WO2022097442A1 - Adhesive film, adehsive film with support sheet, cured body and method for producing structure - Google Patents

Adhesive film, adehsive film with support sheet, cured body and method for producing structure Download PDF

Info

Publication number
WO2022097442A1
WO2022097442A1 PCT/JP2021/038057 JP2021038057W WO2022097442A1 WO 2022097442 A1 WO2022097442 A1 WO 2022097442A1 JP 2021038057 W JP2021038057 W JP 2021038057W WO 2022097442 A1 WO2022097442 A1 WO 2022097442A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive film
temperature
adhesive
heat
film
Prior art date
Application number
PCT/JP2021/038057
Other languages
French (fr)
Japanese (ja)
Inventor
功 市川
毅朗 吉延
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2022560692A priority Critical patent/JPWO2022097442A1/ja
Priority to KR1020237005868A priority patent/KR20230098130A/en
Priority to CN202180070981.5A priority patent/CN116348564A/en
Publication of WO2022097442A1 publication Critical patent/WO2022097442A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/304Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being heat-activatable, i.e. not tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/314Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive layer and/or the carrier being conductive

Definitions

  • the present invention relates to an adhesive film having excellent thermal conductivity and a method for producing the same, an adhesive film with a support sheet, a cured product and a method for producing the same, and a method for producing a structure.
  • thermoelectric conversion devices thermoelectric conversion devices
  • photoelectric conversion devices photoelectric conversion devices
  • semiconductor devices such as large-scale integrated circuits
  • heat-dissipating members having thermal conductivity have been used in order to dissipate heat generated.
  • a sheet-shaped heat radiating member film, sheet
  • a heat radiating member having excellent thermal conductivity is provided between the semiconductor device and the heat sink. ing.
  • the above-mentioned film or sheet is coated with a coating liquid of a heat-dissipating material containing an adhesive resin, an inorganic filler, a curing agent and a solvent on a release sheet or a base material.
  • a coating liquid of a heat-dissipating material containing an adhesive resin, an inorganic filler, a curing agent and a solvent on a release sheet or a base material.
  • the inorganic filler silica, alumina, glass, titanium oxide and the like are used.
  • the present invention has been made in view of such an actual situation, and provides an adhesive film having excellent thermal conductivity and a method for producing the same, an adhesive film with a support sheet, a cured product and a method for producing the same, and a method for producing a structure.
  • the purpose is to provide.
  • the present invention comprises a heat conductive filler (A) composed of at least one of a graphene having a two-dimensional structure and a single-layer boron nitride, a heat-curable component (B), and a heat-curable component (B).
  • the preheating step is a step of holding the preheating step at a temperature of the following temperature (T) or lower for 30 minutes or more (Invention 1).
  • Temperature (T) The adhesive film before any heat treatment was subjected to thermal weight measurement under the condition of raising the temperature from 40 ° C. to 400 ° C. at a heating rate of 10 ° C./min under an atmospheric atmosphere, and the adhesive film was measured. The temperature at which the weight is reduced by 0.5%.
  • the adhesive film according to the above invention (Invention 1) has excellent thermal conductivity by containing the above-mentioned specific heat conductive filler (A) and by using it in the above-mentioned applications.
  • the present invention contains a thermally conductive filler (A) composed of at least one of a graphene having a two-dimensional structure and a single-layer boron nitride, a thermosetting component (B), and a binder polymer (C).
  • An adhesive film made of an adhesive resin composition, wherein the area ratio of the void portion in the thickness direction cross section of the cured product obtained by heat-treating the adhesive film under the following conditions is 10% or less.
  • the heat treatment includes a preheating step and a complete curing step of completely curing the adhesive film after the preheating step, and the preheating step includes an atmospheric atmosphere for the adhesive film before any heat treatment.
  • the adhesive film according to the above invention (Invention 2) is used by containing the above-mentioned specific heat conductive filler (A) and by heat-treating under the above-mentioned conditions to obtain the above-mentioned cured product. , It has excellent thermal conductivity.
  • the content of the thermally conductive filler (A) is preferably 5% by mass or more and 60% by mass or less (Invention 3).
  • thermosetting component (B) is preferably an epoxy resin (Invention 4).
  • inventions 1 to 4 it is preferable that the invention is hot-pressed (invention 5).
  • the arithmetic average roughness (Ra) of at least one surface is 0.01 ⁇ m or more and 0.5 ⁇ m or less (Invention 6).
  • the present invention further comprises mixing a thermally conductive filler (A) consisting of at least one of graphene and single-layer boron nitride having a two-dimensional structure and a binder polymer (C) in a solvent.
  • a method for producing an adhesive film which comprises obtaining an adhesive resin composition by mixing a thermosetting component (B) and forming the obtained adhesive resin composition into a film. (Invention 7).
  • the heating temperature of the hot press is lower than the curing reaction temperature of the thermosetting component (B) (Invention 9).
  • the arithmetic mean roughness (Ra) of at least one surface of the adhesive film after hot pressing is preferably 0.01 ⁇ m or more and 0.5 ⁇ m or less (invention). 10).
  • the present invention provides an adhesive film with a support sheet including the adhesive film (inventions 1 to 6) and a support sheet laminated on at least one surface side of the adhesive film (invention 11).
  • the present invention contains a thermally conductive filler (A) composed of at least one of graphene and single-layer boron nitride having a two-dimensional structure, a thermosetting component (B), and a binder polymer (C).
  • A thermally conductive filler
  • B thermosetting component
  • C binder polymer
  • a cured product obtained by subjecting an adhesive film made of an adhesive resin composition to be heat-treated, wherein the area ratio of the void portion in the cross section in the thickness direction is 10% or less.
  • the maximum area of the void portion in the cross section in the thickness direction is 100 ⁇ m 2 or less (Invention 13).
  • the heat treatment includes a preheating step and a complete curing step of completely curing the adhesive film after the preheating step, and the preheating step is an arbitrary heat treatment.
  • the weight of the adhesive film is reduced by 0.5% when the thermal weight measurement is performed under the condition that the temperature of the adhesive film is raised from 40 ° C. to 400 ° C. at a temperature increase rate of 10 ° C./min in an air atmosphere. It is preferable to include a step of holding the film at a temperature equal to or lower than the temperature for 30 minutes or more (Invention 14).
  • the present invention contains a thermally conductive filler (A) composed of at least one of graphene and single-layer boron nitride having a two-dimensional structure, a thermosetting component (B), and a binder polymer (C).
  • a method for producing a cured product which comprises heat-treating an adhesive film made of an adhesive resin composition to form a cured product. The heat treatment completely completes the adhesive film after a preheating step and a preheating step.
  • the preheating step includes a complete curing step of curing, and the preheating step is a condition in which the temperature of the adhesive film before any heat treatment is raised from 40 ° C. to 400 ° C. at a heating rate of 10 ° C./min under an air atmosphere.
  • the present invention provides a method for producing a cured product, which comprises a step of holding the adhesive film at a temperature equal to or lower than a temperature at which the weight is reduced by 0.5% by 0.5% for 30 minutes or more when a thermal weight measurement is performed (Invention 15).
  • invention 15 it is preferable to heat-press the adhesive film before the heat treatment (invention 16).
  • the area ratio of the void portion in the thickness direction cross section of the cured product is preferably 10% or less (invention 17).
  • the present invention contains a heat conductive filler (A) composed of at least one of a graphene having a two-dimensional structure and a single-layer boron nitride, a heat-curable component (B), and a binder polymer (C).
  • the heat treatment includes a preheating step and a complete curing step of completely curing the adhesive film after the preheating step, and the adhesive film before the preheating step performs an arbitrary heat treatment. 30 minutes at a temperature below the temperature at which the adhesive film loses 0.5% by weight when the thermal weight is measured under the condition that the temperature rises from 40 ° C to 400 ° C at a heating rate of 10 ° C / min under an air atmosphere.
  • a method for manufacturing a structure which comprises the above-mentioned holding step (Invention 18).
  • the area ratio of the void portion in the cross section in the thickness direction of the cured product is preferably 10% or less (invention 20).
  • the first member is a flexible sheet-like member, and a laminate of the sheet-like member and the heat-pressed adhesive film is used as the second member. It is preferable to perform the bonding at a temperature equal to or higher than the temperature showing the peak of loss tangent (tan ⁇ ) obtained by measuring the viscoelasticity of the adhesive film before any heat treatment. ..
  • the inventions include a step of attaching the adhesive film to the first member or the second member, and have viscoelasticity of the adhesive film before any heat treatment. It is preferable to perform the pasting at a temperature equal to or higher than the temperature indicating the peak of the loss tangent (tan ⁇ ) obtained by the measurement.
  • the adhesive film, the adhesive film with a support sheet, the cured body and the structure according to the present invention are excellent in thermal conductivity. Further, according to the method for producing an adhesive film according to the present invention, it is possible to produce an adhesive film having excellent thermal conductivity. Further, according to the method for producing a cured product according to the present invention, a cured product having excellent thermal conductivity can be produced, and according to the method for producing a structure according to the present invention, a structure having excellent thermal conductivity can be produced. The body can be manufactured.
  • the adhesive film according to the present embodiment includes a thermally conductive filler (A) composed of at least one of graphene and single-layer boron nitride having a two-dimensional structure, a thermosetting component (B), and a binder polymer (C). It is made of an adhesive resin composition containing the above (hereinafter, may be referred to as "adhesive resin composition R").
  • the adhesive resin composition R preferably contains a curing agent (D), and more preferably contains a curing accelerator (E).
  • the adhesive film according to the present embodiment is first used to perform a heat treatment including a preheating step and a complete curing step of completely curing the adhesive film after the preheating step. It is preferable to include a step of holding at a temperature of the following temperature (T) or less for 30 minutes or more.
  • T temperature of the following temperature
  • the number of voids is reduced inside the obtained cured product.
  • the area ratio of the void portion in the cross section in the thickness direction of the obtained cured product can be 10% or less. Details regarding the heat treatment will be described later.
  • the area ratio of the void portion in the cross section in the thickness direction of the cured product obtained by heat-treating the adhesive film under the following conditions is 10% or less. preferable.
  • the heat treatment includes a preheating step and a complete curing step of completely curing the adhesive film after the preheating step.
  • the adhesive film before any heat treatment is subjected to thermal weight measurement under the condition of raising the temperature from 40 ° C. to 400 ° C. at a heating rate of 10 ° C./min in an air atmosphere. This is a step of holding the film at a temperature lower than the temperature at which the weight is reduced by 0.5% for 30 minutes or more.
  • the thermally conductive filler (A) composed of at least one of graphene and single-layer boron nitride having a two-dimensional structure has a characteristic of having a large specific surface area because it has a two-dimensional structure having a thickness on the order of several tens of nm. Therefore, in the adhesive film, the heat conductive fillers (A) are in contact with each other, and a heat conduction path for transferring heat is likely to be formed. In particular, by performing the predetermined heat treatment as described above and using the cured product, the voids inside the obtained cured product can be reduced, whereby even a small amount of the heat conductive filler (A) added is excellent. It can show thermal conductivity.
  • the heat conductive filler (A) when used as a filler for the adhesive resin composition, excellent heat conductivity can be imparted without high filling. Further, since the above-mentioned heat conductive filler (A) has a two-dimensional structure having a thickness on the order of several tens of nm and has flexibility in itself, the adhesive film containing the heat conductive filler (A) can be used. , It will be excellent in flexibility. Moreover, since it is not necessary to highly fill the thermally conductive filler (A) as described above, the adhesive film is prevented from becoming mechanically brittle.
  • the adhesive film has excellent flexibility, it becomes difficult for air to be entrained when the adhesive film is attached to the adherend, and it is possible to suppress the formation of voids at the interface between the adhesive film and the adherend, and to reduce the contact area between the adhesive film and the adherend. Can be made larger. That is, it is possible to suppress the increase in thermal resistance due to the voids at the interface between the adhesive film and the adherend, and it is possible to improve the thermal conductivity between the adhesive film and the adherend. Further, if the adhesive film is prevented from becoming mechanically brittle as described above, the probability of occurrence of process defects such as generation of broken debris during use is reduced.
  • the surface roughness of the adhesive film becomes large and tack becomes difficult to develop.
  • the heat conductive filler (A) in the present embodiment can obtain high heat conductivity without being highly filled as described above, the surface roughness of the adhesive film can be lowered, thereby lowering the surface roughness.
  • the adhesive film is attached to the adherend, the appropriate adhesive force can be exhibited by adjusting the attachment temperature.
  • Thermally conductive filler (A) in the present embodiment comprises at least one of graphene having a two-dimensional structure and monolayer boron nitride.
  • Graphene has a two-dimensional structure in which carbon atoms are regularly arranged in a hexagon
  • single-layer boron nitride has a two-dimensional structure in which boron atoms and nitrogen atoms are regularly arranged in a hexagon. It is a dimensional compound.
  • the “graphene or single-layer boron nitride having a two-dimensional structure” in the present specification may be a multi-layered one, preferably having a thickness of 1/10 or less of the shortest length in a plan view shape.
  • graphene in the present specification includes those produced by thinly peeling graphite, and single-layer boron nitride includes those produced by thinly peeling boron nitride.
  • graphite itself does not fall under the above-mentioned "graphene having a two-dimensional structure”.
  • graphene or single-layer boron nitride having a two-dimensional structure may be a single layer or a multi-layer. In the case of a plurality of layers, it is usually about 2 to 1,000 layers.
  • the plan-view shape of graphene and single-layer boron nitride having a two-dimensional structure is not particularly limited.
  • the average particle size of the thermally conductive filler (A) is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, particularly preferably 3.0 ⁇ m or more, and further preferably 5.0 ⁇ m.
  • the above is preferable.
  • the heat conductive fillers (A) are easily brought into contact with each other, and a heat conduction path is easily formed. Therefore, the characteristics of the two-dimensional structure function, and the obtained adhesive film has excellent heat conductivity.
  • the average particle size of the heat conductive filler (A) is preferably 30 ⁇ m or less, particularly preferably 20 ⁇ m or less, and further preferably 15 ⁇ m or less. As a result, the dispersed state is maintained in other materials such as the solvent and the binder polymer (C), the heat conduction path is suppressed from being formed due to segregation, and the adhesive film becomes more excellent in heat conductivity.
  • the thickness of the thermally conductive filler (A) is preferably 500 nm or less, more preferably 300 nm or less, particularly preferably 200 nm or less, and further preferably 100 nm or less.
  • the lower limit of the thickness of the heat conductive filler (A) is not particularly limited, but is usually 0.7 nm or more, preferably 5.0 nm or more, and particularly preferably 10 nm or more from the viewpoint of heat conductivity. It is preferably 15 nm or more, and more preferably 15 nm or more.
  • the content of the heat conductive filler (A) in the adhesive resin composition R is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 15% by mass or more. It is preferable, more preferably 20% by mass or more. Since the lower limit of the content of the heat conductive filler (A) is as described above, the heat conductive fillers (A) are likely to come into contact with each other and a heat conductive path is easily formed, so that the obtained adhesive film can be obtained. It becomes superior in thermal conductivity.
  • the content of the thermally conductive filler (A) in the adhesive resin composition R is preferably 60% by mass or less, more preferably 55% by mass or less, and particularly preferably 50% by mass or less. It is preferably 40% by mass or less.
  • the upper limit of the content of the thermally conductive filler (A) is as described above, the obtained adhesive film is suppressed from becoming mechanically brittle, and the flexibility becomes more excellent.
  • the desired heat conductivity can be obtained even with a relatively small content as described above.
  • thermosetting component (B) in the present embodiment is not particularly limited as long as it enables thermosetting of the adhesive resin composition R and exhibits adhesiveness by thermosetting, and is not particularly limited, for example, an epoxy resin or a phenol resin. , Melamine resin, urea resin, polyester resin, urethane resin, acrylic resin, polyimide resin, benzoxazine resin, phenoxy resin and the like. These can be used alone or in combination of two or more. Among these, an epoxy resin is preferable from the viewpoint of dispersibility and adhesiveness of the thermally conductive filler (A).
  • the "epoxy resin” in the present specification also includes a non-polymerized or low molecular weight epoxy compound for convenience.
  • epoxy resin examples include glycidyl ethers of phenols such as bisphenol A, bisphenol F, resorcinol, phenylnovolac and cresolnovolac; glycidyl ethers of alcohols such as butanediol, polyethylene glycol and polypropylene glycol; phthalic acid and isophthalic acid.
  • Glycidyl ether of carboxylic acid such as tetrahydrophthalic acid
  • glycidyl type or alkyl glycidyl type epoxy resin in which active hydrogen bonded to a nitrogen atom such as aniline isocyanurate is replaced with a glycidyl group
  • vinylcyclohexanediepoxide 3,4-epoxycyclohexyl
  • Intramolecular carbon-carbon such as methyl-3,4-dicyclohexanecarboxylate, 2- (3,4-epoxy) cyclohexyl-5,5-spiro (3,4-epoxy) cyclohexane-m-dioxane, etc.
  • alicyclic epoxide in which an epoxy is introduced by oxidizing a double bond can be mentioned.
  • an epoxy resin having a biphenyl skeleton, a triphenylmethane skeleton, a dicyclopentadiene skeleton, a dicyclopentadiene skeleton, a naphthalene skeleton, an anthracene skeleton, or the like, or a polyfunctional epoxy resin can also be used.
  • These epoxy resins can be used alone or in combination of two or more.
  • thermosetting component (B) in the present embodiment it is preferable to use at least an epoxy resin having a ⁇ -conjugated mesogen skeleton from the viewpoint of dispersibility of the thermally conductive filler (A).
  • an epoxy resin having a ⁇ -conjugated mesogen skeleton an epoxy resin having a naphthalene skeleton or an epoxy resin having a biphenyl skeleton is preferable, and an epoxy resin having a naphthalene skeleton is particularly preferable.
  • the epoxy resin having a naphthalene skeleton for example, those represented by the following formula (1) are preferably mentioned.
  • n is an integer greater than or equal to 0.
  • the epoxy equivalent of the epoxy resin having the ⁇ -conjugated mesogen skeleton is preferably 100 g / eq or more, particularly preferably 150 g / eq or more, and further preferably 180 g / eq or more.
  • the epoxy equivalent is preferably 500 g / eq or less, particularly preferably 400 g / eq or less, and more preferably 300 g / eq or less.
  • the epoxy equivalent in the present specification is a value measured according to JIS K7236.
  • the softening point of the epoxy resin having the ⁇ -conjugated mesogen skeleton is preferably 40 ° C. or higher, particularly preferably 50 ° C. or higher, and further preferably 60 ° C. or higher.
  • the softening point is preferably 200 ° C. or lower, particularly preferably 150 ° C. or lower, and further preferably 120 ° C. or lower.
  • the softening point in the present specification is a value measured according to the measurement method by the ring-and-ball method described in JIS K7234: 1986.
  • thermosetting component (B) in the present embodiment it is preferable to use a phenolic glycidyl ether from the viewpoint of adjusting the adhesiveness and adhesiveness together with the above-mentioned epoxy resin having a ⁇ -conjugated mesogen skeleton.
  • a phenolic glycidyl ether examples include those described above, and among them, it is preferable to use a bisphenol F type epoxy resin.
  • the epoxy equivalent of the glycidyl ether of the above phenols is preferably 100 g / eq or more, particularly preferably 120 g / eq or more, and further preferably 150 g / eq or more.
  • the epoxy equivalent is preferably 500 g / eq or less, particularly preferably 400 g / eq or less, and more preferably 300 g / eq or less.
  • the content of the thermosetting component (B) in the adhesive resin composition R is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 15% by mass or more. It is preferable, more preferably 20% by mass or more.
  • the adhesive resin composition R can be sufficiently cured, and more excellent mechanical strength and adhesiveness can be exhibited.
  • the content is preferably 45% by mass or less, more preferably 40% by mass or less, particularly preferably 35% by mass or less, and further preferably 30% by mass or less. ..
  • the upper limit of the content of the thermosetting component (B) is as described above, the content of other components can be secured.
  • the blending ratio (mass standard) thereof is preferably 20:80 to 95: 5, and 40:60 to 90:
  • the ratio is more preferably 10, particularly preferably 50:50 to 85:15, and further preferably 60:40 to 80:20. This makes it possible to achieve a good balance between the dispersibility of the heat conductive filler (A) and the adhesiveness / adhesiveness of the adhesive film.
  • Binder polymer (C) The binder polymer (C) is blended for the purpose of forming the adhesive resin composition R into a film, giving an appropriate tack to the obtained adhesive film, and the like.
  • a binder polymer for example, an acrylic polymer, a polyester resin, a phenoxy resin, a urethane resin, a silicone resin, a rubber polymer and the like are used, and an acrylic polymer is particularly preferably used.
  • acrylic acid polymer examples include a (meth) acrylic acid ester polymer obtained by polymerizing a (meth) acrylic acid ester monomer and the like.
  • (meth) acrylic acid means both acrylic acid and methacrylic acid. The same applies to other similar terms.
  • the concept of "polymer” shall be included in “polymer”.
  • Examples of the monomer constituting the (meth) acrylate polymer include carbons of alkyl groups such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate. Examples thereof include (meth) acrylic acid alkyl esters having a number of 1 to 18, and functional group-containing monomers having a functional group in the molecule.
  • Examples of the functional group-containing monomer include a monomer having a hydroxyl group in the molecule (hydroxyl group-containing monomer), a monomer having a carboxy group in the molecule (carboxy group-containing monomer), and a monomer having an amino group in the molecule (amino group-containing monomer). ) And the like. These may be used alone or in combination of two or more.
  • the (meth) acrylic acid ester polymer used as the binder polymer (C) in the present embodiment is a copolymerization of a (meth) acrylic acid alkyl ester having an alkyl group having 1 to 18 carbon atoms and a functional group-containing monomer. It is preferable that it is an ester.
  • the number of carbon atoms of the alkyl group in the (meth) acrylic acid alkyl ester is preferably 1 to 9, particularly preferably 1 to 6, and further preferably 1 to 3.
  • methyl (meth) acrylate is particularly preferable, and methyl acrylate is most preferable.
  • a hydroxyl group-containing monomer is preferable.
  • the hydroxyl group-containing monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and (meth).
  • Acrylic acid (meth) Acrylic acid hydroxyalkyl esters such as 3-hydroxybutyl acrylate and 4-hydroxybutyl (meth) acrylic acid can be mentioned.
  • 2-hydroxyethyl (meth) acrylate is particularly preferable, and 2-hydroxyethyl acrylate is most preferable.
  • the thermally conductive filler (A) can be easily dispersed in the adhesive resin composition R.
  • the (meth) acrylic acid ester polymer obtained by copolymerizing the above (meth) acrylic acid alkyl ester and a functional group-containing monomer is used as the binder polymer (C), the (meth) acrylic acid ester polymer is contained.
  • the structural unit derived from the functional group-containing monomer is preferably contained in the range of 5 to 50% by mass, particularly preferably in the range of 8 to 30% by mass, and further preferably in the range of 10 to 20% by mass. It is preferably contained.
  • the weight average molecular weight of the acrylic polymer ((meth) acrylic acid ester polymer) as the binder polymer (C) is preferably 50,000 or more, more preferably 100,000 or more, and particularly preferably 150,000 or more. It is preferably present, and more preferably 200,000 or more.
  • the weight average molecular weight is preferably 1 million or less, more preferably 700,000 or less, particularly preferably 500,000 or less, and further preferably 400,000 or less. When the weight average molecular weight is in the above range, the film forming property and the adhesiveness become good, and the dispersibility of the heat conductive filler (A) becomes better.
  • the weight average molecular weight in the present specification is a value in terms of standard polystyrene measured by a gel permeation chromatography (GPC) method.
  • the glass transition temperature (Tg) of the acrylic polymer ((meth) acrylic acid ester polymer) as the binder polymer (C) is preferably ⁇ 20 ° C. or higher, more preferably ⁇ 15 ° C. or higher. It is preferable, particularly preferably ⁇ 10 ° C. or higher, and further preferably ⁇ 5 ° C. or higher.
  • the glass transition temperature (Tg) is preferably 60 ° C. or lower, more preferably 50 ° C. or lower, particularly preferably 40 ° C. or lower, and further preferably 35 ° C. or lower. ..
  • the glass transition temperature (Tg) of the (meth) acrylic acid ester polymer in the present specification is a value calculated based on the FOX formula.
  • the content of the binder polymer (C) in the adhesive resin composition R is preferably 1% by mass or more, more preferably 2% by mass or more, and particularly preferably 3% by mass or more. Further, it is preferably 4% by mass or more.
  • the content is preferably 60% by mass or less, more preferably 50% by mass or less, particularly preferably 45% by mass or less, and further preferably 40% by mass or less. ..
  • the adhesive resin composition R in the present embodiment preferably further contains a curing agent (D). Thereby, the adhesive resin composition R can be satisfactorily cured.
  • the curing agent (D) is not particularly limited as long as it can cure the thermosetting component (B) by heating, but phenols, amines, thiols and the like are preferably mentioned, and the above-mentioned thermosetting is preferable. It can be appropriately selected depending on the type of the sex component (B). For example, when an epoxy resin is used as the thermosetting component (B), phenols are preferable from the viewpoint of reactivity with the epoxy resin and the like.
  • thermally conductive filler (A) it is preferable to use a compound having a ⁇ -conjugated mesogen skeleton, and it is particularly preferable to use phenols having a ⁇ -conjugated mesogen skeleton.
  • phenols examples include bisphenol A, tetramethylbisphenol A, diallyl bisphenol A, biphenol, bisphenol F, diallyl bisphenol F, triphenylmethane type phenol, tetrakisphenol, novolak type phenol resin, cresol novolac resin, and biphenyl type phenol resin. And so on.
  • phenols having a conjugated mesogen skeleton include the above-mentioned biphenyl-type phenols. These can be used alone or in combination of two or more.
  • novolak-type phenol resin or biphenyl-type phenol resin is preferable, and it is particularly preferable to use both novolak-type phenol resin and biphenyl-type phenol resin in combination.
  • the hydroxyl group equivalent of the novolak type phenol resin is preferably 70 g / eq or more, particularly preferably 80 g / eq or more, and further preferably 90 g / eq or more.
  • the hydroxyl group equivalent is preferably 300 g / eq or less, particularly preferably 280 g / eq or less, and more preferably 250 g / eq or less. As a result, the curability of the epoxy resin becomes more excellent.
  • the hydroxyl group equivalent in the present specification is a value measured according to JIS K0070.
  • biphenyl type phenol resin for example, those represented by the following formulas (2) and (3) are preferably mentioned.
  • n is an integer of 1 or more.
  • the hydroxyl group equivalent of the biphenyl-type phenol resin is preferably 80 g / eq or more, particularly preferably 85 g / eq or more, and further preferably 90 g / eq or more.
  • the hydroxyl group equivalent is preferably 300 g / eq or less, particularly preferably 280 g / eq or less, and more preferably 250 g / eq or less. This prevents the inclusion of substances that inhibit the curing reaction that remain as unreactants during synthesis, such as elemental phenol, and makes the epoxy resin more excellent in curability.
  • the softening point of the novolak-type phenol resin and the biphenyl-type phenol resin is preferably 60 ° C. or higher, particularly preferably 80 ° C. or higher, and further preferably 90 ° C. or higher.
  • the softening point is preferably 200 ° C. or lower, particularly preferably 150 ° C. or lower, and further preferably 130 ° C. or lower.
  • its sublimation temperature is preferably 270 ° C. or higher.
  • the sublimation temperature is preferably 330 ° C. or lower.
  • the content of the curing agent (D) in the adhesive resin composition R is preferably 2% by mass or more, more preferably 4% by mass or more, and particularly preferably 5% by mass or more. Further, it is preferably 8% by mass or more.
  • the content is preferably 40% by mass or less, more preferably 35% by mass or less, particularly preferably 30% by mass or less, and further preferably 25% by mass or less. ..
  • the curability of the adhesive resin composition R becomes better.
  • the compounding ratio (mass standard) thereof is preferably 80:20 to 10:90, more preferably 70:30 to 20:80. It is preferable, particularly preferably 65:35 to 25:75, and further preferably 60:40 to 30:70. Thereby, the curability of the adhesive resin composition R and the dispersibility of the heat conductive filler (A) can be well balanced.
  • the adhesive resin composition R in the present embodiment preferably further contains a curing accelerator (E) that promotes or adjusts the reaction between the thermosetting component (B) and the curing agent (D) described above.
  • Examples of the curing accelerator (E) include tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, and tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole, and the like.
  • Imidazoles such as 2-phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole; tributylphosphine, diphenylphosphine, triphenylphosphine and the like.
  • Organic phosphins such as tetraphenylphosphonium tetraphenylborate and triphenylphosphine tetraphenylborate can be mentioned. These can be used alone or in admixture of two or more.
  • thermosetting component (B) thermosetting component (B) and phenols are used as the curing agent (D)
  • the content of the curing accelerator (E) in the adhesive resin composition R is preferably 0.0001% by mass or more, more preferably 0.001% by mass or more, and particularly 0.005% by mass.
  • the above is preferable, and more preferably 0.01% by mass or more.
  • the content is preferably 1.0% by mass or less, more preferably 0.5% by mass or less, particularly preferably 0.1% by mass or less, and further preferably 0.05% by mass. It is preferably mass% or less.
  • Various additives such as a tackifier, a flame retardant, an antioxidant, a light stabilizer, a softener, and a rust preventive are added to the adhesive resin composition in the present embodiment, if desired. can do.
  • the adhesive resin composition R in the present embodiment contains a heat conductive filler (A) composed of at least one of graphene having a two-dimensional structure and single-layer boron nitride, and a thermosetting component (a thermosetting component (A). It can be obtained by sufficiently mixing B), a binder polymer (C), a curing agent (D), a curing accelerator (E), an additive, and a solvent, if desired. If any of the above components is in the form of a solid, or if precipitation occurs when the components are mixed with other components in an undiluted state, the components may be used alone in advance as a solvent. It may be dissolved or diluted and then mixed with other ingredients.
  • the adhesive resin composition R in the present embodiment is prepared by mixing the thermally conductive filler (A) and the binder polymer (C) in advance in a solvent, and then further adding a thermosetting component (B), if desired. It is preferable to add a curing agent (D), a curing accelerator (E), an additive and the like.
  • a curing agent (D), a curing accelerator (E), an additive and the like By mixing the heat conductive filler (A) and the binder polymer (C) in advance before blending the thermosetting component (B) and the like, the dispersibility of the heat conductive filler (A) becomes better. , Segregation of the thermally conductive filler (A) in the coating film is suppressed. As a result, the heat conductive filler (A) is uniformly dispersed in the obtained adhesive film, and an adhesive film having better heat conductivity can be obtained.
  • the heat conductive filler (A) and the binder polymer (C) are preferably mixed in a solvent at a speed of 500 to 5000 rpm of the disper for 10 minutes or more, preferably at the same speed of 1000 to 40,000 rpm. It is more preferable to stir for 20 minutes or more.
  • the solvent is not particularly limited, and is, for example, an aliphatic hydrocarbon such as hexane, heptane, or cyclohexane, an aromatic hydrocarbon such as toluene or xylene, a halogenated hydrocarbon such as methylene chloride or ethylene chloride, methanol, or the like.
  • Alcohols such as ethanol, propanol, butanol, 1-methoxy-2-propanol, ketones such as acetone, methyl ethyl ketone, 2-pentanone, isophorone, cyclohexanone, esters such as ethyl acetate and butyl acetate, cellosolvent solvents such as ethyl cellosolve, N. , N-Dimethylformamide, trimethyl-2-pyrrolidone, butylcarbitol and the like are used, but methylethylketone is preferable.
  • the viscosity of the coating liquid of the adhesive resin composition R thus prepared is not particularly limited as long as it can be coated, and can be appropriately selected depending on the situation. It should be noted that the addition of the diluting solvent or the like is not a necessary condition, and the diluting solvent may not be added as long as the adhesive resin composition R has a viscosity and the like that can be coated.
  • the adhesive film according to the present embodiment is obtained by forming the adhesive resin composition R obtained above into a film.
  • a release sheet as a coating target.
  • the adhesive film according to the present embodiment can be easily produced by applying the coating liquid of the adhesive resin composition R to the release sheet and removing the diluting solvent by heating and drying.
  • Examples of the release sheet include a resin film, a non-woven fabric, and paper, but a resin film is generally used.
  • Examples of the resin film include polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene terephthalate film, polyethylene naphthalate film, and polybutylene terephthalate film.
  • Polyurethane film ethylene vinyl acetate film, ionomer resin film, ethylene / (meth) acrylic acid copolymer film, ethylene / (meth) acrylic acid ester copolymer film, polystyrene film, polycarbonate film, polyimide film, fluororesin film, etc. Is used. In addition, these crosslinked films are also used. Further, these laminated films may be used.
  • the peeling surface (the surface in contact with the adhesive resin composition R) of the peeling sheet is subjected to a peeling treatment.
  • the release agent used in the release treatment include alkyd-based, silicone-based, fluorine-based, unsaturated polyester-based, polyolefin-based, and wax-based release agents.
  • this peeling treatment is not always necessary.
  • the thickness of the release sheet is not particularly limited, but is usually about 20 to 150 ⁇ m.
  • the arithmetic average roughness (Ra) of the peeled surface of the peeled sheet is preferably 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less, and particularly preferably 0.01 ⁇ m or less. Since the arithmetic average roughness (Ra) of the peeling surface of the release sheet is as described above, even if the roughness of the release surface of the release sheet is transferred to the adhesive film, the arithmetic average roughness (Ra) of the adhesive film will be described later. It becomes easy to adjust to a preferable range.
  • the method for measuring the arithmetic mean roughness (Ra) in the present specification is as shown in a test example described later.
  • the coating liquid of the adhesive resin composition R is applied to the peeling surface of the release sheet.
  • the coating method for example, a bar coat method, a knife coat method, a roll coat method, a blade coat method, a die coat method, a gravure coat method and the like can be used.
  • the coating film of the adhesive resin composition R is dried and a diluting solvent or the like is volatilized to obtain an adhesive film.
  • the drying conditions are preferably 90 to 150 ° C. for 0.5 to 30 minutes, and particularly preferably 100 to 120 ° C. for 1 to 10 minutes.
  • the heating temperature of the drying treatment needs to be lower than the thermosetting temperature of the adhesive resin composition R.
  • the protective film the same one as the above-mentioned release sheet mainly composed of the resin film can be used.
  • the protective film may or may not be peeled off as long as it has peelability with respect to the adhesive film.
  • the adhesive film (laminated body) obtained as described above is preferably heat-pressed.
  • the voids existing inside the adhesive film can be reduced, and the thermal conductivity becomes more excellent.
  • the heat press makes it easier for the heat conductive fillers (A) to come into contact with each other, makes it easier for the heat conduction path to be formed, and makes the heat conductivity more excellent.
  • the amount of the heat conductive filler (A) blended in the adhesive film can be further reduced, and the flexibility and adhesiveness of the adhesive film can be further improved.
  • the heating temperature of the hot press shall be lower than the curing reaction temperature of the thermosetting component (B). Specifically, it is preferably 30 to 90 ° C, more preferably 40 to 80 ° C, particularly preferably 45 to 70 ° C, and further preferably 45 to 60 ° C.
  • the pressure of the hot press is preferably 0.5 to 15 MPa, more preferably 1 to 10 MPa, particularly preferably 1.5 to 5 MPa, and further preferably 2 to 4 MPa.
  • the heat pressing time is preferably 0.5 to 60 minutes, more preferably 1 to 50 minutes, particularly preferably 2 to 40 minutes, and further preferably 3 to 30 minutes. ..
  • the thickness of the adhesive film (including the adhesive film that has not been heat-pressed and the adhesive film that has been heat-pressed) according to this embodiment is the thickness (value measured according to JIS K7130).
  • the lower limit is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, particularly preferably 5 ⁇ m or more, and further preferably 10 ⁇ m or more. When the lower limit of the thickness of the adhesive film is the above, it is easy to exhibit good adhesive force and adhesive force.
  • the thickness of the adhesive film according to the present embodiment is preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, particularly preferably 200 ⁇ m or less, and further preferably 100 ⁇ m or less as an upper limit value. Is preferable. When the upper limit of the thickness of the adhesive film is the above, the thermal conductivity becomes better.
  • the adhesive film may be formed as a single layer, or may be formed by laminating a plurality of layers.
  • the arithmetic mean roughness (Ra) of at least one surface of the adhesive film is preferably 0.5 ⁇ m or less, preferably 0.4 ⁇ m or less. It is more preferably present, particularly preferably 0.35 ⁇ m or less, and further preferably 0.3 ⁇ m or less.
  • the upper limit of the arithmetic average roughness (Ra) of the adhesive film is the above, the adhesiveness to the adherend, that is, the temporary adhesiveness becomes more excellent, and the handleability becomes good. Further, since the contact area with the adherend becomes large, the thermal conductivity with the adherend becomes more excellent.
  • the thermally conductive filler (A) segregates on the surface of the adhesive film, and the resin component is not present on the surface of the adhesive film at all, or even if it is present. It may be in trace amounts. As a result, the temporary adhesiveness may be insufficient when attached to the adherend.
  • the arithmetic mean roughness (Ra) of the adhesive film is preferably 0.01 ⁇ m or more, more preferably 0.02 ⁇ m or more, particularly preferably 0.03 ⁇ m or more, and further preferably 0. It is preferably 05 ⁇ m or more.
  • the thermally conductive filler (A) segregates on the surface of the adhesive film, the arithmetic mean roughness (Ra) tends to increase. Since the lower limit of the arithmetic average roughness (Ra) of the adhesive film is as described above, it can be said that the heat conductive filler (A) is present on the surface of the adhesive film, and the heat between the adhesive film and the adherend can be said to be present. The conductivity will be better.
  • Adhesive strength of the adhesive film (including the adhesive film that has not been hot-pressed and the adhesive film that has been hot-pressed) to a silicon wafer is 0.1 mN / It is preferably 25 mm or more, more preferably 0.5 mN / 25 mm or more, particularly preferably 0.8 mN / 25 mm or more, and further preferably 1.0 mN / 25 mm or more. As a result, it adheres well to the adherend and can exhibit excellent temporary adhesiveness.
  • the upper limit of the adhesive strength is not particularly limited, but is usually preferably 5.0 mN / 25 mm or less, more preferably 3.0 mN / 25 mm or less, and particularly preferably 2.5 mN / 25 mm or less. It is preferably 2.0 mN / 25 mm or less. As a result, the reworkability is excellent.
  • the adhesive strength in the present specification basically refers to the adhesive strength measured by the 180-degree peeling method according to JIS Z0237: 2009, and the specific measuring method is as shown in the test example described later. ..
  • the adhesive film with a support sheet is laminated with the above-mentioned adhesive film (including a heat-pressed adhesive film and a heat-pressed adhesive film) on at least one surface side of the adhesive film. It is equipped with a support sheet. The support sheet may be peeled off from the adhesive film in the future.
  • the processability of the adherend can be improved.
  • the adhesive film with a support sheet is attached to one adherend, processed in that state, and then the support sheet is peeled off.
  • a process such as attaching an adhesive film to another adherend can be performed.
  • FIG. 1 shows an adhesive film with a support sheet as an example in this embodiment.
  • the adhesive film 2 with a support sheet shown in FIG. 1 includes an adhesive film 1, a support sheet 11 laminated on one surface of the adhesive film 1 (upper surface in FIG. 1), and the other of the adhesive film 1. It is configured to include a release sheet 12 laminated on a surface (lower surface in FIG. 1).
  • the release sheet 12 is laminated on the adhesive film 1 so that its peelable surface is in contact with the adhesive film 1.
  • the release sheet 12 protects the adhesive film 1 until the adhesive film 1 is used, and may be omitted.
  • a protective film may be laminated instead of the release sheet 12.
  • the support sheet 11 is not particularly limited as long as it can exhibit sufficient mechanical strength to support the adhesive film 1.
  • Examples of the material constituting the support sheet 11 include a resin film, a non-woven fabric, and paper, and a resin film is generally used.
  • the resin film examples include a polyethylene film such as a low density polyethylene (LDPE) film, a linear low density polyethylene (LLDPE) film, and a high density polyethylene (HDPE) film, a polypropylene film, an ethylene-propylene copolymer film, and a polybutene.
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • HDPE high density polyethylene
  • Polyolefin films such as films, polybutadiene films, polymethylpentene films, ethylene-norbornene copolymer films, norbornene resin films; ethylene-vinyl acetate copolymer films, ethylene- (meth) acrylic acid copolymer films, ethylene- Ethylene-based copolymer film such as (meth) acrylic acid ester copolymer film; polyvinyl chloride-based film such as polyvinyl chloride film and vinyl chloride copolymer film; polyester-based film such as polyethylene terephthalate film and polybutylene terephthalate film.
  • the support sheet 11 may be a release sheet.
  • the support sheet 11 may be, for example, one in which a known pressure-sensitive adhesive layer is provided on the above-mentioned resin film, non-woven fabric, paper, or the like.
  • the thickness of the support sheet 11 is preferably 20 ⁇ m or more, particularly preferably 40 ⁇ m or more, and further preferably 60 ⁇ m or more.
  • the thickness is preferably 150 ⁇ m or less, particularly preferably 120 ⁇ m or less, and further preferably 110 ⁇ m or less.
  • the support sheet 11 tends to have the desired mechanical strength, and the adherend workability and the like are good.
  • the adhesive film 2 with a support sheet may be a dicing / die bonding sheet used when manufacturing a semiconductor device.
  • the adhesive film 2 with a support sheet can be used in the steps of dicing and dicing the semiconductor element, and the cured product of the adhesive film is for releasing the heat generated when the semiconductor device is driven to the outside world.
  • the support sheet 11 is preferably provided with, for example, a known pressure-sensitive adhesive layer on the surface of the resin film described above on the side of the adhesive film 1.
  • the release sheet may be peeled off from the above-mentioned laminate made of the release sheet / adhesive film / protective film and the support sheet may be laminated, or the above-mentioned release sheet / adhesion may be performed.
  • the protective film may be peeled off from the laminate made of the film / protective film and the support sheet may be laminated, or the support sheet may be used instead of the protective film in the above-mentioned method for producing an adhesive film.
  • the cured product according to the embodiment of the present invention is one in which the above-mentioned adhesive film is cured by heat treatment, and preferably the above-mentioned adhesive film after hot pressing is cured by heat treatment.
  • Area ratio of void portion The area ratio of the void portion in the thickness direction cross section of the cured product in the present embodiment is preferably 10% or less, more preferably 7% or less, and particularly 5%. It is preferably less than or equal to, and more preferably 4% or less. When the area ratio of the void portion is 10% or less, the heat conductive fillers (A) are in more contact with each other, the heat conduction path is formed at a high density, and the heat conductivity becomes more excellent. ..
  • the lower limit of the area ratio is not particularly limited, and the most preferable value is 0%.
  • the method for deriving the area ratio of the void portion is as shown in the test example described later.
  • the maximum area of the void portion in the cross section in the thickness direction of the cured product in the present embodiment is preferably 100 ⁇ m 2 or less, more preferably 80 ⁇ m 2 or less, and particularly 60 ⁇ m 2 or less. It is preferably 50 ⁇ m 2 or less.
  • the heat conductive fillers (A) are in more contact with each other, the heat conduction path is formed at a high density, and the heat conductivity becomes more excellent. ..
  • the lower limit of the maximum area is not particularly limited, and most preferably 0 ⁇ m 2 .
  • the method for deriving the maximum area of the void portion is as shown in a test example described later.
  • the thermal conductivity of the cured product in the present embodiment is preferably 4 W / mK or more, and particularly preferably 5 W / mK or more. As a result, it can be said that the cured product has excellent thermal conductivity.
  • the cured product according to the present embodiment can achieve such a high thermal conductivity because the adhesive film has the above-mentioned structure.
  • the method for measuring the thermal conductivity in the present specification is as shown in a test example described later.
  • an adhesive film (preferably an adhesive film after hot pressing) is heat-treated and finally completely cured.
  • the adhesive film is subjected to thermal weight measurement under the condition that the temperature of the adhesive film before any heat treatment is raised from 40 ° C. to 400 ° C. at a temperature rise rate of 10 ° C./min in an air atmosphere.
  • the adhesive film is completely cured by a rapid heat treatment, the small molecule components in the adhesive film volatilize and foam due to heating, and voids are likely to be formed inside the adhesive film.
  • the heat treatment includes the above steps
  • foaming is suppressed because the small molecule component is taken into the matrix of the thermosetting component (B), the binder polymer (C) and the like and trapped before it volatilizes. This will reduce the voids in the adhesive film.
  • the area ratio and the maximum area of the above-mentioned void portion become preferable numerical values, and the thermal conductivity of the cured product becomes more excellent.
  • the preheating temperature is preferably 1 to 50 ° C. lower than the temperature at which the adhesive film loses weight by 0.5%, particularly preferably 10 to 40 ° C., and further preferably 15 to 30 ° C.
  • the lower limit of the preheating temperature is preferably 80 ° C. or higher, particularly 90 ° C. or higher, and more preferably 100 ° C. or higher.
  • the above preheating step is preferably performed for 30 minutes or more, particularly preferably 30 to 120 minutes, and further preferably 30 to 60 minutes.
  • the heat treatment is performed by performing the preheating step and then performing a complete curing step at a heating temperature at which the adhesive film is completely cured.
  • the heating temperature in the complete curing step needs to be higher than the above-mentioned preheating temperature, preferably 5 to 100 ° C. higher than the preheating temperature, particularly preferably 10 to 70 ° C., and further. It is preferably 20 to 50 ° C. higher.
  • the heating temperature in the complete curing step is preferably 85 to 200 ° C, particularly preferably 100 to 190 ° C, and further preferably 120 to 180 ° C.
  • the above-mentioned complete curing step is preferably performed for 30 to 180 minutes, particularly preferably 45 to 150 minutes, and further preferably 60 to 120 minutes.
  • the cured product according to the present embodiment may exist as a single substance, but usually exists in a state of being in contact with one or more members to be thermally conducted.
  • FIG. 2 shows a structure as an example in this embodiment.
  • the structure 3 shown in FIG. 2 includes a first member 31, a second member 32, and a cured body 1A provided between the first member 31 and the second member 32.
  • the cured product 1A is a product obtained by completely curing the above-mentioned adhesive film (adhesive film 1; including a heat-pressed adhesive film and a heat-pressed adhesive film) by the above-mentioned heat treatment.
  • the first member 31 and the second member 32 are fixed to each other by the adhesiveness of the cured body 1A (adhesive film).
  • the shapes of the first member 31 and the second member 32 in the present embodiment are not particularly limited, but may be a flexible sheet shape, a plate shape, a block shape, or the like. There may be.
  • the first member 31 (or the second member 32) in the present embodiment is not particularly limited, but for example, a member that generates heat as a result of exerting a predetermined function but is required to suppress a temperature rise, or the member generates heat.
  • a member (heat generating member) that is required to control the flow of heat in a specific direction is preferable.
  • the second member 32 (or the first member 31) is not particularly limited, but a member that dissipates heat received or a member that transfers the received heat to another member (heat transfer member) is preferable. .. Since the cured body 1A in the present embodiment has excellent thermal conductivity, for example, heat for conducting heat of the generated first member 31 to the second member 32 and releasing the heat to the outside world. Functions as a conductive material.
  • the heat generating member examples include thermoelectric conversion devices, photoelectric conversion devices, semiconductor devices such as large-scale integrated circuits, electronic devices such as LED light emitting elements, optical pickups, and power transistors, and various electronic devices such as mobile terminals and wearable terminals. Examples include batteries, batteries, motors, engines, etc.
  • the heat transfer member is preferably made of a highly conductive material, for example, a metal such as aluminum, stainless steel or copper, graphite, carbon nanofibers or the like.
  • the form of the heat transfer member may be any of a substrate, a housing, a heat sink, a heat spreader, and the like, and is not particularly limited.
  • one side of the adhesive film described above is attached to the first member 31 (or the second member 32), and then the other side of the adhesive film is attached. It is attached to the second member 32 (or the first member 31).
  • the adhesive film 2 with a support sheet described above is used, the release sheet 12 is peeled off, one surface of the exposed adhesive film 1 is attached to the first member 31 (or the second member 32), and then the exposed adhesive film 1 is attached.
  • the support sheet 11 may be peeled off, and the other surface of the exposed adhesive film 1 may be attached to the second member 32 (or the first member 31).
  • the adhesive film used to manufacture the structure 3 according to the present embodiment may be either a heat-pressed adhesive film or a heat-pressed adhesive film, but a heat-pressed adhesive film is used. Is preferable. Further, after the adhesive film is attached to the first member 31 (or the second member 32) using an adhesive film that has not been heat-pressed, or through the adhesive film, the first member 31 and the first member 31 The adhesive film may be hot-pressed after being bonded to the member 32 of 2. However, if an adhesive film that has been heat-pressed in advance is used, it is possible to prevent the first member 31 and / or the second member 32 from being damaged by the heat press.
  • any method is used when the first member 31 and the second member 32 are attached to each other via the adhesive film, or when the adhesive film is attached to the first member 31 or the second member 32.
  • the temperature is higher than the temperature showing the peak of loss tangent (tan ⁇ ) obtained by measuring the viscoelasticity of the adhesive film before heat treatment (hereinafter sometimes referred to as “tan ⁇ peak temperature”) (hereinafter referred to as “pasting treatment temperature”). There is.), It is preferable to perform the above-mentioned bonding or pasting. By affixing or affixing at such a temperature, the adhesive film becomes flexible, and it is possible to more effectively suppress the entrainment of air between the adhesive film and the adherend. The thermal conductivity between can be made better.
  • the method for measuring the viscoelasticity of the adhesive film is as shown in a test example described later.
  • the first member 31 is a flexible sheet-like member, and when the laminated body of the sheet-like member and the adhesive film is attached to the second member 32, or when the adhesive film 2 with a support sheet is attached to the first member. When it is attached to the member 31 or the second member 32, the above-mentioned air entrainment suppressing effect becomes more excellent. Since the laminated body of the sheet-like member and the adhesive film and the adhesive film 2 with a support sheet are flexible and easy to bend, they can be gradually brought into close contact with the adherend from one direction to the other, and air is pushed out. This is because it can be pasted while.
  • the above-mentioned pasting treatment temperature is preferably 0 to 50 ° C. higher than the tan ⁇ peak temperature, particularly preferably 2 to 30 ° C., and further preferably 5 to 20 ° C.
  • the upper limit of the above-mentioned application processing temperature needs to be lower than the curing temperature of the adhesive film, specifically, it is preferably 120 ° C. or lower, particularly preferably 100 ° C. or lower, and further. It is preferably 90 ° C. or lower.
  • one side of the adhesive film is attached to the first member 31 (or the second member 32), and the other side of the adhesive film is attached to the second member 32 (or the first member 31).
  • the heat treatment for producing the cured body of the adhesive film described above is performed to completely cure the adhesive film to obtain a cured body 1A, and the structure 3 according to the present embodiment is obtained.
  • the release sheet 12 laminated on the adhesive film 1 may be omitted.
  • the shapes of the first member and the first member in the structure are not limited to those shown in FIG. 2, and may be various shapes.
  • Example 1 The following components (a) and (c) are mixed and diluted with methyl ethyl ketone so that the solid content concentration becomes 15% by mass, and the mixture is stirred with a disper at a rotation speed of 3000 rpm for 30 minutes or more to dissolve and disperse. rice field.
  • the following components (b-1), (b-2), (d-1), (d-2) and (e) are added thereto, and the total solid content concentration is 21% by mass.
  • Methyl ethyl ketone was added so as to be.
  • This mixed solution was stirred with a rotating / revolving mixer (manufactured by Shinky Co., Ltd., product name "AR-100”) for 10 minutes to obtain a coating liquid for an adhesive resin composition.
  • each component in this adhesive resin composition is 30.01% by mass for the component (a), 34.95% by mass for the component (c), and 16 for the component (b-1). .56% by mass, (b-2) component is 7.23% by mass, (d-1) component is 5.61% by mass, (d-2) component is 5.61% by mass, and (e) component is 0. It was 0.03% by mass.
  • Thermosetting component Solid epoxy resin having a naphthalene skeleton represented by the following formula (1) (manufactured by Nippon Kayaku Co., Ltd., product name "NC-7000L", epoxy equivalent 223 to 238 g / eq, ICI viscosity (150 ° C.) 0.50 to 1.00 Pa ⁇ s, softening point 83 to 93 ° C.) dissolved in methyl ethyl ketone (solid content concentration 70% by mass) (In the formula, n is an integer greater than or equal to 0.)
  • Thermosetting component Bisphenol F type liquid epoxy resin (manufactured by Mitsubishi Chemical Corporation, product name "YL983U”, epoxy equivalent 165 to 175 g / eq, viscosity (25 ° C.) 3.0 to 6.0 Pa ⁇ s )
  • Binder polymer Acrylic acid ester polymer (manufactured by Mitsubishi Chemical Co., Ltd., product name "Corponil N-4617", obtained by copolymerizing 85 parts by mass of methyl acrylate and 15 parts by mass of 2-hydroxyethyl acrylate. Copolymer, weight average molecular weight: 300,000, glass transition temperature: 6 ° C) dissolved in a 1: 1 mixed solvent of ethyl acetate and toluene (solid content concentration 36% by mass)
  • (D-2) Hardener A biphenyl-type phenol compound represented by the following formula (3) (manufactured by Honshu Chemical Industry Co., Ltd., product name "BP", hydroxyl group equivalent 93.1 g / eq, sublimation temperature 283 ° C.) with methyl ethyl ketone. Dissolved (solid content concentration 10% by mass)
  • a release sheet (manufactured by Lintec Corporation, product name "SP-PET3811 (S)", peeled off by peeling off one side of a polyethylene terephthalate film with a silicone-based release agent from the coating liquid of the adhesive resin composition obtained in the above step.
  • an adhesive film with a release sheet was attached to the release-treated surface of the protective film (manufactured by Lintec Corporation, product name "SP-PET3811 (S)") in which one side of the polyethylene terephthalate film was peeled off with a silicone-based release agent.
  • SP-PET3811 (S) silicone-based release agent
  • the laminated body obtained above is cut into 4 cm ⁇ 4 cm, and a pressure of 3.0 MPa is applied to the laminated body at 50 ° C. for 30 minutes using a screw type heating press device to heat the adhesive film. Pressed.
  • Example 2 In the hot press, an adhesive film (after hot pressing) was manufactured in the same manner as in Example 1 except that the pressure applied by the screw type hot press device was 2.5 MPa.
  • Example 3 In Test Example 4, which will be described later, the temperature at which the adhesive film after the hot pressing of Example 1 was attached to the silicon wafer was set to 75 ° C. was designated as Example 3.
  • Comparative Example 1 In Test Example 6 to be described later, the adhesive film after the hot pressing of Example 1 was directly heat-treated at 175 ° C. for 3 hours (complete curing step) without performing the preheating step, and was referred to as Comparative Example 1.
  • an adhesive film (also referred to as “adhesive film after hot press” for convenience) was produced in the same manner as in Example 1 except that the pressure applied by the screw type heat press device was 0 MPa.
  • thermoly conductive filler instead of graphene in Example 1, spherical alumina particles (manufactured by Showa Denko KK, product name "CB-P05J", average particle diameter 5.0 ⁇ m, aspect ratio: 1.1, specific gravity). : 3.98 g / cm 3 ) was used, and an adhesive film was produced in the same manner as in Example 1.
  • Comparative Example 5 In Test Example 6 to be described later, the adhesive film after the hot pressing of Comparative Example 3 was directly heat-treated at 175 ° C. for 3 hours (complete curing step) without performing the preheating step, and was designated as Comparative Example 5.
  • Comparative Example 6 In Test Example 4, which will be described later, the temperature at which the adhesive film after hot pressing of Comparative Example 3 was attached to the silicon wafer was set to room temperature (RT) was designated as Comparative Example 6.
  • the temperature of the adhesive film before hot pressing obtained in Examples 1 to 3 and Comparative Examples 1 to 3, 5 to 6 was 147 ° C., and the temperature was 147 ° C. before the hot pressing obtained in Comparative Example 4.
  • the temperature of the adhesive film was 151 ° C.
  • the temperature of the adhesive film before hot pressing obtained in Examples 1 to 3 and Comparative Examples 1 and 2 was 73 ° C.
  • the temperature was 73 ° C. before the hot pressing obtained in Comparative Examples 3 and 5 to 6.
  • the temperature of the adhesive film was 71 ° C.
  • the temperature of the adhesive film before hot pressing obtained in Comparative Example 4 was 75 ° C.
  • OMCL-AC240TS-C3 (resonance frequency; 55-65 kHz, spring constant; about 2 N / m 2 ) manufactured by Olympus was used.
  • the arithmetic average roughness (Ra) of the peeled surface of the peeled sheet was 0.002 ⁇ m.
  • a release-treated surface of a release film manufactured by Lintec Corporation, product name "SP-PET38131", thickness 38 ⁇ m
  • the obtained laminate was cut into 4 cm ⁇ 4 cm together with the release film, and heat-pressed under the conditions of each example. Then, this was cut together with the release film to obtain a sample for measuring adhesive strength having a width of 25 mm and a length of 40 mm.
  • a silicon wafer manufactured by Science and Technology Research Institute, diameter: 150 mm, thickness: 500 ⁇ m
  • the release film of the adhesive force measurement sample was peeled off, and the exposed surface of the adhesive film was attached to the treated surface of the silicon wafer to obtain a laminate composed of the silicon wafer and the adhesive force measurement sample.
  • the temperature at the time of this application was 80 ° C. (Examples 1 to 2 and Comparative Examples 1 to 5), 75 ° C. (Example 3) or room temperature (Comparative Example 6).
  • JIS Z0237: 2000 was used using a universal tensile tester (manufactured by Instron, product name "5581 type tester”).
  • a 180 ° peeling test was conducted at a peeling speed of 300 mm / min. The load at the time of this 180 ° peeling was measured, and the measured value was taken as the adhesive force (N / 25 mm). The results are shown in Table 1.
  • Test Example 5 ⁇ Evaluation of temporary adhesiveness> The laminate obtained in Test Example 4 was observed, and the temporary adhesiveness was evaluated based on the following criteria. The results are shown in Table 1. ⁇ : The sample for measuring the adhesive strength adhered to the adherend, and there was no air entrainment at the interface. ⁇ : A sample for measuring adhesive strength adhered to the adherend, and air entrainment was confirmed at the interface. X: The sample for measuring the adhesive strength did not adhere to the adherend.
  • a film having a thickness of about 30 nm is applied to the cross section of the cured body of the above adhesive film using a sputtering device (manufactured by Vacuum Device Co., Ltd., product name "MSP-20-UM magnetron sputtering"), targeting Pt-Pd. Was coated and antistatic treated.
  • a sputtering device manufactured by Vacuum Device Co., Ltd., product name "MSP-20-UM magnetron sputtering
  • Six images of the cross section of the cured product were taken using a scanning electron microscope (SEM) device (manufactured by KEYENCE, product name "VE-9800"). The imaging conditions were an acceleration voltage of 8 kV and a magnification of 1000 times.
  • SEM scanning electron microscope
  • FIG. 4 shows a binarized SEM image of a cross section of the cured body of the adhesive film of Example 1 shown in FIG.
  • the black part is the void part.
  • the binarized image is used, the total area of the void portion is divided by the area of the entire cross section of the adhesive film obtained from the SEM image, and further, from the average value of the six SEM images. I asked. The results are shown in Table 1.
  • the value was determined by comparing with the actual SEM observation image. Further, the binarized image was compared with the original SEM image, and the portion not corresponding to the void portion was appropriately excluded.
  • FIG. 5 shows an SEM image of a cross section of the cured body of the adhesive film of Comparative Example 2.
  • FIG. 6 shows a binarized SEM image shown in FIG.
  • the cured products of the adhesive films produced in Examples 1 to 3 had excellent thermal conductivity. Further, the adhesive films of Examples 1 to 3 were also excellent in temporary adhesiveness.
  • the adhesive film and the cured product according to the present invention can be suitably used for cooling the electronic device by interposing it between the heat-generating electronic device and the heat-dissipating substrate or heat sink, for example.
  • the structure according to the present invention is useful as, for example, a structure including an electronic device that generates heat and a heat-dissipating substrate or heat sink.
  • Adhesive film 11 ... Support sheet 12 . Release sheet 2 . Adhesive film with support sheet 3 ... Structure 1A ... Cured body of adhesive film 31 ... First member 32 . Second member

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

An adhesive film 1 which is formed of an adhesive resin composition that contains (A) a thermally conductive filler that is composed of at least one of a graphene having a two-dimensional structure and a single-walled boron nitride, (B) a thermosetting component and (C) a binder polymer, and which is used in a heating process that comprises a preliminary heating step and a complete curing step wherein the adhesive film 1 is completely cured after the preliminary heating step. In the preliminary heating step, the adhesive film 1 is held at a temperature that is not more than the temperature (T) descried below for 30 minutes or more. Temperature (T): a temperature at which the adhesive film 1 has a 0.5% weight loss if an adhesive film 1 before an arbitrary heating process is subjected to a thermogravimetric measurement wherein the adhesive film 1 is heated from 40°C to 400°C at a heating rate of 10°C/minute in the ambient atmosphere This adhesive film 1 exhibits excellent thermal conductivity.

Description

接着フィルム、支持シート付き接着フィルム、硬化体、および構造体の製造方法Method for manufacturing adhesive film, adhesive film with support sheet, cured product, and structure
 本発明は、熱伝導性に優れた接着フィルムおよびその製造方法、支持シート付き接着フィルム、硬化体およびその製造方法、ならびに構造体の製造方法に関するものである。 The present invention relates to an adhesive film having excellent thermal conductivity and a method for producing the same, an adhesive film with a support sheet, a cured product and a method for producing the same, and a method for producing a structure.
 従来より、熱電変換デバイス、光電変換デバイス、大規模集積回路等の半導体デバイスなどの電子デバイス等において、発熱した熱を逃がすために、熱伝導性を有する放熱部材が用いられている。例えば、半導体デバイスから発生する熱を効率良く外部に放熱するための方法として、半導体デバイスとヒートシンクとの間に、熱伝導性に優れるシート状の放熱部材(フィルム,シート)を設けることが行われている。 Conventionally, in electronic devices such as thermoelectric conversion devices, photoelectric conversion devices, and semiconductor devices such as large-scale integrated circuits, heat-dissipating members having thermal conductivity have been used in order to dissipate heat generated. For example, as a method for efficiently radiating heat generated from a semiconductor device to the outside, a sheet-shaped heat radiating member (film, sheet) having excellent thermal conductivity is provided between the semiconductor device and the heat sink. ing.
 上記のようなフィルムまたはシートは、特許文献1に例示されるように、粘着性樹脂、無機フィラー、硬化剤および溶剤を含有する放熱材料の塗布液を、剥離シートや基材に塗工し、乾燥することにより製造される。上記無機フィラーとしては、シリカ、アルミナ、ガラス、酸化チタン等が使用されている。 As exemplified in Patent Document 1, the above-mentioned film or sheet is coated with a coating liquid of a heat-dissipating material containing an adhesive resin, an inorganic filler, a curing agent and a solvent on a release sheet or a base material. Manufactured by drying. As the inorganic filler, silica, alumina, glass, titanium oxide and the like are used.
特開2015-67713号公報JP-A-2015-67713
 しかし、従来の無機フィラーを含有するフィルムやシートは、必ずしも所望の熱伝導性が得られない場合があった。そのため、さらに熱伝導性が優れたものが要求されている。ここで、従来の無機フィラーを含有するフィルムやシートは、高い熱伝導性を得るために無機フィラーを高充填すると、機械的に脆くなり、柔軟性が低下し、使用時に破損屑が発生するなどの工程上の不具合が発生したりする場合があった。また、シート状の放熱部材の表面粗度が大きくなることでタックが発現し難くなり、被着体へ貼付する時の仮接着性が得られない場合があったり、シート状の放熱部材を被着体へ貼付する時に空気を巻き込みやすくなり、シート状の放熱部材と被着体との接着界面やシート状の放熱部材の内部に多くの空隙ができ、熱伝導性が低下する場合があった。 However, conventional films and sheets containing inorganic fillers may not always obtain the desired thermal conductivity. Therefore, those having further excellent thermal conductivity are required. Here, when a conventional film or sheet containing an inorganic filler is highly filled with the inorganic filler in order to obtain high thermal conductivity, it becomes mechanically brittle, its flexibility is lowered, and broken debris is generated during use. In some cases, problems in the process may occur. In addition, the surface roughness of the sheet-shaped heat-dissipating member becomes large, which makes it difficult for tack to occur, and temporary adhesiveness may not be obtained when the sheet-shaped heat-dissipating member is attached to the adherend, or the sheet-shaped heat-dissipating member is covered. When affixed to the body, it becomes easy for air to be entrained, and many voids are created at the adhesive interface between the sheet-shaped heat dissipation member and the adherend and inside the sheet-shaped heat radiation member, which may reduce thermal conductivity. ..
 本発明は、このような実状に鑑みてなされたものであり、熱伝導性に優れた接着フィルムおよびその製造方法、支持シート付き接着フィルム、硬化体およびその製造方法、ならびに構造体の製造方法を提供することを目的とする。 The present invention has been made in view of such an actual situation, and provides an adhesive film having excellent thermal conductivity and a method for producing the same, an adhesive film with a support sheet, a cured product and a method for producing the same, and a method for producing a structure. The purpose is to provide.
 上記目的を達成するために、第1に本発明は、二次元構造を有するグラフェンおよび単層窒化ホウ素の少なくとも1種からなる熱伝導性フィラー(A)と、熱硬化性成分(B)と、バインダーポリマー(C)とを含有する接着性樹脂組成物からなる接着フィルムであって、予備加熱工程と、前記予備加熱工程後に前記接着フィルムを完全硬化させる完全硬化工程とを含む加熱処理を行うように用いられ、前記予備加熱工程が、下記の温度(T)以下の温度で30分以上保持する工程であることを特徴とする接着フィルムを提供する(発明1)。
 温度(T):任意の加熱処理をする前の前記接着フィルムについて、大気雰囲気下10℃/分の昇温速度で40℃から400℃まで昇温する条件の熱重量測定を行い、前記接着フィルムが0.5%重量減少する温度。
In order to achieve the above object, firstly, the present invention comprises a heat conductive filler (A) composed of at least one of a graphene having a two-dimensional structure and a single-layer boron nitride, a heat-curable component (B), and a heat-curable component (B). An adhesive film made of an adhesive resin composition containing a binder polymer (C), which is subjected to a heat treatment including a preheating step and a complete curing step of completely curing the adhesive film after the preheating step. (Invention 1), wherein the preheating step is a step of holding the preheating step at a temperature of the following temperature (T) or lower for 30 minutes or more (Invention 1).
Temperature (T): The adhesive film before any heat treatment was subjected to thermal weight measurement under the condition of raising the temperature from 40 ° C. to 400 ° C. at a heating rate of 10 ° C./min under an atmospheric atmosphere, and the adhesive film was measured. The temperature at which the weight is reduced by 0.5%.
 上記発明(発明1)に係る接着フィルムは、上記の特定の熱伝導性フィラー(A)を含有することにより、そして上記の用途で使用することにより、熱伝導性に優れたものとなる。 The adhesive film according to the above invention (Invention 1) has excellent thermal conductivity by containing the above-mentioned specific heat conductive filler (A) and by using it in the above-mentioned applications.
 第2に本発明は、二次元構造を有するグラフェンおよび単層窒化ホウ素の少なくとも1種からなる熱伝導性フィラー(A)と、熱硬化性成分(B)と、バインダーポリマー(C)とを含有する接着性樹脂組成物からなる接着フィルムであって、前記接着フィルムを下記の条件で加熱処理して得られる硬化体の厚さ方向断面における空隙部分の面積割合が10%以下であることを特徴とする接着フィルムを提供する(発明2)。
(条件)
 前記加熱処理は、予備加熱工程と、前記予備加熱工程後に前記接着フィルムを完全硬化させる完全硬化工程とを含み、前記予備加熱工程は、任意の加熱処理をする前の前記接着フィルムについて大気雰囲気下10℃/分の昇温速度で40℃から400℃まで昇温する条件の熱重量測定を行ったときに前記接着フィルムが0.5%重量減少する温度以下の温度で30分以上保持する工程である。
Secondly, the present invention contains a thermally conductive filler (A) composed of at least one of a graphene having a two-dimensional structure and a single-layer boron nitride, a thermosetting component (B), and a binder polymer (C). An adhesive film made of an adhesive resin composition, wherein the area ratio of the void portion in the thickness direction cross section of the cured product obtained by heat-treating the adhesive film under the following conditions is 10% or less. (Invention 2).
(conditions)
The heat treatment includes a preheating step and a complete curing step of completely curing the adhesive film after the preheating step, and the preheating step includes an atmospheric atmosphere for the adhesive film before any heat treatment. A step of holding the adhesive film at a temperature equal to or lower than a temperature at which the weight of the adhesive film is reduced by 0.5% for 30 minutes or more when the thermal weight is measured under the condition that the temperature is raised from 40 ° C. to 400 ° C. at a heating rate of 10 ° C./min. Is.
 上記発明(発明2)に係る接着フィルムは、上記の特定の熱伝導性フィラー(A)を含有することにより、そして上記の条件で加熱処理して上記の硬化体を得るように使用することにより、熱伝導性に優れたものとなる。 The adhesive film according to the above invention (Invention 2) is used by containing the above-mentioned specific heat conductive filler (A) and by heat-treating under the above-mentioned conditions to obtain the above-mentioned cured product. , It has excellent thermal conductivity.
 上記発明(発明1,2)においては、前記熱伝導性フィラー(A)の含有量が、5質量%以上、60質量%以下であることが好ましい(発明3)。 In the above inventions (Inventions 1 and 2), the content of the thermally conductive filler (A) is preferably 5% by mass or more and 60% by mass or less (Invention 3).
 上記発明(発明1~3)においては、前記熱硬化性成分(B)が、エポキシ樹脂であることが好ましい(発明4)。 In the above inventions (Inventions 1 to 3), the thermosetting component (B) is preferably an epoxy resin (Invention 4).
 上記発明(発明1~4)においては、熱プレスしてなるものであることが好ましい(発明5)。 In the above inventions (inventions 1 to 4), it is preferable that the invention is hot-pressed (invention 5).
 上記発明(発明1~5)においては、少なくとも一方の表面の算術平均粗さ(Ra)が、0.01μm以上、0.5μm以下であることが好ましい(発明6)。 In the above inventions (Inventions 1 to 5), it is preferable that the arithmetic average roughness (Ra) of at least one surface is 0.01 μm or more and 0.5 μm or less (Invention 6).
 第3に本発明は、溶媒中にて、二次元構造を有するグラフェンおよび単層窒化ホウ素の少なくとも1種からなる熱伝導性フィラー(A)と、バインダーポリマー(C)とを混合した後、さらに熱硬化性成分(B)を混合することにより接着性樹脂組成物を得て、得られた前記接着性樹脂組成物を、フィルム状に形成することを特徴とする接着フィルムの製造方法を提供する(発明7)。 Thirdly, the present invention further comprises mixing a thermally conductive filler (A) consisting of at least one of graphene and single-layer boron nitride having a two-dimensional structure and a binder polymer (C) in a solvent. Provided is a method for producing an adhesive film, which comprises obtaining an adhesive resin composition by mixing a thermosetting component (B) and forming the obtained adhesive resin composition into a film. (Invention 7).
 上記発明(発明7)においては、前記接着性樹脂組成物をフィルム状に形成した後、さらに熱プレスすることが好ましい(発明8)。 In the above invention (Invention 7), it is preferable to form the adhesive resin composition into a film and then heat-press it (Invention 8).
 上記発明(発明8)においては、前記熱プレスの加熱温度が、前記熱硬化性成分(B)の硬化反応温度未満であることが好ましい(発明9)。 In the above invention (Invention 8), it is preferable that the heating temperature of the hot press is lower than the curing reaction temperature of the thermosetting component (B) (Invention 9).
 上記発明(発明8,9)においては、前記熱プレス後の接着フィルムにおける、少なくとも一方の表面の算術平均粗さ(Ra)が、0.01μm以上、0.5μm以下であることが好ましい(発明10)。 In the above inventions (Inventions 8 and 9), the arithmetic mean roughness (Ra) of at least one surface of the adhesive film after hot pressing is preferably 0.01 μm or more and 0.5 μm or less (invention). 10).
 第4に本発明は、前記接着フィルム(発明1~6)と、前記接着フィルムの少なくとも一方の面側に積層された支持シートとを備えた支持シート付き接着フィルムを提供する(発明11)。 Fourth, the present invention provides an adhesive film with a support sheet including the adhesive film (inventions 1 to 6) and a support sheet laminated on at least one surface side of the adhesive film (invention 11).
 第5に本発明は、二次元構造を有するグラフェンおよび単層窒化ホウ素の少なくとも1種からなる熱伝導性フィラー(A)と、熱硬化性成分(B)と、バインダーポリマー(C)とを含有する接着性樹脂組成物からなる接着フィルムに加熱処理を施して得られる硬化体であって、厚さ方向断面における空隙部分の面積割合が10%以下であることを特徴とする硬化体を提供する(発明12)。 Fifth, the present invention contains a thermally conductive filler (A) composed of at least one of graphene and single-layer boron nitride having a two-dimensional structure, a thermosetting component (B), and a binder polymer (C). Provided is a cured product obtained by subjecting an adhesive film made of an adhesive resin composition to be heat-treated, wherein the area ratio of the void portion in the cross section in the thickness direction is 10% or less. (Invention 12).
 上記発明(発明12)においては、厚さ方向断面における空隙部分の最大面積が100μm以下であることが好ましい(発明13)。 In the above invention (Invention 12), it is preferable that the maximum area of the void portion in the cross section in the thickness direction is 100 μm 2 or less (Invention 13).
 上記発明(発明12,13)においては、前記加熱処理が、予備加熱工程と、前記予備加熱工程後に前記接着フィルムを完全硬化させる完全硬化工程とを含み、前記予備加熱工程が、任意の加熱処理をする前の前記接着フィルムについて大気雰囲気下10℃/分の昇温速度で40℃から400℃まで昇温する条件の熱重量測定を行ったときに前記接着フィルムが0.5%重量減少する温度以下の温度で30分以上保持する工程を含むことが好ましい(発明14)。 In the above inventions (Inventions 12 and 13), the heat treatment includes a preheating step and a complete curing step of completely curing the adhesive film after the preheating step, and the preheating step is an arbitrary heat treatment. The weight of the adhesive film is reduced by 0.5% when the thermal weight measurement is performed under the condition that the temperature of the adhesive film is raised from 40 ° C. to 400 ° C. at a temperature increase rate of 10 ° C./min in an air atmosphere. It is preferable to include a step of holding the film at a temperature equal to or lower than the temperature for 30 minutes or more (Invention 14).
 第6に本発明は、二次元構造を有するグラフェンおよび単層窒化ホウ素の少なくとも1種からなる熱伝導性フィラー(A)と、熱硬化性成分(B)と、バインダーポリマー(C)とを含有する接着性樹脂組成物からなる接着フィルムを加熱処理することにより硬化体とする、硬化体の製造方法であって、前記加熱処理が、予備加熱工程と、前記予備加熱工程後に前記接着フィルムを完全硬化させる完全硬化工程とを含み、前記予備加熱工程が、任意の加熱処理をする前の前記接着フィルムについて大気雰囲気下10℃/分の昇温速度で40℃から400℃まで昇温する条件の熱重量測定を行ったときに前記接着フィルムが0.5%重量減少する温度以下の温度で30分以上保持する工程を含むことを特徴とする硬化体の製造方法を提供する(発明15)。 Sixth, the present invention contains a thermally conductive filler (A) composed of at least one of graphene and single-layer boron nitride having a two-dimensional structure, a thermosetting component (B), and a binder polymer (C). A method for producing a cured product, which comprises heat-treating an adhesive film made of an adhesive resin composition to form a cured product. The heat treatment completely completes the adhesive film after a preheating step and a preheating step. The preheating step includes a complete curing step of curing, and the preheating step is a condition in which the temperature of the adhesive film before any heat treatment is raised from 40 ° C. to 400 ° C. at a heating rate of 10 ° C./min under an air atmosphere. The present invention provides a method for producing a cured product, which comprises a step of holding the adhesive film at a temperature equal to or lower than a temperature at which the weight is reduced by 0.5% by 0.5% for 30 minutes or more when a thermal weight measurement is performed (Invention 15).
 上記発明(発明15)においては、前記加熱処理前に、前記接着フィルムを熱プレスすることが好ましい(発明16)。 In the above invention (invention 15), it is preferable to heat-press the adhesive film before the heat treatment (invention 16).
 上記発明(発明15,16)においては、前記硬化体の厚さ方向断面における空隙部分の面積割合が、10%以下であることが好ましい(発明17)。 In the above inventions (inventions 15 and 16), the area ratio of the void portion in the thickness direction cross section of the cured product is preferably 10% or less (invention 17).
 第7に本発明は、二次元構造を有するグラフェンおよび単層窒化ホウ素の少なくとも1種からなる熱伝導性フィラー(A)と、熱硬化性成分(B)と、バインダーポリマー(C)とを含有する接着性樹脂組成物からなる接着フィルムを介して、第1の部材の少なくとも一部を第2の部材の少なくとも一部に貼合する貼合工程と、前記貼合後、前記接着フィルムを加熱処理して硬化体とすることにより、前記第1の部材の少なくとも一部と、前記第2の部材の少なくとも一部とが、前記硬化体を介して結合してなる構造体を得る工程とを備えており、前記加熱処理が、予備加熱工程と、前記予備加熱工程後に前記接着フィルムを完全硬化させる完全硬化工程とを含み、前記予備加熱工程が、任意の加熱処理をする前の前記接着フィルムについて大気雰囲気下10℃/分の昇温速度で40℃から400℃まで昇温する条件の熱重量測定を行ったときに前記接着フィルムが0.5%重量減少する温度以下の温度で30分以上保持する工程を含むことを特徴とする構造体の製造方法を提供する(発明18)。 Seventh, the present invention contains a heat conductive filler (A) composed of at least one of a graphene having a two-dimensional structure and a single-layer boron nitride, a heat-curable component (B), and a binder polymer (C). A bonding step of bonding at least a part of the first member to at least a part of the second member via an adhesive film made of an adhesive resin composition, and heating the adhesive film after the bonding. A step of obtaining a structure in which at least a part of the first member and at least a part of the second member are bonded via the cured body by treating the cured body. The heat treatment includes a preheating step and a complete curing step of completely curing the adhesive film after the preheating step, and the adhesive film before the preheating step performs an arbitrary heat treatment. 30 minutes at a temperature below the temperature at which the adhesive film loses 0.5% by weight when the thermal weight is measured under the condition that the temperature rises from 40 ° C to 400 ° C at a heating rate of 10 ° C / min under an air atmosphere. Provided is a method for manufacturing a structure, which comprises the above-mentioned holding step (Invention 18).
 上記発明(発明18)においては、前記加熱処理よりも前(特に前記貼合工程前)に、前記接着フィルムを熱プレスすることが好ましい(発明19)。 In the above invention (Invention 18), it is preferable to heat-press the adhesive film before the heat treatment (particularly before the bonding step) (Invention 19).
 上記発明(発明18,19)においては、前記硬化体の厚さ方向断面における空隙部分の面積割合が、10%以下であることが好ましい(発明20)。 In the above inventions (inventions 18 and 19), the area ratio of the void portion in the cross section in the thickness direction of the cured product is preferably 10% or less (invention 20).
 上記発明(発明18~20)においては、前記貼合工程において、任意の加熱処理をする前の前記接着フィルムの粘弾性測定で得られる損失正接(tanδ)のピークを示す温度以上の温度で、前記貼合を行うことが好ましい(発明21)。 In the above inventions (Inventions 18 to 20), in the bonding step, at a temperature equal to or higher than the temperature showing the peak of loss tangent (tan δ) obtained by measuring the viscoelasticity of the adhesive film before any heat treatment. It is preferable to perform the bonding (Invention 21).
 上記発明(発明18~20)においては、前記第1の部材が柔軟性を有するシート状部材であり、前記シート状部材と前記熱プレスした接着フィルムとの積層体を、前記第2の部材に貼合する工程を備えており、任意の加熱処理をする前の前記接着フィルムの粘弾性測定で得られる損失正接(tanδ)のピークを示す温度以上の温度で、前記貼合を行うことが好ましい。 In the above inventions (Inventions 18 to 20), the first member is a flexible sheet-like member, and a laminate of the sheet-like member and the heat-pressed adhesive film is used as the second member. It is preferable to perform the bonding at a temperature equal to or higher than the temperature showing the peak of loss tangent (tan δ) obtained by measuring the viscoelasticity of the adhesive film before any heat treatment. ..
 上記発明(発明18~20)においては、前記接着フィルムを、前記第1の部材または前記第2の部材に貼付する工程を備えており、任意の加熱処理をする前の前記接着フィルムの粘弾性測定で得られる損失正接(tanδ)のピークを示す温度以上の温度で、前記貼付を行うことが好ましい。 The inventions (Inventions 18 to 20) include a step of attaching the adhesive film to the first member or the second member, and have viscoelasticity of the adhesive film before any heat treatment. It is preferable to perform the pasting at a temperature equal to or higher than the temperature indicating the peak of the loss tangent (tan δ) obtained by the measurement.
 本発明に係る接着フィルム、支持シート付き接着フィルム、硬化体および構造体は、熱伝導性に優れる。また、本発明に係る接着フィルムの製造方法によれば、熱伝導性に優れた接着フィルムを製造することができる。さらに、本発明に係る硬化体の製造方法によれば、熱伝導性に優れた硬化体を製造することができ、本発明に係る構造体の製造方法によれば、熱伝導性に優れた構造体を製造することができる。 The adhesive film, the adhesive film with a support sheet, the cured body and the structure according to the present invention are excellent in thermal conductivity. Further, according to the method for producing an adhesive film according to the present invention, it is possible to produce an adhesive film having excellent thermal conductivity. Further, according to the method for producing a cured product according to the present invention, a cured product having excellent thermal conductivity can be produced, and according to the method for producing a structure according to the present invention, a structure having excellent thermal conductivity can be produced. The body can be manufactured.
本発明の一実施形態に係る支持シート付き接着フィルムの断面図である。It is sectional drawing of the adhesive film with a support sheet which concerns on one Embodiment of this invention. 本発明の一実施形態に係る構造体の断面図である。It is sectional drawing of the structure which concerns on one Embodiment of this invention. 走査型電子顕微鏡(SEM)による接着フィルムの硬化体(実施例1)における断面の画像である。It is an image of the cross section in the cured body (Example 1) of the adhesive film by a scanning electron microscope (SEM). 走査型電子顕微鏡(SEM)による接着フィルムの硬化体(実施例1)における断面の画像を2値化処理したものである。An image of a cross section of a cured body (Example 1) of an adhesive film obtained by a scanning electron microscope (SEM) is binarized. 走査型電子顕微鏡(SEM)による接着フィルムの硬化体(比較例2)における断面の画像である。It is an image of the cross section in the cured body (Comparative Example 2) of the adhesive film by the scanning electron microscope (SEM). 走査型電子顕微鏡(SEM)による接着フィルムの硬化体(比較例2)における断面の画像を2値化処理したものである。This is a binarized image of a cross section of a cured product (Comparative Example 2) of an adhesive film obtained by a scanning electron microscope (SEM).
 以下、本発明の実施形態について説明する。
〔接着フィルム〕
 本実施形態に係る接着フィルムは、二次元構造を有するグラフェンおよび単層窒化ホウ素の少なくとも1種からなる熱伝導性フィラー(A)と、熱硬化性成分(B)と、バインダーポリマー(C)とを含有する接着性樹脂組成物(以下「接着性樹脂組成物R」という場合がある。)からなるものである。当該接着性樹脂組成物Rは、所望により、硬化剤(D)を含有することが好ましく、さらに硬化促進剤(E)を含有することが好ましい。
Hereinafter, embodiments of the present invention will be described.
[Adhesive film]
The adhesive film according to the present embodiment includes a thermally conductive filler (A) composed of at least one of graphene and single-layer boron nitride having a two-dimensional structure, a thermosetting component (B), and a binder polymer (C). It is made of an adhesive resin composition containing the above (hereinafter, may be referred to as "adhesive resin composition R"). The adhesive resin composition R preferably contains a curing agent (D), and more preferably contains a curing accelerator (E).
 本実施形態に係る接着フィルムは、第1に、予備加熱工程と、当該予備加熱工程後に接着フィルムを完全硬化させる完全硬化工程とを含む加熱処理を行うように用いられ、上記予備加熱工程は、下記の温度(T)以下の温度で30分以上保持する工程を含むことが好ましい。かかる加熱処理を行うことにより、得られる硬化体の内部において空隙部分が少なくなる。具体的には、得られる硬化体の厚さ方向断面における空隙部分の面積割合が10%以下になり得る。加熱処理に関する詳細は後述する。
 温度(T):任意の加熱処理をする前の接着フィルムについて、大気雰囲気下10℃/分の昇温速度で40℃から400℃まで昇温する条件の熱重量測定を行い、当該接着フィルムが0.5%重量減少する温度。
The adhesive film according to the present embodiment is first used to perform a heat treatment including a preheating step and a complete curing step of completely curing the adhesive film after the preheating step. It is preferable to include a step of holding at a temperature of the following temperature (T) or less for 30 minutes or more. By performing such a heat treatment, the number of voids is reduced inside the obtained cured product. Specifically, the area ratio of the void portion in the cross section in the thickness direction of the obtained cured product can be 10% or less. Details regarding the heat treatment will be described later.
Temperature (T): For the adhesive film before any heat treatment, the thermal weight was measured under the condition that the temperature was raised from 40 ° C to 400 ° C at a temperature rising rate of 10 ° C / min under the atmospheric atmosphere, and the adhesive film was released. Temperature that reduces weight by 0.5%.
 また、本実施形態に係る接着フィルムは、第2に、当該接着フィルムを下記の条件で加熱処理して得られる硬化体の厚さ方向断面における空隙部分の面積割合が10%以下であることが好ましい。
(条件)
 上記加熱処理は、予備加熱工程と、当該予備加熱工程後に上記接着フィルムを完全硬化させる完全硬化工程とを含み、
 上記予備加熱工程は、任意の加熱処理をする前の接着フィルムについて大気雰囲気下10℃/分の昇温速度で40℃から400℃まで昇温する条件の熱重量測定を行ったときに当該接着フィルムが0.5%重量減少する温度以下の温度で30分以上保持する工程である。
Secondly, in the adhesive film according to the present embodiment, the area ratio of the void portion in the cross section in the thickness direction of the cured product obtained by heat-treating the adhesive film under the following conditions is 10% or less. preferable.
(conditions)
The heat treatment includes a preheating step and a complete curing step of completely curing the adhesive film after the preheating step.
In the preheating step, the adhesive film before any heat treatment is subjected to thermal weight measurement under the condition of raising the temperature from 40 ° C. to 400 ° C. at a heating rate of 10 ° C./min in an air atmosphere. This is a step of holding the film at a temperature lower than the temperature at which the weight is reduced by 0.5% for 30 minutes or more.
 二次元構造を有するグラフェンおよび単層窒化ホウ素の少なくとも1種からなる熱伝導性フィラー(A)は、厚みが数十nmオーダーの二次元構造を有することから、比表面積が大きいという特徴がある。そのため、接着フィルム中において、熱伝導性フィラー(A)同士が接触し、熱を伝える熱伝導パスが形成され易い。特に、上記のように所定の加熱処理を行って使用することで、得られる硬化体の内部における空隙を小さくすることができ、これにより、熱伝導性フィラー(A)の添加量が少量でも優れた熱伝導性を示すことができる。つまり、上記熱伝導性フィラー(A)を接着性樹脂組成物の充填材として用いると、高充填せずとも優れた熱伝導性を付与することができる。また、上記の熱伝導性フィラー(A)は、厚みが数十nmオーダーの二次元構造を有し、それ自体柔軟性を有することから、当該熱伝導性フィラー(A)を含有する接着フィルムは、柔軟性に優れたものとなる。なおかつ、上記のように熱伝導性フィラー(A)を高充填する必要がないため、当該接着フィルムは、機械的に脆くなることが抑制される。 The thermally conductive filler (A) composed of at least one of graphene and single-layer boron nitride having a two-dimensional structure has a characteristic of having a large specific surface area because it has a two-dimensional structure having a thickness on the order of several tens of nm. Therefore, in the adhesive film, the heat conductive fillers (A) are in contact with each other, and a heat conduction path for transferring heat is likely to be formed. In particular, by performing the predetermined heat treatment as described above and using the cured product, the voids inside the obtained cured product can be reduced, whereby even a small amount of the heat conductive filler (A) added is excellent. It can show thermal conductivity. That is, when the heat conductive filler (A) is used as a filler for the adhesive resin composition, excellent heat conductivity can be imparted without high filling. Further, since the above-mentioned heat conductive filler (A) has a two-dimensional structure having a thickness on the order of several tens of nm and has flexibility in itself, the adhesive film containing the heat conductive filler (A) can be used. , It will be excellent in flexibility. Moreover, since it is not necessary to highly fill the thermally conductive filler (A) as described above, the adhesive film is prevented from becoming mechanically brittle.
 接着フィルムが柔軟性に優れると、被着体への貼付時に空気を巻き込み難くなり、接着フィルムと被着体との界面に空隙ができることを抑制し、接着フィルムと被着体との接触面積を大きくすることができる。すなわち、接着フィルムと被着体との界面の空隙によって熱抵抗が大きくなることを抑制することができ、接着フィルムと被着体との間における熱伝導性を優れたものにすることができる。また、上記のように接着フィルムが機械的に脆くなることが抑制されると、使用時に破損屑が発生するなどの工程上の不具合が発生する確率が小さくなる。 If the adhesive film has excellent flexibility, it becomes difficult for air to be entrained when the adhesive film is attached to the adherend, and it is possible to suppress the formation of voids at the interface between the adhesive film and the adherend, and to reduce the contact area between the adhesive film and the adherend. Can be made larger. That is, it is possible to suppress the increase in thermal resistance due to the voids at the interface between the adhesive film and the adherend, and it is possible to improve the thermal conductivity between the adhesive film and the adherend. Further, if the adhesive film is prevented from becoming mechanically brittle as described above, the probability of occurrence of process defects such as generation of broken debris during use is reduced.
 さらに、所望の熱伝導性を得るために従来の無機フィラーを高充填すると、接着フィルムの表面粗度が大きくなり、タックが発現し難くなる。一方、本実施形態における熱伝導性フィラー(A)は、上記のように高充填しなくとも高い熱伝導性を得ることができるため、接着フィルムの表面粗度を低くすることができ、それによって接着フィルムを被着体へ貼付するときに、貼付温度を調整することで、好適な粘着力を発揮することができる。 Furthermore, if a conventional inorganic filler is highly filled in order to obtain the desired thermal conductivity, the surface roughness of the adhesive film becomes large and tack becomes difficult to develop. On the other hand, since the heat conductive filler (A) in the present embodiment can obtain high heat conductivity without being highly filled as described above, the surface roughness of the adhesive film can be lowered, thereby lowering the surface roughness. When the adhesive film is attached to the adherend, the appropriate adhesive force can be exhibited by adjusting the attachment temperature.
1.各成分
(1)熱伝導性フィラー(A)
 本実施形態における熱伝導性フィラー(A)は、二次元構造を有するグラフェンおよび単層窒化ホウ素の少なくとも1種からなる。グラフェンは、炭素原子が六角形に規則正しく並んだ二次元構造を有し、単層窒化ホウ素は、ホウ素原子と窒素原子とが六角形に規則正しく並んだ二次元構造を有する、本来原子一層からなる二次元化合物である。本明細書における「二次元構造を有するグラフェンもしくは単層窒化ホウ素」は、複層のものでもよく、厚みが平面視形状における最短長の1/10以下であるものが好ましい。なお、本明細書におけるグラフェンはグラファイトを薄く剥離して生成したもの、単層窒化ホウ素は窒化ホウ素を薄く剥離して生成したものも含むものとする。本明細書において、グラファイト自体は、前述した「二次元構造を有するグラフェン」には該当しない。
1. 1. Each component (1) Thermally conductive filler (A)
The thermally conductive filler (A) in the present embodiment comprises at least one of graphene having a two-dimensional structure and monolayer boron nitride. Graphene has a two-dimensional structure in which carbon atoms are regularly arranged in a hexagon, and single-layer boron nitride has a two-dimensional structure in which boron atoms and nitrogen atoms are regularly arranged in a hexagon. It is a dimensional compound. The “graphene or single-layer boron nitride having a two-dimensional structure” in the present specification may be a multi-layered one, preferably having a thickness of 1/10 or less of the shortest length in a plan view shape. It should be noted that graphene in the present specification includes those produced by thinly peeling graphite, and single-layer boron nitride includes those produced by thinly peeling boron nitride. In the present specification, graphite itself does not fall under the above-mentioned "graphene having a two-dimensional structure".
 上記の通り、二次元構造を有するグラフェンもしくは単層窒化ホウ素は、単層であってもよいし、複層のものであってもよい。複層の場合には、通常、2層~1,000層程度である。二次元構造を有するグラフェンおよび単層窒化ホウ素の平面視形状は、特に限定されない。 As described above, graphene or single-layer boron nitride having a two-dimensional structure may be a single layer or a multi-layer. In the case of a plurality of layers, it is usually about 2 to 1,000 layers. The plan-view shape of graphene and single-layer boron nitride having a two-dimensional structure is not particularly limited.
 熱伝導性フィラー(A)の平均粒径は、0.5μm以上であることが好ましく、1.0μm以上であることがより好ましく、特に3.0μm以上であることが好ましく、さらには5.0μm以上であることが好ましい。これにより、各熱伝導性フィラー(A)同士が接触し易くなり、熱伝導パスが形成され易くなるため、二次元構造の特徴が機能し、得られる接着フィルムが熱伝導性に優れたものとなる。また、熱伝導性フィラー(A)の平均粒径は、30μm以下であることが好ましく、特に20μm以下であることが好ましく、さらには15μm以下であることが好ましい。これにより、溶媒やバインダーポリマー(C)等、他の材料中で分散状態が維持され、偏析により熱伝導パスが形成されなくなることが抑制され、接着フィルムが熱伝導性により優れたものとなる。 The average particle size of the thermally conductive filler (A) is preferably 0.5 μm or more, more preferably 1.0 μm or more, particularly preferably 3.0 μm or more, and further preferably 5.0 μm. The above is preferable. As a result, the heat conductive fillers (A) are easily brought into contact with each other, and a heat conduction path is easily formed. Therefore, the characteristics of the two-dimensional structure function, and the obtained adhesive film has excellent heat conductivity. Become. The average particle size of the heat conductive filler (A) is preferably 30 μm or less, particularly preferably 20 μm or less, and further preferably 15 μm or less. As a result, the dispersed state is maintained in other materials such as the solvent and the binder polymer (C), the heat conduction path is suppressed from being formed due to segregation, and the adhesive film becomes more excellent in heat conductivity.
 また、熱伝導性フィラー(A)の厚みは、500nm以下であることが好ましく、300nm以下であることがより好ましく、特に200nm以下であることが好ましく、さらには100nm以下であることが好ましい。これにより、得られる接着フィルムの柔軟性が良好に維持される。一方、熱伝導性フィラー(A)の厚みの下限値は、特に限定されないが、通常は0.7nm以上であり、熱伝導性の観点から、5.0nm以上であることが好ましく、特に10nm以上であることが好ましく、さらには15nm以上であることが好ましい。 Further, the thickness of the thermally conductive filler (A) is preferably 500 nm or less, more preferably 300 nm or less, particularly preferably 200 nm or less, and further preferably 100 nm or less. As a result, the flexibility of the obtained adhesive film is maintained well. On the other hand, the lower limit of the thickness of the heat conductive filler (A) is not particularly limited, but is usually 0.7 nm or more, preferably 5.0 nm or more, and particularly preferably 10 nm or more from the viewpoint of heat conductivity. It is preferably 15 nm or more, and more preferably 15 nm or more.
 接着性樹脂組成物R中における熱伝導性フィラー(A)の含有量は、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、特に15質量%以上であることが好ましく、さらには20質量%以上であることが好ましい。熱伝導性フィラー(A)の含有量の下限値が上記であることにより、各熱伝導性フィラー(A)同士が接触し易くなり、熱伝導パスが形成され易くなるため、得られる接着フィルムが熱伝導性により優れたものとなる。 The content of the heat conductive filler (A) in the adhesive resin composition R is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 15% by mass or more. It is preferable, more preferably 20% by mass or more. Since the lower limit of the content of the heat conductive filler (A) is as described above, the heat conductive fillers (A) are likely to come into contact with each other and a heat conductive path is easily formed, so that the obtained adhesive film can be obtained. It becomes superior in thermal conductivity.
 また、接着性樹脂組成物R中における熱伝導性フィラー(A)の含有量は、60質量%以下であることが好ましく、55質量%以下であることがより好ましく、特に50質量%以下であることが好ましく、さらには40質量%以下であることが好ましい。熱伝導性フィラー(A)の含有量の上限値が上記であることにより、得られる接着フィルムが機械的に脆くなることが抑制され、柔軟性により優れたものとなる。本実施形態では、熱伝導性フィラー(A)を使用し、上述したように所定の加熱処理を行うことにより、上記のように比較的少ない含有量でも所望の熱伝導性を得ることができる。 The content of the thermally conductive filler (A) in the adhesive resin composition R is preferably 60% by mass or less, more preferably 55% by mass or less, and particularly preferably 50% by mass or less. It is preferably 40% by mass or less. When the upper limit of the content of the thermally conductive filler (A) is as described above, the obtained adhesive film is suppressed from becoming mechanically brittle, and the flexibility becomes more excellent. In the present embodiment, by using the heat conductive filler (A) and performing the predetermined heat treatment as described above, the desired heat conductivity can be obtained even with a relatively small content as described above.
(2)熱硬化性成分(B)
 本実施形態における熱硬化性成分(B)としては、接着性樹脂組成物Rの熱硬化を可能とし、熱硬化により接着性を示すものであれば特に限定されず、例えば、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、ポリイミド樹脂、ベンゾオキサジン樹脂、フェノキシ樹脂などが挙げられる。これらは、1種を単独でまたは2種以上を組み合わせて用いることができる。これらの中でも、熱伝導性フィラー(A)の分散性および接着性の観点から、エポキシ樹脂が好ましい。なお、本明細書における「エポキシ樹脂」には、重合していない、または低分子量のエポキシ化合物も便宜上含まれるものとする。
(2) Thermosetting component (B)
The thermosetting component (B) in the present embodiment is not particularly limited as long as it enables thermosetting of the adhesive resin composition R and exhibits adhesiveness by thermosetting, and is not particularly limited, for example, an epoxy resin or a phenol resin. , Melamine resin, urea resin, polyester resin, urethane resin, acrylic resin, polyimide resin, benzoxazine resin, phenoxy resin and the like. These can be used alone or in combination of two or more. Among these, an epoxy resin is preferable from the viewpoint of dispersibility and adhesiveness of the thermally conductive filler (A). The "epoxy resin" in the present specification also includes a non-polymerized or low molecular weight epoxy compound for convenience.
 エポキシ樹脂としては、例えば、ビスフェノールA、ビスフェノールF、レゾルシノール、フェニルノボラック、クレゾールノボラック等のフェノール類のグリシジルエーテル;ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール類のグリシジルエーテル;フタル酸、イソフタル酸、テトラヒドロフタル酸等のカルボン酸のグリシジルエーテル;アニリンイソシアヌレート等の窒素原子に結合した活性水素をグリシジル基で置換したグリシジル型もしくはアルキルグリシジル型のエポキシ樹脂;ビニルシクロヘキサンジエポキシド、3,4-エポキシシクロヘキシルメチル-3,4-ジシクロヘキサンカルボキシレート、2-(3,4-エポキシ)シクロヘキシル-5,5-スピロ(3,4-エポキシ)シクロヘキサン-m-ジオキサン等のように、分子内の炭素-炭素二重結合を例えば酸化することによりエポキシが導入された、いわゆる脂環型エポキシドを挙げることができる。その他、ビフェニル骨格、トリフェニルメタン骨格、ジシクロペンタジエン骨格、ジシクロヘキサジエン骨格、ナフタレン骨格、アントラセン骨格等を有するエポキシ樹脂や、多官能型エポキシ樹脂を用いることもできる。これらエポキシ樹脂は、1種を単独で、または2種以上を組み合わせて用いることができる。 Examples of the epoxy resin include glycidyl ethers of phenols such as bisphenol A, bisphenol F, resorcinol, phenylnovolac and cresolnovolac; glycidyl ethers of alcohols such as butanediol, polyethylene glycol and polypropylene glycol; phthalic acid and isophthalic acid. Glycidyl ether of carboxylic acid such as tetrahydrophthalic acid; glycidyl type or alkyl glycidyl type epoxy resin in which active hydrogen bonded to a nitrogen atom such as aniline isocyanurate is replaced with a glycidyl group; vinylcyclohexanediepoxide, 3,4-epoxycyclohexyl Intramolecular carbon-carbon, such as methyl-3,4-dicyclohexanecarboxylate, 2- (3,4-epoxy) cyclohexyl-5,5-spiro (3,4-epoxy) cyclohexane-m-dioxane, etc. For example, a so-called alicyclic epoxide in which an epoxy is introduced by oxidizing a double bond can be mentioned. In addition, an epoxy resin having a biphenyl skeleton, a triphenylmethane skeleton, a dicyclopentadiene skeleton, a dicyclopentadiene skeleton, a naphthalene skeleton, an anthracene skeleton, or the like, or a polyfunctional epoxy resin can also be used. These epoxy resins can be used alone or in combination of two or more.
 本実施形態における熱硬化性成分(B)としては、熱伝導性フィラー(A)の分散性の観点から、π共役系メソゲン骨格を有するエポキシ樹脂を少なくとも使用することが好ましい。π共役系メソゲン骨格を有するエポキシ樹脂としては、ナフタレン骨格を有するエポキシ樹脂またはビフェニル骨格を有するエポキシ樹脂が好ましく、特に、ナフタレン骨格を有するエポキシ樹脂が好ましい。ナフタレン骨格を有するエポキシ樹脂としては、例えば、下記式(1)で表されるものが好ましく挙げられる。 As the thermosetting component (B) in the present embodiment, it is preferable to use at least an epoxy resin having a π-conjugated mesogen skeleton from the viewpoint of dispersibility of the thermally conductive filler (A). As the epoxy resin having a π-conjugated mesogen skeleton, an epoxy resin having a naphthalene skeleton or an epoxy resin having a biphenyl skeleton is preferable, and an epoxy resin having a naphthalene skeleton is particularly preferable. As the epoxy resin having a naphthalene skeleton, for example, those represented by the following formula (1) are preferably mentioned.
Figure JPOXMLDOC01-appb-C000001

(式中、nは0以上の整数である。)
Figure JPOXMLDOC01-appb-C000001

(In the formula, n is an integer greater than or equal to 0.)
 上記π共役系メソゲン骨格を有するエポキシ樹脂のエポキシ当量は、100g/eq以上であることが好ましく、特に150g/eq以上であることが好ましく、さらには180g/eq以上であることが好ましい。また、上記エポキシ当量は、500g/eq以下であることが好ましく、特に400g/eq以下であることが好ましく、さらには300g/eq以下であることが好ましい。これにより、熱伝導性フィラー(A)の分散性がより優れたものとなり、かつエポキシ基を利用した接着特性が発現され易い。なお、本明細書におけるエポキシ当量は、JIS K7236に準じて測定される値である。 The epoxy equivalent of the epoxy resin having the π-conjugated mesogen skeleton is preferably 100 g / eq or more, particularly preferably 150 g / eq or more, and further preferably 180 g / eq or more. The epoxy equivalent is preferably 500 g / eq or less, particularly preferably 400 g / eq or less, and more preferably 300 g / eq or less. As a result, the dispersibility of the thermally conductive filler (A) becomes more excellent, and the adhesive property using the epoxy group is easily exhibited. The epoxy equivalent in the present specification is a value measured according to JIS K7236.
 上記π共役系メソゲン骨格を有するエポキシ樹脂の軟化点は、40℃以上であることが好ましく、特に50℃以上であることが好ましく、さらには60℃以上であることが好ましい。また、上記軟化点は、200℃以下であることが好ましく、特に150℃以下であることが好ましく、さらには120℃以下であることが好ましい。これにより、熱伝導性フィラー(A)の分散性がより優れたものとなる。なお、本明細書における軟化点は、JIS K7234:1986記載の環球法による測定法に準じて測定される値である。 The softening point of the epoxy resin having the π-conjugated mesogen skeleton is preferably 40 ° C. or higher, particularly preferably 50 ° C. or higher, and further preferably 60 ° C. or higher. The softening point is preferably 200 ° C. or lower, particularly preferably 150 ° C. or lower, and further preferably 120 ° C. or lower. As a result, the dispersibility of the thermally conductive filler (A) becomes more excellent. The softening point in the present specification is a value measured according to the measurement method by the ring-and-ball method described in JIS K7234: 1986.
 本実施形態における熱硬化性成分(B)としては、上記のπ共役系メソゲン骨格を有するエポキシ樹脂とともに、粘着性・接着性を調節する観点から、フェノール類のグリシジルエーテルを使用することが好ましい。フェノール類のグリシジルエーテルとしては、上述したものが挙げられるが、中でも、ビスフェノールF型エポキシ樹脂を使用することが好ましい。 As the thermosetting component (B) in the present embodiment, it is preferable to use a phenolic glycidyl ether from the viewpoint of adjusting the adhesiveness and adhesiveness together with the above-mentioned epoxy resin having a π-conjugated mesogen skeleton. Examples of the phenolic glycidyl ether include those described above, and among them, it is preferable to use a bisphenol F type epoxy resin.
 上記フェノール類のグリシジルエーテルのエポキシ当量は、100g/eq以上であることが好ましく、特に120g/eq以上であることが好ましく、さらには150g/eq以上であることが好ましい。また、上記エポキシ当量は、500g/eq以下であることが好ましく、特に400g/eq以下であることが好ましく、さらには300g/eq以下であることが好ましい。これにより、得られる接着フィルムの粘着性・接着性がより優れたものとなる。 The epoxy equivalent of the glycidyl ether of the above phenols is preferably 100 g / eq or more, particularly preferably 120 g / eq or more, and further preferably 150 g / eq or more. The epoxy equivalent is preferably 500 g / eq or less, particularly preferably 400 g / eq or less, and more preferably 300 g / eq or less. As a result, the adhesiveness and adhesiveness of the obtained adhesive film become more excellent.
 接着性樹脂組成物R中における熱硬化性成分(B)の含有量は、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、特に15質量%以上であることが好ましく、さらには20質量%以上であることが好ましい。熱硬化性成分(B)の含有量の下限値が上記であることにより、接着性樹脂組成物Rの硬化が十分なものとなり、より優れた機械的強度および接着性を示すことができる。また、上記含有量は、45質量%以下であることが好ましく、40質量%以下であることがより好ましく、特に35質量%以下であることが好ましく、さらには30質量%以下であることが好ましい。熱硬化性成分(B)の含有量の上限値が上記であることにより、他の成分の含有量を確保することができる。 The content of the thermosetting component (B) in the adhesive resin composition R is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 15% by mass or more. It is preferable, more preferably 20% by mass or more. When the lower limit of the content of the thermosetting component (B) is the above, the adhesive resin composition R can be sufficiently cured, and more excellent mechanical strength and adhesiveness can be exhibited. The content is preferably 45% by mass or less, more preferably 40% by mass or less, particularly preferably 35% by mass or less, and further preferably 30% by mass or less. .. When the upper limit of the content of the thermosetting component (B) is as described above, the content of other components can be secured.
 π共役系メソゲン骨格を有するエポキシ樹脂とフェノール類のグリシジルエーテルとを併用する場合、それらの配合比(質量基準)は、20:80~95:5であることが好ましく、40:60~90:10であることがより好ましく、特に50:50~85:15であることが好ましく、さらには60:40~80:20であることが好ましい。これにより、熱伝導性フィラー(A)の分散性と接着フィルムの粘着性・接着性とのバランスを良好に図ることができる。 When an epoxy resin having a π-conjugated mesogen skeleton and a phenolic glycidyl ether are used in combination, the blending ratio (mass standard) thereof is preferably 20:80 to 95: 5, and 40:60 to 90: The ratio is more preferably 10, particularly preferably 50:50 to 85:15, and further preferably 60:40 to 80:20. This makes it possible to achieve a good balance between the dispersibility of the heat conductive filler (A) and the adhesiveness / adhesiveness of the adhesive film.
(3)バインダーポリマー(C)
 バインダーポリマー(C)は、接着性樹脂組成物Rをフィルム状に形成したり、得られる接着フィルムに適度なタックを与えたりすること等を目的として配合される。このようなバインダーポリマーとしては、例えば、アクリル系ポリマー、ポリエステル樹脂、フェノキシ樹脂、ウレタン樹脂、シリコーン樹脂、ゴム系ポリマー等が用いられ、特にアクリル系ポリマーが好ましく用いられる。
(3) Binder polymer (C)
The binder polymer (C) is blended for the purpose of forming the adhesive resin composition R into a film, giving an appropriate tack to the obtained adhesive film, and the like. As such a binder polymer, for example, an acrylic polymer, a polyester resin, a phenoxy resin, a urethane resin, a silicone resin, a rubber polymer and the like are used, and an acrylic polymer is particularly preferably used.
 アクリル酸ポリマーとしては、例えば、(メタ)アクリル酸エステルモノマー等を重合してなる(メタ)アクリル酸エステル重合体が挙げられる。なお、本明細書において、(メタ)アクリル酸とは、アクリル酸及びメタクリル酸の両方を意味する。他の類似用語も同様である。また、「重合体」には「共重合体」の概念も含まれるものとする。 Examples of the acrylic acid polymer include a (meth) acrylic acid ester polymer obtained by polymerizing a (meth) acrylic acid ester monomer and the like. In addition, in this specification, (meth) acrylic acid means both acrylic acid and methacrylic acid. The same applies to other similar terms. In addition, the concept of "polymer" shall be included in "polymer".
 (メタ)アクリル酸エステル重合体を構成するモノマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチルなどのアルキル基の炭素数が1~18である(メタ)アクリル酸アルキルエステルの他、分子内に官能基を有する官能基含有モノマー等が挙げられる。官能基含有モノマーとしては、例えば、分子内に水酸基を有するモノマー(水酸基含有モノマー)、分子内にカルボキシ基を有するモノマー(カルボキシ基含有モノマー)、分子内にアミノ基を有するモノマー(アミノ基含有モノマー)などが好ましく挙げられる。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。 Examples of the monomer constituting the (meth) acrylate polymer include carbons of alkyl groups such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate. Examples thereof include (meth) acrylic acid alkyl esters having a number of 1 to 18, and functional group-containing monomers having a functional group in the molecule. Examples of the functional group-containing monomer include a monomer having a hydroxyl group in the molecule (hydroxyl group-containing monomer), a monomer having a carboxy group in the molecule (carboxy group-containing monomer), and a monomer having an amino group in the molecule (amino group-containing monomer). ) And the like. These may be used alone or in combination of two or more.
 本実施形態でバインダーポリマー(C)として使用する(メタ)アクリル酸エステル重合体は、アルキル基の炭素数が1~18である(メタ)アクリル酸アルキルエステルと、官能基含有モノマーとを共重合したものであることが好ましい。(メタ)アクリル酸アルキルエステルにおけるアルキル基の炭素数は、1~9であることが好ましく、特に1~6であることが好ましく、さらには1~3であることが好ましい。(メタ)アクリル酸アルキルエステルとしては、(メタ)アクリル酸メチルが特に好ましく、アクリル酸メチルが最も好ましい。 The (meth) acrylic acid ester polymer used as the binder polymer (C) in the present embodiment is a copolymerization of a (meth) acrylic acid alkyl ester having an alkyl group having 1 to 18 carbon atoms and a functional group-containing monomer. It is preferable that it is an ester. The number of carbon atoms of the alkyl group in the (meth) acrylic acid alkyl ester is preferably 1 to 9, particularly preferably 1 to 6, and further preferably 1 to 3. As the (meth) acrylic acid alkyl ester, methyl (meth) acrylate is particularly preferable, and methyl acrylate is most preferable.
 官能基含有モノマーとしては、水酸基含有モノマーが好ましい。水酸基含有モノマーとしては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチルなどの(メタ)アクリル酸ヒドロキシアルキルエステル等が挙げられる。これらの中でも、(メタ)アクリル酸2-ヒドロキシエチルが特に好ましく、アクリル酸2-ヒドロキシエチルが最も好ましい。 As the functional group-containing monomer, a hydroxyl group-containing monomer is preferable. Examples of the hydroxyl group-containing monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and (meth). ) Acrylic acid (meth) Acrylic acid hydroxyalkyl esters such as 3-hydroxybutyl acrylate and 4-hydroxybutyl (meth) acrylic acid can be mentioned. Among these, 2-hydroxyethyl (meth) acrylate is particularly preferable, and 2-hydroxyethyl acrylate is most preferable.
 上記のモノマーを使用することで、接着性樹脂組成物R中に熱伝導性フィラー(A)を良好に分散させ易くなる。 By using the above-mentioned monomer, the thermally conductive filler (A) can be easily dispersed in the adhesive resin composition R.
 バインダーポリマー(C)として、上記の(メタ)アクリル酸アルキルエステルと官能基含有モノマーとを共重合させた(メタ)アクリル酸エステル重合体を使用する場合、当該(メタ)アクリル酸エステル重合体中、官能基含有モノマー由来の構成単位は、5~50質量%の範囲で含まれることが好ましく、特に8~30質量%の範囲で含まれることが好ましく、さらには10~20質量%の範囲で含まれることが好ましい。 When a (meth) acrylic acid ester polymer obtained by copolymerizing the above (meth) acrylic acid alkyl ester and a functional group-containing monomer is used as the binder polymer (C), the (meth) acrylic acid ester polymer is contained. The structural unit derived from the functional group-containing monomer is preferably contained in the range of 5 to 50% by mass, particularly preferably in the range of 8 to 30% by mass, and further preferably in the range of 10 to 20% by mass. It is preferably contained.
 バインダーポリマー(C)としてのアクリル系ポリマー((メタ)アクリル酸エステル重合体)の重量平均分子量は、5万以上であることが好ましく、10万以上であることがより好ましく、特に15万以上であることが好ましく、さらには20万以上であることが好ましい。また、上記重量平均分子量は、100万以下であることが好ましく、70万以下であることがより好ましく、特に50万以下であることが好ましく、さらには40万以下であることが好ましい。重量平均分子量が上記の範囲にあることにより、フィルム形成性および粘着性が良好なものになるとともに、熱伝導性フィラー(A)の分散性がより良好になる。なお、本明細書における重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定した標準ポリスチレン換算の値である。 The weight average molecular weight of the acrylic polymer ((meth) acrylic acid ester polymer) as the binder polymer (C) is preferably 50,000 or more, more preferably 100,000 or more, and particularly preferably 150,000 or more. It is preferably present, and more preferably 200,000 or more. The weight average molecular weight is preferably 1 million or less, more preferably 700,000 or less, particularly preferably 500,000 or less, and further preferably 400,000 or less. When the weight average molecular weight is in the above range, the film forming property and the adhesiveness become good, and the dispersibility of the heat conductive filler (A) becomes better. The weight average molecular weight in the present specification is a value in terms of standard polystyrene measured by a gel permeation chromatography (GPC) method.
 また、バインダーポリマー(C)としてのアクリル系ポリマー((メタ)アクリル酸エステル重合体)のガラス転移温度(Tg)は、-20℃以上であることが好ましく、-15℃以上であることがより好ましく、特に-10℃以上であることが好ましく、さらには-5℃以上であることが好ましい。また、上記ガラス転移温度(Tg)は、60℃以下であることが好ましく、50℃以下であることがより好ましく、特に40℃以下であることが好ましく、さらには35℃以下であることが好ましい。ガラス転移温度(Tg)が上記の範囲にあることにより、フィルム形成性および粘着性が良好なものになるとともに、熱伝導性フィラー(A)の分散性がより良好になる。なお、本明細書における(メタ)アクリル酸エステル重合体のガラス転移温度(Tg)は、FOXの式に基づいて算出される値である。 The glass transition temperature (Tg) of the acrylic polymer ((meth) acrylic acid ester polymer) as the binder polymer (C) is preferably −20 ° C. or higher, more preferably −15 ° C. or higher. It is preferable, particularly preferably −10 ° C. or higher, and further preferably −5 ° C. or higher. The glass transition temperature (Tg) is preferably 60 ° C. or lower, more preferably 50 ° C. or lower, particularly preferably 40 ° C. or lower, and further preferably 35 ° C. or lower. .. When the glass transition temperature (Tg) is in the above range, the film forming property and the adhesiveness become good, and the dispersibility of the heat conductive filler (A) becomes better. The glass transition temperature (Tg) of the (meth) acrylic acid ester polymer in the present specification is a value calculated based on the FOX formula.
 接着性樹脂組成物R中におけるバインダーポリマー(C)の含有量は、1質量%以上であることが好ましく、2質量%以上であることがより好ましく、特に3質量%以上であることが好ましく、さらには4質量%以上であることが好ましい。また、上記含有量は、60質量%以下であることが好ましく、50質量%以下であることがより好ましく、特に45質量%以下であることが好ましく、さらには40質量%以下であることが好ましい。バインダーポリマー(C)の含有量が上記の範囲であることにより、接着フィルムの硬化体の機械的強度および接着性を良好に維持しつつ、フィルム形成性および粘着性が良好なものになるとともに、熱伝導性フィラー(A)の分散性がより良好になる。 The content of the binder polymer (C) in the adhesive resin composition R is preferably 1% by mass or more, more preferably 2% by mass or more, and particularly preferably 3% by mass or more. Further, it is preferably 4% by mass or more. The content is preferably 60% by mass or less, more preferably 50% by mass or less, particularly preferably 45% by mass or less, and further preferably 40% by mass or less. .. When the content of the binder polymer (C) is in the above range, the film formability and the adhesiveness are improved while maintaining good mechanical strength and adhesiveness of the cured product of the adhesive film. The dispersibility of the thermally conductive filler (A) becomes better.
(4)硬化剤(D)
 本実施形態における接着性樹脂組成物Rは、さらに硬化剤(D)を含有することが好ましい。これにより、接着性樹脂組成物Rを良好に硬化させることができる。
(4) Hardener (D)
The adhesive resin composition R in the present embodiment preferably further contains a curing agent (D). Thereby, the adhesive resin composition R can be satisfactorily cured.
 硬化剤(D)としては、加熱により熱硬化性成分(B)を硬化させることができるものであれば特に限定されないが、フェノール類、アミン類、チオール類等が好ましく挙げられ、前述した熱硬化性成分(B)の種類に応じて適宜選択することができる。例えば、熱硬化性成分(B)としてエポキシ樹脂を使用する場合には、エポキシ樹脂との反応性等の観点から、フェノール類が好ましい。また、熱伝導性フィラー(A)の分散性の観点からは、π共役系メソゲン骨格を有する化合物を使用することが好ましく、特にπ共役系メソゲン骨格を有するフェノール類を使用することが好ましい。 The curing agent (D) is not particularly limited as long as it can cure the thermosetting component (B) by heating, but phenols, amines, thiols and the like are preferably mentioned, and the above-mentioned thermosetting is preferable. It can be appropriately selected depending on the type of the sex component (B). For example, when an epoxy resin is used as the thermosetting component (B), phenols are preferable from the viewpoint of reactivity with the epoxy resin and the like. Further, from the viewpoint of dispersibility of the thermally conductive filler (A), it is preferable to use a compound having a π-conjugated mesogen skeleton, and it is particularly preferable to use phenols having a π-conjugated mesogen skeleton.
 フェノール類としては、例えば、ビスフェノールA、テトラメチルビスフェノールA、ジアリルビスフェノールA、ビフェノール、ビスフェノールF、ジアリルビスフェノールF、トリフェニルメタン型フェノール、テトラキスフェノール、ノボラック型フェノール樹脂、クレゾールノボラック樹脂、ビフェニル型フェノール樹脂等が挙げられる。共役系メソゲン骨格を有するフェノール類としては、上記のビフェニル型フェノールが挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。 Examples of the phenols include bisphenol A, tetramethylbisphenol A, diallyl bisphenol A, biphenol, bisphenol F, diallyl bisphenol F, triphenylmethane type phenol, tetrakisphenol, novolak type phenol resin, cresol novolac resin, and biphenyl type phenol resin. And so on. Examples of phenols having a conjugated mesogen skeleton include the above-mentioned biphenyl-type phenols. These can be used alone or in combination of two or more.
 上記の中でも、ノボラック型フェノール樹脂またはビフェニル型フェノール樹脂が好ましく、特にノボラック型フェノール樹脂およびビフェニル型フェノール樹脂の両方を併用することが好ましい。 Among the above, novolak-type phenol resin or biphenyl-type phenol resin is preferable, and it is particularly preferable to use both novolak-type phenol resin and biphenyl-type phenol resin in combination.
 ノボラック型フェノール樹脂の水酸基当量は、70g/eq以上であることが好ましく、特に80g/eq以上であることが好ましく、さらには90g/eq以上であることが好ましい。また、上記水酸基当量は、300g/eq以下であることが好ましく、特に280g/eq以下であることが好ましく、さらには250g/eq以下であることが好ましい。これにより、エポキシ樹脂の硬化性がより優れたものとなる。なお、本明細書における水酸基当量は、JIS K0070に準じて測定される値である。 The hydroxyl group equivalent of the novolak type phenol resin is preferably 70 g / eq or more, particularly preferably 80 g / eq or more, and further preferably 90 g / eq or more. The hydroxyl group equivalent is preferably 300 g / eq or less, particularly preferably 280 g / eq or less, and more preferably 250 g / eq or less. As a result, the curability of the epoxy resin becomes more excellent. The hydroxyl group equivalent in the present specification is a value measured according to JIS K0070.
 ビフェニル型フェノール樹脂としては、例えば、下記式(2)および式(3)で表されるものが好ましく挙げられる。 As the biphenyl type phenol resin, for example, those represented by the following formulas (2) and (3) are preferably mentioned.
Figure JPOXMLDOC01-appb-C000002

(式中、nは1以上の整数である。)
Figure JPOXMLDOC01-appb-C000002

(In the formula, n is an integer of 1 or more.)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 ビフェニル型フェノール樹脂の水酸基当量は、80g/eq以上であることが好ましく、特に85g/eq以上であることが好ましく、さらには90g/eq以上であることが好ましい。また、上記水酸基当量は、300g/eq以下であることが好ましく、特に280g/eq以下であることが好ましく、さらには250g/eq以下であることが好ましい。これにより、フェノール単体等、合成時の未反応物として残存する硬化反応を阻害する物質が含まれることを防ぎ、エポキシ樹脂の硬化性がより優れたものとなる。 The hydroxyl group equivalent of the biphenyl-type phenol resin is preferably 80 g / eq or more, particularly preferably 85 g / eq or more, and further preferably 90 g / eq or more. The hydroxyl group equivalent is preferably 300 g / eq or less, particularly preferably 280 g / eq or less, and more preferably 250 g / eq or less. This prevents the inclusion of substances that inhibit the curing reaction that remain as unreactants during synthesis, such as elemental phenol, and makes the epoxy resin more excellent in curability.
 上記ノボラック型フェノール樹脂およびビフェニル型フェノール樹脂の軟化点は、60℃以上であることが好ましく、特に80℃以上であることが好ましく、さらには90℃以上であることが好ましい。また、上記軟化点は、200℃以下であることが好ましく、特に150℃以下であることが好ましく、さらには130℃以下であることが好ましい。上記ノボラック型フェノール樹脂またはビフェニル型フェノール樹脂が軟化しない場合、その昇華温度は、270℃以上であることが好ましい。また、上記昇華温度は、330℃以下であることが好ましい。高い軟化点または高い昇華温度を有するものは、π電子による相互作用が効果的に発現することとなり、熱伝導性フィラー(A)の分散性がより優れたものとなる。 The softening point of the novolak-type phenol resin and the biphenyl-type phenol resin is preferably 60 ° C. or higher, particularly preferably 80 ° C. or higher, and further preferably 90 ° C. or higher. The softening point is preferably 200 ° C. or lower, particularly preferably 150 ° C. or lower, and further preferably 130 ° C. or lower. When the novolak-type phenol resin or the biphenyl-type phenol resin does not soften, its sublimation temperature is preferably 270 ° C. or higher. The sublimation temperature is preferably 330 ° C. or lower. Those having a high softening point or a high sublimation temperature effectively exhibit the interaction by π electrons, and the dispersibility of the thermally conductive filler (A) becomes more excellent.
 接着性樹脂組成物R中における硬化剤(D)の含有量は、2質量%以上であることが好ましく、4質量%以上であることがより好ましく、特に5質量%以上であることが好ましく、さらには8質量%以上であることが好ましい。また、上記含有量は、40質量%以下であることが好ましく、35質量%以下であることがより好ましく、特に30質量%以下であることが好ましく、さらには25質量%以下であることが好ましい。硬化剤(D)の含有量が上記の範囲であることにより、接着性樹脂組成物Rの硬化性がより良好なものとなる。 The content of the curing agent (D) in the adhesive resin composition R is preferably 2% by mass or more, more preferably 4% by mass or more, and particularly preferably 5% by mass or more. Further, it is preferably 8% by mass or more. The content is preferably 40% by mass or less, more preferably 35% by mass or less, particularly preferably 30% by mass or less, and further preferably 25% by mass or less. .. When the content of the curing agent (D) is in the above range, the curability of the adhesive resin composition R becomes better.
 ノボラック型フェノール樹脂とビフェニル型フェノール樹脂とを併用する場合、それらの配合比(質量基準)は、80:20~10:90であることが好ましく、70:30~20:80であることがより好ましく、特に65:35~25:75であることが好ましく、さらには60:40~30:70であることが好ましい。これにより、接着性樹脂組成物Rの硬化性と熱伝導性フィラー(A)の分散性とのバランスを良好に図ることができる。 When the novolak type phenol resin and the biphenyl type phenol resin are used in combination, the compounding ratio (mass standard) thereof is preferably 80:20 to 10:90, more preferably 70:30 to 20:80. It is preferable, particularly preferably 65:35 to 25:75, and further preferably 60:40 to 30:70. Thereby, the curability of the adhesive resin composition R and the dispersibility of the heat conductive filler (A) can be well balanced.
(5)硬化促進剤(E)
 本実施形態における接着性樹脂組成物Rは、前述した熱硬化性成分(B)と硬化剤(D)との反応を促進または調整する硬化促進剤(E)をさらに含有することが好ましい。
(5) Curing accelerator (E)
The adhesive resin composition R in the present embodiment preferably further contains a curing accelerator (E) that promotes or adjusts the reaction between the thermosetting component (B) and the curing agent (D) described above.
 硬化促進剤(E)としては、例えば、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の3級アミン類;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール類;トリブチルホスフィン、ジフェニルホスフィン、トリフェニルホスフィン等の有機ホスフィン類;テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート等のテトラフェニルボロン塩などが挙げられる。これらは1種を単独で、または2種以上を混合して使用することができる。 Examples of the curing accelerator (E) include tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, and tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole, and the like. Imidazoles such as 2-phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole; tributylphosphine, diphenylphosphine, triphenylphosphine and the like. Organic phosphins; tetraphenylboron salts such as tetraphenylphosphonium tetraphenylborate and triphenylphosphine tetraphenylborate can be mentioned. These can be used alone or in admixture of two or more.
 熱硬化性成分(B)としてエポキシ樹脂を使用し、硬化剤(D)としてフェノール類を使用する場合には、それらの化合物の反応性、保存安定性、硬化物の物性、硬化速度等の観点から、イミダゾール系の硬化促進剤を使用することが好ましく、特に、2-フェニル-4,5-ヒドロキシメチルイミダゾールが好ましく用いられる。 When an epoxy resin is used as the thermosetting component (B) and phenols are used as the curing agent (D), the reactivity of these compounds, storage stability, physical properties of the cured product, curing speed, etc. Therefore, it is preferable to use an imidazole-based curing accelerator, and in particular, 2-phenyl-4,5-hydroxymethylimidazole is preferably used.
 接着性樹脂組成物R中における硬化促進剤(E)の含有量は、0.0001質量%以上であることが好ましく、0.001質量%以上であることがより好ましく、特に0.005質量%以上であることが好ましく、さらには0.01質量%以上であることが好ましい。また、上記含有量は、1.0質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、特に0.1質量%以下であることが好ましく、さらには0.05質量%以下であることが好ましい。硬化促進剤(E)の含有量が上記の範囲であることにより、接着フィルムの保存安定性が良好となるとともに、接着性樹脂組成物Rを良好に硬化させることができる。 The content of the curing accelerator (E) in the adhesive resin composition R is preferably 0.0001% by mass or more, more preferably 0.001% by mass or more, and particularly 0.005% by mass. The above is preferable, and more preferably 0.01% by mass or more. The content is preferably 1.0% by mass or less, more preferably 0.5% by mass or less, particularly preferably 0.1% by mass or less, and further preferably 0.05% by mass. It is preferably mass% or less. When the content of the curing accelerator (E) is in the above range, the storage stability of the adhesive film is improved and the adhesive resin composition R can be cured satisfactorily.
(6)各種添加剤
 本実施形態における接着性樹脂組成物には、所望により、各種添加剤、例えば粘着付与剤、難燃剤、酸化防止剤、光安定剤、軟化剤、防錆剤などを添加することができる。
(6) Various Additives Various additives such as a tackifier, a flame retardant, an antioxidant, a light stabilizer, a softener, and a rust preventive are added to the adhesive resin composition in the present embodiment, if desired. can do.
2.接着性樹脂組成物の調製
 本実施形態における接着性樹脂組成物Rは、二次元構造を有するグラフェンおよび単層窒化ホウ素の少なくとも1種からなる熱伝導性フィラー(A)と、熱硬化性成分(B)と、バインダーポリマー(C)と、所望により、硬化剤(D)と、硬化促進剤(E)と、添加剤と、溶媒とを十分に混合することにより得ることができる。なお、上記各成分のいずれかにおいて、固体状のものを用いる場合、あるいは、希釈されていない状態で他の成分と混合した際に析出等を生じる場合には、その成分を単独で予め溶媒に溶解もしくは希釈してから、その他の成分と混合してもよい。
2. 2. Preparation of Adhesive Resin Composition The adhesive resin composition R in the present embodiment contains a heat conductive filler (A) composed of at least one of graphene having a two-dimensional structure and single-layer boron nitride, and a thermosetting component (a thermosetting component (A). It can be obtained by sufficiently mixing B), a binder polymer (C), a curing agent (D), a curing accelerator (E), an additive, and a solvent, if desired. If any of the above components is in the form of a solid, or if precipitation occurs when the components are mixed with other components in an undiluted state, the components may be used alone in advance as a solvent. It may be dissolved or diluted and then mixed with other ingredients.
 本実施形態における接着性樹脂組成物Rは、溶媒中にて、予め熱伝導性フィラー(A)とバインダーポリマー(C)とを混合した後、さらに熱硬化性成分(B)と、所望により、硬化剤(D)、硬化促進剤(E)、添加剤等を添加することが好ましい。熱硬化性成分(B)等の配合前に、予め熱伝導性フィラー(A)とバインダーポリマー(C)とを混合することにより、熱伝導性フィラー(A)の分散性がより良好になって、塗膜中にて熱伝導性フィラー(A)が偏析することが抑制される。その結果、得られる接着フィルム中に熱伝導性フィラー(A)が均一に分散し、熱伝導性により優れた接着フィルムを得ることができる。 The adhesive resin composition R in the present embodiment is prepared by mixing the thermally conductive filler (A) and the binder polymer (C) in advance in a solvent, and then further adding a thermosetting component (B), if desired. It is preferable to add a curing agent (D), a curing accelerator (E), an additive and the like. By mixing the heat conductive filler (A) and the binder polymer (C) in advance before blending the thermosetting component (B) and the like, the dispersibility of the heat conductive filler (A) becomes better. , Segregation of the thermally conductive filler (A) in the coating film is suppressed. As a result, the heat conductive filler (A) is uniformly dispersed in the obtained adhesive film, and an adhesive film having better heat conductivity can be obtained.
 熱伝導性フィラー(A)およびバインダーポリマー(C)の混合は、溶媒中にて、ディスパーの回転数500~5000rpmで、10分以上撹拌して行うことが好ましく、同回転数1000~40000rpmで、20分以上撹拌して行うことがより好ましい。 The heat conductive filler (A) and the binder polymer (C) are preferably mixed in a solvent at a speed of 500 to 5000 rpm of the disper for 10 minutes or more, preferably at the same speed of 1000 to 40,000 rpm. It is more preferable to stir for 20 minutes or more.
 なお、上記溶媒としては、特に限定されず、例えば、ヘキサン、ヘプタン、シクロヘキサン等の脂肪族炭化水素、トルエン、キシレン等の芳香族炭化水素、塩化メチレン、塩化エチレン等のハロゲン化炭化水素、メタノール、エタノール、プロパノール、ブタノール、1-メトキシ-2-プロパノール等のアルコール、アセトン、メチルエチルケトン、2-ペンタノン、イソホロン、シクロヘキサノン等のケトン、酢酸エチル、酢酸ブチル等のエステル、エチルセロソルブ等のセロソルブ系溶剤、N,N-ジメチルホルムアミド、トリメチル-2-ピロリドン、ブチルカルビトールなどが用いられるが、好ましくは、メチルエチルケトンである。 The solvent is not particularly limited, and is, for example, an aliphatic hydrocarbon such as hexane, heptane, or cyclohexane, an aromatic hydrocarbon such as toluene or xylene, a halogenated hydrocarbon such as methylene chloride or ethylene chloride, methanol, or the like. Alcohols such as ethanol, propanol, butanol, 1-methoxy-2-propanol, ketones such as acetone, methyl ethyl ketone, 2-pentanone, isophorone, cyclohexanone, esters such as ethyl acetate and butyl acetate, cellosolvent solvents such as ethyl cellosolve, N. , N-Dimethylformamide, trimethyl-2-pyrrolidone, butylcarbitol and the like are used, but methylethylketone is preferable.
 このようにして調製された接着性樹脂組成物Rの塗工液の粘度としては、コーティング可能な範囲であればよく、特に制限されず、状況に応じて適宜選定することができる。なお、希釈溶媒等の添加は必要条件ではなく、接着性樹脂組成物Rがコーティング可能な粘度等であれば、希釈溶媒を添加しなくてもよい。 The viscosity of the coating liquid of the adhesive resin composition R thus prepared is not particularly limited as long as it can be coated, and can be appropriately selected depending on the situation. It should be noted that the addition of the diluting solvent or the like is not a necessary condition, and the diluting solvent may not be added as long as the adhesive resin composition R has a viscosity and the like that can be coated.
3.接着フィルムの製造
 本実施形態に係る接着フィルムは、上記で得られた接着性樹脂組成物Rを、フィルム状に形成することによって得られる。接着性樹脂組成物Rを、フィルム状に形成するにあたり、塗工対象として剥離シートを使用することが好ましい。例えば、接着性樹脂組成物Rの塗工液を剥離シートに塗布し、希釈溶媒を加熱乾燥により除去することにより、本実施形態に係る接着フィルムを容易に製造することができる。
3. 3. Production of Adhesive Film The adhesive film according to the present embodiment is obtained by forming the adhesive resin composition R obtained above into a film. In forming the adhesive resin composition R into a film, it is preferable to use a release sheet as a coating target. For example, the adhesive film according to the present embodiment can be easily produced by applying the coating liquid of the adhesive resin composition R to the release sheet and removing the diluting solvent by heating and drying.
 剥離シートとしては、樹脂フィルム、不織布、紙等が挙げられるが、樹脂フィルムが一般的に用いられる。樹脂フィルムとしては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリウレタンフィルム、エチレン酢酸ビニルフィルム、アイオノマー樹脂フィルム、エチレン・(メタ)アクリル酸共重合体フィルム、エチレン・(メタ)アクリル酸エステル共重合体フィルム、ポリスチレンフィルム、ポリカーボネートフィルム、ポリイミドフィルム、フッ素樹脂フィルム等が用いられる。また、これらの架橋フィルムも用いられる。さらに、これらの積層フィルムであってもよい。 Examples of the release sheet include a resin film, a non-woven fabric, and paper, but a resin film is generally used. Examples of the resin film include polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene terephthalate film, polyethylene naphthalate film, and polybutylene terephthalate film. Polyurethane film, ethylene vinyl acetate film, ionomer resin film, ethylene / (meth) acrylic acid copolymer film, ethylene / (meth) acrylic acid ester copolymer film, polystyrene film, polycarbonate film, polyimide film, fluororesin film, etc. Is used. In addition, these crosslinked films are also used. Further, these laminated films may be used.
 上記剥離シートの剥離面(接着性樹脂組成物Rと接する面)には、剥離処理が施されていることが好ましい。剥離処理に使用される剥離剤としては、例えば、アルキッド系、シリコーン系、フッ素系、不飽和ポリエステル系、ポリオレフィン系、ワックス系の剥離剤が挙げられる。ただし、この剥離処理は、必ずしも必要ではない。 It is preferable that the peeling surface (the surface in contact with the adhesive resin composition R) of the peeling sheet is subjected to a peeling treatment. Examples of the release agent used in the release treatment include alkyd-based, silicone-based, fluorine-based, unsaturated polyester-based, polyolefin-based, and wax-based release agents. However, this peeling treatment is not always necessary.
 剥離シートの厚さについては特に制限はないが、通常20~150μm程度である。 The thickness of the release sheet is not particularly limited, but is usually about 20 to 150 μm.
 剥離シートの剥離面の算術平均粗さ(Ra)は、0.1μm以下であることが好ましく、0.05μm以下であることがより好ましく、特に0.01μm以下であることが好ましい。剥離シートの剥離面の算術平均粗さ(Ra)が上記であることにより、剥離シートの剥離面の粗さが接着フィルムに転写されたとしても、接着フィルムの算術平均粗さ(Ra)を後述する好ましい範囲に調整し易くなる。なお、本明細書における算術平均粗さ(Ra)の測定方法は、後述する試験例に示す通りである。 The arithmetic average roughness (Ra) of the peeled surface of the peeled sheet is preferably 0.1 μm or less, more preferably 0.05 μm or less, and particularly preferably 0.01 μm or less. Since the arithmetic average roughness (Ra) of the peeling surface of the release sheet is as described above, even if the roughness of the release surface of the release sheet is transferred to the adhesive film, the arithmetic average roughness (Ra) of the adhesive film will be described later. It becomes easy to adjust to a preferable range. The method for measuring the arithmetic mean roughness (Ra) in the present specification is as shown in a test example described later.
 接着フィルムの一製造例として、接着性樹脂組成物Rの塗工液を、剥離シートの剥離面に塗工する。塗工方法としては、例えばバーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等を利用することができる。 As an example of manufacturing an adhesive film, the coating liquid of the adhesive resin composition R is applied to the peeling surface of the release sheet. As the coating method, for example, a bar coat method, a knife coat method, a roll coat method, a blade coat method, a die coat method, a gravure coat method and the like can be used.
 次いで、接着性樹脂組成物Rの塗膜を乾燥させ、希釈溶剤等を揮発させて、接着フィルムを得る。乾燥条件は、90~150℃で0.5~30分であることが好ましく、特に100~120℃で1~10分であることが好ましい。なお、乾燥処理の加熱温度は、接着性樹脂組成物Rの熱硬化温度よりも低い温度である必要がある。 Next, the coating film of the adhesive resin composition R is dried and a diluting solvent or the like is volatilized to obtain an adhesive film. The drying conditions are preferably 90 to 150 ° C. for 0.5 to 30 minutes, and particularly preferably 100 to 120 ° C. for 1 to 10 minutes. The heating temperature of the drying treatment needs to be lower than the thermosetting temperature of the adhesive resin composition R.
 上記の乾燥処理後、接着フィルムの露出面に、別の剥離可能な保護フィルムを積層し、接着フィルムを保護することが好ましい。このとき、接着フィルムの露出面に、剥離可能な保護フィルムの剥離面が接触するように、当該保護フィルムを積層する。これにより、剥離シート/接着フィルム/保護フィルムからなる積層体が得られる。 After the above drying treatment, it is preferable to laminate another peelable protective film on the exposed surface of the adhesive film to protect the adhesive film. At this time, the protective film is laminated so that the peelable surface of the removable protective film comes into contact with the exposed surface of the adhesive film. As a result, a laminate made of a release sheet / adhesive film / protective film can be obtained.
 保護フィルムとしては、上述した樹脂フィルムを主体とする剥離シートと同様のものを使用することができる。保護フィルムは、接着フィルムに対して剥離性を有するものであれば、剥離処理の有無は問わない。 As the protective film, the same one as the above-mentioned release sheet mainly composed of the resin film can be used. The protective film may or may not be peeled off as long as it has peelability with respect to the adhesive film.
 上記のようにして得られた接着フィルム(積層体)は、熱プレスすることが好ましい。接着フィルムを熱プレスすることにより、接着フィルム内部に存在する空隙を低減することができ、熱伝導性がより優れたものとなる。具体的には、熱プレスによって、熱伝導性フィラー(A)同士がより接触し易くなり、熱伝導パスがより形成され易くなり、熱伝導性がより優れたものとなる。かかる熱プレスを行うことにより、接着フィルム中における熱伝導性フィラー(A)の配合量をより低減することができ、接着フィルムの柔軟性や粘着性をより向上させることができる。 The adhesive film (laminated body) obtained as described above is preferably heat-pressed. By hot-pressing the adhesive film, the voids existing inside the adhesive film can be reduced, and the thermal conductivity becomes more excellent. Specifically, the heat press makes it easier for the heat conductive fillers (A) to come into contact with each other, makes it easier for the heat conduction path to be formed, and makes the heat conductivity more excellent. By performing such a hot press, the amount of the heat conductive filler (A) blended in the adhesive film can be further reduced, and the flexibility and adhesiveness of the adhesive film can be further improved.
 本実施形態に係る接着フィルムにおいては、前述したように、特定の温度(T)以下の温度で30分以上保持する予備加熱工程と、当該予備加熱工程後に接着フィルムを完全硬化させる完全硬化工程とを含む加熱処理を行うことにより、得られる硬化体の厚さ方向断面における空隙部分の面積割合を10%以下にし易くすることができるが、上記の熱プレスを併用することによって、当該空隙部分の面積割合を10%以下によりし易くすることができる。 In the adhesive film according to the present embodiment, as described above, a preheating step of holding the adhesive film at a temperature of a specific temperature (T) or less for 30 minutes or more, and a complete curing step of completely curing the adhesive film after the preheating step. It is possible to easily reduce the area ratio of the void portion in the cross section in the thickness direction of the obtained cured product to 10% or less by performing the heat treatment containing the above-mentioned heat press. The area ratio can be made easier by 10% or less.
 熱プレスの加熱温度は、熱硬化性成分(B)の硬化反応温度未満とする。具体的には、30~90℃であることが好ましく、40~80℃であることがより好ましく、特に45~70℃であることが好ましく、さらには45~60℃であることが好ましい。 The heating temperature of the hot press shall be lower than the curing reaction temperature of the thermosetting component (B). Specifically, it is preferably 30 to 90 ° C, more preferably 40 to 80 ° C, particularly preferably 45 to 70 ° C, and further preferably 45 to 60 ° C.
 熱プレスの圧力は、0.5~15MPaであることが好ましく、1~10MPaであることがより好ましく、特に1.5~5MPaであることが好ましく、さらには2~4MPaであることが好ましい。 The pressure of the hot press is preferably 0.5 to 15 MPa, more preferably 1 to 10 MPa, particularly preferably 1.5 to 5 MPa, and further preferably 2 to 4 MPa.
 熱プレスの時間は、0.5~60分であることが好ましく、1~50分であることがより好ましく、特に2~40分であることが好ましく、さらに3~30分であることが好ましい。 The heat pressing time is preferably 0.5 to 60 minutes, more preferably 1 to 50 minutes, particularly preferably 2 to 40 minutes, and further preferably 3 to 30 minutes. ..
 熱プレスの条件を上記のように設定することにより、接着フィルムを硬化させた硬化体の各物性を後述する好ましい範囲にし易くすることができる。 By setting the conditions of the hot press as described above, it is possible to easily make each physical property of the cured body obtained by curing the adhesive film within the preferable range described later.
4.接着フィルムの物性
(1)接着フィルムの厚さ
 本実施形態に係る接着フィルム(熱プレスしていない接着フィルムおよび熱プレスした接着フィルムを含む)の厚さ(JIS K7130に準じて測定した値)は、下限値として0.5μm以上であることが好ましく、1μm以上であることがより好ましく、特に5μm以上であることが好ましく、さらには10μm以上であることが好ましい。接着フィルムの厚さの下限値が上記であると、良好な粘着力および接着力を発揮しやすい。
4. Physical properties of the adhesive film (1) Thickness of the adhesive film The thickness of the adhesive film (including the adhesive film that has not been heat-pressed and the adhesive film that has been heat-pressed) according to this embodiment is the thickness (value measured according to JIS K7130). The lower limit is preferably 0.5 μm or more, more preferably 1 μm or more, particularly preferably 5 μm or more, and further preferably 10 μm or more. When the lower limit of the thickness of the adhesive film is the above, it is easy to exhibit good adhesive force and adhesive force.
 また、本実施形態に係る接着フィルムの厚さは、上限値として1000μm以下であることが好ましく、500μm以下であることがより好ましく、特に200μm以下であることが好ましく、さらには100μm以下であることが好ましい。接着フィルムの厚さの上限値が上記であると、熱伝導性がより優れたものとなる。なお、接着フィルムは単層で形成してもよいし、複数層を積層して形成することもできる。 The thickness of the adhesive film according to the present embodiment is preferably 1000 μm or less, more preferably 500 μm or less, particularly preferably 200 μm or less, and further preferably 100 μm or less as an upper limit value. Is preferable. When the upper limit of the thickness of the adhesive film is the above, the thermal conductivity becomes better. The adhesive film may be formed as a single layer, or may be formed by laminating a plurality of layers.
(2)算術平均粗さ(Ra)
 接着フィルム(熱プレスしていない接着フィルムおよび熱プレスした接着フィルムを含む)における、少なくとも一方の表面の算術平均粗さ(Ra)は、0.5μm以下であることが好ましく、0.4μm以下であることがより好ましく、特に0.35μm以下であることが好ましく、さらには0.3μm以下であることが好ましい。接着フィルムの算術平均粗さ(Ra)の上限値が上記であることにより、被着体に対する粘着性、すなわち仮接着性がより優れたものとなり、ハンドリング性が良好になる。また、被着体との接触面積が大きくなるため、被着体との間における熱伝導性がより優れたものとなる。算術平均粗さ(Ra)が上限値を超える場合は、接着フィルムの表面に熱伝導性フィラー(A)が偏析し、樹脂成分が接着フィルム表面に全く存在していないか、存在していても微量である可能性がある。その結果、被着体に貼ったときに仮接着性が不十分となるおそれがある。
(2) Arithmetic mean roughness (Ra)
The arithmetic mean roughness (Ra) of at least one surface of the adhesive film (including the non-hot pressed adhesive film and the hot pressed adhesive film) is preferably 0.5 μm or less, preferably 0.4 μm or less. It is more preferably present, particularly preferably 0.35 μm or less, and further preferably 0.3 μm or less. When the upper limit of the arithmetic average roughness (Ra) of the adhesive film is the above, the adhesiveness to the adherend, that is, the temporary adhesiveness becomes more excellent, and the handleability becomes good. Further, since the contact area with the adherend becomes large, the thermal conductivity with the adherend becomes more excellent. If the arithmetic average roughness (Ra) exceeds the upper limit, the thermally conductive filler (A) segregates on the surface of the adhesive film, and the resin component is not present on the surface of the adhesive film at all, or even if it is present. It may be in trace amounts. As a result, the temporary adhesiveness may be insufficient when attached to the adherend.
 一方、接着フィルムの算術平均粗さ(Ra)は、0.01μm以上であることが好ましく、0.02μm以上であることがより好ましく、特に0.03μm以上であることが好ましく、さらには0.05μm以上であることが好ましい。接着フィルムの表面に熱伝導性フィラー(A)が偏析すると、算術平均粗さ(Ra)が大きくなる傾向がある。接着フィルムの算術平均粗さ(Ra)の下限値が上記であることにより、接着フィルムの表面に熱伝導性フィラー(A)が存在しているということができ、被着体との間における熱伝導性がより優れたものとなる。 On the other hand, the arithmetic mean roughness (Ra) of the adhesive film is preferably 0.01 μm or more, more preferably 0.02 μm or more, particularly preferably 0.03 μm or more, and further preferably 0. It is preferably 05 μm or more. When the thermally conductive filler (A) segregates on the surface of the adhesive film, the arithmetic mean roughness (Ra) tends to increase. Since the lower limit of the arithmetic average roughness (Ra) of the adhesive film is as described above, it can be said that the heat conductive filler (A) is present on the surface of the adhesive film, and the heat between the adhesive film and the adherend can be said to be present. The conductivity will be better.
(3)粘着力
 接着フィルム(熱プレスしていない接着フィルムおよび熱プレスした接着フィルムを含む)のシリコンウエハ(算術平均粗さ(Ra):0.02μm以下)に対する粘着力は、0.1mN/25mm以上であることが好ましく、0.5mN/25mm以上であることがより好ましく、特に0.8mN/25mm以上であることが好ましく、さらに1.0mN/25mm以上であることが好ましい。これにより、被着体に対して良好に密着し、優れた仮接着性を発揮することができる。
(3) Adhesive strength The adhesive strength of the adhesive film (including the adhesive film that has not been hot-pressed and the adhesive film that has been hot-pressed) to a silicon wafer (arithmetic average roughness (Ra): 0.02 μm or less) is 0.1 mN / It is preferably 25 mm or more, more preferably 0.5 mN / 25 mm or more, particularly preferably 0.8 mN / 25 mm or more, and further preferably 1.0 mN / 25 mm or more. As a result, it adheres well to the adherend and can exhibit excellent temporary adhesiveness.
 上記粘着力の上限値は特に限定されないが、通常、5.0mN/25mm以下であることが好ましく、3.0mN/25mm以下であることがより好ましく、特に2.5mN/25mm以下であることが好ましく、さらに2.0mN/25mm以下であることが好ましい。これにより、リワーク性に優れたものあとなる。なお、本明細書における粘着力は、基本的にはJIS Z0237:2009に準じた180度引き剥がし法により測定した粘着力をいい、具体的な測定方法は、後述する試験例に示す通りである。 The upper limit of the adhesive strength is not particularly limited, but is usually preferably 5.0 mN / 25 mm or less, more preferably 3.0 mN / 25 mm or less, and particularly preferably 2.5 mN / 25 mm or less. It is preferably 2.0 mN / 25 mm or less. As a result, the reworkability is excellent. The adhesive strength in the present specification basically refers to the adhesive strength measured by the 180-degree peeling method according to JIS Z0237: 2009, and the specific measuring method is as shown in the test example described later. ..
〔支持シート付き接着フィルム〕
 本発明の一実施形態に係る支持シート付き接着フィルムは、上述した接着フィルム(熱プレスしていない接着フィルムおよび熱プレスした接着フィルムを含む)と、当該接着フィルムの少なくとも一方の面側に積層された支持シートとを備えたものである。支持シートは、将来的に接着フィルムから剥離されるものであってもよい。
[Adhesive film with support sheet]
The adhesive film with a support sheet according to an embodiment of the present invention is laminated with the above-mentioned adhesive film (including a heat-pressed adhesive film and a heat-pressed adhesive film) on at least one surface side of the adhesive film. It is equipped with a support sheet. The support sheet may be peeled off from the adhesive film in the future.
 接着フィルムが支持シートに支持されていることにより、例えば、被着体の加工性を向上させることができる。一例として、接着フィルム単独では被着体の加工が難しい場合であっても、支持シート付き接着フィルムを一の被着体に貼付し、その状態で加工を施し、その後、支持シートを剥離して接着フィルムを他の被着体に貼付するといった工程を行うことができる。 By supporting the adhesive film on the support sheet, for example, the processability of the adherend can be improved. As an example, even if it is difficult to process the adherend with the adhesive film alone, the adhesive film with a support sheet is attached to one adherend, processed in that state, and then the support sheet is peeled off. A process such as attaching an adhesive film to another adherend can be performed.
 本実施形態における一例としての支持シート付き接着フィルムを図1に示す。図1に示される支持シート付き接着フィルム2は、接着フィルム1と、当該接着フィルム1の一方の面(図1では上側の面)に積層された支持シート11と、当該接着フィルム1の他方の面(図1では下側の面)に積層された剥離シート12とを備えて構成される。剥離シート12は、その剥離可能な面が接着フィルム1に接触するように接着フィルム1に積層されている。なお、剥離シート12は、接着フィルム1の使用時まで接着フィルム1を保護するものであり、省略されてもよい。また、本実施形態における支持シート付き接着フィルムにおいては、剥離シート12の替わりに保護フィルムが積層されていてもよい。 FIG. 1 shows an adhesive film with a support sheet as an example in this embodiment. The adhesive film 2 with a support sheet shown in FIG. 1 includes an adhesive film 1, a support sheet 11 laminated on one surface of the adhesive film 1 (upper surface in FIG. 1), and the other of the adhesive film 1. It is configured to include a release sheet 12 laminated on a surface (lower surface in FIG. 1). The release sheet 12 is laminated on the adhesive film 1 so that its peelable surface is in contact with the adhesive film 1. The release sheet 12 protects the adhesive film 1 until the adhesive film 1 is used, and may be omitted. Further, in the adhesive film with a support sheet in the present embodiment, a protective film may be laminated instead of the release sheet 12.
 支持シート11は、接着フィルム1を支持するために十分な機械的強度を発揮できる限り、特に限定されない。支持シート11を構成する材料としては、例えば、樹脂フィルム、不織布、紙等が挙げられるが、樹脂フィルムが一般的に用いられる。 The support sheet 11 is not particularly limited as long as it can exhibit sufficient mechanical strength to support the adhesive film 1. Examples of the material constituting the support sheet 11 include a resin film, a non-woven fabric, and paper, and a resin film is generally used.
 樹脂フィルムの具体例としては、低密度ポリエチレン(LDPE)フィルム、直鎖低密度ポリエチレン(LLDPE)フィルム、高密度ポリエチレン(HDPE)フィルム等のポリエチレンフィルム、ポリプロピレンフィルム、エチレン-プロピレン共重合体フィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、エチレン-ノルボルネン共重合体フィルム、ノルボルネン樹脂フィルム等のポリオレフィン系フィルム;エチレン-酢酸ビニル共重合体フィルム、エチレン-(メタ)アクリル酸共重合体フィルム、エチレン-(メタ)アクリル酸エステル共重合体フィルム等のエチレン系共重合フィルム;ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム等のポリ塩化ビニル系フィルム;ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム等のポリエステル系フィルム;ポリウレタンフィルム;ポリイミドフィルム;ポリスチレンフィルム;ポリカーボネートフィルム;フッ素樹脂フィルムなどが挙げられる。また、これらの架橋フィルム、アイオノマーフィルムのような変性フィルムも用いられる。さらに上記フィルムの同種または異種を複数積層した積層フィルムであってもよい。なお、支持シート11は、剥離シートであってもよい。支持シート11は、例えば、前述した樹脂フィルム、不織布、紙等の上に公知の粘着剤層が設けられたものであってもよい。 Specific examples of the resin film include a polyethylene film such as a low density polyethylene (LDPE) film, a linear low density polyethylene (LLDPE) film, and a high density polyethylene (HDPE) film, a polypropylene film, an ethylene-propylene copolymer film, and a polybutene. Polyolefin films such as films, polybutadiene films, polymethylpentene films, ethylene-norbornene copolymer films, norbornene resin films; ethylene-vinyl acetate copolymer films, ethylene- (meth) acrylic acid copolymer films, ethylene- Ethylene-based copolymer film such as (meth) acrylic acid ester copolymer film; polyvinyl chloride-based film such as polyvinyl chloride film and vinyl chloride copolymer film; polyester-based film such as polyethylene terephthalate film and polybutylene terephthalate film. ; Polyurethane film; Polyimide film; Polystyrene film; Polycarbonate film; Fluororesin film and the like. Further, modified films such as these crosslinked films and ionomer films are also used. Further, it may be a laminated film in which a plurality of the same type or different types of the above film are laminated. The support sheet 11 may be a release sheet. The support sheet 11 may be, for example, one in which a known pressure-sensitive adhesive layer is provided on the above-mentioned resin film, non-woven fabric, paper, or the like.
 支持シート11の厚さは、20μm以上であることが好ましく、特に40μm以上であることが好ましく、さらには60μm以上であることが好ましい。また、当該厚さは、150μm以下であることが好ましく、特に120μm以下であることが好ましく、さらには110μm以下であることが好ましい。支持シート11の厚さが上記の範囲にあることで、支持シート11が所望の機械的強度を有し易く、上記の被着体加工性等が良好なものとなる。 The thickness of the support sheet 11 is preferably 20 μm or more, particularly preferably 40 μm or more, and further preferably 60 μm or more. The thickness is preferably 150 μm or less, particularly preferably 120 μm or less, and further preferably 110 μm or less. When the thickness of the support sheet 11 is within the above range, the support sheet 11 tends to have the desired mechanical strength, and the adherend workability and the like are good.
 支持シート付き接着フィルム2は、半導体装置を製造する際に用いられるダイシング・ダイボンディングシートであってもよい。この場合の支持シート付き接着フィルム2は、半導体素子をダイシングする工程およびダイボンドする工程に用いることができ、さらに、接着フィルムの硬化物は、半導体装置駆動時に発生する熱を外界に放出するための熱伝導材として機能する。この場合の支持シート11は、例えば、前述した樹脂フィルムにおける接着フィルム1側の面に公知の粘着剤層が設けられたものであることが好ましい。 The adhesive film 2 with a support sheet may be a dicing / die bonding sheet used when manufacturing a semiconductor device. In this case, the adhesive film 2 with a support sheet can be used in the steps of dicing and dicing the semiconductor element, and the cured product of the adhesive film is for releasing the heat generated when the semiconductor device is driven to the outside world. Functions as a heat conductive material. In this case, the support sheet 11 is preferably provided with, for example, a known pressure-sensitive adhesive layer on the surface of the resin film described above on the side of the adhesive film 1.
 支持シート付き接着フィルム2の製造例としては、前述した剥離シート/接着フィルム/保護フィルムからなる積層体から、剥離シートを剥離し、支持シートを積層してもよいし、前述した剥離シート/接着フィルム/保護フィルムからなる積層体から、保護フィルムを剥離し、支持シートを積層してもよいし、前述した接着フィルムの製造方法において、保護フィルムの替わりに支持シートを使用してもよい。 As an example of manufacturing the adhesive film 2 with a support sheet, the release sheet may be peeled off from the above-mentioned laminate made of the release sheet / adhesive film / protective film and the support sheet may be laminated, or the above-mentioned release sheet / adhesion may be performed. The protective film may be peeled off from the laminate made of the film / protective film and the support sheet may be laminated, or the support sheet may be used instead of the protective film in the above-mentioned method for producing an adhesive film.
〔硬化体〕
 本発明の一実施形態に係る硬化体は、前述した接着フィルムを加熱処理により硬化させたものであり、好ましくは前述した熱プレス後の接着フィルムを加熱処理により硬化させたものである。
[Hardened body]
The cured product according to the embodiment of the present invention is one in which the above-mentioned adhesive film is cured by heat treatment, and preferably the above-mentioned adhesive film after hot pressing is cured by heat treatment.
1.物性
(1)空隙部分の面積割合
 本実施形態における硬化体の厚さ方向断面における空隙部分の面積割合は、10%以下であることが好ましく、7%以下であることがより好ましく、特に5%以下であることが好ましく、さらには4%以下であることが好ましい。上記空隙部分の面積割合が10%以下であることにより、熱伝導性フィラー(A)同士がより接触した状態となり、熱伝導パスが高い密度で形成され、熱伝導性がより優れたものとなる。上記面積割合の下限値は、特に限定されず、最も好ましいのは0%である。なお、上記空隙部分の面積割合の導出方法は、後述する試験例に示す通りである。
1. 1. Physical properties (1) Area ratio of void portion The area ratio of the void portion in the thickness direction cross section of the cured product in the present embodiment is preferably 10% or less, more preferably 7% or less, and particularly 5%. It is preferably less than or equal to, and more preferably 4% or less. When the area ratio of the void portion is 10% or less, the heat conductive fillers (A) are in more contact with each other, the heat conduction path is formed at a high density, and the heat conductivity becomes more excellent. .. The lower limit of the area ratio is not particularly limited, and the most preferable value is 0%. The method for deriving the area ratio of the void portion is as shown in the test example described later.
(2)空隙部分の最大面積
 本実施形態における硬化体の厚さ方向断面における空隙部分の最大面積は、100μm以下であることが好ましく、80μm以下であることがより好ましく、特に60μm以下であることが好ましく、さらには50μm以下であることが好ましい。上記空隙部分の面積割合が100μm以下であることにより、熱伝導性フィラー(A)同士がより接触した状態となり、熱伝導パスが高い密度で形成され、熱伝導性がより優れたものとなる。上記最大面積の下限値は、特に限定されず、最も好ましいのは0μmである。なお、上記空隙部分の最大面積の導出方法は、後述する試験例に示す通りである。
(2) Maximum Area of Void portion The maximum area of the void portion in the cross section in the thickness direction of the cured product in the present embodiment is preferably 100 μm 2 or less, more preferably 80 μm 2 or less, and particularly 60 μm 2 or less. It is preferably 50 μm 2 or less. When the area ratio of the void portion is 100 μm 2 or less, the heat conductive fillers (A) are in more contact with each other, the heat conduction path is formed at a high density, and the heat conductivity becomes more excellent. .. The lower limit of the maximum area is not particularly limited, and most preferably 0 μm 2 . The method for deriving the maximum area of the void portion is as shown in a test example described later.
(3)熱伝導率
 本実施形態における硬化体の熱伝導率は、4W/mK以上であることが好ましく、特に5W/mK以上であることが好ましい。これにより、当該硬化体は熱伝導性に優れるということができる。本実施形態に係る硬化体は、接着フィルムが前述した構成を有することにより、このように高い熱伝導率を達成することができる。なお、本明細書における熱伝導率の測定方法は、後述する試験例に示す通りである。
(3) Thermal Conductivity The thermal conductivity of the cured product in the present embodiment is preferably 4 W / mK or more, and particularly preferably 5 W / mK or more. As a result, it can be said that the cured product has excellent thermal conductivity. The cured product according to the present embodiment can achieve such a high thermal conductivity because the adhesive film has the above-mentioned structure. The method for measuring the thermal conductivity in the present specification is as shown in a test example described later.
2.硬化体の製造方法
 本実施形態に係る硬化体を製造するには、接着フィルム(好ましくは熱プレス後の接着フィルム)に対して加熱処理を行い、最終的には完全硬化させる。
2. 2. Method for producing a cured product In order to produce a cured product according to the present embodiment, an adhesive film (preferably an adhesive film after hot pressing) is heat-treated and finally completely cured.
 上記加熱処理は、任意の加熱処理をする前の接着フィルムについて大気雰囲気下10℃/分の昇温速度で40℃から400℃まで昇温する条件の熱重量測定を行ったときに接着フィルムが0.5%重量減少する温度以下の温度(以下「予備加熱温度」という場合がある。)で30分以上保持する予備加熱工程と、当該予備加熱工程後に接着フィルムを完全硬化させる完全硬化工程とを含むことが好ましい。接着フィルムを急激な加熱処理により完全硬化させると、接着フィルム中の低分子成分が加熱により揮発して発泡し、接着フィルム内部に空隙ができやすい。これに対し、加熱処理が上記工程を含むと、低分子成分が揮発する前に熱硬化性成分(B)やバインダーポリマー(C)等のマトリックス中に取り込まれてトラップされるため、発泡が抑制され、接着フィルムの空隙が低減することとなる。上記の予備加熱工程(および前述した熱プレス)により、上記の空隙部分の面積割合および最大面積が好ましい数値となり、硬化物の熱伝導性がより優れたものとなる。 In the above heat treatment, the adhesive film is subjected to thermal weight measurement under the condition that the temperature of the adhesive film before any heat treatment is raised from 40 ° C. to 400 ° C. at a temperature rise rate of 10 ° C./min in an air atmosphere. A preheating step of holding the adhesive film at a temperature of 0.5% weight reduction or less (hereinafter sometimes referred to as "preheating temperature") for 30 minutes or more, and a complete curing step of completely curing the adhesive film after the preheating step. It is preferable to include. When the adhesive film is completely cured by a rapid heat treatment, the small molecule components in the adhesive film volatilize and foam due to heating, and voids are likely to be formed inside the adhesive film. On the other hand, when the heat treatment includes the above steps, foaming is suppressed because the small molecule component is taken into the matrix of the thermosetting component (B), the binder polymer (C) and the like and trapped before it volatilizes. This will reduce the voids in the adhesive film. By the above-mentioned preheating step (and the above-mentioned heat press), the area ratio and the maximum area of the above-mentioned void portion become preferable numerical values, and the thermal conductivity of the cured product becomes more excellent.
 上記の予備加熱温度は、接着フィルムが0.5%重量減少する温度よりも1~50℃低いことが好ましく、特に10~40℃低いことが好ましく、さらには15~30℃低いことが好ましい。また、上記の予備加熱温度の下限値は、80℃以上であることが好ましく、特に90℃以上であることが好ましく、さらには100℃以上であることが好ましい。 The preheating temperature is preferably 1 to 50 ° C. lower than the temperature at which the adhesive film loses weight by 0.5%, particularly preferably 10 to 40 ° C., and further preferably 15 to 30 ° C. The lower limit of the preheating temperature is preferably 80 ° C. or higher, particularly 90 ° C. or higher, and more preferably 100 ° C. or higher.
 また、上記の予備加熱工程は、30分以上行うことが好ましく、特に30~120分行うことが好ましく、さらには30~60分行うことが好ましい。 Further, the above preheating step is preferably performed for 30 minutes or more, particularly preferably 30 to 120 minutes, and further preferably 30 to 60 minutes.
 上記加熱処理は、上記の予備加熱工程を行った後、接着フィルムを完全硬化させる加熱温度での完全硬化工程を行うことが好ましい。完全硬化工程での加熱温度は、上記の予備加熱温度よりも高い温度である必要があり、予備加熱温度よりも5~100℃高いことが好ましく、特に10~70℃高いことが好ましく、さらには20~50℃高いことが好ましい。完全硬化工程での加熱温度は、具体的には、85~200℃であることが好ましく、特に100~190℃であることが好ましく、さらには120~180℃であることが好ましい。 It is preferable that the heat treatment is performed by performing the preheating step and then performing a complete curing step at a heating temperature at which the adhesive film is completely cured. The heating temperature in the complete curing step needs to be higher than the above-mentioned preheating temperature, preferably 5 to 100 ° C. higher than the preheating temperature, particularly preferably 10 to 70 ° C., and further. It is preferably 20 to 50 ° C. higher. Specifically, the heating temperature in the complete curing step is preferably 85 to 200 ° C, particularly preferably 100 to 190 ° C, and further preferably 120 to 180 ° C.
 また、上記の完全硬化工程は、30~180分行うことが好ましく、特に45~150分行うことが好ましく、さらには60~120分行うことが好ましい。 Further, the above-mentioned complete curing step is preferably performed for 30 to 180 minutes, particularly preferably 45 to 150 minutes, and further preferably 60 to 120 minutes.
 本実施形態に係る硬化体は、それ単体で存在してもよいが、通常は、熱伝導させたい1または2以上の部材に接触した状態で存在する。 The cured product according to the present embodiment may exist as a single substance, but usually exists in a state of being in contact with one or more members to be thermally conducted.
〔構造体〕
 本発明の一実施形態に係る構造体は、第1の部材の少なくとも一部と、第2の部材の少なくとも一部とが、前述した硬化体を介して結合してなるものである。
〔Structure〕
In the structure according to the embodiment of the present invention, at least a part of the first member and at least a part of the second member are bonded via the above-mentioned cured body.
 本実施形態における一例としての構造体を図2に示す。図2に示される構造体3は、第1の部材31と、第2の部材32と、第1の部材31および第2の部材32の間に設けられた硬化体1Aとを備えている。 FIG. 2 shows a structure as an example in this embodiment. The structure 3 shown in FIG. 2 includes a first member 31, a second member 32, and a cured body 1A provided between the first member 31 and the second member 32.
 硬化体1Aは、前述した接着フィルム(接着フィルム1;熱プレスしていない接着フィルムおよび熱プレスした接着フィルムを含む)を、前述した加熱処理により完全硬化させたものである。第1の部材31と、第2の部材32とは、硬化体1A(接着フィルム)の接着性により互いに固定されている。本実施形態における第1の部材31および第2の部材32の形状は、特に限定されないが、柔軟性を有するシート状であってもよいし、板状であってもよいし、ブロック状等であってもよい。 The cured product 1A is a product obtained by completely curing the above-mentioned adhesive film (adhesive film 1; including a heat-pressed adhesive film and a heat-pressed adhesive film) by the above-mentioned heat treatment. The first member 31 and the second member 32 are fixed to each other by the adhesiveness of the cured body 1A (adhesive film). The shapes of the first member 31 and the second member 32 in the present embodiment are not particularly limited, but may be a flexible sheet shape, a plate shape, a block shape, or the like. There may be.
 本実施形態における第1の部材31(または第2の部材32)は特に限定されないが、例えば、所定の機能の発揮に伴い発熱するものの温度上昇の抑制が要求される部材、あるいは当該部材が発熱した熱の流れを特定の方向に制御することが要求される部材(発熱部材)などが好ましい。また、第2の部材32(または第1の部材31)も特に限定されないが、受熱した熱を放熱する部材、あるいは受熱した熱を別の部材に伝熱する部材(伝熱部材)などが好ましい。本実施形態における硬化体1Aは、優れた熱伝導性を有するため、例えば、発熱した第1の部材31の熱を第2の部材32に熱伝導させ、当該熱を外界に放出するための熱伝導材として機能する。 The first member 31 (or the second member 32) in the present embodiment is not particularly limited, but for example, a member that generates heat as a result of exerting a predetermined function but is required to suppress a temperature rise, or the member generates heat. A member (heat generating member) that is required to control the flow of heat in a specific direction is preferable. Further, the second member 32 (or the first member 31) is not particularly limited, but a member that dissipates heat received or a member that transfers the received heat to another member (heat transfer member) is preferable. .. Since the cured body 1A in the present embodiment has excellent thermal conductivity, for example, heat for conducting heat of the generated first member 31 to the second member 32 and releasing the heat to the outside world. Functions as a conductive material.
 発熱部材としては、例えば、熱電変換デバイス、光電変換デバイス、大規模集積回路等の半導体デバイス、LED発光素子、光ピックアップ、パワートランジスタなどの電子デバイスや、モバイル端末、ウェアラブル端末等の各種電子機器、バッテリー、電池、モーター、エンジンなどが挙げられる。また、伝熱部材としては、伝導性の高い材料、例えば、アルミニウム、ステンレススチール、銅等の金属や、グラファイト、カーボンナノファイバーなどからなることが好ましい。伝熱部材の形態としては、基板、筐体、ヒートシンク、ヒートスプレッダー等のいずれであってもよく、特に限定されない。 Examples of the heat generating member include thermoelectric conversion devices, photoelectric conversion devices, semiconductor devices such as large-scale integrated circuits, electronic devices such as LED light emitting elements, optical pickups, and power transistors, and various electronic devices such as mobile terminals and wearable terminals. Examples include batteries, batteries, motors, engines, etc. Further, the heat transfer member is preferably made of a highly conductive material, for example, a metal such as aluminum, stainless steel or copper, graphite, carbon nanofibers or the like. The form of the heat transfer member may be any of a substrate, a housing, a heat sink, a heat spreader, and the like, and is not particularly limited.
 本実施形態に係る構造体3を製造するには、前述した接着フィルムの一方の面を第1の部材31(または第2の部材32)に貼付し、次いで、当該接着フィルムの他方の面を第2の部材32(または第1の部材31)に貼付する。前述した支持シート付き接着フィルム2を使用する場合には、剥離シート12を剥離し、露出した接着フィルム1の一方の面を第1の部材31(または第2の部材32)に貼付し、次いで、支持シート11を剥離し、露出した接着フィルム1の他方の面を第2の部材32(または第1の部材31)に貼付すればよい。 In order to manufacture the structure 3 according to the present embodiment, one side of the adhesive film described above is attached to the first member 31 (or the second member 32), and then the other side of the adhesive film is attached. It is attached to the second member 32 (or the first member 31). When the adhesive film 2 with a support sheet described above is used, the release sheet 12 is peeled off, one surface of the exposed adhesive film 1 is attached to the first member 31 (or the second member 32), and then the exposed adhesive film 1 is attached. , The support sheet 11 may be peeled off, and the other surface of the exposed adhesive film 1 may be attached to the second member 32 (or the first member 31).
 本実施形態に係る構造体3を製造するのに使用する接着フィルムとしては、熱プレスしていない接着フィルムおよび熱プレスした接着フィルムのいずれであってもよいが、熱プレスした接着フィルムを使用することが好ましい。また、熱プレスしていない接着フィルムを使用して、当該接着フィルムを第1の部材31(または第2の部材32)に貼付した後、または当該接着フィルムを介して第1の部材31と第2の部材32とを貼合した後に、接着フィルムを熱プレスしてもよい。ただし、あらかじめ熱プレスした接着フィルムを使用すれば、第1の部材31および/または第2の部材32に熱プレスによるダメージを与えることを防止することができる。 The adhesive film used to manufacture the structure 3 according to the present embodiment may be either a heat-pressed adhesive film or a heat-pressed adhesive film, but a heat-pressed adhesive film is used. Is preferable. Further, after the adhesive film is attached to the first member 31 (or the second member 32) using an adhesive film that has not been heat-pressed, or through the adhesive film, the first member 31 and the first member 31 The adhesive film may be hot-pressed after being bonded to the member 32 of 2. However, if an adhesive film that has been heat-pressed in advance is used, it is possible to prevent the first member 31 and / or the second member 32 from being damaged by the heat press.
 ここで、接着フィルムを介して、第1の部材31と第2の部材32とを貼合するとき、または接着フィルムを第1の部材31もしくは第2の部材32に貼付するときに、任意の加熱処理をする前の接着フィルムの粘弾性測定で得られる損失正接(tanδ)のピークを示す温度(以下「tanδピーク温度」という場合がある。)以上の温度(以下「貼付処理温度」という場合がある。)で、上記の貼合または貼付を行うことが好ましい。このような温度で貼合または貼付を行うことにより、接着フィルムが柔軟になり、被着体との間に空気を巻き込むことをより効果的に抑制することができ、接着フィルムと被着体との間における熱伝導性をより優れたものにすることができる。なお、接着フィルムの粘弾性の測定方法は、後述する試験例に示す通りである。 Here, any method is used when the first member 31 and the second member 32 are attached to each other via the adhesive film, or when the adhesive film is attached to the first member 31 or the second member 32. When the temperature is higher than the temperature showing the peak of loss tangent (tan δ) obtained by measuring the viscoelasticity of the adhesive film before heat treatment (hereinafter sometimes referred to as “tan δ peak temperature”) (hereinafter referred to as “pasting treatment temperature”). There is.), It is preferable to perform the above-mentioned bonding or pasting. By affixing or affixing at such a temperature, the adhesive film becomes flexible, and it is possible to more effectively suppress the entrainment of air between the adhesive film and the adherend. The thermal conductivity between can be made better. The method for measuring the viscoelasticity of the adhesive film is as shown in a test example described later.
 第1の部材31が柔軟性を有するシート状部材であり、当該シート状部材と接着フィルムとの積層体を、第2の部材32に貼付するときや、支持シート付き接着フィルム2を、第1の部材31または第2の部材32に貼付するときには、上記の空気を巻き込み抑制効果がより優れたものとなる。シート状部材と接着フィルムとの積層体や支持シート付き接着フィルム2は、柔軟でしなり易いため、一方向から他の方向にかけて徐々に被着体に密着させることが可能であり、空気を押し出しながら貼付することができるからである。 The first member 31 is a flexible sheet-like member, and when the laminated body of the sheet-like member and the adhesive film is attached to the second member 32, or when the adhesive film 2 with a support sheet is attached to the first member. When it is attached to the member 31 or the second member 32, the above-mentioned air entrainment suppressing effect becomes more excellent. Since the laminated body of the sheet-like member and the adhesive film and the adhesive film 2 with a support sheet are flexible and easy to bend, they can be gradually brought into close contact with the adherend from one direction to the other, and air is pushed out. This is because it can be pasted while.
 上記の貼付処理温度は、tanδピーク温度よりも0~50℃高いことが好ましく、特に2~30℃高いことが好ましく、さらには5~20℃高いことが好ましい。また、上記の貼付処理温度の上限値は、接着フィルムの硬化温度未満である必要があり、具体的には、120℃以下であることが好ましく、特に100℃以下であることが好ましく、さらには90℃以下であることが好ましい。 The above-mentioned pasting treatment temperature is preferably 0 to 50 ° C. higher than the tan δ peak temperature, particularly preferably 2 to 30 ° C., and further preferably 5 to 20 ° C. Further, the upper limit of the above-mentioned application processing temperature needs to be lower than the curing temperature of the adhesive film, specifically, it is preferably 120 ° C. or lower, particularly preferably 100 ° C. or lower, and further. It is preferably 90 ° C. or lower.
 上記のように、接着フィルムの一方の面を第1の部材31(または第2の部材32)に貼付し、当該接着フィルムの他方の面を第2の部材32(または第1の部材31)に貼付した後は、前述した接着フィルムの硬化体を製造するときの加熱処理を行い、接着フィルムを完全硬化させて硬化体1Aとし、本実施形態に係る構造体3を得る。 As described above, one side of the adhesive film is attached to the first member 31 (or the second member 32), and the other side of the adhesive film is attached to the second member 32 (or the first member 31). After being attached to, the heat treatment for producing the cured body of the adhesive film described above is performed to completely cure the adhesive film to obtain a cured body 1A, and the structure 3 according to the present embodiment is obtained.
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiments described above are described for facilitating the understanding of the present invention, and are not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
 例えば、図1において接着フィルム1に積層された剥離シート12は省略されてもよい。また、構造体における第1の部材および第1の部材の形状は、図2に示されるものに限定されず、種々の形状であってもよい。 For example, in FIG. 1, the release sheet 12 laminated on the adhesive film 1 may be omitted. Further, the shapes of the first member and the first member in the structure are not limited to those shown in FIG. 2, and may be various shapes.
 以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and the like, but the scope of the present invention is not limited to these Examples and the like.
〔実施例1〕
 次の(a)成分および(c)成分を混合し、固形分濃度が15質量%となるようにメチルエチルケトンで希釈したものを、ディスパーで3000rpmの回転数で30分以上撹拌し、溶解および分散させた。これに、次の(b-1)成分、(b-2)成分、(d-1)成分、(d-2)成分および(e)成分を加え、さらに全体の固形分濃度が21質量%となるようにメチルエチルケトンを加えた。この混合液を自転・公転ミキサー(シンキー社製,製品名「AR-100」)で10分間撹拌し、接着性樹脂組成物の塗工液を得た。
[Example 1]
The following components (a) and (c) are mixed and diluted with methyl ethyl ketone so that the solid content concentration becomes 15% by mass, and the mixture is stirred with a disper at a rotation speed of 3000 rpm for 30 minutes or more to dissolve and disperse. rice field. The following components (b-1), (b-2), (d-1), (d-2) and (e) are added thereto, and the total solid content concentration is 21% by mass. Methyl ethyl ketone was added so as to be. This mixed solution was stirred with a rotating / revolving mixer (manufactured by Shinky Co., Ltd., product name "AR-100") for 10 minutes to obtain a coating liquid for an adhesive resin composition.
 この接着性樹脂組成物中における各成分の含有量(固形分換算)は、(a)成分が30.01質量%、(c)成分が34.95質量%、(b-1)成分が16.56質量%、(b-2)成分が7.23質量%、(d-1)成分が5.61質量%、(d-2)成分が5.61質量%、(e)成分が0.03質量%であった。 The content (in terms of solid content) of each component in this adhesive resin composition is 30.01% by mass for the component (a), 34.95% by mass for the component (c), and 16 for the component (b-1). .56% by mass, (b-2) component is 7.23% by mass, (d-1) component is 5.61% by mass, (d-2) component is 5.61% by mass, and (e) component is 0. It was 0.03% by mass.
(a)熱伝導性フィラー:グラフェン(ADEKA社製,製品名「CNS-1A1」,平均粒径12μm,厚み50nm以下,ラマンピーク強度比D/G=0.1,X線回折法によってCuKα線源(波長0.15418nm)を用いて測定した際、2θが26.6°および42.4°の位置にピーク検出) (A) Thermally conductive filler: graphene (manufactured by ADEKA, product name "CNS-1A1", average particle size 12 μm, thickness 50 nm or less, Raman peak intensity ratio D / G = 0.1, CuKα ray by X-ray diffraction method Peak detection at positions where 2θ is 26.6 ° and 42.4 ° when measured using a source (wavelength 0.15418 nm))
(b-1)熱硬化性成分:下記式(1)で表されるナフタレン骨格を有する固形のエポキシ樹脂(日本化薬社製,製品名「NC-7000L」,エポキシ当量223~238g/eq、ICI粘度(150℃)0.50~1.00Pa・s,軟化点83~93℃)をメチルエチルケトンで溶解したもの(固形分濃度70質量%)
Figure JPOXMLDOC01-appb-C000004

 (式中、nは0以上の整数である。)
(B-1) Thermosetting component: Solid epoxy resin having a naphthalene skeleton represented by the following formula (1) (manufactured by Nippon Kayaku Co., Ltd., product name "NC-7000L", epoxy equivalent 223 to 238 g / eq, ICI viscosity (150 ° C.) 0.50 to 1.00 Pa · s, softening point 83 to 93 ° C.) dissolved in methyl ethyl ketone (solid content concentration 70% by mass)
Figure JPOXMLDOC01-appb-C000004

(In the formula, n is an integer greater than or equal to 0.)
(b-2)熱硬化性成分:ビスフェノールF型液状エポキシ樹脂(三菱化学社製,製品名「YL983U」,エポキシ当量165~175g/eq,粘度(25℃)3.0~6.0Pa・s) (B-2) Thermosetting component: Bisphenol F type liquid epoxy resin (manufactured by Mitsubishi Chemical Corporation, product name "YL983U", epoxy equivalent 165 to 175 g / eq, viscosity (25 ° C.) 3.0 to 6.0 Pa · s )
(c)バインダーポリマー:アクリル酸エステル重合体(三菱ケミカル社製,製品名「コーポニールN-4617」,アクリル酸メチル85質量部およびアクリル酸2-ヒドロキシエチル15質量部を共重合して得た共重合体,重量平均分子量:30万,ガラス転移温度:6℃)を酢酸エチルおよびトルエンの1:1混合溶媒で溶解したもの(固形分濃度36質量%) (C) Binder polymer: Acrylic acid ester polymer (manufactured by Mitsubishi Chemical Co., Ltd., product name "Corponil N-4617", obtained by copolymerizing 85 parts by mass of methyl acrylate and 15 parts by mass of 2-hydroxyethyl acrylate. Copolymer, weight average molecular weight: 300,000, glass transition temperature: 6 ° C) dissolved in a 1: 1 mixed solvent of ethyl acetate and toluene (solid content concentration 36% by mass)
(d-1)硬化剤:ノボラック型フェノール樹脂(旭有機材工業社製,製品名「PAPS-PN4」,水酸基当量104g/eq,ICI粘度(150℃)3.0Pa・s,軟化点111℃)をメチルエチルケトンで溶解したもの(固形分濃度60質量%) (D-1) Curing agent: Novolac type phenol resin (manufactured by Asahi Organic Materials Industry Co., Ltd., product name "PAPS-PN4", hydroxyl group equivalent 104 g / eq, ICI viscosity (150 ° C.) 3.0 Pa · s, softening point 111 ° C. ) Dissolved in methyl ethyl ketone (solid content concentration 60% by mass)
(d-2)硬化剤:下記式(3)で表されるビフェニル型フェノール化合物(本州化学工業社製,製品名「BP」,水酸基当量93.1g/eq,昇華温度283℃)をメチルエチルケトンで溶解したもの(固形分濃度10質量%)
Figure JPOXMLDOC01-appb-C000005
(D-2) Hardener: A biphenyl-type phenol compound represented by the following formula (3) (manufactured by Honshu Chemical Industry Co., Ltd., product name "BP", hydroxyl group equivalent 93.1 g / eq, sublimation temperature 283 ° C.) with methyl ethyl ketone. Dissolved (solid content concentration 10% by mass)
Figure JPOXMLDOC01-appb-C000005
(e)硬化促進剤:2-フェニル-4,5-ヒドロキシメチルイミダゾール (E) Curing accelerator: 2-phenyl-4,5-hydroxymethylimidazole
 上記工程で得られた接着性樹脂組成物の塗工液を、ポリエチレンテレフタレートフィルムの片面をシリコーン系剥離剤で剥離処理した剥離シート(リンテック社製,製品名「SP―PET3811(S)」,剥離処理面の算術平均粗さ(Ra):0.002μm)の剥離処理面に、アプリケーターで塗布したのち、100℃で2分間加熱処理して乾燥させ、接着フィルム(厚さ:50μm)を形成した。その後、ポリエチレンテレフタレートフィルムの片面をシリコーン系剥離剤で剥離処理した保護フィルム(リンテック社製,製品名「SP―PET3811(S)」)の剥離処理面に、剥離シート付きの接着フィルムを貼り合わせ、剥離シートと、接着フィルム(厚さ:50μm)と、保護フィルムとからなる積層体を得た。 A release sheet (manufactured by Lintec Corporation, product name "SP-PET3811 (S)", peeled off by peeling off one side of a polyethylene terephthalate film with a silicone-based release agent from the coating liquid of the adhesive resin composition obtained in the above step. After applying with an applicator to the peeled surface having an arithmetic mean roughness (Ra): 0.002 μm) on the treated surface, it was heat-treated at 100 ° C. for 2 minutes and dried to form an adhesive film (thickness: 50 μm). .. After that, an adhesive film with a release sheet was attached to the release-treated surface of the protective film (manufactured by Lintec Corporation, product name "SP-PET3811 (S)") in which one side of the polyethylene terephthalate film was peeled off with a silicone-based release agent. A laminate composed of a release sheet, an adhesive film (thickness: 50 μm), and a protective film was obtained.
 上記で得られた積層体を4cm×4cmに裁断し、ネジ式加熱プレス装置を用いて、当該積層体に対し3.0MPaの圧力を50℃下で30分間印加することにより、接着フィルムを熱プレスした。 The laminated body obtained above is cut into 4 cm × 4 cm, and a pressure of 3.0 MPa is applied to the laminated body at 50 ° C. for 30 minutes using a screw type heating press device to heat the adhesive film. Pressed.
〔実施例2〕
 熱プレスにおいて、ネジ式加熱プレス装置による印加圧力を2.5MPaとする以外、実施例1と同様にして接着フィルム(熱プレス後)を製造した。
[Example 2]
In the hot press, an adhesive film (after hot pressing) was manufactured in the same manner as in Example 1 except that the pressure applied by the screw type hot press device was 2.5 MPa.
〔実施例3〕
 後述する試験例4において、実施例1の熱プレス後の接着フィルムをシリコンウエハに貼付する時の温度を75℃としたものを実施例3とした。
[Example 3]
In Test Example 4, which will be described later, the temperature at which the adhesive film after the hot pressing of Example 1 was attached to the silicon wafer was set to 75 ° C. was designated as Example 3.
〔比較例1〕
 後述する試験例6において、実施例1の熱プレス後の接着フィルムについて、予備加熱工程を行わず、直接175℃で3時間加熱処理(完全硬化工程)したものを比較例1とした。
[Comparative Example 1]
In Test Example 6 to be described later, the adhesive film after the hot pressing of Example 1 was directly heat-treated at 175 ° C. for 3 hours (complete curing step) without performing the preheating step, and was referred to as Comparative Example 1.
〔比較例2〕
 熱プレスにおいて、ネジ式加熱プレス装置による印加圧力を0MPaとする以外、実施例1と同様にして接着フィルム(便宜的に「熱プレス後の接着フィルム」ともいう)を製造した。
[Comparative Example 2]
In the hot press, an adhesive film (also referred to as “adhesive film after hot press” for convenience) was produced in the same manner as in Example 1 except that the pressure applied by the screw type heat press device was 0 MPa.
〔比較例3〕
 (a)熱伝導性フィラーとして、実施例1におけるグラフェンに替え、球状のアルミナ粒子(昭和電工社製,製品名「CB-P05J」,平均粒子径5.0μm,アスペクト比:1.1,比重:3.98g/cm)を用いる以外、実施例1と同様にして接着フィルムを製造した。
[Comparative Example 3]
(A) As the thermally conductive filler, instead of graphene in Example 1, spherical alumina particles (manufactured by Showa Denko KK, product name "CB-P05J", average particle diameter 5.0 μm, aspect ratio: 1.1, specific gravity). : 3.98 g / cm 3 ) was used, and an adhesive film was produced in the same manner as in Example 1.
〔比較例4〕
 比較例3における(a)熱伝導性フィラーとしての球状のアルミナ粒子(昭和電工社製,製品名「CB-P05J」,平均粒子径5.0μm,アスペクト比:1.1,比重:3.98g/cm)の配合量を81.4質量%に変更する以外、比較例3と同様にして接着フィルムを製造した。
[Comparative Example 4]
(A) Spherical alumina particles as a thermally conductive filler in Comparative Example 3 (manufactured by Showa Denko KK, product name "CB-P05J", average particle diameter 5.0 μm, aspect ratio: 1.1, specific gravity: 3.98 g An adhesive film was produced in the same manner as in Comparative Example 3 except that the blending amount of / cm3 ) was changed to 81.4% by mass.
〔比較例5〕
 後述する試験例6において、比較例3の熱プレス後の接着フィルムについて、予備加熱工程を行わず、直接175℃で3時間加熱処理(完全硬化工程)したものを比較例5とした。
[Comparative Example 5]
In Test Example 6 to be described later, the adhesive film after the hot pressing of Comparative Example 3 was directly heat-treated at 175 ° C. for 3 hours (complete curing step) without performing the preheating step, and was designated as Comparative Example 5.
〔比較例6〕
 後述する試験例4において、比較例3の熱プレス後の接着フィルムをシリコンウエハに貼付する時の温度を室温(R.T.)としたものを比較例6とした。
[Comparative Example 6]
In Test Example 4, which will be described later, the temperature at which the adhesive film after hot pressing of Comparative Example 3 was attached to the silicon wafer was set to room temperature (RT) was designated as Comparative Example 6.
〔試験例1〕<熱重量測定(TG測定)>
 各実施例および比較例で得られた熱プレス前の接着フィルムについて、熱分析測定装置(島津製作所社製,熱分析計TG/DTA同時測定装置,製品名「DTG-60」)を用い、測定試料とほぼ同量のアルミナ粒子を参照試料として大気雰囲気下、昇温速度10℃/分で40℃から400℃まで熱重量測定を行い、重量減少が0.5%となる温度を求めた。その結果、実施例1~3、および比較例1~3,5~6で得られた熱プレス前の接着フィルムについては、上記温度が147℃であり、比較例4で得られた熱プレス前の接着フィルムについては151℃であった。
[Test Example 1] <Thermogravimetric analysis (TG measurement)>
The adhesive film before hot pressing obtained in each example and comparative example was measured using a thermal analysis measuring device (manufactured by Shimadzu Corporation, thermal analyzer TG / DTA simultaneous measuring device, product name "DTG-60"). Using an alumina particle in almost the same amount as the sample as a reference sample, thermal weight measurement was performed from 40 ° C. to 400 ° C. at a heating rate of 10 ° C./min under an atmospheric atmosphere, and a temperature at which the weight loss was 0.5% was determined. As a result, the temperature of the adhesive film before hot pressing obtained in Examples 1 to 3 and Comparative Examples 1 to 3, 5 to 6 was 147 ° C., and the temperature was 147 ° C. before the hot pressing obtained in Comparative Example 4. The temperature of the adhesive film was 151 ° C.
〔試験例2〕<動的粘弾性測定>
 各実施例および比較例で得られた熱プレス前の接着フィルムを厚さ0.2mmとなるように積層し、これを20mm×10mmのサイズに切り出し、測定用サンプルとした。得られたサンプルを、動的粘弾性測定装置(TAインスツルメンツ社製,製品名「DMA-Q800」)に対し、測定長さ(チャック間距離)を10mmとして装着し、周波数11Hz、振幅5μm、昇温速度3℃/minの条件下で、温度範囲25~100℃の損失正接(tanδ)を測定し、測定温度範囲で損失正接(tanδ)が最大となる温度を求めた。その結果、実施例1~3および比較例1~2で得られた熱プレス前の接着フィルムについては、上記温度が73℃であり、比較例3,5~6で得られた熱プレス前の接着フィルムについては71℃であり、比較例4で得られた熱プレス前の接着フィルムについては75℃であった。
[Test Example 2] <Dynamic Viscoelasticity Measurement>
The adhesive films before hot pressing obtained in each Example and Comparative Example were laminated to a thickness of 0.2 mm, and this was cut into a size of 20 mm × 10 mm and used as a measurement sample. The obtained sample was attached to a dynamic viscoelasticity measuring device (manufactured by TA Instruments, product name "DMA-Q800") with a measurement length (distance between chucks) of 10 mm, a frequency of 11 Hz, an amplitude of 5 μm, and ascending. Under the condition of a temperature rate of 3 ° C./min, the loss tangent (tan δ) in the temperature range of 25 to 100 ° C. was measured, and the temperature at which the loss tangent (tan δ) was maximized in the measurement temperature range was determined. As a result, the temperature of the adhesive film before hot pressing obtained in Examples 1 to 3 and Comparative Examples 1 and 2 was 73 ° C., and the temperature was 73 ° C. before the hot pressing obtained in Comparative Examples 3 and 5 to 6. The temperature of the adhesive film was 71 ° C., and the temperature of the adhesive film before hot pressing obtained in Comparative Example 4 was 75 ° C.
〔試験例3〕<算術平均粗さ(Ra)測定>
(1)剥離シートの剥離処理面
 各実施例および比較例で使用した剥離シートの剥離処理面の表面粗さについて、走査型プローブ顕微鏡(SPM)装置(日立ハイテクサイエンス社製,製品名「SPA-300HV」)を用いて、DFMモードにより試料表面5μm×5μmの範囲で計測し、算術平均粗さ(Ra)を測定した。なおカンチレバーとして、オリンパス社製の「OMCL-AC240TS-C3」(共振周波数;55-65kHz,ばね定数;約2N/m)を用いた。その結果、上記剥離シートの剥離処理面の算術平均粗さ(Ra)は、0.002μmであった。
[Test Example 3] <Arithmetic Mean Roughness (Ra) Measurement>
(1) Peeling-treated surface of the peeling sheet Regarding the surface roughness of the peeling-treated surface of the peeling sheet used in each example and comparative example, the scanning probe microscope (SPM) device (manufactured by Hitachi High-Tech Science Co., Ltd., product name "SPA-" Using 300 HV "), the sample surface was measured in the range of 5 μm × 5 μm in the DFM mode, and the arithmetic mean roughness (Ra) was measured. As the cantilever, "OMCL-AC240TS-C3" (resonance frequency; 55-65 kHz, spring constant; about 2 N / m 2 ) manufactured by Olympus was used. As a result, the arithmetic average roughness (Ra) of the peeled surface of the peeled sheet was 0.002 μm.
(2)接着フィルムの表面
 各実施例および比較例で得られた熱プレス後の接着フィルムの表面(剥離シートの剥離処理面に接触していた面)の表面粗さについて、形状測定レーザマイクロスコープ(キーエンス社製,製品名「3次元レーザー顕微鏡VK-9700」)を用いて、JIS B0601:2001に準拠し、カットオフ2.5mmにて、700×500μmの範囲で計測し、算術平均粗さ(Ra)を測定した。結果を表1に示す。
(2) Surface of adhesive film Shape measurement laser microscope for surface roughness of the surface of the adhesive film after hot pressing (the surface that was in contact with the peeled surface of the release sheet) obtained in each example and comparative example. Using (Keence Co., Ltd., product name "3D Laser Microscope VK-9700"), measure in the range of 700 x 500 μm 2 with a cutoff of 2.5 mm in accordance with JIS B0601: 2001, and the arithmetic average roughness. The roughness (Ra) was measured. The results are shown in Table 1.
〔試験例4〕<粘着力測定>
 各実施例および比較例で得られた接着性樹脂組成物の塗工液を、厚さ12μmのポリエチレンテレフタレートフィルムの片面に塗工し、100℃で2分間加熱処理して乾燥させ、ポリエチレンテレフタレートフィルムに接着フィルム(厚さ:50μm)が強固に貼合された積層体を作製した。
[Test Example 4] <Adhesive strength measurement>
The coating liquid of the adhesive resin composition obtained in each Example and Comparative Example was applied to one side of a polyethylene terephthalate film having a thickness of 12 μm, heat-treated at 100 ° C. for 2 minutes, dried, and the polyethylene terephthalate film was dried. An adhesive film (thickness: 50 μm) was firmly bonded to the laminate to prepare a laminated body.
 次いで、接着フィルムの表面保護を目的として、積層体における接着フィルム側の面に剥離フィルム(リンテック社製,製品名「SP-PET381031」,厚さ38μm)の剥離処理面を貼り合わせた。得られた積層体を剥離フィルムごと4cm×4cmに裁断し、各実施例の条件で熱プレスした。その後、これを剥離フィルムごと切断し、幅25mm、長さ40mmの粘着力測定用サンプルを得た。 Next, for the purpose of protecting the surface of the adhesive film, a release-treated surface of a release film (manufactured by Lintec Corporation, product name "SP-PET38131", thickness 38 μm) was attached to the surface of the laminate on the adhesive film side. The obtained laminate was cut into 4 cm × 4 cm together with the release film, and heat-pressed under the conditions of each example. Then, this was cut together with the release film to obtain a sample for measuring adhesive strength having a width of 25 mm and a length of 40 mm.
 別途、算術平均粗さ(Ra)が0.02μm以下になるまで表面をケミカルメカニカルポリッシュ処理したシリコンウエハ(科学技術研究所社製,直径:150mm,厚さ:500μm)を被着体として準備した。上記粘着力測定用サンプルの剥離フィルムを剥がし、シリコンウエハの処理面に接着フィルムの露出面を貼付し、シリコンウエハと粘着力測定用サンプルとからなる積層体を得た。この貼付時の温度は、80℃(実施例1~2,比較例1~5)、75℃(実施例3)または室温(比較例6)とした。 Separately, a silicon wafer (manufactured by Science and Technology Research Institute, diameter: 150 mm, thickness: 500 μm) whose surface was chemically and mechanically polished until the arithmetic mean roughness (Ra) became 0.02 μm or less was prepared as an adherend. .. The release film of the adhesive force measurement sample was peeled off, and the exposed surface of the adhesive film was attached to the treated surface of the silicon wafer to obtain a laminate composed of the silicon wafer and the adhesive force measurement sample. The temperature at the time of this application was 80 ° C. (Examples 1 to 2 and Comparative Examples 1 to 5), 75 ° C. (Example 3) or room temperature (Comparative Example 6).
 得られた積層体を23℃、相対湿度50%の雰囲気下に20分間放置した後、万能型引張試験機(インストロン社製,製品名「5581型試験機」)を用い、JIS Z0237:2000に準じて、剥離速度300mm/minで180°引き剥がし試験を行った。この180°引き剥がしのときの荷重を測定し、その測定値を粘着力(N/25mm)とした。結果を表1に示す。 After leaving the obtained laminate in an atmosphere of 23 ° C. and 50% relative humidity for 20 minutes, JIS Z0237: 2000 was used using a universal tensile tester (manufactured by Instron, product name "5581 type tester"). In accordance with the above, a 180 ° peeling test was conducted at a peeling speed of 300 mm / min. The load at the time of this 180 ° peeling was measured, and the measured value was taken as the adhesive force (N / 25 mm). The results are shown in Table 1.
〔試験例5〕<仮接着性評価>
 試験例4で得られた積層体を観察し、下記の基準に基づいて、仮接着性を評価した。結果を表1に示す。
 ○:粘着力測定用サンプルが被着体に貼り付き、界面に空気の巻き込みが無かった。
 △:粘着力測定用サンプルが被着体に貼り付き、界面に空気の巻き込みが確認された。
 ×:粘着力測定用サンプルが被着体に貼り付かなかった。
[Test Example 5] <Evaluation of temporary adhesiveness>
The laminate obtained in Test Example 4 was observed, and the temporary adhesiveness was evaluated based on the following criteria. The results are shown in Table 1.
◯: The sample for measuring the adhesive strength adhered to the adherend, and there was no air entrainment at the interface.
Δ: A sample for measuring adhesive strength adhered to the adherend, and air entrainment was confirmed at the interface.
X: The sample for measuring the adhesive strength did not adhere to the adherend.
〔試験例6〕<硬化体断面の空隙部分の評価>
1.空隙部分の面積割合
 実施例1~3および比較例2~4,6で得られた熱プレス後の積層体を、125℃で1時間加熱処理し(予備加熱工程)、次いで175℃で2時間加熱処理し(完全硬化工程)、熱プレス後の接着フィルムを完全硬化させ、硬化体とした。一方、比較例1,5では、予備加熱工程を行わず、直接175℃で3時間加熱処理し(完全硬化工程)、熱プレス後の接着フィルムを完全硬化させ、硬化体とした。
[Test Example 6] <Evaluation of void portion in cross section of cured product>
1. 1. Area ratio of void portion The laminates after hot pressing obtained in Examples 1 to 3 and Comparative Examples 2 to 4 and 6 were heat-treated at 125 ° C. for 1 hour (preheating step), and then at 175 ° C. for 2 hours. It was heat-treated (completely cured step), and the adhesive film after hot pressing was completely cured to obtain a cured product. On the other hand, in Comparative Examples 1 and 5, the adhesive film after hot pressing was completely cured by directly heat-treating at 175 ° C. for 3 hours without performing the preheating step (complete curing step) to obtain a cured product.
 上記の接着フィルムの硬化体の断面に対し、スパッタ装置(真空デバイス社製,製品名「MSP-20-UM形マグネトロンスパッタ」)を用いて、Pt-Pdをターゲットとして、厚さ約30nmの膜をコーティングし、帯電防止処理をした。上記硬化体の断面について、走査型電子顕微鏡(SEM)装置(キーエンス社製,製品名「VE-9800」)を用いて6枚撮像した。撮像条件は、加速電圧8kV、倍率1000倍とした。そのうちの1枚のSEM画像(実施例1の接着フィルムの硬化体)を図3に示す。 A film having a thickness of about 30 nm is applied to the cross section of the cured body of the above adhesive film using a sputtering device (manufactured by Vacuum Device Co., Ltd., product name "MSP-20-UM magnetron sputtering"), targeting Pt-Pd. Was coated and antistatic treated. Six images of the cross section of the cured product were taken using a scanning electron microscope (SEM) device (manufactured by KEYENCE, product name "VE-9800"). The imaging conditions were an acceleration voltage of 8 kV and a magnification of 1000 times. One SEM image (a cured product of the adhesive film of Example 1) is shown in FIG.
 得られた6枚のSEM画像を、空隙部分と他の部分に2値化した。2値化には、画像解析ソフト(ImageJ)を用い、輝度閾値を77-110とした。図3に示した実施例1の接着フィルムの硬化体における断面のSEM画像を2値化処理したものを図4に示す。図中、黒い部分が空隙部分である。空隙部分の面積割合は、2値化後の画像を用い、空隙部分の合計の面積を、SEM画像から求めた接着フィルムの断面全体の面積で除し、さらに6枚のSEM画像の平均値から求めた。結果を表1に示す。 The obtained 6 SEM images were binarized into the void portion and the other portion. Image analysis software (ImageJ) was used for binarization, and the brightness threshold was set to 77-110. FIG. 4 shows a binarized SEM image of a cross section of the cured body of the adhesive film of Example 1 shown in FIG. In the figure, the black part is the void part. For the area ratio of the void portion, the binarized image is used, the total area of the void portion is divided by the area of the entire cross section of the adhesive film obtained from the SEM image, and further, from the average value of the six SEM images. I asked. The results are shown in Table 1.
 なお、輝度閾値はSEM画像観察時の条件設定によって異なるため、実際のSEM観察像と対比しながらその値を決めた。また、2値化された画像については、元のSEM像と比較し、空隙部分に相当しない部分については適宜排除した。 Since the brightness threshold value differs depending on the condition setting at the time of SEM image observation, the value was determined by comparing with the actual SEM observation image. Further, the binarized image was compared with the original SEM image, and the portion not corresponding to the void portion was appropriately excluded.
 参考として、比較例2の接着フィルムの硬化体における断面のSEM画像を図5に示す。また、上記と同様に、図5に示したSEM画像を2値化処理したものを図6に示す。 For reference, FIG. 5 shows an SEM image of a cross section of the cured body of the adhesive film of Comparative Example 2. Further, similarly to the above, FIG. 6 shows a binarized SEM image shown in FIG.
2.空隙部分の最大面積
 上記の6枚のSEM画像の2値化処理画像を用い、連続する空隙部分の面積の最も大きいものを、空隙部分の最大面積(μm)として求めた。結果を表1に示す。
2. 2. Maximum Area of Void Region Using the binarized images of the above 6 SEM images, the one with the largest area of continuous void portion was determined as the maximum area of the void portion (μm 2 ). The results are shown in Table 1.
〔試験例7〕<熱拡散率測定評価>
 試験例6で得られた接着フィルムの硬化体を裁断して、各辺が5mmの正方形の試料を得た。熱伝導率測定装置(aiphase社製,製品名「アイフェイズ・モバイル1u」)を用いて、上記接着フィルムの硬化体の熱拡散率を測定した。そして、熱拡散率に比重と比熱を乗じて、接着フィルムの硬化体の熱伝導率(W/mK)を算出した。結果を表1に示す。
[Test Example 7] <Measurement and evaluation of thermal diffusivity>
The cured body of the adhesive film obtained in Test Example 6 was cut to obtain a square sample having a side of 5 mm. The thermal diffusivity of the cured product of the adhesive film was measured using a thermal conductivity measuring device (manufactured by aiphase, product name "Eye Phase Mobile 1u"). Then, the thermal diffusivity was multiplied by the specific gravity and the specific heat to calculate the thermal conductivity (W / mK) of the cured product of the adhesive film. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1から分かるように、実施例1~3で製造した接着フィルムの硬化体は、優れた熱伝導性を有していた。また、実施例1~3における接着フィルムは、仮接着性にも優れていた。 As can be seen from Table 1, the cured products of the adhesive films produced in Examples 1 to 3 had excellent thermal conductivity. Further, the adhesive films of Examples 1 to 3 were also excellent in temporary adhesiveness.
 本発明に係る接着フィルムおよび硬化体は、例えば、発熱する電子デバイスと放熱性の基板またはヒートシンクとの間に介在させて、当該電子デバイスを冷却するのに好適に使用することができる。また、本発明に係る構造体は、例えば、発熱する電子デバイスと放熱性の基板またはヒートシンクとを備えた構造体として有用である。 The adhesive film and the cured product according to the present invention can be suitably used for cooling the electronic device by interposing it between the heat-generating electronic device and the heat-dissipating substrate or heat sink, for example. Further, the structure according to the present invention is useful as, for example, a structure including an electronic device that generates heat and a heat-dissipating substrate or heat sink.
1…接着フィルム
11…支持シート
12…剥離シート
2…支持シート付き接着フィルム
3…構造体
 1A…接着フィルムの硬化体
 31…第1の部材
 32…第2の部材
1 ... Adhesive film 11 ... Support sheet 12 ... Release sheet 2 ... Adhesive film with support sheet 3 ... Structure 1A ... Cured body of adhesive film 31 ... First member 32 ... Second member

Claims (21)

  1.  二次元構造を有するグラフェンおよび単層窒化ホウ素の少なくとも1種からなる熱伝導性フィラー(A)と、
     熱硬化性成分(B)と、
     バインダーポリマー(C)と
    を含有する接着性樹脂組成物からなる接着フィルムであって、
     予備加熱工程と、前記予備加熱工程後に前記接着フィルムを完全硬化させる完全硬化工程とを含む加熱処理を行うように用いられ、
     前記予備加熱工程が、下記の温度(T)以下の温度で30分以上保持する工程である、
    ことを特徴とする接着フィルム。
     温度(T):任意の加熱処理をする前の前記接着フィルムについて、大気雰囲気下10℃/分の昇温速度で40℃から400℃まで昇温する条件の熱重量測定を行い、前記接着フィルムが0.5%重量減少する温度。
    A thermally conductive filler (A) composed of at least one of graphene and single-layer boron nitride having a two-dimensional structure,
    Thermosetting component (B) and
    An adhesive film made of an adhesive resin composition containing a binder polymer (C).
    It is used to perform a heat treatment including a preheating step and a complete curing step of completely curing the adhesive film after the preheating step.
    The preheating step is a step of holding the temperature at the following temperature (T) or lower for 30 minutes or more.
    An adhesive film characterized by that.
    Temperature (T): The adhesive film before any heat treatment was subjected to thermal weight measurement under the condition of raising the temperature from 40 ° C. to 400 ° C. at a heating rate of 10 ° C./min under an atmospheric atmosphere, and the adhesive film was measured. The temperature at which the weight is reduced by 0.5%.
  2.  二次元構造を有するグラフェンおよび単層窒化ホウ素の少なくとも1種からなる熱伝導性フィラー(A)と、
     熱硬化性成分(B)と、
     バインダーポリマー(C)と
    を含有する接着性樹脂組成物からなる接着フィルムであって、
     前記接着フィルムを下記の条件で加熱処理して得られる硬化体の厚さ方向断面における空隙部分の面積割合が10%以下である
    ことを特徴とする接着フィルム。
    (条件)
     前記加熱処理は、予備加熱工程と、前記予備加熱工程後に前記接着フィルムを完全硬化させる完全硬化工程とを含み、
     前記予備加熱工程は、任意の加熱処理をする前の前記接着フィルムについて大気雰囲気下10℃/分の昇温速度で40℃から400℃まで昇温する条件の熱重量測定を行ったときに前記接着フィルムが0.5%重量減少する温度以下の温度で30分以上保持する工程である。
    A thermally conductive filler (A) composed of at least one of graphene and single-layer boron nitride having a two-dimensional structure,
    Thermosetting component (B) and
    An adhesive film made of an adhesive resin composition containing a binder polymer (C).
    An adhesive film characterized in that the area ratio of the void portion in the cross section in the thickness direction of the cured product obtained by heat-treating the adhesive film under the following conditions is 10% or less.
    (conditions)
    The heat treatment includes a preheating step and a complete curing step of completely curing the adhesive film after the preheating step.
    In the preheating step, the thermal weight measurement of the adhesive film before any heat treatment is performed under the condition that the temperature of the adhesive film is raised from 40 ° C. to 400 ° C. at a temperature rising rate of 10 ° C./min in an air atmosphere. This is a step of holding the adhesive film at a temperature equal to or lower than a temperature at which the weight is reduced by 0.5% for 30 minutes or more.
  3.  前記熱伝導性フィラー(A)の含有量が、5質量%以上、60質量%以下であることを特徴とする請求項1または2に記載の接着フィルム。 The adhesive film according to claim 1 or 2, wherein the content of the heat conductive filler (A) is 5% by mass or more and 60% by mass or less.
  4.  前記熱硬化性成分(B)が、エポキシ樹脂であることを特徴とする請求項1~3のいずれか一項に記載の接着フィルム。 The adhesive film according to any one of claims 1 to 3, wherein the thermosetting component (B) is an epoxy resin.
  5.  熱プレスしてなることを特徴とする請求項1~4のいずれか一項に記載の接着フィルム。 The adhesive film according to any one of claims 1 to 4, which is hot-pressed.
  6.  少なくとも一方の表面の算術平均粗さ(Ra)が、0.01μm以上、0.5μm以下であることを特徴とする請求項1~5のいずれか一項に記載の接着フィルム。 The adhesive film according to any one of claims 1 to 5, wherein the arithmetic average roughness (Ra) of at least one surface is 0.01 μm or more and 0.5 μm or less.
  7.  溶媒中にて、二次元構造を有するグラフェンおよび単層窒化ホウ素の少なくとも1種からなる熱伝導性フィラー(A)と、バインダーポリマー(C)とを混合した後、さらに熱硬化性成分(B)を混合することにより接着性樹脂組成物を得て、
     得られた前記接着性樹脂組成物を、フィルム状に形成する
    ことを特徴とする接着フィルムの製造方法。
    A thermosetting filler (A) composed of at least one of graphene and single-layer boron nitride having a two-dimensional structure and a binder polymer (C) are mixed in a solvent, and then a thermosetting component (B) is further mixed. To obtain an adhesive resin composition by mixing
    A method for producing an adhesive film, which comprises forming the obtained adhesive resin composition into a film.
  8.  前記接着性樹脂組成物をフィルム状に形成した後、さらに熱プレスすることを特徴とする請求項7に記載の接着フィルムの製造方法。 The method for producing an adhesive film according to claim 7, wherein the adhesive resin composition is formed into a film and then heat-pressed.
  9.  前記熱プレスの加熱温度が、前記熱硬化性成分(B)の硬化反応温度未満であることを特徴とする請求項8に記載の接着フィルムの製造方法。 The method for producing an adhesive film according to claim 8, wherein the heating temperature of the heat press is lower than the curing reaction temperature of the thermosetting component (B).
  10.  前記熱プレス後の接着フィルムにおける、少なくとも一方の表面の算術平均粗さ(Ra)が、0.01μm以上、0.5μm以下であることを特徴とする請求項8または9に記載の接着フィルムの製造方法。 The adhesive film according to claim 8 or 9, wherein the arithmetic mean roughness (Ra) of at least one surface of the adhesive film after hot pressing is 0.01 μm or more and 0.5 μm or less. Production method.
  11.  請求項1~6のいずれか一項に記載の接着フィルムと、
     前記接着フィルムの少なくとも一方の面側に積層された支持シートと
    を備えた支持シート付き接着フィルム。
    The adhesive film according to any one of claims 1 to 6 and
    An adhesive film with a support sheet provided with a support sheet laminated on at least one surface side of the adhesive film.
  12.  二次元構造を有するグラフェンおよび単層窒化ホウ素の少なくとも1種からなる熱伝導性フィラー(A)と、
     熱硬化性成分(B)と、
     バインダーポリマー(C)と
    を含有する接着性樹脂組成物からなる接着フィルムに加熱処理を施して得られる硬化体であって、
     厚さ方向断面における空隙部分の面積割合が10%以下である
    ことを特徴とする硬化体。
    A thermally conductive filler (A) composed of at least one of graphene and single-layer boron nitride having a two-dimensional structure,
    Thermosetting component (B) and
    A cured product obtained by heat-treating an adhesive film made of an adhesive resin composition containing a binder polymer (C).
    A cured product characterized in that the area ratio of the void portion in the cross section in the thickness direction is 10% or less.
  13.  厚さ方向断面における空隙部分の最大面積が100μm以下であることを特徴とする請求項12に記載の硬化体。 The cured product according to claim 12, wherein the maximum area of the void portion in the cross section in the thickness direction is 100 μm 2 or less.
  14.  前記加熱処理が、予備加熱工程と、前記予備加熱工程後に前記接着フィルムを完全硬化させる完全硬化工程とを含み、
     前記予備加熱工程が、任意の加熱処理をする前の前記接着フィルムについて大気雰囲気下10℃/分の昇温速度で40℃から400℃まで昇温する条件の熱重量測定を行ったときに前記接着フィルムが0.5%重量減少する温度以下の温度で30分以上保持する工程を含む
    ことを特徴とする請求項12または13に記載の硬化体。
    The heat treatment includes a preheating step and a complete curing step of completely curing the adhesive film after the preheating step.
    When the preheating step performs thermogravimetric measurement under the condition that the temperature of the adhesive film before any heat treatment is raised from 40 ° C. to 400 ° C. at a temperature rising rate of 10 ° C./min in an air atmosphere. The cured product according to claim 12 or 13, comprising a step of holding the adhesive film at a temperature equal to or lower than a temperature at which the weight is reduced by 0.5% for 30 minutes or more.
  15.  二次元構造を有するグラフェンおよび単層窒化ホウ素の少なくとも1種からなる熱伝導性フィラー(A)と、
     熱硬化性成分(B)と、
     バインダーポリマー(C)と
    を含有する接着性樹脂組成物からなる接着フィルムを加熱処理することにより硬化体とする、硬化体の製造方法であって、
     前記加熱処理が、予備加熱工程と、前記予備加熱工程後に前記接着フィルムを完全硬化させる完全硬化工程とを含み、
     前記予備加熱工程が、任意の加熱処理をする前の前記接着フィルムについて大気雰囲気下10℃/分の昇温速度で40℃から400℃まで昇温する条件の熱重量測定を行ったときに前記接着フィルムが0.5%重量減少する温度以下の温度で30分以上保持する工程を含む
    ことを特徴とする硬化体の製造方法。
    A thermally conductive filler (A) composed of at least one of graphene and single-layer boron nitride having a two-dimensional structure,
    Thermosetting component (B) and
    A method for producing a cured product, which comprises heat-treating an adhesive film made of an adhesive resin composition containing a binder polymer (C) to obtain a cured product.
    The heat treatment includes a preheating step and a complete curing step of completely curing the adhesive film after the preheating step.
    When the preheating step performs thermal weight measurement under the condition that the temperature of the adhesive film before any heat treatment is raised from 40 ° C. to 400 ° C. at a heating rate of 10 ° C./min in an air atmosphere. A method for producing a cured product, which comprises a step of holding the adhesive film at a temperature equal to or lower than a temperature at which the weight is reduced by 0.5% for 30 minutes or more.
  16.  前記加熱処理前に、前記接着フィルムを熱プレスすることを特徴とする請求項15に記載の硬化体の製造方法。 The method for producing a cured product according to claim 15, wherein the adhesive film is hot-pressed before the heat treatment.
  17.  前記硬化体の厚さ方向断面における空隙部分の面積割合が、10%以下であることを特徴とする請求項15または16に記載の硬化体の製造方法。 The method for producing a cured product according to claim 15, wherein the area ratio of the void portion in the cross section in the thickness direction of the cured product is 10% or less.
  18.  二次元構造を有するグラフェンおよび単層窒化ホウ素の少なくとも1種からなる熱伝導性フィラー(A)と、
     熱硬化性成分(B)と、
     バインダーポリマー(C)と
    を含有する接着性樹脂組成物からなる接着フィルムを介して、第1の部材の少なくとも一部を第2の部材の少なくとも一部に貼合する貼合工程と、
     前記貼合後、前記接着フィルムを加熱処理して硬化体とすることにより、前記第1の部材の少なくとも一部と、前記第2の部材の少なくとも一部とが、前記硬化体を介して結合してなる構造体を得る工程と
    を備えており、
     前記加熱処理が、予備加熱工程と、前記予備加熱工程後に前記接着フィルムを完全硬化させる完全硬化工程とを含み、
     前記予備加熱工程が、任意の加熱処理をする前の前記接着フィルムについて大気雰囲気下10℃/分の昇温速度で40℃から400℃まで昇温する条件の熱重量測定を行ったときに前記接着フィルムが0.5%重量減少する温度以下の温度で30分以上保持する工程を含む
    ことを特徴とする構造体の製造方法。
    A thermally conductive filler (A) composed of at least one of graphene and single-layer boron nitride having a two-dimensional structure,
    Thermosetting component (B) and
    A bonding step of bonding at least a part of the first member to at least a part of the second member via an adhesive film made of an adhesive resin composition containing a binder polymer (C).
    After the bonding, the adhesive film is heat-treated to form a cured body, whereby at least a part of the first member and at least a part of the second member are bonded via the cured body. It is equipped with a process to obtain a structure made of
    The heat treatment includes a preheating step and a complete curing step of completely curing the adhesive film after the preheating step.
    When the preheating step performs thermal weight measurement under the condition that the temperature of the adhesive film before any heat treatment is raised from 40 ° C. to 400 ° C. at a heating rate of 10 ° C./min in an air atmosphere. A method for producing a structure, which comprises a step of holding the adhesive film at a temperature equal to or lower than a temperature at which the weight is reduced by 0.5% for 30 minutes or more.
  19.  前記加熱処理よりも前に、前記接着フィルムを熱プレスすることを特徴とする請求項15に記載の構造体の製造方法。 The method for manufacturing a structure according to claim 15, wherein the adhesive film is hot-pressed before the heat treatment.
  20.  前記硬化体の厚さ方向断面における空隙部分の面積割合が、10%以下であることを特徴とする請求項18また19に記載の構造体の製造方法。 The method for manufacturing a structure according to claim 18 or 19, wherein the area ratio of the void portion in the cross section in the thickness direction of the cured product is 10% or less.
  21.  前記貼合工程において、任意の加熱処理をする前の前記接着フィルムの粘弾性測定で得られる損失正接(tanδ)のピークを示す温度以上の温度で、前記貼合を行うことを特徴とする請求項18~20のいずれか一項に記載の構造体の製造方法。 The present invention is characterized in that, in the bonding step, the bonding is performed at a temperature equal to or higher than a temperature indicating a peak of loss tangent (tan δ) obtained by measuring the viscoelasticity of the adhesive film before any heat treatment. Item 8. The method for producing a structure according to any one of Items 18 to 20.
PCT/JP2021/038057 2020-11-04 2021-10-14 Adhesive film, adehsive film with support sheet, cured body and method for producing structure WO2022097442A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022560692A JPWO2022097442A1 (en) 2020-11-04 2021-10-14
KR1020237005868A KR20230098130A (en) 2020-11-04 2021-10-14 Method for manufacturing an adhesive film, a cured body, and a structure including an adhesive film and a support sheet
CN202180070981.5A CN116348564A (en) 2020-11-04 2021-10-14 Adhesive film, adhesive film with support sheet, cured product, and method for producing structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020184319 2020-11-04
JP2020-184319 2020-11-04

Publications (1)

Publication Number Publication Date
WO2022097442A1 true WO2022097442A1 (en) 2022-05-12

Family

ID=81457078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038057 WO2022097442A1 (en) 2020-11-04 2021-10-14 Adhesive film, adehsive film with support sheet, cured body and method for producing structure

Country Status (5)

Country Link
JP (1) JPWO2022097442A1 (en)
KR (1) KR20230098130A (en)
CN (1) CN116348564A (en)
TW (1) TW202229489A (en)
WO (1) WO2022097442A1 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290617A (en) * 1999-04-08 2000-10-17 Asahi Chem Ind Co Ltd Electroconductive adhesive and usage thereof
JP2006124607A (en) * 2004-11-01 2006-05-18 Denso Corp Conductive adhesive and electronic device using the same
JP2012039064A (en) * 2010-01-29 2012-02-23 Nitto Denko Corp Heat-conductive sheet
KR20130086902A (en) * 2012-01-26 2013-08-05 도레이첨단소재 주식회사 Conductive and flame-retardative adhesive and emi shielding film using the same
JP2013256574A (en) * 2012-06-12 2013-12-26 Hitachi Chemical Co Ltd Film-like adhesive, adhesive sheet, and method for manufacturing semiconductor device
JP2015034269A (en) * 2013-08-09 2015-02-19 東洋インキScホールディングス株式会社 Easily deformable aggregate and method for producing the same, thermal conductive resin composition, thermal conductive member and method for producing the same, and thermal conductive adhesive sheet
JP2016014090A (en) * 2014-07-01 2016-01-28 Dic株式会社 Heat adhesive sheet and article
JP2016189412A (en) * 2015-03-30 2016-11-04 東洋インキScホールディングス株式会社 Method of producing conductive sheet
JP2018065921A (en) * 2016-10-19 2018-04-26 日東シンコー株式会社 Thermosetting adhesive sheet and semiconductor module
CN109868085A (en) * 2019-02-01 2019-06-11 江苏斯迪克新材料科技股份有限公司 The ultra-thin one-faced tapes of High directional thermal conductivity
CN110951409A (en) * 2019-12-18 2020-04-03 常州瑞联新材料有限公司 Graphene-based heat-conducting flame-retardant adhesive tape and preparation method thereof
CN110982457A (en) * 2019-10-16 2020-04-10 山东金鼎电子材料有限公司 High-thermal-conductivity adhesive and preparation method thereof
WO2020085316A1 (en) * 2018-10-22 2020-04-30 タツタ電線株式会社 Conductive adhesive sheet
CN111171782A (en) * 2020-01-20 2020-05-19 Tcl华星光电技术有限公司 Adhesive composition, adhesive composition processing method and packaging structure
CN111363381A (en) * 2020-04-29 2020-07-03 沈阳航空航天大学 Surface functionalized BN nano-sheet and preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067713A (en) 2013-09-28 2015-04-13 株式会社日本触媒 Heat release sheet

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290617A (en) * 1999-04-08 2000-10-17 Asahi Chem Ind Co Ltd Electroconductive adhesive and usage thereof
JP2006124607A (en) * 2004-11-01 2006-05-18 Denso Corp Conductive adhesive and electronic device using the same
JP2012039064A (en) * 2010-01-29 2012-02-23 Nitto Denko Corp Heat-conductive sheet
KR20130086902A (en) * 2012-01-26 2013-08-05 도레이첨단소재 주식회사 Conductive and flame-retardative adhesive and emi shielding film using the same
JP2013256574A (en) * 2012-06-12 2013-12-26 Hitachi Chemical Co Ltd Film-like adhesive, adhesive sheet, and method for manufacturing semiconductor device
JP2015034269A (en) * 2013-08-09 2015-02-19 東洋インキScホールディングス株式会社 Easily deformable aggregate and method for producing the same, thermal conductive resin composition, thermal conductive member and method for producing the same, and thermal conductive adhesive sheet
JP2016014090A (en) * 2014-07-01 2016-01-28 Dic株式会社 Heat adhesive sheet and article
JP2016189412A (en) * 2015-03-30 2016-11-04 東洋インキScホールディングス株式会社 Method of producing conductive sheet
JP2018065921A (en) * 2016-10-19 2018-04-26 日東シンコー株式会社 Thermosetting adhesive sheet and semiconductor module
WO2020085316A1 (en) * 2018-10-22 2020-04-30 タツタ電線株式会社 Conductive adhesive sheet
CN109868085A (en) * 2019-02-01 2019-06-11 江苏斯迪克新材料科技股份有限公司 The ultra-thin one-faced tapes of High directional thermal conductivity
CN110982457A (en) * 2019-10-16 2020-04-10 山东金鼎电子材料有限公司 High-thermal-conductivity adhesive and preparation method thereof
CN110951409A (en) * 2019-12-18 2020-04-03 常州瑞联新材料有限公司 Graphene-based heat-conducting flame-retardant adhesive tape and preparation method thereof
CN111171782A (en) * 2020-01-20 2020-05-19 Tcl华星光电技术有限公司 Adhesive composition, adhesive composition processing method and packaging structure
CN111363381A (en) * 2020-04-29 2020-07-03 沈阳航空航天大学 Surface functionalized BN nano-sheet and preparation method and application thereof

Also Published As

Publication number Publication date
KR20230098130A (en) 2023-07-03
TW202229489A (en) 2022-08-01
JPWO2022097442A1 (en) 2022-05-12
CN116348564A (en) 2023-06-27

Similar Documents

Publication Publication Date Title
JP6029990B2 (en) Thermally conductive sheet
JP2010132866A (en) Thermal conductive sheet, method for producing the thermal conductive sheet, and heat dissipator using the thermal conductive sheet
JP7282076B2 (en) Film adhesives and sheets for semiconductor processing
TW201441336A (en) Protective film formation composite sheet, protective film-equipped chip, and method for fabricating protective film-equipped chip
KR20160137401A (en) Adhesive sheet, dicing tape-integrated adhesive sheet, film, method for producing semiconductor device, and semiconductor device
KR20220147062A (en) A resin film, a composite sheet, and the manufacturing method of the semiconductor chip with a 1st protective film formed
JP7155245B2 (en) Die bonding film, dicing die bonding sheet, and method for manufacturing semiconductor chip
WO2022097443A1 (en) Adhesive film, support-sheet-equipped adhesive film, and structure
WO2018212171A1 (en) Semiconductor device and mehtod for producing same
JP6960276B2 (en) How to use resin sheets, semiconductor devices, and resin sheets
CN114730707A (en) Sheet for manufacturing semiconductor device and method for manufacturing semiconductor chip with film-like adhesive
WO2022097442A1 (en) Adhesive film, adehsive film with support sheet, cured body and method for producing structure
JP6676593B2 (en) Resin sheet and semiconductor device
WO2013118849A1 (en) Thermal conductive sheet
JP6427791B2 (en) Resin film forming sheet for chip and manufacturing method of semiconductor device
WO2020196130A1 (en) Film adhesive and sheet for semiconductor processing
JP5837839B2 (en) Laminated structure
TW202033668A (en) Resin composition, resin cured product, and composite molded body
JP7413356B2 (en) Film adhesives and sheets for semiconductor processing
WO2023182470A1 (en) Thermosetting resin composition, thermally conductive resin sheet, heat-dissipating layered product, heat-dissipating circuit board, semiconductor device and power module
TW202328386A (en) Film-like adhesive for flexible device, adhesive sheet for flexible device, and method for manufacturing flexible device
JP2024008251A (en) Film adhesive, sheet for semiconductor processing, and method for manufacturing semiconductor device
TW202348756A (en) Protective film-forming film, composite sheet for forming protective film, method of manufacturing semiconductor device, and use of protective film-forming film having desirable storage elastic modulus for a test piece formed by multiple pieces of the protective films
JP2022146907A (en) Jig fixture adhesive sheet, protective film forming composite sheet, and manufacturing method of chip with protective film
JP2023145355A (en) Thermosetting resin composition, thermosetting resin sheet, insulating sheet, and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888995

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560692

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21888995

Country of ref document: EP

Kind code of ref document: A1