WO2018079868A1 - Low-shrinkage and low-carbon green cement composition comprising carbon-mineralized fly ash and early strength type expansion agent, and concrete having same applied thereto - Google Patents

Low-shrinkage and low-carbon green cement composition comprising carbon-mineralized fly ash and early strength type expansion agent, and concrete having same applied thereto Download PDF

Info

Publication number
WO2018079868A1
WO2018079868A1 PCT/KR2016/012043 KR2016012043W WO2018079868A1 WO 2018079868 A1 WO2018079868 A1 WO 2018079868A1 KR 2016012043 W KR2016012043 W KR 2016012043W WO 2018079868 A1 WO2018079868 A1 WO 2018079868A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
carbon
cement composition
concrete
Prior art date
Application number
PCT/KR2016/012043
Other languages
French (fr)
Korean (ko)
Inventor
이형우
조성현
서신석
박창환
김춘식
윤용상
박태규
남성영
안지환
Original Assignee
한일시멘트 주식회사
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한일시멘트 주식회사, 한국지질자원연구원 filed Critical 한일시멘트 주식회사
Publication of WO2018079868A1 publication Critical patent/WO2018079868A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/008Cement and like inorganic materials added as expanding or shrinkage compensating ingredients in mortar or concrete compositions, the expansion being the result of a recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/02Portland cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/32Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00017Aspects relating to the protection of the environment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/34Non-shrinking or non-cracking materials
    • C04B2111/346Materials exhibiting reduced plastic shrinkage cracking
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/05Materials having an early high strength, e.g. allowing fast demoulding or formless casting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a green cement composition comprising carbon mineralized fly ash and a crude expandable material, and concrete including the same. More specifically, the present invention relates to a carbon cement produced by reacting carbon dioxide, a major greenhouse gas, with fly ash from a cogeneration plant. Characterized in that, when applied to concrete, low carbon dioxide generation, low shrinkage low carbon green cement composition that improves the initial strength and improved drying shrinkage and concrete applied thereto.
  • total greenhouse gas emissions in Korea were about 2.6 billion tons (about 37%) in the power generation sector, 250 million tons (about 36%) in the industrial sector, about 0.9 billion tons (about 13%) in the transportation sector, and about 100 million in other sectors. A total of about 700 million tons of tonnes (about 14%).
  • steel is about 131 million tons (45%)
  • petrochemicals are about 0.71 billion tons (about 28%)
  • cement is about 0.41 billion tons (about 16%)
  • other about 0.25 billion tons about 11%) is occurring.
  • domestic greenhouse gas emissions are projected to be about 250 million tons in 2030.
  • cement is an essential material for producing concrete, which is a representative material of construction materials.
  • cement is calcined at a high temperature of 1,450 ° C. or higher at the time of manufacture, the energy consumption rate is high, and the decarbonation reaction of limestone, a raw material of cement, generates about 0.8 kg of carbon dioxide, which is the main culprit of greenhouse gases, when producing 1 ton of cement. It is also known that concrete using cement generates about 340 kg of carbon dioxide per tonne.
  • fly ash or blast furnace slag powder instead of cement is a method of increasing the amount of fly ash or blast furnace slag powder for mass concrete for the purpose of reducing heat of hydration of concrete. If fly ash or blast furnace slag powder is used a lot, it is advantageous in terms of reducing heat of hydration of concrete, but there are disadvantages in initial strength of concrete and drying shrinkage.
  • substituting fly ash and blast furnace slag powder instead of cement is a method of reducing carbon dioxide, which is the main culprit of greenhouse gases, but in order to drastically reduce carbon dioxide, an active method of using the generated carbon dioxide as a material for construction is needed. .
  • the present invention is to solve the above-mentioned problems of the prior art, low-shrink low-carbon green cement that reduces the high carbon dioxide generation of the existing general cement composition, when used as a binder for concrete, improves the initial strength and the dry shrinkage It is an object to provide a composition.
  • Portland cement Carbon minerals; Crude expansion material; And it provides a green cement composition, comprising a blast furnace slag fine powder.
  • the green cement composition 15 to 85 parts by weight of Portland cement; 5 to 20 parts by weight of carbon minerals; 5 to 15 parts by weight of the crude expandable material; And blast furnace slag fine powder 5 to 50 parts by weight; may be configured to include.
  • the carbon mineral may be formed by reacting fly ash of a cogeneration plant including glass lime with carbon dioxide.
  • the carbon mineral, the glass lime content may be 0.1 wt% to 5 wt%.
  • the crude steel expandable material may be one selected from the group consisting of a calcium sulfoaluminate (CSA) -based expander, a calcium oxide-based expander, and a combination thereof.
  • CSA calcium sulfoaluminate
  • the calcium sulfoaluminate-based expansion material may be formed by firing at least one selected from the group consisting of playing slag, red mud, fly ash, flooring material and a combination thereof at a temperature of 1000 °C to 1450 °C. .
  • the calcium sulfoaluminate-based expansion material 20 to 40 parts by weight of calcium sulfoaluminate, the powder may be 3500 cm 2 / g to 5000 cm 2 / g.
  • the calcium oxide-based expandable material may be formed by firing at least one selected from the group consisting of limestone, desulfurized gypsum, phosphate gypsum and combinations thereof at a temperature of 1000 ° C to 1450 ° C.
  • the calcium oxide-based expansion material 20 to 40 parts by weight of calcium oxide, the powder may be 3500 cm 2 / g to 5000 cm 2 / g.
  • the green cement composition water, fine aggregate, coarse aggregate, including the green concrete is provided.
  • the concrete 10 to 20 parts by weight of the green cement composition; 1 to 10 parts by weight of the water; 30 to 50 parts by weight of the fine aggregate; And 30 to 45 parts by weight of the coarse aggregate; provides a green concrete characterized in that it is blended.
  • the present invention by utilizing carbon minerals reacting carbon dioxide, the main culprit of greenhouse gases, with cogeneration plant fly ash, there is an effect of reducing the amount of carbon dioxide more than green cement simply mixed with existing fly ash or blast furnace slag powder.
  • the cogeneration plant fly ash which was constrained as an admixture for concrete due to the high glass lime content, can be effectively utilized.
  • the crude steel expansion material there is an effect of reducing the early strength degradation and drying shrinkage that is a problem in the existing green cement.
  • 1 is a diagram schematically showing a crack suppression mechanism by the expander.
  • Figure 2 is a graph showing the expansion ratio of the age according to the calcium sulfo aluminate-based expansion material replacement rate.
  • Figure 3 is a graph showing the compressive strength against the age according to the calcium sulfo aluminate-based expansion material replacement rate.
  • Figure 4 is a graph showing the amount of expansion and dry shrinkage of each concrete according to the age in Experimental Example 1 of the present invention.
  • Portland cement Carbon minerals; Crude expansion material; And it provides a green cement composition, comprising a blast furnace slag fine powder.
  • blast furnace slag powder 5 to 50 parts by weight of blast furnace slag powder; may be configured to include.
  • Portland cement is the most commonly used binder in the manufacture of concrete.
  • the main compounds of cement are C3S (3CaO ⁇ SiO 2 ), C2S (2CaO ⁇ SiO 2 ), C3A (3CaO ⁇ Al 2 O 3 ), C4AF (4CaOAl 2 O 3 ⁇ Fe 2 O 3 ) It is the main compound that controls the action of its main properties such as hydration, condensation, curing.
  • cement reacts with water to cause a hydration reaction that produces CSH (calcium silicate hydrate) and calcium hydroxide (Ca (OH) 2 ), through which coagulation and curing proceed.
  • CSH calcium silicate hydrate
  • Ca (OH) 2 calcium hydroxide
  • Typical concrete binder compositions mostly consist only of cement.
  • the portland cement has a powder degree of 3000 cm 2 / g to 4000 cm 2 / g.
  • the portland cement may include 15 to 85 parts by weight of the green cement composition.
  • the portland cement is included in less than 15 parts by weight, problems may occur in the development of compressive strength, and when the portland cement is included in more than 85 parts by weight, the amount of carbon minerals or blast furnace slag fine powder is relatively small to reduce the effective carbon dioxide. Problems may arise.
  • the carbon mineral may be formed by reacting a cogeneration plant fly ash including glass lime with carbon dioxide. Specifically, carbon dioxide may be injected into the mixture in which the fly ash is immersed in water to form a solid phase including carbonate, and the solid phase may be solid-liquid separated and dried at a pH of the mixture of 9 or less to form a carbon mineral.
  • the general fly ash (general FA) used as the admixture for concrete has a low calcium oxide content of 4.52 wt%, but the fly ash (cogeneration FA) generated at the cogeneration plant has a calcium oxide content of 27.69 wt%. Relatively high in%. Since most of the calcium oxide of fly ash generated in the cogeneration plant exists as glass lime, it reacts immediately when it comes into contact with water, so when used as a mixed material for concrete, abnormal condensation and slump decrease may occur. Cracks may occur due to
  • the carbon mineral is 0.2 wt% of free lime by reacting fly ash containing a lot of free lime generated in a cogeneration plant with carbon dioxide, which is a major greenhouse gas generated in an industrial field. % To 5 wt%.
  • the carbon mineral powder is preferably 4000 cm 2 / g to 6000 cm 2 / g.
  • the carbon mineral may include 5 to 20 parts by weight of the green cement composition.
  • the carbon mineral may include 5 to 20 parts by weight of the green cement composition.
  • the carbon mineral is included in less than 5 parts by weight, there may be a problem that the carbon dioxide reduction rate is significantly reduced, when the carbon mineral is included in more than 20 parts by weight, there is a fear that the strength in the concrete containing it.
  • the carbon mineral is preferably contained in 5 to 20 parts by weight of the green cement composition.
  • the crude steel expandable material may be one selected from the group consisting of a calcium sulfoaluminate (CSA) -based expander, a calcium oxide-based expander, and a combination thereof.
  • CSA calcium sulfoaluminate
  • the calcium sulfoaluminate-based expander may be formed by firing at least one selected from the group consisting of playing slag, red mud, fly ash, flooring, and combinations thereof at a temperature of 1000 ° C to 1450 ° C.
  • the calcium sulfoaluminate-based expander may include 20 to 40 parts by weight of calcium sulfoaluminate, and the powder may be 3500 cm 2 / g to 5000 cm 2 / g.
  • the calcium oxide-based expandable material may be formed by firing at least one selected from the group consisting of limestone, desulfurized gypsum, phosphate gypsum and a combination thereof at a temperature of 1000 ° C to 1450 ° C.
  • the calcium oxide-based expandable material may include 20 to 40 parts by weight of calcium oxide, and the powder may be 3500 cm 2 / g to 5000 cm 2 / g.
  • the crude steel expandable material may have a powder degree of 3500 cm 2 / g to 5000 cm 2 / g to secure early strength, and may include 5 to 15 parts by weight of the green cement composition.
  • the coarse expandable material is included in less than 5 parts by weight, a cracking problem may occur during dry shrinkage due to a decrease in the expansion ratio of the concrete including the same, when the coarse expandable material is included in excess of 15 parts by weight, the fluidity of the concrete including the same There exists a possibility that intensity
  • the coarse steel expandable material is preferably included in an amount of 5 to 15 parts by weight in the green cement composition.
  • Blast furnace slag powder is a by-product produced in the steelmaking process, and is a mixed material for concrete, which is widely used together with general fly ash. Blast furnace slag powder is generally known to increase the long-term strength by densifying concrete structure through the secondary reaction with cement hydrate.
  • the blast furnace slag fine powder may have a powder degree of 4000 cm 2 / g to 6000 cm 2 / g.
  • the blast furnace slag fine powder may be included in the green cement composition 5 to 50 parts by weight.
  • the blast furnace slag fine powder is included in less than 5 parts by weight, there may be a problem in the long-term compressive strength expression effect, when the blast furnace slag fine powder is contained in more than 50 parts by weight, the strength of the initial concrete using the cement containing the same It may be lowered, there may be a problem that a large amount of dry shrinkage appears.
  • Green cement composition having the above composition range can reduce the amount of carbon dioxide generated 10% to 30% compared to the cement composition containing a general fly ash.
  • it when it is applied to concrete it can suppress the early drop in strength, minimize the shrinkage during drying, it can exhibit a good compressive strength.
  • the green cement composition water, fine aggregate, coarse aggregate, including the green concrete is provided.
  • 30 to 45 parts by weight of the coarse aggregate may be combined to include.
  • Green concrete having the above composition range can suppress the premature strength decrease, minimize the shrinkage during drying, and can exhibit good compressive strength.
  • Green concrete having the above composition range can reduce the amount of carbon dioxide generated 10% to 30% compared to the concrete containing the general fly ash.
  • Table 2 shows the high capacity of carbon dioxide (CO 2 ) before and after carbon mineralization (carbonization) by type of fly ash.
  • the general fly ash has a low free lime content, resulting in a low carbon dioxide solids content of 0.69%, but the cogeneration plant fly ash has a high free lime content of 7.19%.
  • Basic mortar including 300 parts by weight of sand and 50 parts by weight of water was prepared based on 100 parts by weight of Portland cement. Subsequently, 5 parts by weight and 10 parts by weight of the mortar including cogeneration plant fly ash, which was replaced by 5 parts by weight and 10 parts by weight, of the base mortar, respectively, were mixed. Mortars containing carbon minerals (carbon mineralization of the cogeneration plant fly ash) were blended, and the characteristics of the mortars are shown in Table 3.
  • Basic mortar including 300 parts by weight of sand and 50 parts by weight of water was prepared based on 100 parts by weight of Portland cement. Subsequently, 5 parts by weight and 10 parts by weight of the mortar including cogeneration plant fly ash, which was replaced by 5 parts by weight and 10 parts by weight, of the base mortar, respectively, were mixed. Mortars containing carbon minerals (carbon mineralization of the cogeneration plant fly ash) were blended, and the characteristics of the mortars are shown in Table 3.
  • mortar containing carbon minerals has a good liquidity loss of 60 minutes by carbonizing glass lime of cogeneration plant fly ash with carbon dioxide injection.
  • the condensation time of termination is similar to that of conventional fly ash used as concrete admixture. have.
  • the strength of the early age of one day was lower than that of mortars containing non-carbonated cogeneration fly ash, but higher than the mortars containing conventional fly ashes used in conventional concrete admixtures. Therefore, it was confirmed that the carbon mineral obtained by carbonizing the cogeneration plant fly ash can be used as a general fly ash used as a concrete admixture.
  • a basic cement including 300 parts by weight of sand and 50 parts by weight of water was prepared relative to 100 parts by weight of Portland cement. Then, cement containing 5 parts by weight, 10 parts by weight and 15 parts by weight of the calcium sulfoaluminate-based expansion material was prepared for the portland cement of the basic cement, respectively, and the characteristics of the cements are shown in FIGS. 2 and 3. It was.
  • the amount of expansion of the calcium sulfoaluminate-based coarse-type expansion material increases as the amount of expansion increases from 100% to 180% compared to the base cement, the compressive strength as the amount of use of the expansion material increases It was also confirmed that the 8% to 20% increase.
  • a basic cement including 300 parts by weight of sand and 50 parts by weight of water was prepared relative to 100 parts by weight of Portland cement. Then, a cement containing 5 parts by weight, 10 parts by weight, and 15 parts by weight of the calcium sulfoaluminate-based expansion material was prepared for the portland cement of the basic cement, respectively, and the properties of the cements are shown in Table 4 below. .
  • CaO-based expansion material replacement rate (%) 2 Day Expansion Rate (%) 7-day expansion rate (%) 28-day expansion rate (%) Initial cement flow (mm 60 minutes cement flow (mm) Cement cementing (min) Cement Termination (min) Daily Compressive Strength (MPa) 7 Day Compressive Strength (MPa) 28 Day Compressive Strength (MPa) 0 0.001 0.006 -0.08 165 55 207 420 14.5 34.8 44.7 10 0.033 0.054 -0.026 174 74 220 400 16.9 39.7 43.1 15 0.043 0.064 -0.014 177 80 203 360 18 39.2 43.4
  • the expansion rate, fluidity, condensation, and compressive strength characteristics of the cement according to the replacement rate of the calcium oxide-based coarse expandable material were shown. As the replacement rate of calcium oxide-based expander increases, the expansion rate increases, which reduces the shrinkage of 28 days. In addition, the compressive strength of the first day of old age was increased compared to the case of using only cement alone, using a calcium oxide-based coarse expanded material.
  • a cement composition comprising; 20 parts by weight fine slag powder,
  • the cement composition 340 kg / m3, unit quantity of 170 kg / m3, fine aggregate 901 kg / m3 and coarse aggregate 860 kg / m3 was provided with concrete.
  • Example 1 the cement composition
  • Example 2 20 parts by weight of fine powder of slag; except that it was included in the same manner as in Example 1 was provided with concrete.
  • Example 1 the cement composition
  • Example 2 20 parts by weight of fine powder of slag; except that it was included in the same manner as in Example 1 was provided with concrete.
  • Example 1 the cement composition
  • Example 2 20 parts by weight of fine powder of slag; except that it was included in the same manner as in Example 1 was provided with concrete.
  • compositions, formulations and compressive strengths of Examples 1 to 3 and Comparative Example 1 are shown in Table 5 and FIG. 4.
  • Example 1 80 20 50 51 170 340 901 860 2.7 17.3 24.1 36.4
  • Example 1 70 20 5 5 50 51 170 340 901 860 3.8 18.8 26.5 39
  • Example 2 60 20 10 10 50 51 170 340 901 860 2.9 18 24.3 36.6
  • Example 3 60 20 5 15 50 51 170 340 901 860 3.2 18.3 25.9 38.4
  • Comparative Example 1 is a concrete formulation containing a cement (binder) composition commonly used in the field
  • Examples 1 to 3 are equivalent or more compression, although the amount of cement is relatively reduced. It expresses strength.
  • Examples 1 to 3 has a large amount of expansion, thereby reducing the dry shrinkage.
  • the cement composition 450 kg / m3, unit quantity 165 kg / m3, fine aggregate 893 kg / m3 and coarse aggregate 822 kg / m3 was provided with concrete.
  • Example 4 the cement composition
  • Example 4 the cement composition
  • Example 4 the cement composition
  • compositions, formulations and compressive strengths of Examples 4 to 6 and Comparative Example 2 are shown in Table 6 and FIG. 5.
  • Example 2 35 40 25 36.7 52.6 165 450 893 822 15.2 25.8 41.3 49.1 Example 4 30 40 20 10 36.7 52.6 165 450 893 822 17.2 27.9 47.8 53.3 Example 5 25 40 15 10 36.7 52.6 165 450 893 822 15 28.2 44 51.4 Example 6 20 40 15 15 36.7 52.6 165 450 893 822 14.9 27.2 43.7 50.7
  • the Examples 4 to 6 using the low shrinkage low carbon green cement composition expresses the compressive strength equal to or greater than in Comparative Example 2.
  • Example 2 Comparative Example 2 35 40 25 304.5 15.1 3.43 323 0 Example 4 30 40 20 10 261 15.1 -11.6 29 293.5 9.13 Example 5 25 40 15 10 217.5 15.1 -8.73 29 252.9 21.7 Example 6 20 40 15 15 174 15.1 -8.73 43.5 223.9 30.7
  • the low shrinkage low carbon green cement composition of Examples 4 to 6 can further reduce the CO 2 generation amount by about 9.13% to 30.7% compared with the existing cement (binder) of Comparative Example 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

One embodiment of the present invention provides a green cement composition comprising Portland cement, carbon minerals, an early strength type expansion agent, and blast furnace slag micropowder. In one embodiment of the present invention: carbon minerals obtained by reacting carbon dioxide, which is a main cause of greenhouse gas, with cogeneration plant fly ash are used, and thus the green cement composition has an effect of better reducing the amount of carbon dioxide than a conventional green cement, which has a simple mixture of fly ash and blast furnace slag micropowder; the cogeneration plant fly ash, which was restricted when used as a concrete admixture because of a high content of free lime, can be effectively utilized; and early strength deterioration and drying shrinkage, which are problems of the conventional green cement, are reduced using the early strength type expansion agent.

Description

탄소광물화 처리된 비산재 및 조강형 팽창재를 포함하는 저수축 저탄소 그린 시멘트 조성물 및 이를 적용한 콘크리트Low shrinkage low carbon green cement composition containing carbon mineralized fly ash and crude expansion material and concrete using the same
탄소광물화 처리된 비산재 및 조강형 팽창재를 포함하는 그린 시멘트 조성물 및 이를 적용한 콘크리트에 관한 것으로, 더욱 상세하게는 온실가스 주범인 이산화탄소를 열병합 발전소 비산재와 반응시켜 제조한 탄소광물과 조강형 팽창재를 포함하는 것을 특징으로 하여, 콘크리트에 적용될 경우 이산화탄소 발생이 낮고, 초기 강도 증진 및 건조수축이 개선되는 저수축 저탄소 그린 시멘트 조성물 및 이를 적용한 콘크리트에 관한 것이다.The present invention relates to a green cement composition comprising carbon mineralized fly ash and a crude expandable material, and concrete including the same. More specifically, the present invention relates to a carbon cement produced by reacting carbon dioxide, a major greenhouse gas, with fly ash from a cogeneration plant. Characterized in that, when applied to concrete, low carbon dioxide generation, low shrinkage low carbon green cement composition that improves the initial strength and improved drying shrinkage and concrete applied thereto.
국내 총 온실가스 발생량은 2013년 기준으로 발전부문 약 2.6억 톤(약 37 %), 산업부문 2.5억 톤(약 36 %), 수송부문 약 0.9억 톤(약 13 %), 기타부문 약 1.0억 톤(약 14 %)으로 총 약 7억 톤이 발생하고 있다. 다시 산업부문의 온실가스 발생량을 살펴보면, 철강 약 1.13억 톤(45 %), 석유화학 약 0.71억 톤(약 28 %), 시멘트 약 0.41억 톤(약 16 %), 기타 약 0.25억 톤(약 11 %)이 발생하고 있다. 또한 2030년 국내 온실가스 발생은 약 8.5억 톤으로 전망되고 있다.As of 2013, total greenhouse gas emissions in Korea were about 2.6 billion tons (about 37%) in the power generation sector, 250 million tons (about 36%) in the industrial sector, about 0.9 billion tons (about 13%) in the transportation sector, and about 100 million in other sectors. A total of about 700 million tons of tonnes (about 14%). In terms of greenhouse gas emissions in the industrial sector, steel is about 131 million tons (45%), petrochemicals are about 0.71 billion tons (about 28%), cement is about 0.41 billion tons (about 16%), and other about 0.25 billion tons (about 11%) is occurring. In addition, domestic greenhouse gas emissions are projected to be about 250 million tons in 2030.
따라서, 정부는 2030년 국내 온실가스 감축 목표치를 37 %로 설정하고, 산업 전반에 걸쳐 온실가스 감축을 위한 다양한 정책과 노력이 진행 중에 있다.Therefore, the government has set domestic greenhouse gas reduction target of 37% by 2030, and various policies and efforts are underway to reduce greenhouse gas throughout the industry.
시멘트 산업은 철강 및 석유화학 산업과 함께 대표적인 온실가스를 배출하는 대표적인 산업이기 때문에, 온실가스 감축에 대한 노력이 절실히 필요하다. 시멘트는 건설재료의 대표적인 재료인 콘크리트를 생산하기 위해 꼭 필요한 재료이다. 그러나 시멘트는 제조시 1,450 ℃ 이상의 고온에서 소성시키기 때문에 에너지 소비율이 높고, 시멘트의 원료인 석회석의 탈탄산 반응으로 시멘트 1 톤 제조시 온실가스의 주범인 이산화탄소를 약 0.8 kg 발생시킨다. 또한, 시멘트를 사용한 콘크리트는 1 톤당 약 340 kg의 이산화탄소가 발생하는 것으로 알려져 있다. Since the cement industry is a representative industry that emits representative greenhouse gases along with the steel and petrochemical industries, efforts to reduce greenhouse gases are urgently needed. Cement is an essential material for producing concrete, which is a representative material of construction materials. However, since cement is calcined at a high temperature of 1,450 ° C. or higher at the time of manufacture, the energy consumption rate is high, and the decarbonation reaction of limestone, a raw material of cement, generates about 0.8 kg of carbon dioxide, which is the main culprit of greenhouse gases, when producing 1 ton of cement. It is also known that concrete using cement generates about 340 kg of carbon dioxide per tonne.
최근 온실가스 주범인 이산화탄소의 저감의 필요성은 산업전반에 걸쳐 중요한 이슈가 되고 있다. 이산화탄소의 저감을 위해 노력은 건설분야에서도 이루어지고 있고, 그 중 하나로 콘크리트 제조시 시멘트 사용량을 줄이기 위해 노력하고 있다. 구체적으로는 시멘트 줄이고 대신에 비산재(fly ash) 및 고로슬래그 미분말 등의 사용량을 증가시키는 방법이 있고(한국 공개특허 10-2013-0020984), 시멘트를 전혀 사용하지 않은 비산재나 고로슬래그 미분말에 자극제를 첨가하는 무시멘트 방법이 있다. 그러나 무시멘트는 고가의 자극제를 사용해야 되기 때문에 아직까지는 비경제적이고, 시공성이 저하되는 문제 때문에 활용되지 못하고 있다. 시멘트 대신에 비산재나 고로슬래그 미분말 등의 사용량을 증가시키는 방법은 콘크리트 수화열을 저감하는 목적으로 하는 매스콘크리트에 주로 이용되고 있다. 비산재나 고로슬래그 미분말을 많이 사용되게 되면 콘크리트의 수화열 저감측면에서는 유리하나, 콘크리트의 초기강도, 건조수축 등에서는 불리한 측면이 존재한다. 또한, 시멘트 대신에 비산재 및 고로슬래그 미분말을 대체하는 것도 온실가스의 주범인 이산화탄소를 줄이는 방법이지만 보다 이산화탄소를 획기적으로 감소시키기 위해서는 발생된 이산화탄소를 자원화하여 건설분야의 재료로 활용하는 적극적인 방법이 필요하다.Recently, the necessity of reducing carbon dioxide, the main culprit of greenhouse gases, has become an important issue throughout the industry. Efforts are being made in the construction sector to reduce carbon dioxide, and one of them is to reduce the amount of cement used in concrete production. Specifically, instead of reducing cement, there is a method of increasing the amount of fly ash and blast furnace slag powder (Korea Patent Publication No. 10-2013-0020984), and a stimulant is applied to the fly ash or blast furnace slag powder which does not use cement at all. There is a cement method to add. However, since cement is required to use an expensive stimulant, it is still uneconomical and has not been utilized due to a problem of poor construction. Instead of cement, a method of increasing the amount of fly ash or blast furnace slag powder is mainly used for mass concrete for the purpose of reducing heat of hydration of concrete. If fly ash or blast furnace slag powder is used a lot, it is advantageous in terms of reducing heat of hydration of concrete, but there are disadvantages in initial strength of concrete and drying shrinkage. In addition, substituting fly ash and blast furnace slag powder instead of cement is a method of reducing carbon dioxide, which is the main culprit of greenhouse gases, but in order to drastically reduce carbon dioxide, an active method of using the generated carbon dioxide as a material for construction is needed. .
한편, 발전연료인 고열량 수급 여건이 악화로 저열량탄 수요가 늘어나면서 이에 적합한 발전설비로 순환유동층 보일러를 사용하는 열병합발전소 비중이 점차 증가되고 있다. 종래의 고열량 유연탄을 사용할 경우 부산물로 발생되는 비산재는 콘크리트용 혼화재로 널리 사용되고 있다. 그러나 저열량 유연탄을 사용하는 열병합발전소에서 발생되는 애시는 기존 비산재와는 달리 유리석회와 황산화물 함량이 높아 초기 반응성이 빠르고, 발열량이 높아 활용하는데 제한을 받고 있다. 열병합 발전소에서 발생하는 애시를 콘크리트용 혼화재로 사용할 경우 높은 유리석회 성분 때문에 콘크리트의 이상응결, 슬럼프 저하, 지연제의 사용량 증가 등의 문제를 발생시키기 때문에 새로운 재활용 방안의 방법이 필요하다.Meanwhile, as the demand for low calorie coal increases due to deterioration of high calorie supply and demand for power generation fuel, the proportion of cogeneration plants using circulating fluidized bed boilers is gradually increasing. When using a conventional high calorie bituminous coal fly ash generated as a by-product is widely used as a mixed material for concrete. However, ash generated from a cogeneration plant using low calorie bituminous coal has a high initial content of free lime and sulfur oxide, unlike the existing fly ash, and thus is limited in utilization due to high initial reactivity and high calorific value. When ash from a cogeneration plant is used as a mixed admixture for concrete, a new recycling method is needed because problems such as abnormal condensation of concrete, slump reduction and increased use of retardant are caused by high glass lime components.
나아가, 아파트, 빌딩 등 건축구조물이 고층화되면서 구조물의 장수명화에 대한 수요가 증가되고 있다. 이러한 현실적인 수요를 반영하여 국토해양부는 2014년 1월에 공동주택 하자의 조사, 보수비용 산정 방법 및 하자판정 기준 고시하여 콘크리트 구조물의 균열하자 판정 기준를 강화하였다. 많은 건설사들이 콘크리트 구조물의 균열하자 판정기준 강화에 따라 대처하기 위하여 무기계 팽창재 및 화학혼화제인 수축저감제 사용방안을 검토하고 있다. 그러나, 무기계 팽창재로 많이 사용되는 칼슘설포알루미네이트는 외국으로부터 수입하기 때문에 고가이고, 화학 혼화제인 수축저감제도 고가일 뿐 아니라 아직 검증이 불충분하여 활용이 되지 못하고 있다.Furthermore, as the construction structures such as apartments and buildings become higher, the demand for longer life of the structures is increasing. In response to these realistic demands, the Ministry of Land, Transport and Maritime Affairs strengthened the criteria for the determination of crack defects in concrete structures in January 2014 by notifying the investigation of defects in apartment buildings, the method of calculating the repair cost, and the defect determination criteria. Many construction companies are considering the use of shrinkage reducing agents, which are inorganic expansion materials and chemical admixtures, in order to cope with the strengthening of the crack defect criteria of concrete structures. However, calcium sulfoaluminate, which is widely used as an inorganic expander, is expensive because it is imported from foreign countries, and a shrinkage reducing agent, which is a chemical admixture, is not only expensive but has not yet been used due to insufficient verification.
본 발명은 전술한 종래기술의 문제점을 해결하기 위한 것으로, 기존 일반 시멘트 조성물이 가지고 있는 높은 이산화탄소 발생량을 감소시키고, 콘크리트용 결합재로 사용할 경우, 초기강도 증진 및 건조수축이 개선되는 저수축 저탄소 그린 시멘트 조성물을 제공하는 것을 그 목적으로 한다. The present invention is to solve the above-mentioned problems of the prior art, low-shrink low-carbon green cement that reduces the high carbon dioxide generation of the existing general cement composition, when used as a binder for concrete, improves the initial strength and the dry shrinkage It is an object to provide a composition.
또한, 열병합 발전소에서 발생되는 유리석회 함량이 높은 비산재를 온실가스 주요 인자인 이산화탄소와 반응시켜 안정화시킨 탄소광물을 저수축 저탄소 그린 시멘트의 원료로 활용함으로써, 시멘트의 이산화탄소 저감을 획기적으로 개선하는 것을 목적으로 한다.In addition, by using carbon mineral stabilized by reacting carbon dioxide which is a major factor of greenhouse gas with carbon dioxide, which is a high content of free lime generated in cogeneration plant, as a raw material of low shrinkage low carbon green cement, it is aimed to drastically improve the reduction of carbon dioxide in cement. It is done.
나아가, 조강형 팽창재를 시멘트 조성물 원료로 사용함으로써 콘크리트용 결합재로 사용할 때 발생되는 초기강도 저하 및 건조수축 증가에 의한 균열 발생을 개선시키는 것을 목적으로 한다.Furthermore, it is an object of the present invention to improve the occurrence of cracks due to the decrease in the initial strength and the increase in the shrinkage caused when using the cement-based expansion material as a raw material for the cement composition.
상기와 같은 목적을 달성하기 위해, 본 발명의 일 측면은,In order to achieve the above object, an aspect of the present invention,
포틀랜드 시멘트; 탄소광물; 조강형 팽창재; 및 고로슬래그 미분말을 포함하여 구성되는, 그린 시멘트 조성물을 제공한다.Portland cement; Carbon minerals; Crude expansion material; And it provides a green cement composition, comprising a blast furnace slag fine powder.
일 실시예에 있어서, 상기 그린 시멘트 조성물은, 포틀랜드 시멘트 15 내지 85 중량부; 탄소광물 5 내지 20 중량부; 조강형 팽창재 5 내지 15 중량부; 및 고로슬래그 미분말 5 내지 50 중량부;를 포함하여 구성될 수 있다.In one embodiment, the green cement composition, 15 to 85 parts by weight of Portland cement; 5 to 20 parts by weight of carbon minerals; 5 to 15 parts by weight of the crude expandable material; And blast furnace slag fine powder 5 to 50 parts by weight; may be configured to include.
일 실시예에 있어서, 상기 탄소광물은, 유리석회를 포함하는 열병합발전소 비산재(fly ash)를 이산화탄소와 반응시켜 형성될 수 있다.In one embodiment, the carbon mineral may be formed by reacting fly ash of a cogeneration plant including glass lime with carbon dioxide.
일 실시예에 있어서, 상기 탄소광물은, 유리석회 함량이 0.1 wt% 내지 5 wt%일 수 있다.In one embodiment, the carbon mineral, the glass lime content may be 0.1 wt% to 5 wt%.
일 실시예에 있어서, 상기 조강형 팽창재는, 칼슘설포알루미네이트(CSA)계 팽창재, 산화칼슘계 팽창재 및 이들의 조합으로 이루어지는 군으로부터 선택된 1종일 수 있다.In one embodiment, the crude steel expandable material may be one selected from the group consisting of a calcium sulfoaluminate (CSA) -based expander, a calcium oxide-based expander, and a combination thereof.
일 실시예에 있어서, 상기 칼슘설포알루미네이트계 팽창재는, 연주슬래그, 레드머드, 비산재, 바닥재 및 이들의 조합으로 이루어지는 군으로부터 선택된 1종을 1000 ℃ 내지 1450 ℃의 온도에서 소성하여 형성될 수 있다.In one embodiment, the calcium sulfoaluminate-based expansion material may be formed by firing at least one selected from the group consisting of playing slag, red mud, fly ash, flooring material and a combination thereof at a temperature of 1000 ℃ to 1450 ℃. .
일 실시예에 있어서, 상기 칼슘설포알루미네이트계 팽창재는, 칼슘설포알루미네이트 20 내지 40 중량부를 포함하고, 분말도는 3500 ㎠/g 내지 5000 ㎠/g일 수 있다.In one embodiment, the calcium sulfoaluminate-based expansion material, 20 to 40 parts by weight of calcium sulfoaluminate, the powder may be 3500 cm 2 / g to 5000 cm 2 / g.
일 실시예에 있어서, 상기 산화칼슘계 팽창재는, 석회석, 탈황석고, 인산석고 및 이들의 조합으로 이루어지는 군으로부터 선택된 1종을 1000 ℃ 내지 1450 ℃의 온도에서 소성하여 형성될 수 있다.In one embodiment, the calcium oxide-based expandable material may be formed by firing at least one selected from the group consisting of limestone, desulfurized gypsum, phosphate gypsum and combinations thereof at a temperature of 1000 ° C to 1450 ° C.
일 실시예에 있어서, 상기 산화칼슘계 팽창재는, 산화칼슘 20 내지 40 중량부를 포함하고, 분말도는 3500 ㎠/g 내지 5000 ㎠/g일 수 있다.In one embodiment, the calcium oxide-based expansion material, 20 to 40 parts by weight of calcium oxide, the powder may be 3500 cm 2 / g to 5000 cm 2 / g.
또한, 상기와 같은 목적을 달성하기 위해, 본 발명의 또 다른 일 측면은,In addition, in order to achieve the above object, another aspect of the present invention,
상기의 그린 시멘트 조성물, 물, 잔골재, 굵은골재를 포함하여 배합되는, 그린 콘크리트를 제공한다.The green cement composition, water, fine aggregate, coarse aggregate, including the green concrete is provided.
일 실시예에 있어서, 상기 콘크리트는, 상기 그린 시멘트 조성물 10 내지 20 중량부; 상기 물 1 내지 10 중량부; 상기 잔골재 30 내지 50 중량부; 및 상기 굵은골재 30 내지 45 중량부;를 포함하여 배합되는 것을 특징으로 하는 그린 콘크리트를 제공한다.In one embodiment, the concrete, 10 to 20 parts by weight of the green cement composition; 1 to 10 parts by weight of the water; 30 to 50 parts by weight of the fine aggregate; And 30 to 45 parts by weight of the coarse aggregate; provides a green concrete characterized in that it is blended.
본 발명의 일 측면에 따르면, 온실가스의 주범인 이산화탄소를 열병합 발전소 비산재와 반응시킨 탄소광물을 활용함으로써, 기존의 비산재나 고로슬래그 미분말을 단순 혼합한 그린 시멘트보다 이산화탄소량을 더 줄이는 효과가 있다. 또한, 높은 유리석회 함량 때문에 콘크리트용 혼화재로써의 활용에 제약을 받았던 열병합 발전소 비산재를 효과적으로 활용할 수 있다. 나아가, 조강형 팽창재를 사용함으로써 기존 그린 시멘트에서 문제가 되는 조기강도 저하 및 건조수축을 줄이는 효과가 있다. According to an aspect of the present invention, by utilizing carbon minerals reacting carbon dioxide, the main culprit of greenhouse gases, with cogeneration plant fly ash, there is an effect of reducing the amount of carbon dioxide more than green cement simply mixed with existing fly ash or blast furnace slag powder. In addition, the cogeneration plant fly ash, which was constrained as an admixture for concrete due to the high glass lime content, can be effectively utilized. Furthermore, by using the crude steel expansion material there is an effect of reducing the early strength degradation and drying shrinkage that is a problem in the existing green cement.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.The effects of the present invention are not limited to the above-described effects, but should be understood to include all the effects deduced from the configuration of the invention described in the detailed description or claims of the present invention.
도 1은 팽창재에 의한 균열 억제 메카니즘을 개략적으로 나타낸 그림이다.1 is a diagram schematically showing a crack suppression mechanism by the expander.
도 2는 칼슘설포알루미네이트계 팽창재 대체율에 따른 재령 대비 팽창율을 나타낸 그래프이다.Figure 2 is a graph showing the expansion ratio of the age according to the calcium sulfo aluminate-based expansion material replacement rate.
도 3은 칼슘설포알루미네이트계 팽창재 대체율에 따른 재령 대비 압축강도를 나타낸 그래프이다.Figure 3 is a graph showing the compressive strength against the age according to the calcium sulfo aluminate-based expansion material replacement rate.
도 4는 본 발명의 실험예 1에서 재령에 따른 각 콘트리트의 팽창량 및 건조수축량을 나타낸 그래프이다.Figure 4 is a graph showing the amount of expansion and dry shrinkage of each concrete according to the age in Experimental Example 1 of the present invention.
도 5는 본 발명의 실험예 2에서 재령에 따른 각 콘트리트의 팽창량 및 건조수축량을 나타낸 그래프이다.5 is a graph showing the amount of expansion and dry shrinkage of each concrete according to the age in Experimental Example 2 of the present invention.
이하, 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 이점 및 특징, 그리고 그것을 달성하는 방법은 첨부된 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다.Advantages and features of the present invention, and a method of achieving the same will be apparent with reference to the embodiments described below in detail with reference to the accompanying drawings.
그러나, 본 발명은 이하에 개시되는 실시예들에 의해 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 또한, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.However, the present invention is not limited to the embodiments disclosed below, but can be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention, and are commonly used in the art to which the present invention pertains. It is provided to fully inform the person of knowledge of the scope of the invention. Moreover, the invention is only defined by the scope of the claims.
나아가, 본 발명을 설명함에 있어 관련된 공지 기술 등이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그에 관한 자세한 설명은 생략하기로 한다.Furthermore, in the following description of the present invention, if it is determined that related related technologies and the like may obscure the gist of the present invention, detailed description thereof will be omitted.
본 발명의 일 측면은,One aspect of the invention,
포틀랜드 시멘트; 탄소광물; 조강형 팽창재; 및 고로슬래그 미분말을 포함하여 구성되는, 그린 시멘트 조성물을 제공한다.Portland cement; Carbon minerals; Crude expansion material; And it provides a green cement composition, comprising a blast furnace slag fine powder.
상기 그린 시멘트 조성물은,The green cement composition,
포틀랜드 시멘트 15 내지 85 중량부;15 to 85 parts by weight of portland cement;
탄소광물 5 내지 20 중량부;5 to 20 parts by weight of carbon minerals;
조강형 팽창재 5 내지 15 중량부; 및5 to 15 parts by weight of the crude expandable material; And
고로슬래그 미분말 5 내지 50 중량부;를 포함하여 구성될 수 있다.5 to 50 parts by weight of blast furnace slag powder; may be configured to include.
포틀랜드 시멘트는 콘크리트 제조시 가장 일반적으로 사용되는 결합재이다. 시멘트의 주요 화합물은 C3S(3CaO·SiO2), C2S(2CaO·SiO2), C3A(3CaO·Al2O3), C4AF(4CaO·Al2O3·Fe2O3) 등이며 이들은 시멘트의 주요 성질인 수화, 응결, 경화 등의 작용을 지배하는 주요 화합물이다.Portland cement is the most commonly used binder in the manufacture of concrete. The main compounds of cement are C3S (3CaO · SiO 2 ), C2S (2CaO · SiO 2 ), C3A (3CaO · Al 2 O 3 ), C4AF (4CaOAl 2 O 3 · Fe 2 O 3 ) It is the main compound that controls the action of its main properties such as hydration, condensation, curing.
상기 시멘트는 물과 반응하여 C-S-H(calcium silicate hydrate, 칼슘 실리케이트 수화물)와 수산화칼슘(Ca(OH)2)를 생성시키는 수화반응을 일으키고, 이를 통해 응결과 경화가 진행된다. 일반적인 콘크리트 결합재 조성물은 대부분 시멘트로만 구성된다.The cement reacts with water to cause a hydration reaction that produces CSH (calcium silicate hydrate) and calcium hydroxide (Ca (OH) 2 ), through which coagulation and curing proceed. Typical concrete binder compositions mostly consist only of cement.
본 발명의 일 측면에 따른 그린 시멘트 조성물에 있어서, 상기 포틀랜드 시멘트는 분말도가 3000 ㎠/g 내지 4000 ㎠/g인 것이 바람직하다.In the green cement composition according to an aspect of the present invention, it is preferable that the portland cement has a powder degree of 3000 cm 2 / g to 4000 cm 2 / g.
상기 포틀랜드 시멘트는 상기 그린 시멘트 조성물에서 15 내지 85 중량부가 포함될 수 있다. 상기 포틀랜드 시멘트가 15 중량부 미만으로 포함될 경우, 압축강도 발현에 문제가 발생할 수 있고, 상기 포틀랜드 시멘트가 85 중량부 초과로 포함될 경우, 상대적으로 탄소광물이나 고로슬래그 미분말의 사용량 적어 효과적인 이산화탄소를 저감하는데 문제가 발생할 수 있다.The portland cement may include 15 to 85 parts by weight of the green cement composition. When the portland cement is included in less than 15 parts by weight, problems may occur in the development of compressive strength, and when the portland cement is included in more than 85 parts by weight, the amount of carbon minerals or blast furnace slag fine powder is relatively small to reduce the effective carbon dioxide. Problems may arise.
본 발명의 일 측면에 따른 그린 시멘트 조성물에 있어서, 상기 탄소광물은 유리석회를 포함하는 열병합발전소 비산재(fly ash)를 이산화탄소와 반응시켜 형성될 수 있다. 구체적으로, 상기 비산재를 물에 침지시킨 혼합물에 이산화탄소를 주입하여 탄산염을 포함하는 고상을 형성시키고, 상기 혼합물의 pH가 9 이하에서 상기 고상을 고액분리 및 건조하여 탄소광물을 형성할 수 있다.In the green cement composition according to an aspect of the present invention, the carbon mineral may be formed by reacting a cogeneration plant fly ash including glass lime with carbon dioxide. Specifically, carbon dioxide may be injected into the mixture in which the fly ash is immersed in water to form a solid phase including carbonate, and the solid phase may be solid-liquid separated and dried at a pH of the mixture of 9 or less to form a carbon mineral.
하기 표 1에 도시한 바와 같이, 콘크리트용 혼화재로 사용되는 일반 비산재(일반 FA)는 산화칼슘 함량이 4.52 wt%로 낮지만, 열병합 발전소에서 발생되는 비산재(열병합 FA)는 산화칼슘 함량이 27.69 wt%로 비교적 높다. 열병합 발전소에서 발생되는 비산재의 산화칼슘은 대부분 유리석회로 존재하기 때문에 물과 접하면 바로 반응하므로, 콘크리트용 혼화재로 사용할 경우 이상응결, 슬럼프 저하 등이 발생할 수 있고, 사용량이 많을 경우 콘크리트의 과팽창으로 인한 균열이 발생할 수 있다. As shown in Table 1 below, the general fly ash (general FA) used as the admixture for concrete has a low calcium oxide content of 4.52 wt%, but the fly ash (cogeneration FA) generated at the cogeneration plant has a calcium oxide content of 27.69 wt%. Relatively high in%. Since most of the calcium oxide of fly ash generated in the cogeneration plant exists as glass lime, it reacts immediately when it comes into contact with water, so when used as a mixed material for concrete, abnormal condensation and slump decrease may occur. Cracks may occur due to
FA종류FA type SiO2 SiO 2 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 CaOCaO MgOMgO K2OK 2 O Na2ONa 2 O TiO2 TiO 2 MnOMnO P2O5 P 2 O 5 Ig.lossIg.loss
일반FAGeneral FA 58.1258.12 21.3421.34 6.586.58 4.524.52 1.911.91 1.151.15 0.240.24 1.091.09 0.080.08 0.310.31 3.673.67
열병합 FACogeneration FA 34.634.6 13.7113.71 9.289.28 27.6927.69 4.84.8 0.850.85 0.280.28 0.890.89 0.130.13 0.10.1 2.732.73
(상기 표 1에서, 수치는 각 성분의 wt%를 나타냄) (In Table 1, the numerical values represent wt% of each component)
본 발명의 일 측면에 따른 그린 시멘트 조성물에 있어서, 상기 탄소광물은 열병합 발전소에서 발생하는 유리석회를 많이 함유하고 있는 비산재와 산업분야에서 발생하는 온실가스 주범인 이산화탄소를 반응시켜 유리석회 함량이 0.2 wt% 내지 5 wt%일 수 있다.In the green cement composition according to an aspect of the present invention, the carbon mineral is 0.2 wt% of free lime by reacting fly ash containing a lot of free lime generated in a cogeneration plant with carbon dioxide, which is a major greenhouse gas generated in an industrial field. % To 5 wt%.
상기 탄소광물의 분말도는 4000 ㎠/g 내지 6000 ㎠/g인 것이 바람직하다.The carbon mineral powder is preferably 4000 cm 2 / g to 6000 cm 2 / g.
상기 탄소광물은 상기 그린 시멘트 조성물에서 5 내지 20 중량부가 포함될 수 있다. 상기 탄소광물이 5 중량부 미만으로 포함될 경우, 이산화탄소 저감율이 현저히 저하될 문제가 발생할 수 있고, 상기 탄소광물이 20 중량부 초과로 포함될 경우, 이를 포함하는 콘크리트에서 강도가 저하될 우려가 있다.The carbon mineral may include 5 to 20 parts by weight of the green cement composition. When the carbon mineral is included in less than 5 parts by weight, there may be a problem that the carbon dioxide reduction rate is significantly reduced, when the carbon mineral is included in more than 20 parts by weight, there is a fear that the strength in the concrete containing it.
따라서, 콘크리트 유동성, 압축강도, 이산화탄소 저감 등을 고려하여, 상기 탄소광물은 상기 그린 시멘트 조성물에서 5 내지 20 중량부 포함되는 것이 바람직하다.Therefore, in consideration of concrete fluidity, compressive strength, carbon dioxide reduction, etc., the carbon mineral is preferably contained in 5 to 20 parts by weight of the green cement composition.
도 1에 나타낸 바와 같이, 콘크리트는 일반적으로 수축에 의한 균열발생이 높은 재료이기 때문에 팽창재를 사용하여 수축을 감소시킴으로써 균열발생을 감소시킬 수 있다.As shown in FIG. 1, since concrete is generally a material having high cracking caused by shrinkage, it is possible to reduce cracking by reducing shrinkage using an expansion material.
본 발명의 일 측면에 따른 그린 시멘트 조성물에 있어서, 상기 조강형 팽창재는 칼슘설포알루미네이트(CSA)계 팽창재, 산화칼슘계 팽창재 및 이들의 조합으로 이루어지는 군으로부터 선택된 1종일 수 있다.In the green cement composition according to an aspect of the present invention, the crude steel expandable material may be one selected from the group consisting of a calcium sulfoaluminate (CSA) -based expander, a calcium oxide-based expander, and a combination thereof.
상기 칼슘설포알루미네이트계 팽창재는 연주슬래그, 레드머드, 비산재, 바닥재 및 이들의 조합으로 이루어지는 군으로부터 선택된 1종을 1000 ℃ 내지 1450 ℃의 온도에서 소성하여 형성될 수 있다.The calcium sulfoaluminate-based expander may be formed by firing at least one selected from the group consisting of playing slag, red mud, fly ash, flooring, and combinations thereof at a temperature of 1000 ° C to 1450 ° C.
상기 칼슘설포알루미네이트계 팽창재는 칼슘설포알루미네이트 20 내지 40 중량부를 포함할 수 있고, 분말도는 3500 ㎠/g 내지 5000 ㎠/g일 수 있다.The calcium sulfoaluminate-based expander may include 20 to 40 parts by weight of calcium sulfoaluminate, and the powder may be 3500 cm 2 / g to 5000 cm 2 / g.
상기 산화칼슘계 팽창재는 석회석, 탈황석고, 인산석고 및 이들의 조합으로 이루어지는 군으로부터 선택된 1종을 1000 ℃ 내지 1450 ℃의 온도에서 소성하여 형성될 수 있다.The calcium oxide-based expandable material may be formed by firing at least one selected from the group consisting of limestone, desulfurized gypsum, phosphate gypsum and a combination thereof at a temperature of 1000 ° C to 1450 ° C.
상기 산화칼슘계 팽창재는 산화칼슘 20 내지 40 중량부를 포함할 수 있고, 분말도는 3500 ㎠/g 내지 5000 ㎠/g일 수 있다.The calcium oxide-based expandable material may include 20 to 40 parts by weight of calcium oxide, and the powder may be 3500 cm 2 / g to 5000 cm 2 / g.
상기 조강형 팽창재는 조기강도 확보를 위해 분말도가 3500 ㎠/g 내지 5000 ㎠/g인 것이 바람직하고, 상기 그린 시멘트 조성물에서 5 내지 15 중량부가 포함될 수 있다. 상기 조강형 팽창재가 5 중량부 미만으로 포함되는 경우, 이를 포함하는 콘크리트의 팽창율 저하로 건조수축 시 균열 문제가 발생할 수 있고, 상기 조강형 팽창재가 15 중량부를 초과하여 포함되는 경우, 이를 포함하는 콘크리트의 유동성 저하, 과팽창에 의한 균열 발생, 재령에 따라 강도가 저하될 우려가 있다.The crude steel expandable material may have a powder degree of 3500 cm 2 / g to 5000 cm 2 / g to secure early strength, and may include 5 to 15 parts by weight of the green cement composition. When the coarse expandable material is included in less than 5 parts by weight, a cracking problem may occur during dry shrinkage due to a decrease in the expansion ratio of the concrete including the same, when the coarse expandable material is included in excess of 15 parts by weight, the fluidity of the concrete including the same There exists a possibility that intensity | strength may fall with deterioration, crack generation by overexpansion, and age.
따라서, 콘크리트 유동성, 과팽창, 장기 강도 등을 고려하여 상기 조강형 팽창재는 상기 그린 시멘트 조성물에서 5 내지 15 중량부 포함되는 것이 바람직하다.Therefore, in consideration of concrete fluidity, overexpansion, long-term strength, etc., the coarse steel expandable material is preferably included in an amount of 5 to 15 parts by weight in the green cement composition.
고로슬래그 미분말은 제철공정에서 발생되는 부산물로써, 현재 일반 비산재와 더불어 많이 사용되고 있는 콘크리트용 혼화재료이다. 고로슬래그 미분말은 일반적으로 시멘트 수화물과 2차 반응을 통하여 콘크리트 조직을 치밀하게 함으로써 장기적인 강도가 증가한다고 알려져 있다.Blast furnace slag powder is a by-product produced in the steelmaking process, and is a mixed material for concrete, which is widely used together with general fly ash. Blast furnace slag powder is generally known to increase the long-term strength by densifying concrete structure through the secondary reaction with cement hydrate.
본 발명의 일 측면에 따른 그린 시멘트 조성물에 있어서, 상기 고로슬래그 미분말은 분말도가 4000 ㎠/g 내지 6000 ㎠/g일 수 있다.In the green cement composition according to an aspect of the present invention, the blast furnace slag fine powder may have a powder degree of 4000 cm 2 / g to 6000 cm 2 / g.
상기 고로슬래그 미분말은 상기 그린 시멘트 조성물에서 5 내지 50 중량부포함될 수 있다. 상기 고로슬래그 미분말이 5 중량부 미만으로 포함될 경우, 장기 압축강도 발현효과에 있어 문제가 발생할 수 있고, 상기 고로슬래그 미분말이 50 중량부를 초과하여 포함될 경우, 이를 포함하는 시멘트를 이용한 초기 콘크리트의 강도가 저하될 수 있고, 건조수축 발생량이 크게 나타나는 문제가 있을 수 있다.The blast furnace slag fine powder may be included in the green cement composition 5 to 50 parts by weight. When the blast furnace slag fine powder is included in less than 5 parts by weight, there may be a problem in the long-term compressive strength expression effect, when the blast furnace slag fine powder is contained in more than 50 parts by weight, the strength of the initial concrete using the cement containing the same It may be lowered, there may be a problem that a large amount of dry shrinkage appears.
상기의 조성 범위를 갖는 그린 시멘트 조성물은 일반적인 비산재를 포함하는 시멘트 조성물 대비 이산화탄소 발생량을 10 % 내지 30 % 저감시킬 수 있다. 또한, 이를 콘크리트에 적용할 시 조기강도 저하를 억제할 수 있고, 건조 시 수축을 최소화할 수 있으며, 양호한 압축강도를 나타낼 수 있다.Green cement composition having the above composition range can reduce the amount of carbon dioxide generated 10% to 30% compared to the cement composition containing a general fly ash. In addition, when it is applied to concrete it can suppress the early drop in strength, minimize the shrinkage during drying, it can exhibit a good compressive strength.
본 발명의 다른 일 측면은,Another aspect of the invention,
상기의 그린 시멘트 조성물, 물, 잔골재, 굵은골재를 포함하여 배합되는, 그린 콘크리트를 제공한다.The green cement composition, water, fine aggregate, coarse aggregate, including the green concrete is provided.
상기 콘크리트는,The concrete,
상기 그린 시멘트 조성물 10 내지 20 중량부;10 to 20 parts by weight of the green cement composition;
상기 물 1 내지 10 중량부;1 to 10 parts by weight of the water;
상기 잔골재 30 내지 50 중량부; 및30 to 50 parts by weight of the fine aggregate; And
상기 굵은골재 30 내지 45 중량부;를 포함하여 배합될 수 있다.30 to 45 parts by weight of the coarse aggregate; may be combined to include.
상기의 조성 범위를 갖는 그린 콘크리트는 조기강도 저하를 억제할 수 있고, 건조 시 수축을 최소화할 수 있으며, 양호한 압축강도를 나타낼 수 있다.Green concrete having the above composition range can suppress the premature strength decrease, minimize the shrinkage during drying, and can exhibit good compressive strength.
상기의 조성 범위를 갖는 그린 콘크리트는 일반 비산재를 포함하는 콘크리트 대비 이산화탄소 발생량을 10 % 내지 30 % 저감시킬 수 있다.Green concrete having the above composition range can reduce the amount of carbon dioxide generated 10% to 30% compared to the concrete containing the general fly ash.
이하, 비산재의 탄소광물화(탄산화) 전후 이산화탄소 고용량 비교, 탄소광물 함량에 따른 모르타르 특성, 칼슘설포알루미네이트계 팽창재 함량에 따른 시멘트 특성 및 산화칼슘계 팽창재 함량에 따른 시멘트 특성을 나타내었다.Hereinafter, the comparison of the high carbon dioxide capacity before and after the carbon mineralization (carbonization) of fly ash, the mortar characteristics according to the carbon mineral content, the cement characteristics according to the calcium sulfoaluminate-based expander content and the cement characteristics according to the calcium oxide-based expander content.
<비산재의 탄소광물화(탄산화) 전후 이산화탄소 고용량 비교><Comparison of High Capacity of Carbon Dioxide Before and After Carbon Mineralization of Carbonate Ash>
비산재 종류별 탄소광물화(탄산화) 전후 이산화탄소(CO2) 고용량을 표 2에 나타내었다.Table 2 shows the high capacity of carbon dioxide (CO 2 ) before and after carbon mineralization (carbonization) by type of fly ash.
FA 종류FA type 탄산화 전 wt%Wt% before carbonation 탄산화 후 wt%Wt% after carbonation CO2 고용량 (wt%)CO2 high capacity (wt%) 1톤당 고용량 (kg)High capacity per kg (kg)
일반 FAGeneral FA 0.130.13 0.820.82 0.690.69 6.96.9
열병합 FACogeneration FA 4.094.09 11.2811.28 7.197.19 71.971.9
표 2에 나타낸 바와 같이, 일반 비산재는 유리석회 함량이 낮기 때문에 이산화탄소 고용량이 0.69 %로 낮지만, 열병합발전소 비산재는 높은 유리석회 함량 때문에 이산화탄소의 고용량이 7.19 %로 높다. 이는 1 톤당 일반 비산재는 6.9 kg를 고용시킬 수 있고, 열병합발전소 비산재는 71.9 kg를 고용시킬 수 있다는 의미이며, 따라서 열병합발전소 비산재가 일반 비산재 보다 약 10 배 정도 높게 이산화탄소를 고용시킬 수 있는 것을 확인하였다.As shown in Table 2, the general fly ash has a low free lime content, resulting in a low carbon dioxide solids content of 0.69%, but the cogeneration plant fly ash has a high free lime content of 7.19%. This implies that 6.9 kg of regular fly ash per tonne can be employed and 71.9 kg of cogeneration fly ash can be employed, thus confirming that cogeneration fly ash can employ carbon dioxide about 10 times higher than ordinary fly ash. .
<탄소광물 함량에 따른 모르타르 특성>Mortar Characteristics According to Carbon Mineral Content
포틀랜드 시멘트 100 중량부 대비 모래 300 중량부, 물 50 중량부를 포함하는 기본 모르타르를 준비하였다. 그 다음, 상기 기본 모르타르의 포틀랜드 시멘트에 대하여 각각 5 중량부, 10 중량부 대체한 열병합발전소 비산재를 포함하는 모르타르를 배합하였고, 상기 기본 모르타르의 포틀랜드 시멘트에 대하여 각각 5 중량부, 10 중량부 대체한 탄소광물(열병합발전소 비산재를 탄소광물화(탄산화) 반응시킨 것)을 포함하는 모르타르를 배합하였으며, 상기 모르타르들의 특성을 표 3에 나타내었다.Basic mortar including 300 parts by weight of sand and 50 parts by weight of water was prepared based on 100 parts by weight of Portland cement. Subsequently, 5 parts by weight and 10 parts by weight of the mortar including cogeneration plant fly ash, which was replaced by 5 parts by weight and 10 parts by weight, of the base mortar, respectively, were mixed. Mortars containing carbon minerals (carbon mineralization of the cogeneration plant fly ash) were blended, and the characteristics of the mortars are shown in Table 3.
<탄소광물 함량에 따른 모르타르 특성>Mortar Characteristics According to Carbon Mineral Content
포틀랜드 시멘트 100 중량부 대비 모래 300 중량부, 물 50 중량부를 포함하는 기본 모르타르를 준비하였다. 그 다음, 상기 기본 모르타르의 포틀랜드 시멘트에 대하여 각각 5 중량부, 10 중량부 대체한 열병합발전소 비산재를 포함하는 모르타르를 배합하였고, 상기 기본 모르타르의 포틀랜드 시멘트에 대하여 각각 5 중량부, 10 중량부 대체한 탄소광물(열병합발전소 비산재를 탄소광물화(탄산화) 반응시킨 것)을 포함하는 모르타르를 배합하였으며, 상기 모르타르들의 특성을 표 3에 나타내었다.Basic mortar including 300 parts by weight of sand and 50 parts by weight of water was prepared based on 100 parts by weight of Portland cement. Subsequently, 5 parts by weight and 10 parts by weight of the mortar including cogeneration plant fly ash, which was replaced by 5 parts by weight and 10 parts by weight, of the base mortar, respectively, were mixed. Mortars containing carbon minerals (carbon mineralization of the cogeneration plant fly ash) were blended, and the characteristics of the mortars are shown in Table 3.
시멘트 대체제, 대체율(%)Cement substitute,% substitution 초기 플로우(mm)Initial flow (mm) 60분 플로우(mm)60 minutes flow (mm) 초결(분)First minute 종결(분)Termination (minutes) 1일 압축강도(MPa)Daily Compressive Strength (MPa) 3일 압축강도(MPa)3-day compressive strength (MPa) 7일 압축강도(MPa)7 Day Compressive Strength (MPa) 21일 압축강도(MPa)21-day compressive strength (MPa)
일반 FA, 5 %General FA, 5% 212212 192192 230230 320320 15.715.7 3737 45.545.5 60.360.3
일반 FA, 10 %General FA, 10% 213213 184184 280280 370370 8.68.6 3636 4646 57.457.4
열병합 FA, 5 %Cogeneration FA, 5% 202202 175175 130130 250250 19.719.7 38.738.7 48.348.3 6262
열병합 FA, 10 %Cogeneration FA, 10% 197197 165165 140140 190190 13.313.3 37.837.8 46.346.3 60.360.3
탄소광물, 5 %Carbon mineral, 5% 205205 185185 210210 310310 18.218.2 37.737.7 47.447.4 6161
탄소광물, 10 %Carbon mineral, 10% 198198 179179 270270 350350 12.912.9 35.135.1 45.245.2 60.860.8
표 3에 나타낸 바와 같이, 탄산화하지 않은 열병합발전소 비산재를 포함하는 모르타르는 높은 유리석회 함량 때문에 초기 재령인 1일 압축강도가 높게 나타났지만, 유리석회의 초기 반응성 때문에 플로우 손실이 크고, 그 결과 종결의 응결시간이 빨라 시공성에 문제가 있는 것을 확인하였다.As shown in Table 3, mortars containing uncarbonated cogeneration plant fly ash exhibited high daily compressive strength due to high glass lime content, but high flow loss due to the initial reactivity of glass lime, resulting in termination of It was confirmed that there was a problem in workability due to the quick setting time.
반면, 탄소광물을 포함하는 모르타르는 열병합발전소 비산재의 유리석회를 이산화탄소 주입으로 탄산화 시킴으로써 60분 유동성 손실이 양호하고, 그 결과 종결의 응결시간도 기존 콘크리트용 혼화재로 사용되는 일반 비산재와 비슷한 수준을 나타내고 있다. 또한, 초기 재령 1일의 강도는 탄산화 하지 않은 열병합발전소 비산재를 포함하는 모르타르보다는 낮지만 기존 콘크리트용 혼화재료 사용되는 일반 비산재를 포함하는 모르타르보다 높게 나타났다. 따라서, 열병합발전소 비산재를 탄산화한 탄소광물을 콘크리트용 혼화재로 사용되는 일반 비산재처럼 사용이 가능한 것을 확인하였다.On the other hand, mortar containing carbon minerals has a good liquidity loss of 60 minutes by carbonizing glass lime of cogeneration plant fly ash with carbon dioxide injection. As a result, the condensation time of termination is similar to that of conventional fly ash used as concrete admixture. have. In addition, the strength of the early age of one day was lower than that of mortars containing non-carbonated cogeneration fly ash, but higher than the mortars containing conventional fly ashes used in conventional concrete admixtures. Therefore, it was confirmed that the carbon mineral obtained by carbonizing the cogeneration plant fly ash can be used as a general fly ash used as a concrete admixture.
<칼슘설포알루미네이트계 팽창재 함량에 따른 시멘트 특성><Cement Characteristics by Calcium Sulfoaluminate Expanded Material Content>
포틀랜드 시멘트 100 중량부 대비 모래 300 중량부 및 물 50 중량부를 포함하는 기본 시멘트를 준비하였다. 그 다음, 상기 기본 시멘트의 포틀랜드 시멘트에 대하여 각각 5 중량부, 10 중량부, 15 중량부 대체한 칼슘설포알루미네이트계 팽창재를 포함하는 시멘트를 준비하였으며, 상기 시멘트들의 특성을 도 2 및 3에 나타내었다.A basic cement including 300 parts by weight of sand and 50 parts by weight of water was prepared relative to 100 parts by weight of Portland cement. Then, cement containing 5 parts by weight, 10 parts by weight and 15 parts by weight of the calcium sulfoaluminate-based expansion material was prepared for the portland cement of the basic cement, respectively, and the characteristics of the cements are shown in FIGS. 2 and 3. It was.
도 2 및 3에 나타낸 바와 같이, 기본 시멘트와 비교하여 칼슘설포알루미네이트계 조강형 팽창재의 사용량이 증가할수록 팽창량이 기본 시멘트대비 100 % 내지 180 % 팽창하는 것으로 나타났고, 팽창재의 사용량이 증가할수록 압축강도 또한 8 % 내지 20 % 증가하는 것을 확인하였다.As shown in Figures 2 and 3, the amount of expansion of the calcium sulfoaluminate-based coarse-type expansion material increases as the amount of expansion increases from 100% to 180% compared to the base cement, the compressive strength as the amount of use of the expansion material increases It was also confirmed that the 8% to 20% increase.
<산화칼슘계 팽창재 함량에 따른 시멘트 특성><Cement Characteristics by Calcium Oxide Expander Content>
포틀랜드 시멘트 100 중량부 대비 모래 300 중량부 및 물 50 중량부를 포함하는 기본 시멘트를 준비하였다. 그 다음, 상기 기본 시멘트의 포틀랜드 시멘트에 대하여 각각 5 중량부, 10 중량부, 15 중량부 대체한 칼슘설포알루미네이트계 팽창재를 포함하는 시멘트를 준비하였으며, 상기 시멘트들의 특성을 하기 표 4에 나타내었다.A basic cement including 300 parts by weight of sand and 50 parts by weight of water was prepared relative to 100 parts by weight of Portland cement. Then, a cement containing 5 parts by weight, 10 parts by weight, and 15 parts by weight of the calcium sulfoaluminate-based expansion material was prepared for the portland cement of the basic cement, respectively, and the properties of the cements are shown in Table 4 below. .
CaO계 팽창재 대체율(%)CaO-based expansion material replacement rate (%) 2일 팽창율(%)2 Day Expansion Rate (%) 7일 팽창율(%)7-day expansion rate (%) 28일 팽창율(%)28-day expansion rate (%) 초기 시멘트 플로우(mm(Initial cement flow (mm 60분 시멘트 플로우(mm)60 minutes cement flow (mm) 시멘트 초결(분)Cement cementing (min) 시멘트 종결(분)Cement Termination (min) 1일 압축강도(MPa)Daily Compressive Strength (MPa) 7일 압축강도(MPa)7 Day Compressive Strength (MPa) 28일 압축강도(MPa)28 Day Compressive Strength (MPa)
00 0.0010.001 0.0060.006 -0.08-0.08 165165 5555 207207 420420 14.514.5 34.834.8 44.744.7
1010 0.0330.033 0.0540.054 -0.026-0.026 174174 7474 220220 400400 16.916.9 39.739.7 43.143.1
1515 0.0430.043 0.0640.064 -0.014-0.014 177177 8080 203203 360360 1818 39.239.2 43.443.4
표 4에 나타낸 바와 같이, 산화칼슘계 조강형 팽창재의 대체율에 따른 시멘트의 팽창율, 유동성, 응결과 압축강도 특성을 나타내었다. 산화칼슘계 팽창재 대체율이 증가할수록 팽창율이 증가하고, 이로 인해 28일 수축량이 감소하였다. 또한 초기 재령 1일의 압축강도가 시멘트만 단독 사용한 것과 비교하여 산화칼슘계 조강형 팽창재를 사용한 것이 높게 증가하였다.As shown in Table 4, the expansion rate, fluidity, condensation, and compressive strength characteristics of the cement according to the replacement rate of the calcium oxide-based coarse expandable material were shown. As the replacement rate of calcium oxide-based expander increases, the expansion rate increases, which reduces the shrinkage of 28 days. In addition, the compressive strength of the first day of old age was increased compared to the case of using only cement alone, using a calcium oxide-based coarse expanded material.
이하, 실시예 및 실험예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 단, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples. However, the following Examples and Experimental Examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.
<실시예 1> 그린 시멘트 조성물을 포함하는 콘크리트 1Example 1 Concrete 1 Containing Green Cement Composition
포틀랜드 시멘트 70 중량부;70 parts by weight of Portland cement;
탄산칼슘을 포함하는 탄소광물 5 중량부;5 parts by weight of carbon minerals containing calcium carbonate;
칼슘설포알루미네이트계 팽창재 5 중량부; 및5 parts by weight of calcium sulfoaluminate-based expander; And
슬래그 미분말 20 중량부;를 포함하는 시멘트 조성물을 구비하고,It is provided with a cement composition comprising; 20 parts by weight fine slag powder,
상기 시멘트 조성물 340 kg/㎥, 단위수량 170 kg/㎥, 잔골재 901 kg/㎥ 및 굵은골재 860 kg/㎥ 로 배합된 콘크리트를 구비하였다.The cement composition 340 kg / ㎥, unit quantity of 170 kg / ㎥, fine aggregate 901 kg / ㎥ and coarse aggregate 860 kg / ㎥ was provided with concrete.
<실시예 2> 그린 시멘트 조성물을 포함하는 콘크리트 2Example 2 Concrete 2 Containing Green Cement Composition
상기 실시예 1에서, 시멘트 조성을In Example 1, the cement composition
포틀랜드 시멘트 60 중량부;60 parts by weight of Portland cement;
탄산칼슘을 포함하는 탄소광물 10 중량부;10 parts by weight of carbon minerals containing calcium carbonate;
칼슘설포알루미네이트계 팽창재 10 중량부; 및10 parts by weight of calcium sulfoaluminate-based expander; And
슬래그 미분말 20 중량부;를 포함하도록 한 것을 제외하고, 상기 실시예 1과 동일하게 하여 콘크리트를 구비하였다.20 parts by weight of fine powder of slag; except that it was included in the same manner as in Example 1 was provided with concrete.
<실시예 3> 그린 시멘트 조성물을 포함하는 콘크리트 3Example 3 Concrete 3 Containing Green Cement Composition
상기 실시예 1에서, 시멘트 조성을In Example 1, the cement composition
포틀랜드 시멘트 60 중량부;60 parts by weight of Portland cement;
탄산칼슘을 포함하는 탄소광물 5 중량부;5 parts by weight of carbon minerals containing calcium carbonate;
칼슘설포알루미네이트계 팽창재 15 중량부; 및15 parts by weight of calcium sulfoaluminate-based expander; And
슬래그 미분말 20 중량부;를 포함하도록 한 것을 제외하고, 상기 실시예 1과 동일하게 하여 콘크리트를 구비하였다.20 parts by weight of fine powder of slag; except that it was included in the same manner as in Example 1 was provided with concrete.
<비교예 1> 시멘트 조성물을 포함하는 콘크리트Comparative Example 1 Concrete Containing Cement Composition
상기 실시예 1에서, 시멘트 조성을In Example 1, the cement composition
포틀랜드 시멘트 80 중량부; 및80 parts by weight of Portland cement; And
슬래그 미분말 20 중량부;를 포함하도록 한 것을 제외하고, 상기 실시예 1과 동일하게 하여 콘크리트를 구비하였다.20 parts by weight of fine powder of slag; except that it was included in the same manner as in Example 1 was provided with concrete.
<실험예 1> 시멘트의 탄소광물 및 조강형 팽창재 대체에 따른 콘크리트 압축강도 비교 1<Experiment 1> Comparison of compressive strength of concrete according to the substitution of carbon mineral and crude expansion type cement
상기 실시예 1 내지 3 및 비교예 1의 조성, 배합 및 압축강도를 하기 표 5 및 도 4에 나타내었다.Compositions, formulations and compressive strengths of Examples 1 to 3 and Comparative Example 1 are shown in Table 5 and FIG. 4.
구분division OPC (wt %)OPC (wt%) 슬래그 미분말 (wt %)Slag fine powder (wt%) 탄소 광물 (wt %)Carbon minerals (wt%) 조강형 팽창재 (wt %)Rough Steel Expansion Material (wt%) W/B (%)W / B (%) S/a (%)S / a (%) W (kg/㎥)W (kg / ㎥) B (kg/㎥)B (kg / ㎥) S (kg/㎥)S (kg / ㎥) G (kg/㎥)G (kg / ㎥) 1일 압축강도(MPa)Daily Compressive Strength (MPa) 3일 압축강도(MPa)3-day compressive strength (MPa) 7일 압축강도(MPa)7 Day Compressive Strength (MPa) 28일 압축강도(MPa)28 Day Compressive Strength (MPa)
비교예 1Comparative Example 1 8080 2020 5050 5151 170170 340340 901901 860860 2.72.7 17.317.3 24.124.1 36.436.4
실시예 1Example 1 7070 2020 55 55 5050 5151 170170 340340 901901 860860 3.83.8 18.818.8 26.526.5 3939
실시예 2Example 2 6060 2020 1010 1010 5050 5151 170170 340340 901901 860860 2.92.9 1818 24.324.3 36.636.6
실시예 3Example 3 6060 2020 55 1515 5050 5151 170170 340340 901901 860860 3.23.2 18.318.3 25.925.9 38.438.4
(상기 표 5에서, OPC:포클랜드 시멘트, W/B:물결합재비, S/a:잔골재율, W:단위수량, B:결합재(시멘트 조성물)량, S:잔골재, G:굵은골재 를 나타냄)In Table 5, OPC: Falkland cement, W / B: water binder ratio, S / a: fine aggregate ratio, W: unit quantity, B: binder (cement composition) amount, S: fine aggregate, G: coarse aggregate )
표 5 및 도 4에 나타낸 바와 같이, 현장에서 일반적으로 사용되는 시멘트(결합재) 조성물을 포함하는 콘크리트 배합인 비교예 1에 비해 실시예 1 내지 3은 상대적으로 시멘트량이 감소했음에 불구하고 동등 이상의 압축강도를 발현하고 있다. 또한, 비교예 1과 비교하여 실시예 1 내지 3이 팽창량이 크고 이로 인해 건조수축이 감소되는 것으로 나타났다.As shown in Table 5 and Figure 4, compared to Comparative Example 1, which is a concrete formulation containing a cement (binder) composition commonly used in the field, Examples 1 to 3 are equivalent or more compression, although the amount of cement is relatively reduced. It expresses strength. In addition, compared with Comparative Example 1, Examples 1 to 3 has a large amount of expansion, thereby reducing the dry shrinkage.
<실시예 4> 그린 시멘트 조성물을 포함하는 콘크리트 4Example 4 Concrete 4 Containing Green Cement Composition
포틀랜드 시멘트 30 중량부;30 parts by weight of Portland cement;
탄산칼슘을 포함하는 탄소광물 20 중량부;20 parts by weight of carbon minerals containing calcium carbonate;
칼슘설포알루미네이트계 팽창재 10 중량부; 및10 parts by weight of calcium sulfoaluminate-based expander; And
슬래그 미분말 40 중량부;를 포함하는 시멘트 조성물을 구비하고,40 parts by weight of fine slag powder; provided with a cement composition comprising,
상기 시멘트 조성물 450 kg/㎥, 단위수량 165 kg/㎥, 잔골재 893 kg/㎥ 및 굵은골재 822 kg/㎥ 로 배합된 콘크리트를 구비하였다.The cement composition 450 kg / ㎥, unit quantity 165 kg / ㎥, fine aggregate 893 kg / ㎥ and coarse aggregate 822 kg / ㎥ was provided with concrete.
<실시예 5> 그린 시멘트 조성물을 포함하는 콘크리트 5Example 5 Concrete 5 Containing Green Cement Composition
상기 실시예 4에서, 시멘트 조성을In Example 4, the cement composition
포틀랜드 시멘트 25 중량부;25 parts by weight of Portland cement;
탄산칼슘을 포함하는 탄소광물 15 중량부;15 parts by weight of carbon minerals containing calcium carbonate;
칼슘설포알루미네이트계 팽창재 10 중량부; 및10 parts by weight of calcium sulfoaluminate-based expander; And
슬래그 미분말 40 중량부;를 포함하도록 한 것을 제외하고, 상기 실시예 4와 동일하게 하여 콘크리트를 구비하였다.40 parts by weight of fine powder of slag; except that it was included in the same manner as in Example 4 was provided with concrete.
<실시예 6> 그린 시멘트 조성물을 포함하는 콘크리트 6Example 6 Concrete 6 Containing Green Cement Composition
상기 실시예 4에서, 시멘트 조성을In Example 4, the cement composition
포틀랜드 시멘트 20 중량부;20 parts by weight of Portland cement;
탄산칼슘을 포함하는 탄소광물 15 중량부;15 parts by weight of carbon minerals containing calcium carbonate;
칼슘설포알루미네이트계 팽창재 15 중량부; 및15 parts by weight of calcium sulfoaluminate-based expander; And
슬래그 미분말 40 중량부;를 포함하도록 한 것을 제외하고, 상기 실시예 4와 동일하게 하여 콘크리트를 구비하였다.40 parts by weight of fine powder of slag; except that it was included in the same manner as in Example 4 was provided with concrete.
<비교예 2> 시멘트 조성물을 포함하는 콘크리트Comparative Example 2 Concrete Including Cement Composition
상기 실시예 4에서, 시멘트 조성을In Example 4, the cement composition
포틀랜드 시멘트 35 중량부;35 parts by weight of Portland cement;
비산재 25 중량부; 및25 parts by weight of fly ash; And
슬래그 미분말 40 중량부;를 포함하도록 한 것을 제외하고, 상기 실시예 4와 동일하게 하여 콘크리트를 구비하였다.40 parts by weight of fine powder of slag; except that it was included in the same manner as in Example 4 was provided with concrete.
<실험예 2> 시멘트의 탄소광물 및 조강형 팽창재 대체에 따른 콘크리트 압축강도 비교 2Experimental Example 2 Comparison of Concrete Compressive Strength by Replacing Carbon Minerals and Crude Expandables in Cement 2
상기 실시예 4 내지 6 및 비교예 2의 조성, 배합 및 압축강도를 하기 표 6 및 도 5에 나타내었다.Compositions, formulations and compressive strengths of Examples 4 to 6 and Comparative Example 2 are shown in Table 6 and FIG. 5.
구분division OPC (wt%)OPC (wt%) 슬래그 미분말 (wt%)Slag fine powder (wt%) 비산재 (wt%)Fly ash (wt%) 탄소광물 (wt%)Carbon mineral (wt%) 조강형 팽창재 (wt%)Rough Steel Expansion Material (wt%) W/B (%)W / B (%) S/a (%)S / a (%) W (kg/㎥)W (kg / ㎥) B (kg/㎥)B (kg / ㎥) S (kg/㎥)S (kg / ㎥) G (kg/㎥)G (kg / ㎥) 3일 압축강도(MPa)3-day compressive strength (MPa) 7일 압축강도(MPa)7 Day Compressive Strength (MPa) 28일 압축강도(MPa)28 Day Compressive Strength (MPa) 56일 압축강도(MPa)56 day compressive strength (MPa)
비교예 2Comparative Example 2 3535 4040 2525 36.736.7 52.652.6 165165 450450 893893 822822 15.215.2 25.825.8 41.341.3 49.149.1
실시예 4Example 4 3030 4040 2020 1010 36.736.7 52.652.6 165165 450450 893893 822822 17.217.2 27.927.9 47.847.8 53.353.3
실시예 5Example 5 2525 4040 1515 1010 36.736.7 52.652.6 165165 450450 893893 822822 1515 28.228.2 4444 51.451.4
실시예 6Example 6 2020 4040 1515 1515 36.736.7 52.652.6 165165 450450 893893 822822 14.914.9 27.227.2 43.743.7 50.750.7
(상기 표 6에서, OPC:포클랜드 시멘트, W/B:물결합재비, S/a:잔골재율, W:단위수량, B:결합재(시멘트 조성물)량, S:잔골재, G:굵은골재 를 나타냄)In Table 6, OPC: Falkland cement, W / B: water binder material ratio, S / a: fine aggregate ratio, W: unit quantity, B: binder (cement composition) amount, S: fine aggregate, G: coarse aggregate )
표 6 및 도 5에 나타낸 바와 같이, 재령 28일 이후의 압축강도는 저수축 저탄소 그린 시멘트 조성물을 사용한 실시 예 4 내지 6이 비교 예 2와 비교하여 동등 이상의 압축강도를 발현하고 있다.As shown in Table 6 and Figure 5, the compressive strength after the age of 28 days, the Examples 4 to 6 using the low shrinkage low carbon green cement composition expresses the compressive strength equal to or greater than in Comparative Example 2.
대형매트 기초 콘크리트 구조물에 사용되는 기존 콘크리트는 수화열에 의한 균열 저감을 위해 고로슬래그 미분말과 비산재를 다량으로 사용한다. 초기 재령 강도보다 28일 이후 장기강도가 중요하고, 고로슬래그 미분말등을 많이 사용하기 때문에 건조수축 발생량도 증가할 수 있다.Existing concrete used in large mat foundation concrete structures uses blast furnace slag fine powder and fly ash in large quantities to reduce cracks due to hydration heat. Long-term strength after 28 days is more important than initial age strength, and the amount of dry shrinkage may increase due to the use of blast furnace slag fine powder.
본 발명의 실시예 4 내지 6은, 도 6에 나타난 바와 같이 비교 예 2와 비교하여 그린 시멘트 조성물의 건조수축량이 적게 발생하는 것으로 나타났다. Examples 4 to 6 of the present invention, as shown in Figure 6 was shown to occur less dry shrinkage amount of the green cement composition compared to Comparative Example 2.
<실험예 3> 시멘트의 이산화탄소 발생량 및 저감율 비교Experimental Example 3 Comparison of Carbon Dioxide Generation and Reduction Rates of Cement
상기 실시예 4 내지 6 및 비교예 2의 결합재 1 톤당 CO2 발생량 및 저감율을 하기 표 7에 나타내었다.The amount of CO 2 generated per 1 ton of the binder of Examples 4 to 6 and Comparative Example 2 and the reduction rate are shown in Table 7 below.
구분division OPC(wt%)OPC (wt%) 슬래그 미분말 (wt%)Slag fine powder (wt%) 비산재 (wt%)Fly ash (wt%) 탄소광물 (wt%)Carbon mineral (wt%) 조강형 팽창재 (wt%)Rough Steel Expansion Material (wt%) OPC 1 톤당 CO2 발생량(kg)OPC 1 ton of CO 2 generation amount (kg) 슬래그 미분말 1 톤당 CO2 발생량(kg) Slag per ton of CO 2 generation amount (kg) 비산재 1 톤당 CO2 발생량(kg)CO 2 emissions per tonne of fly ash (kg) 탄소광물 1 톤당 CO2 발생량(kg)CO 2 emissions per tonne of carbon mineral (kg) 조강형 팽창재 1 톤당 CO2 발생량(kg)Joganghyeong expandable material per ton of CO 2 generation amount (kg) 합계Sum CO2 저감율(%)CO 2 reduction rate (%)
비교예 2Comparative Example 2 3535 4040 2525 304.5304.5 15.115.1 3.433.43 323323 00
실시예 4Example 4 3030 4040 2020 1010 261261 15.115.1 -11.6-11.6 2929 293.5293.5 9.139.13
실시예 5Example 5 2525 4040 1515 1010 217.5217.5 15.115.1 -8.73-8.73 2929 252.9252.9 21.721.7
실시예 6Example 6 2020 4040 1515 1515 174174 15.115.1 -8.73-8.73 43.543.5 223.9223.9 30.730.7
(1톤 생산 시 CO2 발생량은, OPC(포틀랜드 시멘트):870, 슬래그 미분말:37.7, 비산재 13.7, 탄소광물 -58.2, 조강형 팽창재:290 이고, 탄소광물의 톤당 CO2 발생량은 13.7(비산재 발생량) - 71.9(CO2와의 탄산화 반응 고용량) = -58.2 로 계산)(1 ton produced when CO 2 emissions is, OPC (Portland cement): 870, Slag: 37.7, 13.7 fly ash, carbon minerals -58.2, joganghyeong expandable material: 290, and the amount of generated CO 2 per ton of mineral carbon was 13.7 (ash amount) 71.9 (higher carbonation reaction with CO 2 ) = -58.2
표 7에 나타낸 바와 같이, 비교예 2의 기존 시멘트(결합재)와 비교하여 실시예 4 내지 6의 저수축 저탄소 그린 시멘트 조성물이 CO2 발생량을 약 9.13 % 내지 30.7 % 더 감소시킬수 있는 것을 확인하였다.As shown in Table 7, it was confirmed that the low shrinkage low carbon green cement composition of Examples 4 to 6 can further reduce the CO 2 generation amount by about 9.13% to 30.7% compared with the existing cement (binder) of Comparative Example 2 .
지금까지 본 발명의 일 측면에 따른 탄소광물화 처리된 비산재 및 조강형 팽창재를 포함하는 그린 시멘트 조성물 및 이를 적용한 콘크리트에 관한 구체적인 실시예에 관하여 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서는 여러 가지 실시 변형이 가능함은 자명하다.So far it has been described with respect to the green cement composition comprising a carbon mineralized fly ash and a crude expansion material according to an aspect of the present invention and a specific embodiment of the concrete applied thereto, without departing from the scope of the present invention It is obvious that the embodiment can be modified.
그러므로 본 발명의 범위에는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the claims below and equivalents thereof.
즉, 전술된 실시예는 모든 면에서 예시적인 것이며, 한정적인 것이 아닌 것으로 이해되어야 하며, 본 발명의 범위는 상세한 설명보다는 후술될 특허청구범위에 의하여 나타내어지며, 그 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.In other words, the foregoing embodiments are to be understood in all respects as illustrative and not restrictive, the scope of the invention being indicated by the following claims rather than the detailed description, and the meaning and scope of the claims and All changes or modifications derived from the equivalent concept should be interpreted as being included in the scope of the present invention.

Claims (11)

  1. 포틀랜드 시멘트; 탄소광물; 조강형 팽창재; 및 고로슬래그 미분말을 포함하여 구성되는, 그린 시멘트 조성물.Portland cement; Carbon minerals; Crude expansion material; And blast furnace slag fine powder.
  2. 제1항에 있어서,The method of claim 1,
    상기 그린 시멘트 조성물은,The green cement composition,
    포틀랜드 시멘트 15 내지 85 중량부;15 to 85 parts by weight of portland cement;
    탄소광물 5 내지 20 중량부;5 to 20 parts by weight of carbon minerals;
    조강형 팽창재 5 내지 15 중량부; 및5 to 15 parts by weight of the crude expandable material; And
    고로슬래그 미분말 5 내지 50 중량부;를 포함하여 구성되는 것을 특징으로 하는 그린 시멘트 조성물.The blast furnace slag fine powder 5 to 50 parts by weight; Green cement composition comprising a.
  3. 제1항에 있어서,The method of claim 1,
    상기 탄소광물은,The carbon mineral,
    유리석회를 포함하는 열병합발전소 비산재(fly ash)를 이산화탄소와 반응시켜 형성된 것을 특징으로 하는 그린 시멘트 조성물.Green cement composition, characterized in that formed by reacting fly ash cogeneration plant containing glass lime with carbon dioxide.
  4. 제3항에 있어서,The method of claim 3,
    상기 탄소광물은,The carbon mineral,
    유리석회 함량이 0.1 wt% 내지 5 wt%인 것을 특징으로 하는 그린 시멘트 조성물.Green lime composition, characterized in that the free lime content of 0.1 wt% to 5 wt%.
  5. 제1항에 있어서,The method of claim 1,
    상기 조강형 팽창재는,The steel type expansion material,
    칼슘설포알루미네이트(CSA)계 팽창재, 산화칼슘계 팽창재 및 이들의 조합으로 이루어지는 군으로부터 선택된 1종인 것을 특징으로 하는 그린 시멘트 조성물.A green cement composition, characterized in that it is one kind selected from the group consisting of a calcium sulfoaluminate (CSA) -based expander, a calcium oxide-based expander, and a combination thereof.
  6. 제5항에 있어서,The method of claim 5,
    상기 칼슘설포알루미네이트계 팽창재는,The calcium sulfoaluminate-based expansion material,
    연주슬래그, 레드머드, 비산재, 바닥재 및 이들의 조합으로 이루어지는 군으로부터 선택된 1종을 1000 ℃ 내지 1450 ℃의 온도에서 소성하여 형성되는 것을 특징으로 하는 그린 시멘트 조성물.Green cement composition, characterized in that formed by firing at a temperature of 1000 ℃ to 1450 ℃ selected from the group consisting of playing slag, red mud, fly ash, flooring and combinations thereof.
  7. 제5항에 있어서,The method of claim 5,
    상기 칼슘설포알루미네이트계 팽창재는,The calcium sulfoaluminate-based expansion material,
    칼슘설포알루미네이트 20 내지 40 중량부를 포함하고, 분말도는 3500 ㎠/g 내지 5000 ㎠/g인 것을 특징으로 하는 그린 시멘트 조성물.20 to 40 parts by weight of calcium sulfoaluminate, and the powder degree is green cement composition, characterized in that 3500 cm 2 / g to 5000 cm 2 / g.
  8. 제5항에 있어서,The method of claim 5,
    상기 산화칼슘계 팽창재는,The calcium oxide expandable material,
    석회석, 탈황석고, 인산석고 및 이들의 조합으로 이루어지는 군으로부터 선택된 1종을 1000 ℃ 내지 1450 ℃의 온도에서 소성하여 형성되는 것을 특징으로 하는 그린 시멘트 조성물.Green cement composition, characterized in that formed by firing at a temperature of 1000 ℃ to 1450 ℃ selected from the group consisting of limestone, desulfurized gypsum, phosphate gypsum and combinations thereof.
  9. 제5항에 있어서,The method of claim 5,
    상기 산화칼슘계 팽창재는,The calcium oxide expandable material,
    산화칼슘 20 내지 40 중량부를 포함하고, 분말도는 3500 ㎠/g 내지 5000 ㎠/g인 것을 특징으로 하는 그린 시멘트 조성물.Green cement composition comprising 20 to 40 parts by weight of calcium oxide, the powder degree is 3500 cm 2 / g to 5000 cm 2 / g.
  10. 제1항의 그린 시멘트 조성물, 물, 잔골재, 굵은골재를 포함하여 배합되는, 그린 콘크리트.The green concrete composition of Claim 1 mix | blended including water, fine aggregate, and a coarse aggregate.
  11. 제10항에 있어서,The method of claim 10,
    상기 콘크리트는,The concrete,
    상기 그린 시멘트 조성물 10 내지 20 중량부;10 to 20 parts by weight of the green cement composition;
    상기 물 1 내지 10 중량부;1 to 10 parts by weight of the water;
    상기 잔골재 30 내지 50 중량부; 및30 to 50 parts by weight of the fine aggregate; And
    상기 굵은골재 30 내지 45 중량부;를 포함하여 배합되는 것을 특징으로 하는 그린 콘크리트.30 to 45 parts by weight of the coarse aggregate; Green concrete characterized in that it is blended.
PCT/KR2016/012043 2016-10-25 2016-10-26 Low-shrinkage and low-carbon green cement composition comprising carbon-mineralized fly ash and early strength type expansion agent, and concrete having same applied thereto WO2018079868A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160138894A KR101834539B1 (en) 2016-10-25 2016-10-25 A composition of low-shrinkage low-carbon green cement comprising carbon-mineralized fly ash and early strength expansive admixture and concrete applied thereby
KR10-2016-0138894 2016-10-25

Publications (1)

Publication Number Publication Date
WO2018079868A1 true WO2018079868A1 (en) 2018-05-03

Family

ID=61727611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012043 WO2018079868A1 (en) 2016-10-25 2016-10-26 Low-shrinkage and low-carbon green cement composition comprising carbon-mineralized fly ash and early strength type expansion agent, and concrete having same applied thereto

Country Status (2)

Country Link
KR (1) KR101834539B1 (en)
WO (1) WO2018079868A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110066130A (en) * 2019-04-30 2019-07-30 镇江苏博特新材料有限公司 A kind of white swelling agent and preparation method thereof for architectural concrete

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102468029B1 (en) 2021-12-28 2022-11-17 주식회사 삼표산업 Ultra-low shrinkage concrete composition with expansion control technology using SO3 and surface tension control technology using shrinkage reducing agent
CN114455863A (en) * 2022-03-14 2022-05-10 辛集慕湖混凝土有限公司 Aluminate cement and preparation method thereof
KR102536071B1 (en) 2022-04-07 2023-05-30 주식회사 삼표산업 Methods for Preparing Shrinkage Reduced Concrete Compositions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090053572A (en) * 2007-11-23 2009-05-27 쌍용양회공업(주) Low-heat cement compositions for super high strength concrete
KR20100126985A (en) * 2009-05-25 2010-12-03 코오롱건설주식회사 A high strength concrete composition with fire resistance and concrete using it
KR101423131B1 (en) * 2013-01-09 2014-07-28 경기대학교 산학협력단 Concrete Admixture Using Fly Ash Produced by CFB Power Plants and Method for Preparing the Same
KR101431586B1 (en) * 2012-07-23 2014-08-20 주식회사 윈플로 Cement compositions of rapid expansion agent using industrial by-products
KR101659257B1 (en) * 2013-09-23 2016-09-30 주식회사 디제론 A Composite of Hauyne cement by using fly ash of fluidize-bed boiler and Waste Aluminium Powder and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090053572A (en) * 2007-11-23 2009-05-27 쌍용양회공업(주) Low-heat cement compositions for super high strength concrete
KR20100126985A (en) * 2009-05-25 2010-12-03 코오롱건설주식회사 A high strength concrete composition with fire resistance and concrete using it
KR101431586B1 (en) * 2012-07-23 2014-08-20 주식회사 윈플로 Cement compositions of rapid expansion agent using industrial by-products
KR101423131B1 (en) * 2013-01-09 2014-07-28 경기대학교 산학협력단 Concrete Admixture Using Fly Ash Produced by CFB Power Plants and Method for Preparing the Same
KR101659257B1 (en) * 2013-09-23 2016-09-30 주식회사 디제론 A Composite of Hauyne cement by using fly ash of fluidize-bed boiler and Waste Aluminium Powder and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110066130A (en) * 2019-04-30 2019-07-30 镇江苏博特新材料有限公司 A kind of white swelling agent and preparation method thereof for architectural concrete
CN110066130B (en) * 2019-04-30 2021-04-20 镇江苏博特新材料有限公司 White expanding agent for decorating concrete and preparation method thereof

Also Published As

Publication number Publication date
KR101834539B1 (en) 2018-03-06

Similar Documents

Publication Publication Date Title
WO2018079868A1 (en) Low-shrinkage and low-carbon green cement composition comprising carbon-mineralized fly ash and early strength type expansion agent, and concrete having same applied thereto
WO2011087304A2 (en) Alkali-activated binding material having no cement and comprising a complex alkali activator, and mortar or concrete using same
WO2021177541A1 (en) Method for repair and reinforcement of concrete structure using three-dimensional fibers
KR101313015B1 (en) Cement additive and cement composition
WO2010087636A2 (en) Alkali-activated binder, alkali-activated mortar, concrete products and wet red clay paving material using binder
WO2014017710A1 (en) Hydraulic binder composition using rapidly-cooled ladle furnace slag powder, and method for preparing same
Galbenis et al. Use of construction and demolition wastes as raw materials in cement clinker production
JPWO2002022518A1 (en) Cement composition
US20070084383A1 (en) Hydraulic binder having low CO2 emission level
EP1362017B1 (en) Cementitious material
WO2018074643A1 (en) Mine backfill composition comprising carbon dioxide-fixed fly ash and bottom ash from circulating fluidized bed combustion boiler
US10807911B2 (en) Concrete composition and production method therefor
JP5750011B2 (en) Blast furnace cement composition
WO2018016781A1 (en) Slag-containing high-early strength mixture for cement concrete and production method therefor
WO2018216932A1 (en) Method for manufacturing foam molded product
KR20180014373A (en) Calcium Sulfoaluminate-Based Clinker Composition Used Disposal Resources, Cement Composition Containing the Clinker Composition, and Method for Manufacturing the Cement Composition
WO2018016780A1 (en) Calcium compound-containing high-early strength mixture for cement concrete and production method therefor
KR101859704B1 (en) Blast furnace slag based no cement binder containing calcium chloride
KR102181104B1 (en) Cement for hardening accelerated secondary concrete product using industrial by-products
KR101821647B1 (en) Green cement composite and making method thereof
CA2210781C (en) Quick-setting cement containing clinker based on calcium fluoro-aluminate mixed with lime
WO2023080428A1 (en) Nanoparticles for early strength development of concrete, composition for forming concrete comprising same, and method for preparing same
KR101706272B1 (en) Mortar composition and structure repair method using thereof
KR20110091170A (en) Clinker using steel sludge and municipal solid waste incineration fly ash and method for manufacturing the same
US6858075B1 (en) Thin concrete repair composition for alkali-aggregate reaction affected concrete

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919967

Country of ref document: EP

Kind code of ref document: A1