WO2022097487A1 - Metal film formation method - Google Patents

Metal film formation method Download PDF

Info

Publication number
WO2022097487A1
WO2022097487A1 PCT/JP2021/038875 JP2021038875W WO2022097487A1 WO 2022097487 A1 WO2022097487 A1 WO 2022097487A1 JP 2021038875 W JP2021038875 W JP 2021038875W WO 2022097487 A1 WO2022097487 A1 WO 2022097487A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal film
metal
group
forming
plating
Prior art date
Application number
PCT/JP2021/038875
Other languages
French (fr)
Japanese (ja)
Inventor
憲正 深澤
潤 白髪
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2022540727A priority Critical patent/JPWO2022097487A1/ja
Publication of WO2022097487A1 publication Critical patent/WO2022097487A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics

Definitions

  • the present invention relates to a metal film forming method capable of forming a metal film on an insulating base material having a three-dimensional three-dimensional structure with high adhesion.
  • the surface of the base material is roughened and the adhesion between the base material and the plating film is ensured by the anchor effect.
  • chemical solutions having a large environmental load such as chromic acid and permanganate are used, and an alternative method that does not use these chemical solutions is required.
  • the method of roughening the surface is used for a base material in which transparency is important, or a base material in which it is difficult to roughen the surface due to low chemical resistance or, conversely, too high chemical resistance.
  • Patent Document 1 describes a first step of performing plasma treatment or electron beam irradiation on a filament bundle, and the filament bundle.
  • a method for producing a conductive fiber yarn which comprises a fourth step of forming a metal plating layer by immersing and performing a electroless plating treatment.
  • a step of fixing a silane coupling agent to the fiber surface of an organic polymer fiber, a metallizing treatment of the silane coupling agent fixed to the fiber surface, and metal particles via the silane coupling agent is characterized by including a step of producing an organic polymer fiber adhered to the fiber surface and a step of electrolyzing the metallized organic polymer fiber using a compound of a metal having a larger ionization tendency than the above metal.
  • a method for producing an organic polymer fiber for carrying out metal plating is disclosed.
  • Patent Document 3 an organic metal complex is dissolved in a carbon dioxide fluid in a supercritical state, impregnated into a polymer fiber material, and then the impregnated organic metal complex is reduced by setting the reduction temperature with a heater.
  • Disclosed is a technique of precipitating a metal catalyst for plating on the surface of a material and using this as the core of plating for plating.
  • the adhesion between the fiber and the metal film is poor, the metal film may be easily peeled off, or the strength of the fiber itself may decrease, and improvement has been sought.
  • Patent Document 4 as a method of performing electroless plating having excellent adhesion between the fiber and the metal film without lowering the strength of the polymer fiber material, the organic polymer fiber is subjected to electron beam irradiation treatment.
  • a method for producing a plated fiber characterized by the above is disclosed.
  • the plating catalyst is held by the polymer of the nitrogen-containing monomer grafted on the fiber surface, which serves as the starting point of plating precipitation, so that the strength of the fiber itself is not reduced and the fiber and the metal film adhere to each other. It is said that sex can be secured.
  • Japanese Unexamined Patent Publication No. 2010-100934 Japanese Patent Application Laid-Open No. 2003-171869 Japanese Unexamined Patent Publication No. 2007-56287 Japanese Unexamined Patent Publication No. 2015-214735
  • the problem to be solved by the present invention does not require surface roughening with chromic acid or permanganic acid, surface modified layer formation with supercritical fluid, etc., and does not use an expensive vacuum device or electron beam irradiation device. It is a simple method to provide a method for forming a metal film on a three-dimensional molded body having high adhesion between a base material and a metal film.
  • the present inventors have formed a primer layer (B) so as to cover at least a continuous series of surfaces of the three-dimensional insulating molded base material (A). Therefore, they have found that a metal film having high adhesion can be formed on a three-dimensional molded body base material, and have completed the present invention.
  • the present invention 1.
  • a method for forming a metal film on a three-dimensional molded body which comprises laminating a primer layer (B) and a metal film (M) formed so as to cover the surface in this order.
  • 2. The method for forming a metal film on a three-dimensional molded body according to 1, wherein the three-dimensional insulating base material (A) has a rod-like or fibrous shape having a diameter of 0.5 ⁇ m to 5 mm. 3. 3.
  • the metal film (M) is one of 1 to 3 characterized in that the plated metal film (M2) is further laminated on the metal particle film (M1) formed from the metal particles.
  • a resin having a reactive functional group [X] is used for the primer layer (B), a resin having a reactive functional group [Y] is used for the polymer dispersant, and the reaction with the reactive functional group [X].
  • the polymer dispersant having the reactive functional group [Y] is at least one selected from the group consisting of polyalkyleneimine and polyalkyleneimine having a polyoxyalkylene structure containing an oxyethylene unit. Film forming method. 11.
  • the reactive functional group [X] is selected from the group consisting of a keto group, an acetoacetyl group, an epoxy group, a carboxyl group, an N-alkyrole group, an isocyanate group, a vinyl group, a (meth) acryloyl group and an allyl group1
  • a base material in which transparency is important and chemical resistance is low without using a chemical solution having a large environmental load such as chromic acid and permanganic acid.
  • a chemical solution having a large environmental load such as chromic acid and permanganic acid.
  • Highly high-quality metal plating can be performed.
  • the surface of the base material is not roughened, the surface of the metal film formed by plating becomes a glossy surface that reflects the smooth surface of the surface of the base material, so that the plating film thickness can be reduced, and the plating time can be shortened. Not only contributes to the improvement of productivity, but also contributes to the weight reduction of the base material. In addition, since it is a simple method that does not use an expensive vacuum device or electron beam irradiation device, it is possible to manufacture a product with high production efficiency and low cost.
  • the insulating base material (A) used in the present invention is a molded base material having a three-dimensional structure in which at least one dimension of the base material has a size of 0.5 ⁇ m to 5 mm.
  • Examples of the material of the insulating base material (A) used in the present invention include polyimide resin, polyamideimide resin, polyamide resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, polycarbonate resin, and acrylonitrile-butadiene-. Grafted styrene (ABS) resin, polyarylate resin, polyacetal resin, acrylic resin such as poly (meth) methyl acrylate, polyfluorovinylidene resin, polytetrafluoroethylene resin, polyvinyl chloride resin, polyvinylidene chloride resin, acrylic resin.
  • ABS Grafted styrene
  • Copolymerized vinyl chloride resin polyvinyl alcohol resin, polyethylene resin, polypropylene resin, urethane resin, cycloolefin resin, polystyrene, liquid crystal polymer (LCP), polyether ether ketone (PEEK) resin, polyphenylene sulfide (PPS), polyphenylene sulfone (PPSU), cellulose nanofibers, silicon, silicon carbide, gallium nitride, sapphire, ceramics, glass, diamond-like carbon (DLC), alumina and the like.
  • LCP liquid crystal polymer
  • PEEK polyether ether ketone
  • PPS polyphenylene sulfide
  • PPSU polyphenylene sulfone
  • cellulose nanofibers silicon, silicon carbide, gallium nitride, sapphire, ceramics, glass, diamond-like carbon (DLC), alumina and the like.
  • thermosetting resin examples include epoxy resin, phenol resin, unsaturated imide resin, cyanate resin, isocyanate resin, benzoxazine resin, oxetane resin, amino resin, unsaturated polyester resin, allyl resin, and dicyclopentadiene resin.
  • examples thereof include silicone resin, triazine resin, and melamine resin.
  • examples of the inorganic filler include silica, alumina, talc, mica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, aluminum borate, and glass borate.
  • the form of the insulating base material (A) is not particularly limited as long as it has a three-dimensional structure having at least one dimension having a size of 0.5 ⁇ m to 5 mm, and is a flexible material, a rigid material, or a rigid flexible material. Any of the above can be used. More specifically, as the insulating base material (A), a commercially available material molded into powder, granular, fibrous, thread-like, rod-like, film-like, sheet-like, or plate-like may be used. A material formed into an arbitrary shape from the above-mentioned resin solution, melt liquid, and dispersion liquid may be used. Further, the insulating base material (A) may be a base material obtained by forming the above-mentioned resin material on a conductive material such as metal.
  • the powder or granular material may be spherical, polygonal, or amorphous.
  • the cross-sectional shape thereof may be a perfect circle or an ellipse, and there are many cases. It may be rectangular or amorphous.
  • the form of the insulating base material (A) may be an aggregate of three-dimensional molded bodies having a three-dimensional structure having a size of at least one dimension of 0.5 ⁇ m to 5 mm.
  • it may be a colloidal crystal in which a large number of particles of the size are aggregated, and paper in which fibers having the size are aggregated, a woven fabric in which threads having the size are aggregated, a non-woven fabric, a web, a net, a mesh, and the like are also preferably used. be able to.
  • the insulating base material may have through holes in the base material, and when the insulating base material is a film or a plate, through holes may be formed, and the insulating material may be formed.
  • the base material (A) When the base material (A) has a rod shape, it may have a macaroni-like structure due to the presence of through holes.
  • the insulating base material (A) when the insulating base material (A) is in the form of particles, it may have a donut-like structure due to the presence of through holes. There may be one through hole, a large number of through holes, and the insulating base material (A) may have a porous structure.
  • the pillar portion forming the porous structure When the insulating base material (A) has a porous structure, the pillar portion forming the porous structure may have a size of 0.5 ⁇ m to 5 mm.
  • the primer layer (B) is formed so as to cover at least a continuous series of surfaces on the three-dimensional insulating molded base material (A). At least a continuous series of surfaces on the three-dimensional insulating molded substrate (A) is a cross section of a three-dimensional molded body formed in a direction orthogonal to the surface covered by the primer layer, as illustrated in FIG. In, it means that the primer layer has a continuous structure without a break (FIG. 1).
  • the primer layer (B) is formed so as to cover at least a continuous series of surfaces on the insulating molded substrate (A), that is, orthogonal to the surface covered by the primer layer.
  • a primer is placed on the continuous series of surfaces of the insulating base material (A). It can be formed by coating and removing a solvent such as an aqueous medium and an organic solvent contained in the primer.
  • the primer is a liquid composition in which various resins described later are dissolved or dispersed in a solvent.
  • the method of applying the primer to the insulating base material (A) is not particularly limited as long as the primer layer (B) can be formed so as to cover a continuous series of surfaces of the insulating base material (A).
  • Various coating methods may be appropriately selected depending on the shape, size, degree of flexibility and the like of the insulating base material (A) to be used. Specific coating methods include, for example, a gravure method, an offset method, a flexographic method, a pad printing method, a gravure offset method, a letterpress method, a letterpress inversion method, a screen method, a microcontact method, a reverse method, and an air doctor coater method.
  • Blade coater method air knife coater method, squeeze coater method, impregnation coater method, transfer roll coater method, kiss coater method, cast coater method, spray coater method, inkjet method, die coater method, spin coater method, bar coater method, dip coater method. And so on.
  • a spray coater method, a dip coater method, or the like can be preferably used for the purpose of efficiently forming the primer layer (B) so as to cover a continuous series of surfaces of the three-dimensional molded body. ..
  • the method of applying the primer to the surface of the insulating base material (A) is to unwind the fiber, thread, woven fabric, roll film or roll sheet in which the insulating base material (A) is a continuum.
  • the coating may be performed by a roll-to-roll equipped with a take-up mechanism or a reel-to-reel type device.
  • the insulating base material (A) may be surface-treated before the primer is applied for the purpose of improving the coatability of the primer.
  • the surface treatment method for the insulating base material (A) is not particularly limited as long as the characteristics of the insulating base material (A) itself are not deteriorated, and various methods may be appropriately selected. Examples of such a surface treatment method include UV treatment, vapor phase ozone treatment, liquid layer ozone treatment, corona treatment, plasma treatment and the like. These surface treatment methods may be carried out by one kind of method or a combination of two or more kinds of methods.
  • drying using a dryer As a method of applying the primer to the surface of the insulating base material (A) and then removing the solvent contained in the coating layer to form the primer layer (B), for example, drying using a dryer is used.
  • the method of volatilizing the solvent is common.
  • the drying temperature may be set to a temperature within a range in which the solvent can be volatilized and does not adversely affect the insulating base material (A), and may be room temperature drying or heat drying.
  • the specific drying temperature is preferably in the range of 20 to 350 ° C, more preferably in the range of 60 to 300 ° C.
  • the drying time is preferably in the range of 1 to 200 minutes, more preferably in the range of 1 to 60 minutes.
  • the above drying may be performed by blowing air, or may not be blown in particular. Further, the drying may be carried out in the atmosphere, in a substitution atmosphere such as nitrogen or argon, in an air flow, or in a vacuum.
  • a substitution atmosphere such as nitrogen or argon
  • the insulating base material (A) is a fiber, a thread, a woven fabric, a sheet-fed film, a sheet, a board, etc., which are three-dimensional molded bodies that are individualized, they are naturally dried at the coating site. In addition, it can be performed in a dryer such as a blower or a constant temperature dryer. Further, when the insulating base material (A) is a continuous fiber, thread, woven fabric, roll film or roll sheet, the insulating base material (A) is rolled in an installed non-heated or heated space following the coating process. Drying can be performed by continuously moving the material.
  • the film thickness of the primer layer (B) may be appropriately selected depending on the intended use of the plated product manufactured using the present invention, but the insulating substrate (A) and the above are described because the primer layer is a continuous film. Since the adhesion to the metal film (M) can be further improved, the range of 10 nm to 30 ⁇ m is preferable, the range of 30 nm to 5 ⁇ m is more preferable, and the range of 50 nm to 1 ⁇ m is further preferable.
  • the resin forming the primer layer (B) is solid in the temperature range in which the product manufactured by the technique of the present invention is used, and is particularly limited as long as a continuous film can be formed on the insulating base material (A).
  • a dispersant for metal particles which will be described later, is used in the step of forming a metal film (M) on the primer layer (B) and has a reactive functional group [Y]
  • the reactive functional group is used.
  • a resin having a reactive functional group [X] having reactivity with [Y] is preferable.
  • Examples of the reactive functional group [X] include an amino group, an amide group, an alkyrole amide group, a keto group, a carboxyl group, an anhydrous carboxyl group, a carbonyl group, an acetoacetyl group, an epoxy group, an alicyclic epoxy group and an oxetane.
  • Examples thereof include a ring, a vinyl group, an allyl group, a (meth) acryloyl group, a (blocked) isocyanate group, and a (alkoxy) silyl group.
  • a silsesquioxane compound can also be used as the compound forming the primer layer (B).
  • the adhesion of the metal film (M) on the insulating substrate (A) can be further improved.
  • the resin forming the primer layer (B) has a keto group, a carboxyl group, a carbonyl group, an acetoacetyl group, an epoxy group, an alicyclic epoxy group, an alkylolamide group, an isocyanate group and vinyl as the reactive functional group [X]. Those having a group, a (meth) acryloyl group, and an allyl group are preferable.
  • Examples of the resin forming the primer layer (B) include a urethane resin, an acrylic resin, a core-shell type composite resin having a urethane resin as a shell and an acrylic resin as a core, an epoxy resin, an imide resin, an amide resin, and a melamine resin. , Phenolic resin, urea formaldehyde resin, blocked isocyanate obtained by reacting polyisocyanate with a blocking agent such as phenol, polyvinyl alcohol, polyvinylpyrrolidone and the like.
  • the core-shell type composite resin having a urethane resin as a shell and an acrylic resin as a core can be obtained, for example, by polymerizing an acrylic monomer in the presence of a urethane resin. Further, these resins can be used alone or in combination of two or more.
  • a resin that produces a reducing compound by heating is preferable because the adhesion of the metal film (M) to the insulating substrate (A) can be further improved.
  • the reducing compound include phenol compounds, aromatic amine compounds, sulfur compounds, phosphoric acid compounds, aldehyde compounds and the like. Among these reducing compounds, phenol compounds and aldehyde compounds are preferable.
  • a reducing compound such as formaldehyde or phenol is produced in the heating and drying step when forming the primer layer (B).
  • the resin that produces a reducing compound by heating include a resin obtained by polymerizing a monomer containing N-alkyrole (meth) acrylamide, and N-alkyrole (meth) acrylamide using a urethane resin as a shell.
  • Core-shell type composite resin with a polymer polymer resin as the core urea-formaldehyde-methanol condensate, urea-melamine-formaldehyde-methanol condensate, poly N-alkoxymethylol (meth) acrylamide, poly (meth)
  • examples thereof include a formaldehyde adduct of acrylamide, a resin that produces formaldehyde by heating a melamine resin, and the like; a resin that produces a phenol compound by heating a phenol resin, a phenol block isocyanate, and the like.
  • a core-shell type composite resin having a urethane resin as a shell and a resin obtained by polymerizing a monomer containing N-alkyrole (meth) acrylamide as a core, a melamine resin, and a phenol Blocked isocyanate is preferred.
  • (meth) acrylamide refers to one or both of “methacrylamide” and “acrylamide”
  • (meth) acrylic acid refers to "methacrylic acid” and "acrylic acid”. Refers to one or both.
  • the resin that produces a reducing compound by heating is obtained by polymerizing a monomer having a functional group that produces a reducing compound by heating by a polymerization method such as radical polymerization, anionic polymerization, or cationic polymerization.
  • Examples of the monomer having a functional group that produces a reducing compound by heating include N-alkyrole vinyl monomer, and specific examples thereof include N-methylol (meth) acrylamide and N-methoxymethyl (N-methoxymethyl). Meta) acrylamide, N-ethoxymethyl (meth) acrylamide, N-propoxymethyl (meth) acrylamide, N-isopropoxymethyl (meth) acrylamide, Nn-butoxymethyl (meth) acrylamide, N-isobutoxymethyl (meth) ) Acrylamide, N-pentoxymethyl (meth) acrylamide, N-ethanol (meth) acrylamide, N-propanol (meth) acrylamide and the like.
  • a monomer having a functional group that produces a reducing compound by heating when producing a resin that produces a reducing compound by heating, a monomer having a functional group that produces a reducing compound by heating, and various other types such as (meth) acrylic acid alkyl ester are used.
  • the monomers can also be copolymerized.
  • a uretdione bond is formed by self-reacting between the isocyanate groups, or the isocyanate group and the functional group of other components are used.
  • the bond formed at this time may be formed before the silver particle dispersion liquid is applied, or is not formed before the silver particle dispersion liquid is applied, and the silver particle dispersion liquid is not formed. May be formed by heating after coating.
  • Examples of the blocked isocyanate include those having a functional group formed by blocking the isocyanate group with a blocking agent.
  • the blocked isocyanate is preferably one having the functional group in the range of 350 to 600 g / mol per 1 mol of the blocked isocyanate.
  • the functional group preferably has 1 to 10 in one molecule of the blocked isocyanate, and more preferably 2 to 5.
  • the number average molecular weight of the blocked isocyanate is preferably in the range of 1,500 to 5,000, more preferably in the range of 1,500 to 3,000, from the viewpoint of improving adhesion.
  • the blocked isocyanate one having an aromatic ring is preferable from the viewpoint of further improving the adhesion.
  • the aromatic ring include a phenyl group and a naphthyl group.
  • the blocked isocyanate can be produced by reacting a part or all of the isocyanate groups of the isocyanate compound with the blocking agent.
  • Examples of the isocyanate compound as a raw material of the blocked isocyanate include 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, carbodiimide-modified diphenylmethane diisocyanate, crude diphenylmethane diisocyanate, phenylenediocyanate, tolylene diisocyanate, naphthalenedi isocyanate and the like.
  • Polyisocyanate compound having an aromatic ring an aliphatic polyisocyanate compound such as hexamethylene diisocyanate, lysine diisocyanate, cyclohexanediisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, or polyisocyanate having an alicyclic structure.
  • Examples include compounds.
  • those burette form, isocyanurate form, adduct form and the like of the said polyisocyanate compound are also mentioned.
  • examples of the isocyanate compound include those obtained by reacting the polyisocyanate compound exemplified above with a compound having a hydroxyl group or an amino group.
  • polyisocyanate compound having an aromatic ring When introducing an aromatic ring into the blocked isocyanate, it is preferable to use a polyisocyanate compound having an aromatic ring.
  • polyisocyanate compounds having an aromatic ring 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate, isocyanurate of 4,4'-diphenylmethane diisocyanate, and isocyanurate of tolylene diisocyanate are preferable.
  • Examples of the blocking agent used for producing the blocked isocyanate include phenol compounds such as phenol and cresol; lactam compounds such as ⁇ -caprolactam, ⁇ -valerolactam and ⁇ -butyrolactam; Oxime compounds such as methyl ethyl keto oxime, methyl isobutyl keto oxime, cyclohexanone oxime; 2-hydroxypyridine, butyl cellosolve, propylene glycol monomethyl ether, benzyl alcohol, methanol, ethanol, n-butanol, isobutanol, dimethyl malonate, diethyl malonate, acet Methyl acetate, ethyl acetoacetate, acetylacetone, butyl mercaptan, dodecyl mercaptan, acetoanilide, acetate amide, succinate imide, maleate imide, imidazole, 2-methyl imidazole, urea, thiour
  • a blocking agent capable of dissociating to generate an isocyanate group by heating in the range of 70 to 200 ° C. is preferable, and a block capable of producing an isocyanate group dissociating by heating in the range of 110 to 180 ° C. is preferable.
  • Agents are more preferred. Specifically, a phenol compound, a lactam compound, and an oxime compound are preferable, and a phenol compound is more preferable because it becomes a reducing compound when the blocking agent is desorbed by heating.
  • Examples of the method for producing the blocked isocyanate include a method of mixing and reacting the isocyanate compound produced in advance with the blocking agent, a method of mixing and reacting the blocking agent with a raw material used for producing the isocyanate compound, and the like. Can be mentioned.
  • the blocked isocyanate produces an isocyanate compound having an isocyanate group at the terminal by reacting the polyisocyanate compound with a compound having a hydroxyl group or an amino group, and then the isocyanate compound and the block. It can be produced by mixing and reacting with an agent.
  • the content ratio of the blocked isocyanate obtained by the above method in the resin forming the primer layer (B) is preferably in the range of 50 to 100% by mass, more preferably in the range of 70 to 100% by mass.
  • the melamine resin examples include mono or polymethylol melamine in which 1 to 6 mol of formaldehyde is added to 1 mol of melamine; (poly) methylol melamine such as trimethoxymethylol melamine, tributoxymethylol melamine, and hexamethoxymethylol melamine. Ethereate (arbitrary degree of etherification); urea-melamine-formaldehyde-methanol condensate and the like.
  • a method of adding a reducing compound to the resin can also be mentioned.
  • the reducing compound to be added include phenol-based antioxidants, aromatic amine-based antioxidants, sulfur-based antioxidants, phosphoric acid-based antioxidants, vitamin C, vitamin E, and ethylenediamine tetraacetic acid. Examples thereof include sodium, sulfite, hypophosphoric acid, hypophosphite, hydrazine, formaldehyde, sodium hydride, dimethylamine borane, phenol and the like.
  • the method of adding a reducing compound to a resin may result in deterioration of electrical properties due to the residual low molecular weight component or ionic compound. Therefore, a resin that produces a reducing compound by heating. Is more preferable.
  • the primer used to form the primer layer (B) preferably contains 1 to 70% by mass of the resin in the primer from the viewpoint of coatability and film forming property, and contains 1 to 20% by mass. The one is more preferable.
  • examples of the solvent that can be used for the primer include various organic solvents and aqueous media.
  • examples of the organic solvent include toluene, ethyl acetate, methyl ethyl ketone, cyclohexanone and the like
  • examples of the aqueous medium include water, an organic solvent miscible with water, and a mixture thereof.
  • organic solvent to be mixed with water examples include alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve and butyl cellosolve; ketone solvents such as acetone and methyl ethyl ketone; ethylene glycol, diethylene glycol and propylene.
  • alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve and butyl cellosolve
  • ketone solvents such as acetone and methyl ethyl ketone
  • ethylene glycol diethylene glycol and propylene.
  • alkylene glycol solvent such as glycol
  • a polyalkylene glycol solvent such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol
  • lactam solvent such as N-methyl-2-pyrrol
  • the resin forming the primer layer (B) may have a functional group that contributes to the crosslinking reaction, such as an alkoxysilyl group, a silanol group, a hydroxyl group, or an amino group, if necessary.
  • the crosslinked structure formed by utilizing these functional groups may have already formed the crosslinked structure before the step of forming the metal film (M1) formed from the metal particles in the subsequent step, or the metal.
  • a crosslinked structure may be formed after the step of forming the metal film (M1) formed from the particles.
  • a crosslinked structure is formed on the primer layer (B) before forming the metal film (M2).
  • a crosslinked structure may be formed in the primer layer (B) by, for example, aging after forming the metal film (M2).
  • a known substance such as a cross-linking agent, a pH adjuster, a film forming aid, a leveling agent, a thickener, a water repellent agent, and an antifoaming agent is appropriately added to the primer layer (B). May be used.
  • the cross-linking agent examples include a metal chelate compound, a polyamine compound, an aziridine compound, a metal salt compound, an isocyanate compound and the like, and a thermal cross-linking agent that reacts at a relatively low temperature of about 25 to 100 ° C. to form a cross-linking structure.
  • thermal cross-linking agents such as melamine-based compounds, epoxy-based compounds, oxazoline compounds, carbodiimide compounds, and blocked isocyanate compounds that react at a relatively high temperature of 100 ° C. or higher to form a cross-linking structure, and various photocross-linking agents.
  • the amount of the cross-linking agent used varies depending on the type, from the viewpoint of improving the adhesion of the metal film (M) of the insulating base material, 0.01 to 0.01 to 100 parts by mass of the resin contained in the primer.
  • the range of 60 parts by mass is preferable, the range of 0.1 to 10 parts by mass is more preferable, and the range of 0.1 to 5 parts by mass is further preferable.
  • the cross-linking structure may already be formed before the step of forming the metal particle layer (M1) containing the metal particles in the subsequent step, or the metal particles formed from the metal particles.
  • a crosslinked structure may be formed after the step of forming the layer (M1).
  • the crosslinked structure may be formed on the primer layer (B) before the metal film (M2) is formed.
  • a crosslinked structure may be formed in the primer layer (B) by, for example, aging after forming the metal film (M2).
  • a metal film (M) is formed on the primer layer (B) formed on the insulating base material (A).
  • One of the preferable modes in the method for forming a metal film on a three-dimensional molded body of the present invention is a metal particle film (M1) in which the metal film (M) formed on the primer layer (B) is formed from metal particles. ).
  • the metal particles forming the metal particle layer (M1) are selected from the group consisting of silver, copper, nickel, gold, platinum, palladium, ruthenium, tin, iron, cobalt, titanium, indium, iridium and the like.
  • One or more kinds of metals can be preferably used.
  • silver or copper particles are preferably used as the main component because they are relatively inexpensive and have a sufficiently low electrical resistance as a conductive metal layer, and are stored in the atmosphere.
  • silver particles it is particularly preferable to use silver particles as a main component because the surface is not easily oxidized.
  • the metal particles When silver particles are used as the main component of the metal particles, the metal particles may contain a metal other than silver, and when a metal other than silver is contained, the proportion of the metal other than silver is described later. As long as the plating in No. 3 can be carried out without any problem, there is no particular limitation, but 5 parts by mass or less is preferable with respect to 100 parts by mass of silver, and 2 parts by mass or less is more preferable.
  • the metal other than silver may contain a component other than silver in the individual metal particles, or may contain particles of a metal other than silver. good.
  • the metal substituted or mixed with silver include one or more metal elements selected from the group consisting of gold, platinum, palladium, ruthenium, tin, copper, nickel, iron, cobalt, titanium, indium and iridium.
  • the metal is placed on a primer layer (B) formed so as to cover at least a continuous series of surfaces on the insulating base material (A).
  • a metal particle layer (M1) is formed on the primer layer (B).
  • the coating method of the metal particle dispersion liquid is not particularly limited, and various coating methods mentioned in the primer coating may be appropriately selected.
  • the method of applying the dispersion liquid of the metal particles may be the same as the method of applying the primer, or a different method may be used.
  • the primer layer (B) has the same purpose as the insulating base material (A) for improving the coatability of the metal particle dispersion and improving the adhesion of the metal film (M) to the primer layer. Therefore, the surface treatment may be performed before applying the metal particle dispersion liquid. As the surface treatment method, various surface treatment methods mentioned in the primer coating may be appropriately selected.
  • the coating film is dried and fired to volatilize the solvent contained in the metal particle dispersion liquid, and the insulating base material (the insulating base material (A)).
  • a metal particle layer (M1) is formed on A).
  • drying mainly means a process of volatilizing a solvent from the dispersion liquid of the metal particles
  • firing mainly means a process of joining metal particles to each other.
  • the above drying and firing may be performed at the same time, or the coating film may be dried once and then fired if necessary before use.
  • the drying temperature and time may be appropriately selected depending on the body heat temperature of the insulating base material (A) to be used and the type of solvent used for the metal particle dispersion liquid described later, and may be 20 ° C. to 250 ° C.
  • the time is preferably in the range of 1 to 200 minutes.
  • the firing temperature and time may be appropriately selected according to the conductivity required for the metal particle layer (M1), but the temperature is in the range of 80 to 350 ° C. and the time is in the range of 1 to 200 minutes. Is preferable.
  • the above drying / firing may be performed by blowing air, or may not be blown in particular. Further, the drying / firing may be performed in the atmosphere, under a substitution atmosphere of an inert gas such as nitrogen or argon, under an air flow, or under a vacuum.
  • an inert gas such as nitrogen or argon
  • the metal particle layer (M1) contains metal particles in the range of 80 to 99.9% by mass, and contains a polymer dispersant component described later in the range of 0.1 to 20% by mass. Is preferable.
  • the thickness of the metal particle layer (M1) is preferably in the range of 30 to 500 nm.
  • the metal film (M) is a metal particle film (M1) formed of metal particles and a plated metal film (M2) laminated on the metal particle film (M1)
  • the metal particle layer (M1) is a plated metal film (M2).
  • the thickness of the metal particle layer (M1) is preferably 50 to 500 nm.
  • the thickness of the metal particle layer (M1) can be estimated by various known and commonly used methods. For example, a cross-sectional observation method using an electron microscope or a method using fluorescent X-rays can be used. It is convenient and preferable to use the linear method.
  • the metal particle dispersion used in the present invention for forming the metal particle layer (M1) is one in which metal particles are dispersed in a solvent.
  • the shape of the metal particles is not particularly limited as long as it can form the metal particle layer (M1) satisfactorily, and has various shapes such as spherical, lenticular, polyhedral, flat plate, rod, and wire.
  • Metal particles can be used. These metal particles may be used as one type having a single shape, or may be used in combination with two or more types having different shapes.
  • the average particle diameter thereof is preferably in the range of 1 to 20,000 nm. Further, when used for the purpose of forming a fine circuit pattern, the homogeneity of the metal particle layer (M1) can be further improved, and the removability by an etching solution can be further improved. Therefore, the average particle diameter thereof is 1 to 200 nm. Those in the range of 1 to 50 nm are more preferable.
  • the "average particle size" of the nanometer-sized particles is a volume average value measured by a dynamic light scattering method obtained by diluting the silver particles with a good dispersion solvent. "Nanotrack UPA-150" manufactured by Microtrack Co., Ltd. can be used for this measurement.
  • the metal particles have a shape such as a lens shape, a rod shape, or a wire shape
  • those having a minor axis in the range of 1 to 200 nm are preferable, those having a minor axis in the range of 2 to 100 nm are more preferable, and those having a minor axis in the range of 5 to 50 nm are more preferable. Those in the range of are more preferable.
  • the metal particle dispersion used to form the metal particle layer (M1) is one in which metal particles are dispersed in various solvents, and the particle size distribution of the metal particles in the dispersion is uniform in a single dispersion. It may be a mixture of particles within the above average particle size range.
  • an aqueous medium or an organic solvent can be used as the solvent used for the dispersion liquid of the metal particles.
  • the aqueous medium include distilled water, ion-exchanged water, pure water, ultrapure water, and a mixture of the water and an organic solvent to be mixed with the water.
  • Examples of the organic solvent to be mixed with water include alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve and butyl cellosolve; ketone solvents such as acetone and methyl ethyl ketone; ethylene glycol, diethylene glycol and propylene.
  • Examples thereof include an alkylene glycol solvent such as glycol; a polyalkylene glycol solvent such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol; and a lactam solvent such as N-methyl-2-pyrrolidone.
  • examples of the organic solvent when the organic solvent is used alone include alcohol compounds, ether compounds, ester compounds, and ketone compounds.
  • Examples of the alcohol solvent or ether solvent include methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, sec-butanol, tert-butanol, heptanol, hexanol, octanol, nonanol, decanol, undecanol, and dodecanol.
  • Tridecanol Tetradecanol, Pentadecanol, Stearyl Alcohol, Allyl Alcohol, Cyclohexanol, Terpineol, Tarpineol, Dihydroterpineol, 2-Ethyl-1,3-hexanediol, Ethylene Glycol, Diethylene Glycol, Triethylene Glycol, Polyethylene Glycol, Propylene glycol, dipropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, glycerin, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol Monobutyl Ether, Diethylene Glycol Monoethyl Ether, Diethylene Glycol Monomethyl Ether, Diethylene Glycol Monobutyl Ether, Tetraethylene Glycol Monobutyl Ether, Propylene Glycol Monomethyl
  • Examples of the ketone solvent include acetone, cyclohexanone, methyl ethyl ketone and the like.
  • Examples of the ester solvent include ethyl acetate, butyl acetate, 3-methoxybutyl acetate, 3-methoxy-3-methyl-butyl acetate and the like.
  • a hydrocarbon solvent such as toluene, particularly a hydrocarbon solvent having 8 or more carbon atoms can be mentioned.
  • hydrocarbon solvent having 8 or more carbon atoms examples include non-polar solvents such as octane, nonane, decane, dodecane, tridecane, tetradecane, cyclooctane, xylene, mesitylene, ethylbenzene, dodecylbenzene, tetraline, and trimethylbenzenecyclohexane. It can be used in combination with other solvents as needed. Further, a solvent such as mineral spirit or solvent naphtha which is a mixed solvent can be used in combination.
  • non-polar solvents such as octane, nonane, decane, dodecane, tridecane, tetradecane, cyclooctane, xylene, mesitylene, ethylbenzene, dodecylbenzene, tetraline, and trimethylbenzenecyclohexane. It can be used in combination with other solvent
  • the solvent is particularly limited as long as the metal particles are stably dispersed and the metal particle layer (M1) is satisfactorily formed on the primer layer (B) formed on the insulating base material (A). There is no limit. Further, the solvent may be used alone or in combination of two or more.
  • the content of the metal particles in the metal particle dispersion is adjusted so as to have a viscosity having optimum coating suitability according to the above coating method, but is preferably in the range of 0.5 to 90% by mass.
  • the range of 1 to 60% by mass is more preferable, and the range of 2 to 10% by mass is more preferable.
  • the metal particles do not aggregate, fuse, or precipitate in the various solvent media, and the dispersion stability is maintained for a long period of time. It is coated with a polymer dispersant for dispersion.
  • a polymer dispersant for dispersion, a dispersant having a functional group that coordinates with the metal particles is preferable, and for example, a carboxyl group, an amino group, a cyano group, an acetoacetyl group, a phosphorus atom-containing group, a thiol group, and a thiocyanato group.
  • Dispersants having a functional group such as a glycinato group can be mentioned.
  • the dispersant a commercially available or independently synthesized low molecular weight or high molecular weight dispersant can be used, and the insulating molded body coated with a solvent for dispersing silver particles or a dispersion liquid of silver particles is applied. It may be appropriately selected according to the purpose such as the type of (A).
  • a polycyclic hydrocarbon compound having a carboxyl group of the above is preferably used, but a reactive functional group [Y] capable of forming a bond with the reactive functional group [X] of the resin used for the primer layer (B). It is preferable to use a compound having.
  • Examples of the compound having a reactive functional group [Y] include an amino group, an amide group, an alkyrole amide group, a carboxyl group, an anhydrous carboxyl group, a carbonyl group, an acetoacetyl group, an epoxy group, an alicyclic epoxy group and an oxetan ring. , Vinyl group, allyl group, (meth) acryloyl group, (blocked) isocyanate group, (alkoxy) silyl group and the like, silsesquioxane compound and the like.
  • the reactive functional group [Y] is preferably a basic nitrogen atom-containing group because the adhesion between the primer layer (B) and the conductive metal layer (M1) can be further improved.
  • Examples of the basic nitrogen atom-containing group include an imino group, a primary amino group, a secondary amino group and the like.
  • the basic nitrogen atom-containing group may be singular or plural in one molecule of the dispersant. By containing a plurality of basic nitrogen atoms in the dispersant, some of the basic nitrogen atom-containing groups contribute to the dispersion stability of the metal particles by interacting with the silver particles, and the remaining basic nitrogen. The atom-containing group contributes to improving the adhesion to the insulating base material (A). Further, when a resin having a reactive functional group [X] is used for the primer layer (B) described later, the basic nitrogen atom-containing group in the dispersant is between the reactive functional group [X]. It is preferable because a bond can be formed with the metal film (M) and the adhesion of the metal film (M) to the insulating base material (A) can be further improved.
  • the polymer dispersant can form a metal particle layer (M1) showing stability, coatability, and good adhesion on the primer layer (B) of the dispersion liquid of metal particles, polyethyleneimine, Polyalkylene imine such as polypropylene imine, a compound obtained by adding polyoxyalkylene to the polyalkylene imine, and the like are preferable.
  • the compound to which polyoxyalkylene is added to the polyalkyleneimine may be a compound in which polyethyleneimine and polyoxyalkylene are bonded in a linear manner, and the side of the main chain made of polyethyleneimine is the side thereof.
  • the chain may be grafted with polyoxyalkylene.
  • the compound in which polyoxyalkylene is added to the polyalkyleneimine include a block copolymer of polyethyleneimine and polyoxyethylene, and ethylene oxide in a part of the imino group present in the main chain of polyethyleneimine.
  • examples thereof include those in which a polyoxyethylene structure is introduced by an addition reaction, and those in which an amino group possessed by polyalkyleneimine, a hydroxyl group possessed by polyoxyethylene glycol, and an epoxy group possessed by an epoxy resin are reacted.
  • Examples of the commercially available product of the polyalkyleneimine include “PAO2006W”, “PAO306”, “PAO318” and “PAO718” of "Epomin (registered trademark) PAO series” manufactured by Nippon Shokubai Co., Ltd.
  • the number average molecular weight of the polyalkyleneimine is preferably in the range of 3,000 to 30,000.
  • the amount of the dispersant required to disperse the metal particles is preferably in the range of 0.01 to 50 parts by mass with respect to 100 parts by mass of the metal particles, and on the primer layer (B). Since a metal particle layer (M1) exhibiting good adhesion can be formed, the range of 0.1 to 10 parts by mass is preferable with respect to 100 parts by mass of the metal particles, and the metal particle layer (M1) is more conductive. When used as a plating seed, the range of 0.1 to 5 parts by mass is more preferable because the conductivity of the metal particle layer (M1) can be improved.
  • the method for producing the dispersion liquid of the metal particles is not particularly limited and can be produced by using various methods.
  • the metal particles produced by a vapor phase method such as an evaporation method in a low vacuum gas can be used as a solvent. It may be dispersed therein, or the metal compound may be reduced in the liquid phase to directly prepare a dispersion of metal particles.
  • the solvent composition of the dispersion liquid at the time of production and the dispersion liquid at the time of coating can be changed as appropriate by exchanging the solvent or adding a solvent.
  • the liquid phase method can be particularly preferably used because of the stability of the dispersion liquid and the simplicity of the manufacturing process.
  • a liquid phase method for example, it can be produced by reducing metal ions in the presence of the polymer dispersant.
  • the dispersion liquid of the metal particles may further contain an organic compound such as a surfactant, a leveling agent, a viscosity modifier, a film forming aid, an antifoaming agent, and an antiseptic.
  • an organic compound such as a surfactant, a leveling agent, a viscosity modifier, a film forming aid, an antifoaming agent, and an antiseptic.
  • surfactant examples include nonions such as polyoxyethylene nonylphenyl ether, polyoxyethylene lauryl ether, polyoxyethylene styrylphenyl ether, polyoxyethylene sorbitol tetraoleate, and polyoxyethylene / polyoxypropylene copolymer.
  • fatty acid salts such as sodium oleate, alkyl sulfate ester salts, alkylbenzene sulfonates, alkyl sulfosuccinates, naphthalene sulfonates, polyoxyethylene alkyl sulfates, alkane sulfonate sodium salts, sodium alkyldiphenyl ether sulfonates
  • Anionic surfactants such as salts
  • cationic surfactants such as alkylamine salts, alkyltrimethylammonium salts, and alkyldimethylbenzylammonium salts can be mentioned.
  • leveling agent a general leveling agent can be used, and examples thereof include silicone-based compounds, acetylenediol-based compounds, and fluorine-based compounds.
  • a general thickener can be used as the viscosity modifier.
  • an acrylic polymer that can be thickened by adjusting it to alkaline, a synthetic rubber latex, and a thickening agent by associating molecules can be used.
  • examples thereof include urethane resin, hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, polyvinyl alcohol, water-added castor oil, amido wax, polyethylene oxide, metal soap, and dibenzylidene sorbitol.
  • a general film-forming auxiliary can be used.
  • an anionic surfactant such as dioctyl sulfosuccinate sodium salt, a hydrophobic nonionic surfactant such as sorbitan monooleate, etc. can be used.
  • a general defoaming agent can be used, and examples thereof include silicone-based defoaming agents, nonionic-based surfactants, polyethers, higher alcohols, and polymer-based surfactants.
  • a general preservative can be used, for example, an isothiazoline-based preservative, a triazine-based preservative, an imidazole-based preservative, a pyridine-based preservative, an azole-based preservative, a pyrithione-based preservative, and the like. Can be mentioned.
  • a more preferable uniform of the method for forming a metal film on a three-dimensional molded body of the present invention is that the metal film (M) is further plated on a metal particle film (M1) formed of metal particles (M2). ) Are laminated.
  • Examples of the plating method for forming the plated metal film (M2) on the metal particle layer (M1) include electroless plating, electrolytic plating, and a method in which electroless plating and electrolytic plating are combined.
  • the metal particle layer (M1) can be used as a catalyst seed.
  • the plating layer (M2) may be formed by forming a thick film only by electrolytic plating, or by further performing electrolytic plating using the electrolytic plating layer formed by electrolytic plating as a conductive seed.
  • the plating layer (M2) may be thickened.
  • the plating layer (M2) may be formed by performing electrolytic plating after electroless plating.
  • the plating precipitation rate can be increased, which is advantageous because the production efficiency is high.
  • the metal plating layer (M2) When the metal plating layer (M2) is formed by electroless plating, examples of the plating metal include copper, nickel, chromium, cobalt, cobalt-tungsten, cobalt-tungsten-boron, tin and the like. When the metal plating layer (M2) has a conductor circuit pattern, it is preferable to use copper among these metals because the electric resistance value is low. Further, as described above, the metal plating layer (M2) can be formed by performing electrolytic plating after electroless plating. When electrolytic plating is used in combination, the plating precipitation rate can be increased, which is advantageous because the production efficiency is high.
  • the metal plating layer (M2) is formed by using electrolytic plating and electrolytic plating in combination
  • the deposited metal of the electrolytic plating and the electrolytic plating is the same. May be different.
  • electroless copper plating followed by electrolytic copper plating, electroless nickel plating followed by electrolytic copper plating, electroless nickel plating followed by electrolytic nickel plating, electroless cobalt plating followed by electrolytic copper plating, and the like can be mentioned.
  • the metal plating layer (M2) has a circuit pattern
  • copper is preferably used as the main metal constituting the metal plating layer (M2) because the electric resistance value is low, and electroless nickel or electroless nickel or electroless electrolysis is preferable.
  • the metal constituting the metal plating layer (M2) preferably contains a magnetic material, and nickel, iron-nickel alloy, or the like is preferably used.
  • the thickness of the electrolytic plating layer is appropriately selected as necessary.
  • the range is 0.1 ⁇ m to 2 ⁇ m in order to secure conductivity for proper electrolytic plating, and the range is 0.15 ⁇ m to 1 ⁇ m from the viewpoint of improving productivity. Is more preferable.
  • the plating metal constituting the metal plating layer (M2) may be, for example, copper.
  • the plating metal constituting the metal plating layer (M2) may be, for example, copper.
  • examples thereof include nickel, chromium, zinc, tin, gold, silver, rhodium, palladium, platinum and the like.
  • copper is preferable because it is inexpensive and has a low electric resistance value as described above, and the metal plating layer (M2) is plated with electrolytic copper. It is preferable to form.
  • the electrolytic copper plating may be performed by using a known and commonly used method, but a copper sulfate plating method using a copper sulfate bath is preferable.
  • a copper sulfate plating method using a copper sulfate bath is preferable.
  • the metal film (M) is used as an electromagnetic wave shield, it is preferable to contain a magnetic metal such as nickel or nickel-iron alloy as described above.
  • These electrolytic platings may be performed by a known and commonly used method, and commercially available plating additives can be preferably used.
  • the plating metal constituting the metal plating layer (M2) may be used alone or in combination of a plurality of the above-mentioned various metals.
  • the metal plating layer (M2) to be formed is for decorative purposes, copper plating is performed on the lower layer of the outermost nickel-chromium plating for the purpose of stress relief of the plated metal.
  • the copper plating carried out at this time may be carried out by subjecting the metal particle layer (M1) to electrolytic nickel plating, then electrolytic copper plating, and further electrolytic nickel and electrolytic chrome plating, or the metal particles. Electrolytic copper plating may be performed on the layer (PM1), followed by electrolytic nickel or electrolytic chrome plating. Further, the metal particle layer (M1) may be subjected to electrolytic copper plating and then electrolytic nickel plating or electrolytic nickel-iron alloy plating.
  • the metal film (M) formed on the insulating base material (A) may be patterned.
  • the unnecessary portion may be removed and patterned, or the metal particle layer may be patterned.
  • a method is used in which a pattern resist is formed on (M1), a plated metal layer (M2) is formed only on a necessary pattern portion, the resist is peeled off, and the metal particle layer (M1) on an unnecessary portion is removed by etching. May be.
  • the non-pattern forming portion of the metal particle layer (M1) is removed by a mechanical method such as marking or laser irradiation to leave the metal particle layer (M1) of the pattern portion, and the metal particle layer (M1) is seeded. As a result, plating of the pattern portion may be formed.
  • a base material in which transparency is important and resistance to a base material such as chromic acid and permanganic acid, which have a large environmental load are not used.
  • a base material in which transparency is important and resistance to a base material such as chromic acid and permanganic acid, which have a large environmental load are not used.
  • difficult-to-plating materials with a three-dimensional structure that makes it difficult to roughen the surface such as low chemical resistance, or conversely too high chemical resistance, and the roughening treatment causes deterioration of the strength and function of the base material.
  • metal plating with high adhesion can be performed.
  • the surface of the base material is not roughened, the surface of the metal film formed by plating becomes a glossy surface that reflects the smooth surface of the surface of the base material, so that the plating film thickness can be reduced, and the plating time can be shortened. Not only contributes to the improvement of productivity, but also contributes to the weight reduction of the base material.
  • it is a simple method that does not use an expensive vacuum device or electron beam irradiation device, it is possible to manufacture a product with high production efficiency and low cost.
  • in printed wiring board applications where high density and high frequency compatibility are advancing, if unevenness is formed on the surface by roughening processing, it becomes difficult to form a narrow pitch circuit and signal delay occurs.
  • the metal film forming method of the present invention not only a printed wiring board but also various members having a patterned metal layer on the surface of a base material, for example, a connector, an electromagnetic wave shield, an antenna such as RFID, a film capacitor and the like can be obtained. Can be manufactured. Furthermore, the metal film forming method of the present invention can also be suitably used in decorative plating applications in which a metal film is provided on a substrate having various shapes and sizes.
  • Polyester polyol (polyolpolyol obtained by reacting 1,4-cyclohexanedimethanol, neopentylglycol, and adipic acid in a nitrogen-substituted container equipped with a thermometer, a nitrogen gas introduction tube, and a stirrer) 100 By mass, 17.6 parts by mass of 2,2-dimethylolpropionic acid, 21.7 parts by mass of 1,4-cyclohexanedimethanol, 106.2 parts by mass of dicyclohexylmethane-4,4'-diisocyanate, and 178 parts by mass of methylethylketone. By reacting in the mixed solvent of the above, a urethane prepolymer solution having an isocyanate group at the terminal was obtained.
  • a monomer mixture consisting of 60 parts by mass of methyl methacrylate, 30 parts by mass of n-butyl acrylate and 10 parts by mass of Nn-butoxymethylacrylamide, and 20 parts by mass of a 0.5% by mass ammonium persulfate aqueous solution were added.
  • the parts were dropped from a separate dropping funnel over 120 minutes while keeping the temperature inside the reaction vessel at 80 ° C.
  • aqueous dispersion of a resin composition for a primer layer which is a core-shell type composite resin having the urethane resin as a shell layer and an acrylic resin made of methyl methacrylate or the like as a core layer, was obtained. ..
  • Preparation Example 1 Preparation of silver particle dispersion
  • a dispersion containing the agent was prepared.
  • ion-exchanged water, ethanol and a surfactant were added to the obtained dispersion to prepare a 5% by mass silver particle dispersion.
  • Preparation Example 2 Preparation of Primer (B-1)]
  • the mass ratio of isopropanol and water is 7/3, and the non-volatile content is 2% by mass.
  • Isoppil alcohol and deionized water were added to the dispersion and mixed to obtain a primer (B-1).
  • Example 1 A nylon thread (fishing line) of No. 0.1 (53 ⁇ m diameter) was used as the insulating base material (A), immersed in the primer prepared in Preparation Example 2 for 10 seconds, pulled up, and dried at 80 ° C. for 5 minutes. A primer layer having a thickness of 100 nm was formed on the entire surface of the nylon thread. Next, the nylon thread having the primer layer formed on the surface was immersed in the silver particle dispersion prepared in Preparation Example 1 for 10 seconds, then pulled up and dried at 120 ° C. for 5 minutes to obtain a 120 nm thick silver particle film (M1). A metal film (M) of a silver particle layer was formed on a nylon thread having a diameter of 53 ⁇ m, which is an insulating base material, via a primer layer (B-1).
  • a metal film (M) of a silver particle layer was formed on a nylon thread having a diameter of 53 ⁇ m, which is an insulating base material, via a primer layer (B-1).
  • the nylon thread having the metal film of the silver particle layer prepared by fixing it on the desk so that the adhesive side of Nichiban Cello Tape (registered trademark) faces up is attached to the tape surface and then strongly peeled off to form the nylon thread.
  • Nichiban Cello Tape registered trademark
  • Example 2 The nylon thread having the metal film of the silver particle layer (M1) obtained in Example 1 was placed in a non-electrolytic copper plating solution (“Circuposit 6550” manufactured by Roam & Haas Electronic Materials Co., Ltd.) at 35 ° C. , By immersing for 22 minutes to form an electrolytic copper plating film (thickness 0.5 ⁇ m) on the surface of silver particles, a primer layer (B-1) was placed on a 53 ⁇ m diameter nylon thread which is an insulating base material. A silver particle layer (M1) and a metal film (M) of a copper plating film (M2) were formed therethrough.
  • a non-electrolytic copper plating solution (“Circuposit 6550” manufactured by Roam & Haas Electronic Materials Co., Ltd.)
  • a primer layer (B-1) was placed on a 53 ⁇ m diameter nylon thread which is an insulating base material.
  • Example 3 In Example 2, the primer was changed from (B-1) of Preparation Example 2 to (B-2) of Preparation Example 3, the drying temperature was set to 120 ° C. for 5 minutes, a primer layer of 80 nm was formed, and silver particles were formed. In the same manner as in Example 2, a primer layer (B- A silver particle layer (M1) and a metal film (M) of a copper plating film (M2) were formed via 2).
  • Example 4 On the 97 ⁇ m diameter polyester yarn which is the insulating base material in the same manner as in Example 1 except that the polyester yarn (fishing line) of No. 0.35 (97 ⁇ m diameter) was used as the insulating base material (A). A metal film (M) of a silver particle layer was formed in the primer layer (B-2).
  • the obtained polyester yarn having a silver particle layer (M1) is treated with electroless nickel-boron plating (“Top Chemialoy 66-LF” manufactured by Okuno Pharmaceutical Co., Ltd.) at 65 ° C. for 2 minutes.
  • a nickel-boron plated layer having a thickness of 0.2 ⁇ m is formed on the silver particle layer (M1), and a primer layer (B-2) and silver are formed on a 97 ⁇ m diameter polyester yarn which is an insulating base material.
  • a particle layer (M1) and a nickel-boron plated layer (M2) were formed.
  • Example 5 An LCP monofilament (manufactured by Toray Industries, Inc.) having a diameter of 20 ⁇ m was used as the insulating base material (A), immersed in the primer prepared in Preparation Example 2 for 10 seconds, then pulled up and dried at 120 ° C. for 5 minutes to form a nylon thread. A primer layer having a thickness of 100 nm was formed on the entire surface. Next, the polyester yarn having the primer layer formed on the surface was immersed in the silver particle dispersion prepared in Preparation Example 1 for 10 seconds, then pulled up and dried at 120 ° C. for 5 minutes to obtain a 120 nm thick silver particle film (M1). A metal film (M) of a silver particle layer was formed on an LCP monofilament having a diameter of 20 ⁇ m, which is an insulating base material, via a primer layer (B-1).
  • a metal film (M) of a silver particle layer was formed on an LCP monofilament having a diameter of 20 ⁇ m, which is an insulating base
  • the LCP monofilament having the obtained silver particle layer (M1) was placed in an electroless copper plating solution (“Circuposit 6550” manufactured by Roam & Haas Electronic Materials Co., Ltd.) at 35 ° C. in the same manner as in Example 2. It was immersed for 10 minutes to form an electroless copper plating film (thickness 0.2 ⁇ m) on the surface of silver particles.
  • an electroless copper plating solution (“Circuposit 6550” manufactured by Roam & Haas Electronic Materials Co., Ltd.) at 35 ° C.
  • Example 6 A part of the LCP monofilament having a copper-plated layer (M2) obtained in Example 5 was immersed in a 38 mass% ferric chloride aqueous solution set at 40 ° C. for 20 seconds, and the silver particle layer (immersed portion). M1) and the copper plating layer (M2) were removed by etching to perform patterning. The primer layer (B) was not removed with the ferric chloride aqueous solution.
  • Example 7 As the insulating base material (A), a 100 ⁇ m pore net filter (manufactured by Millipore, NY1H04700, 47 mm ⁇ ; FIG. 2) made of nylon thread having a diameter of 50 ⁇ m was used, immersed in the primer prepared in Preparation Example 2 for 10 seconds, and then pulled up. After drying at 70 ° C. for 5 minutes, a primer layer having a thickness of 100 nm was formed on the entire surface of the nylon yarn. Next, the nylon thread having the primer layer formed on the surface was immersed in the silver particle dispersion prepared in Preparation Example 1 for 10 seconds, then pulled up and dried at 70 ° C. for 5 minutes to obtain a 120 nm thick silver particle film (M1).
  • M1 120 nm thick silver particle film
  • Example 2 After forming the primer layer (B) and the silver particle layer (M1) on the nylon thread of the net filter, which is the insulating base material (A), 0 was formed in the same manner as in Example 1. An electroless copper plating layer (M2) having a thickness of .5 ⁇ m was formed. Next, the net filter is fixed to a stainless steel frame, an electrolytically-free copper plating layer is placed on the cathode, and an electrolytic plating solution containing copper sulfate (copper sulfate 60 g / L, sulfuric acid 190 g / L, using phosphorus-containing copper as an anode).
  • copper sulfate copper sulfate 60 g / L, sulfuric acid 190 g / L, using phosphorus-containing copper as an anode.
  • Example 8 On the copper plating layer on the ⁇ 47 mm nylon net filter having the copper plating layer (M2) obtained in Example 7, a cover tape having a width of 5 mm (Macu Tape P-3, manufactured by McDermid) was applied to both sides of the filter. A silver particle layer in the part without the cover tape with a 38 mass% ferric chloride aqueous solution set at 40 ° C. using an etching machine (San Hayato Co., Ltd., ES-800M) and pasted in the same position in a grid pattern. (M1) and the copper plating layer (M2) were removed by etching to perform patterning. The primer layer (B) was not removed by the ferric chloride aqueous solution, and a 0.5 cm square arranged copper pattern was formed on the nylon net filter.
  • an etching machine San Hayato Co., Ltd., ES-800M
  • cellophane tape (registered trademark) was attached to the net filter on which the electrolytic copper plating layer (M2') pattern was formed, and the copper plating layer was peeled off when the surface of the net filter was observed. It was retained on the net substrate.
  • Example 9 In the same manner as in Example 7, after forming the primer layer (B) and the silver particle layer (M1) on the nylon thread of the net filter which is the insulating base material (A), the silver particle layer (M1) is formed. A 5 mm wide cover tape (MacDermid Co., Ltd., Macu Tape P-3) was attached in a striped manner at the same positions on the front and back of the formed net filter. This nylon net filter is subjected to electrolytically electrolytic copper plating in the same manner as in Example 7 to form a 0.5 ⁇ m thick electrolytically electrolytic copper plating layer (M2), and then the net filter is fixed to a stainless steel frame to be absent.
  • a 5 mm wide cover tape MacDermid Co., Ltd., Macu Tape P-3
  • An electrolytic copper plating layer is placed on the cathode, and a phosphorus-containing copper is used as an anode, and an electrolytic plating solution containing copper sulfate (copper sulfate 60 g / L, sulfate 190 g / L, chlorine ion 50 mg / L, additive (Roam and).
  • a copper plating layer (M2') having a thickness of 5 ⁇ m was formed in stripes by performing electrolytic plating at a current density of 2 A / dm 2 for 10 minutes using Copper Glyme ST-901 ”manufactured by Haas Electronic Materials Co., Ltd. ..
  • cellophane tape (registered trademark) was attached to the net filter on which the electrolytic copper plating layer (M2') pattern was formed, peeled off strongly, and the surface of the net filter was observed. The layer did not peel off and was retained on the net substrate.
  • Example 7 (Example 10) In Example 7, instead of performing electrolytic copper plating, an electrolytic nickel plating solution (sulfamic acid bath: nickel sulfamate / tetrahydrate 350 g / L, nickel chloride / hexahydrate 5 g / L, boric acid 60 g / L). On the nylon thread of the net filter, which is the insulating base material (A), in the same manner as in Example 5 except that plating was performed at 60 ° C., 8A / dm 2 , 8 minutes and 40 seconds using L).
  • a primer layer (B), a silver particle layer (M1), an electroless copper plating layer (M2) having a thickness of 0.5 ⁇ m, and a nickel plating layer (M2') having a thickness of 15 ⁇ m were formed on the surface.
  • M1 silver particle layer
  • M2 electroless copper plating layer
  • M2' nickel plating layer
  • Example 11 Amorphous polyester (Byron 200, manufactured by Toyobo Co., Ltd.) having an average size of 3 mm diameter x 5 mm length is immersed in the primer prepared in Preparation Example 2 for 10 seconds, and then the primer is filtered to remove the pellet. , A primer layer having a thickness of 100 nm was formed on the entire surface of the polyester pellet by drying at 80 ° C. for 5 minutes. Next, the polyester pellet having the primer layer formed therein is immersed in the silver particle dispersion prepared in Preparation Example 1 for 10 seconds, the silver particle dispersion is filtered, the pellet is taken out, and dried at 80 ° C. for 5 minutes. A silver particle layer (M1) having a thickness of 120 nm was formed.
  • Byron 200 manufactured by Toyobo Co., Ltd.
  • the pellets on which the silver particle layer (M1) was formed were placed in a stainless steel basket, and 35 were placed in an electroless copper plating solution (“Circuposit 6550” manufactured by Roam & Haas Electronic Materials Co., Ltd.) in the same manner as in Example 2. It was immersed at ° C. for 22 minutes to form a copper plating film having a thickness of 0.5 ⁇ m on the pellets. That is, a metal film (M) of a silver particle layer (M1) and a copper plating film (M2) is formed on an amorphous polyester pellet which is an insulating base material via a primer layer (B-1). bottom.
  • an electroless copper plating solution (“Circuposit 6550” manufactured by Roam & Haas Electronic Materials Co., Ltd.)
  • Example 12 A glass cloth (Nitto Boseki, WEA116E 2116 standard, 95 ⁇ m thickness) was immersed in the primer prepared in Preparation Example 3 for 10 seconds, then taken out and dried at 120 ° C. for 5 minutes to cover the entire surface of the glass fiber of the glass cloth. A 100 nm thick primer layer was formed. Next, the glass cloth having the primer layer formed was immersed in the silver particle dispersion prepared in Preparation Example 1 for 10 seconds, then taken out and dried at 200 ° C. for 5 minutes to obtain a 120 nm thick silver particle layer (M1). Formed.
  • M1 120 nm thick silver particle layer
  • the glass cloth on which the silver particle layer (M1) is formed is fixed to a stainless steel frame, the silver particle layer (M1) is placed on the cathode, and an electrolytic plating solution (copper sulfate) containing copper sulfate is used as an anode with phosphorus-containing copper as an anode.
  • Electrolytic plating at a current density of 2 A / dm 2 for 10 minutes using 60 g / L, 190 g / L sulfuric acid, 50 mg / L chlorine ion, and an additive (Copper Grim ST-901 manufactured by Roam & Haas Electronic Materials Co., Ltd.).
  • a copper-plated layer (M2') having a thickness of 5 ⁇ m was formed.
  • a silver particle layer was formed on the entire surface of the glass fiber of the glass cloth, which is an insulating base material, via a primer layer (B-1).
  • a metal film (M) of (M1) and a copper plating film (M2) was formed.
  • Cellotape (registered trademark) was attached to the glass cloth on which the electrolytic copper plating layer (M2') was formed, and it was strongly peeled off. When the surface of the glass cloth was observed, the copper plating layer did not peel off and was retained on the glass cloth substrate. Was done.
  • a silver particle layer (M1) was formed on the LCP monofilament and an electroless copper plating film (thickness 0.2 ⁇ m) was formed on the surface of the silver particles in the same manner as in Example 5 except that the primer layer was not formed. ..
  • Example 2 In Example 1, a process of forming electroless copper plating on nylon yarn was carried out based on a conventional method without forming a primer layer and a silver particle layer.
  • a predip solution for electroless plating (“OPC-SAL-M”, manufactured by Okuno Pharmaceutical Industry Co., Ltd.) was diluted with water to a ratio of 260 g / L and maintained at 25 ° C.
  • the nylon thread used in Example 1 was immersed in this liquid for 1 minute.
  • Pre-dilution liquid OPC-SAL-M, manufactured by Okuno Pharmaceutical Industry Co., Ltd.
  • Sn-Pd colloidal catalyst liquid OPC-90 catalystist, manufactured by Okuno Pharmaceutical Industry Co., Ltd.
  • OPC-SAL-M Sn-Pd colloidal catalyst liquid
  • OPC-90 catalystist manufactured by Okuno Pharmaceutical Industry Co., Ltd.
  • the activation solution (“OPC-505 Accelerator A”, manufactured by Okuno Pharmaceutical Industry Co., Ltd.) and the activation solution (“OPC-505 Accelerator B”, manufactured by Okuno Pharmaceutical Industry Co., Ltd.) were 100 mL / L, respectively. It was mixed and diluted with water to 8 mL / L and kept at 30 ° C. The nylon thread after the step of applying the catalyst compound was immersed in this for 5 minutes, then washed with running water for 2 minutes to apply a palladium catalyst to the inner wall of the through hole and the surfaces of both coppers, and then used in Example 2. When immersed in the electrolytic copper plating solution for 10 minutes, the plating film was peeled off during electroless plating.
  • Example 4 (Comparative Example 3)
  • the primer layer and the silver particle layer were not formed on the polyester yarn, and the plating process based on the conventional method was carried out in the same manner as in Comparative Example 2. It peeled off from the polyester thread.
  • Example 5 (Comparative Example 4)
  • the primer layer and the silver particle layer were not formed on the LCP monofilament, and the plating process based on the conventional method was carried out in the same manner as in Comparative Example 2. It was deposited only on the part, and the deposited plating film was easily peeled off.
  • Example 7 (Comparative Example 5) In Example 7, a cover film is attached to one side of a part of the nylon net filter and immersed in the primer layer, and in the cover film attached portion, the primer layer forms a structure that does not cover the entire fiber surface constituting the net. bottom. The cover film was removed, and thereafter, a silver particle layer (M1), an electroless copper plating layer (M2), and an electrolytic copper plating layer (M2') were formed in the same manner as in Example 7.
  • M1 silver particle layer
  • M2 an electroless copper plating layer
  • M2' electrolytic copper plating layer
  • cellophane tape (registered trademark) was attached to the net filter on which the electrolytic copper plating layer (M2') was formed, peeled off strongly, and the surface of the net filter was observed. The copper-plated layer at the position where the layer was not formed was peeled off.
  • Example 9 (Comparative Example 5)
  • the primer layer and the silver particle layer were not formed on the glass cloth, and the plating process based on the conventional method was carried out in the same manner as in Comparative Example 2. It was deposited only on the part, and the deposited plating film was easily peeled off.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Chemically Coating (AREA)

Abstract

Provided is a simple metal film formation method for forming a metal film on a three-dimensional molded article, the metal film having high adhesion between a base material and a metal film, without requiring the formation of a surface-modifying layer by a supercritical fluid or surface roughening using chromic acid or permanganic acid, and without using an expensive vacuum machine or electron beam irradiation device. The present invention was achieved as a result of discovering the ability to form a metal film having high adhesion on a three-dimensional molded article by forming a plasma layer (B) so as to cover a series of continuous surfaces of at least a three-dimensional, insulating molded base material (A).

Description

金属皮膜形成方法Metal film forming method
 本発明は、3次元立体構造を有する絶縁性基材上に高い密着力で金属皮膜を形成することのできる金属皮膜形成方法に関する。 The present invention relates to a metal film forming method capable of forming a metal film on an insulating base material having a three-dimensional three-dimensional structure with high adhesion.
 近年、自動車産業を初めとして、各種機器、部材の軽量化要望が高まり、従来、金属材料が用いられていた分野においても、樹脂材料が用いられるようになってきた。一方で、樹脂材料の高機能化、耐候性向上のために、多様な絶縁性基材に金属皮膜を形成する必要性も高まっている。絶縁性基材上に金属皮膜を形成した部材は、プリント配線板等の電子機器や、電磁波シールド、装飾用途等の分野で幅広く用いられてきており、絶縁性基材上に金属皮膜を形成する方法としては、真空蒸着や、スパッタ法、めっき法が用いられているが、真空蒸着やスパッタ法は、真空装置を必要とするため、基材サイズに制限があることや、コスト高となることが問題であり、湿式のめっき法が広く用いられている。 In recent years, there has been an increasing demand for weight reduction of various devices and members, including in the automobile industry, and resin materials have come to be used in fields where metal materials have been conventionally used. On the other hand, there is an increasing need to form a metal film on various insulating base materials in order to improve the functionality and weather resistance of the resin material. Members with a metal film formed on an insulating substrate have been widely used in fields such as electronic devices such as printed wiring boards, electromagnetic wave shielding, and decorative applications, and form a metal film on an insulating substrate. Vacuum vapor deposition, spattering method, and plating method are used as the method, but since vacuum vapor deposition and spattering method require a vacuum device, the size of the base material is limited and the cost is high. Is a problem, and the wet plating method is widely used.
 従来、絶縁性基材上に湿式のめっき法によって金属皮膜を形成するためには、基材表面を粗化処理し、アンカー効果によって基材とめっき膜の密着性を確保しているが、粗化処理は、クロム酸や過マンガン酸等、環境負荷の大きい薬液が使用されており、これらの薬液を用いない、代替の方法が求められている。さらに、表面を粗化処理する方法は、透明性が重視される基材や、耐薬品性が低い、もしくは、逆に耐薬品性が高すぎる等、表面を粗化することが難しい基材に対しては、適用することができず、また、基材表面が粗化処理されていることによって、めっきにより形成された金属皮膜表面も基材表面の粗面を反映して凹凸のある面となるため、光沢面を得るためには、めっき膜厚を厚くする必要があり、めっき時間を長くする必要があるため、生産性が低下してコスト増となるだけでなく、基材重量が大きくなるという欠点もあった。 Conventionally, in order to form a metal film on an insulating base material by a wet plating method, the surface of the base material is roughened and the adhesion between the base material and the plating film is ensured by the anchor effect. For the chemical treatment, chemical solutions having a large environmental load such as chromic acid and permanganate are used, and an alternative method that does not use these chemical solutions is required. Further, the method of roughening the surface is used for a base material in which transparency is important, or a base material in which it is difficult to roughen the surface due to low chemical resistance or, conversely, too high chemical resistance. On the other hand, it cannot be applied, and because the surface of the base material is roughened, the surface of the metal film formed by plating also reflects the rough surface of the surface of the base material and becomes an uneven surface. Therefore, in order to obtain a glossy surface, it is necessary to increase the plating film thickness and lengthen the plating time, which not only lowers the productivity and increases the cost, but also increases the weight of the base material. There was also the drawback of becoming.
 これらの課題は、絶縁性基材上において、金属めっき膜の密着性が乏しいことに起因しており、粗化処理で絶縁性基材表面に生じた孔に、金属めっきを物理的にアンカーさせることによって密着性を確保しているのであるが、3次元立体構造を有する被めっき絶縁性基材のサイズ、形状によっては、粗化処理を行うことによって、基材のサイズ、形状を維持することができず、基材本来の機能が失われてしまうために、粗化処理を実施することができないという場合もあった。 These problems are caused by the poor adhesion of the metal plating film on the insulating base material, and the metal plating is physically anchored in the holes formed on the surface of the insulating base material by the roughening treatment. By doing so, adhesion is ensured, but depending on the size and shape of the insulating base material to be plated, which has a three-dimensional three-dimensional structure, the size and shape of the base material can be maintained by performing roughening treatment. In some cases, the roughening treatment could not be performed because the original function of the base material was lost.
 粗化処理による、基材表面への物理的な孔形成が難しい基材として、例えば、高分子繊維が挙げられる。繊維表面に孔構造を形成すると、繊維径の減少などにより、繊維自体の強度が低下する。そこで、繊維表面に物理的な粗化を行わずにめっきを行う方法として、特許文献1には、フィラメント束に対して、プラズマ処理、又は電子線照射を行う第一工程と、フィラメント束を、有機金属錯体を含む超臨界流体に浸漬しフィラメント表面に有機金属錯体を付着させる第二工程、フィラメント表面に付着した有機金属錯体を還元して活性化する第三工程と、このフィラメントをめっき液に浸漬して無電解めっき処理を行うことにより、金属めっき層を形成する第四工程を含むことを特徴とする導電繊維糸の製造方法が開示されている。 Examples of the base material for which it is difficult to physically form pores on the surface of the base material by the roughening treatment include polymer fibers. When a pore structure is formed on the fiber surface, the strength of the fiber itself decreases due to a decrease in the fiber diameter or the like. Therefore, as a method of plating the fiber surface without physically roughening it, Patent Document 1 describes a first step of performing plasma treatment or electron beam irradiation on a filament bundle, and the filament bundle. The second step of immersing the organic metal complex in a supercritical fluid containing an organic metal complex to adhere the organic metal complex to the filament surface, the third step of reducing and activating the organic metal complex adhering to the filament surface, and using this filament in a plating solution. Disclosed is a method for producing a conductive fiber yarn, which comprises a fourth step of forming a metal plating layer by immersing and performing a electroless plating treatment.
 また、特許文献2においては、有機高分子繊維の繊維表面に、シランカップリング剤を固着させる工程、繊維表面に固着したシランカップリング剤をメタライズ処理して金属粒子がシランカップリング剤を介して繊維表面に固着した有機高分子繊維を作製する工程、そしてメタライズ処理した有機高分子繊維を、上記金属よりもイオン化傾向が大きい金属の化合物を用いて無電解めっき処理する工程を含むことを特徴とする金属めっきを実施する有機高分子繊維の製造方法が開示されている。 Further, in Patent Document 2, a step of fixing a silane coupling agent to the fiber surface of an organic polymer fiber, a metallizing treatment of the silane coupling agent fixed to the fiber surface, and metal particles via the silane coupling agent. It is characterized by including a step of producing an organic polymer fiber adhered to the fiber surface and a step of electrolyzing the metallized organic polymer fiber using a compound of a metal having a larger ionization tendency than the above metal. A method for producing an organic polymer fiber for carrying out metal plating is disclosed.
 さらに、特許文献3においては、超臨界状態の二酸化炭素流体に有機金属錯体を溶解し、高分子繊維材料に含浸させた後、ヒーターで還元温度に設定することで含浸した有機金属錯体を還元し、材料表面にめっき用金属触媒を析出させ、これをめっきの核としてめっきを行う技術が開示されている。 Further, in Patent Document 3, an organic metal complex is dissolved in a carbon dioxide fluid in a supercritical state, impregnated into a polymer fiber material, and then the impregnated organic metal complex is reduced by setting the reduction temperature with a heater. Disclosed is a technique of precipitating a metal catalyst for plating on the surface of a material and using this as the core of plating for plating.
 しかしながら、これらの技術においては、繊維と金属被膜の密着性が悪く、金属被膜が容易に剥がれたり、繊維自体の強度が低下することがあり、改善が求められていた。 However, in these techniques, the adhesion between the fiber and the metal film is poor, the metal film may be easily peeled off, or the strength of the fiber itself may decrease, and improvement has been sought.
 そこで、特許文献4においては、高分子繊維材料の強度を低下させずに、繊維と金属被膜の密着性に優れた無電解めっきを実施する方法として、有機高分子繊維に電子線照射処理して窒素含有モノマーをグラフト重合させる第一工程と、前記窒素含有モノマーをグラフト重合された有機高分子繊維にPd/Sn触媒を付着させる第二工程と、前記有機高分子繊維表面に付着したPd/Sn触媒を還元して活性化処理する第三工程と、この活性化処理された有機高分子繊維をメッキ液に浸漬して無電解メッキ処理を行い、金属メッキ層を形成する第四工程を含むことを特徴とするメッキ繊維の製造方法が開示されている。この技術においては、繊維表面にグラフトされた含窒素モノマーの重合体にめっき触媒が、保持され、これがめっき析出の起点となることによって、繊維自体の強度を低下させず、繊維と金属被膜の密着性を確保できるとされている。 Therefore, in Patent Document 4, as a method of performing electroless plating having excellent adhesion between the fiber and the metal film without lowering the strength of the polymer fiber material, the organic polymer fiber is subjected to electron beam irradiation treatment. The first step of graft-plating the nitrogen-containing monomer, the second step of adhering the Pd / Sn catalyst to the organic polymer fiber graft-plated with the nitrogen-containing monomer, and the Pd / Sn attached to the surface of the organic polymer fiber. It includes a third step of reducing and activating the catalyst, and a fourth step of immersing the activated organic polymer fiber in a plating solution to perform electroless plating and forming a metal plating layer. A method for producing a plated fiber characterized by the above is disclosed. In this technique, the plating catalyst is held by the polymer of the nitrogen-containing monomer grafted on the fiber surface, which serves as the starting point of plating precipitation, so that the strength of the fiber itself is not reduced and the fiber and the metal film adhere to each other. It is said that sex can be secured.
 この技術においては、高価な電子線照射装置を用いる必要があり、また、繊維表面に均一に電子線照射を行うための工夫が必要となるため、コスト高となり、煩雑な方法であるという課題があった。 In this technique, it is necessary to use an expensive electron beam irradiating device, and it is necessary to devise a method for uniformly irradiating the fiber surface with the electron beam. Therefore, there is a problem that the cost is high and the method is complicated. there were.
特開2010-100934号公報Japanese Unexamined Patent Publication No. 2010-100934 特開2003-171869号公報Japanese Patent Application Laid-Open No. 2003-171869 特開2007-56287号公報Japanese Unexamined Patent Publication No. 2007-56287 特開2015-214735号公報Japanese Unexamined Patent Publication No. 2015-214735
本発明が解決しようとする課題は、クロム酸や過マンガン酸による表面粗化や、超臨界流体による表面改質層形成などを必要とせず、高価な真空装置や電子線照射装置を用いることなく、簡便な方法で、基材と金属皮膜との高い密着性を有する立体成形体への金属皮膜形成方法を与えることである。 The problem to be solved by the present invention does not require surface roughening with chromic acid or permanganic acid, surface modified layer formation with supercritical fluid, etc., and does not use an expensive vacuum device or electron beam irradiation device. It is a simple method to provide a method for forming a metal film on a three-dimensional molded body having high adhesion between a base material and a metal film.
 本発明者らは、上記の課題を解決すべく鋭意研究した結果、3次元の絶縁性成形基材(A)の少なくとも、連続した一連の表面を覆う様にプライマー層(B)を形成することで、立体成形体基材上に、高い密着性を有する金属皮膜を形成しうることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above problems, the present inventors have formed a primer layer (B) so as to cover at least a continuous series of surfaces of the three-dimensional insulating molded base material (A). Therefore, they have found that a metal film having high adhesion can be formed on a three-dimensional molded body base material, and have completed the present invention.
 すなわち、本発明は、
1.少なくとも1次元が0.5μm~5mmのサイズを有する3次元の絶縁性成形基材(A)上に金属皮膜(M)を形成する方法であって、該成形体上の少なくとも、連続した一連の表面を覆う様に形成されるプライマー層(B)と金属皮膜(M)を、この順に積層することを特徴とする立体成形体への金属皮膜形成方法。
2.前記3次元の絶縁性基材(A)が、0.5μm~5mmサイズの径を有する棒状、繊維状の形状を有することを特徴とする1記載の立体成形体への金属皮膜形成方法。
3.前記3次元の絶縁性基材(A)が、0.5μm~5mmサイズの厚みを有するフィルム状、板状の形状を有することを特徴とする2記載の立体成形体への金属皮膜形成方法。
4.前記金属皮膜(M)が、金属粒子から形成される金属粒子膜(M1)であることを特徴とする1~3のいずれか1項記載の立体成形体への金属皮膜形成方法。
5.前記金属皮膜(M)が、金属粒子から形成される金属粒子膜(M1)上に、さらにめっき金属膜(M2)を積層したものであることを特徴とする1~3のいずれか一つに記載の立体成形体への金属皮膜形成方法。
6.前記金属粒子が、銀、銅、ニッケル、金、白金からなる群から選ばれる1種以上であることを特徴とする4または5記載の立体成形体への金属皮膜形成方法。
7.前記金属粒子が、高分子分散剤で被覆されたものであることを特徴とする4~6いずれか一つに記載の立体成形体への金属皮膜形成方法。
8.前記プライマー層(B)に反応性官能基[X]を有する樹脂を用い、前記高分子分散剤に反応性官能基[Y]を有するものを用い、前記反応性官能基[X]と前記反応性官能基[Y]との間で結合を形成させる1~7いずれか一つに記載の金属皮膜形成方法。
9.前記反応性官能基[Y]が、塩基性窒素原子含有基である8記載の金属皮膜形成方法。
10.前記反応性官能基[Y]を有する高分子分散剤が、ポリアルキレンイミン、及びオキシエチレン単位を含むポリオキシアルキレン構造を有するポリアルキレンイミンからなる群から選ばれる1種以上である8記載の金属皮膜形成方法。
11.前記反応性官能基[X]が、ケト基、アセトアセチル基、エポキシ基、カルボキシル基、N-アルキロール基、イソシアネート基、ビニル基、(メタ)アクリロイル基、アリル基からなる群から選ばれる1種以上である8~10いずれか一つに記載の金属皮膜形成方法。
に関するものである。
That is, the present invention
1. 1. A method of forming a metal film (M) on a three-dimensional insulating molded substrate (A) having a size of at least one dimension of 0.5 μm to 5 mm, wherein the metal film (M) is formed on the molded body at least in a continuous series. A method for forming a metal film on a three-dimensional molded body, which comprises laminating a primer layer (B) and a metal film (M) formed so as to cover the surface in this order.
2. 2. The method for forming a metal film on a three-dimensional molded body according to 1, wherein the three-dimensional insulating base material (A) has a rod-like or fibrous shape having a diameter of 0.5 μm to 5 mm.
3. 3. 2. The method for forming a metal film on a three-dimensional molded body according to 2, wherein the three-dimensional insulating base material (A) has a film-like or plate-like shape having a thickness of 0.5 μm to 5 mm.
4. The method for forming a metal film on a three-dimensional molded body according to any one of 1 to 3, wherein the metal film (M) is a metal particle film (M1) formed of metal particles.
5. The metal film (M) is one of 1 to 3 characterized in that the plated metal film (M2) is further laminated on the metal particle film (M1) formed from the metal particles. The method for forming a metal film on a three-dimensional molded body according to the description.
6. 4. The method for forming a metal film on a three-dimensional molded body according to 4 or 5, wherein the metal particles are one or more selected from the group consisting of silver, copper, nickel, gold, and platinum.
7. The method for forming a metal film on a three-dimensional molded product according to any one of 4 to 6, wherein the metal particles are coated with a polymer dispersant.
8. A resin having a reactive functional group [X] is used for the primer layer (B), a resin having a reactive functional group [Y] is used for the polymer dispersant, and the reaction with the reactive functional group [X]. The method for forming a metal film according to any one of 1 to 7, wherein a bond is formed with the sex functional group [Y].
9. 8. The method for forming a metal film according to 8, wherein the reactive functional group [Y] is a basic nitrogen atom-containing group.
10. 8. The metal according to 8 in which the polymer dispersant having the reactive functional group [Y] is at least one selected from the group consisting of polyalkyleneimine and polyalkyleneimine having a polyoxyalkylene structure containing an oxyethylene unit. Film forming method.
11. The reactive functional group [X] is selected from the group consisting of a keto group, an acetoacetyl group, an epoxy group, a carboxyl group, an N-alkyrole group, an isocyanate group, a vinyl group, a (meth) acryloyl group and an allyl group1 The method for forming a metal film according to any one of 8 to 10 which is more than a seed.
It is about.
本発明の立体成形体への金属皮膜形成方法を用いることにより、クロム酸や過マンガン酸等、環境負荷の大きい薬液を使用せず、透明性が重視される基材や、耐薬品性が低い、もしくは、逆に耐薬品性が高すぎる、また、粗化処理によって基材の強度や機能低下を引き起こす等、表面を粗化することが難しい3次元構造を有する難めっき素材に対して、密着性の高い金属めっきを行うことができる。基材表面を粗化しないため、めっきにより形成された金属皮膜表面が、基材表面の平滑面を反映した光沢面となるため、めっき膜厚を薄くすることができ、めっき時間の短縮や、生産性向上に寄与するだけでなく、基材の軽量化にも貢献する。また、高価な真空装置や電子線照射装置を用いない簡便な方法であるため、生産効率が高く、低コストで製品を製造することが可能になる。 By using the method for forming a metal film on a three-dimensional molded body of the present invention, a base material in which transparency is important and chemical resistance is low without using a chemical solution having a large environmental load such as chromic acid and permanganic acid. Or, on the contrary, it adheres to difficult-to-plating materials having a three-dimensional structure in which it is difficult to roughen the surface, such as the chemical resistance being too high and the roughening treatment causing the strength and function of the base material to deteriorate. Highly high-quality metal plating can be performed. Since the surface of the base material is not roughened, the surface of the metal film formed by plating becomes a glossy surface that reflects the smooth surface of the surface of the base material, so that the plating film thickness can be reduced, and the plating time can be shortened. Not only contributes to the improvement of productivity, but also contributes to the weight reduction of the base material. In addition, since it is a simple method that does not use an expensive vacuum device or electron beam irradiation device, it is possible to manufacture a product with high production efficiency and low cost.
本発明で用いる絶縁性基材(A)とプライマー層(B)の構造を表す模式図である。It is a schematic diagram which shows the structure of the insulating base material (A) and the primer layer (B) used in this invention. 実施例7で用いたナイロンポアネットフィルター(NY1H02500 Millipore)の外観写真である(https://www.merckmillipore.com/JP/ja/product/Nylon-Net-Filter,MM_NF-NY1H02500より引用)。It is an external photograph of the nylon pore net filter (NY1H02500 Millipore) used in Example 7 (quoted from https://www.merckmillipore.com/JP/ja/product/Nylon-Net-Filter, MM_NF-NY1H02500).
 本発明で用いる絶縁性基材(A)は、基材の少なくとも1次元が0.5μm~5mmのサイズを有する3次元構造を有する成形基材である。 The insulating base material (A) used in the present invention is a molded base material having a three-dimensional structure in which at least one dimension of the base material has a size of 0.5 μm to 5 mm.
 本発明で用いる前記絶縁性基材(A)の材料としては、例えば、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリカーボネート樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、ポリアリレート樹脂、ポリアセタール樹脂、ポリ(メタ)アクリル酸メチル等のアクリル樹脂、ポリフッ化ビニリデン樹脂、ポリテトラフルオロエチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、アクリル樹脂をグラフト共重合化した塩化ビニル樹脂、ポリビニルアルコール樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ウレタン樹脂、シクロオレフィン樹脂、ポリスチレン、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)樹脂、ポリフェニレンスルフィド(PPS)、ポリフェニレンスルホン(PPSU)、セルロースナノファイバー、シリコン、シリコンカーバイド、窒化ガリウム、サファイア、セラミックス、ガラス、ダイヤモンドライクカーボン(DLC)、アルミナ等が挙げられる。 Examples of the material of the insulating base material (A) used in the present invention include polyimide resin, polyamideimide resin, polyamide resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, polycarbonate resin, and acrylonitrile-butadiene-. Grafted styrene (ABS) resin, polyarylate resin, polyacetal resin, acrylic resin such as poly (meth) methyl acrylate, polyfluorovinylidene resin, polytetrafluoroethylene resin, polyvinyl chloride resin, polyvinylidene chloride resin, acrylic resin. Copolymerized vinyl chloride resin, polyvinyl alcohol resin, polyethylene resin, polypropylene resin, urethane resin, cycloolefin resin, polystyrene, liquid crystal polymer (LCP), polyether ether ketone (PEEK) resin, polyphenylene sulfide (PPS), polyphenylene sulfone (PPSU), cellulose nanofibers, silicon, silicon carbide, gallium nitride, sapphire, ceramics, glass, diamond-like carbon (DLC), alumina and the like.
 また、前記絶縁性基材(A)として、熱硬化性樹脂及び無機充填材を含有する樹脂基材を好適に用いることもできる。前記熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、不飽和イミド樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂、メラミン樹脂等が挙げられる。一方、前記無機充填材としては、例えば、シリカ、アルミナ、タルク、マイカ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、ホウ酸アルミニウム、ホウ珪酸ガラス等が挙げられる。これらの熱硬化性樹脂と無機充填剤は、それぞれ1種で用いることも2種以上併用することもできる。 Further, as the insulating base material (A), a resin base material containing a thermosetting resin and an inorganic filler can be preferably used. Examples of the thermosetting resin include epoxy resin, phenol resin, unsaturated imide resin, cyanate resin, isocyanate resin, benzoxazine resin, oxetane resin, amino resin, unsaturated polyester resin, allyl resin, and dicyclopentadiene resin. Examples thereof include silicone resin, triazine resin, and melamine resin. On the other hand, examples of the inorganic filler include silica, alumina, talc, mica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, aluminum borate, and glass borate. These thermosetting resins and inorganic fillers can be used alone or in combination of two or more.
 前記絶縁性基材(A)の形態としては、少なくとも1次元が0.5μm~5mmのサイズを有する3次元の構造を有していれば特に制限はなく、フレキシブル材、リジッド材、リジッドフレキシブル材のいずれのものも用いることができる。より具体的には、前記絶縁性基材(A)として、粉体、顆粒状、繊維状、糸状、棒状、フィルム状、シート状、板状に成形された市販材料を用いてもよいし、上記した樹脂の溶液、溶融液、分散液から、任意の形状に成形した材料を用いてもよい。また、前記絶縁性基材(A)は、金属等の導電性材料の上に、上記した樹脂の材料を形成した基材であってもよい。 The form of the insulating base material (A) is not particularly limited as long as it has a three-dimensional structure having at least one dimension having a size of 0.5 μm to 5 mm, and is a flexible material, a rigid material, or a rigid flexible material. Any of the above can be used. More specifically, as the insulating base material (A), a commercially available material molded into powder, granular, fibrous, thread-like, rod-like, film-like, sheet-like, or plate-like may be used. A material formed into an arbitrary shape from the above-mentioned resin solution, melt liquid, and dispersion liquid may be used. Further, the insulating base material (A) may be a base material obtained by forming the above-mentioned resin material on a conductive material such as metal.
 前記絶縁性基材(A)の形態として、前記、粉体、顆粒状の材料は、球体であっても良いし、多角形状であってもよく、不定形であってもよい。また、前記絶縁性基材(A)の形態として、繊維状、糸状、棒状の形態の材料を使用する場合、その断面形状が、真円形であっても、楕円形であってもよく、多角形であっても、不定形であってもよい。 As the form of the insulating base material (A), the powder or granular material may be spherical, polygonal, or amorphous. Further, when a fibrous, thread-like, or rod-like material is used as the form of the insulating base material (A), the cross-sectional shape thereof may be a perfect circle or an ellipse, and there are many cases. It may be rectangular or amorphous.
また、前記絶縁性基材(A)の形態としては、少なくとも1次元が0.5μm~5mmのサイズを有する3次元の構造を有する立体成形体の集合体であっても良い。例えば、前記サイズの粒子が多数集合したコロイド結晶であっても良く、前記サイズを有する繊維の集合した紙、前記サイズを有する糸の集合した織物、不織布、ウェブ、ネット、メッシュなども好適に用いることができる。 Further, the form of the insulating base material (A) may be an aggregate of three-dimensional molded bodies having a three-dimensional structure having a size of at least one dimension of 0.5 μm to 5 mm. For example, it may be a colloidal crystal in which a large number of particles of the size are aggregated, and paper in which fibers having the size are aggregated, a woven fabric in which threads having the size are aggregated, a non-woven fabric, a web, a net, a mesh, and the like are also preferably used. be able to.
また、前記絶縁性基材は、基材に貫通孔を有していても良く、前記絶縁性基材がフィルム、板状の場合には、スルーホールが形成されていても良く、前記絶縁性基材(A)が棒状の場合には、貫通孔の存在によってマカロニ状の構造であっても良い。また、絶縁性基材(A)が、粒子状の場合には、貫通孔の存在によってドーナツ状の構造であっても良い。貫通孔は一つであっても良いし、多数が存在し、絶縁性基材(A)が多孔構造であっても良い。絶縁性基材(A)が多孔構造である場合には、多孔構造を形成する柱の部分が、前記0.5μm~5mmのサイズを有していれば良い。 Further, the insulating base material may have through holes in the base material, and when the insulating base material is a film or a plate, through holes may be formed, and the insulating material may be formed. When the base material (A) has a rod shape, it may have a macaroni-like structure due to the presence of through holes. Further, when the insulating base material (A) is in the form of particles, it may have a donut-like structure due to the presence of through holes. There may be one through hole, a large number of through holes, and the insulating base material (A) may have a porous structure. When the insulating base material (A) has a porous structure, the pillar portion forming the porous structure may have a size of 0.5 μm to 5 mm.
 本発明においては、3次元の絶縁性成形基材(A)上の少なくとも、連続した一連の表面を覆う様にプライマー層(B)が形成される。3次元の絶縁性成形基材(A)上の少なくとも、連続した一連の表面とは、図1に例示する様に、プライマー層によって覆われた面と直交する方向で形成した立体成形体の断面において、プライマー層が、切れ目無く、連続した構造を有することを意味している(図1)。 In the present invention, the primer layer (B) is formed so as to cover at least a continuous series of surfaces on the three-dimensional insulating molded base material (A). At least a continuous series of surfaces on the three-dimensional insulating molded substrate (A) is a cross section of a three-dimensional molded body formed in a direction orthogonal to the surface covered by the primer layer, as illustrated in FIG. In, it means that the primer layer has a continuous structure without a break (FIG. 1).
 本発明においては、前記プライマー層(B)が、前記絶縁性成形基材(A)上の少なくとも、連続した一連の表面を覆う様に形成される、すなわち、プライマー層によって覆われた面と直交する方向で形成した立体成形体の断面において、プライマー層が、切れ目無く、連続した構造を有することによって、後述するプライマー層(B)上に形成される金属皮膜(M)の、絶縁性基材(A)上での密着性を確保している。 In the present invention, the primer layer (B) is formed so as to cover at least a continuous series of surfaces on the insulating molded substrate (A), that is, orthogonal to the surface covered by the primer layer. The insulating base material of the metal film (M) formed on the primer layer (B) described later by the primer layer having a continuous structure without a break in the cross section of the three-dimensional molded body formed in the direction of (A) Adhesion on the above is ensured.
 前記プライマー層(B)を、前記絶縁性基材(A)の連続した一連の表面を覆う様に形成する方法としては、前記絶縁性基材(A)の連続した一連の表面上にプライマーを塗工し、前記プライマーに含まれる水性媒体、有機溶剤等の溶媒を除去することによって形成することができる。本発明において、プライマーとは、後述する各種の樹脂を溶剤中に溶解、もしくは分散させた液状組成物である。 As a method of forming the primer layer (B) so as to cover a continuous series of surfaces of the insulating base material (A), a primer is placed on the continuous series of surfaces of the insulating base material (A). It can be formed by coating and removing a solvent such as an aqueous medium and an organic solvent contained in the primer. In the present invention, the primer is a liquid composition in which various resins described later are dissolved or dispersed in a solvent.
 前記プライマーを前記絶縁性基材(A)に塗工する方法としては、プライマー層(B)が、前記絶縁性基材(A)の連続した一連の表面を覆う様に形成できれば特に制限は無く、種々の塗工方法を、使用する絶縁性基材(A)の形状、サイズ、剛柔の度合いなどによって適宜選択すればよい。具体的な塗工方法としては、例えば、グラビア法、オフセット法、フレキソ法、パッド印刷法、グラビアオフセット法、凸版法、凸版反転法、スクリーン法、マイクロコンタクト法、リバース法、エアドクターコーター法、ブレードコーター法、エアナイフコーター法、スクイズコーター法、含浸コーター法、トランスファーロールコーター法、キスコーター法、キャストコーター法、スプレーコーター法、インクジェット法、ダイコーター法、スピンコーター法、バーコーター法、ディップコーター法等が挙げられる。 The method of applying the primer to the insulating base material (A) is not particularly limited as long as the primer layer (B) can be formed so as to cover a continuous series of surfaces of the insulating base material (A). , Various coating methods may be appropriately selected depending on the shape, size, degree of flexibility and the like of the insulating base material (A) to be used. Specific coating methods include, for example, a gravure method, an offset method, a flexographic method, a pad printing method, a gravure offset method, a letterpress method, a letterpress inversion method, a screen method, a microcontact method, a reverse method, and an air doctor coater method. Blade coater method, air knife coater method, squeeze coater method, impregnation coater method, transfer roll coater method, kiss coater method, cast coater method, spray coater method, inkjet method, die coater method, spin coater method, bar coater method, dip coater method. And so on.
 これらの塗工方法の中でも、立体成形体の連続した一連の表面を覆う様にプライマー層(B)を効率良く形成する目的には、スプレーコーター法、ディップコーター法等を好適に用いることができる。 Among these coating methods, a spray coater method, a dip coater method, or the like can be preferably used for the purpose of efficiently forming the primer layer (B) so as to cover a continuous series of surfaces of the three-dimensional molded body. ..
 前記プライマーを絶縁性基材(A)の表面に塗工する方法は、絶縁性基材(A)が連続体である繊維、糸、織物、ロールフィルムやロールシートの場合には、巻き出し、巻き取り機構を備えたロール・トゥ・ロール、もしくは、リール・トゥ・リール方式の装置で塗工を行っても良い。 The method of applying the primer to the surface of the insulating base material (A) is to unwind the fiber, thread, woven fabric, roll film or roll sheet in which the insulating base material (A) is a continuum. The coating may be performed by a roll-to-roll equipped with a take-up mechanism or a reel-to-reel type device.
 前記絶縁性基材(A)は、プライマーの塗工性向上の目的で、プライマーを塗工する前に、表面処理を行ってもよい。前記絶縁性基材(A)の表面処理方法としては、絶縁性基材(A)自体の特性が劣化しない限り、特に制限はなく、種々の方法を適宜選択すればよい。このような表面処理方法としては、例えば、UV処理、気相オゾン処理、液層オゾン処理、コロナ処理、プラズマ処理等が挙げられる。これらの表面処理方法は、1種の方法で行うことも2種以上の方法を併用することもできる。 The insulating base material (A) may be surface-treated before the primer is applied for the purpose of improving the coatability of the primer. The surface treatment method for the insulating base material (A) is not particularly limited as long as the characteristics of the insulating base material (A) itself are not deteriorated, and various methods may be appropriately selected. Examples of such a surface treatment method include UV treatment, vapor phase ozone treatment, liquid layer ozone treatment, corona treatment, plasma treatment and the like. These surface treatment methods may be carried out by one kind of method or a combination of two or more kinds of methods.
 前記プライマーを絶縁性基材(A)の表面に塗工した後、その塗工層に含まれる溶媒を除去してプライマー層(B)を形成する方法としては、例えば、乾燥機を用いて乾燥させ、前記溶媒を揮発させる方法が一般的である。乾燥温度としては、前記溶媒を揮発させることが可能で、かつ前記絶縁性基材(A)に悪影響を与えない範囲の温度に設定すればよく、室温乾燥でも加熱乾燥でもよい。具体的な乾燥温度は、20~350℃の範囲が好ましく、60~300℃の範囲がより好ましい。また、乾燥時間は、1~200分の範囲が好ましく、1~60分の範囲がより好ましい。 As a method of applying the primer to the surface of the insulating base material (A) and then removing the solvent contained in the coating layer to form the primer layer (B), for example, drying using a dryer is used. The method of volatilizing the solvent is common. The drying temperature may be set to a temperature within a range in which the solvent can be volatilized and does not adversely affect the insulating base material (A), and may be room temperature drying or heat drying. The specific drying temperature is preferably in the range of 20 to 350 ° C, more preferably in the range of 60 to 300 ° C. The drying time is preferably in the range of 1 to 200 minutes, more preferably in the range of 1 to 60 minutes.
 上記の乾燥は、送風を行ってもよいし、特に送風を行わなくてもよい。また、乾燥は、大気中で行ってもよいし、窒素、アルゴンなどの置換雰囲気、もしくは気流下で行ってもよく、真空下で行ってもよい。 The above drying may be performed by blowing air, or may not be blown in particular. Further, the drying may be carried out in the atmosphere, in a substitution atmosphere such as nitrogen or argon, in an air flow, or in a vacuum.
 前記絶縁性基材(A)が、個片化された立体形状の成形体である繊維、糸、織物、枚葉のフィルム、シート、板等の場合には、塗工場所での自然乾燥の他、送風、定温乾燥器などの乾燥器内で行うことができる。また、前記絶縁性基材(A)が、連続体である繊維、糸、織物、ロールフィルムやロールシートの場合には、塗工工程に続けて、設置された非加熱または加熱空間内でロール材を連続的に移動させることにより、乾燥を行うことができる。 When the insulating base material (A) is a fiber, a thread, a woven fabric, a sheet-fed film, a sheet, a board, etc., which are three-dimensional molded bodies that are individualized, they are naturally dried at the coating site. In addition, it can be performed in a dryer such as a blower or a constant temperature dryer. Further, when the insulating base material (A) is a continuous fiber, thread, woven fabric, roll film or roll sheet, the insulating base material (A) is rolled in an installed non-heated or heated space following the coating process. Drying can be performed by continuously moving the material.
 前記プライマー層(B)の膜厚は、本発明を用いて製造するめっき処理製品の用途によって適宜選択すればよいが、プライマー層が連続膜であることによって前記絶縁性基材(A)と前記金属皮膜(M)との密着性を、より向上できることから、10nm~30μmの範囲が好ましく、30nm~5μmの範囲がより好ましく、50nm~1μmの範囲がさらに好ましい。 The film thickness of the primer layer (B) may be appropriately selected depending on the intended use of the plated product manufactured using the present invention, but the insulating substrate (A) and the above are described because the primer layer is a continuous film. Since the adhesion to the metal film (M) can be further improved, the range of 10 nm to 30 μm is preferable, the range of 30 nm to 5 μm is more preferable, and the range of 50 nm to 1 μm is further preferable.
 プライマー層(B)を形成する樹脂は、本発明の技術によって製造する製品が使用される温度範囲で固体であり、前記絶縁性基材(A)上で、連続膜を形成できる限り、特に制限は無いが、プライマー層(B)上に金属皮膜(M)を形成する工程で使用する、後述の金属粒子の分散剤に反応性官能基[Y]を有するものを用いる場合、反応性官能基[Y]に対して反応性を有する反応性官能基[X]を有する樹脂が好ましい。前記反応性官能基[X]としては、例えば、アミノ基、アミド基、アルキロールアミド基、ケト基、カルボキシル基、無水カルボキシル基、カルボニル基、アセトアセチル基、エポキシ基、脂環エポキシ基、オキセタン環、ビニル基、アリル基、(メタ)アクリロイル基、(ブロック化)イソシアネート基、(アルコキシ)シリル基等が挙げられる。また、プライマー層(B)を形成する化合物として、シルセスキオキサン化合物を用いることもできる。 The resin forming the primer layer (B) is solid in the temperature range in which the product manufactured by the technique of the present invention is used, and is particularly limited as long as a continuous film can be formed on the insulating base material (A). However, when a dispersant for metal particles, which will be described later, is used in the step of forming a metal film (M) on the primer layer (B) and has a reactive functional group [Y], the reactive functional group is used. A resin having a reactive functional group [X] having reactivity with [Y] is preferable. Examples of the reactive functional group [X] include an amino group, an amide group, an alkyrole amide group, a keto group, a carboxyl group, an anhydrous carboxyl group, a carbonyl group, an acetoacetyl group, an epoxy group, an alicyclic epoxy group and an oxetane. Examples thereof include a ring, a vinyl group, an allyl group, a (meth) acryloyl group, a (blocked) isocyanate group, and a (alkoxy) silyl group. Further, as the compound forming the primer layer (B), a silsesquioxane compound can also be used.
 特に、前記分散剤中の反応性官能基[Y]が、塩基性窒素原子含有基の場合、前記絶縁性基材(A)上での金属皮膜(M)の密着性をより向上できることから、プライマー層(B)を形成する樹脂は、反応性官能基[X]として、ケト基、カルボキシル基、カルボニル基、アセトアセチル基、エポキシ基、脂環エポキシ基、アルキロールアミド基、イソシアネート基、ビニル基、(メタ)アクリロイル基、アリル基を有するものが好ましい。 In particular, when the reactive functional group [Y] in the dispersant is a basic nitrogen atom-containing group, the adhesion of the metal film (M) on the insulating substrate (A) can be further improved. The resin forming the primer layer (B) has a keto group, a carboxyl group, a carbonyl group, an acetoacetyl group, an epoxy group, an alicyclic epoxy group, an alkylolamide group, an isocyanate group and vinyl as the reactive functional group [X]. Those having a group, a (meth) acryloyl group, and an allyl group are preferable.
 前記プライマー層(B)を形成する樹脂としては、例えば、ウレタン樹脂、アクリル樹脂、ウレタン樹脂をシェルとしアクリル樹脂をコアとするコア・シェル型複合樹脂、エポキシ樹脂、イミド樹脂、アミド樹脂、メラミン樹脂、フェノール樹脂、尿素ホルムアルデヒド樹脂、ポリイソシアネートにフェノール等のブロック化剤を反応させて得られたブロックイソシアネートポリビニルアルコール、ポリビニルピロリドン等が挙げられる。なお、ウレタン樹脂をシェルとしアクリル樹脂をコアとするコア・シェル型複合樹脂は、例えば、ウレタン樹脂存在下でアクリル単量体を重合することにより得られる。また、これらの樹脂は、1種で用いることも2種以上併用することもできる。 Examples of the resin forming the primer layer (B) include a urethane resin, an acrylic resin, a core-shell type composite resin having a urethane resin as a shell and an acrylic resin as a core, an epoxy resin, an imide resin, an amide resin, and a melamine resin. , Phenolic resin, urea formaldehyde resin, blocked isocyanate obtained by reacting polyisocyanate with a blocking agent such as phenol, polyvinyl alcohol, polyvinylpyrrolidone and the like. The core-shell type composite resin having a urethane resin as a shell and an acrylic resin as a core can be obtained, for example, by polymerizing an acrylic monomer in the presence of a urethane resin. Further, these resins can be used alone or in combination of two or more.
 上記のプライマー層(B)を形成する樹脂の中でも、絶縁性基材(A)上への金属皮膜(M)の密着性をより向上できることから、加熱により還元性化合物を生成する樹脂が好ましい。前記還元性化合物としては、例えば、フェノール化合物、芳香族アミン化合物、硫黄化合物、リン酸化合物、アルデヒド化合物等が挙げられる。これらの還元性化合物の中でも、フェノール化合物、アルデヒド化合物が好ましい。 Among the resins forming the primer layer (B), a resin that produces a reducing compound by heating is preferable because the adhesion of the metal film (M) to the insulating substrate (A) can be further improved. Examples of the reducing compound include phenol compounds, aromatic amine compounds, sulfur compounds, phosphoric acid compounds, aldehyde compounds and the like. Among these reducing compounds, phenol compounds and aldehyde compounds are preferable.
 加熱により還元性化合物を生成する樹脂をプライマーに用いた場合、プライマー層(B)を形成する際の加熱乾燥工程でホルムアルデヒド、フェノール等の還元性化合物を生成する。加熱により還元性化合物を生成する樹脂の具体例としては、例えば、N-アルキロール(メタ)アクリルアミドを含む単量体を重合した樹脂、ウレタン樹脂をシェルとしN-アルキロール(メタ)アクリルアミドを含む単量体を重合した樹脂をコアとするコア・シェル型複合樹脂、尿素―ホルムアルデヒド-メタノール縮合物、尿素-メラミン-ホルムアルデヒド-メタノール縮合物、ポリN-アルコキシメチロール(メタ)アクリルアミド、ポリ(メタ)アクリルアミドのホルムアルデヒド付加物、メラミン樹脂等の加熱によりホルムアルデヒドを生成する樹脂;フェノール樹脂、フェノールブロックイソシアネート等の加熱によりフェノール化合物を生成する樹脂などが挙げられる。これらの樹脂の中でも、密着性向上の観点から、ウレタン樹脂をシェルとしN-アルキロール(メタ)アクリルアミドを含む単量体を重合した樹脂をコアとするコア・シェル型複合樹脂、メラミン樹脂、フェノールブロックイソシアネートが好ましい。 When a resin that produces a reducing compound by heating is used as a primer, a reducing compound such as formaldehyde or phenol is produced in the heating and drying step when forming the primer layer (B). Specific examples of the resin that produces a reducing compound by heating include a resin obtained by polymerizing a monomer containing N-alkyrole (meth) acrylamide, and N-alkyrole (meth) acrylamide using a urethane resin as a shell. Core-shell type composite resin with a polymer polymer resin as the core, urea-formaldehyde-methanol condensate, urea-melamine-formaldehyde-methanol condensate, poly N-alkoxymethylol (meth) acrylamide, poly (meth) Examples thereof include a formaldehyde adduct of acrylamide, a resin that produces formaldehyde by heating a melamine resin, and the like; a resin that produces a phenol compound by heating a phenol resin, a phenol block isocyanate, and the like. Among these resins, from the viewpoint of improving adhesion, a core-shell type composite resin having a urethane resin as a shell and a resin obtained by polymerizing a monomer containing N-alkyrole (meth) acrylamide as a core, a melamine resin, and a phenol Blocked isocyanate is preferred.
 なお、本発明において、「(メタ)アクリルアミド」とは、「メタクリルアミド」及び「アクリルアミド」の一方又は両方をいい、「(メタ)アクリル酸」とは、「メタクリル酸」及び「アクリル酸」の一方又は両方をいう。 In the present invention, "(meth) acrylamide" refers to one or both of "methacrylamide" and "acrylamide", and "(meth) acrylic acid" refers to "methacrylic acid" and "acrylic acid". Refers to one or both.
 加熱により還元性化合物を生成する樹脂は、加熱により還元性化合物を生成する官能基を有する単量体をラジカル重合、アニオン重合、カチオン重合等の重合方法により重合することによって得られる。 The resin that produces a reducing compound by heating is obtained by polymerizing a monomer having a functional group that produces a reducing compound by heating by a polymerization method such as radical polymerization, anionic polymerization, or cationic polymerization.
 加熱により還元性化合物を生成する官能基を有する単量体としては、例えば、N-アルキロールビニル単量体が挙げられ、具体的には、N-メチロール(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-エトキシメチル(メタ)アクリルアミド、N-プロポキシメチル(メタ)アクリルアミド、N-イソプロポキシメチル(メタ)アクリルアミド、N-n-ブトキシメチル(メタ)アクリルアミド、N-イソブトキシメチル(メタ)アクリルアミド、N-ペントキシメチル(メタ)アクリルアミド、N-エタノール(メタ)アクリルアミド、N-プロパノール(メタ)アクリルアミド等が挙げられる。 Examples of the monomer having a functional group that produces a reducing compound by heating include N-alkyrole vinyl monomer, and specific examples thereof include N-methylol (meth) acrylamide and N-methoxymethyl (N-methoxymethyl). Meta) acrylamide, N-ethoxymethyl (meth) acrylamide, N-propoxymethyl (meth) acrylamide, N-isopropoxymethyl (meth) acrylamide, Nn-butoxymethyl (meth) acrylamide, N-isobutoxymethyl (meth) ) Acrylamide, N-pentoxymethyl (meth) acrylamide, N-ethanol (meth) acrylamide, N-propanol (meth) acrylamide and the like.
 また、上記の加熱により還元性化合物を生成する樹脂を製造する際には、加熱により還元性化合物を生成する官能基を有する単量体等とともに、(メタ)アクリル酸アルキルエステルなどのその他の各種単量体を共重合することもできる。 In addition, when producing a resin that produces a reducing compound by heating, a monomer having a functional group that produces a reducing compound by heating, and various other types such as (meth) acrylic acid alkyl ester are used. The monomers can also be copolymerized.
 前記ブロックイソシアネートを、前記プライマー層(B)を形成する樹脂として用いた場合は、イソシアネート基間で自己反応することでウレトジオン結合を形成し、又は、イソシアネート基と、他の成分が有する官能基とが結合を形成することによって、プライマー層(B)を形成する。この際形成される結合は、前記銀粒子分散液を塗工する前に形成されていてもよいし、前記銀粒子分散液を塗工する前には形成されておらず、前記銀粒子分散液を塗工した後に加熱によって形成されてもよい。 When the blocked isocyanate is used as a resin for forming the primer layer (B), a uretdione bond is formed by self-reacting between the isocyanate groups, or the isocyanate group and the functional group of other components are used. Form a bond to form a primer layer (B). The bond formed at this time may be formed before the silver particle dispersion liquid is applied, or is not formed before the silver particle dispersion liquid is applied, and the silver particle dispersion liquid is not formed. May be formed by heating after coating.
 前記ブロックイソシアネートとしては、イソシアネート基がブロック剤によって封鎖され形成した官能基を有するものが挙げられる。 Examples of the blocked isocyanate include those having a functional group formed by blocking the isocyanate group with a blocking agent.
 前記ブロックイソシアネートは、ブロックイソシアネート1モルあたり、前記官能基を350~600g/molの範囲で有するものが好ましい。 The blocked isocyanate is preferably one having the functional group in the range of 350 to 600 g / mol per 1 mol of the blocked isocyanate.
 前記官能基は、密着性向上の観点から、前記ブロックイソシアネートの1分子中に1~10個有するものが好ましく、2~5個有するものがより好ましい。 From the viewpoint of improving adhesion, the functional group preferably has 1 to 10 in one molecule of the blocked isocyanate, and more preferably 2 to 5.
 また、前記ブロックイソシアネートの数平均分子量は、密着性向上の観点から、1,500~5,000の範囲が好ましく、1,500~3,000の範囲がより好ましい。 The number average molecular weight of the blocked isocyanate is preferably in the range of 1,500 to 5,000, more preferably in the range of 1,500 to 3,000, from the viewpoint of improving adhesion.
 さらに、前記ブロックイソシアネートとしては、密着性をさらに向上する観点から、芳香環を有するものが好ましい。前記芳香環としては、フェニル基、ナフチル基等が挙げられる。 Further, as the blocked isocyanate, one having an aromatic ring is preferable from the viewpoint of further improving the adhesion. Examples of the aromatic ring include a phenyl group and a naphthyl group.
 なお、前記ブロックイソシアネートは、イソシアネート化合物が有するイソシアネート基の一部又は全部と、ブロック剤とを反応させることによって製造することができる。 The blocked isocyanate can be produced by reacting a part or all of the isocyanate groups of the isocyanate compound with the blocking agent.
 前記ブロックイソシアネートの原料となるイソシアネート化合物としては、例えば、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、カルボジイミド変性ジフェニルメタンジイソシアネート、クルードジフェニルメタンジイソシアネート、フェニレンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネート等の芳香環を有するポリイソシアネート化合物;ヘキサメチレンジイソシアネート、リジンジイソシアネート、シクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート等の脂肪族ポリイソシアネート化合物又は脂環式構造を有するポリイソシアネート化合物などが挙げられる。また、前記したポリイソシアネート化合物のそれらのビュレット体、イソシアヌレート体、アダクト体等も挙げられる。 Examples of the isocyanate compound as a raw material of the blocked isocyanate include 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, carbodiimide-modified diphenylmethane diisocyanate, crude diphenylmethane diisocyanate, phenylenediocyanate, tolylene diisocyanate, naphthalenedi isocyanate and the like. Polyisocyanate compound having an aromatic ring; an aliphatic polyisocyanate compound such as hexamethylene diisocyanate, lysine diisocyanate, cyclohexanediisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, or polyisocyanate having an alicyclic structure. Examples include compounds. Moreover, those burette form, isocyanurate form, adduct form and the like of the said polyisocyanate compound are also mentioned.
 また、前記イソシアネート化合物としては、上記で例示したポリイソシアネート化合物と、水酸基又はアミノ基を有する化合物等とを反応させて得られるものも挙げられる。 Further, examples of the isocyanate compound include those obtained by reacting the polyisocyanate compound exemplified above with a compound having a hydroxyl group or an amino group.
 前記ブロックイソシアネートに芳香環を導入する場合、芳香環を有するポリイソシアネート化合物を用いることが好ましい。また、芳香環を有するポリイソシアネート化合物の中でも、4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネートのイソシアヌレート体、トリレンジイソシアネートのイソシアヌレート体が好ましい。 When introducing an aromatic ring into the blocked isocyanate, it is preferable to use a polyisocyanate compound having an aromatic ring. Among the polyisocyanate compounds having an aromatic ring, 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate, isocyanurate of 4,4'-diphenylmethane diisocyanate, and isocyanurate of tolylene diisocyanate are preferable.
 前記ブロックイソシアネートの製造に用いるブロック化剤としては、例えば、フェノール、クレゾール等のフェノール化合物;ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム等のラクタム化合物;ホルムアミドオキシム、アセトアルドオキシム、アセトンオキシム、メチルエチルケトオキシム、メチルイソブチルケトオキシム、シクロヘキサノンオキシム等のオキシム化合物;2-ヒドロキシピリジン、ブチルセロソルブ、プロピレングリコールモノメチルエーテル、ベンジルアルコール、メタノール、エタノール、n-ブタノール、イソブタノール、マロン酸ジメチル、マロン酸ジエチル、アセト酢酸メチル、アセト酢酸エチル、アセチルアセトン、ブチルメルカプタン、ドデシルメルカプタン、アセトアニリド、酢酸アミド、コハク酸イミド、マレイン酸イミド、イミダゾール、2-メチルイミダゾール、尿素、チオ尿素、エチレン尿素、ジフェニルアニリン、アニリン、カルバゾール、エチレンイミン、ポリエチレンイミン、1H-ピラゾール、3-メチルピラゾール、3,5-ジメチルピラゾール等が挙げられる。これらの中でも、70~200℃の範囲で加熱することによって解離してイソシアネート基を生成可能なブロック化剤が好ましく、110~180℃の範囲で加熱することによって解離するイソシアネート基を生成可能なブロック化剤がより好ましい。具体的には、フェノール化合物、ラクタム化合物、オキシム化合物が好ましく、特に、フェノール化合物は、ブロック化剤が加熱により脱離する際に還元性化合物となることからより好ましい。 Examples of the blocking agent used for producing the blocked isocyanate include phenol compounds such as phenol and cresol; lactam compounds such as ε-caprolactam, δ-valerolactam and γ-butyrolactam; Oxime compounds such as methyl ethyl keto oxime, methyl isobutyl keto oxime, cyclohexanone oxime; 2-hydroxypyridine, butyl cellosolve, propylene glycol monomethyl ether, benzyl alcohol, methanol, ethanol, n-butanol, isobutanol, dimethyl malonate, diethyl malonate, acet Methyl acetate, ethyl acetoacetate, acetylacetone, butyl mercaptan, dodecyl mercaptan, acetoanilide, acetate amide, succinate imide, maleate imide, imidazole, 2-methyl imidazole, urea, thiourea, ethylene urea, diphenylaniline, aniline, carbazole, Examples thereof include ethyleneimine, polyethyleneimine, 1H-pyrazole, 3-methylpyrazole, 3,5-dimethylpyrazole and the like. Among these, a blocking agent capable of dissociating to generate an isocyanate group by heating in the range of 70 to 200 ° C. is preferable, and a block capable of producing an isocyanate group dissociating by heating in the range of 110 to 180 ° C. is preferable. Agents are more preferred. Specifically, a phenol compound, a lactam compound, and an oxime compound are preferable, and a phenol compound is more preferable because it becomes a reducing compound when the blocking agent is desorbed by heating.
 前記ブロックイソシアネートの製造方法としては、例えば、予め製造した前記イソシアネート化合物と前記ブロック化剤とを混合し反応させる方法、前記イソシアネート化合物の製造に用いる原料とともに前記ブロック化剤を混合し反応させる方法等が挙げられる。 Examples of the method for producing the blocked isocyanate include a method of mixing and reacting the isocyanate compound produced in advance with the blocking agent, a method of mixing and reacting the blocking agent with a raw material used for producing the isocyanate compound, and the like. Can be mentioned.
 より具体的には、前記ブロックイソシアネートは、前記ポリイソシアネート化合物と、水酸基又はアミノ基を有する化合物とを反応させることによって末端にイソシアネート基を有するイソシアネート化合物を製造し、次いで、前記イソシアネート化合物と前記ブロック化剤とを混合し反応させることによって製造することができる。 More specifically, the blocked isocyanate produces an isocyanate compound having an isocyanate group at the terminal by reacting the polyisocyanate compound with a compound having a hydroxyl group or an amino group, and then the isocyanate compound and the block. It can be produced by mixing and reacting with an agent.
 上記の方法で得られたブロックイソシアネートの前記プライマー層(B)を形成する樹脂中の含有比率は、50~100質量%の範囲が好ましく、70~100質量%の範囲がより好ましい。 The content ratio of the blocked isocyanate obtained by the above method in the resin forming the primer layer (B) is preferably in the range of 50 to 100% by mass, more preferably in the range of 70 to 100% by mass.
 前記メラミン樹脂としては、例えば、メラミン1モルに対してホルムアルデヒドが1~6モル付加したモノ又はポリメチロールメラミン;トリメトキシメチロールメラミン、トリブトキシメチロールメラミン、ヘキサメトキシメチロールメラミン等の(ポリ)メチロールメラミンのエーテル化物(エーテル化度は任意);尿素-メラミン-ホルムアルデヒド-メタノール縮合物などが挙げられる。 Examples of the melamine resin include mono or polymethylol melamine in which 1 to 6 mol of formaldehyde is added to 1 mol of melamine; (poly) methylol melamine such as trimethoxymethylol melamine, tributoxymethylol melamine, and hexamethoxymethylol melamine. Ethereate (arbitrary degree of etherification); urea-melamine-formaldehyde-methanol condensate and the like.
 また、上記のように加熱により還元性化合物を生成する樹脂を用いる方法の他に、樹脂に還元性化合物を添加する方法も挙げられる。この場合に、添加する還元性化合物としては、例えば、フェノール系酸化防止剤、芳香族アミン系酸化防止剤、硫黄系酸化防止剤、リン酸系酸化防止剤、ビタミンC、ビタミンE、エチレンジアミン四酢酸ナトリウム、亜硫酸塩、次亜燐酸、次亜燐酸塩、ヒドラジン、ホルムアルデヒド、水素化ホウ素ナトリウム、ジメチルアミンボラン、フェノール等が挙げられる。 Further, in addition to the method using a resin that produces a reducing compound by heating as described above, a method of adding a reducing compound to the resin can also be mentioned. In this case, examples of the reducing compound to be added include phenol-based antioxidants, aromatic amine-based antioxidants, sulfur-based antioxidants, phosphoric acid-based antioxidants, vitamin C, vitamin E, and ethylenediamine tetraacetic acid. Examples thereof include sodium, sulfite, hypophosphoric acid, hypophosphite, hydrazine, formaldehyde, sodium hydride, dimethylamine borane, phenol and the like.
 本発明において、樹脂に還元性化合物を添加する方法は、最終的に低分子量成分やイオン性化合物が残留することで電気特性が低下する可能性があるため、加熱により還元性化合物を生成する樹脂を用いる方法がより好ましい。 In the present invention, the method of adding a reducing compound to a resin may result in deterioration of electrical properties due to the residual low molecular weight component or ionic compound. Therefore, a resin that produces a reducing compound by heating. Is more preferable.
 前記プライマー層(B)を形成するために用いるプライマーは、塗工性、成膜性の観点から、プライマー中に前記樹脂を1~70質量%含有するものが好ましく、1~20質量%含有するものがより好ましい。 The primer used to form the primer layer (B) preferably contains 1 to 70% by mass of the resin in the primer from the viewpoint of coatability and film forming property, and contains 1 to 20% by mass. The one is more preferable.
 また、前記プライマーに使用可能な溶媒としては、各種有機溶剤、水性媒体が挙げられる。前記有機溶剤としては、例えば、トルエン、酢酸エチル、メチルエチルケトン、シクロヘキサノン等が挙げられ、前記水性媒体としては、水、水と混和する有機溶剤、及び、これらの混合物が挙げられる。 Further, examples of the solvent that can be used for the primer include various organic solvents and aqueous media. Examples of the organic solvent include toluene, ethyl acetate, methyl ethyl ketone, cyclohexanone and the like, and examples of the aqueous medium include water, an organic solvent miscible with water, and a mixture thereof.
 前記の水と混和する有機溶剤としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、エチルカルビトール、エチルセロソルブ、ブチルセロソルブ等のアルコール溶剤;アセトン、メチルエチルケトン等のケトン溶剤;エチレングリコール、ジエチレングリコール、プロピレングリコール等のアルキレングリコール溶剤;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリアルキレングリコール溶剤;N-メチル-2-ピロリドン等のラクタム溶剤などが挙げられる。 Examples of the organic solvent to be mixed with water include alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve and butyl cellosolve; ketone solvents such as acetone and methyl ethyl ketone; ethylene glycol, diethylene glycol and propylene. Examples thereof include an alkylene glycol solvent such as glycol; a polyalkylene glycol solvent such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol; and a lactam solvent such as N-methyl-2-pyrrolidone.
 また、前記プライマー層(B)を形成する樹脂は、必要に応じて、例えば、アルコキシシリル基、シラノール基、水酸基、アミノ基等、架橋反応に寄与する官能基を有していてもよい。これらの官能基を利用して形成される架橋構造は、後工程の金属粒子から形成される金属皮膜(M1)を形成する工程以前に、すでに架橋構造を形成していてもよく、また、金属粒子から形成される金属皮膜(M1)を形成する工程以降で架橋構造を形成してもよい。金属粒子から形成される金属皮膜(M1)を形成する工程以降で架橋構造を形成する場合、金属皮膜(M2)を形成する前に、前記プライマー層(B)に架橋構造を形成しておいてもよく、金属皮膜(M2)を形成した後に、例えば、エージングすることによって、前記プライマー層(B)に架橋構造を形成してもよい。 Further, the resin forming the primer layer (B) may have a functional group that contributes to the crosslinking reaction, such as an alkoxysilyl group, a silanol group, a hydroxyl group, or an amino group, if necessary. The crosslinked structure formed by utilizing these functional groups may have already formed the crosslinked structure before the step of forming the metal film (M1) formed from the metal particles in the subsequent step, or the metal. A crosslinked structure may be formed after the step of forming the metal film (M1) formed from the particles. When forming a crosslinked structure after the step of forming a metal film (M1) formed from metal particles, a crosslinked structure is formed on the primer layer (B) before forming the metal film (M2). Alternatively, a crosslinked structure may be formed in the primer layer (B) by, for example, aging after forming the metal film (M2).
 前記プライマー層(B)には、必要に応じて、架橋剤をはじめ、pH調整剤、皮膜形成助剤、レベリング剤、増粘剤、撥水剤、消泡剤等の公知のものを適宜添加して使用してもよい。 If necessary, a known substance such as a cross-linking agent, a pH adjuster, a film forming aid, a leveling agent, a thickener, a water repellent agent, and an antifoaming agent is appropriately added to the primer layer (B). May be used.
 前記架橋剤としては、例えば、金属キレート化合物、ポリアミン化合物、アジリジン化合物、金属塩化合物、イソシアネート化合物等が挙げられ、25~100℃程度の比較的低温で反応し架橋構造を形成する熱架橋剤、メラミン系化合物、エポキシ系化合物、オキサゾリン化合物、カルボジイミド化合物、ブロックイソシアネート化合物等の100℃以上の比較的高温で反応し架橋構造を形成する熱架橋剤や各種光架橋剤が挙げられる。 Examples of the cross-linking agent include a metal chelate compound, a polyamine compound, an aziridine compound, a metal salt compound, an isocyanate compound and the like, and a thermal cross-linking agent that reacts at a relatively low temperature of about 25 to 100 ° C. to form a cross-linking structure. Examples thereof include thermal cross-linking agents such as melamine-based compounds, epoxy-based compounds, oxazoline compounds, carbodiimide compounds, and blocked isocyanate compounds that react at a relatively high temperature of 100 ° C. or higher to form a cross-linking structure, and various photocross-linking agents.
 前記架橋剤の使用量は、種類によって異なるものの、絶縁性基材の金属皮膜(M)の密着性向上の観点から、前記プライマーに含まれる樹脂の合計100質量部に対して、0.01~60質量部の範囲が好ましく、0.1~10質量部の範囲がより好ましく、0.1~5質量部の範囲がさらに好ましい。 Although the amount of the cross-linking agent used varies depending on the type, from the viewpoint of improving the adhesion of the metal film (M) of the insulating base material, 0.01 to 0.01 to 100 parts by mass of the resin contained in the primer. The range of 60 parts by mass is preferable, the range of 0.1 to 10 parts by mass is more preferable, and the range of 0.1 to 5 parts by mass is further preferable.
 前記架橋剤を用いた場合、後工程の金属粒子を含有する金属粒子層(M1)を形成する工程以前に、すでに架橋構造を形成していてもよく、また、金属粒子から形成される金属粒子層(M1)を形成する工程以降で架橋構造を形成してもよい。金属粒子から形成される金属粒子層(M1)を形成する工程以降で架橋構造を形成する場合、金属皮膜(M2)を形成する前に、前記プライマー層(B)に架橋構造を形成してもよく、金属皮膜(M2)を形成した後に、例えば、エージングすることによって、前記プライマー層(B)に架橋構造を形成してもよい。 When the cross-linking agent is used, the cross-linking structure may already be formed before the step of forming the metal particle layer (M1) containing the metal particles in the subsequent step, or the metal particles formed from the metal particles. A crosslinked structure may be formed after the step of forming the layer (M1). When the crosslinked structure is formed after the step of forming the metal particle layer (M1) formed from the metal particles, the crosslinked structure may be formed on the primer layer (B) before the metal film (M2) is formed. Often, a crosslinked structure may be formed in the primer layer (B) by, for example, aging after forming the metal film (M2).
 本発明の立体成形体への金属皮膜形成方法においては、前記絶縁性基材(A)上に形成された前記プライマー層(B)上に金属皮膜(M)が形成される。 In the method for forming a metal film on a three-dimensional molded body of the present invention, a metal film (M) is formed on the primer layer (B) formed on the insulating base material (A).
 本発明の立体成形体への金属皮膜形成方法における、好ましい様態の一つは、前記プライマー層(B)上に形成される金属皮膜(M)が、金属粒子から形成される金属粒子膜(M1)であることを特徴とする。
本発明において、前記金属粒子層(M1)を形成する金属粒子は、銀、銅、ニッケル、金、白金、パラジウム、ルテニウム、スズ、鉄、コバルト、チタン、インジウム、イリジウム等からなる群から選ばれる1種以上の金属を好適に用いることができる。
One of the preferable modes in the method for forming a metal film on a three-dimensional molded body of the present invention is a metal particle film (M1) in which the metal film (M) formed on the primer layer (B) is formed from metal particles. ).
In the present invention, the metal particles forming the metal particle layer (M1) are selected from the group consisting of silver, copper, nickel, gold, platinum, palladium, ruthenium, tin, iron, cobalt, titanium, indium, iridium and the like. One or more kinds of metals can be preferably used.
これらの金属粒子の中でも、比較的安価であること、導電性金属層として電気抵抗値が十分に低いことから、銀、もしくは銅の粒子を主成分として用いることが好ましく、大気下で保存しても表面が酸化されにくいことから、銀粒子を主成分として用いることが特に好ましい。 Among these metal particles, silver or copper particles are preferably used as the main component because they are relatively inexpensive and have a sufficiently low electrical resistance as a conductive metal layer, and are stored in the atmosphere. However, it is particularly preferable to use silver particles as a main component because the surface is not easily oxidized.
 金属粒子として銀粒子を主成分として用いる場合、金属粒子には、銀以外の金属が含有されていても良く、銀以外の金属が含有される場合、銀以外の金属の割合は、後述する工程3におけるめっきが問題なく実施できる限りは、特に制限はないが、銀100質量部に対して5質量部以下が好ましく、2質量部以下がより好ましい。 When silver particles are used as the main component of the metal particles, the metal particles may contain a metal other than silver, and when a metal other than silver is contained, the proportion of the metal other than silver is described later. As long as the plating in No. 3 can be carried out without any problem, there is no particular limitation, but 5 parts by mass or less is preferable with respect to 100 parts by mass of silver, and 2 parts by mass or less is more preferable.
 金属粒子として銀粒子を主成分として用いる場合、銀以外の金属は、個別の金属粒子中において、銀以外の成分を含有していても良いし、銀以外の金属の粒子を含有していても良い。銀と置換又は混合される金属としては、金、白金、パラジウム、ルテニウム、スズ、銅、ニッケル、鉄、コバルト、チタン、インジウム及びイリジウムからなる群より選ばれる1種以上の金属元素が挙げられる。 When silver particles are used as the main component of the metal particles, the metal other than silver may contain a component other than silver in the individual metal particles, or may contain particles of a metal other than silver. good. Examples of the metal substituted or mixed with silver include one or more metal elements selected from the group consisting of gold, platinum, palladium, ruthenium, tin, copper, nickel, iron, cobalt, titanium, indium and iridium.
本発明の、立体成形体への金属皮膜形成方法においては、前記絶縁性基材(A)上の少なくとも、連続した一連の表面を覆う様に形成されるプライマー層(B)上に、前記金属粒子の分散液を塗工することによって、前記プライマー層(B)上に金属粒子層(M1)が形成される。前記金属粒子分散液の塗工方法は、特に制限はなく、前記プライマー塗工で挙げた種々の塗工方法を、適宜選択すればよい。 In the method for forming a metal film on a three-dimensional molded body of the present invention, the metal is placed on a primer layer (B) formed so as to cover at least a continuous series of surfaces on the insulating base material (A). By applying the dispersion liquid of particles, a metal particle layer (M1) is formed on the primer layer (B). The coating method of the metal particle dispersion liquid is not particularly limited, and various coating methods mentioned in the primer coating may be appropriately selected.
 前記金属粒子の分散液を塗工する方法は、前記プライマーの塗工方法と同じであっても良いし、異なる方法を用いても良い。 The method of applying the dispersion liquid of the metal particles may be the same as the method of applying the primer, or a different method may be used.
 また、前記プライマー層(B)は、前記絶縁性基材(A)と同様に、前記金属粒子分散液の塗工性向上や、プライマー層への金属皮膜(M)の密着性を向上する目的で、金属粒子分散液を塗工する前に、表面処理を行ってもよい。表面処理の方法としては、前記プライマー塗工で挙げた種々の表面処理方法を、適宜選択すればよい。 Further, the primer layer (B) has the same purpose as the insulating base material (A) for improving the coatability of the metal particle dispersion and improving the adhesion of the metal film (M) to the primer layer. Therefore, the surface treatment may be performed before applying the metal particle dispersion liquid. As the surface treatment method, various surface treatment methods mentioned in the primer coating may be appropriately selected.
 前記金属粒子分散液を前記絶縁性基材(A)上に塗工した後、塗工膜を乾燥・焼成することにより、金属粒子分散液に含まれる溶媒が揮発し、前記絶縁性基材(A)上に金属粒子層(M1)が形成される。ここで、乾燥とは、主として、前記金属粒子の分散液から溶媒を揮発させるプロセスであり、焼成とは、主として金属粒子同士を接合させるプロセスを意味する。 After the metal particle dispersion liquid is applied onto the insulating base material (A), the coating film is dried and fired to volatilize the solvent contained in the metal particle dispersion liquid, and the insulating base material (the insulating base material (A)). A metal particle layer (M1) is formed on A). Here, drying mainly means a process of volatilizing a solvent from the dispersion liquid of the metal particles, and firing mainly means a process of joining metal particles to each other.
 上記の乾燥と焼成は、同時に行ってもよいし、塗工膜を一旦乾燥しておき、使用前に必要に応じて焼成を行ってもよい。乾燥の温度及び時間は、使用する絶縁性基材(A)の体熱温度や、後述する前記金属粒子分散液に使用する溶媒の種類に応じて適宜選択すればよいが、20℃~250℃の範囲で、時間は1~200分の範囲が好ましい。また、焼成の温度及び時間は、金属粒子層(M1)に必要とされる導電性に応じて適宜選択すればよいが、温度は80~350℃の範囲で、時間は1~200分の範囲が好ましい。また、前記絶縁性基材(A)上に、密着性に優れた金属粒子層(M1)を得るためには、前記焼成の温度を80~250℃の範囲にすることがより好ましい。 The above drying and firing may be performed at the same time, or the coating film may be dried once and then fired if necessary before use. The drying temperature and time may be appropriately selected depending on the body heat temperature of the insulating base material (A) to be used and the type of solvent used for the metal particle dispersion liquid described later, and may be 20 ° C. to 250 ° C. The time is preferably in the range of 1 to 200 minutes. The firing temperature and time may be appropriately selected according to the conductivity required for the metal particle layer (M1), but the temperature is in the range of 80 to 350 ° C. and the time is in the range of 1 to 200 minutes. Is preferable. Further, in order to obtain the metal particle layer (M1) having excellent adhesion on the insulating base material (A), it is more preferable to set the firing temperature in the range of 80 to 250 ° C.
 上記の乾燥・焼成は、送風を行ってもよいし、特に送風を行わなくてもよい。また、乾燥・焼成は、大気中で行ってもよいし、窒素、アルゴン等の不活性ガスの置換雰囲気下、もしくは気流下で行ってもよく、真空下で行ってもよい。 The above drying / firing may be performed by blowing air, or may not be blown in particular. Further, the drying / firing may be performed in the atmosphere, under a substitution atmosphere of an inert gas such as nitrogen or argon, under an air flow, or under a vacuum.
 塗工膜の乾燥・焼成は、前記絶縁性基材(A)上にプライマーを塗工する項目で挙げた種々の方法を、目的に応じて適宜選択すれば良い。 For drying and firing of the coating film, various methods listed in the item of applying a primer on the insulating base material (A) may be appropriately selected according to the purpose.
 前記金属粒子層(M1)は、層中に80~99.9質量%の範囲で金属粒子を含有し、0.1~20質量%の範囲で、後述する高分子分散剤成分を含有するものが好ましい。 The metal particle layer (M1) contains metal particles in the range of 80 to 99.9% by mass, and contains a polymer dispersant component described later in the range of 0.1 to 20% by mass. Is preferable.
 前記金属粒子層(M1)の厚さは、30~500nmの範囲が好ましい。金属皮膜(M)が、金属粒子から形成される金属粒子膜(M1)上に、さらにめっき金属膜(M2)を積層したものである場合、金属粒子層(M1)は、めっき金属膜(M2)を形成するためのめっきシードとして用いることができる。 The thickness of the metal particle layer (M1) is preferably in the range of 30 to 500 nm. When the metal film (M) is a metal particle film (M1) formed of metal particles and a plated metal film (M2) laminated on the metal particle film (M1), the metal particle layer (M1) is a plated metal film (M2). ) Can be used as a plating seed for forming.
 金属粒子層(M1)上に、直接電解めっきを実施して金属めっき膜(M2)を形成する場合には、前記金属粒子層(M1)の厚さは、50~500nmであることが好ましい。 When the metal plating film (M2) is formed by directly performing electrolytic plating on the metal particle layer (M1), the thickness of the metal particle layer (M1) is preferably 50 to 500 nm.
 前記金属粒子層(M1)の厚さは、公知慣用の種々の方法によって見積もることができ、例えば、電子顕微鏡を用いた断面観察法や、蛍光X線による方法を用いることができるが、蛍光X線法を用いることが、簡便で好ましい。 The thickness of the metal particle layer (M1) can be estimated by various known and commonly used methods. For example, a cross-sectional observation method using an electron microscope or a method using fluorescent X-rays can be used. It is convenient and preferable to use the linear method.
 前記金属粒子層(M1)を形成するために、本発明で用いる金属粒子分散液は、金属粒子が溶媒中に分散したものである。前記金属粒子の形状としては、金属粒子層(M1)を良好に形成するものであれば特に制限はなく、球状、レンズ状、多面体状、平板状、ロッド状、ワイヤー状など、種々の形状の金属粒子を用いることができる。これらの金属粒子は、単一形状の1種で用いることも、形状が異なる2種以上を併用することもできる。 The metal particle dispersion used in the present invention for forming the metal particle layer (M1) is one in which metal particles are dispersed in a solvent. The shape of the metal particles is not particularly limited as long as it can form the metal particle layer (M1) satisfactorily, and has various shapes such as spherical, lenticular, polyhedral, flat plate, rod, and wire. Metal particles can be used. These metal particles may be used as one type having a single shape, or may be used in combination with two or more types having different shapes.
 前記金属粒子の形状が球状や多面体状である場合には、その平均粒子径が1~20,000nmの範囲のものが好ましい。また、微細な回路パターンを形成する目的に用いる場合には、金属粒子層(M1)の均質性がより向上し、エッチング液による除去性もより向上できることから、その平均粒子径が1~200nmの範囲のものがより好ましく、1~50nmの範囲のものがさらに好ましい。なお、ナノメートルサイズの粒子に関する「平均粒子径」は、前記銀粒子を分散良溶媒で希釈し、動的光散乱法により測定した体積平均値である。この測定にはマイクロトラック社製「ナノトラックUPA-150」を用いることができる。 When the shape of the metal particles is spherical or polyhedral, the average particle diameter thereof is preferably in the range of 1 to 20,000 nm. Further, when used for the purpose of forming a fine circuit pattern, the homogeneity of the metal particle layer (M1) can be further improved, and the removability by an etching solution can be further improved. Therefore, the average particle diameter thereof is 1 to 200 nm. Those in the range of 1 to 50 nm are more preferable. The "average particle size" of the nanometer-sized particles is a volume average value measured by a dynamic light scattering method obtained by diluting the silver particles with a good dispersion solvent. "Nanotrack UPA-150" manufactured by Microtrack Co., Ltd. can be used for this measurement.
 一方、金属粒子がレンズ状、ロッド状、ワイヤー状などの形状を有する場合には、その短径が1~200nmの範囲のものが好ましく、2~100nmの範囲のものがより好ましく、5~50nmの範囲のものがさらに好ましい。 On the other hand, when the metal particles have a shape such as a lens shape, a rod shape, or a wire shape, those having a minor axis in the range of 1 to 200 nm are preferable, those having a minor axis in the range of 2 to 100 nm are more preferable, and those having a minor axis in the range of 5 to 50 nm are more preferable. Those in the range of are more preferable.
 前記金属粒子層(M1)を形成するために用いる金属粒子分散液は、金属粒子を各種溶媒中に分散したものであり、その分散液中の金属粒子の粒径分布は、単分散で揃っていてもよく、また、上記の平均粒子径の範囲である粒子の混合物であってもよい。 The metal particle dispersion used to form the metal particle layer (M1) is one in which metal particles are dispersed in various solvents, and the particle size distribution of the metal particles in the dispersion is uniform in a single dispersion. It may be a mixture of particles within the above average particle size range.
 前記金属粒子の分散液に用いる溶媒としては、水性媒体や有機溶剤を使用することができる。前記水性媒体としては、例えば、蒸留水、イオン交換水、純水、超純水、及び、前記水と混和する有機溶剤との混合物が挙げられる。 As the solvent used for the dispersion liquid of the metal particles, an aqueous medium or an organic solvent can be used. Examples of the aqueous medium include distilled water, ion-exchanged water, pure water, ultrapure water, and a mixture of the water and an organic solvent to be mixed with the water.
 前記の水と混和する有機溶剤としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、エチルカルビトール、エチルセロソルブ、ブチルセロソルブ等のアルコール溶剤;アセトン、メチルエチルケトン等のケトン溶剤;エチレングリコール、ジエチレングリコール、プロピレングリコール等のアルキレングリコール溶剤;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリアルキレングリコール溶剤;N-メチル-2-ピロリドン等のラクタム溶剤などが挙げられる。
 また、有機溶剤単独で使用する場合の有機溶媒としては、アルコール化合物、エーテル化合物、エステル化合物、ケトン化合物等が挙げられる。
Examples of the organic solvent to be mixed with water include alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve and butyl cellosolve; ketone solvents such as acetone and methyl ethyl ketone; ethylene glycol, diethylene glycol and propylene. Examples thereof include an alkylene glycol solvent such as glycol; a polyalkylene glycol solvent such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol; and a lactam solvent such as N-methyl-2-pyrrolidone.
In addition, examples of the organic solvent when the organic solvent is used alone include alcohol compounds, ether compounds, ester compounds, and ketone compounds.
 前記アルコール溶剤又はエーテル溶剤としては、例えば、メタノール、エタノール、n-プロパノール、イソプロピルアルコール、n-ブタノール、イソブチルアルコール、sec-ブタノール、tert-ブタノール、ヘプタノール、ヘキサノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール、ステアリルアルコール、アリルアルコール、シクロヘキサノール、テルピネオール、ターピネオール、ジヒドロターピネオール、2-エチル-1,3-ヘキサンジオール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、グリセリン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、テトラエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノブチルエーテル等が挙げられる。 Examples of the alcohol solvent or ether solvent include methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, sec-butanol, tert-butanol, heptanol, hexanol, octanol, nonanol, decanol, undecanol, and dodecanol. , Tridecanol, Tetradecanol, Pentadecanol, Stearyl Alcohol, Allyl Alcohol, Cyclohexanol, Terpineol, Tarpineol, Dihydroterpineol, 2-Ethyl-1,3-hexanediol, Ethylene Glycol, Diethylene Glycol, Triethylene Glycol, Polyethylene Glycol, Propylene glycol, dipropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, glycerin, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol Monobutyl Ether, Diethylene Glycol Monoethyl Ether, Diethylene Glycol Monomethyl Ether, Diethylene Glycol Monobutyl Ether, Tetraethylene Glycol Monobutyl Ether, Propylene Glycol Monomethyl Ether, Dipropylene Glycol Monomethyl Ether, Tripropylene Glycol Monomethyl Ether, Propylene Glycol Monopropyl Ether, Dipropylene Glycol Monopropyl Examples thereof include ether, propylene glycol monobutyl ether, dipropylene glycol monobutyl ether, and tripropylene glycol monobutyl ether.
 前記ケトン溶剤としては、例えば、アセトン、シクロヘキサノン、メチルエチルケトン等が挙げられる。また、前記エステル溶剤としては、例えば、酢酸エチル、酢酸ブチル、3―メトキシブチルアセテート、3-メトキシ-3-メチル-ブチルアセテート等が挙げられる。さらに、その他の有機溶剤として、トルエン等の炭化水素溶剤、特に炭素原子数8以上の炭化水素溶剤が挙げられる。 Examples of the ketone solvent include acetone, cyclohexanone, methyl ethyl ketone and the like. Examples of the ester solvent include ethyl acetate, butyl acetate, 3-methoxybutyl acetate, 3-methoxy-3-methyl-butyl acetate and the like. Further, as another organic solvent, a hydrocarbon solvent such as toluene, particularly a hydrocarbon solvent having 8 or more carbon atoms can be mentioned.
 前記炭素原子数8以上の炭化水素溶剤としては、例えば、オクタン、ノナン、デカン、ドデカン、トリデカン、テトラデカン、シクロオクタン、キシレン、メシチレン、エチルベンゼン、ドデシルベンゼン、テトラリン、トリメチルベンゼンシクロヘキサン等の非極性溶剤が挙げられ、他の溶媒と必要に応じて組み合わせて用いることができる。さらに、混合溶剤であるミネラルスピリット、ソルベントナフサ等の溶媒を併用することもできる。 Examples of the hydrocarbon solvent having 8 or more carbon atoms include non-polar solvents such as octane, nonane, decane, dodecane, tridecane, tetradecane, cyclooctane, xylene, mesitylene, ethylbenzene, dodecylbenzene, tetraline, and trimethylbenzenecyclohexane. It can be used in combination with other solvents as needed. Further, a solvent such as mineral spirit or solvent naphtha which is a mixed solvent can be used in combination.
 前記溶媒は、金属粒子が安定に分散し、前記絶縁性基材(A)上に形成されたプライマー層(B)上に、前記金属粒子層(M1)を良好に形成するものであれば特に制限はない。また、前記溶媒は、1種で用いることも2種以上併用することもできる。 The solvent is particularly limited as long as the metal particles are stably dispersed and the metal particle layer (M1) is satisfactorily formed on the primer layer (B) formed on the insulating base material (A). There is no limit. Further, the solvent may be used alone or in combination of two or more.
 前記金属粒子分散液中の金属粒子の含有率は、上記の塗工方法に応じて最適な塗工適性を有する粘度になるように調整するが、0.5~90質量%の範囲が好ましく、1~60質量%の範囲がより好ましく、さらに2~10質量%の範囲がより好ましい。 The content of the metal particles in the metal particle dispersion is adjusted so as to have a viscosity having optimum coating suitability according to the above coating method, but is preferably in the range of 0.5 to 90% by mass. The range of 1 to 60% by mass is more preferable, and the range of 2 to 10% by mass is more preferable.
 前記金属粒子分散液は、前記金属粒子が、前記の各種溶媒媒中で凝集、融合、沈殿することなく、長期間の分散安定性を保つことが好ましく、金属粒子を、前記の各種溶媒中に分散させるため、高分子分散剤により被覆されたものである。このような高分子分散剤としては、金属粒子に配位する官能基を有する分散剤が好ましく、例えば、カルボキシル基、アミノ基、シアノ基、アセトアセチル基、リン原子含有基、チオール基、チオシアナト基、グリシナト基等の官能基を有する分散剤が挙げられる。 In the metal particle dispersion liquid, it is preferable that the metal particles do not aggregate, fuse, or precipitate in the various solvent media, and the dispersion stability is maintained for a long period of time. It is coated with a polymer dispersant for dispersion. As such a polymer dispersant, a dispersant having a functional group that coordinates with the metal particles is preferable, and for example, a carboxyl group, an amino group, a cyano group, an acetoacetyl group, a phosphorus atom-containing group, a thiol group, and a thiocyanato group. , Dispersants having a functional group such as a glycinato group can be mentioned.
 前記分散剤としては、市販、もしくは独自に合成した低分子量、又は高分子量の分散剤を用いることができ、銀粒子を分散する溶媒や、銀粒子の分散液を塗工する前記絶縁性成形体(A)の種類など、目的に応じて適宜選択すればよい。例えば、ドデカンチオール、1-オクタンチオール、トリフェニルホスフィン、ドデシルアミン、ポリエチレングリコール、ポリビニルピロリドン、ポリエチレンイミン、ポリビニルピロリドン;ミリスチン酸、オクタン酸、ステアリン酸等の脂肪酸;コール酸、グリシルジン酸、アビンチン酸等のカルボキシル基を有する多環式炭化水素化合物などが好適に用いられるが、前記プライマー層(B)に用いる樹脂が有する反応性官能基[X]と結合を形成しうる反応性官能基[Y]を有する化合物を用いることが好ましい。 As the dispersant, a commercially available or independently synthesized low molecular weight or high molecular weight dispersant can be used, and the insulating molded body coated with a solvent for dispersing silver particles or a dispersion liquid of silver particles is applied. It may be appropriately selected according to the purpose such as the type of (A). For example, dodecanethiol, 1-octanethiol, triphenylphosphine, dodecylamine, polyethylene glycol, polyvinylpyrrolidone, polyethyleneimine, polyvinylpyrrolidone; fatty acids such as myristic acid, octanoic acid and stearic acid; A polycyclic hydrocarbon compound having a carboxyl group of the above is preferably used, but a reactive functional group [Y] capable of forming a bond with the reactive functional group [X] of the resin used for the primer layer (B). It is preferable to use a compound having.
 反応性官能基[Y]を有する化合物としては、例えば、アミノ基、アミド基、アルキロールアミド基、カルボキシル基、無水カルボキシル基、カルボニル基、アセトアセチル基、エポキシ基、脂環エポキシ基、オキセタン環、ビニル基、アリル基、(メタ)アクリロイル基、(ブロック化)イソシアネート基、(アルコキシ)シリル基等を有する化合物、シルセスキオキサン化合物等が挙げられる。特に、プライマー層(B)と導電性金属層(M1)との密着性をより向上できることから、前記反応性官能基[Y]は塩基性窒素原子含有基が好ましい。前記塩基性窒素原子含有基としては、例えば、イミノ基、1級アミノ基、2級アミノ基等が挙げられる。 Examples of the compound having a reactive functional group [Y] include an amino group, an amide group, an alkyrole amide group, a carboxyl group, an anhydrous carboxyl group, a carbonyl group, an acetoacetyl group, an epoxy group, an alicyclic epoxy group and an oxetan ring. , Vinyl group, allyl group, (meth) acryloyl group, (blocked) isocyanate group, (alkoxy) silyl group and the like, silsesquioxane compound and the like. In particular, the reactive functional group [Y] is preferably a basic nitrogen atom-containing group because the adhesion between the primer layer (B) and the conductive metal layer (M1) can be further improved. Examples of the basic nitrogen atom-containing group include an imino group, a primary amino group, a secondary amino group and the like.
 前記塩基性窒素原子含有基は、分散剤1分子中に単数、もしくは複数存在してもよい。分散剤中に複数の塩基性窒素原子を含有することで、塩基性窒素原子含有基の一部は、銀粒子との相互作用により、金属粒子の分散安定性に寄与し、残りの塩基性窒素原子含有基は、前記絶縁性基材(A)との密着性向上に寄与する。また、後述するプライマー層(B)に反応性官能基[X]を有する樹脂を用いた場合には、分散剤中の塩基性窒素原子含有基は、この反応性官能基[X]との間で結合が形成でき、前記絶縁性基材(A)上への金属皮膜(M)の密着性をより一層向上できるため好ましい。 The basic nitrogen atom-containing group may be singular or plural in one molecule of the dispersant. By containing a plurality of basic nitrogen atoms in the dispersant, some of the basic nitrogen atom-containing groups contribute to the dispersion stability of the metal particles by interacting with the silver particles, and the remaining basic nitrogen. The atom-containing group contributes to improving the adhesion to the insulating base material (A). Further, when a resin having a reactive functional group [X] is used for the primer layer (B) described later, the basic nitrogen atom-containing group in the dispersant is between the reactive functional group [X]. It is preferable because a bond can be formed with the metal film (M) and the adhesion of the metal film (M) to the insulating base material (A) can be further improved.
 前記高分子分散剤は、金属粒子の分散液の安定性、塗工性、及び、前記プライマー層(B)上に良好な密着性を示す金属粒子層(M1)を形成できることから、ポリエチレンイミン、ポリプロピレンイミン等のポリアルキレンイミン、前記ポリアルキレンイミンにポリオキシアルキレンが付加した化合物などが好ましい。 Since the polymer dispersant can form a metal particle layer (M1) showing stability, coatability, and good adhesion on the primer layer (B) of the dispersion liquid of metal particles, polyethyleneimine, Polyalkylene imine such as polypropylene imine, a compound obtained by adding polyoxyalkylene to the polyalkylene imine, and the like are preferable.
 前記ポリアルキレンイミンにポリオキシアルキレンが付加した化合物としては、ポリエチレンイミンとポリオキシアルキレンとが、直鎖状で結合したものであってもよく、前記ポリエチレンイミンからなる主鎖に対して、その側鎖にポリオキシアルキレンがグラフトしたものであってもよい。 The compound to which polyoxyalkylene is added to the polyalkyleneimine may be a compound in which polyethyleneimine and polyoxyalkylene are bonded in a linear manner, and the side of the main chain made of polyethyleneimine is the side thereof. The chain may be grafted with polyoxyalkylene.
 前記ポリアルキレンイミンにポリオキシアルキレンが付加した化合物の具体例としては、例えば、ポリエチレンイミンとポリオキシエチレンとのブロック共重合体、ポリエチレンイミンの主鎖中に存在するイミノ基の一部にエチレンオキサイドを付加反応させてポリオキシエチレン構造を導入したもの、ポリアルキレンイミンが有するアミノ基と、ポリオキシエチレングリコールが有する水酸基と、エポキシ樹脂が有するエポキシ基とを反応させたもの等が挙げられる。 Specific examples of the compound in which polyoxyalkylene is added to the polyalkyleneimine include a block copolymer of polyethyleneimine and polyoxyethylene, and ethylene oxide in a part of the imino group present in the main chain of polyethyleneimine. Examples thereof include those in which a polyoxyethylene structure is introduced by an addition reaction, and those in which an amino group possessed by polyalkyleneimine, a hydroxyl group possessed by polyoxyethylene glycol, and an epoxy group possessed by an epoxy resin are reacted.
 前記ポリアルキレンイミンの市販品としては、株式会社日本触媒製の「エポミン(登録商標)PAOシリーズ」の「PAO2006W」、「PAO306」、「PAO318」、「PAO718」等が挙げられる。 Examples of the commercially available product of the polyalkyleneimine include "PAO2006W", "PAO306", "PAO318" and "PAO718" of "Epomin (registered trademark) PAO series" manufactured by Nippon Shokubai Co., Ltd.
 前記ポリアルキレンイミンの数平均分子量は、3,000~30,000の範囲が好ましい。 The number average molecular weight of the polyalkyleneimine is preferably in the range of 3,000 to 30,000.
 前記金属粒子を分散させるために必要な前記分散剤の使用量は、前記金属粒子100質量部に対し、0.01~50質量部の範囲が好ましく、また、前記プライマー層(B)上に、良好な密着性を示す金属粒子層(M1)を形成できることから、前記金属粒子100質量部に対し、0.1~10質量部の範囲が好ましく、さらに前記金属粒子層(M1)を導電性のめっきシードとして用いる場合には、前記金属粒子層(M1)の導電性を向上できることから、0.1~5質量部の範囲がより好ましい。 The amount of the dispersant required to disperse the metal particles is preferably in the range of 0.01 to 50 parts by mass with respect to 100 parts by mass of the metal particles, and on the primer layer (B). Since a metal particle layer (M1) exhibiting good adhesion can be formed, the range of 0.1 to 10 parts by mass is preferable with respect to 100 parts by mass of the metal particles, and the metal particle layer (M1) is more conductive. When used as a plating seed, the range of 0.1 to 5 parts by mass is more preferable because the conductivity of the metal particle layer (M1) can be improved.
 前記金属粒子の分散液の製造方法としては、特に制限はなく、種々の方法を用いて製造できるが、例えば、低真空ガス中蒸発法などの気相法を用いて製造した金属粒子を、溶媒中に分散させてもよいし、液相で金属化合物を還元して直接金属粒子の分散液を調製してもよい。気相、液相法とも、適宜、必要に応じて、溶媒交換や溶媒添加により、製造時の分散液と塗工時の分散液の溶剤組成を変更することが可能である。気相、液相法のうち、分散液の安定性や製造工程の簡便さから、液相法を特に好適に用いることができる。液相法としては、例えば、前記高分子分散剤の存在下で金属イオンを還元することによって製造することができる。 The method for producing the dispersion liquid of the metal particles is not particularly limited and can be produced by using various methods. For example, the metal particles produced by a vapor phase method such as an evaporation method in a low vacuum gas can be used as a solvent. It may be dispersed therein, or the metal compound may be reduced in the liquid phase to directly prepare a dispersion of metal particles. In both the gas phase and the liquid phase methods, the solvent composition of the dispersion liquid at the time of production and the dispersion liquid at the time of coating can be changed as appropriate by exchanging the solvent or adding a solvent. Of the gas phase and liquid phase methods, the liquid phase method can be particularly preferably used because of the stability of the dispersion liquid and the simplicity of the manufacturing process. As a liquid phase method, for example, it can be produced by reducing metal ions in the presence of the polymer dispersant.
 前記金属粒子の分散液には、さらに必要に応じて、界面活性剤、レベリング剤、粘度調整剤、成膜助剤、消泡剤、防腐剤などの有機化合物を配合してもよい。 If necessary, the dispersion liquid of the metal particles may further contain an organic compound such as a surfactant, a leveling agent, a viscosity modifier, a film forming aid, an antifoaming agent, and an antiseptic.
 前記界面活性剤としては、例えば、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンスチリルフェニルエーテル、ポリオキシエチレンソルビトールテトラオレエート、ポリオキシエチレン・ポリオキシプロピレン共重合体等のノニオン系界面活性剤;オレイン酸ナトリウム等の脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、ナフタレンスルホン酸塩、ポリオキシエチレンアルキル硫酸塩、アルカンスルホネートナトリウム塩、アルキルジフェニルエーテルスルホン酸ナトリウム塩等のアニオン系界面活性剤;アルキルアミン塩、アルキルトリメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩等のカチオン系界面活性剤などが挙げられる。 Examples of the surfactant include nonions such as polyoxyethylene nonylphenyl ether, polyoxyethylene lauryl ether, polyoxyethylene styrylphenyl ether, polyoxyethylene sorbitol tetraoleate, and polyoxyethylene / polyoxypropylene copolymer. Surfactants; fatty acid salts such as sodium oleate, alkyl sulfate ester salts, alkylbenzene sulfonates, alkyl sulfosuccinates, naphthalene sulfonates, polyoxyethylene alkyl sulfates, alkane sulfonate sodium salts, sodium alkyldiphenyl ether sulfonates Anionic surfactants such as salts; cationic surfactants such as alkylamine salts, alkyltrimethylammonium salts, and alkyldimethylbenzylammonium salts can be mentioned.
 前記レベリング剤としては、一般的なレベリング剤を使用することができ、例えば、シリコーン系化合物、アセチレンジオール系化合物、フッ素系化合物等が挙げられる。 As the leveling agent, a general leveling agent can be used, and examples thereof include silicone-based compounds, acetylenediol-based compounds, and fluorine-based compounds.
 前記粘度調整剤としては、一般的な増粘剤を使用することができ、例えば、アルカリ性に調整することによって増粘可能なアクリル重合体、合成ゴムラテックス、分子が会合することによって増粘可能なウレタン樹脂、ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、ポリビニルアルコール、水添加ヒマシ油、アマイドワックス、酸化ポリエチレン、金属石鹸、ジベンジリデンソルビトール等が挙げられる。 As the viscosity modifier, a general thickener can be used. For example, an acrylic polymer that can be thickened by adjusting it to alkaline, a synthetic rubber latex, and a thickening agent by associating molecules can be used. Examples thereof include urethane resin, hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, polyvinyl alcohol, water-added castor oil, amido wax, polyethylene oxide, metal soap, and dibenzylidene sorbitol.
 前記成膜助剤としては、一般的な成膜助剤を使用することができ、例えば、ジオクチルスルホコハク酸エステルソーダ塩等アニオン系界面活性剤、ソルビタンモノオレエート等の疎水性ノニオン系界面活性剤、ポリエーテル変性シロキサン、シリコーンオイルなどが挙げられる。 As the film-forming auxiliary, a general film-forming auxiliary can be used. For example, an anionic surfactant such as dioctyl sulfosuccinate sodium salt, a hydrophobic nonionic surfactant such as sorbitan monooleate, etc. can be used. , Polyether-modified siloxane, silicone oil and the like.
 前記消泡剤としては、一般的な消泡剤を使用することができ、例えば、シリコーン系消泡剤、ノニオン系界面活性剤、ポリエーテル,高級アルコール、ポリマー系界面活性剤等が挙げられる。 As the defoaming agent, a general defoaming agent can be used, and examples thereof include silicone-based defoaming agents, nonionic-based surfactants, polyethers, higher alcohols, and polymer-based surfactants.
 前記防腐剤としては、一般的な防腐剤を使用することができ、例えば、イソチアゾリン系防腐剤、トリアジン系防腐剤、イミダゾール系防腐剤、ピリジン系防腐剤、アゾール系防腐剤、ピリチオン系防腐剤等が挙げられる。 As the preservative, a general preservative can be used, for example, an isothiazoline-based preservative, a triazine-based preservative, an imidazole-based preservative, a pyridine-based preservative, an azole-based preservative, a pyrithione-based preservative, and the like. Can be mentioned.
 本発明の立体成形体への金属皮膜形成方法の、さらに好ましい一様体は、前記金属皮膜(M)が、金属粒子から形成される金属粒子膜(M1)上に、さらにめっき金属膜(M2)を積層したものであることを特徴とする。 A more preferable uniform of the method for forming a metal film on a three-dimensional molded body of the present invention is that the metal film (M) is further plated on a metal particle film (M1) formed of metal particles (M2). ) Are laminated.
前記金属粒子層(M1)上にめっき金属膜(M2)を形成するめっき法としては、例えば、無電解めっき、電解めっき、無電解めっきと電解めっきを組み合わせた方法等が挙げられる。前記めっき法として無電解めっきを実施する場合、前記金属粒子層(M1)は、触媒シードとして用いることができる。前記めっき層(M2)は、無電解めっきのみで厚膜化して形成してもよいし、無電解めっきにより形成した無電解めっき層を導電性シードとして、さらに電解めっきを実施することで、前記めっき層(M2)を厚膜化してもよい。さらに、無電解めっきを実施せずに、直接電解めっきを実施する場合、前記金属粒子層(M1)は、導電性シードとして用いる。また、無電解めっきの後に電解めっきを行うことでめっき層(M2)を形成してもよい。電解めっきを併用すると、めっき析出速度を大きくすることができるため、製造効率が高くなり有利である。 Examples of the plating method for forming the plated metal film (M2) on the metal particle layer (M1) include electroless plating, electrolytic plating, and a method in which electroless plating and electrolytic plating are combined. When electroless plating is performed as the plating method, the metal particle layer (M1) can be used as a catalyst seed. The plating layer (M2) may be formed by forming a thick film only by electrolytic plating, or by further performing electrolytic plating using the electrolytic plating layer formed by electrolytic plating as a conductive seed. The plating layer (M2) may be thickened. Further, when the electroless plating is directly performed without performing the electroless plating, the metal particle layer (M1) is used as a conductive seed. Further, the plating layer (M2) may be formed by performing electrolytic plating after electroless plating. When electrolytic plating is used in combination, the plating precipitation rate can be increased, which is advantageous because the production efficiency is high.
金属めっき層(M2)を無電解めっきで形成する場合、めっき金属として、例えば、銅、ニッケル、クロム、コバルト、コバルト-タングステン、コバルトータングステン-ホウ素、スズ等が挙げられる。金属めっき層(M2)が導体回路パターンである場合には、これらの金属の中でも、電気抵抗値が低いことから、銅を用いることが好ましい。また、上記の通り、無電解めっきの後に電解めっきを行うことで金属めっき層(M2)を形成することもできる。電解めっきを併用すると、めっき析出速度を大きくすることができるため、製造効率が高くなり有利である。 When the metal plating layer (M2) is formed by electroless plating, examples of the plating metal include copper, nickel, chromium, cobalt, cobalt-tungsten, cobalt-tungsten-boron, tin and the like. When the metal plating layer (M2) has a conductor circuit pattern, it is preferable to use copper among these metals because the electric resistance value is low. Further, as described above, the metal plating layer (M2) can be formed by performing electrolytic plating after electroless plating. When electrolytic plating is used in combination, the plating precipitation rate can be increased, which is advantageous because the production efficiency is high.
 本発明の立体成形体への金属皮膜形成方法において、無電解めっきと電解めっきを併用して金属めっき層(M2)を形成する場合、無電解めっきと電解めっきの析出金属は、同じであっても、異なっていても良い。例えば、無電解銅めっき後に電解銅めっき、無電解ニッケルめっき後に電解銅めっき、無電解ニッケルめっき後に電解ニッケルめっき、無電解コバルトめっき後に電解銅めっき等の組み合わせが挙げられる。金属めっき層(M2)が回路パターンである場合には、金属めっき層(M2)を構成する主金属としては、電気抵抗値が低いことから、銅を用いることが好ましく、無電解ニッケルや無電解コバルトなどを組み合わせると、銅の基材への拡散を抑制できることから、プリント配線板の長期信頼性を向上させることができる。また、金属皮膜を電磁波シールドとして用いる場合には、金属めっき層(M2)を構成する金属は、磁性体を含有することが好ましく、ニッケル、鉄―ニッケル合金などを用いることが好ましい。 In the method for forming a metal film on a three-dimensional molded body of the present invention, when the metal plating layer (M2) is formed by using electrolytic plating and electrolytic plating in combination, the deposited metal of the electrolytic plating and the electrolytic plating is the same. May be different. For example, a combination of electroless copper plating followed by electrolytic copper plating, electroless nickel plating followed by electrolytic copper plating, electroless nickel plating followed by electrolytic nickel plating, electroless cobalt plating followed by electrolytic copper plating, and the like can be mentioned. When the metal plating layer (M2) has a circuit pattern, copper is preferably used as the main metal constituting the metal plating layer (M2) because the electric resistance value is low, and electroless nickel or electroless nickel or electroless electrolysis is preferable. When combined with cobalt or the like, diffusion of copper to the base material can be suppressed, so that the long-term reliability of the printed wiring board can be improved. When the metal film is used as an electromagnetic wave shield, the metal constituting the metal plating layer (M2) preferably contains a magnetic material, and nickel, iron-nickel alloy, or the like is preferably used.
 本発明の立体成形体への金属皮膜形成方法において、無電解めっきと電解めっきを併用して金属めっき層(M2)を形成する場合、無電解めっき層の厚さは、必要に応じて適宜選択すればよいが、電解めっきを適切に行うための導電性を確保するため0.1μm~2μmの範囲であることが望ましく、生産性を向上させる観点から、0.15μm~1μmの範囲であることがより好ましい。 In the method for forming a metal film on a three-dimensional molded body of the present invention, when the metal plating layer (M2) is formed by using electrolytic plating and electrolytic plating in combination, the thickness of the electrolytic plating layer is appropriately selected as necessary. However, it is desirable that the range is 0.1 μm to 2 μm in order to secure conductivity for proper electrolytic plating, and the range is 0.15 μm to 1 μm from the viewpoint of improving productivity. Is more preferable.
 本発明の立体成形体への金属皮膜形成方法において、直接電解めっきを実施して金属めっき層(M2)を形成する場合、金属めっき層(M2)を構成するめっき金属としては、例えば、銅、ニッケル、クロム、亜鉛、スズ、金、銀、ロジウム、パラジウム、白金等が挙げられる。これらの金属の中でも、回路パターンを形成することが目的である場合には、前述のように、安価で電気抵抗値が低いことから、銅が好ましく、電解銅めっきにより前記金属めっき層(M2)を形成することが好ましい。電解銅めっきは、公知慣用の方法、を用いて行えばよいが、硫酸銅浴を用いる硫酸銅めっき法が好ましい。また、金属皮膜(M)を電磁波シールドとして用いる場合には、前記の様に、ニッケル、ニッケル-鉄合金などの磁性体金属を含有することが好ましい。これらの電解めっきは、公知慣用の方法を用いて行えばよく、市販のめっき用添加剤を好適に用いることができる。 In the method for forming a metal film on a three-dimensional molded body of the present invention, when the metal plating layer (M2) is formed by directly performing electrolytic plating, the plating metal constituting the metal plating layer (M2) may be, for example, copper. Examples thereof include nickel, chromium, zinc, tin, gold, silver, rhodium, palladium, platinum and the like. Among these metals, when the purpose is to form a circuit pattern, copper is preferable because it is inexpensive and has a low electric resistance value as described above, and the metal plating layer (M2) is plated with electrolytic copper. It is preferable to form. The electrolytic copper plating may be performed by using a known and commonly used method, but a copper sulfate plating method using a copper sulfate bath is preferable. When the metal film (M) is used as an electromagnetic wave shield, it is preferable to contain a magnetic metal such as nickel or nickel-iron alloy as described above. These electrolytic platings may be performed by a known and commonly used method, and commercially available plating additives can be preferably used.
 直接電解めっき法を実施する場合、金属めっき層(M2)を構成するめっき金属は、上述の各種金属の1種、もしくは複数種を組み合わせて用いても良い。例えば、形成する金属めっき層(M2)が、装飾用途である場合、めっき金属の応力緩和を目的として、最外層のニッケルークロムめっきの下層に銅めっきが実施される。この際に実施される銅めっきは、前記金属粒子層(M1)上に電解ニッケルめっきを行った後、電解銅めっきを行い、さらに電解ニッケル、電解クロムめっきを行ってもよいし、前記金属粒子層(PM1)上に電解銅めっきを行い、その後、電解ニッケル、電解クロムめっきを行ってもよい。また、前記金属粒子層(M1)上に、電解銅めっきを行った後、電解ニッケルめっき、もしくは電解ニッケル-鉄合金めっきを行っても良い。 When the direct electrolytic plating method is carried out, the plating metal constituting the metal plating layer (M2) may be used alone or in combination of a plurality of the above-mentioned various metals. For example, when the metal plating layer (M2) to be formed is for decorative purposes, copper plating is performed on the lower layer of the outermost nickel-chromium plating for the purpose of stress relief of the plated metal. The copper plating carried out at this time may be carried out by subjecting the metal particle layer (M1) to electrolytic nickel plating, then electrolytic copper plating, and further electrolytic nickel and electrolytic chrome plating, or the metal particles. Electrolytic copper plating may be performed on the layer (PM1), followed by electrolytic nickel or electrolytic chrome plating. Further, the metal particle layer (M1) may be subjected to electrolytic copper plating and then electrolytic nickel plating or electrolytic nickel-iron alloy plating.
 本発明の金属皮膜形成方法においては、前記絶縁性基材(A)上に形成する金属皮膜(M)がパターン化されたものであっても良い。金属皮膜(M)をパターン化する方法としては、絶縁性基材(A)の全面に金属皮膜(M)を形成した後に、不用部を除去してパターン化しても良いし、前記金属粒子層(M1)上にパターンレジストを形成して、必要なパターン部のみにめっき金属層(M2)を形成した後、レジストを剥離し、不用部の金属粒子層(M1)をエッチング除去する方法を用いても良い。また、金属粒子層(M1)の非パターン形成部を、ケガキなどの機械的方法やレーザー照射により除去して、パターン部の金属粒子層(M1)を残し、この金属粒子層(M1)をシードとして、パターン部のめっきを形成しても良い。 In the metal film forming method of the present invention, the metal film (M) formed on the insulating base material (A) may be patterned. As a method of patterning the metal film (M), after forming the metal film (M) on the entire surface of the insulating base material (A), the unnecessary portion may be removed and patterned, or the metal particle layer may be patterned. A method is used in which a pattern resist is formed on (M1), a plated metal layer (M2) is formed only on a necessary pattern portion, the resist is peeled off, and the metal particle layer (M1) on an unnecessary portion is removed by etching. May be. Further, the non-pattern forming portion of the metal particle layer (M1) is removed by a mechanical method such as marking or laser irradiation to leave the metal particle layer (M1) of the pattern portion, and the metal particle layer (M1) is seeded. As a result, plating of the pattern portion may be formed.
 以上に述べた本発明の立体成形体への金属皮膜形成方法を用いることにより、クロム酸や過マンガン酸等、環境負荷の大きい薬液を使用せず、透明性が重視される基材や、耐薬品性が低い、もしくは、逆に耐薬品性が高すぎる、また、粗化処理によって基材の強度や機能低下を引き起こす等、表面を粗化することが難しい3次元構造を有する難めっき素材に対して、密着性の高い金属めっきを行うことができる。基材表面を粗化しないため、めっきにより形成された金属皮膜表面が、基材表面の平滑面を反映した光沢面となるため、めっき膜厚を薄くすることができ、めっき時間の短縮や、生産性向上に寄与するだけでなく、基材の軽量化にも貢献する。また、高価な真空装置や電子線照射装置を用いない簡便な方法であるため、生産効率が高く、低コストで製品を製造することが可能になる。
さらに、近年、高密度化、高周波対応が進むプリント配線板用途では、粗化処理によって表面に凹凸が形成されると、狭ピッチ回路の形成が難しくなることや、信号の遅延が起こるなどの問題があるが、本発明の技術を用いることによって、基材表面の粗化処理を行わずに、高い密着強度を確保することができる。また、本発明の金属皮膜形成方法により、プリント配線板のみならず、基材表面にパターン化された金属層を有する種々の部材、例えば、コネクター、電磁波シールド、RFIDなどのアンテナ、フィルムコンデンサーなども製造できる。さらに、本発明の金属皮膜形成方法は、種々の形状、サイズの基材上に金属皮膜を有する装飾めっき用途においても好適に用いることが可能である。
By using the method for forming a metal film on a three-dimensional molded body of the present invention described above, a base material in which transparency is important and resistance to a base material such as chromic acid and permanganic acid, which have a large environmental load, are not used. For difficult-to-plating materials with a three-dimensional structure that makes it difficult to roughen the surface, such as low chemical resistance, or conversely too high chemical resistance, and the roughening treatment causes deterioration of the strength and function of the base material. On the other hand, metal plating with high adhesion can be performed. Since the surface of the base material is not roughened, the surface of the metal film formed by plating becomes a glossy surface that reflects the smooth surface of the surface of the base material, so that the plating film thickness can be reduced, and the plating time can be shortened. Not only contributes to the improvement of productivity, but also contributes to the weight reduction of the base material. In addition, since it is a simple method that does not use an expensive vacuum device or electron beam irradiation device, it is possible to manufacture a product with high production efficiency and low cost.
Furthermore, in recent years, in printed wiring board applications where high density and high frequency compatibility are advancing, if unevenness is formed on the surface by roughening processing, it becomes difficult to form a narrow pitch circuit and signal delay occurs. However, by using the technique of the present invention, it is possible to secure high adhesion strength without roughening the surface of the base material. Further, by the metal film forming method of the present invention, not only a printed wiring board but also various members having a patterned metal layer on the surface of a base material, for example, a connector, an electromagnetic wave shield, an antenna such as RFID, a film capacitor and the like can be obtained. Can be manufactured. Furthermore, the metal film forming method of the present invention can also be suitably used in decorative plating applications in which a metal film is provided on a substrate having various shapes and sizes.
 以下、実施例により本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail by way of examples.
[製造例1:プライマー(B-1)用樹脂の製造]
 温度計、窒素ガス導入管、攪拌器を備えた窒素置換された容器中で、ポリエステルポリオール(1,4-シクロヘキサンジメタノールとネオペンチルグリコールとアジピン酸とを反応させて得られたポリエステルポリオール)100質量部、2,2―ジメチロールプロピオン酸17.6質量部、1,4-シクロヘキサンジメタノール21.7質量部及びジシクロヘキシルメタン-4,4’-ジイソシアネート106.2質量部を、メチルエチルケトン178質量部の混合溶剤中で反応させることによって、末端にイソシアネート基を有するウレタンプレポリマー溶液を得た。
[Manufacturing Example 1: Production of Resin for Primer (B-1)]
Polyester polyol (polyolpolyol obtained by reacting 1,4-cyclohexanedimethanol, neopentylglycol, and adipic acid in a nitrogen-substituted container equipped with a thermometer, a nitrogen gas introduction tube, and a stirrer) 100 By mass, 17.6 parts by mass of 2,2-dimethylolpropionic acid, 21.7 parts by mass of 1,4-cyclohexanedimethanol, 106.2 parts by mass of dicyclohexylmethane-4,4'-diisocyanate, and 178 parts by mass of methylethylketone. By reacting in the mixed solvent of the above, a urethane prepolymer solution having an isocyanate group at the terminal was obtained.
 次いで、前記ウレタンプレポリマー溶液にトリエチルアミン13.3質量部を加えて、前記ウレタンプレポリマーが有するカルボキシル基を中和し、さらに水380質量部を加えて十分に攪拌することにより、ウレタンプレポリマーの水性分散液を得た。 Next, 13.3 parts by mass of triethylamine was added to the urethane prepolymer solution to neutralize the carboxyl group of the urethane prepolymer, and 380 parts by mass of water was further added to sufficiently stir the urethane prepolymer. An aqueous dispersion was obtained.
 上記で得られたウレタンプレポリマーの水性分散液に、25質量%エチレンジアミン水溶液8.8質量部を加え、攪拌することによって、ウレタンプレポリマーを鎖伸長した。次いでエージング・脱溶剤することによって、ウレタン樹脂の水性分散液(不揮発分30質量%)を得た。前記ウレタン樹脂の重量平均分子量は53,000であった。 8.8 parts by mass of a 25% by mass ethylenediamine aqueous solution was added to the aqueous dispersion of the urethane prepolymer obtained above, and the mixture was stirred to extend the chain of the urethane prepolymer. Then, by aging and removing the solvent, an aqueous dispersion of urethane resin (nonvolatile content: 30% by mass) was obtained. The weight average molecular weight of the urethane resin was 53,000.
 次に、攪拌機、還流冷却管、窒素導入管、温度計、単量体混合物滴下用滴下漏斗、重合触媒滴下用滴下漏斗を備えた反応容器に脱イオン水140質量部、上記で得られたウレタン樹脂の水分散液100質量部を入れ、窒素を吹き込みながら80℃まで昇温した。その後、攪拌しながら、メタクリル酸メチル60質量部、アクリル酸n-ブチル30質量部及びN-n-ブトキシメチルアクリルアミド10質量部からなる単量体混合物と、0.5質量%過硫酸アンモニウム水溶液20質量部とを別々の滴下漏斗から、反応容器内温度を80℃に保ちながら120分間かけて滴下した。 Next, 140 parts by mass of deionized water was placed in a reaction vessel equipped with a stirrer, a reflux cooling tube, a nitrogen introduction tube, a thermometer, a dropping funnel for dropping a monomer mixture, and a dropping funnel for dropping a polymerization catalyst, and the urethane obtained above. 100 parts by mass of the aqueous dispersion of the resin was added, and the temperature was raised to 80 ° C. while blowing nitrogen. Then, with stirring, a monomer mixture consisting of 60 parts by mass of methyl methacrylate, 30 parts by mass of n-butyl acrylate and 10 parts by mass of Nn-butoxymethylacrylamide, and 20 parts by mass of a 0.5% by mass ammonium persulfate aqueous solution were added. The parts were dropped from a separate dropping funnel over 120 minutes while keeping the temperature inside the reaction vessel at 80 ° C.
 滴下終了後、さらに同温度にて60分間攪拌した後、反応容器内の温度を40℃に冷却して、不揮発分が20質量%になるように脱イオン水で希釈した後、200メッシュ濾布で濾過することによって、前記ウレタン樹脂をシェル層とし、メタクリル酸メチル等を原料とするアクリル樹脂をコア層とするコア・シェル型複合樹脂であるプライマー層用樹脂組成物の水分散液を得た。 After the dropping is completed, the mixture is further stirred at the same temperature for 60 minutes, cooled to 40 ° C., diluted with deionized water so that the non-volatile content becomes 20% by mass, and then 200 mesh filter cloth is used. By filtering with, an aqueous dispersion of a resin composition for a primer layer, which is a core-shell type composite resin having the urethane resin as a shell layer and an acrylic resin made of methyl methacrylate or the like as a core layer, was obtained. ..
[製造例2:プライマー用樹脂(B-2)の製造]
 温度計、窒素ガス導入管、攪拌器を備え、窒素置換された反応容器に、2,2-ジメチロールプロピオン酸9.2質量部、ポリメチレンポリフェニルポリイソシアネート(東ソー株式会社製「ミリオネートMR-200」)57.4質量部及びメチルエチルケトン233質量部を仕込み、70℃で6時間反応させ、イソシアネート化合物を得た。次いで、反応容器内にブロック化剤としてフェノール26.4質量部を供給し、70℃で6時間反応させた。その後、40℃まで冷却し、ブロックイソシアネートの溶液を得た。
[Manufacturing Example 2: Production of resin for primer (B-2)]
A reaction vessel equipped with a thermometer, a nitrogen gas introduction tube, and a stirrer and substituted with nitrogen, 2,2-dimethylol propionic acid 9.2 parts by mass, polymethylene polyphenyl polyisocyanate ("Millionate MR-" manufactured by Toso Co., Ltd. 200 ”) 57.4 parts by mass and 233 parts by mass of methyl ethyl ketone were charged and reacted at 70 ° C. for 6 hours to obtain an isocyanate compound. Next, 26.4 parts by mass of phenol was supplied as a blocking agent into the reaction vessel, and the reaction was carried out at 70 ° C. for 6 hours. Then, it cooled to 40 degreeC, and the solution of blocked isocyanate was obtained.
[調製例1:銀粒子分散液の調製]
 エチレングリコール45質量部及びイオン交換水55質量部の混合溶媒に、分散剤としてポリエチレンイミンにポリオキシエチレンが付加した化合物を用いて平均粒径30nmの銀粒子を分散させることによって、銀粒子及び分散剤を含有する分散体を調製した。次いで、得られた分散体に、イオン交換水、エタノール及び界面活性剤を添加して、5質量%の銀粒子分散液を調製した。
[Preparation Example 1: Preparation of silver particle dispersion]
Silver particles and dispersion by dispersing silver particles having an average particle size of 30 nm in a mixed solvent of 45 parts by mass of ethylene glycol and 55 parts by mass of ion-exchanged water using a compound obtained by adding polyoxyethylene to polyethyleneimine as a dispersant. A dispersion containing the agent was prepared. Next, ion-exchanged water, ethanol and a surfactant were added to the obtained dispersion to prepare a 5% by mass silver particle dispersion.
[調製例2:プライマー(B-1)の調製]
上記製造例1で得られたプライマー層(B-1)用樹脂組成物の水分散液に、イソプロパノールと水の質量割合が7/3となり、不揮発分が2質量%となるように、この水分散液にイソプピルアルコールと脱イオン水を加えて混合し、プライマー(B-1)を得た。
[Preparation Example 2: Preparation of Primer (B-1)]
In the aqueous dispersion of the resin composition for the primer layer (B-1) obtained in Production Example 1, the mass ratio of isopropanol and water is 7/3, and the non-volatile content is 2% by mass. Isoppil alcohol and deionized water were added to the dispersion and mixed to obtain a primer (B-1).
[調製例3:プライマー(B-2)の調製]
 上記製造例2で得られたブロックイソシアネートの溶液に、40℃でトリエチルアミン7質量部を加えて前記ブロックイソシアネートが有するカルボキシル基を中和し、水を加えて十分に攪拌した後、メチルエチルケトンを留去して、不揮発分20質量%のブロックイソシアネートと水とを含有するプライマー層用樹脂組成物を得た。次に、この樹脂組成物にメチルエチルケトンを加えて希釈混合することで、不揮発分2質量%のプライマー(B-1)を得た。
[Preparation Example 3: Preparation of Primer (B-2)]
To the solution of the blocked isocyanate obtained in Production Example 2, 7 parts by mass of triethylamine was added at 40 ° C. to neutralize the carboxyl group of the blocked isocyanate, water was added and the mixture was sufficiently stirred, and then the methyl ethyl ketone was distilled off. Then, a resin composition for a primer layer containing blocked isocyanate having a non-volatile content of 20% by mass and water was obtained. Next, methyl ethyl ketone was added to this resin composition and diluted and mixed to obtain a primer (B-1) having a non-volatile content of 2% by mass.
(実施例1)
 絶縁性基材(A)として、0.1号(53μm径)のナイロン糸(釣り糸)を用い、調製例2で作製したプライマーに10秒間浸漬した後、引き上げて80℃で5分乾燥し、ナイロン糸の表面全体に100nm厚のプライマー層を形成した。次に、表面にプライマー層を形成したナイロン糸を、調製例1で作製した銀粒子分散液に10秒間浸漬した後、引き上げて120℃で5分乾燥し、120nm厚の銀粒子膜(M1)を形成することにより、絶縁性基材である、53μm径のナイロン糸上に、プライマー層(B-1)を介して銀粒子層の金属皮膜(M)を形成した。
(Example 1)
A nylon thread (fishing line) of No. 0.1 (53 μm diameter) was used as the insulating base material (A), immersed in the primer prepared in Preparation Example 2 for 10 seconds, pulled up, and dried at 80 ° C. for 5 minutes. A primer layer having a thickness of 100 nm was formed on the entire surface of the nylon thread. Next, the nylon thread having the primer layer formed on the surface was immersed in the silver particle dispersion prepared in Preparation Example 1 for 10 seconds, then pulled up and dried at 120 ° C. for 5 minutes to obtain a 120 nm thick silver particle film (M1). A metal film (M) of a silver particle layer was formed on a nylon thread having a diameter of 53 μm, which is an insulating base material, via a primer layer (B-1).
 ニチバンセロテープ(登録商標)の粘着面が上になるように机上に固定し、作製した銀粒子層の金属皮膜を有するナイロン糸を、テープ面に貼り付けた後、強く引き剥がして、ナイロン糸の金属皮膜を観察したところ、金属皮膜は剥離せず、ナイロン糸上に保持された。 The nylon thread having the metal film of the silver particle layer prepared by fixing it on the desk so that the adhesive side of Nichiban Cello Tape (registered trademark) faces up is attached to the tape surface and then strongly peeled off to form the nylon thread. When the metal film was observed, the metal film was not peeled off and was retained on the nylon thread.
(実施例2)
 実施例1で得られた、銀粒子層(M1)の金属皮膜を有するナイロン糸を、無電解銅めっき液(ローム・アンド・ハース電子材料株式会社製「サーキュポジット6550」)中に35℃で、22分間浸漬し、銀粒子表面に無電解銅めっき膜(厚さ0.5μm)を形成することによって、絶縁性基材である、53μm径のナイロン糸上に、プライマー層(B-1)を介して銀粒子層(M1)、及び銅めっき膜(M2)の金属皮膜(M)を形成した。
(Example 2)
The nylon thread having the metal film of the silver particle layer (M1) obtained in Example 1 was placed in a non-electrolytic copper plating solution (“Circuposit 6550” manufactured by Roam & Haas Electronic Materials Co., Ltd.) at 35 ° C. , By immersing for 22 minutes to form an electrolytic copper plating film (thickness 0.5 μm) on the surface of silver particles, a primer layer (B-1) was placed on a 53 μm diameter nylon thread which is an insulating base material. A silver particle layer (M1) and a metal film (M) of a copper plating film (M2) were formed therethrough.
 実施例1と同様にして、セロテープ(登録商標)による剥離試験を行ったところ、金属皮膜は剥離せず、ナイロン糸上に保持された。 When a peeling test was performed using cellophane tape (registered trademark) in the same manner as in Example 1, the metal film was not peeled and was retained on the nylon thread.
(実施例3)
 実施例2において、プライマーを調製例2の(B-1)から、調製例3の(B-2)に変更し、乾燥温度を120℃5分とし、80nmのプライマー層を形成し、銀粒子分散液への浸漬後の乾燥を120℃5分で行うことに変更した以外は、実施例2と同様にして、絶縁性基材である、53μm径のナイロン糸上に、プライマー層(B-2)を介して銀粒子層(M1)、及び銅めっき膜(M2)の金属皮膜(M)を形成した。
(Example 3)
In Example 2, the primer was changed from (B-1) of Preparation Example 2 to (B-2) of Preparation Example 3, the drying temperature was set to 120 ° C. for 5 minutes, a primer layer of 80 nm was formed, and silver particles were formed. In the same manner as in Example 2, a primer layer (B- A silver particle layer (M1) and a metal film (M) of a copper plating film (M2) were formed via 2).
 実施例2と同様にして、セロテープ(登録商標)による剥離試験を行ったところ、金属皮膜は剥離せず、ナイロン糸上に保持された。 When a peeling test was performed using cellophane tape (registered trademark) in the same manner as in Example 2, the metal film was not peeled and was retained on the nylon thread.
(実施例4)
 絶縁性基材(A)として、0.35号(97μm径)のポリエステル糸(釣り糸)を用いた以外は、実施例1と同様にして、絶縁性基材である、97μm径のポリエステル糸上に、プライマー層(B-2)を介して銀粒子層の金属皮膜(M)を形成した。
(Example 4)
On the 97 μm diameter polyester yarn which is the insulating base material in the same manner as in Example 1 except that the polyester yarn (fishing line) of No. 0.35 (97 μm diameter) was used as the insulating base material (A). A metal film (M) of a silver particle layer was formed in the primer layer (B-2).
 得られた銀粒子層(M1)を有するポリエステル糸を、無電解ニッケル-ホウ素めっき(奥野製薬工業株式会社製「トップケミアロイ66-LF」)を用いて、65℃で、2分間処理することによって、銀粒子層(M1)上に、膜厚0.2μmのニッケル-ホウ素めっき層を形成し、絶縁性基材である、97μm径のポリエステル糸上に、プライマー層(B-2)、銀粒子層(M1)、ニッケル-ホウ素めっき層(M2)を形成した。 The obtained polyester yarn having a silver particle layer (M1) is treated with electroless nickel-boron plating (“Top Chemialoy 66-LF” manufactured by Okuno Pharmaceutical Co., Ltd.) at 65 ° C. for 2 minutes. A nickel-boron plated layer having a thickness of 0.2 μm is formed on the silver particle layer (M1), and a primer layer (B-2) and silver are formed on a 97 μm diameter polyester yarn which is an insulating base material. A particle layer (M1) and a nickel-boron plated layer (M2) were formed.
 実施例1と同様にして、セロテープ(登録商標)による剥離試験を行ったところ、金属皮膜は剥離せず、ポリエステル糸上に保持された。 When a peeling test with cellophane tape (registered trademark) was performed in the same manner as in Example 1, the metal film was not peeled and was retained on the polyester yarn.
(実施例5)
 絶縁性基材(A)として、20μm径のLCPモノフィラメント(東レ株式会社製)を用い、調製例2で作製したプライマーに10秒間浸漬した後、引き上げて120℃で5分乾燥し、ナイロン糸の表面全体に100nm厚のプライマー層を形成した。次に、表面にプライマー層を形成したポリエステル糸を、調製例1で作製した銀粒子分散液に10秒間浸漬した後、引き上げて120℃で5分乾燥し、120nm厚の銀粒子膜(M1)を形成することにより、絶縁性基材である、20μm径のLCPモノフィラメント上に、プライマー層(B-1)を介して銀粒子層の金属皮膜(M)を形成した。
(Example 5)
An LCP monofilament (manufactured by Toray Industries, Inc.) having a diameter of 20 μm was used as the insulating base material (A), immersed in the primer prepared in Preparation Example 2 for 10 seconds, then pulled up and dried at 120 ° C. for 5 minutes to form a nylon thread. A primer layer having a thickness of 100 nm was formed on the entire surface. Next, the polyester yarn having the primer layer formed on the surface was immersed in the silver particle dispersion prepared in Preparation Example 1 for 10 seconds, then pulled up and dried at 120 ° C. for 5 minutes to obtain a 120 nm thick silver particle film (M1). A metal film (M) of a silver particle layer was formed on an LCP monofilament having a diameter of 20 μm, which is an insulating base material, via a primer layer (B-1).
 得られた銀粒子層(M1)を有するLCPモノフィラメントを、実施例2と同様にして、無電解銅めっき液(ローム・アンド・ハース電子材料株式会社製「サーキュポジット6550」)中に35℃で、10分間浸漬し、銀粒子表面に無電解銅めっき膜(厚さ0.2μm)を形成した。 The LCP monofilament having the obtained silver particle layer (M1) was placed in an electroless copper plating solution (“Circuposit 6550” manufactured by Roam & Haas Electronic Materials Co., Ltd.) at 35 ° C. in the same manner as in Example 2. It was immersed for 10 minutes to form an electroless copper plating film (thickness 0.2 μm) on the surface of silver particles.
 実施例1と同様にして、セロテープ(登録商標)による剥離試験を行ったところ、金属皮膜は剥離せず、LCPモノフィラメント上に保持された。 When a peeling test with cellophane tape (registered trademark) was performed in the same manner as in Example 1, the metal film was not peeled and was retained on the LCP monofilament.
(実施例6)
 実施例5で得られた、銅めっき層(M2)を有するLCPモノフィラメントの一部を、40℃に設定した38質量%の塩化第二鉄水溶液に20秒浸漬し、浸漬部分の銀粒子層(M1)と銅めっき層(M2)をエッチング除去してパターニングを行った。プライマー層(B)は、塩化第二鉄水溶液で除去されなかった。
(Example 6)
A part of the LCP monofilament having a copper-plated layer (M2) obtained in Example 5 was immersed in a 38 mass% ferric chloride aqueous solution set at 40 ° C. for 20 seconds, and the silver particle layer (immersed portion). M1) and the copper plating layer (M2) were removed by etching to perform patterning. The primer layer (B) was not removed with the ferric chloride aqueous solution.
 実施例1と同様にしてセロテープ(登録商標)による剥離試験を行ったところ、パターン化された金属皮膜でも剥離せず、LCPモノフィラメント上に保持された。 When a peeling test was performed with cellophane tape (registered trademark) in the same manner as in Example 1, even the patterned metal film did not peel off and was retained on the LCP monofilament.
(実施例7)
 絶縁性基材(A)として、50μm径ナイロン糸からなる100μmポアネットフィルター(ミリポア社製、NY1H04700、47mmφ;図2)膜を用い、調製例2で作製したプライマーに10秒間浸漬した後、引き上げて70℃で5分乾燥し、ナイロン糸の表面全体に100nm厚のプライマー層を形成した。次に、表面にプライマー層を形成したナイロン糸を、調製例1で作製した銀粒子分散液に10秒間浸漬した後、引き上げて70℃で5分乾燥し、120nm厚の銀粒子膜(M1)を形成することにより、絶縁性基材(A)である、ネットフィルターのナイロン糸上に、プライマー層(B)、銀粒子層(M1)を形成した後、実施例1と同様にして、0.5μm厚の無電解銅めっき層(M2)を形成した。次いで、ネットフィルターをステンレス枠に固定し、無電解銅めっき層を、カソードに設置し、含リン銅をアノードとして、硫酸銅を含有する電解めっき液(硫酸銅60g/L、硫酸190g/L、塩素イオン50mg/L、添加剤(ローム・アンド・ハース電子材料株式会社製 カパーグリームST-901」)を用いて、電流密度2A/dmで10分間電解めっきを行うことによって、5μm厚の銅めっき層(M2‘)を形成した。
(Example 7)
As the insulating base material (A), a 100 μm pore net filter (manufactured by Millipore, NY1H04700, 47 mmφ; FIG. 2) made of nylon thread having a diameter of 50 μm was used, immersed in the primer prepared in Preparation Example 2 for 10 seconds, and then pulled up. After drying at 70 ° C. for 5 minutes, a primer layer having a thickness of 100 nm was formed on the entire surface of the nylon yarn. Next, the nylon thread having the primer layer formed on the surface was immersed in the silver particle dispersion prepared in Preparation Example 1 for 10 seconds, then pulled up and dried at 70 ° C. for 5 minutes to obtain a 120 nm thick silver particle film (M1). After forming the primer layer (B) and the silver particle layer (M1) on the nylon thread of the net filter, which is the insulating base material (A), 0 was formed in the same manner as in Example 1. An electroless copper plating layer (M2) having a thickness of .5 μm was formed. Next, the net filter is fixed to a stainless steel frame, an electrolytically-free copper plating layer is placed on the cathode, and an electrolytic plating solution containing copper sulfate (copper sulfate 60 g / L, sulfuric acid 190 g / L, using phosphorus-containing copper as an anode). 5 μm thick copper by electrolytic plating with a current density of 2 A / dm 2 for 10 minutes using chlorine ion 50 mg / L and an additive (Copper Grim ST-901 manufactured by Roam & Haas Electronic Materials Co., Ltd.). A plated layer (M2') was formed.
 電解銅めっき層(M2‘)を形成したネットフィルターにセロテープ(登録商標)を貼り付け、強く引き剥がして、ネットフィルター表面を観察したところ、銅めっき層は剥がれず、ネット基材上に保持された。 When cellophane tape (registered trademark) was attached to the net filter on which the electrolytic copper plating layer (M2') was formed, it was strongly peeled off, and the surface of the net filter was observed, the copper plating layer did not peel off and was retained on the net substrate. rice field.
(実施例8)
 実施例7で得られた、銅めっき層(M2)を有するφ47mmのナイロンネットフィルター上の銅めっき層上に、5mm幅のカバーテープ(マクダーミッド社製、Macuテープ P-3)を、フィルターの両面から同じ位置に格子状パターンで貼りつけ、エッチングマシン(サンハヤト社製、ES-800M)を用い、40℃に設定した38質量%の塩化第二鉄水溶液で、カバーテープが無い部分の銀粒子層(M1)と銅めっき層(M2)をエッチング除去してパターニングを行った。プライマー層(B)は、塩化第二鉄水溶液で除去されず、0.5cm角の正方形の配列銅パターンがナイロンネットフィルター上に形成された。
(Example 8)
On the copper plating layer on the φ47 mm nylon net filter having the copper plating layer (M2) obtained in Example 7, a cover tape having a width of 5 mm (Macu Tape P-3, manufactured by McDermid) was applied to both sides of the filter. A silver particle layer in the part without the cover tape with a 38 mass% ferric chloride aqueous solution set at 40 ° C. using an etching machine (San Hayato Co., Ltd., ES-800M) and pasted in the same position in a grid pattern. (M1) and the copper plating layer (M2) were removed by etching to perform patterning. The primer layer (B) was not removed by the ferric chloride aqueous solution, and a 0.5 cm square arranged copper pattern was formed on the nylon net filter.
 実施例7と同様にして、 電解銅めっき層(M2‘)パターンを形成したネットフィルターにセロテープ(登録商標)を貼り付け、強く引き剥がして、ネットフィルター表面を観察したところ、銅めっき層は剥がれず、ネット基材上に保持された。 In the same manner as in Example 7, cellophane tape (registered trademark) was attached to the net filter on which the electrolytic copper plating layer (M2') pattern was formed, and the copper plating layer was peeled off when the surface of the net filter was observed. It was retained on the net substrate.
(実施例9)
 実施例7と同様にして、絶縁性基材(A)である、ネットフィルターのナイロン糸上に、プライマー層(B)、銀粒子層(M1)を形成した後、銀粒子層(M1)が形成されたネットフィルター上の表裏同位置に、5mm幅のカバーテープ(マクダーミッド社製、Macuテープ P-3)をストライプ状に貼りつけた。このナイロンネットフィルターを実施例7と同様にして、無電解銅めっき処理して、0.5μm厚の無電解銅めっき層(M2)を形成し、次いで、ネットフィルターをステンレス枠に固定し、無電解銅めっき層を、カソードに設置し、含リン銅をアノードとして、硫酸銅を含有する電解めっき液(硫酸銅60g/L、硫酸190g/L、塩素イオン50mg/L、添加剤(ローム・アンド・ハース電子材料株式会社製 カパーグリームST-901」)を用いて、電流密度2A/dmで10分間電解めっきを行うことによって、ストライプ状に5μm厚の銅めっき層(M2‘)を形成した。
(Example 9)
In the same manner as in Example 7, after forming the primer layer (B) and the silver particle layer (M1) on the nylon thread of the net filter which is the insulating base material (A), the silver particle layer (M1) is formed. A 5 mm wide cover tape (MacDermid Co., Ltd., Macu Tape P-3) was attached in a striped manner at the same positions on the front and back of the formed net filter. This nylon net filter is subjected to electrolytically electrolytic copper plating in the same manner as in Example 7 to form a 0.5 μm thick electrolytically electrolytic copper plating layer (M2), and then the net filter is fixed to a stainless steel frame to be absent. An electrolytic copper plating layer is placed on the cathode, and a phosphorus-containing copper is used as an anode, and an electrolytic plating solution containing copper sulfate (copper sulfate 60 g / L, sulfate 190 g / L, chlorine ion 50 mg / L, additive (Roam and). A copper plating layer (M2') having a thickness of 5 μm was formed in stripes by performing electrolytic plating at a current density of 2 A / dm 2 for 10 minutes using Copper Glyme ST-901 ”manufactured by Haas Electronic Materials Co., Ltd. ..
 カバーテープを剥離した後、銀用エッチング液(水47.4質量部に、酢酸2.6質量部を加え、さらに、35質量%過酸化水素水50質量部を加えて調製。)に30秒浸漬し、カバーテープの下に存在する銀粒子層を除去することによって、絶縁性基材である、ナイロンネットフィルター上に、プライマー層(B-1)を介して5mm幅のストライプパターンで、銀粒子層(M1)、無電解銅めっき層(M2)、電解銅めっき層(M2‘)を形成した。 After peeling off the cover tape, prepare by adding 2.6 parts by mass of acetic acid to 47.4 parts by mass of water and further adding 50 parts by mass of 35% by mass hydrogen peroxide solution to the etching solution for silver (prepared by adding 50 parts by mass of 35% by mass hydrogen peroxide solution) for 30 seconds. By immersing and removing the silver particle layer existing under the cover tape, silver is formed on a nylon net filter, which is an insulating substrate, with a stripe pattern having a width of 5 mm via a primer layer (B-1). A particle layer (M1), a non-electrolytic copper plating layer (M2), and an electrolytic copper plating layer (M2') were formed.
  実施例7と同様にして、 電解銅めっき層(M2‘)パターンを形成したネットフィルターにセロテープ(登録商標)を貼り付け、強く引き剥がして、ネットフィルター表面を観察したところ、ストライプパターンの銅めっき層は剥がれず、ネット基材上に保持された。 In the same manner as in Example 7, cellophane tape (registered trademark) was attached to the net filter on which the electrolytic copper plating layer (M2') pattern was formed, peeled off strongly, and the surface of the net filter was observed. The layer did not peel off and was retained on the net substrate.
(実施例10)
 実施例7において、電解銅めっきを実施する代わりに、電解ニッケルめっき液(スルファミン酸浴:スルファミン酸ニッケル・4水和物350g/L、塩化ニッケル・6水和物5g/L、ホウ酸60g/L)を用いて、60℃、8A/dm、8分40秒のめっきを実施した以外は、実施例5と同様にして、絶縁性基材(A)である、ネットフィルターのナイロン糸上に、プライマー層(B)、銀粒子層(M1)、0.5μm厚の無電解銅めっき層(M2)、15μm厚のニッケルめっき層(M2‘)を形成した。
 実施例5と同様にして、剥離試験を行い、ネットフィルター表面を観察したところ、ニッケルめっき層は剥がれず、ネット基材上に保持された。
(Example 10)
In Example 7, instead of performing electrolytic copper plating, an electrolytic nickel plating solution (sulfamic acid bath: nickel sulfamate / tetrahydrate 350 g / L, nickel chloride / hexahydrate 5 g / L, boric acid 60 g / L). On the nylon thread of the net filter, which is the insulating base material (A), in the same manner as in Example 5 except that plating was performed at 60 ° C., 8A / dm 2 , 8 minutes and 40 seconds using L). A primer layer (B), a silver particle layer (M1), an electroless copper plating layer (M2) having a thickness of 0.5 μm, and a nickel plating layer (M2') having a thickness of 15 μm were formed on the surface.
When a peeling test was performed in the same manner as in Example 5 and the surface of the net filter was observed, the nickel plating layer was not peeled off and was retained on the net substrate.
(実施例11)
 3mm径x5mm長の平均サイズを有する非晶質ポリエステル(東洋紡株式会社製、バイロン200)のペレットを、調製例2で作製したプライマー中に10秒間浸漬した後、プライマーを濾過して、ペレットを取り出し、80℃で5分間乾燥することによって、ポリエステルペレットの全面に100nm厚のプライマー層を形成した。次いで、調製例1で作製した銀粒子分散液中に、プライマー層を形成したポリエステルペレットを10秒間浸漬し、この銀粒子分散液を濾過して、ペレットを取り出し、80℃で5分間乾燥することで、120nm厚の銀粒子層(M1)を形成した。銀粒子層(M1)を形成したペレットをステンレスのかごに入れて、実施例2と同様に、無電解銅めっき液(ローム・アンド・ハース電子材料株式会社製「サーキュポジット6550」)中に35℃で、22分間浸漬し、ペレット上に0.5μm厚の銅めっき膜を形成した。すわなち、絶縁性基材である非晶質ポリエステルペレット上に、プライマー層(B-1)を介して銀粒子層(M1)、及び銅めっき膜(M2)の金属皮膜(M)を形成した。
(Example 11)
Amorphous polyester (Byron 200, manufactured by Toyobo Co., Ltd.) having an average size of 3 mm diameter x 5 mm length is immersed in the primer prepared in Preparation Example 2 for 10 seconds, and then the primer is filtered to remove the pellet. , A primer layer having a thickness of 100 nm was formed on the entire surface of the polyester pellet by drying at 80 ° C. for 5 minutes. Next, the polyester pellet having the primer layer formed therein is immersed in the silver particle dispersion prepared in Preparation Example 1 for 10 seconds, the silver particle dispersion is filtered, the pellet is taken out, and dried at 80 ° C. for 5 minutes. A silver particle layer (M1) having a thickness of 120 nm was formed. The pellets on which the silver particle layer (M1) was formed were placed in a stainless steel basket, and 35 were placed in an electroless copper plating solution (“Circuposit 6550” manufactured by Roam & Haas Electronic Materials Co., Ltd.) in the same manner as in Example 2. It was immersed at ° C. for 22 minutes to form a copper plating film having a thickness of 0.5 μm on the pellets. That is, a metal film (M) of a silver particle layer (M1) and a copper plating film (M2) is formed on an amorphous polyester pellet which is an insulating base material via a primer layer (B-1). bottom.
(実施例12)
 ガラスクロス(日東紡製、WEA116E 2116規格、95μm厚)を、調製例3で作製したプライマー中に10秒間浸漬した後、取り出し、120℃で5分間乾燥することによって、ガラスクロスのガラス繊維全面に100nm厚のプライマー層を形成した。次いで、調製例1で作製した銀粒子分散液中に、プライマー層を形成したガラスクロスを10秒間浸漬した後、取り出し、200℃で5分間乾燥することで、120nm厚の銀粒子層(M1)を形成した。銀粒子層(M1)を形成したガラスクロスを、ステンレス枠に固定し、銀粒子層(M1)を、カソードに設置し、含リン銅をアノードとして、硫酸銅を含有する電解めっき液(硫酸銅60g/L、硫酸190g/L、塩素イオン50mg/L、添加剤(ローム・アンド・ハース電子材料株式会社製 カパーグリームST-901」)を用いて、電流密度2A/dmで10分間電解めっきを行うことによって、5μm厚の銅めっき層(M2‘)を形成した。すわなち、絶縁性基材であるガラスクロスのガラス繊維全面に、プライマー層(B-1)を介して銀粒子層(M1)、及び銅めっき膜(M2)の金属皮膜(M)を形成した。
(Example 12)
A glass cloth (Nitto Boseki, WEA116E 2116 standard, 95 μm thickness) was immersed in the primer prepared in Preparation Example 3 for 10 seconds, then taken out and dried at 120 ° C. for 5 minutes to cover the entire surface of the glass fiber of the glass cloth. A 100 nm thick primer layer was formed. Next, the glass cloth having the primer layer formed was immersed in the silver particle dispersion prepared in Preparation Example 1 for 10 seconds, then taken out and dried at 200 ° C. for 5 minutes to obtain a 120 nm thick silver particle layer (M1). Formed. The glass cloth on which the silver particle layer (M1) is formed is fixed to a stainless steel frame, the silver particle layer (M1) is placed on the cathode, and an electrolytic plating solution (copper sulfate) containing copper sulfate is used as an anode with phosphorus-containing copper as an anode. Electrolytic plating at a current density of 2 A / dm 2 for 10 minutes using 60 g / L, 190 g / L sulfuric acid, 50 mg / L chlorine ion, and an additive (Copper Grim ST-901 manufactured by Roam & Haas Electronic Materials Co., Ltd.). A copper-plated layer (M2') having a thickness of 5 μm was formed. That is, a silver particle layer was formed on the entire surface of the glass fiber of the glass cloth, which is an insulating base material, via a primer layer (B-1). A metal film (M) of (M1) and a copper plating film (M2) was formed.
 電解銅めっき層(M2‘)を形成したガラスクロスに
セロテープ(登録商標)を貼り付け、強く引き剥がして、ガラスクロス表面を観察したところ、銅めっき層は剥がれず、ガラスクロス基材上に保持された。
Cellotape (registered trademark) was attached to the glass cloth on which the electrolytic copper plating layer (M2') was formed, and it was strongly peeled off. When the surface of the glass cloth was observed, the copper plating layer did not peel off and was retained on the glass cloth substrate. Was done.
(比較例1)
 プライマー層を形成しない以外は、実施例5と同様にして、LCPモノフィラメント上に、銀粒子層(M1)を形成し、銀粒子表面に無電解銅めっき膜(厚さ0.2μm)を形成した。
(Comparative Example 1)
A silver particle layer (M1) was formed on the LCP monofilament and an electroless copper plating film (thickness 0.2 μm) was formed on the surface of the silver particles in the same manner as in Example 5 except that the primer layer was not formed. ..
 実施例1と同様にして、セロテープ(登録商標)による剥離試験を行ったところ、銅めっき層が一部剥離した。 When a peeling test was performed using cellophane tape (registered trademark) in the same manner as in Example 1, the copper plating layer was partially peeled off.
(比較例2)
 実施例1において、プライマー層、銀粒子層を形成せず、常法に基づいて、ナイロン糸上に無電解銅めっきを形成するプロセスを実施した。
無電解めっき用のプリディップ液(「OPC-SAL-M」、奥野製薬工業株式会社製)を260g/Lの割合になる様に水で希釈して25℃に保持した。この液に、実施例1で用いたナイロン糸を、1分間浸漬した。
(Comparative Example 2)
In Example 1, a process of forming electroless copper plating on nylon yarn was carried out based on a conventional method without forming a primer layer and a silver particle layer.
A predip solution for electroless plating (“OPC-SAL-M”, manufactured by Okuno Pharmaceutical Industry Co., Ltd.) was diluted with water to a ratio of 260 g / L and maintained at 25 ° C. The nylon thread used in Example 1 was immersed in this liquid for 1 minute.
 プリディップ液(OPC-SAL-M、奥野製薬工業株式会社製)とSn-Pdコロイド触媒液(OPC-90キャタリスト、奥野製薬工業株式会社製)を、それぞれ、260g/L、30mL/Lの割合になる様に、水で混合希釈し、25℃に保持した。これに前記プリディップ工程後のナイロン糸を5分間浸漬した後、流水洗浄を2分間行った。 Pre-dilution liquid (OPC-SAL-M, manufactured by Okuno Pharmaceutical Industry Co., Ltd.) and Sn-Pd colloidal catalyst liquid (OPC-90 catalystist, manufactured by Okuno Pharmaceutical Industry Co., Ltd.) are mixed at 260 g / L and 30 mL / L, respectively. It was mixed and diluted with water so as to be a ratio, and kept at 25 ° C. The nylon thread after the pre-dip step was immersed in this for 5 minutes, and then washed with running water for 2 minutes.
 活性化液(「OPC-505アクセレーターA」、奥野製薬工業株式会社製)、及び活性化液(「OPC-505アクセレーターB」、奥野製薬工業株式会社製)を、それぞれ、100mL/L、8mL/Lとなる様に、水で混合希釈し30℃に保持した。これに前記触媒化合物の付与工程後のナイロン糸を5分間浸漬した後、流水洗浄を2分間行って、スルーホール内壁、及び両銅表面にパラジウム触媒を付与した後、実施例2で用いた無電解銅めっき液に10分間浸漬したところ、無電解めっき中にめっき膜が剥離した。 The activation solution ("OPC-505 Accelerator A", manufactured by Okuno Pharmaceutical Industry Co., Ltd.) and the activation solution ("OPC-505 Accelerator B", manufactured by Okuno Pharmaceutical Industry Co., Ltd.) were 100 mL / L, respectively. It was mixed and diluted with water to 8 mL / L and kept at 30 ° C. The nylon thread after the step of applying the catalyst compound was immersed in this for 5 minutes, then washed with running water for 2 minutes to apply a palladium catalyst to the inner wall of the through hole and the surfaces of both coppers, and then used in Example 2. When immersed in the electrolytic copper plating solution for 10 minutes, the plating film was peeled off during electroless plating.
(比較例3)
 実施例4において、ポリエステル糸上に、プライマー層、銀粒子層を形成せず、比較例2と同様にして、常法に基づくめっきプロセスを実施したところ、無電解銅めっき工程において、銅めっきがポリエステル糸から剥離した。
(Comparative Example 3)
In Example 4, the primer layer and the silver particle layer were not formed on the polyester yarn, and the plating process based on the conventional method was carried out in the same manner as in Comparative Example 2. It peeled off from the polyester thread.
(比較例4)
 実施例5において、LCPモノフィラメント上に、プライマー層、銀粒子層を形成せず、比較例2と同様にして、常法に基づくめっきプロセスを実施したところ、無電解銅めっき工程において、めっきが一部にしか析出せず、析出しためっき膜も容易に剥離した。
(Comparative Example 4)
In Example 5, the primer layer and the silver particle layer were not formed on the LCP monofilament, and the plating process based on the conventional method was carried out in the same manner as in Comparative Example 2. It was deposited only on the part, and the deposited plating film was easily peeled off.
(比較例5)
 実施例7において、ナイロンネットフィルターの一部の片面にカバーフィルムを貼り付けてプライマー層に浸漬し、カバーフィルム貼り付け部では、プライマー層がネットを構成する繊維表面の全体を覆えない構造を形成した。カバーフィルムを外し、以降は、実施例7と同様にして銀粒子層(M1)、無電解銅めっき層(M2)、電解銅めっき層(M2‘)を形成した。
(Comparative Example 5)
In Example 7, a cover film is attached to one side of a part of the nylon net filter and immersed in the primer layer, and in the cover film attached portion, the primer layer forms a structure that does not cover the entire fiber surface constituting the net. bottom. The cover film was removed, and thereafter, a silver particle layer (M1), an electroless copper plating layer (M2), and an electrolytic copper plating layer (M2') were formed in the same manner as in Example 7.
 実施例7と同様にして、電解銅めっき層(M2‘)を形成したネットフィルターにセロテープ(登録商標)を貼り付け、強く引き剥がして、ネットフィルター表面を観察したところ、ネット繊維の全面にプライマー層が形成されなかった位置の銅めっき層が剥離した。 In the same manner as in Example 7, cellophane tape (registered trademark) was attached to the net filter on which the electrolytic copper plating layer (M2') was formed, peeled off strongly, and the surface of the net filter was observed. The copper-plated layer at the position where the layer was not formed was peeled off.
(比較例5)
 実施例9において、ガラスクロス上に、プライマー層、銀粒子層を形成せず、比較例2と同様にして、常法に基づくめっきプロセスを実施したところ、無電解銅めっき工程において、めっきが一部にしか析出せず、析出しためっき膜も容易に剥離した。
(Comparative Example 5)
In Example 9, the primer layer and the silver particle layer were not formed on the glass cloth, and the plating process based on the conventional method was carried out in the same manner as in Comparative Example 2. It was deposited only on the part, and the deposited plating film was easily peeled off.
(a), (e), (g) :投影図
(b), (f), (h) :断面図
1:立体成形体
2:プライマー層
(a), (e), (g): Projection drawing
(b), (f), (h): Cross-sectional view 1: Three-dimensional molded body 2: Primer layer

Claims (11)

  1.  少なくとも1次元が0.5μm~5mmのサイズを有する3次元の絶縁性成形基材(A)上に金属皮膜(M)を形成する方法であって、該成形体上の少なくとも、連続した一連の表面を覆う様に形成されるプライマー層(B)と金属皮膜(M)を、この順に積層することを特徴とする立体成形体への金属皮膜形成方法。 A method of forming a metal film (M) on a three-dimensional insulating molded substrate (A) having a size of at least one dimension of 0.5 μm to 5 mm, wherein the metal film (M) is formed on the molded body at least in a continuous series. A method for forming a metal film on a three-dimensional molded body, which comprises laminating a primer layer (B) and a metal film (M) formed so as to cover the surface in this order.
  2.  前記3次元の絶縁性基材(A)が、0.5μm~5mmサイズの径を有する棒状、繊維状の形状を有することを特徴とする請求項1記載の立体成形体への金属皮膜形成方法。 The method for forming a metal film on a three-dimensional molded body according to claim 1, wherein the three-dimensional insulating base material (A) has a rod-like or fibrous shape having a diameter of 0.5 μm to 5 mm. ..
  3.  前記3次元の絶縁性基材(A)が、0.5μm~5mmサイズの厚みを有するフィルム状、板状の形状を有することを特徴とする請求項2記載の立体成形体への金属皮膜形成方法。 The metal film formation on the three-dimensional molded body according to claim 2, wherein the three-dimensional insulating base material (A) has a film-like or plate-like shape having a thickness of 0.5 μm to 5 mm. Method.
  4.  前記金属皮膜(M)が、金属粒子から形成される金属粒子膜(M1)であることを特徴とする請求項1~3のいずれか1項記載の立体成形体への金属皮膜形成方法。 The method for forming a metal film on a three-dimensional molded body according to any one of claims 1 to 3, wherein the metal film (M) is a metal particle film (M1) formed of metal particles.
  5.  前記金属皮膜(M)が、金属粒子から形成される金属粒子膜(M1)上に、さらにめっき金属膜(M2)を積層したものであることを特徴とする請求項1~3のいずれか1項記載の立体成形体への金属皮膜形成方法。 One of claims 1 to 3, wherein the metal film (M) is obtained by further laminating a plated metal film (M2) on a metal particle film (M1) formed of metal particles. The method for forming a metal film on a three-dimensional molded body according to the above item.
  6.  前記金属粒子が、銀、銅、ニッケル、金、白金からなる群から選ばれる1種以上であることを特徴とする請求項4または5記載の立体成形体への金属皮膜形成方法。 The method for forming a metal film on a three-dimensional molded body according to claim 4 or 5, wherein the metal particles are one or more selected from the group consisting of silver, copper, nickel, gold, and platinum.
  7.  前記金属粒子が、高分子分散剤で被覆されたものであることを特徴とする請求項4~6いずれか1項記載の立体成形体への金属皮膜形成方法。 The method for forming a metal film on a three-dimensional molded body according to any one of claims 4 to 6, wherein the metal particles are coated with a polymer dispersant.
  8.  前記プライマー層(B)に反応性官能基[X]を有する樹脂を用い、前記高分子分散剤に反応性官能基[Y]を有するものを用い、前記反応性官能基[X]と前記反応性官能基[Y]との間で結合を形成させる請求項1~7いずれか1項記載の金属皮膜形成方法。 A resin having a reactive functional group [X] is used for the primer layer (B), a resin having a reactive functional group [Y] is used for the polymer dispersant, and the reaction with the reactive functional group [X]. The method for forming a metal film according to any one of claims 1 to 7, wherein a bond is formed with the sex functional group [Y].
  9.  前記反応性官能基[Y]が、塩基性窒素原子含有基である請求項8記載の金属皮膜形成方法。 The metal film forming method according to claim 8, wherein the reactive functional group [Y] is a basic nitrogen atom-containing group.
  10.  前記反応性官能基[Y]を有する高分子分散剤が、ポリアルキレンイミン、及びオキシエチレン単位を含むポリオキシアルキレン構造を有するポリアルキレンイミンからなる群から選ばれる1種以上である請求項8記載の金属皮膜形成方法。 The eighth aspect of claim 8, wherein the polymer dispersant having the reactive functional group [Y] is one or more selected from the group consisting of polyalkyleneimine and polyalkyleneimine having a polyoxyalkylene structure containing an oxyethylene unit. Metal film forming method.
  11.  前記反応性官能基[X]が、ケト基、アセトアセチル基、エポキシ基、カルボキシル基、N-アルキロール基、イソシアネート基、ビニル基、(メタ)アクリロイル基、アリル基からなる群から選ばれる1種以上である請求項8~10いずれか1項記載の金属皮膜形成方法。 The reactive functional group [X] is selected from the group consisting of a keto group, an acetoacetyl group, an epoxy group, a carboxyl group, an N-alkyrole group, an isocyanate group, a vinyl group, a (meth) acryloyl group and an allyl group1 The metal film forming method according to any one of claims 8 to 10, which is more than one kind.
PCT/JP2021/038875 2020-11-05 2021-10-21 Metal film formation method WO2022097487A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022540727A JPWO2022097487A1 (en) 2020-11-05 2021-10-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020184980 2020-11-05
JP2020-184980 2020-11-05

Publications (1)

Publication Number Publication Date
WO2022097487A1 true WO2022097487A1 (en) 2022-05-12

Family

ID=81457865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038875 WO2022097487A1 (en) 2020-11-05 2021-10-21 Metal film formation method

Country Status (3)

Country Link
JP (1) JPWO2022097487A1 (en)
TW (1) TW202233890A (en)
WO (1) WO2022097487A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107257A (en) * 1999-10-07 2001-04-17 Inoac Corp Plating method of metal for electrical nonconductor
WO2017154879A1 (en) * 2016-03-11 2017-09-14 Dic株式会社 Method for manufacturing laminate
JP2019123909A (en) * 2018-01-17 2019-07-25 日本エレクトロプレイテイング・エンジニヤース株式会社 Plated structure for electroless plating, electrical circuit structure, electroless plating pretreatment method and electroless plating method
JP2019157158A (en) * 2018-03-08 2019-09-19 三菱重工業株式会社 Method for manufacturing molding having plating layer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4897165B2 (en) * 2000-09-27 2012-03-14 名古屋メッキ工業株式会社 Method for producing metal-plated organic polymer fiber
JP2016160480A (en) * 2015-02-28 2016-09-05 住江織物株式会社 Plated fiber and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107257A (en) * 1999-10-07 2001-04-17 Inoac Corp Plating method of metal for electrical nonconductor
WO2017154879A1 (en) * 2016-03-11 2017-09-14 Dic株式会社 Method for manufacturing laminate
JP2019123909A (en) * 2018-01-17 2019-07-25 日本エレクトロプレイテイング・エンジニヤース株式会社 Plated structure for electroless plating, electrical circuit structure, electroless plating pretreatment method and electroless plating method
JP2019157158A (en) * 2018-03-08 2019-09-19 三菱重工業株式会社 Method for manufacturing molding having plating layer

Also Published As

Publication number Publication date
JPWO2022097487A1 (en) 2022-05-12
TW202233890A (en) 2022-09-01

Similar Documents

Publication Publication Date Title
JP6766983B2 (en) Manufacturing method of printed wiring board
TWI808198B (en) Manufacturing method of printed wiring board
KR20210023791A (en) Laminate for printed wiring board and printed wiring board using the same
WO2022097487A1 (en) Metal film formation method
WO2020003881A1 (en) Method for producing molded body having metal pattern
WO2020130071A1 (en) Method for manufacturing printed wiring board
JP7205672B2 (en) Metal film forming method
JP7371778B2 (en) Laminated body for semi-additive construction method and printed wiring board using the same
CN112237053B (en) Method for manufacturing printed wiring board
JP7201130B2 (en) Laminate for semi-additive construction method and printed wiring board using the same
WO2022097483A1 (en) Multilayer body for semi-additive process and printed wiring board using same
WO2022097484A1 (en) Laminate for semi-additive manufacturing and printed wiring board using same
WO2022097488A1 (en) Laminate for semi-additive construction method and printed wiring board
WO2022097481A1 (en) Laminate for semi-additive manufacturing and printed wiring board using same
JP7288230B2 (en) Laminate for semi-additive construction method and printed wiring board using the same
WO2022097485A1 (en) Laminate for semi-additive manufacturing and printed wiring board using same
CN112219459B (en) Method for producing molded body having metal pattern
WO2019013039A1 (en) Laminate, printed wiring board in which same is used, flexible printed wiring board, and molded article
JP2017117931A (en) Laminate, conducting pattern, electronic circuit, transparent electrode and method for manufacturing electromagnetic wave shield material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21889040

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022540727

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21889040

Country of ref document: EP

Kind code of ref document: A1