WO2021177541A1 - Method for repair and reinforcement of concrete structure using three-dimensional fibers - Google Patents

Method for repair and reinforcement of concrete structure using three-dimensional fibers Download PDF

Info

Publication number
WO2021177541A1
WO2021177541A1 PCT/KR2020/014928 KR2020014928W WO2021177541A1 WO 2021177541 A1 WO2021177541 A1 WO 2021177541A1 KR 2020014928 W KR2020014928 W KR 2020014928W WO 2021177541 A1 WO2021177541 A1 WO 2021177541A1
Authority
WO
WIPO (PCT)
Prior art keywords
filler
dimensional fiber
concrete structure
weight
dimensional
Prior art date
Application number
PCT/KR2020/014928
Other languages
French (fr)
Korean (ko)
Inventor
유시정
윤성원
송석민
윤한결
Original Assignee
(주)바우테크
유시정
윤성원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)바우테크, 유시정, 윤성원 filed Critical (주)바우테크
Publication of WO2021177541A1 publication Critical patent/WO2021177541A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/10Clay
    • C04B14/104Bentonite, e.g. montmorillonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/149Waste materials; Refuse from metallurgical processes other than silica fume or slag
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • C04B28/065Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4501Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with preformed sheet-like elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/34Flow improvers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/72Repairing or restoring existing buildings or building materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a method of repairing and reinforcing a concrete structure using three-dimensional fibers, and more particularly, repairing a concrete structure using three-dimensional fibers formed in a three-dimensional structure, but impregnating the three-dimensional fibers with a filler to make a concrete structure without a separate reinforcing material It relates to a method of repairing and reinforcing concrete structures using three-dimensional fibers that allows repair and reinforcement of concrete structures by directly attaching three-dimensional fibers to them.
  • KR 100846159 B1 (Patent Document 1), 39.58-42.12 parts by weight of cement, 41.60-45.12 parts by weight of silica sand, 13.52-14.39 parts by weight of a water-soluble polymer, and 1.78-1.89 parts by weight of silica fume are thoroughly stirred and mixed.
  • the strength of expression and the structure and pore structure of the hardened cement were improved to improve water tightness and resistance to neutralization, frost damage, and salt damage, and to have the effect of suppressing microcracks.
  • Patent Document 1 and Patent Document 2 have a low adhesion performance to a deteriorated concrete structure, so that scouring and aggregate separation occur, or pop-out ( Pop-out) may occur, and the resistance to cracking progress of deteriorated concrete was low, so cracks occurred on the surface of the repair mortar and resin coating, which had the disadvantage of having to proceed with the repair work.
  • the present invention has been devised to solve the various problems as described above, and the purpose of the present invention is to enable repair and reinforcement through a construction method of directly attaching three-dimensional fibers to a concrete structure, thereby reinforcing panels used in conventional repair and reinforcement construction methods. and to provide a method of repairing and reinforcing a concrete structure so that repair and reinforcement of the concrete structure can be conveniently performed without a reinforcing material.
  • another object of the present invention is to improve the tensile strength, compressive strength, and flexural strength of the three-dimensional fiber by impregnating the three-dimensional fiber with a filler, thereby increasing the durability of the concrete structure to prevent damage to the structure due to external impact, etc.
  • Another object of the present invention is to improve the adhesion strength between the three-dimensional fibers and concrete by impregnating the three-dimensional fibers with a filler to prevent scouring, aggregate separation and pop-out, and to maintain the adhesion for a long time.
  • An object of the present invention is to provide a method for repairing and reinforcing concrete structures using three-dimensional fibers.
  • the method of repairing and reinforcing a concrete structure using three-dimensional fibers of the present invention includes a surface treatment step (S10) of washing the concrete structure to be reinforced; Reinforcing agent application step (S20) of applying a reinforcing agent to the concrete structure after the surface treatment step (S10);
  • the surface layer 110 and the back layer 130 are sequentially and continuously connected to each other and are formed by zigzag fibers, and the inside of the three-dimensional fiber 100 is filled in a slurry state prepared by mixing a binder with a filler. It was characterized in that the slurry was impregnated with a spray gun.
  • the three-dimensional fiber attachment step (S40) and the coating material application step (S60) it characterized in that it further comprises a secondary filler application step (S50) of applying a filler to the three-dimensional fiber.
  • the filler used in the first filler application step (S30) and the secondary filler application step (S50) was prepared by mixing 28 to 32 parts by weight of binding water with respect to 100 parts by weight of the filler.
  • a filler impregnating step of impregnating the three-dimensional fiber to be attached with a filler is further included, wherein the three-dimensional fiber impregnated with the filler in the filler impregnating step is applied to the concrete structure to which the primary filler is applied. It was characterized by being attached.
  • the three-dimensional fiber attachment step (S40) characterized in that it further comprises a helical bar insertion step of inserting the helical bar into the three-dimensional fiber.
  • the filler is usually 60 to 75% by weight of Portland cement, 15 to 25% by weight of fine blast furnace slag powder, 3 to 7% by weight of calcium sulfaluminate, 3 to 7% by weight of silica fume, 0.2 to 1.0 of a thickener Weight %, antifoaming agent 0.1 to 0.2 weight %, bentonite 1.0 to 5.0 weight % and any one of acrylic resin, EVA resin, and SBR resin 1.0 to 5.0 weight %, melamine-based, naphthalene-based, polycarboxylate-based high performance Any one of the fluidizing agent was characterized in that it contains 0.5 to 3.0% by weight.
  • the repair and reinforcement of concrete is performed by directly attaching the three-dimensional fibers impregnated in the filler to the concrete structure without construction of a separate reinforcing material. It has a simple effect.
  • the adhesion strength is improved to prevent scouring, aggregate separation, and pop-out, and concrete structures generated by external impact due to elasticity. It has the effect of not only reducing the damage of steel, but also of having high durability against corrosion of reinforcing bars caused by snow removal agents, etc.
  • FIG. 1 is a flowchart showing the construction steps of the method of repair and reinforcement of a concrete structure using three-dimensional fibers of the present invention
  • FIG. 2 is a view showing a construction state of the surface treatment step of the present invention
  • 3 is a view showing the construction state of the reinforcement agent application step of the present invention.
  • FIG. 4 is a view showing a construction state of the first filler application step of the present invention.
  • FIG. 5 is a view showing the construction state of the three-dimensional fiber attachment step of the present invention.
  • FIG. 6 to 7 are views showing the three-dimensional fiber of the present invention.
  • FIG. 8 is a view showing the surface layer of the three-dimensional fiber of the present invention.
  • FIG. 9 is a view showing the back layer of the three-dimensional fiber of the present invention.
  • FIG. 11 is a view showing a construction state of the coating material application step of the present invention.
  • FIG. 12 is a cross-sectional view of a concrete structure to which the repair and reinforcement method of the present invention is constructed;
  • 1 is a flowchart showing the construction steps of the method of repair and reinforcement of a concrete structure using three-dimensional fibers of the present invention.
  • the repair and reinforcement method of the deteriorated concrete structure using the three-dimensional fiber of the present invention is a surface treatment step (S10) of washing the concrete structure to be reinforced, the above After the surface treatment step (S10), the reinforcing agent application step of applying a reinforcing agent to the concrete structure (S20), the first filler application step of applying the filler to the concrete structure after the reinforcing agent application step (S20) (S30), the first filler application After the step (S30), the three-dimensional fiber attachment step (S40) of attaching the three-dimensional fiber to the concrete structure, the coating material application step of applying the coating material to the three-dimensional fiber after the three-dimensional fiber attachment step (S40) (S60) and the coating material application step (S60) ) after curing and curing, including a curing step (S70).
  • the reinforcing agent application step of applying a reinforcing agent to the concrete structure (S20)
  • a secondary filler application step (S50) of applying a filler to the three-dimensional fiber may be further included between the three-dimensional fiber attachment step (S40) and the coating material application step (S60).
  • FIG. 2 is a view showing the construction of the surface treatment step (S10) of the present invention.
  • the surface treatment step (S10) is to maintain the working surface of the concrete structure to be repaired and reinforced in a healthy state. This is a step to remove foreign substances.
  • the surface treatment step (S10) it is preferable to wash the surface of the concrete structure using high-pressure water or the like, and to roughen the surface of the deteriorated part of the concrete to improve the adhesion.
  • the surface treatment step (S10) it is preferable to organize the concrete structure to be repaired and reinforced by chipping and washing using a hammer drill or a high-pressure washer depending on the working part of the concrete structure to be repaired and reinforced.
  • Figure 3 is a view showing the construction of the reinforcing agent application step (S20) of the present invention.
  • the reinforcing agent application step (S20) is a step of applying a permeable concrete reinforcing agent to the concrete structure after the surface treatment step (S10).
  • the reinforcing agent penetrates into the concrete, and the reinforcing agent chemically reacts with the material in the concrete to generate a waterproof function, and to improve durability and abrasion resistance.
  • FIG 4 is a view showing a construction state of the first filler application step (S30) of the present invention.
  • the first filler application step (S30) is a step of applying the filler to the concrete structure after the reinforcement agent application step (S20).
  • the first filler application step (S30) is to apply the filler to the concrete structure before attaching the three-dimensional fibers to the concrete structure, so that the three-dimensional fiber attachment step, which will be described later, is made more easily.
  • the filler used in the filler application step (S30) it is preferable to use a filler in which 28 to 32 parts by weight of bonding water are mixed with respect to 100 parts by weight of the filler.
  • the filler used in the filler application step (S30) is usually 60 to 75% by weight of Portland cement, 15 to 25% by weight of fine blast furnace slag powder, 3 to 7% by weight of calcium sulfa aluminate, and 3 to silica fume 7% by weight, 0.2 to 1.0% by weight of a thickener, 0.1 to 0.2% by weight of an antifoaming agent, 1.0 to 5.0% by weight of bentonite and 1.0 to 5.0% by weight of any one of acrylic resin, EVA resin, and SBR resin, melamine-based, naphthalene It contains 0.5 to 3.0 wt% of any one of the high-performance fluidizing agent of the polycarboxylate-based system.
  • the ordinary Portland cement is the most widely used cement, and it uses a clay material containing silica (SiO 2 ), aluminum (Al 2 O 3 ), iron oxide (Fe 2 O 3 ), and lime as the main component and mixes it in an appropriate ratio. It is made by adding 3 ⁇ 5% gypsum to the clinker obtained by calcining in a rotary kiln until a part of it is melted (about 1,450°C), and pulverizing it to a fineness of 3,200 ⁇ 3,400cm2/g.
  • the filler of the present invention it is preferable to use a mixture of 60 to 75% by weight of such ordinary Portland cement, which is a problem of setting and compressive strength reduction due to delay in initial strength development when the Portland cement is less than 60% by weight, When it exceeds 75% by weight, surface cracks occur due to drying shrinkage, and Na precipitates on the surface by evaporation of moisture after soluble components (Ca(OH) 2 , alkali, etc.) in cement are dissolved in moisture in the capillary space. 2 SO 4 , K 2 SO 4 This is because there is a problem that the efflorescence phenomenon occurs due to sulfate.
  • the fine powder of blast furnace slag refers to a product generated in the process of manufacturing pig iron in a blast furnace at a steel mill.
  • auxiliary raw materials coke, limestone
  • blast furnace slag does not harden alone, it is a latent hydraulic material that is stimulated by Ca(OH) 2 or gypsum due to hydration of Portland cement to cause hardening. It is known to be effective in places where resistance to erosion is high and chemical resistance is required.
  • such fine powder of blast furnace slag it is preferable to use a mixture of 15 to 25% by weight, which is that when the fine powder of blast furnace slag is less than 15% by weight, resistance to chemical erosion is small, and when it exceeds 25% by weight, long-term strength for latent hydraulic strength increases This is because there are problems in that early strength development is slow or cracks may occur due to drying shrinkage.
  • the calcium sulfur aluminate When the calcium sulfur aluminate is mixed with cement and water, it mainly produces ettringite or calcium hydroxide [Ca(OH) 2 ] by hydration reaction to expand the cement mortar and promote hydration. to improve the initial strength. In addition, by creating fine needle-like ethrinzite, it fills and expands micropores to prevent shrinkage of cement mortar, and furthermore, it can prevent cracking of cement mortar and improve tensile properties.
  • such calcium sulfa aluminate It is preferable to use a mixture of 3 to 7% by weight, but when calcium sulfa aluminate is less than 3% by weight, there are problems with cracking and mold demolding due to a decrease in initial strength expression, and when it exceeds 7% by weight, rapid hydration This is because problems such as rapid hardening, deterioration of workability, and volume change due to expandability occur.
  • the silica fume is micro silica particles obtained by collecting and filtering SiO2 contained in waste gas generated when manufacturing silicon (Si), ferrosilicon (FeSi), silicon alloy, etc. with a dust collector, high-strength cement and concrete products, refractories, and It is a product applied in various fields such as replacement of other asbestos.
  • the silica fume is known as an essential material for the recent production of underwater concrete or concrete requiring durability, especially high-strength concrete. It is known to improve concrete strength through pozzolan reaction with calcium hydroxide, and has latent hydraulic properties to fill micropores of cement mortar.
  • such silica fume It is preferable to use a mixture of 3 to 7% by weight. This is because when the silica fume is less than 3% by weight, it is not possible to densify the inside of the gel pores in the cement curing and curing process, and the resistance to external chemical substances and freeze-thaw is low. This is because there is a problem of lowering durability, and when it exceeds 7% by weight, problems such as deterioration of workability due to increase in viscosity of cement mortar occur.
  • the thickener gives viscosity to the cement mortar to increase the separation resistance of each material, and when used excessively, it can decrease the initial strength expression due to delay of setting of the cement mortar and reduce productivity due to high viscosity.
  • Examples of the type used as the thickener include cellulosic such as methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydropropylene cellulose, hydroethyl methylene cellulose, hydropropyl methyl cellulose, hydrobentonite methyl cellulose, polyacrylamide, soda acrylate, polyethylene There are acrylic oxide, a copolymer of polyacrylamide and sodium acrylic acid, and any one of them may be used or a mixture of cellulose and acrylic acid may be used.
  • any one of higher alcohols, phosphate esters, silicones, dibutyl butanediol, tributyl phosphate glycol, and non-aqueous alcohols may be used as an antifoaming agent.
  • the filler of the present invention it is preferable to use a mixture of 0.2 to 1.0% by weight of such a thickener, which has a problem of reducing the effect on separation resistance of each material when the thickener is less than 0.2% by weight, and exceeding 1.0% by weight In this case, workability is reduced due to excessive viscosity increase, and there is a problem of delaying initial strength development due to delayed hydration, which is a characteristic of cellulose-based materials.
  • the antifoaming agent is a powdery silicone type, and it is preferable to use 0.1 to 0.2 wt% of the antifoaming agent mixed in the filler of the present invention, which is less than 0.1 wt% of the antifoaming agent. Since the amount of air cannot be effectively removed, it contains an internal air content of 35-40%, which is much higher than that of a normal cement mortar of 22-25%, so there is a problem of lowering the compressive strength. This is because problems such as reduced workability and reduced resistance to freezing and thawing in winter occur due to excessive removal of air volume.
  • the bentonite powder is used to prevent cracking of the surface of the cement mortar, improving water resistance, and preventing bleeding water, and it is preferable to mix and use 1.0 to 5.0 wt% of the bentonite powder in the filler of the present invention.
  • bentonite powder If the amount of bentonite powder is less than 1.0% by weight, it has no effect on improving water resistance and removing bleeding water. because this happens.
  • any one of acrylic resin, EVA resin and SBR resin is added to 1.0 to 5.0. It is preferable to use the mixture by weight %.
  • the powdered melamine-based fluidizing agent in order to improve the fluidity of the filler, 0.5 to 3.0 parts by weight of the powdered melamine-based fluidizing agent, the naphthalene-based fluidizing agent and the polycarboxylate-based fluidizing agent are mixed with respect to 100 parts by weight of the filler. .
  • FIG 5 is a view showing a construction state of the three-dimensional fiber attachment step (S50) of the present invention.
  • the three-dimensional fiber attachment step (S50) is a step of attaching the three-dimensional fibers to the concrete structure to which the filler is applied after the first filler application step (S40).
  • the three-dimensional fiber 100 used in the three-dimensional fiber attachment step (S50) has a three-dimensional shape including a surface layer 110, a back surface layer 130, and an intermediate layer 120. It is constructed so that it has higher tensile strength and increased durability than when using the conventional planar fibers.
  • the surface layer 110 of the three-dimensional fiber 100 constitutes an attachment surface to be attached to the concrete structure, and the back layer 120 constitutes a finished surface for protecting the concrete structure.
  • FIG. 8 is a view showing the state of the surface layer
  • FIG. 9 is a view showing the state of the back layer.
  • the surface layer 110 and the back surface layer 130 are formed in a grid shape.
  • the grid spacing of the surface layer 110 is formed at an interval of 1 to 5 mm
  • the back layer 130 is preferably formed at an interval of 0.1 to 3 mm.
  • the lattice spacing of the surface layer 110 is preferably formed at an interval of 1 to 5 mm.
  • the coating material applied in the filler and coating material application step (S60) applied in the secondary filler application step (S50) to be described later is not easily applied to the back layer. If the lattice spacing of the back layer exceeds 3 mm, the strength of the three-dimensional fiber decreases as the lattice spacing is widened.
  • the lattice spacing between the surface layer 110 and the back surface layer 130 as described above, the application of the filler and coating material is facilitated, and the strength of the three-dimensional fiber is maintained.
  • the intermediate layer 120 is formed with a height of 1 to 10 mm between the surface layer 110 and the back surface layer 130 to serve as a spacer between the surface layer and the back surface layer, and according to the height of the intermediate layer 120 , the three-dimensional The thickness of the fiber 100 is determined.
  • the intermediate layer 120 is formed by zigzag-shaped fibers formed by sequentially connecting the surface layer 110 and the back surface layer 130 as shown in FIGS. 6 and 7, and is formed by such zigzag-shaped fibers.
  • the intermediate layer 120 which is the interval between the surface layer 110 and the back surface layer 130 , can always maintain a spaced state at a regular interval.
  • a space in which the filler can be easily filled and impregnated is formed between the surface layer 110 and the back surface layer 130 by the intermediate layer 120, thereby increasing the strength of the three-dimensional fiber.
  • the three-dimensional fiber 100 is made of any one of nylon, polyester, acrylic fiber, PVA fiber, polypropylene fiber, polyurethane fiber, carbon fiber, glass fiber, and aramid fiber having high strength, and thus has high compressive strength and tensile strength. And it is preferable to have flexural strength.
  • the tensile strength and durability of the concrete structure are increased, and the effect of improving resistance to salt damage and carbonation is achieved.
  • the step of attaching the three-dimensional fibers may further include a filler impregnation step of impregnating the three-dimensional fibers with the filler as shown in FIG. 10 .
  • the three-dimensional fiber 100 is formed with a thickness of 1 to 10 mm in height of the intermediate layer 120 .
  • the three-dimensional fiber 100 is easily attached to the concrete structure only with the filler applied to the concrete structure through the first filler application step, and the filler material when attached is easily impregnated into the three-dimensional fiber 100, so that the filler is impregnated into the three-dimensional fiber, thereby having the effect of repair and reinforcement.
  • the three-dimensional fiber 100 exceeds 10 mm, as the thickness of the three-dimensional fiber increases, the three-dimensional fiber is applied to the concrete structure only with the filler applied to the concrete structure in the first filler application step (S30). It may not be attached properly.
  • the three-dimensional fiber impregnated with the filler is applied to the concrete structure in the first filler application step (S30)
  • the adhesion of the three-dimensional fibers is increased, and by allowing the filler to be sufficiently impregnated into the three-dimensional fibers, the tensile strength, compressive strength, and flexural strength are improved, thereby increasing the durability of the concrete structure.
  • the filler is mixed with binding water to prepare a filled slurry in a slurry state, and then, as shown in FIG. Impregnated into three-dimensional fibers.
  • the three-dimensional fiber attachment step (S40) may further include a helical bar insertion step of inserting the helical bar into the three-dimensional fiber.
  • a helical bar is inserted into the three-dimensional fiber so that the three-dimensional fiber into which the helical bar is inserted is attached to the concrete structure.
  • the helical bar used in the helical bar insertion step is composed of a nickel-chromium alloy steel bar in which chromium (Cr) is added to nickel (Ni).
  • the helical bar has the effect of improving oxidation resistance and corrosion resistance, and by attaching the helical bar to the concrete structure with the helical bar inserted into the three-dimensional fiber, the durability of the concrete structure is increased. will be.
  • the secondary filler application step (S50) is a step of applying a filler to the three-dimensional fiber attached to the concrete structure after the three-dimensional fiber attachment step (S50), which is selectively performed depending on the state in which the three-dimensional fiber is impregnated with the filler is a step
  • the secondary filler application step (S50) when the three-dimensional fiber is sufficiently impregnated with the filler, the secondary filler application step (S50) is omitted, the coating material application step (S60) to be described later is performed, and when the three-dimensional fiber is not sufficiently impregnated with the filler, the secondary filler application step ( After performing S50) so that the three-dimensional fiber can be sufficiently impregnated with the filler, a coating material application step (S60), which will be described later, is performed.
  • the filler used in the secondary filler application step (S50) may be of the same component as the filler used in the primary filler application step (S30).
  • the three-dimensional fiber can be sufficiently impregnated with the filler to increase the durability of the three-dimensional fiber.
  • FIG. 11 is a view showing a construction state of the coating material application step of the present invention.
  • the coating material application step (S60) is a step of applying a coating material to the surface of the attached three-dimensional fiber as shown in FIG. 11 after the three-dimensional fiber attachment step (S50).
  • the coating material used in the coating material application step (S60) is prepared by mixing a flame retardant containing a water-soluble acrylic resin and an inorganic composite material, and a neutralizing agent containing a water-soluble acrylic resin and an inorganic composite material.
  • the inorganic composite material included in the flame retardant and the neutralizing agent is manufactured to include No. 8 silica sand, cement and silica fume.
  • the coating material includes a flame resistant material and a neutralization prevention material to prevent deterioration of the durability of the concrete structure due to salt or the like through the coating material application step (S60), and to prevent deterioration of concrete due to corrosion of reinforcing bars is to do it
  • the curing step (S70) is a step of naturally curing the applied filler after the coating material application step (S60).
  • the three-dimensional filling fiber 200 which is a three-dimensional fiber impregnated with a filler, is formed in the concrete structure to be repaired and reinforced, thereby repairing and strengthening the concrete structure using the three-dimensional fiber. This is done.
  • the deteriorated part of the concrete structure is repaired and reinforced by the repair and reinforcing layer 300, and the filler layer 400 is formed on the surface of the repair and reinforcing layer, so that the filler layer 400
  • the filling three-dimensional fiber 100 is attached to the concrete structure, the filling three-dimensional fiber 200 is formed.
  • the adhesion strengths of Examples 1, 2, and 3 were 1.8N/mm2, 1.9N/mm2, and 1.6N/mm2, respectively, higher than 1.3N/mm2 of Comparative Example 1 and 1.1N/mm2 of Comparative Example 2 It was shown to have strength, and as it was shown that the filler having W/B within the range of Examples 1 to 3 had higher adhesion strength, the three-dimensional fiber by using such a filler in the three-dimensional fiber attachment step It can have the effect of increasing the adhesion between the concrete and the concrete.
  • Examples 1 to 3 are made within a range not exceeding 30 seconds, so that a filler having excellent impregnation property and workability can be prepared. Able to know.
  • Comparative Example 1 As the consistency exceeds 30 seconds, the impregnation property and workability are reduced, and in the case of Comparative Example 2, the consistency is 15 seconds, which is very excellent in the filling of the three-dimensional fibers, but the repair and reinforcement of the structure As the compressive strength, bending strength and adhesion strength of the three-dimensional fiber to be attached are low, there is a need to accompany a separate operation to compensate for this. Inappropriate.
  • the adhesion between the three-dimensional fibers and concrete is increased by first applying to the concrete, and the durability of the three-dimensional fibers is increased by secondarily applying to the three-dimensional fibers attached to the concrete. to make it happen
  • the method of repairing and reinforcing a concrete structure using three-dimensional fibers according to the present invention can greatly contribute to the repair and reinforcement of concrete through the construction of directly attaching the three-dimensional fibers impregnated in the filler to the concrete structure without the construction of a separate reinforcing material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Architecture (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

The present invention relates to a method for repairing and reinforcing a concrete structure using three-dimensional fibers and, more specifically, to a method for repairing and reinforcing a concrete structure using three-dimensional fibers, wherein the concrete structure is repaired by using three-dimensional fibers formed in a three-dimensional structure, and the repair and reinforcement of the concrete structure are achieved by directly attaching the three-dimensional fibers to the concrete structure without a separate reinforcing material, by impregnating the three-dimensional fibers with a filler.

Description

입체섬유를 이용한 콘크리트 구조물의 보수보강 공법Repair and reinforcement of concrete structures using three-dimensional fibers
본 발명은 입체섬유를 이용한 콘크리트 구조물의 보수보강 공법에 관한 것으로, 더욱 상세하게는 입체구조로 형성되는 입체섬유를 이용하여 콘크리트 구조물을 보수하되, 입체섬유에 충진재를 함침하여 별도의 보강재 없이 콘크리트 구조물에 입체섬유를 직접 부착하는 방법으로 콘크리트 구조물의 보수보강이 이루어지도록 하는 입체섬유를 이용한 콘크리트 구조물의 보수보강 공법에 관한 것이다.The present invention relates to a method of repairing and reinforcing a concrete structure using three-dimensional fibers, and more particularly, repairing a concrete structure using three-dimensional fibers formed in a three-dimensional structure, but impregnating the three-dimensional fibers with a filler to make a concrete structure without a separate reinforcing material It relates to a method of repairing and reinforcing concrete structures using three-dimensional fibers that allows repair and reinforcement of concrete structures by directly attaching three-dimensional fibers to them.
토목 및 건축분야에서 각종 콘크리트 구조물은 환경적 요인과 사용재료의 내구성 저하 등 복합적인 영향으로 중성화, 동해, 염해 등 콘크리트의 열화현상이 진행되어 구조체의 내하력 및 내구성이 저하되고 안전성이 떨어져 콘크리트 구조물의 유지관리를 위한 열화된 콘크리트의 단면복구 및 내구성능 향상을 위한 적절한 보수 및 보강공법이 요구되고 있는 실정이다.In the civil engineering and construction fields, various concrete structures undergo deterioration phenomena such as neutralization, freeze damage, and salt damage due to complex effects such as environmental factors and deterioration of durability of materials used. There is a demand for an appropriate repair and reinforcement method for cross-section restoration of deteriorated concrete for maintenance and improvement of durability.
예를 들어, 콘크리트 구조물의 균열폭이 0.2㎜를 초과하는 경우, 균열부 부분에 에폭시수지 모르타르와 폴리머 시멘트 모르타르 등의 보수 재료를 충진 또는 주입하는 공법이 채택되며, 이 공법은 균열부를 V형, U형으로 커트하여 그 부분에 보수재료를 충진하는 방법과 특별한 기기를 사용하여 균열 내부까지 보수 재료를 주입하는 공법으로 분류할 수 있다. 이와 관련된 선행 기술로는 특허문헌 1 및 2 등이 있다.For example, if the crack width of a concrete structure exceeds 0.2 mm, a method of filling or injecting repair materials such as epoxy resin mortar and polymer cement mortar into the cracked part is adopted. It can be classified into a method of cutting into a mold and filling the part with repair material, and a method of injecting repair material into the cracks by using a special device. As prior art related thereto, there are Patent Documents 1 and 2, and the like.
KR 100846159 B1(특허문헌 1)에서는 39.58-42.12 중량부의 시멘트와, 41.60-45.12 중량부의 규사와, 13.52-14.39 중량부의 수용성 폴리머와, 1.78-1.89 중량부의 실리카 퓸을 충분히 교반하여 혼합한 것을 특징으로 하여, 발현 강도의 증진과 시멘트 경화체의 조직 및 공극 구조를 개선하여 수밀성과 중성화, 동해, 염해 등의 저항성을 향상시키고 미세균열을 억제할 수 있는 효과를 가지도록 하였다.In KR 100846159 B1 (Patent Document 1), 39.58-42.12 parts by weight of cement, 41.60-45.12 parts by weight of silica sand, 13.52-14.39 parts by weight of a water-soluble polymer, and 1.78-1.89 parts by weight of silica fume are thoroughly stirred and mixed. Thus, the strength of expression and the structure and pore structure of the hardened cement were improved to improve water tightness and resistance to neutralization, frost damage, and salt damage, and to have the effect of suppressing microcracks.
또한, KR 100597176 B1(특허문헌 2)에서는 진동이나 신축변화가 심한 콘크리트 구조물의 표면에 망상균열과 같은 표면미세균열이 발생되고, 계속 확전되어 전체 콘크리트 표면상태가 악화되고 있는 구조물에 대한 보수보강방법으로서, 보수가 필요한 부분을 고압세척기 등을 이용하여 이물질을 제거하는 단계;와 발생된 균열의 진행방향으로 균열부위를 잘려진 부분의 단면이 대략 삼각형 형상이 되도록 커팅하여 충진홈(2)을 형성하는 단계;와 상기 충진홈(2)에 아크릴에멀젼 48 ~ 55 중량%, 이산화티탄(TiO2) 13 ~ 22 중량%,탄산칼슘(CaCo3) 18 ~ 25중량%, 실리카체질안료 3 ~ 7중량% 및 물 잔부를 포함하는 탄성충진재를 충진하여 탄성충진재층을 형성시키는 단계;와 상기 탄성충진재층 위에 이소시아네이트로 블록킹된 폴리우레탄 20중량%와 비정형 실리콘 다이옥사이드 30중량%와 칼슘카보네이트 20중량%와 트리메틸렌헥사메티렌디아민 10중량%와 페놀의 알킬술포닉산 에스테르 20중량%를 포함하는 탄성표면보호 방수도장제를 도포하여 탄성표면보호 보강층을 형성하는 단계를 포함함을 특징으로 하는 콘크리트 표면 탄성방수도장 보수보강 방법에 대해 기재되어 있다.In addition, in KR 100597176 B1 (Patent Document 2), surface microcracks such as reticulated cracks are generated on the surface of a concrete structure subject to severe vibration or expansion and contraction change, and the repair and reinforcement method for a structure in which the overall concrete surface condition is deteriorated due to continued expansion The steps of removing foreign substances by using a high-pressure washer or the like in the part that needs repair; and cutting the cracked part in the progress direction of the generated crack so that the cross section of the cut part has a substantially triangular shape to form a filling groove (2) Step; and 48 to 55% by weight of acrylic emulsion, 13 to 22% by weight of titanium dioxide (TiO2), 18 to 25% by weight of calcium carbonate (CaCo3), 3 to 7% by weight of silica pigment and water in the filling groove (2) Forming an elastic filler layer by filling an elastic filler including the remainder; And 20% by weight of polyurethane blocked with isocyanate on the elastic filler layer, 30% by weight of amorphous silicon dioxide, 20% by weight of calcium carbonate, and trimethylene hexamethy A method of repairing and reinforcing a concrete surface elastic waterproofing coating comprising the step of forming an elastic surface protection reinforcing layer by applying an elastic surface protection waterproof coating agent containing 10% by weight of rendiamine and 20% by weight of an alkylsulfonic acid ester of phenol is described about.
그러나, 상기 특허문헌 1 및 특허문헌 2의 시공방법으로 보수보강이 이루어진 콘크리트는, 열화된 콘크리트 구조물로의 부착성능이 낮아 세굴현상 및 골재분리 현상이 발생되거나, 동결융해의 영향으로 팝-아웃(pop-out)현상이 발생할 수 있고, 열화된 콘크리트의 진행 균열에 대한 저항성이 낮아 보수 모르타르 및 수지 도포 표면에 균열이 발생되어 재 보수공사를 진행해야만 하는 단점이 있었다.However, concrete that has been repaired and reinforced by the construction method of Patent Document 1 and Patent Document 2 has a low adhesion performance to a deteriorated concrete structure, so that scouring and aggregate separation occur, or pop-out ( Pop-out) may occur, and the resistance to cracking progress of deteriorated concrete was low, so cracks occurred on the surface of the repair mortar and resin coating, which had the disadvantage of having to proceed with the repair work.
본 발명은 상기한 바와 같은 제반 문제점을 해결하기 위해 안출된 것으로, 그 목적은 입체섬유를 콘크리트 구조물에 바로 부착하는 시공방법을 통해 보수보강이 이루어지도록 함으로써, 종래의 보수보강 공법에 사용되었던 보강패널 및 보강재 없이 콘크리트 구조물의 보수보강이 편리하게 이루어지도록 하는 콘크리트 구조물의 보수보강 공법을 제공하는데 있다.The present invention has been devised to solve the various problems as described above, and the purpose of the present invention is to enable repair and reinforcement through a construction method of directly attaching three-dimensional fibers to a concrete structure, thereby reinforcing panels used in conventional repair and reinforcement construction methods. and to provide a method of repairing and reinforcing a concrete structure so that repair and reinforcement of the concrete structure can be conveniently performed without a reinforcing material.
또한, 본 발명의 다른 목적은 입체섬유에 충진재를 함침하여 입체섬유의 인장강도, 압축강도, 휨강도를 향상시켜, 콘크리트 구조물의 내구성을 높임으로써 외부 충격에 의한 구조물의 파손 등이 방지되도록 하는 입체섬유를 이용한 콘크리트 구조물의 보수보강 공법을 제공하는데 있다.In addition, another object of the present invention is to improve the tensile strength, compressive strength, and flexural strength of the three-dimensional fiber by impregnating the three-dimensional fiber with a filler, thereby increasing the durability of the concrete structure to prevent damage to the structure due to external impact, etc. To provide a method of repairing and reinforcing concrete structures using
또한, 본 발명의 또 다른 목적은 입체섬유에 충진재를 함침하여 입체섬유와 콘크리트 간의 부착강도를 향상시켜 세굴현상, 골재분리 현상 및 팝 아웃 현상이 방지되도록 하고, 장시간동안 부착력이 유지될 수 있도록 하는 입체섬유를 이용한 콘크리트 구조물의 보수보강 공법을 제공하는데 있다.In addition, another object of the present invention is to improve the adhesion strength between the three-dimensional fibers and concrete by impregnating the three-dimensional fibers with a filler to prevent scouring, aggregate separation and pop-out, and to maintain the adhesion for a long time. An object of the present invention is to provide a method for repairing and reinforcing concrete structures using three-dimensional fibers.
상기한 목적을 해결하기 위해 본 발명의 입체섬유를 이용한 콘크리트 구조물의 보수보강 공법은, 보강하고자 하는 콘크리트 구조물을 세척하는 표면처리단계(S10); 상기 표면처리단계(S10) 후 콘크리트 구조물에 강화제를 도포하는 강화제 도포단계(S20); 상기 강화제 도포단계(S20) 후 콘크리트 구조물에 충진재를 도포하는 1차 충진재 도포단계(S30); 상기 1차 충진재 도포단계(S30) 후 콘크리트 구조물에 입체섬유(100)를 부착하는 입체섬유 부착단계(S40); 상기 입체섬유 부착단계(S40) 후 입체섬유에 코팅재를 도포하는 코팅재 도포단계(S60); 및 상기 코팅재 도포단계(S60) 후 양생 및 경화가 되도록 하는 양생단계(S70)를 포함하는 콘크리트 구조물의 보수보강 공법에 있어서, 상기 입체섬유 부착단계에서 부착되는 입체섬유(100)는 표면층(110)과 이면층(130) 및 중간층(120)을 포함하는 3차원 형상으로 구성되고, 상기 표면층(110)과 상기 이면층(130)은 격자형상으로 형성되되, 상기 표면층(110)의 격자 간격은 1~5mm로 형성되고, 상기 이면층(130)의 격자 간격은 0.1~3mm로 형성되며, 상기 중간층(120)은 상기 표면층(110)과 상기 이면층(130) 사이에 1~10mm의 높이로 형성되되 상기 표면층(110)과 상기 이면층(130)을 순차적으로 연속하여 연결된 지그재그 형상의 섬유에 의해 형성되고, 상기 입체섬유(100)의 내부에는 충진재에 결합수를 혼합하여 제조된 슬러리 상태의 충진슬러리를 스프레이건으로 함침시킨 것을 특징으로 하였다.In order to solve the above object, the method of repairing and reinforcing a concrete structure using three-dimensional fibers of the present invention includes a surface treatment step (S10) of washing the concrete structure to be reinforced; Reinforcing agent application step (S20) of applying a reinforcing agent to the concrete structure after the surface treatment step (S10); The first filler application step (S30) of applying the filler to the concrete structure after the reinforcing agent application step (S20); A three-dimensional fiber attachment step (S40) of attaching the three-dimensional fiber 100 to the concrete structure after the first filler application step (S30); A coating material application step of applying a coating material to the three-dimensional fiber after the three-dimensional fiber attachment step (S40) (S60); and a curing step (S70) for curing and hardening after the coating material application step (S60), wherein the three-dimensional fiber 100 attached in the three-dimensional fiber attachment step is a surface layer 110 and a back layer 130 and an intermediate layer 120 in a three-dimensional shape, wherein the surface layer 110 and the back layer 130 are formed in a lattice shape, and the lattice spacing of the surface layer 110 is 1 5 mm, the lattice spacing of the back layer 130 is 0.1 to 3 mm, and the intermediate layer 120 is formed between the surface layer 110 and the back layer 130 to a height of 1 to 10 mm. The surface layer 110 and the back layer 130 are sequentially and continuously connected to each other and are formed by zigzag fibers, and the inside of the three-dimensional fiber 100 is filled in a slurry state prepared by mixing a binder with a filler. It was characterized in that the slurry was impregnated with a spray gun.
또한, 상기 상기 입체섬유 부착단계(S40)와 상기 코팅재 도포단계(S60) 사이에 입체섬유에 충진재를 도포하는 2차 충진재 도포단계(S50)를 더 포함하는 것을 특징으로 하였다.In addition, between the three-dimensional fiber attachment step (S40) and the coating material application step (S60), it characterized in that it further comprises a secondary filler application step (S50) of applying a filler to the three-dimensional fiber.
또한, 상기 1차 충진재 도포단계(S30) 및 상기 2차 충진재 도포단계(S50)에서 사용되는 충진재는, 충진재 100 중량부에 대하여 결합수 28~32중량부를 혼합하여 제조되는 것을 특징으로 하였다.In addition, the filler used in the first filler application step (S30) and the secondary filler application step (S50) was prepared by mixing 28 to 32 parts by weight of binding water with respect to 100 parts by weight of the filler.
또한, 상기 입체섬유 부착단계(S40)에서는, 부착되는 입체섬유에 충진재를 함침시키는 충진재 함침단계가 더 포함하되, 상기 충진재 함침단계에서 충진재가 합침된 입체섬유를 1차 충진재가 도포된 콘크리트 구조물에 부착하는 것을 특징으로 하였다.In addition, in the three-dimensional fiber attaching step (S40), a filler impregnating step of impregnating the three-dimensional fiber to be attached with a filler is further included, wherein the three-dimensional fiber impregnated with the filler in the filler impregnating step is applied to the concrete structure to which the primary filler is applied. It was characterized by being attached.
또한, 상기 입체섬유 부착단계(S40)에서는 입체섬유에 헬리컬바를 삽입하는 헬리컬바 삽입단계를 더 포함하는 것을 특징으로 하였다.In addition, the three-dimensional fiber attachment step (S40) characterized in that it further comprises a helical bar insertion step of inserting the helical bar into the three-dimensional fiber.
또한, 상기 충진재는, 보통 포틀랜드 시멘트 60~75중량%와, 고로슬래그 미분말 15~25중량%와, 칼슘설파 알루미네이트 3~7중량%와, 실리카 흄 3~7중량%와, 증점제 0.2~1.0중량%와, 소포제 0.1~0.2중량%와, 벤토나이트 1.0~5.0중량%와 아크릴 수지, EVA수지, SBR 수지 중 어느 하나 1.0~5.0중량%와, 멜라민계, 나프탈렌계, 폴리카르복실레이트계의 고성능 유동화제 중 어느 하나 0.5~3.0중량%를 포함하는 것을 특징으로 하였다.In addition, the filler is usually 60 to 75% by weight of Portland cement, 15 to 25% by weight of fine blast furnace slag powder, 3 to 7% by weight of calcium sulfaluminate, 3 to 7% by weight of silica fume, 0.2 to 1.0 of a thickener Weight %, antifoaming agent 0.1 to 0.2 weight %, bentonite 1.0 to 5.0 weight % and any one of acrylic resin, EVA resin, and SBR resin 1.0 to 5.0 weight %, melamine-based, naphthalene-based, polycarboxylate-based high performance Any one of the fluidizing agent was characterized in that it contains 0.5 to 3.0% by weight.
본 발명의 입체섬유를 이용한 콘크리트 구조물의 보수보강 공법에 의하면, 별도의 보강재 시공 없이 충진재에 함침된 입체섬유를 콘크리트 구조물에 직접 부착하는 시공을 통해 콘크리트의 보수보강이 이루어지도록 함으로써, 보수보강 작업이 간편하게 이루어지는 효과가 있다.According to the method of repairing and reinforcing concrete structures using three-dimensional fibers of the present invention, the repair and reinforcement of concrete is performed by directly attaching the three-dimensional fibers impregnated in the filler to the concrete structure without construction of a separate reinforcing material. It has a simple effect.
또한, 입체섬유에 충진재의 기능이 부가되도록 하여 부착강도를 향상시켜, 세굴현상, 골재분리 현상 및 팝-아웃(Pop-Out) 현상이 방지되도록 하고, 탄성에 의한 외부충격으로 인해 발생되는 콘크리트 구조물의 파손을 줄일 뿐만 아니라 제설제 등에 의한 철근부식에 대한 높은 내구성을 가지도록 하는 효과가 있다.In addition, by adding a filler function to the three-dimensional fiber, the adhesion strength is improved to prevent scouring, aggregate separation, and pop-out, and concrete structures generated by external impact due to elasticity. It has the effect of not only reducing the damage of steel, but also of having high durability against corrosion of reinforcing bars caused by snow removal agents, etc.
도 1은 본 발명의 입체섬유를 이용한 콘크리트 구조물의 보수보강 공법의 시공단계를 나타낸 순서도1 is a flowchart showing the construction steps of the method of repair and reinforcement of a concrete structure using three-dimensional fibers of the present invention;
도 2는 본 발명의 표면처리단계의 시공모습을 나타낸 도면2 is a view showing a construction state of the surface treatment step of the present invention;
도 3은 본 발명의 강화제 도포단계의 시공모습을 나타낸 도면3 is a view showing the construction state of the reinforcement agent application step of the present invention;
도 4는 본 발명의 1차 충진재 도포단계의 시공모습을 나타낸 도면4 is a view showing a construction state of the first filler application step of the present invention;
도 5는 본 발명의 입체섬유 부착단계의 시공모습을 나타낸 도면5 is a view showing the construction state of the three-dimensional fiber attachment step of the present invention;
도 6 내지 7은 본 발명의 입체섬유를 나타낸 도면6 to 7 are views showing the three-dimensional fiber of the present invention;
도 8은 본 발명의 입체섬유의 표면층을 나타낸 도면8 is a view showing the surface layer of the three-dimensional fiber of the present invention;
도 9는 본 발명의 입체섬유의 이면층을 나타낸 도면9 is a view showing the back layer of the three-dimensional fiber of the present invention;
도 10은 본 발명의 충진재 함침단계의 시공 모습을 나타낸 도면10 is a view showing the construction state of the filler impregnation step of the present invention
도 11은 본 발명의 코팅재 도포단계의 시공모습을 나타낸 도면11 is a view showing a construction state of the coating material application step of the present invention;
도 12는 본 발명의 보수보강 공법이 시공된 콘크리트 구조물의 단면도12 is a cross-sectional view of a concrete structure to which the repair and reinforcement method of the present invention is constructed;
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in the present specification and claims should not be construed as being limited to their ordinary or dictionary meanings, and the inventor may properly define the concepts of the terms to best describe his invention. Based on the principle, it should be interpreted as meaning and concept consistent with the technical idea of the present invention.
따라서 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 가장 바람직한 실시 예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in this specification and the configurations shown in the drawings are only the most preferred embodiments of the present invention and do not represent all the technical spirit of the present invention, so various equivalents that can be substituted for them at the time of the present application It should be understood that there may be variations and examples.
이하, 도면을 참조하여 설명하기에 앞서, 본 발명의 요지를 드러내기 위해서 필요하지 않은 사항 즉 통상의 지식을 가진 당업자가 자명하게 부가할 수 있는 공지 구성에 대해서는 도시하지 않거나, 구체적으로 기술하지 않았음을 밝혀둔다.Hereinafter, prior to the description with reference to the drawings, it is not shown or specifically described for the known configurations that are not necessary to reveal the gist of the present invention, that is, those skilled in the art that can be added obviously by those skilled in the art. reveal the sound
도 1은 본 발명의 입체섬유를 이용한 콘크리트 구조물의 보수보강 공법의 시공단계를 나타낸 순서도이다.1 is a flowchart showing the construction steps of the method of repair and reinforcement of a concrete structure using three-dimensional fibers of the present invention.
도 1에 도시된 바와 같이, 본 발명의 입체섬유를 이용한 열화된 콘크리트 구조물의 보수보강공법(이하, 보수보강공법 이라 함.)은 보강하고자 하는 콘크리트 구조물을 세척하는 표면처리단계(S10), 상기 표면처리단계(S10) 후 콘크리트 구조물에 강화제를 도포하는 강화제 도포단계(S20), 상기 강화제 도포단계(S20) 후 콘크리트 구조물에 충진재를 도포하는 1차 충진재 도포단계(S30), 상기 1차 충진재 도포단계(S30) 후 콘크리트 구조물에 입체섬유를 부착하는 입체섬유 부착단계(S40), 상기 입체섬유 부착단계(S40) 후 입체섬유에 코팅재를 도포하는 코팅재 도포단계(S60) 및 상기 코팅재 도포단계(S60) 후 양생 및 경화가 되도록 하는 양생단계(S70)를 포함하여 이루어진다.As shown in Fig. 1, the repair and reinforcement method of the deteriorated concrete structure using the three-dimensional fiber of the present invention (hereinafter referred to as the repair and reinforcement method) is a surface treatment step (S10) of washing the concrete structure to be reinforced, the above After the surface treatment step (S10), the reinforcing agent application step of applying a reinforcing agent to the concrete structure (S20), the first filler application step of applying the filler to the concrete structure after the reinforcing agent application step (S20) (S30), the first filler application After the step (S30), the three-dimensional fiber attachment step (S40) of attaching the three-dimensional fiber to the concrete structure, the coating material application step of applying the coating material to the three-dimensional fiber after the three-dimensional fiber attachment step (S40) (S60) and the coating material application step (S60) ) after curing and curing, including a curing step (S70).
또한, 상기 입체섬유 부착단계(S40)와 상기 코팅재 도포단계(S60) 사이에 입체섬유에 충진재를 도포하는 2차 충진재 도포단계(S50)를 더 포함할 수도 있다.In addition, a secondary filler application step (S50) of applying a filler to the three-dimensional fiber may be further included between the three-dimensional fiber attachment step (S40) and the coating material application step (S60).
도 2는 본 발명의 표면처리단계(S10)의 시공모습을 나타낸 도면이다.2 is a view showing the construction of the surface treatment step (S10) of the present invention.
상기 표면처리단계(S10)는 보수보강을 실시하고자 하는 콘크리트 구조물의 작업면을 건전한 상태로 유지하기 위한 것으로, 열화된 표면을 제거하면서 표면의 평탄도를 형성함과 동시에 콘크리트 구조물의 표면에 부착된 이물질을 제거하기 위한 단계이다.The surface treatment step (S10) is to maintain the working surface of the concrete structure to be repaired and reinforced in a healthy state. This is a step to remove foreign substances.
이를 위해 상기 표면처리단계(S10)에서는 콘크리트 구조물 표면을 고압수 등을 이용하여 세척하고, 콘크리트의 열화된 부분의 표면을 거칠게 함으로써 부착력이 향상되도록 하는 것이 바람직하다.To this end, in the surface treatment step (S10), it is preferable to wash the surface of the concrete structure using high-pressure water or the like, and to roughen the surface of the deteriorated part of the concrete to improve the adhesion.
또한, 상기 표면처리단계에(S10)에서는 보수보강이 이루어지는 콘크리트 구조물의 작업부위에 따라 햄머드릴 또는 고압세척기를 이용하여 치핑 및 세척이 이루어지도록 하여 보수보강이 이루어지는 콘크리트 구조물을 정리하는 것이 바람직하다.In addition, in the surface treatment step (S10), it is preferable to organize the concrete structure to be repaired and reinforced by chipping and washing using a hammer drill or a high-pressure washer depending on the working part of the concrete structure to be repaired and reinforced.
도 3은 본 발명의 강화제 도포단계(S20)의 시공모습을 나타낸 도면이다.Figure 3 is a view showing the construction of the reinforcing agent application step (S20) of the present invention.
상기 강화제 도포단계(S20)는 상기 표면처리단계에(S10) 후, 콘크리트 구조물에 침투성 콘크리트 강화제를 도포하는 단계이다.The reinforcing agent application step (S20) is a step of applying a permeable concrete reinforcing agent to the concrete structure after the surface treatment step (S10).
이와 같이, 콘크리트 구조물에 침투성 콘크리트 강화제를 도포함으로써, 콘크리트 내부로 강화제가 침투되도록 하여, 강화제가 콘크리트 속에 있는 물질과 화학적으로 반응되도록 하여 방수기능이 생성되도록 하고, 내구성과 내마모성이 향상되도록 하는 것이다.In this way, by applying the permeable concrete reinforcing agent to the concrete structure, the reinforcing agent penetrates into the concrete, and the reinforcing agent chemically reacts with the material in the concrete to generate a waterproof function, and to improve durability and abrasion resistance.
도 4는 본 발명의 1차 충진재 도포단계(S30)의 시공모습을 나타낸 도면이다.4 is a view showing a construction state of the first filler application step (S30) of the present invention.
상기 1차 충진재 도포단계(S30)는 상기 강화제 도포단계(S20) 후, 콘크리트 구조물에 충진재를 도포하는 단계이다.The first filler application step (S30) is a step of applying the filler to the concrete structure after the reinforcement agent application step (S20).
상기 1차 충진재 도포단계(S30)는 콘크리트 구조물에 입체섬유를 부착하기 전에 콘크리트 구조물에 충진재를 도포하여, 후술되는 입체섬유 부착단계가 더욱 용이하게 이루어지도록 하는 것이다.The first filler application step (S30) is to apply the filler to the concrete structure before attaching the three-dimensional fibers to the concrete structure, so that the three-dimensional fiber attachment step, which will be described later, is made more easily.
상기 충진재 도포단계(S30)에서 사용되는 충진재는 충진재 100 중량부에 대하여, 결합수 28~32중량부가 혼합된 충진재를 사용하는 것이 바람직하다.As the filler used in the filler application step (S30), it is preferable to use a filler in which 28 to 32 parts by weight of bonding water are mixed with respect to 100 parts by weight of the filler.
이는 결합수의 함량이 28중량부 미만인 경우, 원하는 접착성을 얻기 어려우며, 32중량부 초과인 경우, 입체섬유 부착 시 흘러내림 등의 문제점이 발생됨에 따라 작업성이 저하되기 때문이다.. This is because, when the content of the binding water is less than 28 parts by weight, it is difficult to obtain the desired adhesiveness, and when it is more than 32 parts by weight, problems such as dripping when attaching the three-dimensional fibers occur, and workability is deteriorated.
또한, 상기 충진재 도포단계(S30)에서 사용되는 충진재는, 보통 포틀랜드 시멘트 60~75중량%와, 고로슬래그 미분말 15~25중량%와, 칼슘설파 알루미네이트 3~7중량%와, 실리카 흄 3~7중량%와, 증점제 0.2~1.0중량%와, 소포제 0.1~0.2중량%와, 벤토나이트 1.0~5.0중량%와 아크릴 수지, EVA수지, SBR 수지 중 어느 하나 1.0~5.0중량%와, 멜라민계, 나프탈렌계, 폴리카르복실레이트계의 고성능 유동화제 중 어느 하나 0.5~3.0중량%를 포함한다.In addition, the filler used in the filler application step (S30) is usually 60 to 75% by weight of Portland cement, 15 to 25% by weight of fine blast furnace slag powder, 3 to 7% by weight of calcium sulfa aluminate, and 3 to silica fume 7% by weight, 0.2 to 1.0% by weight of a thickener, 0.1 to 0.2% by weight of an antifoaming agent, 1.0 to 5.0% by weight of bentonite and 1.0 to 5.0% by weight of any one of acrylic resin, EVA resin, and SBR resin, melamine-based, naphthalene It contains 0.5 to 3.0 wt% of any one of the high-performance fluidizing agent of the polycarboxylate-based system.
상기 보통 포틀랜드 시멘트는 가장 널리 사용되고 있는 시멘트로, 주성분으로서 실리카(SiO 2), 알루미늄(Al 2O 3), 산화철(Fe 2O 3) 및 석회를 함유한 점토질 재료를 원료로 하여 적당한 비율로 혼합하여 그 일부가 용융할 때까지(약 1,450℃) 회전가마에서 소성하여 얻어진 클링커에 3~5%의 석고를 가하여 분말도가 3,200~3,400㎠/g 정도로 분쇄하여 만든 것이다.The ordinary Portland cement is the most widely used cement, and it uses a clay material containing silica (SiO 2 ), aluminum (Al 2 O 3 ), iron oxide (Fe 2 O 3 ), and lime as the main component and mixes it in an appropriate ratio. It is made by adding 3~5% gypsum to the clinker obtained by calcining in a rotary kiln until a part of it is melted (about 1,450℃), and pulverizing it to a fineness of 3,200~3,400cm2/g.
본 발명의 충진재에는 이와 같은 보통 포틀랜드 시멘트 60~75중량%를 혼합하여 사용하는 것이 바람직한데, 이는 포틀랜드 시멘트가 60중량% 미만일 경우는 초기 강도 발현 지연으로 인한 응결 및 압축강도 저하의 문제점이 있고, 75중량%를 초과할 경우 건조 수축에 의한 표면 균열이 발생되고, 시멘트 중의 가용성분(Ca(OH) 2, 알칼리 등)이 모세관 공간에 있는 수분에 녹아있다가 수분 증발에 의해 표면에 석출하는 Na 2SO 4, K 2SO 4와 같은 황산염에 의한 백화(Efflorescence) 현상이 발생되는 문제점이 있기 때문이다.In the filler of the present invention, it is preferable to use a mixture of 60 to 75% by weight of such ordinary Portland cement, which is a problem of setting and compressive strength reduction due to delay in initial strength development when the Portland cement is less than 60% by weight, When it exceeds 75% by weight, surface cracks occur due to drying shrinkage, and Na precipitates on the surface by evaporation of moisture after soluble components (Ca(OH) 2 , alkali, etc.) in cement are dissolved in moisture in the capillary space. 2 SO 4 , K 2 SO 4 This is because there is a problem that the efflorescence phenomenon occurs due to sulfate.
상기 고로슬래그 미분말은 제철소 고로에서 선철을 제조하는 과정에서 발생하는 생성물을 말하는 것으로 주원료(철광석)와 부원료(코크스, 석회석)의 회분에 존재하는 SiO 2와 Al 2O 3 등이 고온에서 석회와 반응하여 고온에서 생성된 용융슬래그를 가압수를 분사하여 급냉하면 유리상(1~5mm 크기의 입상물질)의 다공질의 모래 모양으로 되어 잠재 수경성(Latent Hydraulic Property)을 가진다.The fine powder of blast furnace slag refers to a product generated in the process of manufacturing pig iron in a blast furnace at a steel mill. SiO 2 and Al 2 O 3 present in the ash of the main raw material (iron ore) and auxiliary raw materials (coke, limestone) react with lime at high temperature When the molten slag generated at high temperature is rapidly cooled by spraying pressurized water, it becomes a glassy (1-5 mm granular material) porous sand shape and has latent hydraulic properties.
이와 같은 고로슬래그는 단독으로 경화하지 않지만 포틀랜드 시멘트의 수화에 의한 Ca(OH) 2 또는 석고에 의해 자극되어 경화현상을 일으키는 잠재수경성 물질이며, 수쇄슬래그를 함유하고 있으므로 산류나 해수, 하수 등의 화학적 침식에 대한 저항성이 크고 내화학약품 저항성을 필요로 하는 곳에서의 효과가 큰 것으로 알려져 있다.Although such blast furnace slag does not harden alone, it is a latent hydraulic material that is stimulated by Ca(OH) 2 or gypsum due to hydration of Portland cement to cause hardening. It is known to be effective in places where resistance to erosion is high and chemical resistance is required.
본 발명의 충진재에는 이와 같은 고로슬래그 미분말 15~25중량%를 혼합하여 사용하는 것이 바람직한데, 이는 고로슬래그 미분말이 15중량% 미만일 경우에는 내화학적 침식작용에 대하 저항성이 작으며, 25중량%를 초과할 경우 잠재수경성에 대한 장기강도 상승에는 효과가 크지만, 조기 강도 발현이 완만하거나 건조 수축에 의한 균열을 발생시킬 수 있는 문제점이 있기 때문이다.In the filler of the present invention, such fine powder of blast furnace slag It is preferable to use a mixture of 15 to 25% by weight, which is that when the fine powder of blast furnace slag is less than 15% by weight, resistance to chemical erosion is small, and when it exceeds 25% by weight, long-term strength for latent hydraulic strength increases This is because there are problems in that early strength development is slow or cracks may occur due to drying shrinkage.
상기 칼슘설파 알루미네이트(calcium sulfur aluminate)는 시멘트 및 물과 혼합하면 수화반응에 의해 주로 에트린자이트(ettringite) 또는 수산화칼슘[Ca(OH) 2] 등을 생성하여 시멘트 몰탈을 팽창시키고 수화를 촉진하여 초기강도를 향상시킨다. 또한 미세한 침상결정의 에트린자이트를 생성 함으로써 미세공극을 충진하고 팽창시켜 시멘트 몰탈의 수축을 방지하며 나아가 시멘트 몰탈의 균열을 방지할 수 있으며 인장특성을 개선하는 특성이 있다.When the calcium sulfur aluminate is mixed with cement and water, it mainly produces ettringite or calcium hydroxide [Ca(OH) 2 ] by hydration reaction to expand the cement mortar and promote hydration. to improve the initial strength. In addition, by creating fine needle-like ethrinzite, it fills and expands micropores to prevent shrinkage of cement mortar, and furthermore, it can prevent cracking of cement mortar and improve tensile properties.
본 발명의 충진재에는 이와 같은 칼슘설파 알루미네이트 3~7중량%를 혼합하여 사용하는 것이 바람직한데, 이는 칼슘설파 알루미네이트가 3중량% 미만일 경우 초기 강도 발현 저하에 따른 균열, 거푸집 탈형에 대한 문제점이 있고, 7중량%를 초과할 경우 급격한 수화에 의한 속경성, 작업성 저하 및 팽창성에 따른 체적변화 등의 문제점이 발생하기 때문이다.In the filler of the present invention, such calcium sulfa aluminate It is preferable to use a mixture of 3 to 7% by weight, but when calcium sulfa aluminate is less than 3% by weight, there are problems with cracking and mold demolding due to a decrease in initial strength expression, and when it exceeds 7% by weight, rapid hydration This is because problems such as rapid hardening, deterioration of workability, and volume change due to expandability occur.
상기 실리카 흄은 실리콘(Si), 페로실리콘(FeSi), 실리콘 합금 등을 제조할 때에 발생되는 폐가스 중에 포함되어 있는 SiO2를 집진기로 수집 여과하여 얻어지는 마이크로 실리카 입자로서 고강도 시멘트 및 콘크리트 제품, 내화물, 그리고 기타 석면 등의 대체 등 다양한 분야에 응용되는 제품이다.The silica fume is micro silica particles obtained by collecting and filtering SiO2 contained in waste gas generated when manufacturing silicon (Si), ferrosilicon (FeSi), silicon alloy, etc. with a dust collector, high-strength cement and concrete products, refractories, and It is a product applied in various fields such as replacement of other asbestos.
상기 실리카 흄은 근래의 수중콘크리트나 내구성이 요구되는 콘크리트, 특히 고강도 콘크리트 제조에 필수적인 재료로 알려져 있으며, 이 혼화제는 시멘트 입자 사이의 공극 및 불연속영역을 충전하여 고밀도화하는 미세 충전효과와 시멘트 수화시 발생되는 수산화칼슘과의 포졸란 반응으로 콘크리트 강도를 향상시키는 것으로 알려져 있고, 시멘트 몰탈의 미세공극을 메워주기 위한 잠재수경성의 성질을 가지고 있다. The silica fume is known as an essential material for the recent production of underwater concrete or concrete requiring durability, especially high-strength concrete. It is known to improve concrete strength through pozzolan reaction with calcium hydroxide, and has latent hydraulic properties to fill micropores of cement mortar.
본 발명의 충진재에는 이와 같은 실리카 흄 3~7중량%를 혼합하여 사용하는 것이 바람직한데, 이는 실리카 흄이 3중량% 미만일 경우 시멘트 양생 경화과정에서의 겔공극 내부를 치밀화 시키지 못하여 외부로부터의 내화학적 물질 및 동결융해에 대한 저항성이 낮아 내구성 저하의 문제점이 있고, 7중량%를 초과할 경우 시멘트 몰탈의 점성 증대에 따른 작업성 저하 등의 문제점이 발생하기 때문이다.In the filler of the present invention, such silica fume It is preferable to use a mixture of 3 to 7% by weight. This is because when the silica fume is less than 3% by weight, it is not possible to densify the inside of the gel pores in the cement curing and curing process, and the resistance to external chemical substances and freeze-thaw is low. This is because there is a problem of lowering durability, and when it exceeds 7% by weight, problems such as deterioration of workability due to increase in viscosity of cement mortar occur.
한편, 증점제는 시멘트 몰탈에 점성을 주어 각 재료들의 분리 저항성을 높이며, 과다 사용 시 시멘트 몰탈의 응결지연으로 인한 초기강도 발현 저하 및 높은 점성으로 인한 생산성을 감소시킬 수 있다.On the other hand, the thickener gives viscosity to the cement mortar to increase the separation resistance of each material, and when used excessively, it can decrease the initial strength expression due to delay of setting of the cement mortar and reduce productivity due to high viscosity.
상기 증점제로 사용되는 종류로는 메틸 셀룰로스, 에틸 셀룰로스, 하이드록시 에틸 셀룰로스, 하이드로 프로필렌 셀룰로스, 하이드로 에틸메틸렌 셀룰로스, 하이드로 프로필 메틸 셀룰로스, 하이드로 벤토나이트 메틸 셀룰로스 등의 셀룰로스계와 폴리아크릴 아미드, 아크릴산 소다, 폴리에틸렌 옥사이드, 폴리아크릴 아미드와 아크릴산 소다의 공중합체의 아크릴계가 있으며, 이 중 어느 하나를 사용하거나 셀룰로스계와 아크릴계를 혼합하여 사용할 수 있다.Examples of the type used as the thickener include cellulosic such as methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydropropylene cellulose, hydroethyl methylene cellulose, hydropropyl methyl cellulose, hydrobentonite methyl cellulose, polyacrylamide, soda acrylate, polyethylene There are acrylic oxide, a copolymer of polyacrylamide and sodium acrylic acid, and any one of them may be used or a mixture of cellulose and acrylic acid may be used.
또한, 증점제의 고분자 특성으로 발생되는 시멘트 몰탈 내부의 기공을 억제하기 위하여 고급 알콜류, 인산에스테르계, 실리콘계, 디부틸 부탄디올, 트리부틸 포스페이트 글리콜계 및 비수용성 알콜류 중 어느 하나를 소포제를 사용할 수도 있다. In addition, in order to suppress the pores inside the cement mortar caused by the polymer properties of the thickener, any one of higher alcohols, phosphate esters, silicones, dibutyl butanediol, tributyl phosphate glycol, and non-aqueous alcohols may be used as an antifoaming agent.
본 발명의 충진재에는 이와 같은 증점제 0.2~1.0중량% 혼합하여 사용하는 것이 바람직한데, 이는 증점제가 0.2중량% 미만일 경우 각 재료들의 분리 저항성에 대한 효과를 감소시키는 문제점이 있고, 1.0중량%를 초과할 경우 과도한 점성 증대에 따른 작업성 저하되고, 셀룰로스 계열 물질의 특징인 수화 지연으로 인한 초기 강도 발현을 지연시키는 문제점이 발생하기 때문이다.In the filler of the present invention, it is preferable to use a mixture of 0.2 to 1.0% by weight of such a thickener, which has a problem of reducing the effect on separation resistance of each material when the thickener is less than 0.2% by weight, and exceeding 1.0% by weight In this case, workability is reduced due to excessive viscosity increase, and there is a problem of delaying initial strength development due to delayed hydration, which is a characteristic of cellulose-based materials.
상기 소포제는 분말형 실리콘계이며, 본 발명의 충진재에는 소포제 0.1~0.2중량%를 혼합하여 사용하는 것이 바람직한데, 이는 소포제가 0.1중량% 미만일 경우 유동화제 고분자 구조와 증점제의 보수성에 의한 시멘트 몰탈 내부의 공기량을 효과적으로 제거하지 못해 22~25%의 보통의 시멘트 몰탈의 내부 공기량 보다 훨씬 높은 35~40%의 내부 공기량을 함유하고 있어 압축강도 저하의 문제점이 있고, 0.2중량%를 초과할 경우 시멘트 몰탈 내부의 공기량을 과도하게 제거함으로 작업성 저하 및 겨울철 동결융해에 대한 저항성 저하 등의 문제점이 발생하기 때문이다.The antifoaming agent is a powdery silicone type, and it is preferable to use 0.1 to 0.2 wt% of the antifoaming agent mixed in the filler of the present invention, which is less than 0.1 wt% of the antifoaming agent. Since the amount of air cannot be effectively removed, it contains an internal air content of 35-40%, which is much higher than that of a normal cement mortar of 22-25%, so there is a problem of lowering the compressive strength. This is because problems such as reduced workability and reduced resistance to freezing and thawing in winter occur due to excessive removal of air volume.
상기 벤토나이트 분발은 시멘트 몰탈의 표면 균열, 차수성 향상 및 블리딩수를 방지하기 위해 사용되며, 본 발명의 충진재에는 이와 같은 벤토나이트 분말 1.0~5.0중량%를 혼합하여 사용하는 것이 바람직하다.The bentonite powder is used to prevent cracking of the surface of the cement mortar, improving water resistance, and preventing bleeding water, and it is preferable to mix and use 1.0 to 5.0 wt% of the bentonite powder in the filler of the present invention.
이는 벤토나이트 분말이 1.0중량% 미만일 경우 차수성 향상 및 블리딩수에 제거에 대한 효과가 없으며, 5.0중량%를 초과할 경우 수분과 결합하여 과도한 팽창에 의한 작업성 문제 및 경화 후 압축강도 저하에 대한 문제점이 발생하기 때문이다.If the amount of bentonite powder is less than 1.0% by weight, it has no effect on improving water resistance and removing bleeding water. because this happens.
또한, 본원발명에서는 충진재의 양생 중 소성수축에 의한 균열 방지 및 열화된 콘크리트로의 부착강도, 수밀성 및 염해에 대한 저항성을 향상시키기 위하여, 아크릴 수지, EVA수지 및 SBR 수지 중 어느 하나를 1.0~5.0중량% 혼합하여 사용하는 것이 바람직하다.In addition, in the present invention, in order to prevent cracking due to plastic shrinkage during curing of the filler and to improve adhesion strength to deteriorated concrete, water tightness and resistance to salt damage, any one of acrylic resin, EVA resin and SBR resin is added to 1.0 to 5.0. It is preferable to use the mixture by weight %.
이는 위의 아크릴 수지, EVA수지 및 SBR 수지 중 어느 하나가 1.0중량% 미만일 때 열화된 콘크리트 구조물와의 부착력 감소, 염해 및 탄산화에 대한 저항성 감소, 투수량 증대 등의 원인이 되고 5.0중량% 이상일 때 점성 증대에 따른 입체섬유로의 충진성 감소, 유동성 감소에 따른 작업성 감소, 압축강도, 휨강도 등 충진재의 물리적 특성을 감소시키는 원인이 되기 때문이다.This causes a decrease in adhesion with a deteriorated concrete structure, a decrease in resistance to salt damage and carbonation, an increase in water permeability, etc. when any one of the above acrylic resin, EVA resin and SBR resin is less than 1.0% by weight, and increases in viscosity when it is 5.0% by weight or more This is because it causes a decrease in the filling properties of the three-dimensional fiber according to the flow rate, a decrease in workability due to a decrease in fluidity, and a decrease in the physical properties of the filler such as compressive strength and flexural strength.
또한, 본원발명에서는 충진재의 유동성을 향상시키기 위하여 분말형 멜라민계 유동화제, 나프탈렌계 유동화제 및 폴리카르복실레이트계 유동화제를 충진재 100중량부에 대하여 0.5~3.0중량부를 혼합하여 사용하는 것이 바람직하다.In addition, in the present invention, in order to improve the fluidity of the filler, 0.5 to 3.0 parts by weight of the powdered melamine-based fluidizing agent, the naphthalene-based fluidizing agent and the polycarboxylate-based fluidizing agent are mixed with respect to 100 parts by weight of the filler. .
이는 분말형 멜라민계 유동화제, 나프탈렌계 유동화제 및 폴리카르복실레이트계 유동화제가 0.5중량부 미만일 경우 실리카 흄, 증점제, 벤토나이트 등의 점도를 향상시키위해 첨가한 시멘트 몰탈의 작업성 향상에 대한 문제점이 발생되고, 3.0중량부를 초과할 경우 재료들의 분리 저항성 감소되고, 블리딩 수 발생 억제 등의 문제점이 발생되기 때문이다.This is because when the powdery melamine-based fluidizing agent, naphthalene-based fluidizing agent, and polycarboxylate-based fluidizing agent is less than 0.5 parts by weight, there is a problem in improving the workability of cement mortar added to improve the viscosity of silica fume, thickener, bentonite, etc. This is because, when it exceeds 3.0 parts by weight, the separation resistance of the materials is reduced, and problems such as suppressing the occurrence of bleeding water occur.
도 5는 본 발명의 입체섬유 부착단계(S50)의 시공모습을 나타낸 도면이다.5 is a view showing a construction state of the three-dimensional fiber attachment step (S50) of the present invention.
상기 입체섬유 부착단계(S50)는 상기 1차 충진재 도포단계(S40) 후, 충진재가 도포된 콘크리트 구조물에 입체섬유를 부착하는 단계이다.The three-dimensional fiber attachment step (S50) is a step of attaching the three-dimensional fibers to the concrete structure to which the filler is applied after the first filler application step (S40).
상기 입체섬유 부착단계(S50)에서 사용되는 입체섬유(100)는 도 6 및 도 7에 도시된 바와 같이, 표면층(110)과 이면층(130) 및 중간층(120)을 포함하는 3차원 형상으로 구성되어, 종래의 평면으로 형성된 섬유를 사용할 때 보다 높은 인장강도 및 증대된 내구성을 가지도록 한다.As shown in FIGS. 6 and 7 , the three-dimensional fiber 100 used in the three-dimensional fiber attachment step (S50) has a three-dimensional shape including a surface layer 110, a back surface layer 130, and an intermediate layer 120. It is constructed so that it has higher tensile strength and increased durability than when using the conventional planar fibers.
상기 입체섬유(100)의 표면층(110)은 콘크리트 구조물에 부착되는 부착면을 구성하고, 상기 이면층(120)은 콘크리트 구조물을 보호하는 마감면을 구성한다.The surface layer 110 of the three-dimensional fiber 100 constitutes an attachment surface to be attached to the concrete structure, and the back layer 120 constitutes a finished surface for protecting the concrete structure.
도 8은 표면층의 모습을 나타낸 도면이고, 도 9는 이면층의 모습을 나타낸 도면이다.8 is a view showing the state of the surface layer, and FIG. 9 is a view showing the state of the back layer.
도 8 및 도 9와 같이 상기 표면층(110)과 상기 이면층(130)은 격자형상으로 형성되는데 이때, 상기 표면층(110)의 격자 간격은 1~5mm의 간격으로 형성되고, 상기 이면층(130)의 격자 간격은 0.1~3mm의 간격으로 형성되는 것이 바람직하다.8 and 9, the surface layer 110 and the back surface layer 130 are formed in a grid shape. At this time, the grid spacing of the surface layer 110 is formed at an interval of 1 to 5 mm, and the back layer 130 ) is preferably formed at an interval of 0.1 to 3 mm.
이는, 상기 표면층(110)의 격자간격이 1mm 미만이면 충진재가 표면층 내부로의 함침이 용이하지 못하게 되고, 표면층의 격자간격이 5mm를 초과되면 격자간격이 넓어짐에 따라 입체섬유의 강도가 낮아지게 되기 때문에 상기 표면층(110)의 격자 간격은 1~5mm의 간격으로 형성하는 것이 바람직하다.This means that if the lattice spacing of the surface layer 110 is less than 1 mm, impregnation of the filler into the inside of the surface layer is not easy. Therefore, the lattice spacing of the surface layer 110 is preferably formed at an interval of 1 to 5 mm.
또한, 상기 이면층(130)의 격자간격이 0.1mm 미만이면 후술되는 2차 충진재 도포단계(S50)에서 도포되는 충진재 및 코팅재 도포단계(S60)에서 도포되는 코팅재가 이면층에 용이하게 도포되지 못하게 되고, 이면층의 격자간격이 3mm를 초과하면 마찬가지로 격자간격이 넓어짐에 따라 입체섬유의 강도가 낮아지게 되기 때문에 상기 이면층(130)의 격자 간격은 0.1~3mm의 간격으로 형성되는 것이 바람직하다.In addition, if the lattice spacing of the back layer 130 is less than 0.1 mm, the coating material applied in the filler and coating material application step (S60) applied in the secondary filler application step (S50) to be described later is not easily applied to the back layer. If the lattice spacing of the back layer exceeds 3 mm, the strength of the three-dimensional fiber decreases as the lattice spacing is widened.
따라서, 상기 표면층(110)과 상기 이면층(130)의 격자간격을 상기와 같이 형성하여, 충진재 및 코팅재의 도포가 용이하게 이루어지도록 하고, 입체섬유의 강도가 유지되도록 하는 것이다.Accordingly, by forming the lattice spacing between the surface layer 110 and the back surface layer 130 as described above, the application of the filler and coating material is facilitated, and the strength of the three-dimensional fiber is maintained.
상기 중간층(120)은 상기 표면층(110)과 상기 이면층(130) 사이에 1~10mm의 높이로 형성되어 상기 표면층과 이면층의 스페이서 역할을 하며, 상기 중간층(120)의 높이에 따라 상기 입체섬유(100)의 두께가 결정되게 된다.The intermediate layer 120 is formed with a height of 1 to 10 mm between the surface layer 110 and the back surface layer 130 to serve as a spacer between the surface layer and the back surface layer, and according to the height of the intermediate layer 120 , the three-dimensional The thickness of the fiber 100 is determined.
또한, 상기 중간층(120)은 도 6 및 도 7과 같이, 표면층(110)과 이면층(130)을 순차적으로 연결하여 형성된 지그재그 형상의 섬유에 의해 형성되며, 이러한 지그재그 형상의 섬유에 의해 형성되는 상기 표면층(110)과 이면층(130)의 간격인 중간층(120)은 항상 일정한 간격으로 이격된 상태를 유지할 수 있게 된다.In addition, the intermediate layer 120 is formed by zigzag-shaped fibers formed by sequentially connecting the surface layer 110 and the back surface layer 130 as shown in FIGS. 6 and 7, and is formed by such zigzag-shaped fibers. The intermediate layer 120 , which is the interval between the surface layer 110 and the back surface layer 130 , can always maintain a spaced state at a regular interval.
이러한 중간층(120)에 의해 표면층(110)과 이면층(130) 사이에 충진재가 용이하게 충진 및 함침될 수 있는 공간이 형성되게 되고, 이로 인해 입체섬유의 강도가 높아지게 되는 효과를 가지게 된다.A space in which the filler can be easily filled and impregnated is formed between the surface layer 110 and the back surface layer 130 by the intermediate layer 120, thereby increasing the strength of the three-dimensional fiber.
이와 같은 상기 입체섬유(100)는 강도가 높은 나일론, 폴리에스터, 아크릴 섬유, PVA 섬유, 폴리프로필렌 섬유, 폴리우레탄 섬유, 탄소섬유, 유리섬유 및 아라미드 섬유 중 어느 하나로 제작되어 높은 압축강도, 인장강도 및 휨강도를 가지도록 하는 것이 바람직하다.The three-dimensional fiber 100 is made of any one of nylon, polyester, acrylic fiber, PVA fiber, polypropylene fiber, polyurethane fiber, carbon fiber, glass fiber, and aramid fiber having high strength, and thus has high compressive strength and tensile strength. And it is preferable to have flexural strength.
이와 같은 상기 입체섬유(100)를 충진재가 도포된 콘크리트 구조물에 부착함으로써, 콘크리트 구조물의 인장강도 및 내구성이 증대되도록 하고, 염해 및 탄산화 저항성을 향상시킬 수 있는 효과를 가지도록 하는 것이다.By attaching the three-dimensional fibers 100 to the concrete structure coated with the filler, the tensile strength and durability of the concrete structure are increased, and the effect of improving resistance to salt damage and carbonation is achieved.
그리고, 상기 입체섬유 부착단계에서는 도 10과 같이 입체섬유에 충진재를 함침시키는 충진재 함침단계를 더 포함할 수 있다.In addition, the step of attaching the three-dimensional fibers may further include a filler impregnation step of impregnating the three-dimensional fibers with the filler as shown in FIG. 10 .
앞서 설명한 바와 같이, 상기 입체섬유(100)는 상기 중간층(120)의 높이가 1~10mm의 두께로 형성된다.As described above, the three-dimensional fiber 100 is formed with a thickness of 1 to 10 mm in height of the intermediate layer 120 .
이때, 상기 입체섬유(100)의 두께가 1mm 미만으로 형성되면, 상기 1차 충진재 도포단계를 통해 콘크리트 구조물에 도포된 충진재만으로 상기 입체섬유(100)가 콘크리트 구조물에 용이하게 부착되고, 부착시 충진재가 상기 입체섬유(100) 내부로 함침이 용이하게 이루어져, 입체섬유 내부로 충진재가 함침되어 보수보강의 효과를 가질 수 있다.At this time, when the thickness of the three-dimensional fiber 100 is formed to be less than 1 mm, the three-dimensional fiber 100 is easily attached to the concrete structure only with the filler applied to the concrete structure through the first filler application step, and the filler material when attached is easily impregnated into the three-dimensional fiber 100, so that the filler is impregnated into the three-dimensional fiber, thereby having the effect of repair and reinforcement.
그러나, 상기 입체섬유(100)의 두께가 10mm를 초과하게 되면, 입체섬유의 두께가 두꺼워짐에 따라, 상기 1차 충진재 도포단계(S30)에서 콘크리트 구조물에 도포된 충진재만으로는 입체섬유가 콘크리트 구조물에 제대로 부착되지 않을 수 있다.However, when the thickness of the three-dimensional fiber 100 exceeds 10 mm, as the thickness of the three-dimensional fiber increases, the three-dimensional fiber is applied to the concrete structure only with the filler applied to the concrete structure in the first filler application step (S30). It may not be attached properly.
따라서, 상기 입체섬유(100)에 직접 충진재를 함침시키는 충진재 함침단계를 통해 입체섬유에 충진재가 함침되도록 한 후, 충진재가 함침된 입체섬유를 상기 1차 충진재 도포단계(S30)에서 콘크리트 구조물에 도포된 충진재에 부착하므로써 입체섬유의 부착력이 증대되도록 하고, 충진재가 입체섬유 내부로 충분히 함침되도록 함으로써 인장강도, 압축강도, 휨강도를 향상시켜 콘트리트 구조물의 내구성을 높이는 효과를 가질 수 있게 되는 것이다.Therefore, after the three-dimensional fiber is impregnated with the filler through the filler impregnation step of directly impregnating the filler into the three-dimensional fiber 100, the three-dimensional fiber impregnated with the filler is applied to the concrete structure in the first filler application step (S30) By attaching to the filled filler, the adhesion of the three-dimensional fibers is increased, and by allowing the filler to be sufficiently impregnated into the three-dimensional fibers, the tensile strength, compressive strength, and flexural strength are improved, thereby increasing the durability of the concrete structure.
상기 충진재 함침단계는, 충진재에 결합수를 혼합하여 슬러리 상태의 충진슬러리를 제조 한 후, 제조된 충진슬러리를 도 10과 같이 스프레이건 등과 같이 도포작업을 수행할 수 있는 장치를 이용하여 충진슬러리를 입체섬유에 함침시킨다.In the filler impregnation step, the filler is mixed with binding water to prepare a filled slurry in a slurry state, and then, as shown in FIG. Impregnated into three-dimensional fibers.
또한, 상기 입체섬유 부착단계(S40)에서는 입체섬유에 헬리컬바를 삽입하는 헬리컬바 삽입단계를 더 포함할 수 있다.In addition, the three-dimensional fiber attachment step (S40) may further include a helical bar insertion step of inserting the helical bar into the three-dimensional fiber.
즉, 상기 입체섬유 부착단계(S40)에서, 입체섬유를 콘크리트 구조물에 부착하기 전에 상기 입체섬유에 헬리컬바를 삽입하여 헬리컬바가 삽입된 상기 입체섬유가 콘크리트 구조물에 부착되도록 하는 것이다.That is, in the three-dimensional fiber attachment step (S40), before attaching the three-dimensional fiber to the concrete structure, a helical bar is inserted into the three-dimensional fiber so that the three-dimensional fiber into which the helical bar is inserted is attached to the concrete structure.
상기 헬리컬바 삽입단계에서 사용되는 헬리컬바는 니켈(Ni)에 크롬(Cr)을 첨가한 니켈크롬합금강바로 구성된다.The helical bar used in the helical bar insertion step is composed of a nickel-chromium alloy steel bar in which chromium (Cr) is added to nickel (Ni).
이와 같이 헬리컬바에 니켈에 크롬이 첨가됨으로써 헬리컬바는 내산화성과 내식성이 향상되는 효과를 가지게 되고, 이와 같은 헬리컬바를 입체섬유에 삽입한 상태로 콘크리트 구조물에 부착되도록 함으로써 콘크리트 구조물의 내구성이 증대 되도록 하는 것이다.As described above, by adding chromium to nickel to the helical bar, the helical bar has the effect of improving oxidation resistance and corrosion resistance, and by attaching the helical bar to the concrete structure with the helical bar inserted into the three-dimensional fiber, the durability of the concrete structure is increased. will be.
한편, 상기 2차 충진재 도포단계(S50)는 상기 입체섬유 부착단계(S50) 후, 콘크리트 구조물에 부착된 입체섬유에 충진재를 도포하는 단계로 입체섬유에 충진재가 함침된 상태에 따라 선택적으로 시행되는 단계이다.On the other hand, the secondary filler application step (S50) is a step of applying a filler to the three-dimensional fiber attached to the concrete structure after the three-dimensional fiber attachment step (S50), which is selectively performed depending on the state in which the three-dimensional fiber is impregnated with the filler is a step
즉, 입체섬유에 충진재가 충분히 함침되면 2차 충진재 도포단계(S50)를 생략하고, 후술할 코팅재 도포단계(S60)를 시행하고, 입체섬유에 충진재가 충분히 함침되지 않은 경우 2차 충진재 도포단계(S50)를 시행하여 입체섬유에 충진재가 충분히 함침될 수 있도록 한 후 후술할 코팅재 도포단계(S60)를 시행하게 된다.That is, when the three-dimensional fiber is sufficiently impregnated with the filler, the secondary filler application step (S50) is omitted, the coating material application step (S60) to be described later is performed, and when the three-dimensional fiber is not sufficiently impregnated with the filler, the secondary filler application step ( After performing S50) so that the three-dimensional fiber can be sufficiently impregnated with the filler, a coating material application step (S60), which will be described later, is performed.
상기 2차 충진재 도포단계(S50)에서 사용되는 충진재는 상기 1차 충진재 도포단계(S30)에서 사용되는 충진재와 동일한 성분의 것을 사용할 수 있다.The filler used in the secondary filler application step (S50) may be of the same component as the filler used in the primary filler application step (S30).
이와 같이 상기 입체섬유(100)에 충진재를 도포함으로써, 입체섬유에 충진재가 충분히 함침될 수 있도록 하여 입체섬유의 내구성을 높일 수 있게 된다.In this way, by applying the filler to the three-dimensional fiber 100, the three-dimensional fiber can be sufficiently impregnated with the filler to increase the durability of the three-dimensional fiber.
도 11은 본 발명의 코팅재 도포단계의 시공모습을 나타낸 도면이다.11 is a view showing a construction state of the coating material application step of the present invention.
상기 코팅재 도포단계(S60)는 상기 입체섬유 부착단계(S50) 후, 도 11에 나타낸 바와 같이 부착된 입체섬유의 표면에 코팅재를 도포하는 단계이다.The coating material application step (S60) is a step of applying a coating material to the surface of the attached three-dimensional fiber as shown in FIG. 11 after the three-dimensional fiber attachment step (S50).
이와 같이 콘크리트 구조물에 부착된 입체섬유의 표면에 코팅재를 도포함으로써, 부착된 입체섬유의 내구성의 증대 및 부식방지의 효과를 가지도록 하는 것이다.By applying the coating material to the surface of the three-dimensional fiber attached to the concrete structure as described above, the effect of increasing the durability of the three-dimensional fiber attached and preventing corrosion is obtained.
이때, 상기 코팅재 도포단계(S60)에서 사용되는 코팅재는 수용성아크릴 수지와 무기계복합재료를 포함하는 내염제 및 수용성아크릴 수지 및 무기계복합재료를 포함하는 중성화방지제를 혼합하여 제조되도록 한다.At this time, the coating material used in the coating material application step (S60) is prepared by mixing a flame retardant containing a water-soluble acrylic resin and an inorganic composite material, and a neutralizing agent containing a water-soluble acrylic resin and an inorganic composite material.
또한, 상기 내염제 및 중성화방지제에 포함되는 무기계복합재료는, 8호규사, 시멘트 및 실리카흄을 포함하여 제조되도록 한다.In addition, the inorganic composite material included in the flame retardant and the neutralizing agent is manufactured to include No. 8 silica sand, cement and silica fume.
이와 같이 상기 코팅재에 내염재 및 중성화방지재를 포함하여, 상기 코팅재 도포단계(S60)를 통해 염분 등에 의해 콘크리트 구조물의 내구성이 저하되는 것이 방지되도록 하고, 철근의 부식으로 인해 콘크리트가 열화되는 것이 방지하도록 하는 것이다.In this way, the coating material includes a flame resistant material and a neutralization prevention material to prevent deterioration of the durability of the concrete structure due to salt or the like through the coating material application step (S60), and to prevent deterioration of concrete due to corrosion of reinforcing bars is to do it
한편, 상기 양생단계(S70)는 상기 코팅재 도포단계(S60) 후, 도포된 충진재를 자연양생시키는 단계이다.On the other hand, the curing step (S70) is a step of naturally curing the applied filler after the coating material application step (S60).
상기 양생단계(S70)가 완료되면, 도 12에 도시된 바와 같이, 보수보강할 콘크리트 구조물에 충진재가 함침된 입체섬유인 충진 입체섬유(200)가 형성되도록 함으로써 입체섬유를 이용한 콘크리트 구조물의 보수보강이 완료된다.When the curing step (S70) is completed, as shown in FIG. 12 , the three-dimensional filling fiber 200, which is a three-dimensional fiber impregnated with a filler, is formed in the concrete structure to be repaired and reinforced, thereby repairing and strengthening the concrete structure using the three-dimensional fiber. This is done.
또한, 도 12에 도시된 바와 같이, 콘크리트 구조물의 열화된 부분은 보수보강층(300)에 의해 보수보강이 이루어지고, 보수보강층의 표면에 충진재층(400)이 형성되도록 하여, 충진재층(400)에 충진 입체섬유(100)를 부착하여, 콘크리트 구조물에 충진 입체섬유(200)가 형성되도록 하는 것이다.In addition, as shown in FIG. 12, the deteriorated part of the concrete structure is repaired and reinforced by the repair and reinforcing layer 300, and the filler layer 400 is formed on the surface of the repair and reinforcing layer, so that the filler layer 400 By attaching the filling three-dimensional fiber 100 to the concrete structure, the filling three-dimensional fiber 200 is formed.
이하에서는, 실시예 1 내지 3 및 비교예 1 내지 2를 통해 본 발명의 충진재의 물성에 대해 기재하도록 한다.Hereinafter, through Examples 1 to 3 and Comparative Examples 1 to 2, the physical properties of the filler of the present invention will be described.
실시예 1.Example 1.
충진재 100 중량부에 대하여 결합수 28중량부를 혼합하여 충진재를 제조하되(W/B=28%), 충진재는 보통 포틀랜드 시멘트 60중량%와, 고로슬래그 미분말 20중량%와, 칼슘설파 알루미네이트 5중량%와, 실리카 흄 5중량%와, 증점제 0.6중량%와, 소포제 0.1중량%와, 벤토나이트 3중량%를 혼합하여 충진재를 제조하였고, 제조된 충진재의 물성을 하기 표 1에 기재하였다.A filler is prepared by mixing 28 parts by weight of binding water with respect to 100 parts by weight of the filler (W/B = 28%), but the filler is usually 60% by weight of Portland cement, 20% by weight of fine blast furnace slag powder, and 5% by weight of calcium sulfa aluminate %, silica fume 5% by weight, thickener 0.6% by weight, antifoaming agent 0.1% by weight, and bentonite 3% by weight were mixed to prepare a filler, and the physical properties of the prepared filler are described in Table 1 below.
실시예 2. Example 2.
실시예 1과 동일한 충진재를 사용하되, 충진재 100 중량부에 대하여 결합수 30중량부를 혼합하여 충진재를 제조하였고(W/B=30%), 제조된 충진재의 물성을 하기 표 1에 기재하였다.A filler was prepared by using the same filler as in Example 1, but by mixing 30 parts by weight of bonding water with respect to 100 parts by weight of the filler (W/B = 30%), and the physical properties of the prepared filler are shown in Table 1 below.
실시예 3Example 3
실시예 1과 동일한 충진재를 사용하되, 충진재 100 중량부에 대하여 결합수 32중량부를 혼합하여 충진재를 제조하였고(W/B=32%), 제조된 충진재의 물성을 하기 표 1에 기재하였다.Using the same filler as in Example 1, but by mixing 32 parts by weight of bonding water with respect to 100 parts by weight of the filler to prepare a filler (W / B = 32%), the physical properties of the prepared filler is described in Table 1 below.
비교예 1Comparative Example 1
실시예 1과 동일한 충진재를 사용하되, 충진재 100 중량부에 대하여 결합수 26중량부를 혼합하여 충진재를 제조하였고(W/B=26%), 제조된 충진재의 물성을 하기 표 1에 기재하였다.Using the same filler as in Example 1, a filler was prepared by mixing 26 parts by weight of bonding water with respect to 100 parts by weight of the filler (W/B = 26%), and the physical properties of the prepared filler are shown in Table 1 below.
비교예 2Comparative Example 2
실시예 1과 동일한 충진재를 사용하되, 충진재 100 중량부에 대하여 결합수 34중량부를 혼합하여 충진재를 제조하였고(W/B=34%), 제조된 충진재의 물성을 하기 표 1에 기재하였다.A filler was prepared by using the same filler as in Example 1, but by mixing 34 parts by weight of bonding water with respect to 100 parts by weight of the filler (W/B=34%), and the physical properties of the prepared filler are shown in Table 1 below.
시험 항목Test Items 단위unit KS F 4042
기준
KS F 4042
standard
비교예 1Comparative Example 1 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 2Comparative Example 2 시험방법Test Methods
(W/B=26%)(W/B=26%) (W/B=28%)(W/B=28%) (W/B=30%)(W/B=30%) (W/B=32%)(W/B=32%) (W/B=34%)(W/B=34%)
압축강도
(28일)
compressive strength
(28 days)
N/㎟N/㎟ 20.0이상20.0 or higher 47.647.6 58.458.4 55.955.9 51.751.7 43.143.1 KSF 2476KSF 2476
휨강도
(28일)
flexural strength
(28 days)
N/㎟N/㎟ 6.0이상6.0 or higher 7.17.1 8.38.3 7.97.9 7.27.2 6.56.5 KSF 2476KSF 2476
부착
강도
Attach
burglar
표준
건조
Standard
dry
N/㎟N/㎟ 1.0 이상1.0 or higher 1.31.3 1.81.8 1.91.9 1.61.6 1.11.1 KSF 4042
KSF 4716
KSF 4042
KSF 4716
온냉
반복후
warm and cold
after repeat
N/㎟N/㎟ 1.0 이상1.0 or higher 1.21.2 1.71.7 1.71.7 1.41.4 0.80.8 KSF 4042
KSF 4716
KSF 4042
KSF 4716
컨시스턴시Consistency candle 없음does not exist 3232 2828 2121 1919 1515 KSF 2432KSF 2432
상기 표 1로부터 알 수 있는 바와 같이, W/B를 각각 28%, 30%, 32% 로 적용한 실시예 1, 2, 3의 압축강도 및 휨강도는 KS F 4042의 기준을 상회하는 것으로 나타났다.더 구체적으로, W/B가 26%인 비교예 1과, W/B가 34%인 비교예 2의 압축강도 및 휨강도도 KS F 4042의 기준을 상회하였으나, 각각 실시예 1 내지 3의 강도보다 낮은 강도를 가지는 것으로 나타났으며, 이에 따라 W/B가 26~32%로 형성되는 충진재를 통해 압축강도가 휨강도가 높아짐을 알 수 있다.As can be seen from Table 1, the compressive strength and flexural strength of Examples 1, 2, and 3 in which W/B was applied at 28%, 30%, and 32%, respectively, were found to exceed the standards of KS F 4042. More Specifically, the compressive strength and flexural strength of Comparative Example 1 having a W/B of 26% and Comparative Example 2 having a W/B of 34% exceeded the standards of KS F 4042, but lower than the strength of Examples 1 to 3, respectively. It was found to have strength, and accordingly, it can be seen that the compressive strength and the flexural strength are increased through the filler having a W/B of 26 to 32%.
또한, 실시예 1, 2, 3의 부착강도는 각각 1.8N/㎟, 1.9N/㎟, 및 1.6N/㎟로 비교예 1의 1.3N/㎟ 및 비교예 2의 1.1N/㎟보다 높은 부착강도를 가지는 것으로 나타났으며, 이를 통해 실시예 1 내지 3의 범위 내에 있는 W/B를 가지는 충진재가 더 높은 부착강도를 가지는 것으로 나타남에 따라, 이와 같은 충진재를 입체섬유 부착단계에 사용함으로써 입체섬유와 콘크리트 간의 부착력이 증대되도록 하는 효과를 가지도록 할 수 있다.In addition, the adhesion strengths of Examples 1, 2, and 3 were 1.8N/mm2, 1.9N/mm2, and 1.6N/mm2, respectively, higher than 1.3N/mm2 of Comparative Example 1 and 1.1N/mm2 of Comparative Example 2 It was shown to have strength, and as it was shown that the filler having W/B within the range of Examples 1 to 3 had higher adhesion strength, the three-dimensional fiber by using such a filler in the three-dimensional fiber attachment step It can have the effect of increasing the adhesion between the concrete and the concrete.
또한, 함침성 및 작업성의 척도라고 볼 수 있는 컨시스턴시의 경우, 실시예 1 내지 3은, 30초를 초과하지 않은 범위 내에서 이루어짐에 따라, 함침성 및 작업성이 우수한 충진재를 제조할 수 있음을 알 수 있다.In addition, in the case of consistency, which can be seen as a measure of impregnation property and workability, Examples 1 to 3 are made within a range not exceeding 30 seconds, so that a filler having excellent impregnation property and workability can be prepared. Able to know.
그러나, 비교예 1의 경우, 컨시스턴시가 30초를 초과함에 따라 함침성 및 작업성이 저하되며, 비교예 2의 경우, 컨시스턴시가 15초로 입체섬유의 충진성이 매우 우수하나, 구조물의 보수보강을 하기 위해 부착되는 입체섬유의 압축강도, 휨강도 및 부착강도가 낮음에 따라, 이를 보완하기 위한 별도의 작업이 동반되어야 할 필요가 존재함에 따라 보수보강이 편리하게 이루어지도록 하는 본원발명의 목적을 달성하기에는 적합하지 않다.However, in the case of Comparative Example 1, as the consistency exceeds 30 seconds, the impregnation property and workability are reduced, and in the case of Comparative Example 2, the consistency is 15 seconds, which is very excellent in the filling of the three-dimensional fibers, but the repair and reinforcement of the structure As the compressive strength, bending strength and adhesion strength of the three-dimensional fiber to be attached are low, there is a need to accompany a separate operation to compensate for this. Inappropriate.
따라서, W/B가 28~32%로 형성되는 충진재 이용하여, 1차로 콘크리트에 도포함으로써 입체섬유와 콘크리트 간의 부착력을 높이고, 콘크리트에 부착된 입체섬유에 2차로 도포하여, 입체섬유의 내구성이 증대되도록 하는 것이다.Therefore, by using a filler having a W/B of 28 to 32%, the adhesion between the three-dimensional fibers and concrete is increased by first applying to the concrete, and the durability of the three-dimensional fibers is increased by secondarily applying to the three-dimensional fibers attached to the concrete. to make it happen
또한, 세굴현상, 골재분리현상 및 팝-아웃(Pop-Out) 현상이 방지되도록 하고, 탄성에 의한 외부충격으로 인해 발생되는 콘크리트 구조물의 파손을 줄일 뿐만 아니라 제설제 등에 의한 철근부식에 대한 높은 내구성을 가지도록 하는 것이다.In addition, it prevents scouring, aggregate separation, and pop-out, and reduces damage to concrete structures caused by external shocks due to elasticity, as well as high durability against corrosion of reinforcing bars caused by snow removal agents, etc. is to have
이상과 같이 본 발명에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 당업자에 의해 다양한 변형이 이루어질 수 있음은 물론이다.As described above, the present invention has been described with reference to the illustrated drawings, but the present invention is not limited by the embodiments and drawings disclosed herein, and various modifications may be made by those skilled in the art within the scope of the technical spirit of the present invention. Of course it can be done.
[부호 설명][Code Explanation]
10 : 콘크리트 구조물 100 : 입체섬유10: concrete structure 100: three-dimensional fiber
110 : 표면층 120 : 중간층110: surface layer 120: intermediate layer
130 : 이면층 200 : 충진 입체섬유 130: back layer 200: filling three-dimensional fiber
본 발명에 따른 입체섬유를 이용한 콘크리트 구조물의 보수보강 공법은 별도의 보강재 시공 없이 충진재에 함침된 입체섬유를 콘크리트 구조물에 직접 부착하는 시공을 통해 콘크리트의 보수보강이 이루어지도록 하는데 크게 기여할 수 있다.The method of repairing and reinforcing a concrete structure using three-dimensional fibers according to the present invention can greatly contribute to the repair and reinforcement of concrete through the construction of directly attaching the three-dimensional fibers impregnated in the filler to the concrete structure without the construction of a separate reinforcing material.

Claims (6)

  1. 보강하고자 하는 콘크리트 구조물을 세척하는 표면처리단계(S10);A surface treatment step of washing the concrete structure to be reinforced (S10);
    상기 표면처리단계(S10) 후 콘크리트 구조물에 강화제를 도포하는 강화제 도포단계(S20);Reinforcing agent application step (S20) of applying a reinforcing agent to the concrete structure after the surface treatment step (S10);
    상기 강화제 도포단계(S20) 후 콘크리트 구조물에 충진재를 도포하는 1차 충진재 도포단계(S30);The first filler application step (S30) of applying the filler to the concrete structure after the reinforcing agent application step (S20);
    상기 1차 충진재 도포단계(S30) 후 콘크리트 구조물에 입체섬유(100)를 부착하는 입체섬유 부착단계(S40);A three-dimensional fiber attachment step (S40) of attaching the three-dimensional fiber 100 to the concrete structure after the first filler application step (S30);
    상기 입체섬유 부착단계(S40) 후 입체섬유에 코팅재를 도포하는 코팅재 도포단계(S60); 및A coating material application step of applying a coating material to the three-dimensional fiber after the three-dimensional fiber attachment step (S40) (S60); and
    상기 코팅재 도포단계(S60) 후 양생 및 경화가 되도록 하는 양생단계(S70)를 포함하는 콘크리트 구조물의 보수보강 공법에 있어서, In the repair and reinforcement method of a concrete structure comprising a curing step (S70) of curing and hardening after the coating material application step (S60),
    상기 입체섬유 부착단계에서 부착되는 입체섬유(100)는 표면층(110)과 이면층(130) 및 중간층(120)을 포함하는 3차원 형상으로 구성되고,The three-dimensional fiber 100 attached in the three-dimensional fiber attachment step has a three-dimensional shape including a surface layer 110, a back surface layer 130, and an intermediate layer 120,
    상기 표면층(110)과 상기 이면층(130)은 격자형상으로 형성되되, 상기 표면층(110)의 격자 간격은 1~5mm로 형성되고, 상기 이면층(130)의 격자 간격은 0.1~3mm로 형성되며,The surface layer 110 and the back layer 130 are formed in a lattice shape, the lattice spacing of the surface layer 110 is formed in a range of 1 to 5 mm, and the lattice spacing of the back layer 130 is formed in a range of 0.1 to 3 mm. becomes,
    상기 중간층(120)은 상기 표면층(110)과 상기 이면층(130) 사이에 1~10mm의 높이로 형성되되, 상기 표면층(110)과 상기 이면층(130)을 순차적으로 연속하여 연결된 지그재그 형상의 섬유에 의해 형성되고,The intermediate layer 120 is formed with a height of 1 to 10 mm between the surface layer 110 and the back layer 130, and has a zigzag shape in which the surface layer 110 and the back layer 130 are sequentially and continuously connected. formed by fibers,
    상기 입체섬유(100)의 내부에는 충진재에 결합수를 혼합하여 제조된 슬러리 상태의 충진슬러리를 스프레이건으로 함침시킨 것을 특징으로 하는 콘크리트 구조물의 보수보강 공법.A method of repairing and reinforcing a concrete structure, characterized in that the three-dimensional fiber (100) is impregnated with a spray gun with a filling slurry in a slurry state prepared by mixing a filler with binding water.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 입체섬유 부착단계(S40)와 상기 코팅재 도포단계(S60) 사이에 입체섬유에 충진재를 도포하는 2차 충진재 도포단계(S50)를 더 포함하는 것을 특징으로 하는 입체섬유를 이용한 콘크리트 구조물의 보수보강 공법.Repair and reinforcement of a concrete structure using three-dimensional fibers, characterized in that it further comprises a secondary filler application step (S50) of applying a filler to the three-dimensional fibers between the three-dimensional fiber attachment step (S40) and the coating material application step (S60) Method.
  3. 청구항 2에 있어서,3. The method according to claim 2,
    상기 1차 충진재 도포단계(S30) 및 상기 2차 충진재 도포단계(S50)에서 사용되는 충진재는, 충진재 100 중량부에 대하여 결합수 28~32중량부를 혼합하여 제조되는 것을 특징으로 하는 입체섬유를 이용한 콘크리트 구조물의 보수보강 공법.The filler used in the first filler application step (S30) and the secondary filler application step (S50) is prepared by mixing 28 to 32 parts by weight of bonding water with respect to 100 parts by weight of the filler. A method of repairing and reinforcing concrete structures.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 입체섬유 부착단계(S40)에서는, 부착되는 입체섬유에 충진재를 함침시키는 충진재 함침단계가 더 포함하되,In the three-dimensional fiber attachment step (S40), a filler impregnation step of impregnating the three-dimensional fiber to be attached with the filler material is further included,
    상기 충진재 함침단계에서 충진재가 합침된 입체섬유를 1차 충진재가 도포된 콘크리트 구조물에 부착하는 것을 특징으로 하는 콘크리트 구조물의 보수보강 공법.In the filler impregnation step, the three-dimensional fiber impregnated with the filler is attached to the concrete structure coated with the primary filler.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 입체섬유 부착단계(S40)에서는 입체섬유에 헬리컬바를 삽입하는 헬리컬바 삽입단계를 더 포함하는 것을 특징으로 하는 콘크리트 구조물의 보수보강 공법.In the three-dimensional fiber attachment step (S40), a helical bar insertion step of inserting a helical bar into the three-dimensional fiber is further included.
  6. 청구항 3에 있어서,4. The method according to claim 3,
    상기 충진재는, 보통 포틀랜드 시멘트 60~75중량%와, 고로슬래그 미분말 15~25중량%와, 칼슘설파 알루미네이트 3~7중량%와, 실리카 흄 3~7중량%와, 증점제 0.2~1.0중량%와, 소포제 0.1~0.2중량%와, 벤토나이트 1.0~5.0중량%와 아크릴 수지, EVA수지, SBR 수지 중 어느 하나 1.0~5.0중량%와, 멜라민계, 나프탈렌계, 폴리카르복실레이트계의 고성능 유동화제 중 어느 하나 0.5~3.0중량%를 포함하는 것을 특징으로 하는 입체섬유를 이용한 콘크리트 구조물의 보수보강 공법.The filler is usually 60 to 75% by weight of Portland cement, 15 to 25% by weight of fine blast furnace slag powder, 3 to 7% by weight of calcium sulfaluminate, 3 to 7% by weight of silica fume, and 0.2 to 1.0% by weight of a thickener With 0.1 to 0.2 wt% of an antifoaming agent, 1.0 to 5.0 wt% of bentonite and 1.0 to 5.0 wt% of any one of acrylic resin, EVA resin, and SBR resin, melamine-based, naphthalene-based, polycarboxylate-based high-performance fluidizing agent Any one of 0.5 to 3.0% by weight of a concrete structure repair and reinforcement construction method using a three-dimensional fiber, characterized in that it contains.
PCT/KR2020/014928 2020-03-02 2020-10-29 Method for repair and reinforcement of concrete structure using three-dimensional fibers WO2021177541A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200025889A KR102144656B1 (en) 2020-03-02 2020-03-02 Cross section repair and reinforcement method of concrete structure using three-dimensional fiber
KR10-2020-0025889 2020-03-02

Publications (1)

Publication Number Publication Date
WO2021177541A1 true WO2021177541A1 (en) 2021-09-10

Family

ID=72043560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014928 WO2021177541A1 (en) 2020-03-02 2020-10-29 Method for repair and reinforcement of concrete structure using three-dimensional fibers

Country Status (2)

Country Link
KR (1) KR102144656B1 (en)
WO (1) WO2021177541A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113860805A (en) * 2021-10-11 2021-12-31 柳州北皓建材有限公司 Green pervious concrete and preparation method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102144656B1 (en) * 2020-03-02 2020-08-13 (주)바우테크 Cross section repair and reinforcement method of concrete structure using three-dimensional fiber
KR102271429B1 (en) * 2020-11-20 2021-07-02 한국건설기술연구원 Composition of high performance cementitious composite (hpcc) for mixing phorocatalyst, and manufacturing method for the same
KR102265457B1 (en) * 2020-11-26 2021-06-16 한국건설기술연구원 Surface treatment cementitious composite by mortar for mixing photocatalyst and polymer fiber, and construction method for the same
KR102425765B1 (en) * 2022-01-27 2022-07-28 주식회사 정우콘크리트 Sidewalk and road block with non-slip and antibacterial for pedestrian safty of peopoe who are weak in walking
KR102640408B1 (en) * 2023-06-28 2024-02-23 우상디앤씨 주식회사 Construction method of multi curved surface structure for skateboard using self-healing shotcrete composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714507A (en) * 1982-03-01 1987-12-22 Ogushi Yoshuki Surface coating agent and method for using the same in civil and construction engineering
JP2007239421A (en) * 2006-03-13 2007-09-20 Fujita Corp Method of reinforcing existing structure
KR100927867B1 (en) * 2008-07-31 2009-11-23 주식회사 대신구조엔지니어링 Method for mending section recovery of polymer mortar using spiral reinforce
JP2017110341A (en) * 2015-12-14 2017-06-22 株式会社大林組 Repair structure for existing exterior wall and repair method for existing exterior wall
KR102144656B1 (en) * 2020-03-02 2020-08-13 (주)바우테크 Cross section repair and reinforcement method of concrete structure using three-dimensional fiber

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100597176B1 (en) 2005-02-17 2006-07-04 우신건축환경클리닉(주) Method for repairing the concrete
KR100846159B1 (en) 2007-12-21 2008-07-14 주식회사 승화이엔씨 A composition water soluble polymer for concrete structure section repair and surface recover
KR102037623B1 (en) * 2019-01-16 2019-11-27 김금자 Mortar composition of underwater inseparable type for repairing and reinforcing underwater concrete structures, and method of repairing and reinforcing underwater concrete structures using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714507A (en) * 1982-03-01 1987-12-22 Ogushi Yoshuki Surface coating agent and method for using the same in civil and construction engineering
JP2007239421A (en) * 2006-03-13 2007-09-20 Fujita Corp Method of reinforcing existing structure
KR100927867B1 (en) * 2008-07-31 2009-11-23 주식회사 대신구조엔지니어링 Method for mending section recovery of polymer mortar using spiral reinforce
JP2017110341A (en) * 2015-12-14 2017-06-22 株式会社大林組 Repair structure for existing exterior wall and repair method for existing exterior wall
KR102144656B1 (en) * 2020-03-02 2020-08-13 (주)바우테크 Cross section repair and reinforcement method of concrete structure using three-dimensional fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113860805A (en) * 2021-10-11 2021-12-31 柳州北皓建材有限公司 Green pervious concrete and preparation method thereof

Also Published As

Publication number Publication date
KR102144656B1 (en) 2020-08-13

Similar Documents

Publication Publication Date Title
WO2021177541A1 (en) Method for repair and reinforcement of concrete structure using three-dimensional fibers
KR102119216B1 (en) Fire protection mortar
KR100873391B1 (en) Quick-hardening concrete composite, manufacturing method thereof and repairing method for concrete pavement using the concrete composite
KR101815140B1 (en) Organic-inorganic hybrid mortar composition for repairing and restoring the surface of concrete structures and construction method using the same
KR101796418B1 (en) Fast Cementitious Cement Concrete Composition and Repair Method of Concrete Pavement Using the Same
WO2018030728A1 (en) Ultra-high-performance fiber-reinforced concrete and manufacturing method therefor
KR102097111B1 (en) Rapid hardening cement concrete composition for emergency eepair and a repairing method of road pavement using the same
WO2011087304A2 (en) Alkali-activated binding material having no cement and comprising a complex alkali activator, and mortar or concrete using same
KR101720504B1 (en) A high early strength cement concrete composition having the improved durability for road pavement and a repairing method of road pavement using the same
KR101816756B1 (en) High Performance Fast Cement Concrete Composition and Road Pavement Maintenance Method Using the Same
WO2011108856A2 (en) Thermal insulator using closed cell expanded perlite
KR102362416B1 (en) Mortar composition for repairing and reinforcing concrete structure of road gutter and damaged part of road and the method of repairing and reinforcing concrete structure of road gutter and damaged part of road using thereof
KR101533093B1 (en) High-Early Strength cement concrete composition and concrete pavement repair it using the same method using silicon sludge
WO2018216932A1 (en) Method for manufacturing foam molded product
US6960253B2 (en) Method of forming hydraulic cement protective coatings
WO2018016781A1 (en) Slag-containing high-early strength mixture for cement concrete and production method therefor
WO2018079868A1 (en) Low-shrinkage and low-carbon green cement composition comprising carbon-mineralized fly ash and early strength type expansion agent, and concrete having same applied thereto
WO2020130250A1 (en) Fine aggregate for concrete and composition for building material comprising same
WO2023080428A1 (en) Nanoparticles for early strength development of concrete, composition for forming concrete comprising same, and method for preparing same
KR102404795B1 (en) Spray applied fireproof covering composition recycling acid-neutral waste fireproof materials
WO2023054956A1 (en) Crack-controlling self-healing admixture composition and preparation method for admixture, and self-healing mortar composition and concrete structure cross-section repair method using same
KR102228953B1 (en) Concrete Composition With improved durability and usability, and Repairing Method Using The Same
US6749680B1 (en) Thin concrete repair system
KR20120051423A (en) Repair method of construction that use repair mortar composite compouded organic mineral materials
KR20180020021A (en) Mortar composition not containing sand and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923535

Country of ref document: EP

Kind code of ref document: A1