WO2019245154A1 - Cation exchange membrane comprising polymer support and manufacturing method therefor - Google Patents

Cation exchange membrane comprising polymer support and manufacturing method therefor Download PDF

Info

Publication number
WO2019245154A1
WO2019245154A1 PCT/KR2019/004908 KR2019004908W WO2019245154A1 WO 2019245154 A1 WO2019245154 A1 WO 2019245154A1 KR 2019004908 W KR2019004908 W KR 2019004908W WO 2019245154 A1 WO2019245154 A1 WO 2019245154A1
Authority
WO
WIPO (PCT)
Prior art keywords
cation exchange
exchange membrane
ethylene
styrene
formula
Prior art date
Application number
PCT/KR2019/004908
Other languages
French (fr)
Korean (ko)
Inventor
이춘구
김영수
Original Assignee
주식회사 이노메디텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이노메디텍 filed Critical 주식회사 이노메디텍
Priority to JP2021520890A priority Critical patent/JP2021527755A/en
Priority to CN201980040802.6A priority patent/CN112313269A/en
Publication of WO2019245154A1 publication Critical patent/WO2019245154A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/20Polymers characterized by their physical structure
    • C08J2300/208Interpenetrating networks [IPN]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene

Definitions

  • the present invention relates to a cation exchange membrane and a method for producing the same, and more particularly, to a cation exchange membrane having excellent thermal stability and mechanical properties, and a simplified process, and to a method for producing a cation exchange membrane having excellent productivity with low productivity and low defect rate.
  • Ion exchange membranes such as NEOSEPTA (ASTOM Corp. Japan) and SELEMION (Asahi Glass Company, Japan), which are conventionally used, are copolymerized with a support made of PVC spun fiber and styrene-divinylbenzene monomer by paste method. Ion exchange membranes prepared by sulfonation have relatively good electrochemical properties and are widely used worldwide.
  • the paste method is a method of impregnating and coating a woven support on a paste mixed with a PVC powder and a monomer. Air gaps generated by unimpregnation may remain as pin holes later to degrade the performance of the ion exchange membrane. It is a tricky process that requires attention.
  • the use temperature of the ion exchange membrane must be limited to 40 °C or less, the temperature limit of the treated water is eventually for cooling Pretreatment equipment is required to increase the cost of the overall ion exchange system.
  • some plasticizers are used to overcome brittleness, which may be difficult to apply to the food field because the plasticizer may be eluted at a high temperature.
  • An object of the present invention is to provide a cation exchange membrane having excellent thermal stability and mechanical properties in view of the problems of the prior art.
  • the cation exchange membrane of the present invention is a support comprising one or more of the compounds represented by the following formula (1) and (2); And a cation exchanger, wherein the support and the cation exchanger can form an interpenetrating polymer network structure.
  • R is a C1 acetoxyl group or a C1 to C4 acrylic ester group
  • n are the number of repetitions of the repeating unit
  • n is from 100: 5 to 100: 50
  • the number average molecular weight (Mn) is 3,000 to 500,000.
  • R is a C1 to C4 acrylic ester group
  • n are the number of repetitions of the repeating unit
  • n is from 100: 5 to 100: 50
  • the number average molecular weight (Mn) is 3,000 to 500,000.
  • the compound represented by R is an aceoxyl group may be preferably an ethylene-vinyl acetate copolymer (EVA).
  • EVA ethylene-vinyl acetate copolymer
  • the compound represented by R is an acrylic ester group may be at least one selected from ethylene-methyl acrylate copolymer (EMA), ethylene-ethyl acrylate copolymer (EEA), and ethylene-butyl acrylate copolymer (EBA).
  • EMA ethylene-methyl acrylate copolymer
  • EAA ethylene-ethyl acrylate copolymer
  • EBA ethylene-butyl acrylate copolymer
  • the compound represented by Formula 2 may be at least one selected from ethylene-methyl methacrylate copolymer (EMMA) and ethylene-glycidyl methacrylate copolymer (EGMA).
  • EMMA ethylene-methyl methacrylate copolymer
  • EGMA ethylene-glycidyl methacrylate copolymer
  • the cation exchanger may be a polymer having a sulfonic acid functional group and polymerized with one or more monomers selected from styrene, divinylbenzene, ⁇ -methyl styrene, methyl styrene, t-butyl styrene, and chloromethyl styrene.
  • the thickness of the support may be 0.01 to 1 mm.
  • the method for producing a cation exchange membrane of the present invention is (a) a solution for polymerization comprising at least one monomer selected from styrene, divinylbenzene, ⁇ -methyl styrene, methyl styrene, t-butyl styrene, chloromethyl styrene and an initiator.
  • Preparing a mixture by immersing a support including at least one of the compounds represented by Formulas 1 and 2 below; (b) polymerizing the mixture to produce a base film; (c) sulfonating the base membrane to prepare a cation exchange membrane into which sulfonic acid functional groups are introduced.
  • step (a) the support can be swollen.
  • the swelling degree of the swelled support may be 10 to 60%.
  • the temperature of step (a) may be below the onset temperature of the initiator.
  • the initiator may be at least one selected from Benzoyl peroxide (BPO) and Azobisisobutyronitrile (AIBN).
  • BPO Benzoyl peroxide
  • AIBN Azobisisobutyronitrile
  • step (a) is 10 to 70 ° C., and may be performed for 1 to 10 hours.
  • the polymerization temperature of step (b) may be 70 to 140 ° C., and the polymerization time may be 4 to 18 hours.
  • Step (c) may be performed by immersing the base membrane in a solution containing at least one selected from sulfuric acid, chloro sulfuric acid, and dichloroethane (DCE).
  • washing the cation exchange membrane into which the sulfonic acid functional group is introduced may be further washed with deionized water, and then immersing in a NaOH solution to neutralize unreacted sulfonic acid.
  • the polymerization solution is 100 parts by weight of styrene monomer; 2 to 25 parts by weight of divinylbenzene monomer; And 0.1 to 2.5 parts by weight of a polymerization initiator.
  • the cation exchange membrane of the present invention is excellent in thermal stability and mechanical properties, the production method of the cation exchange membrane of the present invention is a simplified process, economical, low defect rate is excellent in productivity.
  • the cation exchange membrane of the present invention is a support comprising one or more of the compounds represented by the following formula (1) and (2); And a cation exchanger, wherein the support and the cation exchanger can form an interpenetrating polymer network structure.
  • R is a C1 acetoxyl group or a C1 to C4 acrylic ester group
  • n are the number of repetitions of the repeating unit
  • n is from 100: 5 to 100: 50
  • the number average molecular weight (Mn) is 3,000 to 500,000.
  • R is a C1 to C4 acrylic ester group
  • n are the number of repetitions of the repeating unit
  • n is from 100: 5 to 100: 50
  • the number average molecular weight (Mn) is 3,000 to 500,000.
  • the compound represented by R is an aceoxyl group may be preferably an ethylene-vinyl acetate copolymer (EVA).
  • EVA ethylene-vinyl acetate copolymer
  • the compound represented by R is an acrylic ester group may be an ethylene-methyl acrylate copolymer (EMA), an ethylene-ethyl acrylate copolymer (EEA), an ethylene-butyl acrylate copolymer (EBA), or the like.
  • EMA ethylene-methyl acrylate copolymer
  • EAA ethylene-ethyl acrylate copolymer
  • EBA ethylene-butyl acrylate copolymer
  • the compound represented by Formula 2 may be ethylene-methyl methacrylate copolymer (EMMA), ethylene-glycidyl methacrylate copolymer (EGMA), or the like.
  • EMMA ethylene-methyl methacrylate copolymer
  • EGMA ethylene-glycidyl methacrylate copolymer
  • the cation exchanger may be a polymer having a sulfonic acid functional group and polymerized with one or more monomers selected from styrene, divinylbenzene, ⁇ -methyl styrene, methyl styrene, t-butyl styrene, and chloromethyl styrene.
  • styrene-divinylbenzene copolymer having sulfonic acid functionality.
  • the thickness of the support may be 0.01 to 1 mm, preferably 0.05 to 0.4 mm, more preferably 0.1 to 0.2 mm.
  • the thickness of the support When the thickness of the support is less than 0.01 mm, the thickness may be too thin to decrease the function of supporting the cation exchange membrane, and when the thickness is greater than 1 mm, the electrical resistance may increase due to the difference in sulfonation degree.
  • styrene Divinylbenzene , ⁇ - methyl Styrene, methyl At least one monomer selected from styrene, t-butyl styrene, chloromethyl styrene, and Initiator
  • a mixture is prepared by immersing a support including at least one of the compounds represented by the following Chemical Formulas 1 and 2 in the polymerization solution containing (step a).
  • R is a C1 acetoxyl group or a C1 to C4 acrylic ester group
  • n are the number of repetitions of the repeating unit
  • n is from 100: 5 to 100: 50
  • the number average molecular weight (Mn) is 3,000 to 500,000.
  • R is a C1 to C4 acrylic ester group
  • n are the number of repetitions of the repeating unit
  • n is from 100: 5 to 100: 50
  • the number average molecular weight (Mn) is 3,000 to 500,000.
  • the support may be swelled by being immersed in the polymerization bath.
  • the swelling degree of the swelled support may be 10 to 60%, preferably 20 to 50%, more preferably 30 to 40%.
  • the swelling degree is calculated as in Equation 1 below.
  • z is the weight of at least one of the compounds represented by the formula (1) to (2).
  • the degree of swelling is an important parameter influencing the electrical and mechanical properties of the ion exchange membrane.
  • the ratio of the polar groups R of the compounds represented by Formulas 1 and 2 may be controlled by the swelling temperature and the swelling time. If the content of the polar group R is too high (in the ratio of m: n in the formulas 1 and 2, n is greater than 50 when m is 100), the compounds represented by the formulas (1) and (2) are dissolved or Low chemical properties, the main chain can be eroded away in the sulfonation process (step c) to be described later. If the content of the polar group R is too low (in the ratio of m: n in the formula 1 and 2, n is less than 5 when m is 100), the monomer is difficult to penetrate into the interior of the compound represented by the formula (1) and (2) swelling degree Low has a problem that the electrical resistance value increases.
  • the compound represented by Formulas 1 and 2 may have a thickness of 0.01 to 1 mm, preferably 0.05 to 0.4 mm, more preferably 0.1 to 0.2 mm.
  • the thickness of the compound represented by Formulas 1 and 2 is less than 0.01 mm, the thickness may be too thin to decrease the function of supporting the cation exchange membrane, and when the thickness is greater than 1 mm, a sulfonation process to be described later (step c) Due to the difference in the degree of sulfonation inside and outside the electrical resistance value can be increased.
  • the temperature of step (a) may be less than the initiation temperature of the initiator, the initiator may be BPO (Benzoyl peroxide), Azobisisobutyronitrile (AIBN), anionic polymerization initiator, cationic polymerization initiator, latent polymerization initiator and the like, but preferably It may be a BPO.
  • BPO Benzoyl peroxide
  • AIBN Azobisisobutyronitrile
  • anionic polymerization initiator cationic polymerization initiator
  • latent polymerization initiator latent polymerization initiator and the like, but preferably It may be a BPO.
  • the temperature of step (a) may be between 10 and 70 ° C., preferably between 20 and 60 ° C., more preferably between 30 and 50 ° C.
  • the execution time of step (a) may be performed for 0.1 to 10 hours, preferably 1 to 5 hours, more preferably 2 to 4 hours.
  • the temperature and time of step (a) is not limited thereto and may vary depending on the type of initiator.
  • step (a) a small amount of a polymerization inhibitor (10 to 500 ppm based on the weight of the monomer) may be added to the polymerization solution so that the compound swells in the monomer state.
  • the polymerization solution is preferably 100 parts by weight of styrene monomer; 2 to 25 parts by weight of divinylbenzene monomer; And 0.1 to 2.5 parts by weight of a polymerization initiator.
  • step b the mixture is polymerized to prepare a base film.
  • the polymerization temperature of step (b) may be 70 to 140 ° C., preferably 75 to 120 ° C., more preferably 80 to 100 ° C.
  • the polymerization time of step (b) may be carried out for 4 to 18 hours, preferably 6 to 16 hours, more preferably 8 to 14 hours.
  • the polymerization temperature and time of step (b) is not limited thereto, and may vary depending on the type of monomer and initiator.
  • the base film formed by the polymerization is formed of an interpenetrating polymer network (IPN) structure, thereby forming a polymer film having a very homogeneous, flexible and excellent mechanical properties.
  • IPN interpenetrating polymer network
  • step c remind Basement membrane Sulfonated Sulfonate functional group introduced Cation exchange membrane To manufacture (step c).
  • sulfonation is performed by immersing the base membrane in a solution containing sulfuric acid, chloro sulfuric acid, dichloroethane (DCE), nitrobenzene, and the like.
  • sulfonation is performed by immersing the base membrane for 1 to 4 hours at room temperature in a solution in which 1 to 5% by weight of chlorosulfuric acid is uniformly stirred in 95 to 99% by weight of dichloroethane (DCE).
  • DCE dichloroethane
  • the cation exchange membrane prepared by the sulfonation may have an unreacted sulfonic acid, it may be further washed with deionized water and then immersed in NaOH solution to neutralize the unreacted sulfonic acid (step d).
  • the osmotic shock due to the sudden absorption of water in the washing / neutralization process (osmotic shock) is accompanied.
  • the existing PVC or hard material is used as a support, the impact may break the cation exchange membrane.
  • the polymer support having the polar group of the present invention is not broken even by osmotic shock, so that the defect rate is low and the productivity is excellent.
  • EVA EVA2030, Hanwha
  • EVA EVA2030, Hanwha
  • the support was swelled by immersion for 1 hour at 40 ° C. in a polymer solution containing 95% by weight of styrene monomer, 5% by weight of divinylbenzene monomer and 0.5% by weight of polymerization initiator.
  • the base film was prepared by polymerization at 80 ° C. for 12 hours.
  • a cation exchange membrane was prepared by immersing the base membrane in a solution obtained by uniformly stirring 2 wt% chlorosulfuric acid in 98 wt% dichloroethane (DCE) at room temperature for 2 hours.
  • EMA (Elvaloy 1218AC, DuPont) to Blown Film Extruder using The support was prepared by making thickness 0.12mm. The subsequent step was to prepare a cation exchange membrane in the same manner as in Example 1.
  • a cation exchange membrane CMV (Asahi Glass Company, Japan) prepared using a PVC support was used as Comparative Example 2.
  • Ion transport water Ion transport water is charged in both electrolyte baths with different concentrations of electrolyte (0.001M, 0.005M NaCl), and the potential difference (Em) between the cation exchange membranes is measured. The ion transport was calculated by substitution.
  • Em (RT / F) ⁇ (2t m -1) ⁇ ln (C 1 / C 2 )
  • Equation 3 R is the gas constant, F is the faraday constant, T is the absolute temperature, C 1 is the high concentration of the solution, C 2 is the low concentration of the solution, Em is the average potential obtained, and t m is the ion transport of the cation exchange membrane. Indicates.
  • Burst strength was tested by the ballbusting method of KS K 0350 using a tensile tester.
  • the electrical resistance and ion transport water of the cation exchange membranes prepared according to Examples 1 to 3 show comparable or better characteristics than the cation exchange membranes of Comparative Examples 1 and 2.
  • the bursting strength of the cation exchange membranes prepared according to Examples 1 to 3 was 100-300% or more superior to the commercial cation exchange membranes of Comparative Examples 1 and 2.
  • Example 1 The cation exchange membranes of Example 1 and Comparative Example 1 were placed in a 80 ° C. forced convection oven for 100 hours, and then the brittleness and burst strength change of the cation exchange membrane were tested and shown in Table 2 below.
  • Example 1 showed little change in physical properties before and after heating, while Comparative Example 1 had a phenomenon of breaking when the ion exchange membrane was folded in half after 100 hours at 80 ° C. It was confirmed that about 25% reduction compared to the state. This phenomenon in which the strength of Comparative Example 1 falls is presumed to be a change in physical properties due to thermal decomposition of PVC material.
  • the cation exchange membrane of the present invention is excellent in thermal stability and mechanical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

The present invention relates to a cation exchange membrane comprising: a support containing ethylene-vinyl acetate copolymer (EVA), ethylene-methyl acrylate copolymer (EMA), ethylene-ethyl acrylate copolymer (EEA), ethylene-butyl acrylate copolymer (EBA), ethylene-methyl methacrylate copolymer (EMMA), ethylene-glycidyl methacrylate copolymer (EGMA), or the like; and a cation exchanger, wherein the support and the cation exchanger form an interpenetrating polymer network structure. The cation exchange membrane of the present invention has excellent thermal stability and mechanical characteristics, and the manufacturing method for the cation exchange membrane of the present invention implements a simplified process, and thus is economical and lowers the failure rate, leading to excellent productivity.

Description

고분자 지지체를 포함하는 양이온교환막 및 그의 제조방법Cation exchange membrane comprising polymer support and method for preparing same
본 발명은 양이온교환막 및 그의 제조방법에 관한 것으로서, 보다 상세하게는 열안정성 및 기계적 특성이 우수한 양이온교환막과 단순화된 공정으로, 경제적이며, 불량률이 낮아 생산성이 우수한 양이온교환막의 제조방법에 관한 것이다. The present invention relates to a cation exchange membrane and a method for producing the same, and more particularly, to a cation exchange membrane having excellent thermal stability and mechanical properties, and a simplified process, and to a method for producing a cation exchange membrane having excellent productivity with low productivity and low defect rate.
기존에 상용되고 있는 NEOSEPTA (ASTOM Corp. Japan), SELEMION (Asahi Glass Company, Japan) 등의 이온교환막은 PVC를 소재로 방사된 섬유를 직조한 지지체와 스티렌-디비닐벤젠 단량체를 페이스트법으로 공중합하고, 술폰화하여 제조된 이온교환막으로, 비교적 좋은 전기화학적 특성을 갖고 있어 현재 세계적으로 널리 사용되어 지고 있다. Ion exchange membranes such as NEOSEPTA (ASTOM Corp. Japan) and SELEMION (Asahi Glass Company, Japan), which are conventionally used, are copolymerized with a support made of PVC spun fiber and styrene-divinylbenzene monomer by paste method. Ion exchange membranes prepared by sulfonation have relatively good electrochemical properties and are widely used worldwide.
그러나 방사공정의 높은 난이도로 인해 PVC를 섬유화하는 업체는 소수이며, 섬유의 단가가 높아 수급에 어려움이 있다. 상기 페이스트법은 PVC 분말과 단량체가 혼합된 페이스트에 직조된 지지체를 함침하여 코팅하는 방식으로서, 미함침으로 발생한 기공(air gap)은 추후 바늘구멍(pin hole)으로 남아 이온교환막의 성능을 저하시킬 수 있어 주의가 요구되는 까다로운 공정이기도 하다.However, due to the high level of difficulty in spinning, only a few companies make fiber from PVC, which is difficult to supply due to the high cost of fiber. The paste method is a method of impregnating and coating a woven support on a paste mixed with a PVC powder and a monomer. Air gaps generated by unimpregnation may remain as pin holes later to degrade the performance of the ion exchange membrane. It is a tricky process that requires attention.
또한, 저온(40℃)에서 열분해(thermal decomposition)가 일어나는 PVC 소재의 낮은 열안정성으로 인해, 이온교환막의 사용온도를 40℃ 이하로 제한할 수 밖에 없으며, 처리 용수의 온도 제한은 결국 냉각을 위한 전처리 설비가 요구되어 전체 이온교환 시스템의 비용을 상승시킨다. 아울러 PVC 소재를 포함하는 이온교환막의 경우, 취성을 극복하기 위해 가소제를 일부 사용하게 되는데, 이는 고온에서 가소제가 용출될 수 있어 식품 분야에 적용하기 어려운 문제점이 있다. In addition, due to the low thermal stability of the PVC material that thermal decomposition at low temperature (40 ℃), the use temperature of the ion exchange membrane must be limited to 40 ℃ or less, the temperature limit of the treated water is eventually for cooling Pretreatment equipment is required to increase the cost of the overall ion exchange system. In addition, in the case of the ion-exchange membrane containing a PVC material, some plasticizers are used to overcome brittleness, which may be difficult to apply to the food field because the plasticizer may be eluted at a high temperature.
따라서 이온교환막의 성능을 저하시키지 않으면서, 수급이 용이하고, 열안정성 및 기계적 특성이 우수한 새로운 소재를 지지체로 포함하는 이온교환막의 개발이 필요하다.Therefore, it is necessary to develop an ion exchange membrane including a new material as a support that is easily supplied and has excellent thermal stability and mechanical properties without degrading the performance of the ion exchange membrane.
본 발명의 목적은 상기 종래 기술의 문제점을 고려하여, 열안정성 및 기계적 특성이 우수한 양이온교환막을 제공하는 것이다. SUMMARY OF THE INVENTION An object of the present invention is to provide a cation exchange membrane having excellent thermal stability and mechanical properties in view of the problems of the prior art.
본 발명의 또 다른 목적은 단순화된 공정으로, 경제적이며, 불량률이 낮아 생산성이 우수한 양이온교환막의 제조방법을 제공하는 것이다. It is still another object of the present invention to provide a method for producing a cation exchange membrane which is economical and has low productivity due to a simplified process.
본 발명의 양이온교환막은 하기 화학식 1 및 2로 표시되는 화합물 중 1종 이상을 포함하는 지지체; 및 양이온교환체;를 포함하고, 상기 지지체 및 상기 양이온교환체는 상호침투 중합체 네트워크 (interpenetrating polymer network) 구조를 형성할 수 있다. The cation exchange membrane of the present invention is a support comprising one or more of the compounds represented by the following formula (1) and (2); And a cation exchanger, wherein the support and the cation exchanger can form an interpenetrating polymer network structure.
[화학식 1][Formula 1]
Figure PCTKR2019004908-appb-img-000001
Figure PCTKR2019004908-appb-img-000001
화학식 1에서, In Formula 1,
R은 C1 아세톡실기 또는 C1 내지 C4 아크릴릭 에스테르기이고, R is a C1 acetoxyl group or a C1 to C4 acrylic ester group,
m 및 n은 반복단위의 반복수이고, m and n are the number of repetitions of the repeating unit,
m:n은 100:5 내지 100:50이고, m: n is from 100: 5 to 100: 50,
수평균분자량(Mn)은 3,000 내지 500,000이다.The number average molecular weight (Mn) is 3,000 to 500,000.
[화학식 2][Formula 2]
Figure PCTKR2019004908-appb-img-000002
Figure PCTKR2019004908-appb-img-000002
화학식 2에서, In Formula 2,
R은 C1 내지 C4 아크릴릭 에스테르기이고, R is a C1 to C4 acrylic ester group,
m 및 n은 반복단위의 반복수이고, m and n are the number of repetitions of the repeating unit,
m:n은 100:5 내지 100:50이고, m: n is from 100: 5 to 100: 50,
수평균분자량(Mn)은 3,000 내지 500,000이다.The number average molecular weight (Mn) is 3,000 to 500,000.
화학식 1에서 R이 아세톡실기로 표시되는 화합물은 바람직하게는 EVA(ethylene-vinyl acetate copolymer) 일 수 있다.In the formula (1), the compound represented by R is an aceoxyl group may be preferably an ethylene-vinyl acetate copolymer (EVA).
화학식 1에서 R이 아크릴릭 에스테르기로 표시되는 화합물은 EMA(ethylene-methyl acrylate copolymer), EEA(ethylene-ethyl acrylate copolymer), EBA(ethylene-butyl acrylate copolymer) 중에서 선택된 1종 이상일 수 있다. In Formula 1, the compound represented by R is an acrylic ester group may be at least one selected from ethylene-methyl acrylate copolymer (EMA), ethylene-ethyl acrylate copolymer (EEA), and ethylene-butyl acrylate copolymer (EBA).
화학식 2로 표시되는 화합물은 EMMA(ethylene-methyl methacrylate copolymer), EGMA(ethylene-glycidyl methacrylate copolymer) 중에서 선택된 1종 이상일 수 있다. The compound represented by Formula 2 may be at least one selected from ethylene-methyl methacrylate copolymer (EMMA) and ethylene-glycidyl methacrylate copolymer (EGMA).
상기 양이온교환체는 술폰산 작용기를 갖고, 스티렌, 디비닐벤젠, α-메틸 스티렌, 메틸 스티렌, t-부틸 스티렌, 클로로메틸 스티렌 중에서 선택된 1종 이상의 단량체가 중합된 중합체일 수 있다.The cation exchanger may be a polymer having a sulfonic acid functional group and polymerized with one or more monomers selected from styrene, divinylbenzene, α-methyl styrene, methyl styrene, t-butyl styrene, and chloromethyl styrene.
상기 지지체의 두께는 0.01 내지 1 mm일 수 있다. The thickness of the support may be 0.01 to 1 mm.
또한 본 발명의 양이온교환막의 제조방법은 (a) 스티렌, 디비닐벤젠, α-메틸 스티렌, 메틸 스티렌, t-부틸 스티렌, 클로로메틸 스티렌 중에서 선택된 1종 이상의 단량체 및 개시제를 포함하는 중합용 용액에 하기 화학식 1 및 2로 표시되는 화합물 중 1종 이상을 포함하는 지지체를 침지시켜 혼합물을 제조하는 단계; (b) 상기 혼합물을 중합하여 기저막을 제조하는 단계; (c) 상기 기저막을 술폰화하여 술폰산 작용기가 도입된 양이온교환막을 제조하는 단계;를 포함할 수 있다. In addition, the method for producing a cation exchange membrane of the present invention is (a) a solution for polymerization comprising at least one monomer selected from styrene, divinylbenzene, α-methyl styrene, methyl styrene, t-butyl styrene, chloromethyl styrene and an initiator. Preparing a mixture by immersing a support including at least one of the compounds represented by Formulas 1 and 2 below; (b) polymerizing the mixture to produce a base film; (c) sulfonating the base membrane to prepare a cation exchange membrane into which sulfonic acid functional groups are introduced.
단계 (a)에서, 상기 지지체가 팽윤될 수 있다. In step (a), the support can be swollen.
상기 팽윤된 지지체의 팽윤도는 10 내지 60%일 수 있다. The swelling degree of the swelled support may be 10 to 60%.
단계 (a)의 온도는 상기 개시제의 개시 온도 미만일 수 있다. The temperature of step (a) may be below the onset temperature of the initiator.
상기 개시제는 BPO(Benzoyl peroxide) 및 AIBN(Azobisisobutyronitrile) 중에서 선택된 1종 이상일 수 있다. The initiator may be at least one selected from Benzoyl peroxide (BPO) and Azobisisobutyronitrile (AIBN).
단계 (a)의 온도는 10 내지 70℃이고, 1 내지 10시간 동안 수행될 수 있다. The temperature of step (a) is 10 to 70 ° C., and may be performed for 1 to 10 hours.
단계 (b)의 중합 온도는 70 내지 140℃이고, 중합 시간은 4 내지 18시간일 수 있다. The polymerization temperature of step (b) may be 70 to 140 ° C., and the polymerization time may be 4 to 18 hours.
단계 (c)는 상기 기저막을 황산, 클로로 황산 및 디클로로에탄(DCE) 중에서 선택된 1종 이상을 포함하는 용액에 침지시켜 수행될 수 있다. Step (c) may be performed by immersing the base membrane in a solution containing at least one selected from sulfuric acid, chloro sulfuric acid, and dichloroethane (DCE).
(d) 상기 술폰산 작용기가 도입된 양이온교환막을 탈이온수로 세척한 후, NaOH 용액에 침지시켜 미반응 술폰산을 중화시키는 단계를 추가로 포함할 수 있다. (d) washing the cation exchange membrane into which the sulfonic acid functional group is introduced may be further washed with deionized water, and then immersing in a NaOH solution to neutralize unreacted sulfonic acid.
상기 중합용 용액이 스티렌 단량체 100중량부; 디비닐벤젠 단량체 2 내지 25 중량부; 및 중합개시제가 0.1 ∼ 2.5 중량부;를 포함할 수 있다. The polymerization solution is 100 parts by weight of styrene monomer; 2 to 25 parts by weight of divinylbenzene monomer; And 0.1 to 2.5 parts by weight of a polymerization initiator.
본 발명의 양이온교환막은 열안정성 및 기계적 특성이 우수하며, 본 발명의 양이온교환막의 제조방법은 단순화된 공정으로, 경제적이며, 불량률이 낮아 생산성이 우수하다. The cation exchange membrane of the present invention is excellent in thermal stability and mechanical properties, the production method of the cation exchange membrane of the present invention is a simplified process, economical, low defect rate is excellent in productivity.
이하, 본 발명을 상세하게 설명한다. 본 발명을 설명함에 있어서 관련된 공지 구성 또는 기능에 대한 상세한 설명은 생략할 수 있다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail. In the following description of the present invention, detailed descriptions of related well-known configurations or functions may be omitted.
본 명세서 및 특허청구범위에 사용된 용어나 단어는 통상적이거나 사전적 의미로 한정되어 해석되지 아니하며, 본 발명의 기술적 사항에 부합하는 의미와 개념으로 해석되어야 한다. The terms or words used in the specification and claims are not to be construed as being limited to conventional or dictionary meanings, but should be construed as meanings and concepts corresponding to the technical matters of the present invention.
본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예이며, 본 발명의 기술적 사상을 모두 대변하는 것이 아니므로, 본 출원 시점에서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있다.The embodiments described in the specification and the configuration shown in the drawings are preferred embodiments of the present invention, and do not represent all of the technical idea of the present invention, various equivalents and modifications that can replace them at the time of the present application are There may be.
본 발명의 양이온교환막은 하기 화학식 1 및 2로 표시되는 화합물 중 1종 이상을 포함하는 지지체; 및 양이온교환체;를 포함하고, 상기 지지체 및 상기 양이온 교환체는 상호침투 중합체 네트워크 (interpenetrating polymer network) 구조를 형성할 수 있다. The cation exchange membrane of the present invention is a support comprising one or more of the compounds represented by the following formula (1) and (2); And a cation exchanger, wherein the support and the cation exchanger can form an interpenetrating polymer network structure.
[화학식 1][Formula 1]
Figure PCTKR2019004908-appb-img-000003
Figure PCTKR2019004908-appb-img-000003
화학식 1에서, In Formula 1,
R은 C1 아세톡실기 또는 C1 내지 C4 아크릴릭 에스테르기이고, R is a C1 acetoxyl group or a C1 to C4 acrylic ester group,
m 및 n은 반복단위의 반복수이고, m and n are the number of repetitions of the repeating unit,
m:n은 100:5 내지 100:50이고, m: n is from 100: 5 to 100: 50,
수평균분자량(Mn)은 3,000 내지 500,000이다.The number average molecular weight (Mn) is 3,000 to 500,000.
[화학식 2][Formula 2]
Figure PCTKR2019004908-appb-img-000004
Figure PCTKR2019004908-appb-img-000004
화학식 2에서, In Formula 2,
R은 C1 내지 C4 아크릴릭 에스테르기이고, R is a C1 to C4 acrylic ester group,
m 및 n은 반복단위의 반복수이고, m and n are the number of repetitions of the repeating unit,
m:n은 100:5 내지 100:50이고, m: n is from 100: 5 to 100: 50,
수평균분자량(Mn)은 3,000 내지 500,000이다.The number average molecular weight (Mn) is 3,000 to 500,000.
화학식 1에서 R이 아세톡실기로 표시되는 화합물은 바람직하게는 EVA(ethylene-vinyl acetate copolymer) 일 수 있다.In the formula (1), the compound represented by R is an aceoxyl group may be preferably an ethylene-vinyl acetate copolymer (EVA).
화학식 1에서 R이 아크릴릭 에스테르기로 표시되는 화합물은 EMA(ethylene-methyl acrylate copolymer), EEA(ethylene-ethyl acrylate copolymer), EBA(ethylene-butyl acrylate copolymer) 등일 수 있다. In Formula 1, the compound represented by R is an acrylic ester group may be an ethylene-methyl acrylate copolymer (EMA), an ethylene-ethyl acrylate copolymer (EEA), an ethylene-butyl acrylate copolymer (EBA), or the like.
화학식 2로 표시되는 화합물은 EMMA(ethylene-methyl methacrylate copolymer), EGMA(ethylene-glycidyl methacrylate copolymer) 등일 수 있다. The compound represented by Formula 2 may be ethylene-methyl methacrylate copolymer (EMMA), ethylene-glycidyl methacrylate copolymer (EGMA), or the like.
상기 양이온교환체는 술폰산 작용기를 갖고, 스티렌, 디비닐벤젠, α-메틸 스티렌, 메틸 스티렌, t-부틸 스티렌, 클로로메틸 스티렌 중에서 선택된 1종 이상의 단량체가 중합된 중합체일 수 있다. The cation exchanger may be a polymer having a sulfonic acid functional group and polymerized with one or more monomers selected from styrene, divinylbenzene, α-methyl styrene, methyl styrene, t-butyl styrene, and chloromethyl styrene.
바람직하게는 술폰산 작용기를 갖는 스티렌-디비닐벤젠 공중합체일 수 있다.Preferably styrene-divinylbenzene copolymer having sulfonic acid functionality.
상기 지지체의 두께는 0.01 내지 1 mm일 수 있고, 바람직하게는 0.05 내지 0.4 mm, 더욱 바람직하게는 0.1 내지 0.2 mm일 수 있다.The thickness of the support may be 0.01 to 1 mm, preferably 0.05 to 0.4 mm, more preferably 0.1 to 0.2 mm.
상기 지지체의 두께가 0.01 mm 미만인 경우에는 두께가 너무 얇아 양이온교환막을 지지하는 기능이 저하될 수 있고, 두께가 1 mm 초과인 경우에는 술폰화 정도의 차이로 인해 전기저항값이 높아질 수 있다. When the thickness of the support is less than 0.01 mm, the thickness may be too thin to decrease the function of supporting the cation exchange membrane, and when the thickness is greater than 1 mm, the electrical resistance may increase due to the difference in sulfonation degree.
이하, 본 발명의 양이온교환막의 제조방법에 대하여 상세히 설명하도록 한다.Hereinafter, a method of manufacturing the cation exchange membrane of the present invention will be described in detail.
먼저, 스티렌, First, styrene, 디비닐벤젠Divinylbenzene , α-, α- 메틸methyl 스티렌,  Styrene, 메틸methyl 스티렌, t-부틸 스티렌, 클로로메틸 스티렌 중에서 선택된 1종 이상의 단량체 및  At least one monomer selected from styrene, t-butyl styrene, chloromethyl styrene, and 개시제를Initiator 포함하는 중합용 용액에 하기 화학식 1 및 2로 표시되는 화합물 중 1종 이상을 포함하는 지지체를 침지시켜 혼합물을 제조한다(단계 a). A mixture is prepared by immersing a support including at least one of the compounds represented by the following Chemical Formulas 1 and 2 in the polymerization solution containing (step a).
[화학식 1][Formula 1]
Figure PCTKR2019004908-appb-img-000005
Figure PCTKR2019004908-appb-img-000005
화학식 1에서, In Formula 1,
R은 C1 아세톡실기 또는 C1 내지 C4 아크릴릭 에스테르기이고, R is a C1 acetoxyl group or a C1 to C4 acrylic ester group,
m 및 n은 반복단위의 반복수이고, m and n are the number of repetitions of the repeating unit,
m:n은 100:5 내지 100:50이고, m: n is from 100: 5 to 100: 50,
수평균분자량(Mn)은 3,000 내지 500,000이다.The number average molecular weight (Mn) is 3,000 to 500,000.
[화학식 2] [Formula 2]
Figure PCTKR2019004908-appb-img-000006
Figure PCTKR2019004908-appb-img-000006
화학식 2에서, In Formula 2,
R은 C1 내지 C4 아크릴릭 에스테르기이고, R is a C1 to C4 acrylic ester group,
m 및 n은 반복단위의 반복수이고, m and n are the number of repetitions of the repeating unit,
m:n은 100:5 내지 100:50이고, m: n is from 100: 5 to 100: 50,
수평균분자량(Mn)은 3,000 내지 500,000이다.The number average molecular weight (Mn) is 3,000 to 500,000.
상기 지지체는 상기 중합용 욕액에 침지되어 팽윤될 수 있다. The support may be swelled by being immersed in the polymerization bath.
상기 팽윤된 지지체의 팽윤도는 10 내지 60%일 수 있고, 바람직하게는 20 내지 50%, 더욱 바람직하게는 30 내지 40%일 수 있다. The swelling degree of the swelled support may be 10 to 60%, preferably 20 to 50%, more preferably 30 to 40%.
상기 팽윤도는 아래 식 1과 같이 계산된다. The swelling degree is calculated as in Equation 1 below.
[식 1] [Equation 1]
팽윤도=((단량체 중량 + 개시제 중량)/(z의 중량 + 단량체 중량 + 개시제 중량))x100%Swelling degree = ((monomer weight + initiator weight) / (weight of z + monomer weight + initiator weight)) x 100%
여기서, z는 상기 화학식 1 내지 2로 표시되는 화합물 중 1종 이상의 중량이다. Here, z is the weight of at least one of the compounds represented by the formula (1) to (2).
상기 팽윤도는 이온교환막의 전기적, 기계적 특성을 좌우하는 중요한 변수이다. 팽윤도가 높을 수록 이온교환용량(IEC: ion exchange capacity)은 높아지고 전기저항값은 낮아지지만, 60%이상 과하게 팽윤되면 작은 충격이나 응력에도 이온교환막이 쉽게 부서질 수 있다.The degree of swelling is an important parameter influencing the electrical and mechanical properties of the ion exchange membrane. The higher the swelling degree, the higher the ion exchange capacity (IEC) and the lower the electrical resistance value, but the excessively swelling of more than 60% can easily break the ion exchange membrane even under small impact or stress.
상기 화학식 1 및 2로 표시되는 화합물의 극성기 R의 비율은 팽윤 온도 및 팽윤 시간에 의해 조절될 수 있다. 극성기 R의 함량이 너무 높으면(화학식 1 및 2의 m:n의 비에서, m이 100일 경우 n이 50 초과) 팽윤 과정에서 단량체에 의해 상기 화학식 1 및 2로 표시되는 화합물이 용해되거나, 내화학성이 낮아, 후술할 술폰화 과정(단계 c)에서 주쇄가 떨어져 나가 침식될 수 있다. 극성기 R의 함량이 너무 낮으면(화학식 1 및 2의 m:n의 비에서, m이 100일 경우 n이 5 미만) 단량체가 상기 화학식 1 및 2로 표시되는 화합물의 내부로 침투하기가 어려워 팽윤도가 낮아 전기저항값이 높아지는 문제가 있다.The ratio of the polar groups R of the compounds represented by Formulas 1 and 2 may be controlled by the swelling temperature and the swelling time. If the content of the polar group R is too high (in the ratio of m: n in the formulas 1 and 2, n is greater than 50 when m is 100), the compounds represented by the formulas (1) and (2) are dissolved or Low chemical properties, the main chain can be eroded away in the sulfonation process (step c) to be described later. If the content of the polar group R is too low (in the ratio of m: n in the formula 1 and 2, n is less than 5 when m is 100), the monomer is difficult to penetrate into the interior of the compound represented by the formula (1) and (2) swelling degree Low has a problem that the electrical resistance value increases.
상기 화학식 1 및 2로 표시되는 화합물의 두께는 0.01 내지 1 mm일 수 있고, 바람직하게는 0.05 내지 0.4 mm, 더욱 바람직하게는 0.1 내지 0.2 mm일 수 있다. The compound represented by Formulas 1 and 2 may have a thickness of 0.01 to 1 mm, preferably 0.05 to 0.4 mm, more preferably 0.1 to 0.2 mm.
상기 화학식 1 및 2로 표시되는 화합물의 두께가 0.01 mm 미만인 경우에는 두께가 너무 얇아 양이온교환막을 지지하는 기능이 저하될 수 있고, 두께가 1 mm 초과인 경우에는 후술할 술폰화 과정(단계 c)에서 내외부의 술폰화 정도의 차이로 인해 전기저항값이 높아질 수 있다. When the thickness of the compound represented by Formulas 1 and 2 is less than 0.01 mm, the thickness may be too thin to decrease the function of supporting the cation exchange membrane, and when the thickness is greater than 1 mm, a sulfonation process to be described later (step c) Due to the difference in the degree of sulfonation inside and outside the electrical resistance value can be increased.
단계 (a)의 온도는 상기 개시제의 개시 온도 미만일 수 있으며, 상기 개시제는 BPO(Benzoyl peroxide), AIBN(Azobisisobutyronitrile), 음이온 중합개시제, 양이온 중합개시제, 잠재성 중합개시제 등이 가능하나, 바람직하게는 BPO일 수 있다.The temperature of step (a) may be less than the initiation temperature of the initiator, the initiator may be BPO (Benzoyl peroxide), Azobisisobutyronitrile (AIBN), anionic polymerization initiator, cationic polymerization initiator, latent polymerization initiator and the like, but preferably It may be a BPO.
단계 (a)의 온도는 10 내지 70℃일 수 있고, 바람직하게는 20 내지 60℃, 더욱 바람직하게는 30 내지 50℃일 수 있다. 단계 (a)의 수행시간은 0.1 내지 10시간 동안 수행될 수 있으며, 바람직하게는 1 내지 5시간, 더욱 바람직하게는 2 내지 4시간 동안 수행될 수 있다. 그러나, 단계 (a)의 온도 및 시간은 이에 한정되지 않으며, 개시제의 종류에 따라 달라질 수 있다. The temperature of step (a) may be between 10 and 70 ° C., preferably between 20 and 60 ° C., more preferably between 30 and 50 ° C. The execution time of step (a) may be performed for 0.1 to 10 hours, preferably 1 to 5 hours, more preferably 2 to 4 hours. However, the temperature and time of step (a) is not limited thereto and may vary depending on the type of initiator.
또한, 단계 (a)에서, 상기 화합물이 단량체 상태에서 팽윤되도록 상기 중합용 용액에 중합금지제를 미량(단량체 중량 기준 10~500ppm) 첨가할 수 있다.Further, in step (a), a small amount of a polymerization inhibitor (10 to 500 ppm based on the weight of the monomer) may be added to the polymerization solution so that the compound swells in the monomer state.
상기 중합용 용액은 바람직하게는 스티렌 단량체 100중량부; 디비닐벤젠 단량체 2 내지 25 중량부; 및 중합개시제가 0.1 ∼ 2.5 중량부;를 포함할 수 있다. The polymerization solution is preferably 100 parts by weight of styrene monomer; 2 to 25 parts by weight of divinylbenzene monomer; And 0.1 to 2.5 parts by weight of a polymerization initiator.
다음으로, 상기 혼합물을 중합하여 기저막을 제조한다(단계 b).Next, the mixture is polymerized to prepare a base film (step b).
단계 (b)의 중합 온도는 70 내지 140℃ 일 수 있고, 바람직하게는 75 내지 120℃, 더욱 바람직하게는 80 내지 100℃일 수 있다. 단계 (b)의 중합시간은 4 내지 18시간 동안 수행될 수 있으며, 바람직하게는 6 내지 16시간, 더욱 바람직하게는 8 내지 14시간 동안 수행될 수 있다. 그러나, 단계 (b)의 중합 온도 및 시간은 이에 한정되지 않으며, 상기 단량체 및 개시제의 종류에 따라 달라질 수 있다. The polymerization temperature of step (b) may be 70 to 140 ° C., preferably 75 to 120 ° C., more preferably 80 to 100 ° C. The polymerization time of step (b) may be carried out for 4 to 18 hours, preferably 6 to 16 hours, more preferably 8 to 14 hours. However, the polymerization temperature and time of step (b) is not limited thereto, and may vary depending on the type of monomer and initiator.
상기 중합에 의해 형성된 기저막은 상호침투 중합체 네트워크(IPN:interpenetrating polymer network) 구조로 형성되며, 매우 균질하고도 유연하며 기계적 특성이 우수한 고분자막을 형성하게 된다.The base film formed by the polymerization is formed of an interpenetrating polymer network (IPN) structure, thereby forming a polymer film having a very homogeneous, flexible and excellent mechanical properties.
상기 remind 기저막을Basement membrane 술폰화하여Sulfonated 술폰산 작용기가 도입된  Sulfonate functional group introduced 양이온교환막을Cation exchange membrane 제조한다(단계 c). To manufacture (step c).
좀 더 상세히 설명하면, 상기 기저막을 황산, 클로로 황산, 디클로로에탄(DCE), 니트로 벤젠 등을 포함하는 용액에 침지시켜 술폰화가 수행된다. In more detail, sulfonation is performed by immersing the base membrane in a solution containing sulfuric acid, chloro sulfuric acid, dichloroethane (DCE), nitrobenzene, and the like.
바람직하게는, 디클로로에탄(DCE) 95 ~99 중량%에 클로로황산 1~5 중량%를 균일하게 교반시킨 용액에 상온에서 1~4시간 동안 기저막을 침지시켜 술폰화가 수행된다.Preferably, sulfonation is performed by immersing the base membrane for 1 to 4 hours at room temperature in a solution in which 1 to 5% by weight of chlorosulfuric acid is uniformly stirred in 95 to 99% by weight of dichloroethane (DCE).
상기 술폰화에 의해 제조된 양이온교환막은 미반응 술폰산이 존재할 수 있으므로 추가로, 탈이온수로 세척한 후, NaOH 용액에 침지시켜 미반응 술폰산을 중화시킬 수도 있다(단계 d). Since the cation exchange membrane prepared by the sulfonation may have an unreacted sulfonic acid, it may be further washed with deionized water and then immersed in NaOH solution to neutralize the unreacted sulfonic acid (step d).
이 때, 세척/중화 과정에서 갑작스러운 수분 흡수에 의한 삼투압 충격(osmotic shock)을 수반되게 된다. 기존의 PVC 혹은 딱딱한 재질의 소재를 지지체로 사용할 경우에는 이 충격으로 인해 양이온교환막이 깨질 수 있다. 그러나 본 발명의 극성기를 갖는 고분자 지지체는 특유의 유연성과 탄성으로 인해, 삼투압 충격에도 깨지지 않아 불량률이 낮고, 생산성이 우수하다. At this time, the osmotic shock due to the sudden absorption of water in the washing / neutralization process (osmotic shock) is accompanied. When the existing PVC or hard material is used as a support, the impact may break the cation exchange membrane. However, due to the inherent flexibility and elasticity, the polymer support having the polar group of the present invention is not broken even by osmotic shock, so that the defect rate is low and the productivity is excellent.
[실시예]EXAMPLE
이하, 본 발명의 바람직한 실시예를 들어 설명하도록 한다. 그러나 이는 예시를 위한 것으로서 이에 의하여 본 발명의 범위가 한정되는 것은 아니다.Hereinafter, a preferred embodiment of the present invention will be described. However, this is for illustrative purposes and the scope of the present invention is not limited thereby.
실시예 1Example 1
EVA(EVA2030, 한화)을 필름 성형 압출기(Blown Film Extruder)를 사용하여 두께 0.12mm로 만들어 지지체를 제조하였다. 상기 지지체를 스티렌 단량체 95 중량%, 디비닐벤젠 단량체 5 중량% 및 중합개시제 0.5 중량%을 포함하는 중합체 용액에 40℃에서 1시간 동안 침지시켜 팽윤시켰다. EVA (EVA2030, Hanwha) was made to a thickness of 0.12mm using a Blown Film Extruder to prepare a support. The support was swelled by immersion for 1 hour at 40 ° C. in a polymer solution containing 95% by weight of styrene monomer, 5% by weight of divinylbenzene monomer and 0.5% by weight of polymerization initiator.
다음으로, 80℃에서, 12시간 동안 중합하여 기저막을 제조하였다. 상기 기저막을 디클로로에탄(DCE) 98 중량%에 클로로황산 2 중량%를 균일하게 교반시킨 용액에 상온에서 2시간 동안 침지시켜 술폰화함으로써 양이온교환막을 제조하였다. Next, the base film was prepared by polymerization at 80 ° C. for 12 hours. A cation exchange membrane was prepared by immersing the base membrane in a solution obtained by uniformly stirring 2 wt% chlorosulfuric acid in 98 wt% dichloroethane (DCE) at room temperature for 2 hours.
다음으로, 탈이온수(deionized water)로 세척한 후 2M NaOH 용액에서 4시간 동안 미반응 술폰산을 중화시켰다.Next, after washing with deionized water (deionized water) and neutralized unreacted sulfonic acid for 4 hours in 2M NaOH solution.
실시예 2Example 2
EMA(Elvaloy 1218AC, DuPont)을 필름 성형 압출기(Blown Film Extruder)를 사용하여 두께 0.12mm로 만들어 지지체를 제조하였다. 이후의 공정은 상기 실시예 1과 동일한 방법으로 양이온교환막을 제조하였다. EMA (Elvaloy 1218AC, DuPont) to Blown Film Extruder using The support was prepared by making thickness 0.12mm. The subsequent step was to prepare a cation exchange membrane in the same manner as in Example 1.
실시예 3Example 3
EGMA(LOTADER AX8840, ARKEMA)을 필름 성형 압출기(Blown Film Extruder)를 사용하여 두께 0.12mm로 만들어 지지체를 제조하였다. 이후의 공정은 상기 실시예 1과 동일한 방법으로 양이온교환막을 제조하였다. EGMA (LOTADER AX8840, ARKEMA) to Blown Film Extruder To a thickness of 0.12 mm to prepare a support. The subsequent step was to prepare a cation exchange membrane in the same manner as in Example 1.
비교예 1Comparative Example 1
PVC 지지체를 사용하여 제조된 양이온교환막 CMX(ASTOM Corp. Japan)를 비교예 1로 사용하였다.Cation exchange membrane CMX (ASTOM Corp. Japan) prepared using a PVC support was used as Comparative Example 1.
비교예 2Comparative Example 2
PVC 지지체를 사용하여 제조된 양이온교환막 CMV(Asahi Glass Company, Japan)를 비교예 2로 사용하였다.A cation exchange membrane CMV (Asahi Glass Company, Japan) prepared using a PVC support was used as Comparative Example 2.
[시험예][Test Example]
시험예: 양이온교환막의 특성 측정Test Example: Measurement of Cation Exchange Membrane
(1) 전기적 저항(Electric resistance): 실시예 1 내지 3, 비교예 1 및 비교예 2의 양이온교환막을 0.5N NaCl 용액에 24시간 이상 담가두어 전해질 용액과 양이온교환막이 평형을 유지할 수 있도록 한 후, LCR 미터를 사용하여 저항을 측정하였다.(1) Electric resistance: The cation exchange membranes of Examples 1 to 3, Comparative Examples 1 and 2 were soaked in 0.5N NaCl solution for 24 hours or more so that the electrolyte solution and the cation exchange membrane were in equilibrium. The resistance was measured using an LCR meter.
(2) 함수율(Water swelling ratio): 실시예 1 내지 3, 비교예 1 및 비교예 2의 양이온교환막을 2cm × 2cm 로 절단하여 증류수에 24 시간 이상 담가두어 평형 상태에 이르도록 한 후, 양이온교환막 표면의 수분을 제거하여 젖은 상태의 무게(W wet)를 측정하였다. 젖은 상태의 양이온교환막을 건조 오븐(60℃)에 넣어 24시간 건조시킨 후의 무게(W dry)를 측정하고, 아래 식 2를 사용하여 함수율(W)을 계산하였다. (2) Water swelling ratio: The cation exchange membranes of Examples 1 to 3, Comparative Examples 1 and 2 were cut into 2 cm x 2 cm, soaked in distilled water for 24 hours or more to reach an equilibrium state, and then cation exchange membranes. The moisture of the surface was removed and the weight (W wet ) of the wet state was measured. The wet cation exchange membrane was placed in a drying oven (60 ° C.) to measure the weight (W dry ) after drying for 24 hours, and the water content (W) was calculated using Equation 2 below.
[식 2][Equation 2]
W=(W wet-W dry)/W dry W = (W wet -W dry ) / W dry
(3) 이온수송수(Transport number): 이온수송수는 양 전해액조에 다른 농도의 전해질(0.001M, 0.005M NaCl)을 넣고 양이온교환막 사이의 전위차(Em)를 측정한 후, 전위 값을 아래 식 3에 대입하여 이온수송수를 계산하였다.(3) Ion transport water: Ion transport water is charged in both electrolyte baths with different concentrations of electrolyte (0.001M, 0.005M NaCl), and the potential difference (Em) between the cation exchange membranes is measured. The ion transport was calculated by substitution.
[식 3][Equation 3]
Em=(RT/F)×(2t m-1)×ln(C 1/C 2)Em = (RT / F) × (2t m -1) × ln (C 1 / C 2 )
식 3에서, R은기체상수, F는 faraday 상수, T는 절대온도, C 1은 용액의 높은 농도, C 2는 용액의 낮은 농도, Em는 얻어진 평균 전위, t m은 양이온교환막의 이온수송수를 나타낸다.In Equation 3, R is the gas constant, F is the faraday constant, T is the absolute temperature, C 1 is the high concentration of the solution, C 2 is the low concentration of the solution, Em is the average potential obtained, and t m is the ion transport of the cation exchange membrane. Indicates.
(4)파열강도(Burst strength)(4) Burst strength
파열강도는 인장시험기를 사용하여 KS K 0350의 볼버스팅법으로 시험하였다.Burst strength was tested by the ballbusting method of KS K 0350 using a tensile tester.
상술한 실험 방법에 따라 실시예 1 내지 3, 비교예 1 및 비교예 2의 양이온교환막의 특성을 측정하여 아래 표 1에 나타냈다. According to the experimental method described above, the properties of the cation exchange membranes of Examples 1 to 3, Comparative Example 1 and Comparative Example 2 were measured and shown in Table 1 below.
구분division 전기적 저항(Ω·㎠)Electrical resistance (Ω · ㎠) 함수율(%)Moisture content (%) 이온수송수(-)Ion transport water (-) 파열강도(kpa)Burst strength (kpa)
실시예 1Example 1 1.821.82 46.646.6 0.980.98 1,5001,500
실시예 2Example 2 2.12.1 41.341.3 0.980.98 1,1801,180
실시예 3Example 3 2.42.4 35.435.4 0.980.98 940940
비교예 1Comparative Example 1 33 3030 0.980.98 490490
비교예 2Comparative Example 2 2.52.5 22.522.5 0.920.92 392392
표 1을 참조하면, 실시예 1 내지 3에 따라 제조된 양이온교환막의 전기적 저항 및 이온수송수는 비교예 1 및 비교예 2의 양이온교환막에 비해 대등하거나 더 우수한 특성을 나타내고 있다. 특히 파열강도는 실시예 1 내지 3에 따라 제조된 양이온교환막은 비교예 1 및 비교예 2의 상용 양이온교환막에 비해 100~300% 이상 우수한 것으로 나타났다. Referring to Table 1, the electrical resistance and ion transport water of the cation exchange membranes prepared according to Examples 1 to 3 show comparable or better characteristics than the cation exchange membranes of Comparative Examples 1 and 2. In particular, the bursting strength of the cation exchange membranes prepared according to Examples 1 to 3 was 100-300% or more superior to the commercial cation exchange membranes of Comparative Examples 1 and 2.
(5)열안정성(Thermal stability)(5) Thermal stability
실시예 1과 비교예 1의 양이온교환막을 80℃ 강제대류 오븐(forced convection oven)에 100시간 동안 넣어 둔 뒤에 양이온교환막의 취성과 파열강도 변화를 시험하여 아래 표 2에 나타냈다.The cation exchange membranes of Example 1 and Comparative Example 1 were placed in a 80 ° C. forced convection oven for 100 hours, and then the brittleness and burst strength change of the cation exchange membrane were tested and shown in Table 2 below.
구분division 가열 전Before heating 가열 후After heating
접었을 때When folded 파열강도(kpa)Burst strength (kpa) 접었을 때When folded 파열강도(kpa)Burst strength (kpa)
실시예 1Example 1 깨지지 않음Unbreakable 1,5001,500 깨지지 않음Unbreakable 1,4901,490
비교예 1Comparative Example 1 깨지지 않음Unbreakable 490490 깨짐fracture 360360
표 2를 참조하면, 실시예 1은 가열 전후로 물성변화가 거의 없었으나, 비교예 1은 80℃에서 100시간이 지난 뒤에 이온교환막을 반으로 접었을 때 깨지는 현상이 발생하였으며, 파열강도 또한 가열 전 초기상태에 비해 약 25% 감소되었음을 확인하였다. 비교예 1의 강도가 떨어지는 이러한 현상은 PVC 소재의 열분해로 인한 물성변화로 추정된다. Referring to Table 2, Example 1 showed little change in physical properties before and after heating, while Comparative Example 1 had a phenomenon of breaking when the ion exchange membrane was folded in half after 100 hours at 80 ° C. It was confirmed that about 25% reduction compared to the state. This phenomenon in which the strength of Comparative Example 1 falls is presumed to be a change in physical properties due to thermal decomposition of PVC material.
따라서, 본 발명의 양이온교환막은 열안정성 및 기계적 특성이 우수한 것을 알 수 있다.Therefore, it can be seen that the cation exchange membrane of the present invention is excellent in thermal stability and mechanical properties.

Claims (16)

  1. 하기 화학식 1 및 2로 표시되는 화합물 중 1종 이상을 포함하는 지지체; 및 A support comprising at least one of the compounds represented by Formulas 1 and 2 below; And
    양이온교환체;를 포함하고, It includes a cation exchanger;
    상기 지지체 및 상기 양이온교환체는 상호침투 중합체 네트워크 (interpenetrating polymer network) 구조를 형성하는 것인 양이온교환막.Wherein said support and said cation exchanger form an interpenetrating polymer network structure.
    [화학식 1][Formula 1]
    Figure PCTKR2019004908-appb-img-000007
    Figure PCTKR2019004908-appb-img-000007
    화학식 1에서, In Formula 1,
    R은 C1 아세톡실기(acetoxyl group) 또는 C1 내지 C4 아크릴릭 에스테르기(acrylic ester group)이고, R is a C1 acetoxyl group or a C1 to C4 acrylic ester group,
    m 및 n은 반복단위의 반복수이고, m and n are the number of repetitions of the repeating unit,
    m:n은 100:5 내지 100:50이고, m: n is from 100: 5 to 100: 50,
    수평균분자량(Mn)은 3,000 내지 500,000이다.The number average molecular weight (Mn) is 3,000 to 500,000.
    [화학식 2][Formula 2]
    Figure PCTKR2019004908-appb-img-000008
    Figure PCTKR2019004908-appb-img-000008
    화학식 2에서, In Formula 2,
    R은 C1 내지 C4 아크릴릭 에스테르기이고, R is a C1 to C4 acrylic ester group,
    m 및 n은 반복단위의 반복수이고, m and n are the number of repetitions of the repeating unit,
    m:n은 100:5 내지 100:50이고, m: n is from 100: 5 to 100: 50,
    수평균분자량(Mn)은 3,000 내지 500,000이다. The number average molecular weight (Mn) is 3,000 to 500,000.
  2. 제 1항에 있어서,The method of claim 1,
    화학식 1에서 R이 아세톡실기로 표시되는 화합물은 EVA(ethylene-vinyl acetate copolymer) 인 것을 특징으로 하는 양이온교환막. In Formula 1, the compound represented by R is an aceoxyl group is a cation exchange membrane, characterized in that the EVA (ethylene-vinyl acetate copolymer).
  3. 제 1항에 있어서,The method of claim 1,
    화학식 1에서 R이 아크릴릭 에스테르기로 표시되는 화합물은 EMA(ethylene-methyl acrylate copolymer), EEA(ethylene-ethyl acrylate copolymer), EBA(ethylene-butyl acrylate copolymer) 중에서 선택된 1종 이상인 것을 특징으로 하는 양이온교환막.In Formula 1, the compound represented by R is an acrylic ester group is a cation exchange membrane, characterized in that at least one selected from EMA (ethylene-methyl acrylate copolymer), EEA (ethylene-ethyl acrylate copolymer), EBA (ethylene-butyl acrylate copolymer).
  4. 제 1항에 있어서,The method of claim 1,
    화학식 2로 표시되는 화합물은 EMMA(ethylene-methyl methacrylate copolymer), EGMA(ethylene-glycidyl methacrylate copolymer) 중에서 선택된 1종 이상인 것을 특징으로 하는 양이온교환막.Compound represented by Formula 2 is a cation exchange membrane, characterized in that at least one selected from EMMA (ethylene-methyl methacrylate copolymer), EGMA (ethylene-glycidyl methacrylate copolymer).
  5. 제 1항에 있어서,The method of claim 1,
    상기 양이온교환체는 술폰산 작용기를 갖고, The cation exchanger has a sulfonic acid functional group,
    스티렌, 디비닐벤젠, α-메틸 스티렌, 메틸 스티렌, t-부틸 스티렌, 클로로메틸 스티렌 중에서 선택된 1종 이상의 단량체가 중합된 중합체인 것을 특징으로 하는 양이온교환막.Cation exchange membrane, characterized in that at least one monomer selected from styrene, divinylbenzene, α-methyl styrene, methyl styrene, t-butyl styrene and chloromethyl styrene is a polymerized polymer.
  6. 제 1항에 있어서,The method of claim 1,
    상기 지지체의 두께는 0.01 내지 1 mm인 것을 특징으로 하는 양이온교환막.Cation exchange membrane, characterized in that the thickness of the support is 0.01 to 1 mm.
  7. (a) 스티렌, 디비닐벤젠, α-메틸 스티렌, 메틸 스티렌, t-부틸 스티렌, 클로로메틸 스티렌 중에서 선택된 1종 이상의 단량체 및 개시제를 포함하는 중합용 용액에 화학식 1, 2로 표시되는 화합물 중 1종 이상을 포함하는 지지체를 침지시켜 혼합물을 제조하는 단계; (a) 1 of compounds represented by formulas (1) and (2) in a polymerization solution containing at least one monomer selected from styrene, divinylbenzene, α-methyl styrene, methyl styrene, t-butyl styrene, and chloromethyl styrene and an initiator Preparing a mixture by dipping a support comprising at least one species;
    (b) 상기 혼합물을 중합하여 기저막을 제조하는 단계; (b) polymerizing the mixture to produce a base film;
    (c) 상기 기저막을 술폰화하여 술폰산 작용기가 도입된 양이온교환막을 제조하는 단계;를 (c) sulfonating the base membrane to prepare a cation exchange membrane into which sulfonic acid functional groups are introduced;
    포함하는 양이온교환막의 제조방법.Method for producing a cation exchange membrane comprising.
  8. 제 7항에 있어서, The method of claim 7, wherein
    단계 (a)에서, 상기 지지체가 팽윤되는 것을 특징으로 하는 양이온교환막의 제조방법.In step (a), the cation exchange membrane production method, characterized in that the support is swollen.
  9. 제 8항에 있어서, The method of claim 8,
    상기 팽윤된 지지체의 팽윤도는 10 내지 60%인 것을 특징으로 하는 양이온교환막의 제조방법.The swelling degree of the swelled support is a method for producing a cation exchange membrane, characterized in that 10 to 60%.
  10. 제 7항에 있어서, The method of claim 7, wherein
    단계 (a)의 온도는 상기 개시제의 개시 온도 미만인 것을 특징으로 하는 양이온교환막의 제조방법.The temperature of step (a) is a method for producing a cation exchange membrane, characterized in that less than the start temperature of the initiator.
  11. 제 10항에 있어서, The method of claim 10,
    상기 개시제는 BPO(Benzoyl peroxide) 및 AIBN(Azobisisobutyronitrile) 중에서 선택된 1종 이상인 것을 특징으로 하는 양이온교환막의 제조방법.The initiator is a method for producing a cation exchange membrane, characterized in that at least one selected from BPO (Benzoyl peroxide) and AIBN (Azobisisobutyronitrile).
  12. 제 11항에 있어서, The method of claim 11,
    단계 (a)의 온도는 10 내지 70℃이고, 1 내지 10시간 동안 수행되는 것을 특징으로 하는 양이온교환막의 제조방법.The temperature of step (a) is 10 to 70 ℃, the method for producing a cation exchange membrane, characterized in that carried out for 1 to 10 hours.
  13. 제 7항에 있어서, The method of claim 7, wherein
    단계 (b)의 중합 온도는 70 내지 140℃이고, 중합 시간은 4 내지 18시간인 것을 특징으로 하는 양이온교환막의 제조방법.The polymerization temperature of step (b) is 70 to 140 ℃, the polymerization time is a method for producing a cation exchange membrane, characterized in that 4 to 18 hours.
  14. 제 7항에 있어서, The method of claim 7, wherein
    단계 (c)는 상기 기저막을 황산, 클로로 황산 및 디클로로에탄(DCE) 중에서 선택된 1종 이상을 포함하는 용액에 침지시켜 수행되는 것을 특징으로 하는 양이온교환막의 제조방법.Step (c) is carried out by immersing the base membrane in a solution containing at least one selected from sulfuric acid, chloro sulfuric acid and dichloroethane (DCE).
  15. 제 7항에 있어서, The method of claim 7, wherein
    단계 (c) 이후에, After step (c),
    (d) 상기 술폰산 작용기가 도입된 양이온교환막을 탈이온수로 세척한 후, NaOH 용액에 침지시켜 미반응 술폰산을 중화시키는 단계를 추가로 포함하는 것을 특징으로 하는 양이온교환막의 제조방법.(d) washing the cation exchange membrane into which the sulfonic acid functional group is introduced, followed by deionized water, and then immersing in a NaOH solution to neutralize unreacted sulfonic acid.
  16. 제 7항에 있어서, 상기 중합용 용액이 The method of claim 7, wherein the polymerization solution is
    스티렌 단량체 100중량부; 100 parts by weight of styrene monomer;
    디비닐벤젠 단량체 2 내지 25 중량부; 및2 to 25 parts by weight of divinylbenzene monomer; And
    중합개시제가 0.1 ∼ 2.5 중량부;를0.1 to 2.5 parts by weight of the polymerization initiator;
    포함하는 것을 특징으로 하는 양이온교환막의 제조방법.Method for producing a cation exchange membrane comprising a.
PCT/KR2019/004908 2018-06-21 2019-04-23 Cation exchange membrane comprising polymer support and manufacturing method therefor WO2019245154A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021520890A JP2021527755A (en) 2018-06-21 2019-04-23 Cation exchange membrane containing polymer support and its manufacturing method
CN201980040802.6A CN112313269A (en) 2018-06-21 2019-04-23 Cation exchange membrane comprising polymer carrier and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180071358A KR101938688B1 (en) 2018-06-21 2018-06-21 Cation exchange membrane comprising high molecular support and method for manufacturing the same
KR10-2018-0071358 2018-06-21

Publications (1)

Publication Number Publication Date
WO2019245154A1 true WO2019245154A1 (en) 2019-12-26

Family

ID=65280644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/004908 WO2019245154A1 (en) 2018-06-21 2019-04-23 Cation exchange membrane comprising polymer support and manufacturing method therefor

Country Status (4)

Country Link
JP (1) JP2021527755A (en)
KR (1) KR101938688B1 (en)
CN (1) CN112313269A (en)
WO (1) WO2019245154A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101938688B1 (en) * 2018-06-21 2019-01-16 주식회사 이노메디텍 Cation exchange membrane comprising high molecular support and method for manufacturing the same
KR102446115B1 (en) * 2021-03-31 2022-09-21 도레이첨단소재 주식회사 anionic electrolytes composition for cation exchange membrane and cation exchange membrane containing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030044651A (en) * 2001-11-30 2003-06-09 광주과학기술원 Preparation of PVC/Polystyren base cation-exchange membrane
KR20040013627A (en) * 2002-08-07 2004-02-14 광주과학기술원 Preparation method of Polyethylene/Polystyrene cation-exchange membrane
KR101799996B1 (en) * 2017-05-10 2017-11-22 한국화학연구원 Styrene-based and tert-butylstyrene-based cation exchange composite membrane having polyvinylidene fluoride and method of preparing thereof
KR101938688B1 (en) * 2018-06-21 2019-01-16 주식회사 이노메디텍 Cation exchange membrane comprising high molecular support and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5120543B2 (en) * 2007-10-18 2013-01-16 財団法人塩事業センター Cation exchange membrane and method for producing the same
JP5653079B2 (en) * 2010-06-16 2015-01-14 Agcエンジニアリング株式会社 Method for producing cation exchange membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030044651A (en) * 2001-11-30 2003-06-09 광주과학기술원 Preparation of PVC/Polystyren base cation-exchange membrane
KR20040013627A (en) * 2002-08-07 2004-02-14 광주과학기술원 Preparation method of Polyethylene/Polystyrene cation-exchange membrane
KR101799996B1 (en) * 2017-05-10 2017-11-22 한국화학연구원 Styrene-based and tert-butylstyrene-based cation exchange composite membrane having polyvinylidene fluoride and method of preparing thereof
KR101938688B1 (en) * 2018-06-21 2019-01-16 주식회사 이노메디텍 Cation exchange membrane comprising high molecular support and method for manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GHOBASHY, M. M. % ET AL.: "Sulfonated gamma-irradiated blend poly (styrene/ethylene-vinyl acetate) membrane and their electrical properties", ADV. POLYM. TECHNOL., pages 1249 - 1255 *

Also Published As

Publication number Publication date
KR101938688B1 (en) 2019-01-16
CN112313269A (en) 2021-02-02
JP2021527755A (en) 2021-10-14

Similar Documents

Publication Publication Date Title
WO2019245154A1 (en) Cation exchange membrane comprising polymer support and manufacturing method therefor
EP2417194A2 (en) Uncrosslinked polyethylene composition for power cable
WO2010128760A2 (en) Expanded polystyrene particle having a skin layer with superior formability, method for producing same, and expanded polystyrene molded article using same
WO2020116725A1 (en) Anion exchange membrane comprising polymer scaffold and preparation method of same
WO2020040356A1 (en) Polyimide varnish comprising aromatic carboxylic acid for conductor coating and manufacturing method therefor
WO2020091147A1 (en) Conductor-coating polyimide varnish for improving heat resistance of polyimide-coated product, and polyimide-coated product manufactured therefrom
WO2012134095A2 (en) Hydrogen ion-conducting copolymer including a diphenyl fluorene group in which a sulfonic acid group is introduced, method for preparing same, polymer electrolyte membrane produced therefrom, membrane/electrolyte assembly using same, and polymer electrolyte membrane fuel cell adopting same
WO2020130466A1 (en) Blood-compatible fluorine-based polymer and thin film comprising same
WO2019117423A1 (en) Cross-linking composition
WO2018004288A2 (en) Polyester multilayered film
WO2019054622A1 (en) Secondary battery solid electrolyte composition and solid electrolyte prepared therefrom
WO2023085592A1 (en) Fluorene- and biphenyl-based branched copolymer polymer electrolyte membrane and water electrolysis system using same
WO2015026093A1 (en) Method for selecting solvent for solution process using solvent group index and system using same
WO2012018227A2 (en) Optical film
WO2020046075A1 (en) Cross-linked polyolefin separator and manufacturing method therefor
WO2020138956A1 (en) Resin composition for cable sheath and electric wire comprising same
WO2022164029A1 (en) Polyester-based film, manufacturing method therefor, and membrane electrode assembly comprising same
WO2018194395A2 (en) Chemically modified anion exchange membrane and manufacturing method therefor
WO2018194393A1 (en) Method for manufacturing ion exchange membrane using chemical modification and ion exchange membrane manufactured thereby
WO2021010669A1 (en) Vinyl chloride resin composition for wallpaper
WO2022220484A1 (en) Molded article for semiconductor device test socket comprising polyimide, and method for manufacturing same
WO2021066438A1 (en) Polymer composite material comprising aramid nanofiber, and method for preparing same
WO2019209022A1 (en) Crosslinkable composition
WO2017183921A1 (en) Polarizing plate and image display device including same
WO2015102354A1 (en) Polyester film and method for preparing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19821865

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520890

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19821865

Country of ref document: EP

Kind code of ref document: A1