WO2022097458A1 - 成形型、成形型の板部材及び成形型の製造方法 - Google Patents

成形型、成形型の板部材及び成形型の製造方法 Download PDF

Info

Publication number
WO2022097458A1
WO2022097458A1 PCT/JP2021/038385 JP2021038385W WO2022097458A1 WO 2022097458 A1 WO2022097458 A1 WO 2022097458A1 JP 2021038385 W JP2021038385 W JP 2021038385W WO 2022097458 A1 WO2022097458 A1 WO 2022097458A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate member
planes
regular hexagon
corner cube
adjacent
Prior art date
Application number
PCT/JP2021/038385
Other languages
English (en)
French (fr)
Inventor
宣志 槇
幸暢 西尾
Original Assignee
ナルックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナルックス株式会社 filed Critical ナルックス株式会社
Publication of WO2022097458A1 publication Critical patent/WO2022097458A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors
    • G02B5/122Reflex reflectors cube corner, trihedral or triple reflector type
    • G02B5/124Reflex reflectors cube corner, trihedral or triple reflector type plural reflecting elements forming part of a unitary plate or sheet

Definitions

  • the present invention relates to a molding die, a plate member of a molding die, and a method for manufacturing a molding die.
  • the molding die of the present invention is used for molding a corner cube reflector.
  • FIG. 1 shows a plan view of a corner cube reflector, and a cross-sectional view of an AA cross section and a BB cross section in the above plan view.
  • the corner cube reflector has a shape in which reflector units having a shape represented by a regular hexagon in the plan view are combined without gaps.
  • the reflector unit is a constituent unit of a reflector having a retroreflective function, and the reflector is formed as a set of reflector units.
  • FIG. 2 is a perspective view of a corner cube, which is a retroreflective structure of a reflector unit.
  • FIG. 3 is a plan view of a corner cube, which is a retroreflection structure of a reflector unit.
  • the reflector unit's corner cube is configured in a prism with a regular hexagonal cross section so that the three planes crossing each of the three sets of adjacent sides are orthogonal to each other to form the apex of the cube. It is configured to reflect the light rays incident on the prism in the incident direction.
  • the above three planes are shown by S1, S2 and S3.
  • a ray incident on any of the above three planes is reflected by the other two planes and then reflected in the incident direction.
  • the central axis of the prism passing through the above vertices is referred to as a reference axis.
  • the reference axis is indicated by Ax.
  • the shape of the corner cube is 120 degree symmetric with respect to the reference axis Ax.
  • the reflected light in the direction parallel to the reference axis is shown as well as the incident light in the direction parallel to the reference axis.
  • Patent Document 1 Patent Document 2
  • the above member is called a pin.
  • FIG. 15 is a perspective view of the pin.
  • FIG. 16 is a plan view of the pin.
  • the pin is a rod-shaped member having a regular hexagonal cross section perpendicular to the longitudinal direction, and a three planes substantially orthogonal to each other are formed at one end thereof. These three planes correspond to the three reflective surfaces S1, S2, S3 of the corner cube reflector shown in FIGS. 2 and 3.
  • the part corresponding to the reflective surface of the molding die can be machined with high accuracy, so that a corner cube reflector having sufficient optical performance can be obtained depending on the molding die.
  • the work of assembling a molding die from a large number of pins becomes complicated. It is also difficult to manufacture a pin corresponding to a small corner cube, for example, where the diagonal of the square reflective surface of the corner cube is 1 mm.
  • Patent Document 2 there is known a method of manufacturing a molding die corresponding to a portion where corner cubes are arranged adjacent to each other by combining plate members (for example, Patent Document 2 and Patent Document 3).
  • the plate member has two planes parallel to each other, and a V-groove with a base angle of 90 degrees and a roof-shaped protrusion with an apex angle of 90 degrees are continuously formed at the same repeating pitch in the direction perpendicular to the two planes of the plate member. Has been done.
  • FIG. 17 is a diagram showing a plurality of conventional plate members stacked on top of each other.
  • FIG. 18 shows a state in which the top of the roof-shaped protrusion of one conventional plate member is aligned with the bottom of the V-groove of the adjacent conventional plate member to form a corner cube shape.
  • the processing man-hours are reduced as compared with the case of using a pin.
  • one of the three planes corresponding to the three reflective surfaces of the corner cube is formed by the side surface of the plate member, so that the angle between the three reflective surfaces of the corner cube is formed.
  • the degree of freedom for fine-tuning is reduced. For this reason, it is not possible to sufficiently meet the growing needs for manufacturing corner cube reflectors in which the angle between the three reflecting surfaces is finely adjusted. Further, the work of assembling the molding die from the conventional plate member for the above-mentioned alignment is still complicated.
  • a corner cube reflector with a small corner cube whose diagonal is 1 mm diagonal to the square reflective surface of the corner cube, or a corner cube reflector whose angle between the three reflective surfaces is freely fine-tuned Molds that can be manufactured, plate members of the molds, and methods for manufacturing the molds have not been developed.
  • a corner cube reflector with a small corner cube whose diagonal is 1 mm diagonally to the square reflecting surface of the corner cube, or a corner cube reflector whose angle between the three reflecting surfaces is freely fine-tuned is manufactured.
  • the technical object of the present invention is, for example, a corner cube reflector of a small corner cube whose diagonal of the square reflecting surface of the corner cube is 1 mm, or a corner whose angle between the three reflecting surfaces is freely fine-tuned. It is an object of the present invention to provide a molding die capable of manufacturing a cube reflector, a plate member of the molding die, and a method for manufacturing the molding die.
  • the molding mold for the corner cube reflector according to the first aspect of the present invention includes a plurality of plate members.
  • Each plate member contains two opposing alignment planes, each alignment plane having a shape in which two types of planes at an angle of 120 degrees to each other are alternately connected, and each type of plane is parallel to each other.
  • the cross section of the plate member perpendicular to the two types of planes is a shape in which regular hexagons having the same shape whose centers are arranged on a straight line are arranged so that adjacent regular hexagons share one side. , One set of adjacent two sides of each non-shared quadrilateral of each regular hexagon is contained in each of the two types of planes forming one of the two opposing alignment planes, and the other set of adjacent sides.
  • Two sides are included in each of the two types of planes forming the other, and one surface of the plate member surrounded by the two opposing alignment planes contains two adjacent sides of each regular hexagon. Includes a set of three nearly square faces that are approximately orthogonal to each other and have two adjacent sides on each of the two planes perpendicular to the cross section of the regular hexagon.
  • the mold is assembled by fitting the plurality of plate members to each other so that one surface of the mold includes a set of the three surfaces.
  • the mold of this embodiment is assembled using a plurality of appropriately machined plate members, so that, for example, a corner cube of a small corner cube with a diagonal of 1 mm diagonal of the square reflective surface of the corner cube. It is possible to manufacture a reflector or a corner cube reflector in which the angle between the three reflecting surfaces is freely finely adjusted. Further, the molding die of this embodiment can be easily assembled by fitting the alignment surfaces of a plurality of plate members to each other.
  • the molded plate member of the corner cube reflector according to the second aspect of the present invention includes two facing alignment surfaces, and each alignment surface alternates between two types of planes having an angle of 120 degrees with each other.
  • the planes of each type are parallel to each other, and the cross section of the plate member perpendicular to the two types of planes is adjacent to a regular hexagon of the same shape whose center is arranged on a straight line.
  • the regular hexagons are arranged so as to share one side, and a pair of adjacent two sides of the four unshared sides of each regular hexagon form one of the two opposing alignment planes.
  • the other set of adjacent two sides is contained in each of the two types of planes forming the other, and the plate member surrounded by the two opposing alignment planes.
  • One surface is a set of three nearly square faces that are approximately orthogonal to each other and that include two adjacent sides of each regular hexagon and have two adjacent sides on each of the two planes perpendicular to the cross section of the regular hexagon. Is configured to include.
  • the corner cube reflector of a small corner cube whose diagonal of the square reflecting surface of the corner cube is 1 mm, and the angle between the three reflecting surfaces can be freely fine-tuned. It is possible to manufacture a corner cube reflector that has been made.
  • the molded plate member of the corner cube reflector according to the first embodiment of the second aspect of the present invention is a set of three faces corresponding to each regular hexagon in a direction perpendicular to each regular hexagon. Coordinates are different.
  • a corner cube reflector having a plurality of corner cubes arranged on a curved surface can be manufactured by a molding die obtained by assembling a plate member of the molding die of the corner cube reflector of the present embodiment.
  • the molded plate member of the corner cube reflector according to the second embodiment of the second aspect of the present invention has at least one set of two faces out of the three sets of the three faces. It is designed so that the angle formed is different from the angle formed by the other two sets of two sides.
  • a corner cube reflector capable of reflecting light rays in two directions changed by a slight angle with respect to an incident light ray is manufactured by a molding die assembled by assembling a plate member of the molding die of the corner cube reflector of the present embodiment. can do.
  • the corner R of the protrusion of the cross section perpendicular to the two types of planes of each alignment surface.
  • the value is greater than or equal to the value of the corner R of the valley, and the difference is in the range of 0.0-0.025 millimeter.
  • the plate member of the molding die of the corner cube reflector of the present embodiment can be tightly assembled without any gap when assembling the molding die.
  • the method for manufacturing a mold for a corner cube reflector according to a third aspect of the present invention has a structure in which a regular hexagon having the same cross section and a portion corresponding to the corner cube is densely arranged on one surface of the original plate.
  • a step of forming the structure by machining, a step of performing a plating process so that the structure is covered with a plating layer, and a regular hexagon having the same shape whose center is arranged on a straight line, and an adjacent regular hexagon has one side.
  • a step of cutting out a plurality of plate members having a cross section having a shape arranged so as to be shared by wire-cut electric discharge machining from the original plate, and a portion of the plurality of plate members corresponding to a corner cube covered with the plating layer. Includes a step of precision machining and a step of assembling a molding die using the plurality of plate members.
  • a corner cube reflector of a small corner cube having a diagonal of 1 mm on the diagonal of the square reflecting surface of the corner cube can be used.
  • a molding die capable of manufacturing a corner cube reflector in which the angle between the three reflecting surfaces is freely finely adjusted can be obtained.
  • the molding die can be easily assembled by fitting the alignment surfaces of a plurality of plate members to each other.
  • a plan view, a cross-sectional view taken along the line AA, and a cross-sectional view taken along the line BB of the corner cube reflector are shown. It is a perspective view of a corner cube which is a retroreflection structure of a reflector unit. It is a top view of a corner cube which is a retroreflection structure of a reflector unit. It is a perspective view of the plate member of the molding mold of one Embodiment of this invention. It is a top view of the plate member of a molding die. .. It is a figure which shows the plate member of the molding mold of another embodiment of this invention. FIG.
  • FIG. 3 is a perspective view of a plurality of sets of three substantially square faces (A, B, C) arranged on one surface of a plate member of a molding die and which are substantially orthogonal to each other. It is a flow chart explaining the manufacturing method of the molding die of one Embodiment of this invention. It is a figure which shows the original plate in which a plurality of sets of three planes which are almost square shape and which are almost orthogonal to each other are arranged on a plane. It is a figure for demonstrating assembly of a molding die using a plate member. It is a perspective view of a plate member and a tool during precision machining. It is a front view of a plate member and a tool during precision machining.
  • FIG. 4 is a perspective view of the molded plate member 100 according to the embodiment of the present invention.
  • FIG. 5 is a plan view of the molded plate member 100.
  • the plate member 100 includes two facing alignment surfaces, and each alignment surface has a shape in which two types of planes (P1 and P2 or P3 and P4) forming an angle of 120 degrees with each other are alternately connected.
  • the planes of each type are parallel to each other.
  • regular hexagons having the same shape whose centers are arranged on a straight line are arranged so that adjacent regular hexagons share one side.
  • a set of two adjacent sides (SD1, SD2) of the four unshared sides of each regular hexagon is included in each (P1, P2) of the two types of planes forming one of the two opposing alignment planes.
  • the other set of two adjacent sides (SD3, SD4) is included in each (P3, P4) of the two types of planes forming the other of the two opposing alignment planes.
  • One surface of the plate member 100 surrounded by the two facing alignment surfaces includes two adjacent sides of each regular hexagon, and two adjacent sides on the two surfaces perpendicular to the cross section of the regular hexagon. Includes a set of three nearly square faces (A, B, C) that are approximately orthogonal to each other.
  • the three surfaces (A, B, C) of the molded plate member 100 correspond to the three reflective surfaces S1 and S2S3 of the corner cube reflector shown in FIGS. 2 and 3, respectively. Further, the molded plate member 100 corresponds to, for example, in FIG. 1, a plurality of corner cubes in which each vertex is included in the BB cross section and arranged along the BB cross section.
  • the molding die is assembled by fitting the alignment surfaces of the plurality of plate members 100 to each other.
  • FIG. 6 is a diagram showing a molded plate member 100A according to another embodiment of the present invention.
  • the coordinates of the set of the three faces corresponding to the cross sections of the regular hexagons are different in the direction perpendicular to the cross section of the regular hexagons.
  • the height h1 of the set of three faces in the central portion (coordinates in the direction perpendicular to the cross section of each regular hexagon) is larger than the height h2 of the set of three faces in the end portion.
  • a corner cube reflector having a plurality of corner cubes arranged on a curved surface can be manufactured by a molding die formed by combining the plate members 100A according to the present embodiment.
  • a molding die capable of manufacturing a corner cube reflector as described above cannot be manufactured by a conventional manufacturing method, or even if it can be manufactured, a huge amount of labor is required.
  • FIG. 7 is a perspective view of a plurality of sets of three faces (A, B, C) which are substantially square and are substantially orthogonal to each other arranged on one surface of the plate member of the molding die.
  • the angle formed by two of the three faces is approximately 90 degrees, but the angle formed by either two faces can be slightly changed from 90 degrees.
  • the numbers 1 to 7 in FIG. 7 indicate each of the plurality of sets of the three faces.
  • Table 1 shows the molded plate members manufactured with the target value of the angle between the A-B plane and the C-A plane being 90 degrees and the target value of the angle between the B and C planes being 90.1415 degrees among the three faces. It is a table which shows the measured value of the angle between the normals of each surface.
  • the numbers 1 to 7 on the horizontal axis of the table correspond to the numbers shown in FIG. 7 and indicate each of the plurality of sets of the three faces.
  • the measured value of the angle between the normals of the B and C planes is in the range of 89.849 degrees to 89.858 degrees. Therefore, the angle between the B and C planes is in the range of 90.142 degrees to 90.151 degrees, and the angle error of the measured value with respect to the target value is 0.01 degrees at most.
  • FIG. 8 is a flow chart illustrating a method for manufacturing a molding mold according to an embodiment of the present invention.
  • a structure is formed by machining on one surface of the original plate, in which a regular hexagon having the same cross section and a portion corresponding to a corner cube is densely arranged.
  • the original plate refers to a member that cuts out a molded plate member from the original plate.
  • the material of the original plate is martensitic stainless steel.
  • step S1020 of FIG. 8 a plating process is performed so that the structure is covered with the plating layer.
  • the plating is Ni-P (nickel-phosphorus) plating.
  • the precision processing described later is carried out within the range of the plating layer by Ni-P (nickel / phosphorus) plating treatment.
  • FIG. 9 is a diagram showing a master plate in which a plurality of sets of three faces that are substantially square and are substantially orthogonal to each other are arranged on the faces.
  • a plurality of plate members having a cross section in which regular hexagons having the same shape whose centers are arranged on a straight line are arranged so that adjacent regular hexagons share one side are wire from the original plate.
  • Cut Cut out by electric discharge machining Cutting of the original plate by a wire-cut electric discharge machine is carried out along the alignment surface of the plate member in which two types of planes (P1 and P2 or P3 and P4 in FIG. 5) forming an angle of 120 degrees with each other are alternately connected. Will be done. Specifically, the plate member is cut out from the original plate by moving the wire of the wire cut electric discharge machine along the thick line shown in FIG.
  • step S1040 of FIG. 8 the portion of the plurality of plate members corresponding to the corner cube covered with the plating layer is precision machined. Precision machining is carried out by pulling with a diamond tool. As described above, since the Ni-P (nickel-phosphorus) plating layer is processed, sufficiently small surface roughness, high flatness and high dimensional accuracy can be obtained. Specifically, the surface roughness (arithmetic mean height) is 8 nanometers or less, the flatness is 100 nanometers or less, and the dimensional accuracy is 20 micrometers or less.
  • FIG. 11 is a perspective view of the plate member 100 and the tool 301 being precision machined.
  • FIG. 12 is a front view of the plate member 100 and the tool 301 being precision machined.
  • FIG. 13 is a side view of the plate member 100 and the tool 301 being precision machined.
  • FIG. 14 is a front view of the plate member 100A and the tool 301A shown in FIG. 6 during precision machining.
  • the coordinates of the set of three faces corresponding to each regular hexagon in the direction perpendicular to each regular hexagon are different. Therefore, at the boundaries of different sets of faces, there are sides in the direction perpendicular to each regular hexagon.
  • the tool 301A having an opening angle ( ⁇ 2) smaller than the angle ( ⁇ 1) formed by the above side surface and the surface in contact with the above side surface, the corners in contact with the above side surface and the above side surface. Precision machining of the surface corresponding to the reflective surface of the cube reflector can be performed.
  • step S1050 of FIG. 8 a molding die is assembled using a plurality of plate members 100.
  • FIG. 10 is a diagram for explaining the assembly of a molding die using a plate member.
  • the positions of the plurality of plate members 100 are determined by the alignment surface.
  • the two frame portions 150 and 160 of the molding die have a shape corresponding to the alignment surface of the plate member 100, and the two frame portions 150 and 160 sandwich the plurality of plate members 100 positioned with each other. This makes it possible to easily assemble a molding die using a plurality of plate members.
  • the alignment surface of the plate member 100 includes a ridge portion and a groove portion extending in parallel with each other.
  • the ridge portion and the groove portion correspond to the vertices of the regular hexagon, respectively.
  • the protruding portion P and the valley portion V have a roundness (not shown in FIG. 5) depending on the diameter of the wire.
  • the magnitude of roundness is represented by the value of the radius of the corner, the so-called corner R.
  • the value of the corner R of the protrusion P is greater than or equal to the value of the corner R of the valley V, and the difference is preferably in the range of 0.0-0.025 millimeter. The reason is that the plate member 100 tightly fits the ridge portion and the groove portion of the two alignment surfaces without a gap. In one embodiment, the value of the corner R of the protrusion P is 0.17 millimeter, and the value of the corner R of the valley V is 0.15 millimeter.
  • a plate member having different coordinates in the direction perpendicular to each regular hexagon of the set of three faces corresponding to each regular hexagon, and the angle formed by two of the three faces are Even when different plate members are used, the molding die can be easily assembled by using the plate members of the present invention. Therefore, by using the plate member of the present invention, a molding die for a corner cube reflector having a plurality of corner cubes arranged on a curved surface and two directions changed by a slight angle with respect to an incident light ray. It is relatively easy to manufacture a molding die for a corner cube reflector whose angle between the three reflecting surfaces is finely adjusted so that light rays can be reflected on the surface.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

複数の板部材を含む、コーナー・キューブ・リフレクタの成形型であって、それぞれの板部材は二つの対向する位置合わせ面を含み、それぞれの位置合わせ面は互いに120度の角度をなす二種類の平面が交互に接続された形状であり、それぞれの種類の平面は互いに平行であり、該二種類の平面に垂直な該板部材の断面は、中心が直線上に配置された同一形状の正六角形が、隣接する正六角形が一辺を共有するように配列された形状であり、該二つの対向する位置合わせ面に囲まれた該板部材の一つの表面は、それぞれの正六角形の隣接する二辺を含み該正六角形の断面に垂直な二面上にそれぞれ隣接する二辺を有する、ほぼ正方形状の互いにほぼ直交する三個の面の組を含み、該複数の板部材が、該成形型の一つの面が該三個の面の組を含むように互いの位置合わせ面を嵌合させて組み立てられている。

Description

成形型、成形型の板部材及び成形型の製造方法
 本発明は、成形型、成形型の板部材及び成形型の製造方法に関する。本発明の成形型はコーナーキューブレフレクタの成形に使用される。
 図1は、コーナー・キューブ・リフレクタの平面図、上記の平面図におけるA-A断面及びB-B断面の断面図を示す。コーナー・キューブ・リフレクタは、該平面図において正六角形で表される形状のリフレクタ・ユニットを隙間なく組み合わせた形状を有する。リフレクタ・ユニットとは再帰反射機能を有するリフレクタの構成ユニットであり、リフレクタはリフレクタ・ユニットの集合として形成される。
 図2はリフレクタ・ユニットの再帰反射構造であるコーナー・キューブの透視図である。
 図3はリフレクタ・ユニットの再帰反射構造であるコーナー・キューブの平面図である。
 リフレクタ・ユニットのコーナー・キューブは、断面が正六角形の角柱において、三組の隣接する二側面をそれぞれ横断する三平面が互いに直交して立方体の頂点を形成するように構成され、該三平面は該角柱に入射した光線を入射方向に反射するように構成されている。図2及び図3において、上記の三平面をS1、S2及びS3で示す。上記の三平面のいずれかに入射した光線は他の二平面に反射された後、入射方向に反射される。上記の頂点を通る該角柱の中心軸を基準軸と呼称する。図2において基準軸をAxで示す。コーナー・キューブの形状は、基準軸Axに関し120度対称である。図2において、基準軸と平行な方向の入射光と同様に基準軸と平行な方向の反射光が示されている。
 コーナー・キューブ・リフレクタのコーナー・キューブが互いに隣接して配置された部分に対応する一体型の成形型を製造する場合に、角(かど)の周辺の面を高精度で加工するのは困難である。したがって、一体型の成形型によっては十分な光学性能を有するコーナー・キューブ・リフレクタが得られない。
 そこで、それぞれが図2に示す一つのコーナー・キューブの形状に対応する複数の棒状の部材を加工し、これらの複数の棒状の部材を組み合わせて成形型を製造する方法が知られている(たとえば、特許文献1、特許文献2)。上記の部材をピンと呼称する。
 図15はピンの透視図である。
 図16はピンの平面図である。ピンは長手方向に垂直な断面が正六角形の棒状の部材であり、一方の端部には互いにほぼ直交する三平面が形成されている。この三平面は図2及び図3に示したコーナー・キューブ・リフレクタの三反射面S1,S2,S3に対応する。
 ピンを使用する方法によれば、成形型の反射面に対応する部分を高精度で加工することはできるので成形型によって十分な光学性能を有するコーナー・キューブ・リフレクタが得られる。しかし、多数のピンから成形型を組み立てる作業は煩雑になる。また、たとえばコーナー・キューブの正方形の反射面の対角線が1ミリメートルの小さなコーナー・キューブに対応するピンを製造するのは困難である。
 他方、板部材を組み合わせて、コーナー・キューブが互いに隣接して配置された部分に対応する成形型を製造する方法が知られている(たとえば、特許文献2、特許文献3)。板部材は互いに平行な二平面を有し、該板部材の該二平面に垂直な方向に、底角90度のV溝及び頂角90度の屋根型突起が等しい繰り返しピッチで連続して形成されている。
 図17は、重ねあわされた複数の従来の板部材を示す図である。
 図18は、一つの従来の板部材の屋根型突起の頂部を、隣接する従来の板部材のV溝の底部に一致するように位置合わせしてコーナー・キューブ形状を形成した状態を示す。
 上記の従来の板部材を使用する方法によれば、加工工数はピンを使用する場合よりも低減される。しかし、従来の板部材を使用する方法において、コーナー・キューブの三反射面に対応する三平面のうちの一平面は板部材の側面によって形成されるので、コーナー・キューブの三反射面間の角度を微調整する自由度は低減する。このため、最近高まっている、三反射面間の角度が微調整されたコーナー・キューブ・リフレクタを製造するニーズに十分に対応することはできない。また、上述の位置合わせのために従来の板部材から成形型を組み立てる作業はなお煩雑である。
 このように、たとえばコーナー・キューブの正方形の反射面の対角線が1ミリメートルの小さなコーナー・キューブのコーナー・キューブ・リフレクタや、三反射面間の角度が自由に微調整されたコーナー・キューブ・リフレクタを製造することのできる成形型、成形型の板部材及び成形型の製造方法は開発されていない。
 したがって、たとえばコーナー・キューブの正方形の反射面の対角線が1ミリメートルの小さなコーナー・キューブのコーナー・キューブ・リフレクタや、三反射面間の角度が自由に微調整されたコーナー・キューブ・リフレクタを製造することのできる成形型、成形型の板部材及び成形型の製造方法に対するニーズがある。
特開平9-034058号公報(特許号3340640公報) US1591572 特開平9-507464号公報(特許号3310297公報)
 本発明の技術的課題は、たとえばコーナー・キューブの正方形の反射面の対角線が1ミリメートルの小さなコーナー・キューブのコーナー・キューブ・リフレクタや、三反射面間の角度が自由に微調整されたコーナー・キューブ・リフレクタを製造することのできる成形型、成形型の板部材及び成形型の製造方法を提供することである。
 本発明の第1の態様のコーナー・キューブ・リフレクタの成形型は、複数の板部材を含む。それぞれの板部材は二つの対向する位置合わせ面を含み、それぞれの位置合わせ面は互いに120度の角度をなす二種類の平面が交互に接続された形状であり、それぞれの種類の平面は互いに平行であり、該二種類の平面に垂直な該板部材の断面は、中心が直線上に配置された同一形状の正六角形が、隣接する正六角形が一辺を共有するように配列された形状であり、それぞれの正六角形の共有されない四辺のうち一組の隣接する二辺は該二つの対向する位置合わせ面の一方を形成する該二種類の平面のそれぞれに含まれ、他の一組の隣接する二辺は他方を形成する該二種類の平面のそれぞれに含まれ、該二つの対向する位置合わせ面に囲まれた該板部材の一つの表面は、それぞれの正六角形の隣接する二辺を含み該正六角形の断面に垂直な二面上にそれぞれ隣接する二辺を有する、ほぼ正方形状の互いにほぼ直交する三個の面の組を含む。該成形型は、該複数の板部材が、該成形型の一つの面が該三個の面の組を含むように互いの位置合わせ面を嵌合させて組み立てられている。
 本態様の成形型は、適切に加工された複数の板部材を使用して組み立てられているので、たとえばコーナー・キューブの正方形の反射面の対角線が1ミリメートルの小さなコーナー・キューブのコーナー・キューブ・リフレクタや、三反射面間の角度が自由に微調整されたコーナー・キューブ・リフレクタを製造することができる。また、本態様の成形型は、複数の板部材の互いの位置合わせ面を嵌合させて容易に組み立てることができる。
 本発明の第2の態様のコーナー・キューブ・リフレクタの成形型の板部材は、二つの対向する位置合わせ面を含み、それぞれの位置合わせ面は互いに120度の角度をなす二種類の平面が交互に接続された形状であり、それぞれの種類の平面は互いに平行であり、該二種類の平面に垂直な該板部材の断面は、中心が直線上に配置された同一形状の正六角形が、隣接する正六角形が一辺を共有するように配列された形状であり、それぞれの正六角形の共有されない四辺のうち一組の隣接する二辺は該二つの対向する位置合わせ面の一方を形成する該二種類の平面のそれぞれに含まれ、他の一組の隣接する二辺は他方を形成する該二種類の平面のそれぞれに含まれ、該二つの対向する位置合わせ面に囲まれた該板部材の一つの表面は、それぞれの正六角形の隣接する二辺を含み該正六角形の断面に垂直な二面上にそれぞれ隣接する二辺を有する、ほぼ正方形状の互いにほぼ直交する三個の面の組を含むように構成されている。
 本態様の板部材を組み立てた成形型によって、たとえばコーナー・キューブの正方形の反射面の対角線が1ミリメートルの小さなコーナー・キューブのコーナー・キューブ・リフレクタや、三反射面間の角度が自由に微調整されたコーナー・キューブ・リフレクタを製造することができる。
 本発明の第2の態様の第1の実施形態のコーナー・キューブ・リフレクタの成形型の板部材は、それぞれの正六角形に対応する三個の面の組の、それぞれの正六角形に垂直な方向の座標が異なる。
 本実施形態のコーナー・キューブ・リフレクタの成形型の板部材を組み立てた成形型によって、たとえば、曲面上に配置された複数のコーナー・キューブを備えたコーナー・キューブ・リフレクタを製造することができる。
 本発明の第2の態様の第2の実施形態のコーナー・キューブ・リフレクタの成形型の板部材は、該三個の面の三組の二面のうち、少なくとの一組の二面がなす角度が他の二組の二面のなす角度と異なるように設計されている。
 本実施形態のコーナー・キューブ・リフレクタの成形型の板部材を組み立てた成形型によって、入射光線に対してわずかな角度だけ変化した二方向に光線を反射させることができるコーナー・キューブ・リフレクタを製造することができる。
 本発明の第2の態様の第3の実施形態のコーナー・キューブ・リフレクタの成形型の板部材において、それぞれの位置合わせ面の、該二種類の平面に垂直な断面の突出部のコーナーRの値は谷部のコーナーRの値以上であり、その差は0.0-0.025ミリメータの範囲である。
 本実施形態のコーナー・キューブ・リフレクタの成形型の板部材は、成形型を組み立てる際に、位置合わせ面の嵌合を隙間なく密に組み立てることができる。
 本発明の第3の態様のコーナー・キューブ・リフレクタの成形型の製造方法は、原板の一つの面に、断面が同一形状の正六角形の、コーナー・キューブに対応する部分を密に配置した構造を機械加工によって形成するステップと、該構造がめっき層に覆われるようにめっき処理を実施するステップと、中心が直線上に配置された該同一形状の正六角形が、隣接する正六角形が一辺を共有するように配列された形状の断面を有する複数の板部材を該原板からワイヤーカット放電加工によって切り出すステップと、該複数の板部材の、該めっき層に覆われたコーナー・キューブに対応する部分を精密加工するステップと、該複数の板部材を使用して成形型を組み立てるステップと、を含む。
 本態様の成形型の製造方法によれば、複数の板部材を適切に加工することによって、たとえばコーナー・キューブの正方形の反射面の対角線が1ミリメートルの小さなコーナー・キューブのコーナー・キューブ・リフレクタや、三反射面間の角度が自由に微調整されたコーナー・キューブ・リフレクタを製造することができる成形型が得られる。また、本態様の成形型の製造方法においては、複数の板部材の互いの位置合わせ面を嵌合させて容易に成形型を組み立てることができる。
コーナー・キューブ・リフレクタの平面図、A-A断面図及びB-B断面図を示す。 リフレクタ・ユニットの再帰反射構造であるコーナー・キューブの透視図である。 リフレクタ・ユニットの再帰反射構造であるコーナー・キューブの平面図である。 本発明の一実施形態の成形型の板部材の透視図である。 成形型の板部材の平面図である。。 本発明の他の実施形態の成形型の板部材を示す図である。 成形型の板部材の一つの面に配列されたほぼ正方形状の互いにほぼ直交する三個の面(A,B,C)の複数の組の透視図である。 本発明の一実施形態の成形型の製造方法を説明する流れ図である。 面上にほぼ正方形状の互いにほぼ直交する三個の面の複数の組が配置された原板を示す図である。 板部材を使用した成形型の組み立てを説明するための図である。 精密加工中の板部材及び工具の透視図である。 精密加工中の板部材及び工具の正面図である。 精密加工中の板部材及び工具の側面図である。 精密加工中の板部材及び工具の正面図である。 ピンの透視図である。 ピンの平面図である。 重ねあわされた複数の従来の板部材を示す図である。 一つの従来の板部材の屋根型突起の頂部を、隣接する従来の板部材のV溝の底部に一致するように移動させてコーナー・キューブ形状を形成した状態を示す。
 図4は、本発明の一実施形態の成形型の板部材100の透視図である。
 図5は、成形型の板部材100の平面図である。
 板部材100は二つの対向する位置合わせ面を含み、それぞれの位置合わせ面は互いに120度の角度をなす二種類の平面(P1及びP2またはP3及びP4)が交互に接続された形状であり、それぞれの種類の平面は互いに平行である。図5に示すように、該二種類の平面に垂直な板部材100の断面は、中心が直線上に配置された同一形状の正六角形が、隣接する正六角形が一辺を共有するように配列された形状である。それぞれの正六角形の共有されない四辺のうち一組の隣接する二辺(SD1,SD2)は該二つの対向する位置合わせ面の一方を形成する該二種類の平面のそれぞれ(P1,P2)に含まれ、他の一組の隣接する二辺(SD3,SD4)は該二つの対向する位置合わせ面の他方を形成する該二種類の平面のそれぞれ(P3,P4)に含まれる。該二つの対向する位置合わせ面に囲まれた板部材100の一つの面は、それぞれの正六角形の隣接する二辺を含み該正六角形の断面に垂直な二面上にそれぞれ隣接する二辺を有する、ほぼ正方形状の互いにほぼ直交する三個の面(A,B,C)の組を含む。
 成形型の板部材100の三個の面(A,B,C)は、図2及び図3に示したコーナー・キューブ・リフレクタの三反射面S1,S2S3にそれぞれ対応する。また、成形型の板部材100は、たとえば、図1において、それぞれの頂点がB-B断面に含まれ、B-B断面に沿って配列された複数のコーナー・キューブに対応する。
 後で詳細に説明するように、複数の板部材100の位置合わせ面を互いに嵌合させることによって成形型を組み立てる。
 図6は、本発明の他の実施形態の成形型の板部材100Aを示す図である。本実施形態の板部材100Aにおいて、それぞれの正六角形の断面に対応する三個の面の組の、それぞれの正六角形の断面に垂直な方向の座標が異なる。図6において、中央部の三個の面の組の高さ(それぞれの正六角形の断面に垂直な方向の座標)h1は端部の三個の面の組の高さh2よりも大きい。本実施形態による板部材100Aを組み合わせて構成した成形型により、たとえば、曲面上に配置された複数のコーナー・キューブを備えたコーナー・キューブ・リフレクタを製造することもできる。上記のようなコーナー・キューブ・リフレクタを製造することのできる成形型は従来の製造方法によっては製造することができないか、または製造できるとしても膨大な手間を必要とする。
 図7は、成形型の板部材の一つの面に配列されたほぼ正方形状の互いにほぼ直交する三面(A,B,C)の複数の組の透視図である。三面のうち二面のなす角度はほぼ90度であるが、いずれかの2面のなす角度を90度から少し変化させることもできる。図7の1から7の数字は三個の面の複数の組のそれぞれを示す。
 表1は、三面のうちA-B面間およびC-A面間の角度の目標値を90度とし、 B-C面間の角度の目標値を90.1415度として製造した成形型の板部材の各面の法線間の角度の測定値を示す表である。表の横軸の1から7の数字は、図7に示す数字に対応し三個の面の複数の組のそれぞれを示す。

Figure JPOXMLDOC01-appb-T000001

B-C面の法線間の角度の測定値は89.849度から89.858度の範囲内である。したがって、B-C面間の角度は90.142度から90.151度の範囲であり、目標値に対する測定値の角度誤差はせいぜい0.01度である。
 このようにコーナー・キューブの二面間の角度を90度からわずかに変えることにより、入射光線に対してわずかな角度だけ変化した二方向に光線を反射させることができる。従来の製造方法による成形型によっては、三個の面の二面間の角度を自由に定めることはできないか、またはできるとしてもそのような成形型の製造には膨大な手間を必要とする。
 つぎに本発明の成形型の板部材及び成形型の製造方法について説明する。
 図8は、本発明の一実施形態の成形型の製造方法を説明する流れ図である。
 図8のステップS1010において、原板の一つの面に、断面が同一形状の正六角形の、コーナー・キューブに対応する部分を密に配置した構造を機械加工によって形成する。原板とは、そこから成形型の板部材を切り出す部材を指す。原板の材料はマルテンサイト系のステンレス鋼などである。上記の機械加工によって原板の面上にほぼ正方形状の互いにほぼ直交する三個の面の複数の組が配置された形状を形成する。上記の機械加工は剛性の高いマシニング加工機とボールエンドミルを使用して実施される。また、V状工具を使用してフライカット法により正方形状の二面を加工することによって加工効率を向上させることができる。
 図8のステップS1020において、該構造がめっき層に覆われるようにめっき処理を実施する。一例としてめっきはNi-P(ニッケル・リン)めっきである。
 後に説明する精密加工は、Ni-P(ニッケル・リン)めっき処理によるめっき層の範囲内で実施される。
 図9は、面上にほぼ正方形状の互いにほぼ直交する三個の面の複数の組が配置された原板を示す図である。
 図8のステップS1030において、中心が直線上に配置された同一形状の正六角形が、隣接する正六角形が一辺を共有するように配列された形状の断面を有する複数の板部材を該原板からワイヤーカット放電加工によって切り出す。ワイヤーカット放電加工機による原板の切断は、互いに120度の角度をなす二種類の平面(図5におけるP1及びP2またはP3及びP4)が交互に接続された板部材の位置合わせ面に沿って実施される。具体的に、図9に示す太い線に沿ってワイヤーカット放電加工機のワイヤーを移動させることによって原板から板部材を切り出す。
 図8のステップS1040において、該複数の板部材の、該めっき層に覆われたコーナー・キューブに対応する部分を精密加工する。精密加工は、ダイヤモンドの工具を使用した引き切り加工で実施される。上述のように、Ni-P(ニッケル・リン)めっき層を加工するので十分に小さな面粗さ、高い平面性及び高い寸法精度が得られる。具体的に、面粗さ(算術平均高さ)は8ナノメータ以下、平面度は100ナノメータ以下、寸法精度は20マイクロメータ以下である。
 図11は、精密加工中の板部材100及び工具301の透視図である。
 図12は、精密加工中の板部材100及び工具301の正面図である。
 図13は、精密加工中の板部材100及び工具301の側面図である。
 図14は、精密加工中の図6に示す板部材100A及び工具301Aの正面図である。
 図6の板部材においては、それぞれの正六角形に対応する三個の面の組の、それぞれの正六角形に垂直な方向の座標が異なる。したがって、異なる面の組の境界において、それぞれの正六角形に垂直な方向の側面が生じる。この場合に、上記の側面と上記の側面に接する面とがなす角度(θ1)よりも小さい開き角(θ2)の工具301Aを使用することにより、上記の側面及び上記の側面に接する、コーナー・キューブ・リフレクタの反射面に対応する面の精密加工を実施することができる。
 図8のステップS1050において、複数の板部材100を使用して成形型を組み立てる。
 図10は、板部材を使用した成形型の組み立てを説明するための図である。複数の板部材100は位置合わせ面によって互いの位置が決まる。さらに、成形型の二個の枠部分150及び160が板部材100の位置合わせ面に対応した形状を備えており、二個の枠部分150及び160で互いに位置決めされた複数の板部材100を挟み込むことによって複数の板部材を使用して容易に成形型を組み立てることができる。
 図4の透視図に示すように、板部材100の位置合わせ面は互いに平行に延伸するリッジ部及び溝部を備える。図5の板部材100の平面図によると、それぞれの位置合わせ面を形成する二種類の平面に垂直な断面において、リッジ部及び溝部は正六角形の頂点にそれぞれ対応する突出部P及び谷部Vに対応する。上述のように板部材100はワイヤーカット放電加工によって切り出されるので、突出部P及び谷部Vはワイヤーの径に応じて、図5に図示しない丸みを有する。一般的に、丸みの大きさは角部の半径の値、いわゆるコーナーRで表される。突出部PのコーナーRの値は谷部VのコーナーRの値以上であり、その差は0.0-0.025ミリメータの範囲であるのが好ましい。その理由は、板部材100は二つの位置合わせ面のリッジ部及び溝部を隙間なく密に嵌合するためである。一実施例において突出部PのコーナーRの値は0.17ミリメータであり、谷部VのコーナーRの値は0.15ミリメータである。
 図16に示すようなピンを使用する場合には、多数のピンを組み合わせて成形型を組み立てる必要があり成形型の組み立ての手間がかかる。また、図17に示すような従来の板部材を使用する場合には、それぞれの板部材の間の相対的な位置を調整する必要がありやはり成形型への組み込みの手間がかかる。他方、本発明の板部材を使用する場合には、それぞれの板部材の三個の面の組が備わる面と反対側の面(底面)を一つの面上に配置し、それぞれの板部材の位置合わせ面を組み合わせればよいので成形型の組み立ての手間がかからない。また、図6に示す、それぞれの正六角形に対応する三個の面の組の、それぞれの正六角形に垂直な方向の座標が異なる板部材や、三個の面のうち二面のなす角度が異なる板部材を使用する場合であっても、本発明の板部材を使用することによって容易に成形型を組み立てることができる。したがって、本発明の板部材を使用することによって、曲面上に配置された複数のコーナー・キューブを備えたコーナー・キューブ・リフレクタ用の成形型や入射光線に対してわずかな角度だけ変化した二方向に光線を反射させることができるように三反射面間の角度が微調整されたコーナー・キューブ・リフレクタ用の成形型を比較的容易に製造することができる。

Claims (6)

  1.  複数の板部材を含む、コーナー・キューブ・リフレクタの成形型であって、
     それぞれの板部材は二つの対向する位置合わせ面を含み、それぞれの位置合わせ面は互いに120度の角度をなす二種類の平面が交互に接続された形状であり、それぞれの種類の平面は互いに平行であり、該二種類の平面に垂直な該板部材の断面は、中心が直線上に配置された同一形状の正六角形が、隣接する正六角形が一辺を共有するように配列された形状であり、それぞれの正六角形の共有されない四辺のうち一組の隣接する二辺は該二つの対向する位置合わせ面の一方を形成する該二種類の平面のそれぞれに含まれ、他の一組の隣接する二辺は他方を形成する該二種類の平面のそれぞれに含まれ、
     該二つの対向する位置合わせ面に囲まれた該板部材の一つの表面は、それぞれの正六角形の隣接する二辺を含み該正六角形の断面に垂直な二面上にそれぞれ隣接する二辺を有する、ほぼ正方形状の互いにほぼ直交する三個の面の組を含み、
     該複数の板部材が、該成形型の一つの面が該三個の面の組を含むように互いの位置合わせ面を嵌合させて組み立てられているコーナー・キューブ・リフレクタの成形型。
  2.  コーナー・キューブ・リフレクタの成形型の板部材であって、二つの対向する位置合わせ面を含み、それぞれの位置合わせ面は互いに120度の角度をなす二種類の平面が交互に接続された形状であり、それぞれの種類の平面は互いに平行であり、該二種類の平面に垂直な該板部材の断面は、中心が直線上に配置された同一形状の正六角形が、隣接する正六角形が一辺を共有するように配列された形状であり、それぞれの正六角形の共有されない四辺のうち一組の隣接する二辺は該二つの対向する位置合わせ面の一方を形成する該二種類の平面のそれぞれに含まれ、他の一組の隣接する二辺は他方を形成する該二種類の平面のそれぞれに含まれ、
     該二つの対向する位置合わせ面に囲まれた該板部材の一つの表面は、それぞれの正六角形の隣接する二辺を含み該正六角形の断面に垂直な二面上にそれぞれ隣接する二辺を有する、ほぼ正方形状の互いにほぼ直交する三個の面の組を含むように構成されたコーナー・キューブ・リフレクタの成形型の板部材。
  3.  それぞれの正六角形に対応する三個の面の組の、それぞれの正六角形に垂直な方向の座標が異なる請求項2に記載の成形型の板部材。
  4.  該三個の面の三組の二面のうち、少なくとの一組の二面がなす角度が他の二組の二面のなす角度と異なるように設計された請求項2または3に記載の成形型の板部材。
  5.  それぞれの位置合わせ面の、該二種類の平面に垂直な断面の突出部のコーナーRの値は谷部のコーナーRの値以上であり、その差は0.0-0.025ミリメータの範囲である請求項2から4のいずれかに記載の板部材。
  6.  コーナー・キューブ・リフレクタの成形型の製造方法であって、
     原板の一つの面に、断面が同一形状の正六角形の、コーナー・キューブに対応する部分を密に配置した構造を機械加工によって形成するステップと、
     該構造がめっき層に覆われるようにめっき処理を実施するステップと、
     中心が直線上に配置された該同一形状の正六角形が、隣接する正六角形が一辺を共有するように配列された形状の断面を有する複数の板部材を該原板からワイヤーカット放電加工によって切り出すステップと、
     該複数の板部材の、該めっき層に覆われたコーナー・キューブに対応する部分を精密加工するステップと、
     該複数の板部材を使用して成形型を組み立てるステップと、を含む成形型の製造方法。
PCT/JP2021/038385 2020-11-03 2021-10-18 成形型、成形型の板部材及び成形型の製造方法 WO2022097458A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063109045P 2020-11-03 2020-11-03
US63/109,045 2020-11-03

Publications (1)

Publication Number Publication Date
WO2022097458A1 true WO2022097458A1 (ja) 2022-05-12

Family

ID=81457124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038385 WO2022097458A1 (ja) 2020-11-03 2021-10-18 成形型、成形型の板部材及び成形型の製造方法

Country Status (1)

Country Link
WO (1) WO2022097458A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1591572A (en) * 1925-02-05 1926-07-06 Jonathan C Stimson Process and apparatus for making central triple reflectors
US3649153A (en) * 1969-11-04 1972-03-14 Peter E Brudy Faceted core
JPS55121011A (en) * 1979-03-14 1980-09-17 Kaigai Bussan Kk Mold
JPS59192201A (ja) * 1983-01-03 1984-10-31 スティムソナイト・コーポレーション 2種類の金属を用いたピン及びその製造方法
WO1997004940A1 (fr) * 1995-07-28 1997-02-13 Nippon Carbide Kogyo Kabushiki Kaisha Matrice microprisme
JP2005128421A (ja) * 2003-10-27 2005-05-19 Sharp Corp コーナーキューブリフレクタ、その製造方法及びそれを用いた反射型表示装置
JP2006520712A (ja) * 2003-03-06 2006-09-14 スリーエム イノベイティブ プロパティズ カンパニー マイクロ構造化ラミナの作製方法および装置
JP2011043760A (ja) * 2009-08-24 2011-03-03 Stanley Electric Co Ltd 車両用反射器
JP2012108213A (ja) * 2010-11-16 2012-06-07 Koito Mfg Co Ltd 再帰反射鏡及びその製造方法
JP2012137623A (ja) * 2010-12-27 2012-07-19 Stanley Electric Co Ltd 車両用反射器及びリフレックスピン

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1591572A (en) * 1925-02-05 1926-07-06 Jonathan C Stimson Process and apparatus for making central triple reflectors
US3649153A (en) * 1969-11-04 1972-03-14 Peter E Brudy Faceted core
JPS55121011A (en) * 1979-03-14 1980-09-17 Kaigai Bussan Kk Mold
JPS59192201A (ja) * 1983-01-03 1984-10-31 スティムソナイト・コーポレーション 2種類の金属を用いたピン及びその製造方法
WO1997004940A1 (fr) * 1995-07-28 1997-02-13 Nippon Carbide Kogyo Kabushiki Kaisha Matrice microprisme
JP2006520712A (ja) * 2003-03-06 2006-09-14 スリーエム イノベイティブ プロパティズ カンパニー マイクロ構造化ラミナの作製方法および装置
JP2005128421A (ja) * 2003-10-27 2005-05-19 Sharp Corp コーナーキューブリフレクタ、その製造方法及びそれを用いた反射型表示装置
JP2011043760A (ja) * 2009-08-24 2011-03-03 Stanley Electric Co Ltd 車両用反射器
JP2012108213A (ja) * 2010-11-16 2012-06-07 Koito Mfg Co Ltd 再帰反射鏡及びその製造方法
JP2012137623A (ja) * 2010-12-27 2012-07-19 Stanley Electric Co Ltd 車両用反射器及びリフレックスピン

Similar Documents

Publication Publication Date Title
JP4235750B2 (ja) 再帰反射キューブコーナー製品の成形用の型に使用する薄板、この薄板を備える型組立体、及びこの型組立体から製造される再帰反射シート
US6015214A (en) Retroreflective articles having microcubes, and tools and methods for forming microcubes
JP5409769B2 (ja) プリズム状の型およびシート材を作るための精密ダイヤモンド旋削のピンベースの方法
JP2022153552A (ja) エンドミル加工により製造された非直交キューブコーナー要素及びそのアレイ
US3649153A (en) Faceted core
JP2002509495A (ja) 再帰反射性キューブコーナーシートの型、その型を形成する薄板およびその薄板の製造方法
JP2002507944A (ja) 再帰反射性キューブコーナー物品を形成する型に使用する複数の薄板の製造方法、型及びそれによって形成された物品
KR20050110610A (ko) 3단계 입방체 코너 규정
CN107000343B (zh) 多级切割的拼接式反光镜
JP2002508085A (ja) キューブコーナー型再帰反射シートと、そのための型と、その型の製造方法
EP2431774B1 (en) Hexagonal corner cube retroreflective article
EP0724739A1 (en) Raised zone retroreflective cube corner article and method of manufacture
WO2022097458A1 (ja) 成形型、成形型の板部材及び成形型の製造方法
RU2610926C2 (ru) Выполненный по направляющим линиям многонаправленный призматический кластерный световозвращающий листовой материал
JP7202049B1 (ja) マイクロレンズアレイの成形型の加工方法
KR102200725B1 (ko) 시트 성형용 몰드 제조 방법 및 시트 성형용 몰드 및 재귀반사 시트
WO2013076809A1 (ja) 金型加工方法、金型及び光学素子
KR20050005555A (ko) 마스터 및 그 레플리카를 제조하는 방법
CN117930406B (zh) 回复反射微棱镜阵列结构及其制造方法
CN220576420U (zh) 不同结构角锥阵列子板拼接模具
WO2019163630A1 (ja) 金型の製造方法
CN117805951A (zh) 一种角隅型微棱镜阵列的制造方法
JPH01264102A (ja) フレネルレンズを有する車輌灯具用レンズ
JPH01312523A (ja) 光スイッチ及びその製造方法
KR20000016171A (ko) 마이크로큐브를 갖는 재귀 반사성 물품과 마이크로큐브를 제조하는 공구 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21889011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/08/2023)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 21889011

Country of ref document: EP

Kind code of ref document: A1