JP2001316157A - Hydraulic composition and fiber-reinforced cured body using it - Google Patents

Hydraulic composition and fiber-reinforced cured body using it

Info

Publication number
JP2001316157A
JP2001316157A JP2001036808A JP2001036808A JP2001316157A JP 2001316157 A JP2001316157 A JP 2001316157A JP 2001036808 A JP2001036808 A JP 2001036808A JP 2001036808 A JP2001036808 A JP 2001036808A JP 2001316157 A JP2001316157 A JP 2001316157A
Authority
JP
Japan
Prior art keywords
fiber
composition
hydraulic
fibers
hydraulic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001036808A
Other languages
Japanese (ja)
Inventor
Kiyoshi Takizawa
清 滝沢
Tadashi Saito
忠 斉藤
Atsuhisa Ogawa
敦久 小川
Hisashi Suemori
寿志 末森
Hideki Yasushiro
秀樹 保城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2001036808A priority Critical patent/JP2001316157A/en
Publication of JP2001316157A publication Critical patent/JP2001316157A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0048Fibrous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00198Characterisation or quantities of the compositions or their ingredients expressed as mathematical formulae or equations
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2038Resistance against physical degradation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

PROBLEM TO BE SOLVED: To provide a fiber-reinforced hydraulic hardened body with toughness and aseismaticity and a hydraulic composition for forming the hardened body and a method for on-site application using the composition. SOLUTION: The composition contains a hydraulic material consisting of one or more kinds of materials selected from a cement as a main component, a silica fume, a blast furnace slag and a fly ash, a reinforcing fiber, an aggregate and water. Thickness of the fiber X, content of the hydraulic material C, content of the aggregate S and content of water are 55-270 dtex, 750-1300 kg/m3, 400-1100 kg/m3 and 270-420 kg/m3, respectively. The following formula (I) and (ID are satisfied in the composition: 2.625-0.0075.X<=Y<=3.375-0.0075.X... (I) 47.Y+253<=W<=47.Y+293... (II) (wherein, Y=C/S).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、流動性が高く靭性及び
曲げ強度に優れた硬化体を供し得る水硬性材料組成物、
さらに該水硬性材料組成物から得られる繊維補強水硬性
硬化体、さらに該組成物を用いて現場施工する方法に関
する。
The present invention relates to a hydraulic material composition capable of providing a cured product having high fluidity and excellent toughness and bending strength.
Further, the present invention relates to a fiber-reinforced hydraulically cured product obtained from the hydraulic material composition, and further to a method of performing on-site construction using the composition.

【0002】[0002]

【従来の技術】従来、セメント、石膏等の水硬性材料は
引張強度が低く脆弱であることから、金属繊維、岩石繊
維、ガラス繊維、有機繊維等の補強繊維により補強する
ことが行われている。かかる繊維を配合すれば硬化体の
曲げ強度等を改善することができるが、細径繊維を配合
するとペーストの流動性が低下して材料分離が生じた
り、またファイバーボールやフロックが発生する問題が
あった。そのため施工性が低く現場施工が困難であり、
しかも繊維の分散状態が不十分であると得られる水硬性
硬化体の曲げ強度等が低下する。
2. Description of the Related Art Conventionally, hydraulic materials such as cement and gypsum have low tensile strength and are fragile, and thus have been reinforced with reinforcing fibers such as metal fibers, rock fibers, glass fibers, and organic fibers. . Blending strength and the like of the cured product can be improved by blending such fibers. However, blending of fine fibers reduces the fluidity of the paste and causes material separation, and also causes problems such as fiber balls and flocs. there were. Therefore, the workability is low and on-site construction is difficult,
In addition, if the dispersion state of the fibers is insufficient, the bending strength and the like of the obtained hydraulically cured product decrease.

【0003】[0003]

【発明が解決しようとする課題】以上のことから、分散
性に優れた太径繊維(たとえば1000〜6000dt
ex:直径約0.15〜0.8mm)を添加することも
検討されているが、太径になるほど繊維の強度が十分に
発揮されにくくなるため硬化体の曲げ強度や靭性を十分
に改善できない問題があった。本発明の目的は、流動性
が高くしかも繊維の補強効果が十分に発揮され得る水硬
性材料組成物及び該組成物から得られる水硬性硬化体を
提供することにあり、さらに該組成物を用いて現場施工
を効率的に行う方法を提案することにある。
From the above, it can be seen that large-diameter fibers having excellent dispersibility (for example, 1000 to 6000 dt) are used.
ex: about 0.15 to 0.8 mm in diameter) is also considered, but the larger the diameter, the more difficult it is to exert the strength of the fiber, so the bending strength and toughness of the cured product cannot be sufficiently improved. There was a problem. An object of the present invention is to provide a hydraulic material composition having a high fluidity and capable of sufficiently exhibiting a fiber reinforcing effect, and a hydraulic cured product obtained from the composition, and further comprising using the composition. It is to propose a method for performing on-site construction efficiently.

【0004】[0004]

【課題を解決するための手段】本発明は、(1) セメ
ント,シリカヒューム,高炉スラグ,フライアッシュか
ら選ばれる1種以上の材料からなり、かつセメントを主
体成分とする水硬性材料、補強繊維、骨材及び水を少な
くとも含有する水硬性材料組成物であって、補強繊維の
繊度X(dtex)が55〜270dtexであり、さ
らに水硬性材料配合量C(kg/m3)が750〜13
00kg/m3、骨材配合量S(kg/m3)が400〜
1100kg/m3、水配合量W(kg/cm3)が27
0〜420kg/m3であり、かつ下記式(I)及び(I
I)を充足する水硬性材料組成物、 2.625−0.0075・X≦Y≦3.375-0.0075・X (I) 47・Y+253≦W≦47・Y+293 (II) (式中、YはC/Sである。) (2) 補強繊維の少なくとも一部がポリビニルアルコ
ール系繊維である(1)に記載の水硬性材料組成物、
(3) (1)又は(2)に記載の水硬性材料組成物か
ら得られる繊維補強水硬性硬化体、(4) (1)又は
(2)に記載の水硬性材料組成物を用いて現場施工する
方法、に関する。
SUMMARY OF THE INVENTION The present invention provides (1) a hydraulic material and a reinforcing fiber comprising at least one material selected from cement, silica fume, blast furnace slag, and fly ash, wherein cement is a main component. , An aggregate and water at least, wherein the reinforcing fibers have a fineness X (dtex) of 55 to 270 dtex and a hydraulic material blending amount C (kg / m 3 ) of 750 to 13
00 kg / m 3 , aggregate content S (kg / m 3 ) is 400-
1100 kg / m 3 , water content W (kg / cm 3 ) is 27
0 to 420 kg / m 3 and the following formulas (I) and (I)
2.625-0.0075 · X ≦ Y ≦ 3.375-0.0075 · X (I) 47 · Y + 253 ≦ W ≦ 47 · Y + 293 (II) (II) , Y is C / S.) (2) The hydraulic material composition according to (1), wherein at least a part of the reinforcing fibers is a polyvinyl alcohol-based fiber.
(3) A fiber-reinforced hydraulic cured product obtained from the hydraulic material composition according to (1) or (2), (4) On-site using the hydraulic material composition according to (1) or (2) Method of construction.

【0005】[0005]

【問題を解決するための手段】本発明においては、繊維
を均一に分散させ、かつ流動性が高く施工性に優れた組
成物を得る点から補強繊維の繊度を55dtex以上と
する必要がある。一般に繊度10〜20dtex程度の
繊維を用いた場合、フローテストで160mm以上とな
るような高い流動性を有する水硬性材料組成物とするた
めには水/水硬性材料(質量比)≧0.4とする必要が
ある。しかしながら、本発明においては補強繊維の分散
性が高く組成物の流動性が低下しにくいことから、水/
水硬性材料(質量比)をさらに小さくしても同程度の流
動性を確保できる。水/水硬性材料を低減すると硬化体
の空隙形成や収縮が抑制されて硬化体の強度や耐久性が
向上し、また水硬性材料組成物の施工性が改善されるこ
とからプレファブリケイトの材料製造のみならず現場打
ち施工も容易になる。また、繊度が大きい補強繊維を用
いると「抜け」が生じ易くなってクラックの拡大が抑制
しにくくなる、つまり靭性の高い硬化体は得られにくく
なると考えられていたが、水硬性材料組成物を特定の配
合とすることによって、比較的繊度を大きくした場合で
あっても曲げ強度のみでなく靭性にも優れた硬化体が得
られる。
In the present invention, the fineness of the reinforcing fibers must be 55 dtex or more from the viewpoint of uniformly dispersing the fibers and obtaining a composition having high fluidity and excellent workability. In general, when fibers having a fineness of about 10 to 20 dtex are used, a water / hydraulic material (mass ratio) ≧ 0.4 is required in order to obtain a hydraulic material composition having a high fluidity of 160 mm or more in a flow test. It is necessary to However, in the present invention, since the dispersibility of the reinforcing fiber is high and the fluidity of the composition is not easily reduced,
Even if the hydraulic material (mass ratio) is further reduced, the same level of fluidity can be secured. When the amount of the water / hydraulic material is reduced, the formation and shrinkage of the cured product are suppressed, and the strength and durability of the cured product are improved. In addition, the workability of the hydraulic material composition is improved, so that the prefabricated material is used. Not only manufacturing but also on-site construction becomes easy. In addition, when a reinforcing fiber having a large fineness is used, it is thought that "penetration" is likely to occur and it is difficult to suppress the expansion of cracks, that is, it is considered that a hardened body having high toughness is difficult to be obtained. By using a specific composition, a cured product excellent not only in bending strength but also in toughness can be obtained even when the fineness is relatively large.

【0006】繊維の均一分散性の点からは繊度が大きい
方が好ましいが、繊度が大きくなりすぎると繊維強度が
十分に発揮されにくくなる。さらに外部応力により硬化
体にクラックが発生した際、ブリッジング(架橋)繊維
が「抜け」やすくなり、水硬性組成物を特定の配合とし
た場合であってもブリッジング繊維によりクラックの拡
大を抑制することが難しくなる。よってブリッジング効
果を高めて靭性の高い硬化体を得る点からは、補強繊維
の繊度を270dtex以下、好ましくは250dte
x以下とする必要がある。繊維の繊維長は繊度、ペース
トの配合等により設定すればよいが、均一分散性の点か
らは繊維長は100mm以下、特に50mm以下、さら
に40mm以下とするのが好ましく、ブリッジング効果
を効果的に発現させる点等からは、繊維長は3mm以
上、特に5mm以上、さらに8mm以上、またさらに1
0mm以上であるのが好ましい。
From the viewpoint of the uniform dispersibility of the fibers, it is preferable that the fineness is large. However, if the fineness is too large, it is difficult to sufficiently exert the fiber strength. Furthermore, when cracks occur in the cured product due to external stress, bridging (crosslinking) fibers are more likely to "peel off", and even when a hydraulic composition is used in a specific composition, the bridging fibers suppress crack expansion. It becomes difficult to do. Therefore, in order to obtain a cured product having high toughness by enhancing the bridging effect, the fineness of the reinforcing fiber is set to 270 dtex or less, preferably 250 dte.
x or less. The fiber length of the fiber may be set according to the fineness, the composition of the paste, and the like. From the viewpoint of uniform dispersibility, the fiber length is preferably 100 mm or less, particularly preferably 50 mm or less, and more preferably 40 mm or less, and the bridging effect is effective. In view of the fact that the fiber length is 3 mm or more, particularly 5 mm or more, more preferably 8 mm or more,
It is preferably 0 mm or more.

【0007】補強効果を高め十分なブリッジング効果を
得る点からは、補強繊維の強度は6cN/dtex以
上、特に7cN/dtex以上、さらに8cN/dtex以上で
あるのが好ましい。繊維強度を大きくすることによって
硬化体の曲げ強度を高めることができ、さらにクラック
の拡大を抑制するブリッジング繊維が破断しにくくなる
ため靭性の高い硬化体が得られる。なお、硬化体に応力
が加わった際に生じる摩擦抵抗は繊維の表面積に比例し
て発生することから、繊度の小さい繊維ほど強度を大き
くするのが好ましい。繊維の強度の上限は特に限定され
ないが一般には100cN/dtex以下である。
From the viewpoint of enhancing the reinforcing effect and obtaining a sufficient bridging effect, the strength of the reinforcing fiber is preferably at least 6 cN / dtex, more preferably at least 7 cN / dtex, further preferably at least 8 cN / dtex. By increasing the fiber strength, the bending strength of the cured product can be increased, and the bridging fiber that suppresses crack expansion is less likely to break, so that a cured product with high toughness can be obtained. In addition, since the frictional resistance generated when a stress is applied to the cured body is generated in proportion to the surface area of the fiber, it is preferable that the fiber having a smaller fineness has a higher strength. The upper limit of the fiber strength is not particularly limited, but is generally 100 cN / dtex or less.

【0008】繊維の種類は特に限定されず、たとえばポ
リオレフィン系繊維(ポリプロピレン系繊維、ポリエチ
レン系繊維等)、アクリル系繊維、ポリアミド系繊維
(アラミド系繊維を包含する)、ポリエステル系繊維
(溶融液晶性ポリエステル、ポリエチレンナフタレート
等)、ポリベンゾオキサゾール系繊維、レーヨン系繊維
(ポリノジックレーヨン繊維、溶剤紡糸レーヨン繊維
等)、無機繊維(ガラス繊維、スチール繊維等)、ポリ
ビニルアルコール(PVA)系繊維が使用できる。また
木材パルプ等を用いることも可能である。しかしなが
ら、水硬性硬化体の曲げ強度、靭性を効果的に高める点
からは、水硬性材料との親和性が高く機械的強度に優れ
たPVA系繊維を少なくとも用いるのが好ましく、PV
A系繊維を主体とするのがより好ましい。具体的には補
強繊維の60質量%以上、特に70質量%以上、さらに
90質量%以上をPVA系繊維とするのが好ましい。な
お、本発明の効果を実質的に損わない範囲であれば本発
明で規定の補強繊維以外の繊維が配合されていてもかま
わない。繊維の配合量は、補強効果の点からは0.1体
積%以上、特に0.5体積%以上、さらに1体積%以上
とするのが好ましく、均一分散性の点からは5体積%以
下、さらに4体積%以下、さらに3体積%以下とするの
が好ましい。
[0008] The type of fiber is not particularly limited. For example, polyolefin fiber (polypropylene fiber, polyethylene fiber, etc.), acrylic fiber, polyamide fiber (including aramid fiber), polyester fiber (molten liquid crystalline) Polyester, polyethylene naphthalate, etc.), polybenzoxazole-based fibers, rayon-based fibers (polynosic rayon fibers, solvent-spun rayon fibers, etc.), inorganic fibers (glass fibers, steel fibers, etc.), and polyvinyl alcohol (PVA) -based fibers can be used. . Wood pulp or the like can also be used. However, from the viewpoint of effectively increasing the flexural strength and toughness of the hydraulic hardened body, it is preferable to use at least PVA-based fibers having high mechanical affinity and high affinity with hydraulic materials.
It is more preferable to use mainly A-based fibers. Specifically, it is preferable that 60% by mass or more, particularly 70% by mass or more, further 90% by mass or more of the reinforcing fibers be PVA-based fibers. Note that fibers other than the reinforcing fibers specified in the present invention may be blended as long as the effects of the present invention are not substantially impaired. The amount of the fiber is preferably 0.1% by volume or more, particularly 0.5% by volume or more, more preferably 1% by volume or more from the viewpoint of the reinforcing effect, and 5% by volume or less from the viewpoint of uniform dispersibility. Further, it is preferably at most 4% by volume, more preferably at most 3% by volume.

【0009】かかる繊維を用いることにより硬化体の機
械的性能等を改善できるが、流動性を高め優れた施工性
を確保する点、さらに曲げ強度、靭性等の諸性能の改善
された水硬性硬化体を得る点からは特定の組成の水硬性
材料組成物とする必要がある。以下に詳細に説明する。
まず本発明に使用される水硬性材料は、セメント,シリ
カヒューム,高炉スラグ,フライアッシュから選ばれる
1種以上の材料からなり、かつセメントを主体成分とす
るものである。機械的性能に優れた硬化体を得る点から
はセメントを主体成分とする必要があり、具体的にはポ
ルトランドセメント、特に普通ポルトランドセメントが
好適に使用できる。なかでもC3A(カルシウムアルミ
ネート)量を低めにしたものが組成物の流動性を高める
点から好ましい。
The use of such fibers can improve the mechanical properties and the like of the cured product, but it is necessary to increase the fluidity and ensure excellent workability, and to further improve the hydraulic strength of the cured product, such as bending strength and toughness. From the point of obtaining the body, it is necessary to use a hydraulic material composition having a specific composition. This will be described in detail below.
First, the hydraulic material used in the present invention is composed of at least one material selected from cement, silica fume, blast furnace slag, and fly ash, and is mainly composed of cement. In order to obtain a cured product having excellent mechanical performance, it is necessary to use cement as a main component. Specifically, portland cement, particularly ordinary portland cement, can be suitably used. Among them, those having a lower C 3 A (calcium aluminate) content are preferred from the viewpoint of increasing the fluidity of the composition.

【0010】また本発明においては、水硬性材料として
セメントのみを使用する必要はなく、セメントの一部を
シリカヒューム、高炉スラグ、フライアッシュから選ば
れる1種以上の材料で置換してもかまわない。一般にセ
メントに含まれるC3Aは組成物の流動性を低減させる
が、セメント配合量を減じてポゾラン物質を配合するこ
とによってC3A量を減らし、組成物の流動性を高める
ことができる。また水和反応にかえてポゾラニック反応
が生じることから硬化体の機械的性能の低下も抑制でき
る。水和反応を十分に進行させて靭性に優れた硬化体を
得る点からは、シリカヒューム、高炉スラグ、フライア
ッシュから選ばれる1種以上のポゾラン物質の総配合量
を5〜40質量%/水硬性材料、特に5〜20質量%/
水硬性材料とするのが好ましい。水硬性材料の配合量C
(kg/m3)は、十分な機械的性能を有する水硬性硬
化体を得る点から750kg/m3以上、好ましくは8
00kg/m3以上とする必要があり、組成物の流動性
を確保する点からは1300kg/m3以下とする必要
がある。
In the present invention, it is not necessary to use only cement as the hydraulic material, and a part of the cement may be replaced with at least one material selected from silica fume, blast furnace slag, and fly ash. . In general, C 3 A contained in cement reduces the fluidity of the composition. However, the amount of C 3 A can be reduced by blending a pozzolanic substance by reducing the amount of cement to increase the fluidity of the composition. In addition, since a pozzolanic reaction occurs in place of the hydration reaction, a decrease in mechanical performance of the cured product can be suppressed. From the viewpoint that the hydration reaction proceeds sufficiently to obtain a cured product having excellent toughness, the total blending amount of one or more pozzolanic substances selected from silica fume, blast furnace slag, and fly ash is 5 to 40% by mass / water. Hard material, especially 5 to 20% by mass /
It is preferably a hydraulic material. Hydraulic material content C
(Kg / m 3 ) is 750 kg / m 3 or more, preferably 8 in view of obtaining a hydraulically cured product having sufficient mechanical performance.
There needs to be 00kg / m 3 or more, is required to be 1300 kg / m 3 or less from the viewpoint of securing the fluidity of the composition.

【0011】さらに本発明においては、硬化体の機械的
性能等の点からは、骨材配合量S(kg/m3)を40
0kg/m3以上、好ましくは450kg/m3以上とす
る必要があり、また組成物の流動性を確保し、また硬化
体の収縮を抑制する点からは1100kg/m3以下と
する必要がある。
Further, in the present invention, the amount of aggregate S (kg / m 3 ) is 40
It is necessary to be 0 kg / m 3 or more, preferably 450 kg / m 3 or more, and it is necessary to be 1100 kg / m 3 or less from the viewpoint of securing the fluidity of the composition and suppressing the shrinkage of the cured product. .

【0012】本発明に使用する水としてはたとえば水道
水、河川水等を使用すればよい。水硬性材料組成物の流
動性を確保する点からは、水硬性材料組成物における単
位水量W(kg/m3)を270kg/m3以上、好まし
くは300kg/m3以上、さらに好ましくは320k
g/m3以上とする必要がある。また、硬化体の機械的
性能を保持する点からは、単位水量W(kg/m3)を
420kg/m3以下、好ましくは400Kg/m3以下
とするのが好ましい。
As the water used in the present invention, for example, tap water, river water and the like may be used. From the viewpoint of securing the fluidity of the hydraulic material composition, the unit water amount W (kg / m 3 ) in the hydraulic material composition should be 270 kg / m 3 or more, preferably 300 kg / m 3 or more, and more preferably 320 k / m 3 or more.
g / m 3 or more. Further, from the viewpoint of retaining the mechanical properties of the cured product, the unit water amount W a (kg / m 3) 420kg / m 3 or less, preferably to a 400 Kg / m 3 or less.

【0013】上記のような配合となるように水硬性材
料、補強繊維、骨材及び水を用いて水硬性材料組成物を
得ればよいが、組成物の流動性を高め、しかも曲げ強度
及び靭性に優れた硬化体を製造するためには、かかる材
料を下記式(I)及び(II)を満たす特定の配合比とな
るように混合する必要がある。 2.625−0.0075・X≦Y≦3.375-0.0075・X (I) 47・Y+253≦W≦47・Y+293 (II) なお式中、Xは補強繊維の繊度(dtex)、Yは水硬
性材料/骨材配合比(C/S)、Wは単位水量(kg/
3)である。従来、繊維の繊度を大きくすると均一分
散性は高くなるものの、「抜け」やすくなってクラック
を拡大するのを抑制する効果が低下すると考えられてい
たが、上記の特定の配合を採用することによって、繊度
を比較的大きくした場合であっても曲げ強度及び靭性に
優れた硬化体を得ることができる。具体的には、補強繊
維の繊度により組成物の流動性、機械的性能、繊維とマ
トリックスの接着性・応力伝導性が大きく変動すること
から、補強繊維により水硬性材料と骨材の配合比を決定
する必要があり、さらに該配合比により単位水量を決定
する必要がある(図1及び図2参照)。上記範囲をはず
れると、組成物の流動性が低下したり、得られる硬化体
の曲げ強度や靭性が低下することになる。なお、複数の
補強繊維を用いている場合には、補強繊維の主体となっ
ている繊維の繊度を補強繊維の繊度として配合を決定す
ればよい。
The hydraulic material composition may be obtained by using a hydraulic material, a reinforcing fiber, an aggregate, and water so as to have the above-mentioned composition. In order to produce a cured product having excellent toughness, it is necessary to mix such materials so as to have a specific compounding ratio satisfying the following formulas (I) and (II). 2.625-0.0075 · X ≦ Y ≦ 3.375-0.0075 · X (I) 47 · Y + 253 ≦ W ≦ 47 · Y + 293 (II) In the formula, X is the fineness (dtex) of the reinforcing fiber, Y is a hydraulic material / aggregate mixture ratio (C / S), and W is a unit water amount (kg /
m 3 ). Conventionally, if the fineness of the fiber is increased, the uniform dispersibility is increased, but it is thought that the effect of suppressing the expansion of cracks is likely to be reduced due to the ease of "peeling out", but by adopting the above specific composition, Even when the fineness is relatively large, a cured product having excellent bending strength and toughness can be obtained. Specifically, since the fluidity of the composition, the mechanical performance, and the adhesiveness and stress conductivity of the fiber and the matrix greatly vary depending on the fineness of the reinforcing fiber, the mixing ratio of the hydraulic material and the aggregate is changed by the reinforcing fiber. It is necessary to determine, and further, it is necessary to determine the unit water amount based on the mixing ratio (see FIGS. 1 and 2). If the ratio is outside the above range, the fluidity of the composition will decrease, and the bending strength and toughness of the obtained cured product will decrease. In the case where a plurality of reinforcing fibers are used, the composition may be determined using the fineness of the fiber that is the main component of the reinforcing fiber as the fineness of the reinforcing fiber.

【0014】組成物の流動性、施工性を確保する点から
はフロー値を140mm以上、特に150mm以上、さ
らに160mm以上とするのが好ましく、フロー値の高
い組成物とすることによって現場施工を容易に行うこと
が可能となる。機械的性能等に優れた硬化体を得る点か
らは、かかる組成物を用いて得られる標準成形体の曲げ
強度は10MPa以上、特に12MPa以上、さらに1
5MPa以上であるのが好ましく、靭性、耐震性に優れ
た硬化体を得る点からは、かかる組成物を用いて得られ
る標準成形体のたわみが10mm以上、特に11mm以
上、さらに12mm以上、なかでも14mm以上である
のが好ましい。
From the viewpoint of ensuring the fluidity and workability of the composition, the flow value is preferably 140 mm or more, particularly 150 mm or more, and more preferably 160 mm or more. Can be performed. From the viewpoint of obtaining a cured product excellent in mechanical performance and the like, the bending strength of a standard molded product obtained using such a composition is 10 MPa or more, particularly 12 MPa or more, and more preferably 1 MPa or more.
It is preferably 5 MPa or more, and from the viewpoint of obtaining a cured product excellent in toughness and earthquake resistance, the deflection of a standard molded product obtained using such a composition is 10 mm or more, particularly 11 mm or more, and more preferably 12 mm or more, especially It is preferably at least 14 mm.

【0015】さらに他の添加剤や材料を加えてもかまわ
ない。ペーストの流動性を損うことなく水硬性成形体の
機械的性能を高める点からは、減水剤、特にAE減水剤
を添加するのが好ましい。適用可能な減水剤は特に限定
されず、たとえばポリカルボン酸系、リグニンスルホン
酸系、ナフタレンスルホン酸系、メラミンスルホン酸系
等の高性能AE減水剤が挙げられる。高性能AE減水剤
を添加することにより流動性を実質的に損うことなく組
成物中の水量を減じることができる。なかでも、ポリカ
ルボン酸系高性能AE減水剤を用いている場合には、繊
維、特にPVA系繊維の分散性が顕著に向上することか
らより好適に使用できる。特にPVA系繊維の分散性を
向上させる理由は明らかではないが、高性能AE減水剤
のリニア-な構造がPVA系繊維と水素結合によって減
水剤と繊維を結合させて分散状態を良好にするものと推
測される。ポリカルボン酸系高性能AE減水剤の具体例
としては、たとえば竹本油脂製「チューポール」、デン
カグレース製「ダーレックススーパー」、エヌエムビー
製「レオビルド」、藤沢薬品製「パリック」、花王製
「マイテイ」、サンフロー製「サンフロー」などが挙げ
られる。減水剤の添加量は他の配合素材等によって適宜
設定すればよいが、通常は水硬性材料に対し0.2〜1
質量%程度必要とされているが、2倍程度以上過剰に添
加、具体的には0.5〜3質量%程度添加するのが好ま
しい。具体的には1kg/m3以上、特に3kg/m3
上配合するのが好ましく、硬化体性能の点からは30k
g/m3以下とするのが好ましい。
Further, other additives and materials may be added. It is preferable to add a water reducing agent, particularly an AE water reducing agent, from the viewpoint of increasing the mechanical performance of the hydraulic molded body without impairing the fluidity of the paste. The applicable water reducing agent is not particularly limited, and examples thereof include high-performance AE water reducing agents such as polycarboxylic acid type, lignin sulfonic acid type, naphthalene sulfonic acid type, and melamine sulfonic acid type. By adding a high-performance AE water reducing agent, the amount of water in the composition can be reduced without substantially impairing the fluidity. In particular, when a polycarboxylic acid-based high-performance AE water reducing agent is used, the dispersibility of fibers, particularly PVA-based fibers, is remarkably improved, so that it can be used more preferably. Although the reason for improving the dispersibility of the PVA-based fiber is not particularly clear, the linear structure of the high-performance AE water-reducing agent combines the PVA-based fiber with the water-reducing agent and the fiber by hydrogen bonding to improve the dispersion state. It is presumed. Specific examples of the polycarboxylic acid-based high-performance AE water reducing agent include, for example, "Tupole" manufactured by Takemoto Yushi, "Darlex Super" manufactured by Denka Grace, "Reobuild" manufactured by NMB, "Parick" manufactured by Fujisawa Pharmaceutical, and "Matei" manufactured by Kao. And "Sunflow" manufactured by Sunflow. The addition amount of the water reducing agent may be appropriately set depending on other compounding materials and the like, but is usually 0.2 to 1 with respect to the hydraulic material.
Although it is necessary to add about 2% by mass, it is preferable to add about 2 times or more, specifically about 0.5 to 3% by mass. Specifically, it is preferable to mix 1 kg / m 3 or more, especially 3 kg / m 3 or more.
g / m 3 or less.

【0016】また各成分を均一に分散させる点、ブリー
ジングを抑制する点からは粘性化剤を配合するのが好ま
しい。かかる粘性化剤を添加することにより組成物の粘
度が大きくなり、繊維間又は繊維とマトリックス間の剪
断力が大きくなるため、繊維が単繊維状にバラバラにな
りやすくなるため優れた効果が得られる。特に成形体の
圧縮強度を低下させるために水の配合量を増加させると
各材料の分散性は高まるものの繊維は単繊維状になりに
くい問題があるが、粘性化剤を添加することにより繊維
の分散性を顕著に高めることができる。使用可能な粘性
化剤は特に限定されないが、セルロース系化合物、特に
アルコキシ基を有するセルロース系化合物(なかでもメ
チルセルロース、プロピルメチルセルロース、ヒドロキ
シエチルメチルセルロースから選ばれる1種以上のセル
ロース系化合物)が好適に使用される。なかでも、水酸
基の一部がメトキシ基、エトキシ基、プロポキシ基、ヒ
ドロキシプロポキシ基、ヒドロキシエトキシ基から選ば
れる1種以上のアルコキシ基で置換されたセルロース系
化合物が好適に使用され、グルコース環単位あたり1.
5〜2.5個の水酸基をアルコキシ基により置換したも
のがより好適に使用できる。
It is preferable to add a viscosity agent from the viewpoint of uniformly dispersing the components and suppressing the breathing. By adding such a viscosity agent, the viscosity of the composition is increased, and the shearing force between the fibers or between the fibers and the matrix is increased, so that the fibers are likely to be separated into single fibers, so that an excellent effect is obtained. . In particular, when the amount of water is increased in order to reduce the compressive strength of the molded body, the dispersibility of each material is increased, but the fibers are difficult to be formed into a single fiber. Dispersibility can be significantly improved. The viscous agent that can be used is not particularly limited, but a cellulosic compound, particularly a cellulosic compound having an alkoxy group (among others, one or more cellulosic compounds selected from methylcellulose, propylmethylcellulose, and hydroxyethylmethylcellulose) is preferably used. Is done. Among them, a cellulose compound in which a part of the hydroxyl group is substituted with one or more alkoxy groups selected from a methoxy group, an ethoxy group, a propoxy group, a hydroxypropoxy group, and a hydroxyethoxy group is preferably used. 1.
What substituted 5 to 2.5 hydroxyl groups with an alkoxy group can be used more suitably.

【0017】粘性化剤の添加量は、ペーストの流動性、
繊維の分散性等により適宜決定すればよい。一般に、粘
性化剤の重合度が大きくなるほど少ない添加量でペース
トの粘度が上昇することから、2質量%の水溶液で10
000mPa・s以上、場合によっては100000m
Pa・s程度のものが広く使用されている。本発明にお
いてもかかる粘性化剤を使用することは可能であるが、
本発明においては2000〜8000mPa・s、特に
3000〜5000mPa・sの粘性化剤を用いた場合
により優れた効果が得られる。また添加量はペーストを
構成する水に対して0.1〜1質量%、特に0.3〜
0.5質量%程度とするのが好ましい。具体的には、
0.1〜10kg/m3程度配合するのが好ましい。
The amount of the viscous agent added depends on the fluidity of the paste,
What is necessary is just to determine suitably according to the dispersibility of a fiber, etc. In general, as the degree of polymerization of the viscosity agent increases, the viscosity of the paste increases with a small amount of addition.
000mPa · s or more, sometimes 100000m
Those having a pressure of about Pa · s are widely used. Although it is possible to use such a viscosity agent in the present invention,
In the present invention, more excellent effects can be obtained when a viscosity agent of 2000 to 8000 mPa · s, particularly 3000 to 5000 mPa · s is used. The amount of addition is 0.1 to 1% by mass, especially 0.3 to 1% by mass of water constituting the paste.
It is preferred to be about 0.5% by mass. In particular,
It is preferable to add about 0.1 to 10 kg / m 3 .

【0018】しかしながら、曲げ強度だけでなく靭性の
高い水硬性硬化体を得るためには、標準成形体の圧縮強
度が120MPa以下、特に100MPa以下、さらに
90MPa以下となる水硬性材料組成物とするのが好ま
しい。圧縮強度が高い成形体は応力が加わっても第1ク
ラックが発生しにくいものの、圧縮強度が高いほどクラ
ック発生時の応力は大きくなる。本発明で使用される補
強繊維は比較的太径であるため、成形体の圧縮強度があ
る程度高くても(第1クラック発生時の応力がある程度
高くても)破断することなくブリッジング効果を奏する
ことができるが、あまりにも圧縮強度が高くなりすぎる
と、他の繊維に応力を伝達する前に破断してしまうため
に靭性が低下しやすくなることから上記範囲の圧縮強度
であるのが好ましい。しかしながら標準成形体の圧縮強
度が低すぎる場合には、補強繊維によるブリッジング効
果が奏される前にマトリックスそのものが破壊してしま
うために靭性の高い成形体は得られない。よって、標準
成形体の圧縮強度は30MPa以上、特に40MPa以
上であるのが好ましい。なお本発明にいう標準成形体の
圧縮強度とは、試料組成物を用いて実施例に記載の方法
で得られる水硬性成形体の圧縮強度をいう。標準成形体
の圧縮強度が上記範囲となる組成物を用いることにより
高性能の水硬性硬化体が得られる。標準成形体の圧縮強
度は、水硬性材料、水、補強繊維、骨材、他の添加剤の
種類、添加量等を変更することにより調整できる。
However, in order to obtain a hydraulically cured product having not only a high flexural strength but also a high toughness, it is necessary to use a hydraulic material composition in which the compression strength of the standard molded product is 120 MPa or less, particularly 100 MPa or less, and even 90 MPa or less. Is preferred. Although a molded article having a high compressive strength is unlikely to cause the first crack even when stress is applied, the stress at the time of the crack generation increases as the compressive strength increases. Since the reinforcing fiber used in the present invention has a relatively large diameter, the bridging effect is exhibited without breaking even when the compression strength of the molded body is high to some extent (even when the stress at the time of the first crack occurrence is high to some extent). However, if the compressive strength is too high, the fiber is broken before transmitting the stress to other fibers, so that the toughness tends to be reduced. Therefore, the compressive strength in the above range is preferable. However, when the compressive strength of the standard molded body is too low, the matrix itself is broken before the bridging effect is exerted by the reinforcing fibers, so that a molded body having high toughness cannot be obtained. Therefore, the compression strength of the standard molded body is preferably 30 MPa or more, particularly preferably 40 MPa or more. In addition, the compressive strength of the standard molded body referred to in the present invention refers to the compressive strength of a hydraulic molded body obtained by a method described in Examples using a sample composition. By using a composition in which the compressive strength of the standard molded product falls within the above range, a high-performance hydraulically cured product can be obtained. The compressive strength of the standard molded body can be adjusted by changing the type and amount of the hydraulic material, water, reinforcing fiber, aggregate, and other additives.

【0019】該材料の添加方法、添加順序、混練方法は
特に限定されない。次いで得られた組成物を所望により
成形し、さらに硬化させることにより硬化体を製造すれ
ばよい。本発明の硬化体の製造方法は特に限定されず、
例えば、吹付成形法、注入成形法、加圧成型法、振動成
型法、振動及び加圧併用成型法、遠心力成型法、巻取成
型法、真空成型法、そして押出成型法等が利用できる。
勿論、左官材料として塗り付けて得られる物品(成形
体)も本発明に包含される。本発明においては、なかで
も混練成形を行った場合に顕著な効果が得られる。なお
本発明にいう混練成形とは、水の存在する系において泥
濘状態にあるマトリックスと繊維を均一混練した後に、
上記のような成形方法により所望の形状に成形する方法
をいい、従来広く行われている抄造法とは明確に区別さ
れるものである。上記方法により成形し、所望により養
生すればよい。養生方法及び養生期間は特に限定され
ず、常温養生、オートクレーブ養生、蒸気養生、水中養
生等所望の方法により行えばよい。
The method of adding the materials, the order of addition, and the kneading method are not particularly limited. Next, the obtained composition may be molded as required, and further cured to produce a cured product. The method for producing the cured product of the present invention is not particularly limited,
For example, a spray molding method, an injection molding method, a pressure molding method, a vibration molding method, a combined vibration and pressure molding method, a centrifugal force molding method, a winding molding method, a vacuum molding method, and an extrusion molding method can be used.
Of course, the present invention also includes an article (molded body) obtained by painting as a plastering material. In the present invention, a remarkable effect is obtained particularly when kneading and molding are performed. Incidentally, kneading molding according to the present invention, after uniformly kneading the matrix and fibers in a mud state in a system where water is present,
It refers to a method of molding into a desired shape by the molding method as described above, and is clearly distinguished from the papermaking method conventionally widely used. What is necessary is just to shape | mold by the said method and to cure | harden as needed. The curing method and the curing period are not particularly limited, and may be performed by a desired method such as room temperature curing, autoclave curing, steam curing, and underwater curing.

【0020】本発明の成形体はあらゆる製品とすること
ができ、たとえば橋脚補強、橋脚梁、建築柱、型枠、地
下地中壁、大深度建造物材料、海洋・水中構造物、高高
度建造物、マンホール、スレ−ト板、パイプ類、壁パネ
ル、床パネル、屋根板、間仕切り、道路舗装、トンネル
ライニング、法面保護、コンクリ−ト工場製品等のすべ
てのセメント、コンクリ−ト成形物や2次製品に用いる
ことができる。また前述したセメント製品に限らずこれ
ら以外の構造物、建築内外装部材、土木材料に応用使用
することもできる。また左官用モルタルとして使用して
もよく、機械用基礎、原子炉圧力容器、液化天然ガスの
容器等として用いてもよい。以下更に本発明を実施例で
もって説明するが、本発明は実施例により何等限定され
るものではない。
The molded article of the present invention can be any product, for example, pier reinforcement, pier beam, building column, formwork, underground wall, deep building material, marine / underwater structure, high altitude building Products, manholes, slate boards, pipes, wall panels, floor panels, shingles, partitions, road pavements, tunnel linings, slope protection, concrete factory products, etc. Can be used for secondary products. Further, the present invention is not limited to the above-mentioned cement products, and can be applied to structures other than these, interior and exterior members of buildings, and civil engineering materials. Further, it may be used as a plastering mortar, a machine base, a reactor pressure vessel, a container for liquefied natural gas, or the like. Hereinafter, the present invention will be further described with reference to examples, but the present invention is not limited to the examples.

【0021】[0021]

【実施例】[繊度 dtex]得られた繊維状物の一定試
長の重量を測定して見掛け繊度をn=5以上で測定し、
平均値を求めた。なお、一定糸長の重量測定により繊度
が測定できないもの(細デニ−ル繊維)はバイブロスコ
−プにより測定した。
[Example] [Fineness dtex] The apparent fineness was measured at n = 5 or more by measuring the weight of a given test length of the obtained fibrous material.
The average was determined. In addition, the fineness could not be measured by measuring the weight of a certain yarn length (fine denier fiber) was measured by a vibroscope.

【0022】[繊維強度 cN/dtex]予め温度20
℃、相対湿度65%の雰囲気下で24時間繊維を放置し
て調湿したのち、単繊維を試長20cm、引張速度10
cm/分としてインストロン試験機「島津製作所製オー
トグラフ」にて繊維強度を測定した。なお繊維長が20
cmより短い場合は、そのサンプルの可能な範囲での最
大長さを把持長として測定することとする。
[Fiber strength cN / dtex] Temperature 20 in advance
The fibers were allowed to stand for 24 hours in an atmosphere of 65 ° C. and a relative humidity of 65% to adjust the humidity.
The fiber strength was measured in cm / min using an Instron tester “Autograph manufactured by Shimadzu Corporation”. The fiber length is 20
If it is shorter than cm, the maximum length of the sample within the possible range is measured as the grip length.

【0023】[フロー値 mm]上辺直径7cm、下辺
直径10cm、高さ6cmの鋳鉄製シリンダを直径30
cmの鋳鉄製円盤上の中央に整置し、ついで水硬性ペー
ストをシリンダに満たした後にシリンダを静かに垂直に
ぬき去りペーストを円盤上に流れ出させた。次いで円盤
に15回打撃を与えた後、打撃等により広がったペース
トの直径をmm単位で測定する。なお、広がりが円形に
ならなかった場合には、最大径と最小径の平均値をフロ
ー値とする。
[Flow value mm] A cast iron cylinder having an upper side diameter of 7 cm, a lower side diameter of 10 cm, and a height of 6 cm was used.
cm of the cast iron disk, and the cylinder was gently stripped vertically after filling the cylinder with hydraulic paste and the paste was allowed to flow onto the disk. Then, after the disk is hit 15 times, the diameter of the paste spread by the hit or the like is measured in mm. If the spread does not become circular, the average value of the maximum diameter and the minimum diameter is used as the flow value.

【0024】[標準成形体]水硬性組成物を所定の鋳型
に流し込んで表面を4〜5回小手で軽くならし、20℃
65RHにてポリエチレンシートに包んで24時間放置
後、脱型して20±1℃の水中で27日間養生し、標準
試験体を製造した。 [圧縮強度 MPa]直径5cm,高さ10cmの円柱
体を成形して試料(標準成形体)とし、毎秒0.25N
/mm2の増加速度で荷重をかけてJIS A1108
―1993に準じて測定した。 [曲げ強度 MPa、たわみ mm]以下の条件で標準
成形体を用いて3等分曲げ試験を行い、最大荷重発生時
の曲げ応力を曲げ強度とし、曲げ強度発現時のたわみを
読みとって評価した。 装置 島津オートグラフAG5000−B 試料 幅60mm,厚さ10mm,長さ240mm 試験速度 0.5mm/分 3等分点曲げ全スパン 180mm
[Standard molded body] The hydraulic composition is poured into a predetermined mold, and the surface is lightly lightened 4 to 5 times with a hand.
After wrapped in a polyethylene sheet at 65 RH and left for 24 hours, it was demolded and cured in water at 20 ± 1 ° C. for 27 days to produce a standard specimen. [Compressive strength MPa] A cylindrical body having a diameter of 5 cm and a height of 10 cm was formed into a sample (standard molded body), and 0.25 N / sec.
/ By applying a load at an increased speed of mm 2 JIS A1108
-Measured according to 1993. [Bending strength MPa, deflection mm] A three-part bending test was performed using a standard molded body under the following conditions, and the bending stress when the maximum load occurred was defined as the bending strength, and the deflection when the bending strength was developed was read and evaluated. Apparatus Shimadzu Autograph AG5000-B Specimen Width 60mm, Thickness 10mm, Length 240mm Test speed 0.5mm / min.

【0025】[実施例1〜6、比較例1〜7]オムニミ
キサーに普通ポルトランドセメント(太平洋セメント
製)、骨材として豊浦標準砂、粘性化剤としてメチルセ
ルロース(信越化学工業製「ハイ−メトローズ90SH
4000」)を投入し1分間混練し、さらに水と高性能
AE減水剤(エヌエムビー社製「レオビルドSP−8
N」)を加え30秒間混練した。次いで掻き落した後に
90秒間さらに混練を行い、次いで補強繊維を加えて3
0秒間混練した後に掻き落した後、さらに90秒間混練
して表1に記載の配合となるように水硬性組成物を調製
した。得られた組成物から標準成形体を製造して性能を
評価した。結果を表1に示す。
Examples 1 to 6, Comparative Examples 1 to 7 Ordinary Portland cement (manufactured by Taiheiyo Cement) in an omni mixer, Toyoura standard sand as an aggregate, methylcellulose as a viscosifying agent ("High-Metroze 90SH" manufactured by Shin-Etsu Chemical Co., Ltd.)
4000 "), kneaded for 1 minute, and further mixed with water and a high-performance AE water reducing agent (" Reobuild SP-8 "manufactured by NMB Corporation).
N ") and kneaded for 30 seconds. Then, after scraping, kneading was further performed for 90 seconds, and then reinforcing fibers were added to the mixture.
After kneading for 0 second and then scraping off, the mixture was further kneaded for 90 seconds to prepare a hydraulic composition so as to have the composition shown in Table 1. A standard molded body was manufactured from the obtained composition, and the performance was evaluated. Table 1 shows the results.

【0026】なお、使用したシリカヒュームはユニオン
化成株式会社製、フライアッシュは関電化興行株式会社
製のSiO2=53.4%、Al23=26.0%、比
表面積3000cm2/gのものを使用した。なお、表
1中の繊維以外の各材料についての配合量は1m3あた
りの配合kgである。
The silica fume used was Union Chemical Co., Ltd., and fly ash was SiO 2 = 53.4%, Al 2 O 3 = 26.0%, specific surface area 3000 cm 2 / g, manufactured by Kanden Kagaku Corporation. Was used. In addition, the compounding amount of each material other than the fibers in Table 1 is the compounding kg per 1 m 3 .

【0027】[0027]

【表1】 [Table 1]

【0028】本発明の組成物はいずれもフロー値が高く
流動性・施工性に優れたものであり、現場施工が容易な
ものであった。しかもかかる組成物から得られる標準成
形体の曲げ強度及び靭性も高いものであった。
Each of the compositions of the present invention had a high flow value and was excellent in fluidity and workability, and was easy to perform on-site. Moreover, the bending strength and toughness of the standard molded body obtained from such a composition were high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の水硬性組成物における補強繊維と水
硬性材料/骨材(C/S)の関係を示した概略図。
FIG. 1 is a schematic diagram showing the relationship between reinforcing fibers and hydraulic material / aggregate (C / S) in a hydraulic composition of the present invention.

【図2】 本発明の水硬性組成物における水硬性材料/
骨材(C/S)と単位水量(Kg/m3)の関係を示し
た概略図。
FIG. 2 shows a hydraulic material / hydraulic material in the hydraulic composition of the present invention.
FIG. 3 is a schematic diagram showing a relationship between aggregate (C / S) and unit water amount (Kg / m 3 ).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 末森 寿志 岡山市海岸通1丁目2番1号 株式会社ク ラレ内 (72)発明者 保城 秀樹 大阪市北区梅田1丁目12番39号 株式会社 クラレ内 Fターム(参考) 4G012 PA24 PC11 PC12 PE01  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hisashi Suemori 1-2-1, Kaigandori, Okayama City Inside Kuraray Co., Ltd. (72) Inventor Hideki Hojo 1-12-13 Umeda, Kita-ku, Osaka Co., Ltd. F term in Kuraray (reference) 4G012 PA24 PC11 PC12 PE01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 セメント,シリカヒューム,高炉スラ
グ,フライアッシュから選ばれる1種以上の材料からな
り、かつセメントを主体成分とする水硬性材料、補強繊
維、骨材及び水を少なくとも含有する水硬性材料組成物
であって、補強繊維の繊度X(dtex)が55〜27
0dtexであり、さらに水硬性材料配合量C(kg/
3)が750〜1300kg/m3、骨材配合量S(k
g/m3)が400〜1100kg/m3、水配合量W
(kg/cm3)が270〜420kg/m3であり、か
つ下記式(I)及び(II)を充足する水硬性材料組成
物。 2.625−0.0075・X≦Y≦3.375-0.0075・X (I) 47・Y+253≦W≦47・Y+293 (II) (式中、YはC/Sである。)
1. A hydraulic material comprising at least one material selected from cement, silica fume, blast furnace slag, and fly ash, and comprising at least a cement-based hydraulic material, reinforcing fiber, aggregate and water. A material composition, wherein the fineness X (dtex) of the reinforcing fiber is 55 to 27.
0 dtex, and the hydraulic material content C (kg /
m 3 ) is 750 to 1300 kg / m 3 , and the amount of aggregate S (k
g / m 3 ) is 400 to 1100 kg / m 3 , and the amount of water is W
A hydraulic material composition having (kg / cm 3 ) of 270 to 420 kg / m 3 and satisfying the following formulas (I) and (II). 2.625-0.0075 · X ≦ Y ≦ 3.375-0.0075 · X (I) 47 · Y + 253 ≦ W ≦ 47 · Y + 293 (II) (where Y is C / S)
【請求項2】 補強繊維の少なくとも一部がポリビニル
アルコール系繊維である請求項1に記載の水硬性材料組
成物。
2. The hydraulic material composition according to claim 1, wherein at least a part of the reinforcing fibers is a polyvinyl alcohol-based fiber.
【請求項3】 請求項1又は請求項2に記載の水硬性材
料組成物から得られる繊維補強水硬性硬化体。
3. A fiber-reinforced hydraulic cured product obtained from the hydraulic material composition according to claim 1.
【請求項4】 請求項1又は請求項2に記載の水硬性材
料組成物を用いて現場施工する方法。
4. A method for on-site construction using the hydraulic material composition according to claim 1 or 2.
JP2001036808A 2000-03-03 2001-02-14 Hydraulic composition and fiber-reinforced cured body using it Pending JP2001316157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001036808A JP2001316157A (en) 2000-03-03 2001-02-14 Hydraulic composition and fiber-reinforced cured body using it

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000058598 2000-03-03
JP2000-58598 2000-03-03
JP2001036808A JP2001316157A (en) 2000-03-03 2001-02-14 Hydraulic composition and fiber-reinforced cured body using it

Publications (1)

Publication Number Publication Date
JP2001316157A true JP2001316157A (en) 2001-11-13

Family

ID=26586717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001036808A Pending JP2001316157A (en) 2000-03-03 2001-02-14 Hydraulic composition and fiber-reinforced cured body using it

Country Status (1)

Country Link
JP (1) JP2001316157A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6893751B2 (en) 2001-03-02 2005-05-17 James Hardie Research Pty Limited Composite product
JP2007302528A (en) * 2006-05-12 2007-11-22 Kuraray Co Ltd Fiber-reinforced mortar or fiber-reinforced concrete and method for constructing slope frame using the same
US7658794B2 (en) 2000-03-14 2010-02-09 James Hardie Technology Limited Fiber cement building materials with low density additives
US7993570B2 (en) 2002-10-07 2011-08-09 James Hardie Technology Limited Durable medium-density fibre cement composite
US7998571B2 (en) 2004-07-09 2011-08-16 James Hardie Technology Limited Composite cement article incorporating a powder coating and methods of making same
US8209927B2 (en) 2007-12-20 2012-07-03 James Hardie Technology Limited Structural fiber cement building materials
US8993462B2 (en) 2006-04-12 2015-03-31 James Hardie Technology Limited Surface sealed reinforced building element
CN106810154A (en) * 2017-01-12 2017-06-09 上海理工大学 Mix superhigh tenacity cement-base composite material of PVA fibers and preparation method thereof
CN107417199A (en) * 2017-06-01 2017-12-01 上海理工大学 A kind of superhigh tenacity cement-base composite material and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7727329B2 (en) 2000-03-14 2010-06-01 James Hardie Technology Limited Fiber cement building materials with low density additives
US8603239B2 (en) 2000-03-14 2013-12-10 James Hardie Technology Limited Fiber cement building materials with low density additives
US7658794B2 (en) 2000-03-14 2010-02-09 James Hardie Technology Limited Fiber cement building materials with low density additives
US8182606B2 (en) 2000-03-14 2012-05-22 James Hardie Technology Limited Fiber cement building materials with low density additives
US7704316B2 (en) 2001-03-02 2010-04-27 James Hardie Technology Limited Coatings for building products and methods of making same
US6893751B2 (en) 2001-03-02 2005-05-17 James Hardie Research Pty Limited Composite product
US7993570B2 (en) 2002-10-07 2011-08-09 James Hardie Technology Limited Durable medium-density fibre cement composite
US7998571B2 (en) 2004-07-09 2011-08-16 James Hardie Technology Limited Composite cement article incorporating a powder coating and methods of making same
US8993462B2 (en) 2006-04-12 2015-03-31 James Hardie Technology Limited Surface sealed reinforced building element
JP2007302528A (en) * 2006-05-12 2007-11-22 Kuraray Co Ltd Fiber-reinforced mortar or fiber-reinforced concrete and method for constructing slope frame using the same
US8209927B2 (en) 2007-12-20 2012-07-03 James Hardie Technology Limited Structural fiber cement building materials
CN106810154A (en) * 2017-01-12 2017-06-09 上海理工大学 Mix superhigh tenacity cement-base composite material of PVA fibers and preparation method thereof
CN107417199A (en) * 2017-06-01 2017-12-01 上海理工大学 A kind of superhigh tenacity cement-base composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
US6809131B2 (en) Self-compacting engineered cementitious composite
JP2009132557A (en) Admixture for polymer cement grout
JP2008120611A (en) Grout composition, grout mortar and grout construction method
JP2013112583A (en) Mortar composition for repair
JP7395633B2 (en) polymer cement mortar
JP4709677B2 (en) Premix high toughness polymer cement mortar material and high toughness polymer cement mortar
JP2009096657A (en) Cement mortar for plaster work
WO2006123632A1 (en) Lightweight cement based hardened article reinforced with fiber
CN111892329A (en) Bonding reinforced modified material and application thereof in wet joint concrete of steel-concrete combined bridge deck
JP2001316157A (en) Hydraulic composition and fiber-reinforced cured body using it
KR101304548B1 (en) High-ductile fiber cementless alkali-activated mortar composites and mortar product fabricated thereby
JP2009084092A (en) Mortar-based restoring material
KR100215140B1 (en) Self-flatness mortar composition for thin layer cement
JP4817304B2 (en) Fiber reinforced mortar or fiber reinforced concrete, and method for constructing a frame using the same
KR20130075334A (en) Amorphous steel fiber cement composites and mortar products using the same
JP4451083B2 (en) Mortar manufacturing method
CN108264270B (en) Environment-friendly slurry for paving metal floor tiles
KR100557908B1 (en) PA-Polymer Mortar of Repair Mortar Composition for Structure
Umar et al. A comparative study of the performance of selfcompacting concrete using glass and polyvinyl alcohol fibers
JP2011088793A (en) Grout material reinforcing material
JP2001316156A (en) Hydraulic paste and fiber-reinforced cured body using it
JP2008297182A (en) Mortar composition and slope protection working method
Toumbakari et al. Methodology for the design of injection grouts for consolidation of ancient masonry
JP2001253751A (en) Grout material
JP2001252916A (en) Form