시멘트 복합체의 점도가 낮아져 유동성이 향상되어 그 만큼 고가의 고성능 감수제의 사용량을 줄임으로써 UHPC의 제조비용이 저감될 것이다.In the case of using the fine siliceous powder having an appropriate specific surface area, the viscosity of the cement composite is lowered to improve the fluidity, thereby reducing the cost of manufacturing UHPC by reducing the amount of expensive high performance water reducing agent.
(3) 강섬유의 형상계수 범위(3) Shape factor range of steel fiber
강섬유의 형상계수가 섬유의 분산성 및 압축강도에 미치는 영향을 살펴보기 위해 아래와 같은 방법에 의해 시멘트 복합체를 제조하고 섬유의 분산성, 압축강도, 및 인장강도를 측정하였다.In order to investigate the effect of the shape coefficient of steel fiber on the fiber dispersibility and compressive strength, the cement composite was prepared by the following method and the fiber dispersibility, compressive strength and tensile strength were measured.
제조방법 2는 상기에서 설명한 제조방법 1에서 직경을 0.2mm로 고정시키고 형상계수 50(길이 10mm), 70(길이 14mm), 80(길이 16mm), 90(길이 18mm), 100(길이 20mm), 110(길이 22mm), 120(길이 24mm)인 강섬유를 투입하여 UHPC를 제조한 다음 아래의 시험방법에 따라 섬유의 분산성 및 압축강도를 평가하였다.In the manufacturing method 2, the diameter of 0.2 mm was fixed in the manufacturing method 1 described above, and the shape factors 50 (length 10 mm), 70 (length 14 mm), 80 (length 16 mm), 90 (length 18 mm), 100 (length 20 mm), Steel fiber with 110 (length 22mm) and 120 (length 24mm) was added to prepare a UHPC, and the dispersibility and compressive strength of the fiber were evaluated according to the following test method.
UHPC의 섬유 분산성은 플로우 시험(KS L 5105)에서 육안관찰에 의해 재료분리 상태를 평가하였다. 육안관찰에 의해 시멘트 복합체 중의 섬유 뭉침 상태에 따라 등급 1(우수), 2(보통), 3(불량)으로 구분하여 평가하였다(도 6 참조).The fiber dispersibility of the UHPC was evaluated for material separation by visual observation in a flow test (KS L 5105). By visual observation, it was evaluated by classifying the grade 1 (excellent), 2 (normal), 3 (defect) according to the fiber agglomeration state in the cement composite (see Fig. 6).
여기서 등급 1은 UHPC 제조시 섬유가 균질하게 분산되어 있는 상태이고, 등급 2는 섬유 뭉침(fiber ball)과 재료 분리 현상이 약간 있는 상태, 등급 3은 섬유 뭉침으로 인해 섬유의 분산 상태가 아주 나쁜 상태로 구분하였다.Here, Grade 1 is a state in which fibers are homogeneously dispersed in manufacturing UHPC, Grade 2 is a state of fiber ball and material separation slightly, Grade 3 is a very bad state of fiber dispersion due to fiber agglomeration. Divided into.
UHPC의 섬유 분산성과 관련하여 아래의 표 1에 나타낸 바와 같이, 강섬유의 형상계수가 증가하고 실리카질 미분말의 비표면적이 커질수록 섬유 분산성이 저하되는 것으로 평가되었다. As shown in Table 1 below with respect to the fiber dispersibility of UHPC, it was evaluated that the fiber dispersibility was lowered as the shape coefficient of the steel fiber increased and the specific surface area of the fine silica powder was increased.
이것은 실리카질 미분말의 비표면적이 커질수록 고성능 감수제와 배합수를 흡착하는 양이 많아져 UHPC에 과도한 점성이 부여됨으로써 유동성이 저하되기 때문으로 분석된다. 예를 들어, 강섬유의 형상계수 60 이하의 경우, 실리카질 미분말의 비표면적에 상관없이 강섬유의 분산성에 문제가 없으나, 형상계수 70부터 비표면적 180,000 cm2/g 이상의 실리카질 미분말을 사용한 UHPC에서 강섬유의 분산성에 문제가 발생하는 것으로 나타나고 있다. 강섬유의 형상계수 110이상에서 실리카질 미분말의 비표면적에 상관없이 UHPC의 섬유 분산성에 저하되는 것으로 나타났다. 상기와 같은 결과에 의하면, 실리카질 미분말의 비표면적과 강섬유의 형상계수는 서로 독립적으로 특정되는 것이 아니라 종속적으로 특정되야 한다는 것을 알 수 있다.This is because the larger the specific surface area of the fine siliceous powder, the higher the amount of adsorption of the high-performance sensitizer and the blended water and the excessive viscosity to the UHPC. For example, if the shape factor of the steel fiber is 60 or less, there is no problem in dispersibility of the steel fiber regardless of the specific surface area of the fine silicate powder, but the steel fiber in UHPC using the fine silicate powder having a specific surface area of 180,000 cm 2 / g or more from the shape factor 70 Problems have been shown to occur in the dispersibility of. It was found that the fiber dispersibility of UHPC was lowered regardless of the specific surface area of fine silicate powder at the shape coefficient of steel fiber over 110. According to the above results, it can be seen that the specific surface area of the fine siliceous powder and the shape coefficient of the steel fiber should be specified dependently, not independently of each other.
그리고, 도 7에 도시된 바와 같이, 강섬유의 형상계수가 50에서 100 범위에서 실리카질 미분말의 비표면적에 상관없이 압축강도의 변화가 거의 없었으나, 강섬유의 형상계수 110을 사용한 경우에는 실리카질 미분말의 비표면적에 상관없이 압축강도가 저하됨을 알 수 있다. 이는 강섬유의 형상계수가 일정이상 커지면 UHPC의 제조시 섬유의 분산이 잘 안되어서 섬유의 뭉침현상이 발생하였기 때문이다.As shown in FIG. 7, the compressive strength was hardly changed regardless of the specific surface area of the fine silica powder in the range of 50 to 100, but the fine silica powder was used when the shape coefficient of the steel fiber 110 was used. It can be seen that the compressive strength is lowered regardless of the specific surface area of. This is because when the shape coefficient of the steel fiber is larger than a certain amount, the fiber is not dispersed well when the UHPC is manufactured.
따라서, 압축강도에 영향을 미치지 않는 강섬유의 형상계수는 100 이하인 것이 바람직하다.Therefore, the shape coefficient of the steel fiber which does not affect the compressive strength is preferably 100 or less.
그리고, 강섬유의 형상계수가 UHPC의 직접 인장강도에 미치는 영향을 확인하기 위하여 제조방법 2에 의해 제조된 시멘트 복합체에 대해 직접 인장 시험을 실시하였다.In addition, a direct tensile test was performed on the cement composite prepared by the production method 2 to confirm the influence of the shape coefficient of the steel fiber on the direct tensile strength of the UHPC.
직접 인장 시험은 도 8에 도시된 직접인장시험체와 인장시험장치를 사용하였다. 직접인장시험 장치는 시험 중 발생하는 2차 휨응력의 영향과 초기 시험체 거치 시의 정확성 등을 고려하여 일단 힌지와 지지조건을 가진 형태로 제작되었다. UHPC의 직접 인장 시험은 300kN 용량의 만능 재료 시험기를 사용하였으며, 0.4mm/min의 재하속도로 재하하였고, 시험체에서 좁은 단면에서의 변위를 측정하기 위해 175mm의 범위에서 2개의 LVDT를 설치하였다.The direct tensile test used a direct tensile test specimen and a tensile test apparatus shown in FIG. The direct tension tester was manufactured with a hinge and supporting condition in consideration of the effects of secondary bending stress occurring during the test and the accuracy of the initial specimen mounting. The direct tensile test of the UHPC was carried out using a 300 kN universal material tester, loaded at a loading speed of 0.4 mm / min, and two LVDTs were installed at a range of 175 mm to measure displacement in a narrow cross section in the test specimen.
상기 시험결과에 따른 도 9에 도시된 바와 같이, 강섬유의 형상계수가 50과 100 범위에서 형상계수가 커질수록 직접 인장강도가 증가하고 있음을 알 수 있다. 이것은 형상계수가 증가할수록 강섬유의 가교작용이 크기 때문인 것으로 분석된다. As shown in FIG. 9 according to the test result, it can be seen that the direct tensile strength increases as the shape coefficient of the steel fiber increases in the range of 50 and 100. This is because the crosslinking effect of the steel fiber increases as the shape coefficient increases.
특히 형상계수 50과 60 사이에서 직접인장강도의 변화가 크며, UHPC의 직접인장강도 거동에서 강섬유의 가교작용에 충분히 발휘되기 위해서는 최소 강섬유의 형상계수가 60 이상이어야 한 것으로 분석된다. 그리고, 형상계수가 110인 강섬유를 사용한 UHPC의 직접 인장강도는 크게 저하되었음을 알 수 있다.In particular, the change in direct tensile strength between the shape coefficients 50 and 60 is large, and it is analyzed that the shape coefficient of the minimum steel fiber should be 60 or more in order to fully exhibit the crosslinking action of the steel fiber in the direct tensile strength behavior of UHPC. In addition, it can be seen that the direct tensile strength of the UHPC using the steel fiber having a shape factor of 110 was greatly reduced.
강섬유의 형상계수 50과 60에서 실리카질 미분말의 비표면적에 관계없이 인장강도는 거의 유사하나, 형상계수 70 이상인 강섬유를 사용한 경우, 실리카질 미분말의 비표면적 180,000cm2/g 이상부터 인장강도가 크게 저하되는 경향을 가지고 있다.Tensile strength is almost the same regardless of the specific surface area of fine silica powder at shape coefficients of 50 and 60, but when steel fibers with a shape coefficient of 70 or more are used, the tensile strength is large from the specific surface area of more than 180,000 cm 2 / g of fine silica powder. It tends to be lowered.
이는 실리카질 미분말의 비표면적이 큰 180,000cm2/g 이상부터 수분흡착량이 47cm2/g 이상으로 매우 커서 UHPC 제조과정에서 고성능 감수제와 배합수를 흡착하는 양이 증가하여 UHPC의 점도는 증가하고 유동성이 감소하기 때문에 섬유의 분산성이 불규칙한 UHPC가 제조되었기 때문이고, 강섬유의 형상계수가 일정이상부터 이런 현상이 더욱 크게 발생하기 때문이다.This is because the silicate fine powder has a specific surface area of more than 180,000cm 2 / g and the moisture adsorption amount is more than 47cm 2 / g, so that the amount of adsorption of high performance water sensitizer and blending water increases during the manufacturing process of UHPC. This is because the UHPC was produced because the fiber dispersibility is irregular because of this decrease, and this phenomenon occurs even more than a certain number of steel fiber shape coefficient.
따라서, UHPC 배합은 실리카질 미분말의 비표면적이 80,000cm2/g에서 150,000cm2/g의 범위에서 강섬유의 형상계수는 60에서 100의 범위인 것이 바람직하다. 그리고, 실리카질 미분말의 비표면적과 강섬유의 형상계수는 서로 독립적으로 특정되는 것이 아니라 종속적으로 특정되는 것이 바람직하다.Therefore, the UHPC blend preferably has a shape coefficient of steel fiber in the range of 60 to 100 in the specific surface area of the fine siliceous powder of 80,000 cm 2 / g to 150,000 cm 2 / g. In addition, it is preferable that the specific surface area of the fine silica powder and the shape coefficient of the steel fiber are specified independently, not independently of each other.
실리카질 미분말의비표면적(cm2/g)Specific surface area of fine silica powder (cm 2 / g) | 강섬유의 형상계수(L/d)Shape factor of steel fiber (L / d) | ||||||
6060 | 7070 | 8080 | 9090 | 100100 | 110110 | 120120 | |
50,00050,000 | 1One | 1One | 1One | 1One | 1One | 22 | 22 |
80,00080,000 | 1One | 1One | 1One | 1One | 1One | 22 | 22 |
100,000100,000 | 1One | 1One | 1One | 1One | 1One | 22 | 22 |
130,000130,000 | 1One | 1One | 1One | 1One | 1One | 22 | 33 |
150,000150,000 | 1One | 1One | 1One | 1One | 1One | 22 | 33 |
180,000180,000 | 1One | 22 | 22 | 22 | 22 | 33 | 33 |
200,000200,000 | 1One | 22 | 22 | 22 | 33 | 33 | 33 |
230,000230,000 | 1One | 22 | 22 | 33 | 33 | 33 | 33 |
(4) 동일 형상계수에서의 직경 변화에 따른 인장강도 특성변화(4) Change in tensile strength characteristics with diameter change at same shape factor
형상계수가 동일한 강섬유의 직경에 따른 인장강도 특성을 살펴보기 위해 아래와 같은 제조방법에 의해 시멘트 복합체를 제조하여 압축강도 및 직접인장강도를 측정하였다.In order to examine the tensile strength characteristics according to the diameters of the steel fibers with the same shape coefficients, the cement composites were prepared by the following manufacturing method, and the compressive and direct tensile strengths were measured.
제조방법 3은 강섬유의 형상계수를 100으로 고정하고, 강섬유의 직경 0.16mm × 길이 16mm, 직경 0.18mm × 길이 18mm, 직경 0.20mm × 길이 20mm, 직경 0.22mm × 길이 22mm, 직경 0.25mm × 길이 25mm로 설정한다.In the manufacturing method 3, the shape coefficient of the steel fiber is fixed to 100, and the diameter of the steel fiber is 0.16mm × length 16mm, diameter 0.18mm × length 18mm, diameter 0.20mm × length 20mm, diameter 0.22mm × length 22mm, diameter 0.25mm × length 25mm Set to.
그리고, 시멘트 100중량부를 기준으로 비표면적이 150,000㎠/g 실리카질 미분말을 25 중량부, 석영질 분말(SiO2 99%, 평균입경 4㎛)인 충전재를 20중량부, 입자크기 5mm 이하인 석영질 모래를 110중량부로 구성하여 구성하여 15rpm 속도로 30초 동안 골고루 혼합하여 모르타르를 제조하고, 배합수-결합재의 비는 0.20, 결합재의 1.9 중량부로 한 고성능 감수제, 소포제, 수축저감제를 믹서기에 투입하여 30rpm 속도로 3분 동안 혼합한 다음 상기의 강섬유를 시멘트 복합체에 대해 2%를 투입하여 20rpm 속도로 2분 동안 혼합하여 강섬유 보강 시멘트 복합체를 제조한 다음 슬럼프 플로우 시험을 실시하였다. 그리고, 상기 시멘트 복합체에 대해 2일 동안 습윤양생을 하고, 90℃에서 증기양생을 3일 동안 실시한 압축강도, 직접인장강도를 측정하였다.And, based on 100 parts by weight of cement, 25 parts by weight of a fine powder of 150,000 cm 2 / g silicate powder, 20 parts by weight of a filler having a quartz powder (99% of SiO 2 , an average particle diameter of 4 μm), and a quartz having a particle size of 5 mm or less. Sand is composed of 110 parts by weight and mixed evenly for 15 seconds at a speed of 15rpm to prepare a mortar. After mixing for 3 minutes at a speed of 30rpm, the steel fiber was added to 2% of the cement composite and mixed for 2 minutes at a speed of 20rpm to prepare a steel fiber reinforced cement composite, and then a slump flow test was performed. Then, the cement composite was wet cured for 2 days, and the compressive strength and direct tensile strength of steam curing at 90 ° C. for 3 days were measured.
상기 실험결과에 의하면, 강섬유의 형상계수가 동일하더라도 직경이 작은 강섬유를 사용하는 경우가 직접 인장강도 향상에 영향을 미치고, 특히 아래의 표 2에 기재된 바와 같이 직경 0.16mm와 길이 16mm의 강섬유를 사용한 UHPC의 직접 인장강도가 20.1MPa로 크게 증가하고 있다. 이에 반해, 직경 0.25mm와 길이 25mm의 강섬유를 사용한 경우에는 압축강도와 직접 인장강도가 다소 감소하는 것으로 나타났다. According to the test results, even if the shape coefficients of the steel fibers are the same, the use of small diameter steel fibers directly affects the tensile strength improvement, in particular, using steel fibers having a diameter of 0.16 mm and a length of 16 mm as shown in Table 2 below. The direct tensile strength of UHPC is greatly increased to 20.1 MPa. On the contrary, the compressive strength and the direct tensile strength were slightly decreased when the steel fibers of 0.25 mm diameter and 25 mm length were used.
강섬유 종류Steel fiber type | 슬럼프 플로(mm) Slump Flow (mm) | 압축강도(MPa) Compressive strength (MPa) | 직접인장강도(MPa) Direct tensile strength (MPa) |
d0.16×L16d0.16 x L16 | 620620 | 196196 | 20.120.1 |
d0.18×L18d0.18 x L18 | 635635 | 196196 | 19.719.7 |
d0.20×L20d0.20 × L20 | 650650 | 196196 | 18.718.7 |
d0.22×L22d0.22 x L22 | 660660 | 189189 | 18.118.1 |
d0.25×L25d0.25 x L25 | 660660 | 179179 | 16.716.7 |
동일한 형상계수의 강섬유라도 직경이 작을수록 UHPC의 인장강도가 증가하는 것은 섬유의 직경이 작아짐에 따라 강섬유와 시멘트 복합체에 혼입되는 섬유의 비표면적의 증가에 따른 부착면적이 증가되어 매크로 균열 폭의 증가를 억제하고 균열발생 이후에 섬유의 가교작용으로 인해 시멘트 복합체 내에서 응력재분배를 유발하기 때문이다.The smaller the diameter, the higher the tensile strength of UHPC, even if the steel fiber of the same shape factor increases. As the diameter of the fiber decreases, the adhesion area increases due to the increase of the specific surface area of the fiber mixed with the steel fiber and the cement composite. This is because the stress redistribution in the cement composite is caused by the crosslinking action of the fiber after cracking.
(5) 하이브리드 강섬유에 의한 직접인장강도 변화(5) Direct tensile strength change by hybrid steel fiber
도 10a 및 도 10b에 도시된 바와 같이, 직접 인장 파괴 거동 시 균열 초기에는 마이크로 섬유가 미세균열(micro-cracking)을 구속하는 효과가 발휘되고, 미세균열이 진전되면서 일정 크기를 가진 대균열(macro-cracking)로 발생하는 경우에는 매크로 섬유의 가교작용에 의해 섬유의 인발 에너지가 증가됨으로써 인장강도 및 인성이 대폭 향상된다.As shown in Figure 10a and Figure 10b, the effect of the microfiber restrains the micro-cracking at the beginning of the crack during the direct tensile failure behavior, macro cracks having a certain size as the microcracks advance In the case of -cracking), the tensile energy and toughness of the fiber are greatly increased by the crosslinking action of the macrofiber.
따라서, 하이브리드 강섬유에 의해 직접 인장강도가 향상됨을 확인하기 위해 형상계수 60(d0.2mm × L13mm)과 형상계수 80(d0.2mm × L16mm)의 강섬유가 하이브리드된 시멘트 복합체와, 형상계수 80(d0.2mm × L16mm)와 형상계수 100(d0.2mm × L20mm)의 강섬유가 하이브리드된 시멘트 복합체의 압축강도 및 직접인장강도에 대한 실험결과가 도 11a 및 11b에 각각 도시되어 있다.Therefore, in order to confirm that the tensile strength is directly improved by the hybrid steel fiber, a cement composite in which a steel fiber having a shape factor of 60 (d0.2mm × L13mm) and a shape factor of 80 (d0.2mm × L16mm) is hybridized, and a shape factor of 80 (d0). Experimental results on the compressive and direct tensile strengths of the cement composite hybridized with steel fibers of .2 mm × L16mm) and shape factor 100 (d0.2mm × L20mm) are shown in FIGS. 11A and 11B, respectively.
상기 실험결과에 의하면, 섬유의 형상계수가 압축강도에 미치는 영향은 거의 없음을 알 수 있고, 마이크로 섬유와 매크로 섬유를 하이브리드시킨 UHPC는 기존 UHPC에 많이 사용되는 형상계수 60(d0.2mm × L13mm) 섬유를 사용한 경우보다 직접인장강도가 증가된 것을 알 수 있다. According to the experimental results, it can be seen that the shape factor of the fiber has little effect on the compressive strength, UHPC hybridization of the microfiber and macrofiber is a shape factor 60 (d0.2mm × L13mm) that is used a lot in the existing UHPC It can be seen that the direct tensile strength is increased than when using the fiber.
그리고, 마이크로 강섬유와 매크로 강섬유를 혼합하는 경우, 마이크로 강섬유는 25%에서 35%의 범위, 매크로 강섬유는 65%에서 75%의 범위의 비율로 혼합하는 것이 직접인장강도 향상에 유리하다는 것을 알 수 있다.In addition, when the micro steel fibers and the macro steel fibers are mixed, it can be seen that the mixing of the micro steel fibers in the range of 25% to 35% and the macro steel fibers in the range of 65% to 75% is advantageous for improving the direct tensile strength. .
또한, 형상계수 60(d0.2mm × L13mm)과 형상계수 80(d0.2mm × L16mm)의 강섬유를 하이브리드 시키는 UHPC보다 형상계수 80(d0.2mm × L16mm)과 형상계수 100(d0.2mm×L20mm)의 강섬유를 하이브리드시키는 경우가 인장강소 성능면에서 유리하고, 매크로 강섬유를 많은 비율로 혼입하는 것이 UHPC의 직접인장강도를 증가시키는데 더 효율적임을 알 수 있다. Also, shape factor 80 (d0.2mm × L16mm) and shape factor 100 (d0.2mm × L20mm) than UHPC which hybridizes steel fibers of shape factor 60 (d0.2mm × L13mm) and shape factor 80 (d0.2mm × L16mm). Hybrid steel fiber) is advantageous in terms of tensile steel performance, and it can be seen that incorporating a large proportion of macro steel fiber is more effective in increasing the direct tensile strength of UHPC.
상기 결과로 인해 하이브리드 강섬유는 가능한 형상계수가 높은 강섬유를 조합시키는 것이 유리함을 알 수 있고, 특히 형상계수 80(d0.2mm × L16mm) 0,5%와 형상계수 100(d0.2mm × L20mm) 1.5%의 강섬유를 하이브리드시킨 UHPC의 직접인장강도는 19.2MPa으로 매우 높고, 이것은 기존의 UHPC 인장강도보다 143% 증가된 값임을 알 수 있다.As a result, it can be seen that the hybrid steel fiber is advantageous to combine the steel fiber with the highest possible shape factor, in particular, the shape factor 80 (d0.2mm × L16mm) 0,5% and the shape factor 100 (d0.2mm × L20mm) 1.5 The direct tensile strength of UHPC hybridized with% steel fiber is very high at 19.2 MPa, which is 143% higher than the existing UHPC tensile strength.
그리고, 형상계수 80(d0.2mm × L16mm)와 형상계수 100(d0.2mm × L20mm) 의 강섬유를 하이브리드시킨 UHPC는 1.5%(Vf) 사용한 경우가 강섬유 2.0%(Vf)를 사용한 기존 UHPC보다도 인장강도가 높은 결과를 보이는바, 강섬유의 혼입률이 0.5 %(39kg/m3) 감소하더라도 동일한 성능을 확보할 수 있기 때문에 UHPC의 제조가격을 크게 감소시킬 수 있다. 즉, 제조원가를 고려할 경우에는 형상계수 80 0.5%와 형상계수 100 1.0%를 서로 혼합하는 것이 바람직하다.In addition, UHPC that hybridized steel fibers with a shape factor of 80 (d0.2mm × L16mm) and shape factor 100 (d0.2mm × L20mm) had a tensile strength of 1.5% (Vf) when compared to conventional UHPCs using steel fibers 2.0% (Vf). The result of high strength shows that even if the mixing ratio of steel fiber decreases by 0.5% (39kg / m 3 ), the same performance can be secured, which can greatly reduce the manufacturing cost of UHPC. That is, in consideration of manufacturing cost, it is preferable to mix the shape coefficient 80 0.5% and the shape coefficient 100 1.0% with each other.
Micro fiber(A)Micro fiber (A) | Macro fiber(B)Macro fiber (B) | 강섬유의 혼입률(Vf)Incorporation Rate of Steel Fibers (Vf) | 직접인장강도(MPa)Direct tensile strength (MPa) | ||
AA | BB | A+BA + B | |||
d0.2*L16d0.2 * L16 | d0.2*L20d0.2 * L20 | 0.250.25 | 0.750.75 | 1One | 11.311.3 |
0.30.3 | 1.01.0 | 1.31.3 | 12.712.7 | ||
0.50.5 | 1.01.0 | 1.51.5 | 15.615.6 | ||
0.750.75 | 0.750.75 | 1.51.5 | 14.914.9 | ||
0.50.5 | 1.51.5 | 2.02.0 | 19.219.2 | ||
1.01.0 | 1.01.0 | 2.02.0 | 18.418.4 | ||
d0.2*L13d0.2 * L13 | -- | 1One | -- | 1One | 6.26.2 |
1.31.3 | -- | 1.31.3 | 7.87.8 | ||
1.51.5 | -- | 1.51.5 | 10.910.9 | ||
2.02.0 | -- | 2.02.0 | 13.413.4 | ||
d0.2*L20d0.2 * L20 | -- | 1One | -- | 1One | 11.111.1 |
1.31.3 | -- | 1.31.3 | 12.812.8 | ||
1.51.5 | -- | 1.51.5 | 15.115.1 | ||
2.02.0 | -- | 2.02.0 | 18.718.7 |
(6) 인공 미세균열 분포가 유도에 의한 인장성능의 향상 평가(6) Evaluation of Improvement of Tensile Performance by Induction of Artificial Microcrack Distribution
도 10a 및 도 10b에 도시된 바와 같이, 직접 인장 파괴 거동시 UHPC 내의 균열 초기에는 미세균열(micro-cracking)이 발생하고, 이후 미세균열이 대균열(macro-cracking)로 진전되면서 파괴가 시작된다.As shown in FIGS. 10A and 10B, in the initial tensile cracking behavior, micro-cracking occurs at the beginning of cracking in the UHPC, and then fracture starts as the microcracks develop into macro-cracking. .
균열초기의 미세균열 단계에서는 마이크로 섬유가 균열을 구속하고 대균열 진전시에는 매크로 섬유의 가교작용에 의해 섬유의 인발 에너지가 증가됨으로써 인장강도 및 인성이 대폭 향상된다. In the early stage of cracking, the microfibers confine the cracks, and when the major cracks are propagated, the tensile energy and toughness of the fibers are greatly increased by the crosslinking action of the macrofibers.
따라서, 마이크로 섬유와 매크로 섬유를 적정 비율로 혼합하여 콘크리트를 제조하되, 미세균열의 진전을 유도할 수 있는 별도의 균열유도체를 삽입하여 인공적으로 미세 균열을 유도함으로써 주변 시멘트 매트릭스와의 접착력을 향상시키고, 제1 균열로부터 미세균열을 더욱 유도하여 균열폭을 제어하여 인장성능을 향상시킬 수 있다.Therefore, concrete is prepared by mixing microfibers and macrofibers at an appropriate ratio, and artificially induces micro cracks by inserting a separate crack inductor capable of inducing the growth of microcracks, thereby improving adhesion to the surrounding cement matrix. In addition, it is possible to further improve the tensile performance by controlling the crack width by further inducing microcracks from the first crack.
인공 미세균열 유도가 인장성능에 미치는 영향을 살펴보기 위해 아래와 같은 방법에 의해 시멘트 복합체를 제조하고 시멘트 복합체의 인장강도 및 인장거동을 측정하였다.In order to investigate the effect of artificial microcracks induction on tensile performance, cement composites were prepared by the following method and tensile strength and tensile behavior of cement composites were measured.
제조방법 3은 시멘트, 실리카질 미분말, 잔골재, 충전재를 믹서에 넣고 30초 동안 15rpm 속도로 혼합한다. 그리고, 배합수, 고성능 감수제, 및 소포제, 수축저감제가 포함된 유동성의 혼합물을 믹서에 투입하고, 혼합물이 유동상태로 될 때까지 3분 동안 30rpm 속도로 혼합한다.In the manufacturing method 3, cement, fine silica powder, fine aggregate, and filler are placed in a mixer and mixed at a speed of 15 rpm for 30 seconds. Then, the flowable mixture including the blended water, the high performance water reducing agent, and the antifoaming agent and the shrinkage reducing agent is added to the mixer, and mixed at a speed of 30 rpm for 3 minutes until the mixture is brought into a fluid state.
그리고, 매크로 강섬유, 마이크로 강섬유, 및 균열유도체를 믹서에 추가한 후, 2분간 20rpm 속도로 혼합한다. 이때, 균열유도체는 전체 체적의 0.5 ~ 2%의 비율로 혼합되는 것이 바람직하다. Then, the macro steel fibers, micro steel fibers, and crack derivatives are added to the mixer, followed by mixing at 20 rpm for 2 minutes. At this time, the crack derivative is preferably mixed at a rate of 0.5 to 2% of the total volume.
믹싱이 완료되면, 거푸집에 혼합물을 타설하고 습윤양생 후, 60℃ ~ 110℃의 온도에서 2일 내지 4일 동안 증기양생을 실시하여 양생을 함으로써 초고성능 섬유보강 콘크리트를 제조할 수 있다.When the mixing is completed, the mixture is poured into the formwork and then wet curing, ultra-high-performance fiber-reinforced concrete can be produced by curing by steam curing for 2 to 4 days at a temperature of 60 ℃ ~ 110 ℃.
이와 같이 제조된 시멘트 복합체에 대한 실험예는 다음과 같다.An experimental example of the cement composite thus prepared is as follows.
먼저, 직경 0.2mm 이고 길이가 19.5mm인 매크로 강섬유(형상비 97.5)와 직경 0.2mm이고 길이가 16.3mm인 마이크로 강섬유를 혼합하고, 입경이 2mm인 입체형상을 가지는 폴리스티렌 비드(도 12 참조)를 전체 체적의 2%로 혼합하여 제조한 초고성능 섬유보강 콘크리트에 대한 실험결과이다.First, a macro steel fiber having a diameter of 0.2 mm and a length of 19.5 mm (shape ratio 97.5) and a micro steel fiber having a diameter of 0.2 mm and a length of 16.3 mm were mixed, and a polystyrene bead having a three-dimensional shape having a particle diameter of 2 mm (see FIG. 12) was formed. Experimental results for ultra high-performance fiber reinforced concrete prepared by mixing 2% by volume.
실험예에서 길이가 다른 직선형 강섬유를 혼합 사용하면, 도 13에 도시된 바와 같이 마이크로섬유는 미세균열을 구속하고 대균열은 매크로섬유가 가교작용과 동시에 응력-연하 구간에서도 시멘트 매트릭스와 강섬유와의 계면파괴를 최소화시킴으로써 인장강도 및 인성이 향상된다는 것을 알 수 있다.In the experimental example, when mixed with straight steel fibers of different lengths, as shown in FIG. 13, the microfibers constrain the microcracks and the major fissures are the interface between the cement matrix and the steel fiber even in the stress- swallowing section at the same time as the macrofibers crosslinking. It can be seen that the tensile strength and toughness are improved by minimizing fracture.
도 14에 의하면, 마이크로섬유와 매크로섬유를 혼합 사용한 경우, 단일 길이 강섬유만 사용한 경우에 비해 인장강도가 27% 향상되었고, 응력-연하구간에서도 크게 향상된 것을 확인할 수 있다.According to FIG. 14, when the microfibers and the macrofibers are mixed, the tensile strength is improved by 27% compared to the case of using only the single length steel fiber, and it can be seen that the stress-swept section is greatly improved.
도 15a에는 균열유도체를 포함하지 않은 시멘트 복합체의 인장거동을 나타낸 그래프이고, 도 15b는 균열유도체를 1% 포함한 시멘트 복합체의 인장거동을 나타낸 그래프이다.Figure 15a is a graph showing the tensile behavior of the cement composite containing no crack derivatives, Figure 15b is a graph showing the tensile behavior of the cement composite containing 1% crack derivatives.
그리고, 도 16a는 균열유도체를 포함하지 않은 시멘트 복합체의 단면을 나타낸 도면이고, 도 16b는 균열유도체를 1% 포함한 시멘트 복합체의 단면을 나타낸 도면이다.And, Figure 16a is a view showing a cross section of the cement composite containing no crack derivatives, Figure 16b is a view showing a cross section of the cement composite containing 1% crack derivatives.
도 16a의 경우 균열수가 12개이고 균열폭이 평균 65μm이고, 도 16b의 경우 균열수가 18개이고 균열폭이 평균 40μm인 것으로 확인되었다. 따라서, 균열유도체를 포함한 시멘트 복합체에 미세균열이 더 많이 유도되고, 균열폭이 상대적으로 작은 것을 확인할 수 있다.In the case of FIG. 16A, the number of cracks was 12 and the average width of the cracks was 65 μm. In FIG. 16B, the number of cracks was 18 and the average width of the cracks was 40 μm. Therefore, it can be seen that more microcracks are induced in the cement composite including the crack derivatives, and that the crack width is relatively small.
상기와 같은 실험결과에 따라 균열유도체에 의해 유도된 인공결함에 의한 인장성능 변화는 다음과 같이 설명된다.According to the experimental results as described above, the change in tensile performance due to artificial defects induced by crack induction is described as follows.
도 17 및 도 18에 도시된 바와 같이, 균열유도체(10)는 시멘트 매트릭스와의 접착력이 낮기 때문에 시멘트 경화체에 균열이 발생되기 전에 미리 미세균열을 유도함으로써 외력에 의해 발생되는 제1 균열의 발생을 균열유도체(10) 주변의 다수의 미세균열로 유도함으로써 변형률 경화와 다수미세 균열 분포가 형성되도록 하여 인장강도 및 인성을 향상시키기 위한 역할을 한다.As shown in FIGS. 17 and 18, since the crack inductor 10 has low adhesive strength with the cement matrix, the first crack generated by the external force is induced by inducing microcracks in advance before cracks are generated in the cement hardened body. By inducing a large number of microcracks around the crack inductor 10 to form a strain hardening and a plurality of fine crack distribution serves to improve the tensile strength and toughness.
일반적으로 직접 인장에 의한 파괴거동시 균열 초기에는 섬유에 의한 영향보다는 시멘트 매트릭스의 특성에 따라 결정되고, 시멘트 매트릭스 내에 존재하고 있는 공극 또는 이질재와의 계면에서 재하초기에 초기균열이 발생된다. 그리고, 초기균열은 점진적으로 인접된 균열들과 연결 또는 통합되어 폭이 좁고 짧은 미세한 마이크로 균열로 진전된다. 이후에 시멘트 복합체에 변형이 증가함에 따라 재하 초기에 발생된 균열이 진전되거나 새로운 균열이 추가로 발생하며 이는 결국 매트로 균열로 발전되어 국부적인 변형이 집중적으로 발생된다. 매크로 균열 발생시, 처음으로 나타나는 제1 균열의 발생은 균열폭을 증가시키고 미세균열에서 대균열로 진행되기 위한 시작점이라고 할 수 있다.In general, the initial cracking during fracture behavior by direct tension is determined by the properties of the cement matrix rather than by the influence of fibers, and initial cracking occurs at the beginning of reloading at the interface with voids or foreign materials present in the cement matrix. The initial crack then connects or merges with progressively adjacent cracks to evolve into narrow, short microscopic cracks. Later, as the deformation increases in the cement composite, cracks generated at the initial stage of loading progress or new cracks are additionally developed, which eventually develops into mat cracks, and local deformation occurs intensively. When the macro crack occurs, the first occurrence of the first crack may be a starting point for increasing the crack width and progressing from the microcracks to the major cracks.
따라서, 도 17에 시멘트 복합체 내에 미리 혼합된 균열유도체(10)는 경화과정에서 시멘트 매트릭스와의 사이에 미세균열을 미리 형성하게 되고, 미리 형성된 인공 미세균열은 외력 발생시 제1 균열을 형성하는 외력을 균열유도체(10) 주변의 미세균열의 진전으로 유도하게 된다.Therefore, in FIG. 17, the crack derivative 10 mixed in the cement composite in advance forms microcracks between the cement matrix and the pre-formed microcracks during the curing process. This leads to the development of microcracks around the crack derivatives 10.
결과적으로, 외력을 균열유도체(10) 주변의 미세균열의 진전으로 유도함으로써 균열폭이 큰 제1 균열의 발생시점을 늦추게 되고, 이로 인해 대균열의 발생이 저지됨으로써 인장강도 및 인성이 향상되는 것이다.As a result, by inducing the external force to advance the microcracks around the crack inductor 10, the time of occurrence of the first crack having a large crack width is delayed, thereby preventing the occurrence of large cracks, thereby improving tensile strength and toughness. .
그리고, 도 18에 도시된 바와 같이 균열유도체(10)는 마이크로 섬유(20)의 부착력을 향상시켜 미세균열의 진전을 저감시키는 기능을 한다. 일반적으로 강섬유와 시멘트 매트릭스와의 부착력은 강섬유와 매트릭스 사이의 계면 특성에 따라 달라진다.And, as shown in FIG. 18, the crack inductor 10 functions to improve the adhesion of the microfiber 20 to reduce the progress of the microcracks. In general, the adhesion between the steel fibers and the cement matrix depends on the interfacial properties between the steel fibers and the matrix.
따라서, 강섬유와 시멘트 매트릭스 사이의 계면특성이 연속 계면인지 불연속 계면인지에 따라 부착력에 영향을 받을 수 있는데, 균열유도체(10) 둘레에 형성된 미세균열에 의해 마이크로 섬유(20) 중 일부는 균열유도체(10)와 접하는 지점에서 일단이 노출되는 불연속 계면에 위치할 수 있다.Accordingly, the adhesion between the steel fibers and the cement matrix may be influenced by the adhesion between the continuous interface and the discontinuous interface. Some of the microfibers 20 may be cracked derivatives due to microcracks formed around the crack inductor 10. It may be located at the discontinuous interface where one end is exposed at the point of contact with 10).
일반적으로 연속계면은 강섬유와 시멘트 매트릭스 사이의 특성에만 영향을 받지만, 불연속계면은 계면 연결지점의 특성에도 영향을 받기 때문에 부착력이 상대적으로 높다.In general, the continuous interface is only affected by the properties between the steel fiber and the cement matrix, but the discontinuous interface is also affected by the properties of the interface connection point, so the adhesion is relatively high.
즉, 불연속계면에 의해 노출된 마이크로 섬유(20)의 일단은 불연속 계면에서 끝단이 휘어지거나 밀착되어 일종의 고리와 같은 역할을 하기 때문에 연속계면에 비해 부착력이 매우 높아지는 특성을 가진다.That is, one end of the microfiber 20 exposed by the discontinuous interface has a characteristic that the adhesion is very high compared to the continuous interface because the end is bent or adhered at the discontinuous interface to act as a kind of ring.
결국, 균열유도체(10)는 주변 시멘트 매트릭스에 미세균열을 형성하여 대균열의 진전을 미세균열 진전으로 유도하고, 균열유도체(10) 둘레에 유도된 미세균열은 마이크로 섬유(20)의 부착력에 의해 진행이 저지됨으로써 콘크리트 구조체 전체의 인장성능 및 인성이 향상될 수 있다.As a result, the crack inducer 10 forms microcracks in the surrounding cement matrix to induce the growth of large cracks into microcracks, and the microcracks induced around the crack inductor 10 are formed by the adhesion of the microfibers 20. By preventing progression, tensile performance and toughness of the entire concrete structure can be improved.
도 19에는 본 발명의 초고성능 섬유보강 콘크리트의 균열유도체에 대한 다른 실시예가 도시되어 있다. 다른 실시예에 의한 균열유도체(10)는 표면에 제1 표면층(11) 또는 제2 표면층(12)을 포함할 수 있다.Figure 19 shows another embodiment of the crack inductor of the ultra-high performance fiber reinforced concrete of the present invention. Crack inducing body 10 according to another embodiment may include a first surface layer 11 or a second surface layer 12 on the surface.
제1 표면층(11)은 제습제와 같은 균열촉진제가 도포되는 층으로써, 콘크리트 양생과정에서 균열유도체(10) 주변의 물-결합재비를 낮춤으로써 균열 발생이 보다 원활해지도록 하기 위한 것이다.The first surface layer 11 is a layer to which a cracking accelerator, such as a dehumidifier, is applied, so as to reduce the water-bonding material ratio around the crack derivative 10 during the concrete curing process, so that cracking is more smoothly generated.
제2 표면층(12)은 제1 표면층(11) 표면에 도포되는 층으로써 습기에 의해 일정시간 동안 용해되는 표면층이다. 제2 표면층(12)은 콘크리트 양생 시간 동안 제1 표면층(11)이 노출되는 시간을 늦춤으로써 함수율이 낮은 양생 상태에서 제1 표면층(11)이 노출되도록 하여 균열이 더욱 원활하게 발생되도록 할 수 있다.The second surface layer 12 is a layer applied to the surface of the first surface layer 11 and is a surface layer dissolved for a predetermined time by moisture. The second surface layer 12 may delay the time that the first surface layer 11 is exposed during the concrete curing time so that the first surface layer 11 may be exposed in the curing state having a low moisture content so that the crack may be more smoothly generated. .
(7) 초고성능 섬유보강콘크리트의 배합설계 및 제조방법(7) Mixing design and manufacturing method of ultra high performance fiber reinforced concrete
상기와 같은 실험결과를 종합적으로 고려하여 다음과 같은 초고성능 섬유보강콘크리트의 배합설계 및 제조방법을 설명한다.Considering the experimental results as described above, the mixing design and manufacturing method of the ultra-high performance fiber reinforced concrete as follows will be described.
본 발명의 초고성능 섬유보강콘크리트는 시멘트, 실리카질 미분말, 잔골재, 충전재, 수축저감제, 고성능 감수제, 배합수, 매크로 강섬유, 마이크로 강섬유, 소포재 중 적어도 하나 이상을 혼합하여 제조될 수 있다.Ultra high-performance fiber reinforced concrete of the present invention can be prepared by mixing at least one or more of cement, fine silica powder, fine aggregate, filler, shrinkage reducing agent, high performance water reducing agent, compounded water, macro steel fiber, micro steel fiber, antifoaming material.
본 발명의 초고성능 섬유보강콘크리트의 실리카질 미분말의 비표면적의 범위는 80,000cm2/g 이상 150,000cm2/g 이하이고, 강섬유의 형상계수는 60 이상 100 이하인 것이 바람직하다. 다만, 실리카질 미분말의 비표면적 범위와 강섬유의 형상계수는 종속적으로 특정되는 것이 바람직하고, 강섬유는 형상계수가 동일할 경우 상대적으로 직경이 작은 것이 바람직하다.The specific surface area of the fine silica powder of the ultra-high performance fiber reinforced concrete of the present invention is in the range of 80,000 cm 2 / g or more and 150,000 cm 2 / g and preferably in the shape coefficient of the steel fiber of 60 or more and 100 or less. However, the specific surface area of the fine silica powder and the shape coefficient of the steel fiber are preferably specified dependently, and the steel fiber preferably has a relatively small diameter when the shape coefficient is the same.
마이크로 강섬유와 매크로 강섬유를 혼합하는 경우, 형상계수가 높은 강섬유를 서로 조합시키는 것이 바람직하고, 특히, 형상계수 80(d0.2mm × L16mm) 0.5%와 형상계수 100(d0.2mm × L20mm) 1.5%의 강섬유를 혼합시키는 것이 바람직하다.When the micro steel fibers and the macro steel fibers are mixed, it is preferable to combine the steel fibers having a high shape coefficient with each other, in particular, the shape coefficient 80 (d0.2mm × L16mm) 0.5% and the shape coefficient 100 (d0.2mm × L20mm) 1.5% It is preferable to mix the steel fibers.
본 발명의 초고성능 섬유보강콘크리트에는 추가로 인공미세균열을 유도하기 위한 균열유도체가 더 포함될 수 있다. 균열유도체는 입경이 2 내지 5mm인 입체 형상을 가지는 것으로서, 구체, 다면체 등 다양한 형상으로 형성될 수 있다.The ultra-high performance fiber reinforced concrete of the present invention may further include a crack derivative for inducing artificial microcracks. The crack derivatives have a three-dimensional shape with a particle diameter of 2 to 5 mm, and may be formed in various shapes such as spheres and polyhedrons.
보다 자세하게는 균열유도체는 폴리스티렌(polystyrene)으로 형성되는 구형체인 것이 바람직하고, 전체 체적의 0.5 ~ 2%의 비율로 혼합되는 것이 바람직하다.In more detail, the crack inductor is preferably a spherical body formed of polystyrene, and is preferably mixed at a ratio of 0.5 to 2% of the total volume.
상기 균열유도체의 표면에는 제습기능을 하는 제1 표면층과, 제1 표면층의 표면에 도포되어 습기에 의해 일정시간 동안 용해되는 제2 표면층이 구비될 수 있다.The surface of the crack derivative may be provided with a first surface layer having a dehumidifying function and a second surface layer applied to the surface of the first surface layer and dissolved for a predetermined time by moisture.
본 발명의 초고성능 섬유보강콘크리트의 제조방법은 시멘트 100 중량부를 기준으로 비표면적이 80,000cm2/g 이상 150,000cm2/g 이하인 실리카질 미분말을 25 중량부, 석영질 분말(SiO2 99%, 평균입경 4μm)인 충전재를 20 중량부, 입자크기 5mm 이하인 석영질 모래를 110 중량부로 구성하여 10 ~ 20 rpm, 바람직하게는 15rpm의 속도로 20초 ~ 30초 동안 골고루 혼합하여 모르타르를 제조한다.Method of producing ultra high performance fiber reinforced concrete of the present invention is cement 100 parts by weight a specific surface area of the parts of the reference 80,000cm 2 / g or more 150,000cm (SiO 2 99% a 2 / g or less siliceous fine powder 25 parts by weight of quartz powder quality, 20 parts by weight of a filler having an average particle diameter of 4 μm) and 110 parts by weight of quartz sand having a particle size of 5 mm or less are mixed evenly for 20 seconds to 30 seconds at a speed of 10 to 20 rpm, preferably 15 rpm to prepare a mortar.
그리고, 제조된 모르타르에 배합수-결합재의 비가 0.20이 되도록 하고, 결합재의 1.9 중량부로 한 고성능 감수제, 소포제, 수축저감제를 믹서기에서 20 ~ 50rpm의 속도로 2분 ~ 3분 동안 혼합한다.Then, the ratio of the mixing water-binder to the prepared mortar is 0.20, and the high-performance water reducing agent, the antifoaming agent, and the shrinkage reducing agent, which are 1.9 parts by weight of the binder, are mixed in a mixer at a speed of 20 to 50 rpm for 2 to 3 minutes.
그리고, 형상계수가 60 이상 100 이하인 강섬유를 시멘트 복합체의 전체 체적의 2%를 투입하여 20 ~ 50rpm의 속도로 1분 ~ 3분 동안 혼합한다. 이때, 균열유도체를 전체 체적의 0.5 내지 2%의 비율로 혼합시킬 수 있다.Then, the steel fiber having a shape coefficient of 60 or more and 100 or less is added to 2% of the total volume of the cement composite and mixed for 1 minute to 3 minutes at a speed of 20 to 50 rpm. At this time, the crack derivatives may be mixed at a ratio of 0.5 to 2% of the total volume.
믹싱이 완료되면, 거푸집에 혼합물을 타설하고 습윤양생 후, 60℃ ~ 110℃의 온도에서 2일 내지 4일 동안 증기양생을 실시하여 양생을 함으로써 초고성능 섬유보강 콘크리트를 제조할 수 있다.When the mixing is completed, the mixture is poured into the formwork and then wet curing, ultra-high-performance fiber-reinforced concrete can be produced by curing by steam curing for 2 to 4 days at a temperature of 60 ℃ ~ 110 ℃.
상기에서는 본 출원의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 출원을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although described above with reference to the preferred embodiment of the present application, those skilled in the art various modifications and changes to the present application without departing from the spirit and scope of the invention described in the claims below I can understand that you can.
본 발명은 초고성능 섬유보강 콘크리트 및 그 제조방법에 관한 것이다.The present invention relates to ultra-high performance fiber reinforced concrete and a method of manufacturing the same.
Claims (5)
- 시멘트, 지르코늄 함유 실리카질 미분말, 잔골재, 충전재, 수축저감제, 고성능 감수제, 배합수, 강섬유, 및 소포제 중 적어도 하나 이상을 혼합하여 형성된 초고성능 섬유보강 콘크리트에 있어서,In the ultra-high performance fiber reinforced concrete formed by mixing at least one of cement, zirconium-containing silica powder, fine aggregate, filler, shrinkage reducing agent, high performance water reducing agent, blended water, steel fiber, and antifoaming agent,상기 실리카질 미분말의 비표면적의 범위는 80,000cm2/g 이상 150,000cm2/g 이하이고, The specific surface area of the fine siliceous powder is 80,000 cm 2 / g or more and 150,000 cm 2 / g or less,상기 강섬유의 형상계수는 60 이상 100 이하이고, 형상계수 60 ~ 80인 강섬유를 25% ~ 35% 체적비로 혼합하고, 형상계수 81 ~ 100인 강섬유를 65% ~ 75% 체적비로 혼합하고,The shape coefficient of the steel fiber is 60 or more and 100 or less, the steel fibers having a shape coefficient of 60 to 80 are mixed in a volume ratio of 25% to 35%, the steel fibers having a shape coefficient of 81 to 100 are mixed in a volume ratio of 65% to 75%,시멘트 복합체 내에 미세균열을 유도하기 위한 균열유도체가 더 포함되고,Further comprising a crack derivative for inducing microcracks in the cement composite,상기 균열유도체는The crack derivative is표면에 도포되어 미세균열을 촉진하는 균열촉진제를 포함하는 제1 표면층을 포함하는A first surface layer comprising a crack promoter applied to the surface to promote microcracking;초고성능 섬유보강 콘크리트.Ultra high performance fiber reinforced concrete.
- 제1항에 있어서,The method of claim 1,상기 강섬유는The steel fiber is형상계수 80인 강섬유를 25% ~ 35% 체적비로 혼합하고,Steel fibers with a shape factor of 80 are mixed at a volume ratio of 25% to 35%,형상계수 100인 강섬유를 65% ~ 75% 체적비로 혼합하는Mixing steel fiber with shape factor 100 at 65% ~ 75% volume ratio초고성능 섬유보강 콘크리트.Ultra high performance fiber reinforced concrete.
- 제1항에 있어서,The method of claim 1,상기 균열유도체는The crack derivative is폴리스티렌 비드로 구성되는Composed of polystyrene beads초고성능 섬유보강 콘크리트.Ultra high performance fiber reinforced concrete.
- 제1항에 있어서, The method of claim 1,상기 균열유도체는The crack derivative is전체 체적의 0.5 ~ 2%로 혼합되는Mixed at 0.5 to 2% of the total volume초고성능 섬유보강 콘크리트.Ultra high performance fiber reinforced concrete.
- 제1항에 있어서, The method of claim 1,상기 균열유도체는The crack derivative is상기 제1 표면층의 표면에 도포되어 습기에 의해 일정시간 동안 용해되는 제2 표면층을 포함하는A second surface layer applied to the surface of the first surface layer and dissolved for a predetermined time by moisture;초고성능 섬유보강 콘크리트.Ultra high performance fiber reinforced concrete.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0100930 | 2016-08-08 | ||
KR1020160100930A KR101751479B1 (en) | 2016-08-08 | 2016-08-08 | Ultra high performance fiber reinforced concrete and manufacturing method of the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018030728A1 true WO2018030728A1 (en) | 2018-02-15 |
Family
ID=59514822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/008483 WO2018030728A1 (en) | 2016-08-08 | 2017-08-07 | Ultra-high-performance fiber-reinforced concrete and manufacturing method therefor |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101751479B1 (en) |
WO (1) | WO2018030728A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111393053A (en) * | 2020-03-24 | 2020-07-10 | 天津水泥工业设计研究院有限公司 | Special composite cementing material for preparing low-shrinkage ultra-high-performance concrete |
CN112174581A (en) * | 2020-08-26 | 2021-01-05 | 北京鼎创科技环保集团有限公司 | Ultra-high performance concrete and manufacturing method for manufacturing decorative material by using same |
CN112592132A (en) * | 2020-12-24 | 2021-04-02 | 中铁第四勘察设计院集团有限公司 | Bridge splice joint early-strength UHPC material and preparation method thereof |
CN113500188A (en) * | 2021-07-06 | 2021-10-15 | 南京工业大学 | Three-dimensional metal fiber-cement-based composite material suitable for 3D printing and preparation method thereof |
CN113773004A (en) * | 2021-09-28 | 2021-12-10 | 中建三局绿色产业投资有限公司 | Coarse aggregate-containing ultra-high performance concrete formula and low-cost design method |
CN114436582A (en) * | 2021-12-21 | 2022-05-06 | 中交武汉港湾工程设计研究院有限公司 | Underwater non-dispersible ultrahigh-performance concrete and preparation method thereof |
CN114477885A (en) * | 2022-02-21 | 2022-05-13 | 湖北旭合森混凝土科技有限公司 | Anti-cracking ultrahigh-performance concrete pole and preparation method thereof |
CN114853423A (en) * | 2022-05-18 | 2022-08-05 | 南京理工大学 | Metamaterial functionally-gradient concrete and preparation method thereof |
CN115057677A (en) * | 2022-06-13 | 2022-09-16 | 史俊 | Low-viscosity UHPC decorative sheet |
CN115259801A (en) * | 2022-08-15 | 2022-11-01 | 宿迁市星友混凝土有限公司 | Ultra-high performance concrete premix and preparation method thereof |
CN115448653A (en) * | 2022-09-15 | 2022-12-09 | 山东高速工程检测有限公司 | Method for improving toughness of ultrahigh-performance concrete and obtained ultrahigh-performance concrete |
CN116063048A (en) * | 2023-02-08 | 2023-05-05 | 华新水泥股份有限公司 | Ultra-high performance concrete tile and preparation method thereof |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101751479B1 (en) * | 2016-08-08 | 2017-06-27 | 한국건설기술연구원 | Ultra high performance fiber reinforced concrete and manufacturing method of the same |
KR102310892B1 (en) | 2020-01-21 | 2021-10-08 | 주식회사 삼표산업 | Low viscosity ultra high performance concrete composition using property stabilizer composed of glycol ether compound |
KR102414696B1 (en) | 2020-11-03 | 2022-07-04 | 한국건설기술연구원 | Crack repairing material of concrete vacuum tube segment using ultra high performance concrete (uhpc) for hyper speed transportation system, and crack repairing method for the same |
KR102414695B1 (en) | 2020-11-03 | 2022-07-01 | 한국건설기술연구원 | Concrete vacuum tube segment for hyper speed transportation system using ultra high performance concrete (uhpc), and manufacturing method for the same |
KR102368610B1 (en) | 2020-11-23 | 2022-03-02 | 한국건설기술연구원 | Apparatus and method for manufacturing concrete vacuum tube segment for hyper speed transportation system |
KR102605085B1 (en) | 2021-09-06 | 2023-11-24 | 김석환 | Cement block for enhancing cohesion of particle by selectively adjusting density of fiber slice |
KR102589493B1 (en) | 2023-03-09 | 2023-10-16 | 주식회사 신영에스씨엠 | Composition of reinforcement mortar for concrete structure |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050081782A (en) * | 2004-02-16 | 2005-08-19 | 한국건설기술연구원 | Steel fiber reinforced cementitious composites and manufacturing method thereof |
US20070181040A1 (en) * | 2006-02-09 | 2007-08-09 | The Regents Of The University Of Michigan | High Early Strength Engineered Cementitious Composites |
KR20110051914A (en) * | 2009-11-11 | 2011-05-18 | 한국건설기술연구원 | Manufacturing methods of ultra-high performance fiber reinforecd concrete mixing the steel fiber of wave and straight type |
KR20120055119A (en) * | 2010-11-23 | 2012-05-31 | 한국건설기술연구원 | Ultra-high performance fiber reinforced cementitious composites and manufacturing method |
KR20120060439A (en) * | 2010-12-02 | 2012-06-12 | 한국건설기술연구원 | Ultra-high performance fiber reinforced cementitious composites and manufacturing method |
KR20150055290A (en) * | 2013-11-13 | 2015-05-21 | 한국건설기술연구원 | Fiber reinforced non-shrink grout of ultrahigh performance, and manufacturing method for the same |
KR101751479B1 (en) * | 2016-08-08 | 2017-06-27 | 한국건설기술연구원 | Ultra high performance fiber reinforced concrete and manufacturing method of the same |
-
2016
- 2016-08-08 KR KR1020160100930A patent/KR101751479B1/en active IP Right Grant
-
2017
- 2017-08-07 WO PCT/KR2017/008483 patent/WO2018030728A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050081782A (en) * | 2004-02-16 | 2005-08-19 | 한국건설기술연구원 | Steel fiber reinforced cementitious composites and manufacturing method thereof |
US20070181040A1 (en) * | 2006-02-09 | 2007-08-09 | The Regents Of The University Of Michigan | High Early Strength Engineered Cementitious Composites |
KR20110051914A (en) * | 2009-11-11 | 2011-05-18 | 한국건설기술연구원 | Manufacturing methods of ultra-high performance fiber reinforecd concrete mixing the steel fiber of wave and straight type |
KR20120055119A (en) * | 2010-11-23 | 2012-05-31 | 한국건설기술연구원 | Ultra-high performance fiber reinforced cementitious composites and manufacturing method |
KR20120060439A (en) * | 2010-12-02 | 2012-06-12 | 한국건설기술연구원 | Ultra-high performance fiber reinforced cementitious composites and manufacturing method |
KR20150055290A (en) * | 2013-11-13 | 2015-05-21 | 한국건설기술연구원 | Fiber reinforced non-shrink grout of ultrahigh performance, and manufacturing method for the same |
KR101751479B1 (en) * | 2016-08-08 | 2017-06-27 | 한국건설기술연구원 | Ultra high performance fiber reinforced concrete and manufacturing method of the same |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111393053A (en) * | 2020-03-24 | 2020-07-10 | 天津水泥工业设计研究院有限公司 | Special composite cementing material for preparing low-shrinkage ultra-high-performance concrete |
CN111393053B (en) * | 2020-03-24 | 2021-02-12 | 天津水泥工业设计研究院有限公司 | Special composite cementing material for preparing low-shrinkage ultra-high-performance concrete |
CN112174581A (en) * | 2020-08-26 | 2021-01-05 | 北京鼎创科技环保集团有限公司 | Ultra-high performance concrete and manufacturing method for manufacturing decorative material by using same |
CN112592132A (en) * | 2020-12-24 | 2021-04-02 | 中铁第四勘察设计院集团有限公司 | Bridge splice joint early-strength UHPC material and preparation method thereof |
CN113500188A (en) * | 2021-07-06 | 2021-10-15 | 南京工业大学 | Three-dimensional metal fiber-cement-based composite material suitable for 3D printing and preparation method thereof |
CN113773004B (en) * | 2021-09-28 | 2022-06-03 | 中建三局绿色产业投资有限公司 | Coarse aggregate-containing ultra-high performance concrete formula and low-cost design method |
CN113773004A (en) * | 2021-09-28 | 2021-12-10 | 中建三局绿色产业投资有限公司 | Coarse aggregate-containing ultra-high performance concrete formula and low-cost design method |
CN114436582A (en) * | 2021-12-21 | 2022-05-06 | 中交武汉港湾工程设计研究院有限公司 | Underwater non-dispersible ultrahigh-performance concrete and preparation method thereof |
CN114477885A (en) * | 2022-02-21 | 2022-05-13 | 湖北旭合森混凝土科技有限公司 | Anti-cracking ultrahigh-performance concrete pole and preparation method thereof |
CN114853423A (en) * | 2022-05-18 | 2022-08-05 | 南京理工大学 | Metamaterial functionally-gradient concrete and preparation method thereof |
CN114853423B (en) * | 2022-05-18 | 2023-06-30 | 南京理工大学 | Metamaterial functionally-gradient concrete and preparation method thereof |
CN115057677A (en) * | 2022-06-13 | 2022-09-16 | 史俊 | Low-viscosity UHPC decorative sheet |
CN115259801A (en) * | 2022-08-15 | 2022-11-01 | 宿迁市星友混凝土有限公司 | Ultra-high performance concrete premix and preparation method thereof |
CN115448653A (en) * | 2022-09-15 | 2022-12-09 | 山东高速工程检测有限公司 | Method for improving toughness of ultrahigh-performance concrete and obtained ultrahigh-performance concrete |
CN115448653B (en) * | 2022-09-15 | 2023-08-08 | 山东高速工程检测有限公司 | Method for improving toughness of ultra-high-performance concrete and obtained ultra-high-performance concrete |
CN116063048A (en) * | 2023-02-08 | 2023-05-05 | 华新水泥股份有限公司 | Ultra-high performance concrete tile and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR101751479B1 (en) | 2017-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018030728A1 (en) | Ultra-high-performance fiber-reinforced concrete and manufacturing method therefor | |
CN110317027B (en) | Low-shrinkage 3D printing mortar and preparation method thereof | |
KR100873391B1 (en) | Quick-hardening concrete composite, manufacturing method thereof and repairing method for concrete pavement using the concrete composite | |
KR101708357B1 (en) | Highly-functional and quick-hardening cement concrete composition and repairing method for road pavement therewith | |
CN107954656A (en) | A kind of regenerative micro powder concrete with superelevation ductility and preparation method thereof | |
WO2021177541A1 (en) | Method for repair and reinforcement of concrete structure using three-dimensional fibers | |
KR101720034B1 (en) | A high early strength cement concrete composition having the self-healing for road pavement and a repairing method of road pavement using the same | |
CN110498649B (en) | Low-shrinkage cement-based repair material and preparation method thereof | |
JP7395633B2 (en) | polymer cement mortar | |
WO2014112717A1 (en) | Exterior insulation mortar for cold weather and method for constructing exterior insulation system using same | |
WO2020199907A1 (en) | Low-shrinkage alkali-activated dry mix repair mortar | |
CN107311542B (en) | High-ductility cement-based composite material for gradient pavement and preparation method thereof | |
US6858075B1 (en) | Thin concrete repair composition for alkali-aggregate reaction affected concrete | |
KR20130075334A (en) | Amorphous steel fiber cement composites and mortar products using the same | |
KR19980035124A (en) | Thin-film Cement-based Self-Planning Mortar Composition | |
WO2015060666A1 (en) | High-strength mortar composition for repairing roads and method for preparing same | |
WO2023080428A1 (en) | Nanoparticles for early strength development of concrete, composition for forming concrete comprising same, and method for preparing same | |
JP4451083B2 (en) | Mortar manufacturing method | |
WO2021246789A1 (en) | High performance steel fiber | |
US6749680B1 (en) | Thin concrete repair system | |
JP5378754B2 (en) | Polymer cement composition | |
JP2001316157A (en) | Hydraulic composition and fiber-reinforced cured body using it | |
KR100516758B1 (en) | High strength cement composition and method of high strength cement panel | |
CN109354436B (en) | Special glue material bag for pre-prepared mortar suitable for washing sea sand and preparation method thereof | |
Wang et al. | Shrinkage reduction and crack prevention of alkali-activated phosphorous slag cement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17839746 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17839746 Country of ref document: EP Kind code of ref document: A1 |