WO2022096151A1 - Compositions a base de methyl-cyclodextrines pour le traitement et/ou la prevention de la steatose hepatique - Google Patents

Compositions a base de methyl-cyclodextrines pour le traitement et/ou la prevention de la steatose hepatique Download PDF

Info

Publication number
WO2022096151A1
WO2022096151A1 PCT/EP2021/025430 EP2021025430W WO2022096151A1 WO 2022096151 A1 WO2022096151 A1 WO 2022096151A1 EP 2021025430 W EP2021025430 W EP 2021025430W WO 2022096151 A1 WO2022096151 A1 WO 2022096151A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
cyclodextrin
cyclodextrins
pharmaceutical composition
groups
Prior art date
Application number
PCT/EP2021/025430
Other languages
English (en)
Inventor
Daniel Wils
Caroline PERREAU
Original Assignee
Roquette Freres
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roquette Freres filed Critical Roquette Freres
Priority to MX2023005255A priority Critical patent/MX2023005255A/es
Priority to EP21805838.6A priority patent/EP4240371A1/fr
Priority to AU2021374726A priority patent/AU2021374726A1/en
Priority to KR1020237018567A priority patent/KR20230093516A/ko
Priority to CA3197127A priority patent/CA3197127A1/fr
Priority to JP2023525452A priority patent/JP2023547633A/ja
Priority to US18/251,358 priority patent/US20240000827A1/en
Priority to CN202180074737.6A priority patent/CN116456991A/zh
Publication of WO2022096151A1 publication Critical patent/WO2022096151A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/716Glucans
    • A61K31/724Cyclodextrins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration

Definitions

  • compositions based on methyl-cyclodextrins for the treatment and/or prevention of hepatic steatosis
  • the present invention relates to pharmaceutical compositions for reducing the storage of lipids in the liver in an individual.
  • the present invention relates more specifically to the use of a pharmaceutical composition in the treatment and/or prevention of fatty liver disease and diseases or conditions associated with fatty liver disease.
  • Non-alcoholic steatopathy non-alcoholic fatty liver disease or NAFLD
  • NAFLD non-alcoholic fatty liver disease
  • NAFLD includes a broad spectrum of liver lesions in which two major entities are distinguished: steatosis isolated or accompanied by minimal lobular inflammation (non alcoholic fatty liver or NAFL) and non alcoholic steatohepatitis (non alcoholic steatohepatitis or NASH).
  • NASH is defined by the presence of steatosis with lobular inflammation and ballooning of hepatocytes. It corresponds to the aggressive form of the disease which promotes the accumulation of fibrosis in the hepatic parenchyma with progression to cirrhosis and its complications (hepatic failure, ascites, ruptured varices, hepatocarcinoma).
  • NAFLD neurotrophic factor predisposing to NAFLD and its severity
  • NAFLD evolves in a context of dysmetabolic and insulin resistance.
  • the accumulation of metabolic syndrome criteria (waist circumference, blood pressure, fasting blood glucose, triglycerides, HDL-cholesterol) and the degree of insulin resistance are associated with an increase in the prevalence of NAFLD and its severity ( NASH, fibrosis).
  • NAFLD is a globally slow-progressing disease, but its natural history is still poorly understood. NASH represents the aggressive form of the disease: compared to patients with simple NAFL, patients with NASH have a higher fibrosis progression rate, evolve more towards cirrhosis, develop more liver complications and have a higher mortality. high.
  • compositions based on methyl-cyclodextrin make it possible to reduce the storage of lipids in the liver, and thus be useful for the treatment and/or prevention of steatosis. hepatic.
  • the present invention relates to a pharmaceutical composition comprising at least one methyl-cyclodextrin for its use in the treatment and/or prevention of hepatic steatosis and of diseases associated with hepatic steatosis.
  • the invention also relates to the use of a methyl-cyclodextrin for the manufacture of a medicament for use in the treatment and/or prevention of hepatic steatosis.
  • the present invention provides a method for the treatment and/or prevention of fatty liver disease comprising administering to a patient a therapeutically effective amount of methyl-cyclodextrin.
  • the inventors have identified a new use of a pharmaceutical composition comprising at least one methyl-cyclodextrin in the treatment and/or prevention of hepatic steatosis and of diseases associated with hepatic steatosis
  • hepatic steatosis covers both alcoholic steatosis, linked to excessive alcohol consumption, and non-alcoholic steatosis. Preferably, it is a non-alcoholic steatosis.
  • non-alcoholic steatosis encompasses all the stages of evolution of a pathology in which the liver is affected and characterized by an excessive accumulation of lipids. These may include Non-Alcoholic Fatty Liver Disease (NAFLD) and Non-Alcoholic SteatoHepatitis (NASH).
  • NAFLD Non-Alcoholic Fatty Liver Disease
  • NASH Non-Alcoholic SteatoHepatitis
  • the invention also relates to the treatment and/or prevention of diseases or conditions associated with hepatic steatosis, such as acute or chronic inflammation of the liver, hepatic fibrosis, abdominal obesity, hepatic insufficiency and cirrhosis.
  • diseases or conditions associated with hepatic steatosis such as acute or chronic inflammation of the liver, hepatic fibrosis, abdominal obesity, hepatic insufficiency and cirrhosis.
  • the disease associated with hepatic steatosis is not diabetes.
  • Cyclodextrins are cyclic oligosaccharides originating from the enzymatic degradation of starch.
  • the three most common natural cyclodextrins consist of 6, 7, or 8 aD-glucopyranose units in a chair configuration linked together by a-1,4 bonds. They are more commonly called a, p, or y cyclodextrin, respectively.
  • Their three-dimensional structure appears in the form of a truncated cone, outside of which are the hydroxyl groups representing the highly hydrophilic part of the cyclodextrins.
  • the inside of the cone or the cavity of the cyclodextrins is made up of the hydrogen atoms carried by the C3 and C5 carbons as well as the oxygen atoms participating in the glycosidic bond, thus giving them an apolar character.
  • Cyclodextrins having a hydrophilic outer part and a hydrophobic cavity are generally used for their ability to encapsulate hydrophobic compounds and, therefore, for their role of protecting and solubilizing hydrophobic active substances. They are thus traditionally found in the fields of the food industry, but also in galenics where they are used as an excipient in pharmaceutical formulations administered orally or in cosmetic formulations administered topically.
  • methylcyclodextrin could also be used in the treatment and/or prevention of hepatic steatosis. Even more surprisingly, she discovered that methyl-cyclodextrin, and more particularly a methyl-cyclodextrin having a degree of molar substitution between 0.05 and 1.5, was even more effective than other cyclodextrin derivatives for reduce the accumulation of lipids in the liver.
  • a methyl-cyclodextrin having a degree of molar substitution of between 0.05 and 1.5 was capable of promoting an increase in the elimination of cholesterol.
  • degree of molar substitution means the number of substituted hydroxyls, in particular by a methyl group, per glucopyranose unit. It should be noted that the degree of molar substitution (MS) is different from the degree of molecular substitution (DS) which corresponds to the number of hydroxyls substituted, in particular by a methyl group, per molecule of cyclodextrin and which therefore takes into account the number of units glucopyranoses constituting methyl-cyclodextrin.
  • the MS can be determined in the present invention by proton nuclear magnetic resonance (NMR), or by mass spectrometry (electrospray ionization mass spectrometry (ESI-MS) or laser desorption/ionization mass spectrometry). matrix-assisted (MALDI-MS)).
  • NMR proton nuclear magnetic resonance
  • mass spectrometry electrospray ionization mass spectrometry
  • MALDI-MS matrix-assisted
  • the MS is determined by NMR, according to the following method: the measurements are carried out at 25° C. on a device of the DPX 250 MHz Advance type (Bruker, Rheinstetten, Germany). Calibration is performed with the D2O signal.
  • the samples of methyl-cyclodextrin in accordance with the invention, and of native cyclodextrin, that is to say non-methylated, are prepared at a concentration of 5 mg in 0.75 mL of D2O.
  • the solutions are evaporated to dryness under a stream of nitrogen then reconstituted in 0.75 mL of D2O. This operation is repeated twice in order to ensure a total exchange of the protons of the hydroxyl functions.
  • methyl-cyclodextrin used in accordance with the invention although it may correspond to a pure product, generally corresponds to a mixture of methyl-cyclodextrins of different structures. This is the case, for example, of the product KLEPTOSE® CRYSMEB held by the Applicant, which in particular has the physico-chemical properties as determined in the aforementioned thesis by JACQUET Romain, in particular in chapter 2, part B (pages 59 to 83) .
  • MS measured is in this case an average of the substitutions which take place on all the glucopyranose units of the entire mixture of methylcyclodextrins.
  • This mixture may in particular contain residual native cyclodextrin, that is to say unmethylated, but which are generally found in negligible quantities, in particular less than 1% by dry weight relative to the total dry weight of the methyl-cyclodextrin, preferably less than 0.5%, more preferably still less than 0.1%.
  • the compositions comprise at least one methylcyclodextrin having a degree of molar substitution of between 0.05 and 1.5.
  • the methyl-cyclodextrin has a MS of between 0.1 and 1.4, preferentially between 0.1 and 1.3, preferentially between 0.2 and 1.2, preferentially between 0.3 and 1.1, preferentially between 0.3 and 1, preferentially between 0.5 and 0.9, preferentially between 0.6 and 0.8, for example 0.7, in particular 0.67.
  • methyl-cyclodextrin can have a MS between 0.10 and 1.40, between 0.10 and 1.30, between 0.10 and 1.20, between 0.15 and 1.40, between 0 .15 and 1.30, between 0.15 and 1.20, between 0.20 and 1.40, between 0.20 and 1.30, between 0.20 and 1.20, between 0.20 and 1, 10, between 0.25 and 1.40, between 0.25 and 1.30, between 0.25 and 1.20, between 0.25 and 1.10, between 0.15 and 0.90, between 0, 15 and 0.80, between 0.25 and 1.00, between 0.25 and 0.90, between 0.25 and 0.80, between 0.30 and 1.40, between 0.30 and 1.30, between 0.30 and 1.20, between 0.30 and 1.00, between 0.50 and 0.90, between 0.60 and 0.80.
  • MS between 0.10 and 1.40, between 0.10 and 1.30, between 0.10 and 1.20, between 0.15 and 1.40, between 0 .15 and 1.30, between 0.15 and 1.20, between 0.20 and 1.40, between 0.20 and 1.30, between
  • At least 50% of the methyl groups of the methyl-cyclodextrin used in the context of the present invention are located at the level of the hydroxyl carried by the C2 carbon of the glucopyranose unit, preferably between 60 and 80% , typically around 75%.
  • the other methyl groups are generally mainly located at the level of the hydroxyl carried by the C3 and/or C6 carbon of the glucopyranose unit.
  • the methyl-cyclodextrin used in the context of the present invention comprises 7 a-D-glucopyranose units. It is therefore a methyl-p-cyclodextrin.
  • the methyl-cyclodextrin is a methyl-p-cyclodextrin and has an MS of between 0.05 and 1.5, preferentially between 0.1 and 1.4, preferentially between 0, 1 and 1.3, preferentially between 0.2 and 1.2, preferentially between 0.3 and 1.1, preferentially between 0.4 and 1, preferentially between 0.5 and 0.9, preferentially between 0.6 and 0.8, for example 0.7, especially 0.67.
  • methyl-cyclodextrin can have a MS between 0.10 and 1.40, between 0.10 and 1.30, between 0.10 and 1.20, between 0.15 and 1.40, between 0 .15 and 1.30, between 0.15 and 1.20, between 0.20 and 1.40, between 0.20 and 1.30, between 0.20 and 1.20, between 0.20 and 1, 10, between 0.25 and 1.40, between 0.25 and 1.30, between 0.25 and 1.20, between 0.25 and 1.10, between 0.25 and 1.00, between 0, 25 and 0.90, between 0.25 and 0.80, between 0.30 and 1.40, between 0.30 and 1.30, between 0.30 and 1.20, between 0.30 and 1.00 , between 0.50 and 0.90, between 0.60 and 0.80.
  • MS between 0.10 and 1.40, between 0.10 and 1.30, between 0.10 and 1.20, between 0.15 and 1.40, between 0 .15 and 1.30, between 0.15 and 1.20, between 0.20 and 1.40, between 0.20 and 1.30, between 0.20 and 1.20, between 0.20 and 1, 10, between
  • the methyl-cyclodextrin can be substituted on the hydroxyl carried by the C2 carbon of the glucopyranose units, or by the C3 and/or C6 carbons of the glucopyranose units, or by a combination of the C2, C3 and/or C6 carbons, preferably C2 and C6 glucopyranose units.
  • the methyl-cyclodextrin is a methyl-cyclodextrin, preferably a methyl-p-cyclodextrin, of which at least 50% of the methyl groups are located at the level of the hydroxyl carried by the carbon C2 of the glucopyranose unit, preferably between 60 and 80%, typically around 75%, and has a MS of between 0.05 and 1.5, preferably between 0.1 and 1.4, preferably between 0.1 and 1.3, preferentially between 0.2 and 1.2, preferentially between 0.3 and 1.1, preferentially between 0.4 and 1, preferentially between 0.5 and 0.9, preferentially between 0 .6 and 0.8, for example 0.7, especially 0.67.
  • methyl-cyclodextrin can have a MS between 0.10 and 1.40, between 0.10 and 1.30, between 0.10 and 1.20, between 0.15 and 1.40, between 0 .15 and 1.30, between 0.15 and 1.20, between 0.20 and 1.40, between 0.20 and 1.30, between 0.20 and 1.20, between 0.20 and 1, 10, between 0.25 and 1.40, between 0.25 and 1.30, between 0.25 and 1.20, between 0.25 and 1. 10, between 0.25 and 1.00, between 0, 25 and 0.90, between 0.25 and 0.80, between 0.30 and 1.40, between 0.30 and 1.30, between 0.30 and 1.20, between 0.30 and 1.00 , between 0.50 and 0.90, between 0.60 and 0.80.
  • MS between 0.10 and 1.40, between 0.10 and 1.30, between 0.10 and 1.20, between 0.15 and 1.40, between 0 .15 and 1.30, between 0.15 and 1.20, between 0.20 and 1.40, between 0.20 and 1.30, between 0.20 and 1.20, between 0.20 and 1, 10, between 0.
  • the methyl-cyclodextrin composition comprises one or more methyl-p-cyclodextrins chosen from the group consisting of methyl-p-cyclodextrins substituted on the hydroxyl carried by the C2 carbon of the glucopyranose units , methyl-p-cyclodextrins substituted on the hydroxyl carried by the C3 and/or C6 carbon of the glucopyranose units, methyl-p-cyclodextrins substituted on the hydroxyl carried by the C2, C3 and/or C6 carbons, preferably C2 and C6 of glucopyranose units and having a MS of between 0.05 and 1.5, preferentially between 0.1 and 1.4, preferentially between 0.1 and 1.3, preferentially between 0.2 and 1.2 , preferably between 0.3 and 1.1, preferably between 0.4 and 1, preferably between 0.5 and 0.9, preferably between 0.6 and 0.8, for example 0.7, in particular 0.67.
  • methyl-cyclodextrin can have a MS between 0.10 and 1.40, between 0.10 and 1.30, between 0.10 and 1.20, between 0.15 and 1.40, between 0 .15 and 1.30, between 0.15 and 1.20, between 0.20 and 1.40, between 0.20 and 1.30, between 0.20 and 1.20, between 0.20 and 1, 10, between 0.25 and 1.40, between 0.25 and 1.30, between 0.25 and 1.20, between 0.25 and 1.10, between 0.25 and 1.00, between 0, 25 and 0.90, between 0.25 and 0.80, between 0.30 and 1.40, between 0.30 and 1.30, between 0.30 and 1.20, between 0.30 and 1.00 , between 0.50 and 0.90, between 0.60 and 0.80.
  • the composition of methyl-cyclodextrins comprises at least 50, 60, or 75% of methyls substituted on the hydroxyl carried by the C2 carbon of the glucopyranose units.
  • the methyl-cyclodextrin according to the invention can be a mixture.
  • Analysis by mass spectrometry of the product KLEPTOSE® CRYSMEB, which is a methyl-p-cyclodextrin, reveals in particular that it is a polydispersed product, comprising seven major methyl-cyclodextrin groups, which are distinguished by their DS.
  • This DS which in theory can vary from 0 to 21 for a methyl-p-cyclodextrin, varies from 2 to 8 in the KLEPTOSE® CRYSMEB product.
  • compositions of the invention comprise a mixture of methyl-cyclodextrins comprising at least 50, 60, 70, 80 or 90% of methyl- cyclodextrins having a MS of between 0.2 and 1.2.
  • at least 40, 50, 60, 70, 80 or 90% of methyl-cyclodextrins have an MS of between 0.3 and 1.1.
  • at least 30, 40, 50, 60, 70, 80 or 90% of methyl-cyclodextrins have a MS of between 0.5 and 0.9.
  • at least 25, 30, 40, 50, 60, 70, 80 or 90% of methyl-cyclodextrins have an MS of between 0.6 and 0.8.
  • methyl-cyclodextrin compositions can optionally be prepared by adding different methyl-cyclodextrins having defined MS to obtain compositions as defined in the present invention or they can be obtained as a result of the synthesis thereof.
  • composition of methyl-cyclodextrins preferably of methyl-p-cyclodextrins, has the following substitution profile, expressed in molar percentages:
  • methyl-p-cyclodextrins comprise 2 methyl groups (DS of 2); -5 to 15% of methyl-p-cyclodextrins comprise 3 methyl groups (DS of 3);
  • - 20 to 25% of methyl-p-cyclodextrins comprise 4 methyl groups (DS of 4);
  • methyl-p-cyclodextrins contain 5 methyl groups (DS of 5);
  • methyl-p-cyclodextrins comprise 6 methyl groups (DS of 6);
  • methyl-p-cyclodextrins comprise 7 methyl groups (DS of 7);
  • methyl-p-cyclodextrins comprise 8 methyl groups (DS of 8).
  • the total sum generally being of the order of 100%, although the composition may possibly contain traces of methyl-cyclodextrins of different DS, as well as traces of native cyclodextrin, that is to say non-methylated .
  • the substitution profile can be determined by any technique well known to those skilled in the art, for example by ESI-SM or MALDI-TOF-SM.
  • the optimal conditions for determining the substitution profile by these two methods are in particular widely discussed in the above-mentioned thesis by Romain JACQUET, in chapter 2, part B, points II.3 and II.2 (page 67 to 82) and in Annex II.
  • the composition of methyl-cyclodextrins is such that at least 50% of the methyl groups are located at the level of the hydroxyl carried by the carbon C2 glucopyranose units, preferably between 60 and 80%, typically around 75%, and which has the following substitution profile, expressed in molar percentages:
  • methyl-p-cyclodextrins comprise 2 methyl groups (DS of 2);
  • methyl-p-cyclodextrins comprise 3 methyl groups (DS of 3); - 20 to 25% of methyl-p-cyclodextrins comprise 4 methylated groups (DS of 4);
  • methyl-p-cyclodextrins contain 5 methyl groups (DS of 5);
  • methyl-p-cyclodextrins comprise 6 methyl groups (DS of 6);
  • methyl-p-cyclodextrins comprise 7 methyl groups (DS of 7);
  • methyl-p-cyclodextrins comprise 8 methyl groups (DS of 8); the total sum generally being of the order of 100%, although the composition may optionally contain traces of methyl-cyclodextrins of different DS, as well as traces of native, that is to say non-methylated, cyclodextrin.
  • the methyl-cyclodextrin is a methyl-p-cyclodextrin which has a DS chosen from an integer ranging from 2 to 8, in particular 2, 3, 4, 5, 6 , 7 or 8.
  • the methyl-cyclodextrin is a methyl-P-cyclodextrin of which at least 50% of the methyl groups are located at the level of the hydroxyl carried by the C2 carbon of the glucopyranose units, preferably between 60 and 80%, typically around 75%, and which has a DS chosen from an integer ranging from 2 to 8, in particular 2, 3, 4, 5, 6, 7 or 8.
  • methyl-cyclodextrin in particular methyl-p-cyclodextrin, has a MS of between 0.1 and 0.3, in particular between 0.2 and 0.3, in particular between 0.20 and 0.30.
  • the methyl-cyclodextrin, in particular the methyl-p-cyclodextrin has an MS comprised between 0.3 and 0.5 in particular between 0.30 and 0.50.
  • the methyl-cyclodextrin, in particular the methyl-p-cyclodextrin has an MS comprised between 0.5 and 0.6 in particular between 0.50 and 0.60.
  • the methyl-cyclodextrin in particular the methyl-p-cyclodextrin, has an MS comprised between 0.6 and 0.7 in particular between 0.60 and 0.70. In another particular embodiment, the methyl-cyclodextrin, in particular the methyl-p-cyclodextrin, has an MS comprised between 0.7 and 0.8 in particular between 0.70 and 0.80. In another particular embodiment, the methyl-cyclodextrin, in particular the methyl-p-cyclodextrin, has an MS comprised between 0.8 and 0.9 in particular between 0.80 and 0.90.
  • the methyl-cyclodextrin in particular methyl-p-cyclodextrin, has an MS of between 0.9 and 1.1, in particular between 0.90 and 1.10. In another particular embodiment, the methyl- cyclodextrin, in particular methyl-p-cyclodextrin, has an MS of between 1.1 and 1.2, in particular between 1.10 and 1.20.
  • the methyl-cyclodextrin used in accordance with the invention has a level of reducing sugars of less than 1% by dry weight, preferably less than 0.5%.
  • composition of methyl-p-cyclodextrins according to the invention can be obtained by the method described in US Pat. No. 6,602,860 B1.
  • An example of such a composition is the product KLEPTOSE® CRYSMEB which has a degree of molar substitution of 0.7 or more precisely 0.67 methyls per unit of glucose.
  • composition according to the present invention may additionally comprise an unsubstituted cyclodextrin, in particular p-cyclodextrin, and/or a cyclodextrin, in particular p-cyclodextrin, substituted with sulfobutyl ether (SBE-), hydroxyethyl, hydroxypropyls (HP-), carboxymethyls, carboxyethyls, acetyls, triacetyls, succinyls, ethyls, propyls, butyls, sulfates, preferably sulfobutyls and hydroxypropyls, preferably with a degree of molar substitution of between 0.05 and 1.5.
  • SBE- sulfobutyl ether
  • HP- hydroxyethyl
  • HP- hydroxypropyls
  • succinyls ethyls
  • propyls propyls
  • butyls
  • the composition of the invention does not include cyclodextrins other than the methyl-cyclodextrin useful in the invention (and optionally native cyclodextrin in the form of traces, as mentioned above).
  • methyl-cyclodextrin according to the invention in particular methyl-P-cyclodextrin, can be substituted by additional groups, in particular chosen from those listed before. It may therefore for example be a sulphated methyl-p-cyclodextrin.
  • the methyl-cyclodextrin useful in the invention is not substituted by groups other than methyl groups.
  • the methyl-cyclodextrins as defined in the present application and composed of a-D-glucopyranose units linked together by a-1,4 bonds can be substituted in part or in whole by ⁇ -D-glucopyranose units interconnected by ⁇ -1,6 bonds, in the pharmaceutical compositions of the present invention.
  • methyl-cyclodextrin is the only active principle of the pharmaceutical composition.
  • the pharmaceutical composition further comprises one or more active ingredient(s) typically chosen from those useful for the prevention and/or treatment of the symptoms and/or pathologies associated with steatosis. hepatic.
  • compositions according to the present invention may also comprise at least one pharmaceutically acceptable excipient.
  • excipient suitable for the galenic forms known to those skilled in the art can be used, in particular for systemic administration, preferably for oral administration, parenteral administration, cutaneous or mucosal administration, in particular by subcutaneous, intravenous, intramuscular, intraperitoneal, nasal, pulmonary, rectal, dermal, intrathecal or spinal route, preferably orally.
  • compositions can contain one or more agents or vehicles chosen from dispersants, solubilizers, stabilizers, preservatives, etc.
  • agents or vehicles which can be used in formulations (liquid and/or injectable) are in particular methylcellulose, hydroxymethylcellulose, carboxymethylcellulose, polysorbate 80, mannitol, gelatin, lactose, vegetable oils, acacia, liposomes , etc.
  • compositions can be formulated in the form of injectable suspensions, gels, oils, tablets, suppositories, powders, gelatin capsules, capsules, aerosols, etc., optionally by means of galenic forms or devices providing prolonged and/or delayed release.
  • an agent such as cellulose, carbonates or starches is advantageously used.
  • compositions capable of being administered by injection to an individual within the scope of the invention comprise between 1 and 100 mg/kg, preferentially between 20 and 70 mg/kg, even more preferentially between 30 and 50 mg/kg. kg, and even more preferably 40 mg/kg of methyl-cyclodextrin as defined in the present invention, relative to the total weight of the individual.
  • methyl-cyclodextrin as defined in the present invention, relative to the total weight of the individual.
  • those skilled in the art are able to adapt the dose of methyl-cyclodextrin defined in the present application according to the weight of the individual to be treated and the method of administration.
  • the pharmaceutical composition is capable of being administered in oral form.
  • the amount of methyl-cyclodextrin to be administered in an amount capable of reducing the storage of lipids in the patient's liver may for example be between 10 mg/kg/day and 10000 mg/kg/day, preferably between 20 mg/kg/day and 7000 mg/kg/day, between 50 mg/kg/day and 5000 mg/kg/day, between 75 mg/kg/day and 4000 mg/kg/day, between 100 mg/kg/day and 3000 mg/kg/day, between 200 mg/kg/day and 2000 mg/kg/ day, between 300 mg/kg/day and 1000 mg/kg/day, even more preferably between 400 mg/kg/day and 800 mg/kg/day.
  • FIG. 1 shows the change in body weight over time for the 4 groups of animals in Example 2
  • FIG. 2 is a schematic representation of de novo lipogenesis and the different genes involved in this biosynthetic pathway.
  • FIG. 3 shows the level of expression of different genes involved in de novo lipogenesis in the 4 groups of animals of Example 2
  • FIG. 4 is a schematic representation of de novo cholesterol synthesis, with the different enzymes involved.
  • FIG. 5 shows the level of expression of different genes involved in the synthesis of cholesterol de novo, in the 4 groups of animals of Example 2
  • FIG. 5 shows the level of expression of different genes involved in the synthesis of cholesterol de novo, in the 4 groups of animals of Example 2
  • FIG. 7 shows the evolution of the body weight over time of the 4 groups of animals of Example 3 Fig. 8
  • FIG. 8 shows the weight of liver and adipose tissue at the end of the study in the 4 groups of animals of Example 3
  • FIG. 9 shows the serum levels of cholesterol, triglycerides, unsaturated fatty acids and LDLc over time in the 4 groups of animals in Example 3.
  • FIG. 10 shows the measurement of the percentage of lipids in the liver and the quantity of cholesterol stored in the liver in the 4 groups of animals of Example 3
  • Example 1 Materials and Methods
  • HPBCD hydroxypropyl-p-cyclodextrin
  • MCD methyl-p-cyclodextrin
  • Example 2 Preventive effect of methyl-p-cyclodextrin on hepatic pathologies linked to hypercholesterolemia
  • HC control group hypercholesterolemic diet (containing 2.5% by weight of cholesterol)
  • HC+Crysmeb hypercholesterolemic diet (containing 2.5% by weight of cholesterol) + 3% by weight of Crysmeb (MCD)
  • HC+HPBCD hypercholesterolemic diet (containing 2.5% by weight of cholesterol) + 3% by weight of HPBCD.
  • Figure 1 shows the evolution of the body weight of the animals during the study. It can be seen that the hypercholesterolemic diet had no impact on body weight. Conversely, the 2 groups that received cyclodextrin supplementation had a slower progression.
  • Table 1 describes the weight of aorta, brain, liver, small intestine and adipose tissue of the epididymis in the different treatment groups: [0086] [Table 1]
  • the tissues which were the most affected by the treatment with cyclodextrins are the tissues involved in the storage of fat: the liver and the adipose tissue of the epididymis (which is strongly correlated with the total fat mass of an individual).
  • the fat reduction effect was strongest with Crysmeb MCD.
  • Table 2 shows the plasma triglyceride levels in the different groups at different times of the study: at the start (day 0 D0), on day 14 (D14), on day 28 (D28) and at the end of the study (day 43 D43) [0089] [Table 2]
  • HC diet induced a strong increase in the level of triglycerides in the blood, compared to the control group. This increase was normalized by the addition of cyclodextrins, with a more marked effect for MCD Crysmeb.
  • Table 3 provides the biochemical data measured in the liver of the animals at the end of the 42 days of treatment.
  • the HC diet induced a strong increase in the quantity of lipids stored in the liver, mainly in the form of cholesterol, but also in the form of triglycerides.
  • the addition of cyclodextrin in the diet had the effect of reducing this storage.
  • the effect was even more marked for MCD, for which normal levels of % lipids, cholesterol storage and triglycerides were measured.
  • Biomarkers (amount of messenger RNA expressed in the liver)
  • the HC diet led to a decrease in the expression of the CYP51 gene compared to the control group, and therefore to a decrease in the synthesis of cholesterol.
  • Adding HPBCD had little effect.
  • the addition of MCB Crysmeb led to an increase in the expression of the SREB2, CYP51a1, HMGCR genes, and therefore to an increased synthesis of cholesterol, instead of fatty acid synthesis.
  • the addition of MCD normalizes the expression of genes involved in the elimination of cholesterol, compared to the HC group. This normalization is more important with the MCD than with the HPBCD.
  • the various parameterized measurements demonstrate that the methyl-cyclodextrin according to the invention makes it possible to fight effectively against the disturbances due to a hypercholesterolemic diet (increased storage of fatty acids in the liver and increased turnover of fatty acids ).
  • methyl-cyclodextrin promotes a reduction in the storage of lipids in the liver and an increase in the elimination of cholesterol.
  • Example 3 Curative effect of methyl-p-cyclodextrin on hepatic pathologies linked to hypercholesterolemia
  • Example 2 The same protocol as Example 2 was carried out, but with a first phase of induction of hypercholesterolemia for 2 weeks, followed by a second phase of treatment during which cyclodextrins were added to the diet. “HC+Crysmeb” and “HC+HPBCD” groups.
  • HC control group hypercholesterolemic diet (containing 2.5% by weight of cholesterol)
  • HC+Crysmeb hypercholesterolemic diet (containing 2.5% by weight of cholesterol) from D1 to D14 then hypercholesterolemic diet (containing 2.5% by weight of cholesterol) + 3% by weight of Crysmeb (MCD) from D15 to D42.
  • HC+HPBCD hypercholesterolemic diet (containing 2.5% by weight of cholesterol) from D1 to D14 then hypercholesterolemic diet (containing 2.5% by weight of cholesterol) + 3% by weight of HPBCD from D15 to D42.
  • Figure 7 shows the evolution of the body weight of the animals during the study. It can be seen that the hypercholesterolemic diet had no impact on body weight. Conversely, the 2 groups that received cyclodextrin supplementation had a slower progression.
  • FIG. 8 which describes the weight of the liver and the adipose tissue of the epididymis in the different treatment groups, shows that the tissues which were most affected by the treatment with cyclodextrins are the tissues involved in the fat storage: liver and epididymal adipose tissue (which is highly correlated to an individual's total body fat). The fat reduction effect was strongest with Crysmeb MCD.
  • Figure 9 shows the serum concentrations of cholesterol, unsaturated fatty acids, triglycerides and LDLc in the different treatment groups over time.
  • the HC diet induced a strong increase in the level of triglycerides and cholesterol in the blood, compared with the control group.
  • the addition of the MCD Crysmeb after 14 days of the HC diet made it possible to significantly reduce these concentrations, which approach those of the control group.
  • the HC diet induced a strong increase in the quantity of lipids stored in the liver, in particular in the form of cholesterol.
  • the addition of cyclodextrin in the diet after the induction phase had the effect of reducing this storage.
  • the various parameters measured demonstrate that the methylcyclodextrin according to the invention makes it possible to fight effectively against the disturbances due to a hypercholesterolemic diet (increase in the storage of fatty acids in the liver and increased turnover of fatty acids ), even when the MCD is administered after the induction phase of these disturbances.
  • methyl-cyclodextrin promotes a reduction in the storage of lipids in the liver and an increase in the elimination of cholesterol, with a curative effect, in addition to the preventive effect demonstrated in Example 2 .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Molecular Biology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Nutrition Science (AREA)
  • Physiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

La présente invention est relative à une nouvelle utilisation d'une composition pharmaceutique comprenant au moins une méthyl-cyclodextrine dans le traitement et/ou la prévention de la stéatose hépatique et maladies associées. Elle concerne également l'utilisation de méthyl-cyclodextrine pour réduire le stockage de lipides dans le foie.

Description

Description
Titre : Compositions à base de méthyl-cyclodextrines pour le traitement et/ou la prévention de la stéatose hépatique
Domaine technique
[0001] La présente invention est relative à des compositions pharmaceutiques permettant réduire le stockage de lipides dans le foie chez un individu. La présente invention concerne plus spécifiquement l’utilisation d’une composition pharmaceutique dans le traitement et/ou la prévention de la stéatose hépatique et de maladies ou conditions associées à une stéatose hépatique.
Arrière-plan technologique de l’invention
[0002] La stéatopathie non alcoolique (non alcoholic fatty liver disease ou NAFLD) se caractérise par une accumulation anormale de graisse intrahépatique en l’absence de consommation excessive d’alcool.
[0003]
La NAFLD regroupe un large spectre de lésions hépatiques dans lequel on distingue deux grandes entités : la stéatose isolée ou accompagnée d’une inflammation lobulaire minime (non alcoholic fatty liver ou NAFL) et la stéatohépatite non alcoolique (non alcoholic steatohepatitis ou NASH). La NASH est définie par la présence d’une stéatose avec inflammation lobulaire et ballonisation des hépatocytes. Elle correspond à la forme agressive de la maladie qui favorise l’accumulation de fibrose dans le parenchyme hépatique avec évolution vers la cirrhose et ses complications (insuffisance hépatique, ascite, rupture de varice, hépatocarcinome).
[0004] L’impact socio-médical de la NAFLD et la NASH est très important, et en évolution croissante. On estime qu’environ 30% de la population des Etats-Unis souffre de NAFLD. La prévalence de la NASH est de 8% aux Etats-Unis.
[0005] Plusieurs facteurs génétiques prédisposant à la NAFLD et sa sévérité ont été identifiés. La NAFLD évolue dans un contexte dysmétabolique et d’insulino-résistance. L’accumulation des critères du syndrome métabolique (tour de taille, pression artérielle, glycémie à jeun, triglycérides, HDL-cholestérol) et le degré d’insulino-résistance sont associés à une augmentation de la prévalence de la NAFLD et de sa sévérité (NASH, fibrose).
[0006] Les facteurs environnementaux (alimentation mal équilibrée, manque d’activité sportive) sont également des facteurs de risque importants. [0007] La NAFLD est une maladie de progression globalement lente, mais son histoire naturelle est encore mal connue. La NASH représente la forme agressive de la maladie : comparés aux patients avec une simple NAFL, les patients ayant une NASH ont une vitesse de progression de la fibrose plus importante, évoluent plus vers la cirrhose, développent plus de complications hépatiques et ont une mortalité plus élevée.
[0008] Les mécanismes en jeu dans le développement de cette maladie mettent en jeu une accumulation de lipides dans le foie, suivie d’une inflammation et d’un processus cicatriciel. Dans les stades les plus avancés (cirrhose), le tissu hépatique est progressivement remplacé par du tissu cicatriciel.
[0009] Les traitements envisagés à ce jour sont insuffisants et agissent le plus souvent an aval du processus pathologique. On peut citer par exemple, les inhibiteurs de caspase ou de ASK1 , qui agissent sur le processus de mort cellulaire qui conduit à l’inflammation.
[0010] Finalement, il n’existe toujours pas sur le marché de médicament capable d’agir en amont, pour limiter l’accumulation de lipides dans le foie. En outre, il existe un besoin constant de médicament capable de lutter contre la stéatose hépatique et les maladies ou conditions associées à une stéatose hépatique.
Résumé
[0011] Il est du mérite de la Demanderesse d’avoir découvert que des compositions pharmaceutiques à base de méthyl-cyclodextrine permettent de diminuer le stockage de lipides dans le foie, et ainsi être utiles pour le traitement et/ou la prévention de la stéatose hépatique.
[0012] Ainsi, la présente invention concerne une composition pharmaceutique comprenant au moins une méthyl-cyclodextrine pour son utilisation dans le traitement et/ou la prévention de la stéatose hépatique et de maladies associées à une stéatose hépatique.
[0013] L’invention concerne également l’utilisation d’une méthyl-cyclodextrine pour la fabrication d’un médicament pour une utilisation dans le traitement et/ou la prévention de la stéatose hépatique.
[0014] En outre, la présente invention fournit une méthode pour le traitement et/ou la prévention de la stéatose hépatique comprenant l’administration à un patient d’une quantité thérapeutiquement efficace de méthyl-cyclodextrine. Description detaillee de l’invention
[0015] Les inventeurs ont identifié une nouvelle utilisation d’une composition pharmaceutique comprenant au moins une méthyl-cyclodextrine dans le traitement et/ou la prévention de la stéatose hépatique et de maladies associées à une stéatose hépatiques
[0016] Au sens de la présente invention, le terme « stéatose hépatique » couvre à la fois les stéatoses alcooliques, liées à une consommation excessive d’alcool, et les stéatoses non alcooliques. De manière préférée, il s’agit d’une stéatose non alcoolique.
[0017] Le terme « stéatose non alcoolique » englobe tous les stades d’évolution d’une pathologie dans laquelle le foie est atteint et caractérisé par une accumulation excessive de lipides. Il peut s’agir de la maladie de stéatose hépatique non alcoolique (« Non- Alcoholic Fatty Liver Disease » NAFLD) et la stéatohépatite non alcoolique (« Non-Alcoholic SteatoHepatitis » NASH).
[0018] L’invention concerne également le traitement et/ou la prévention de maladies ou conditions associées à une stéatose hépatique, telle que l’inflammation aigue ou chronique du foie, la fibrose hépatique, l’obésité abdominale, l’insuffisance hépatique et la cirrhose.
[0019] Dans un mode de réalisation de l’invention, la maladie associée à une stéatose hépatique n’est pas le diabète.
[0020] Les cyclodextrines sont des oligosaccharides cycliques provenant de la dégradation enzymatique de l’amidon. Les trois cyclodextrines naturelles les plus courantes se composent de 6, 7 ou 8 unités a-D-glucopyranose en configuration chaise reliées entre elles par des liaisons a-1 ,4. On les appelle plus couramment a, p, ou y cyclodextrine, respectivement. Leur structure en trois dimensions apparaît sous la forme d’un cône tronqué à l’extérieur duquel se trouvent les groupements hydroxyles représentant la partie hautement hydrophile des cyclodextrines. L’intérieur du cône ou la cavité des cyclodextrines est constitué par les atomes d’hydrogène portés par les carbones C3 et C5 ainsi que par les atomes d’oxygène participant à la liaison glycosidique, leur conférant ainsi un caractère apolaire. Les cyclodextrines présentant une partie extérieure hydrophile et une cavité hydrophobe sont généralement utilisées pour leur capacité à encapsuler les composés hydrophobes et, donc, pour leur rôle de protecteur et de solubilisant de substances actives hydrophobes. On les retrouve ainsi classiquement dans les domaines de l’agroalimentaire, mais aussi en galénique où elles sont utilisées comme excipient dans des formulations pharmaceutiques administrées par voie orale ou dans des formulations cosmétiques administrées par voie topique.
[0021] En vue d’améliorer la solubilité aqueuse des cyclodextrines naturelles, de nombreux dérivés ont été synthétisés par greffage de différents groupements sur les fonctions hydroxyles. Les unités glucopyranoses des cyclodextrines comprennent en effet chacune 3 groupements hydroxyles réactifs, qui sont portés par les carbones C2, C3 et C6.
[0022] On peut citer comme exemples de dérivés les hydroxypropyl-cyclodextrines, les méthyl-cyclodextrines et les dérivés « sulfatés » de cyclodextrine.
[0023] La Demanderesse a mis en évidence, de manière surprenante, que la méthyl- cyclodextrine pouvait également être utilisée dans le traitement et/ou la prévention de la stéatose hépatique. De manière plus surprenante encore, elle a découvert que la méthyl- cyclodextrine, et plus particulièrement une méthyl-cyclodextrine présentant un degré de substitution molaire compris entre 0,05 et 1 ,5, était encore plus efficace que d’autres dérivés de cyclodextrines pour réduire l’accumulation de lipides dans le foie.
[0024] En outre, la Demanderesse a démontré qu’une méthyl-cyclodextrine présentant un degré de substitution molaire compris entre 0,05 et 1 ,5 était capable de favoriser l’augmentation de l’élimination de cholestérol.
[0025] On entend par « degré de substitution molaire (MS) » le nombre d’hydroxyles substitués, notamment par un groupement méthyle, par unité glucopyranose. A noter que le degré de substitution molaire (MS) est différent du degré de substitution moléculaire (DS) qui correspond au nombre d’hydroxyles substitués, notamment par un groupement méthyle, par molécule de cyclodextrine et qui tient donc compte du nombre d’unités glucopyranoses constituant la méthyl-cyclodextrine.
[0026] Le MS peut être déterminé dans la présente invention par Résonnance Magnétique Nucléaire du proton (RMN), ou par spectrométrie de masse (spectrométrie de masse par ionisation par électronébulisation (ESI-MS) ou spectrométrie de masse par désorption/ionisation par laser assisté par matrice (MALDI-MS)). Bien que ces techniques soient bien connues de l’homme du métier, des conditions optimales de détermination du MS des méthyl-cyclodextrines selon l’invention sont en particulier bien décrites dans la thèse de référence de JACQUET Romain. « Cyclodextrines hydrophiles : caractérisation et étude de leurs propriétés énantiosélective et complexante. Utilisation de la chromatographie en phase liquide et de la spectrométrie de masse ». Thèse de Chimie et physicochimie des composés d’intérêt biologique. Université d’Orléans, 2006. notamment disponible sur : http://tel.archives-ouvertes.fr/docs/00/18/55/42/PDF/jacquet.pdf (consulte le 27.11.2013). », en particulier Chapitre 2, Partie B (pages 59 à 83).
[0027] De préférence, le MS est déterminé par RMN, selon la méthode suivante : les mesures sont conduites à 25°C sur un appareil de type DPX 250 MHz Advance (Bruker, Rheinstetten, Allemagne). La calibration est effectuée avec le signal D2O. Les échantillons de méthyl-cyclodextrine conforme à l’invention, et de cyclodextrine native, c’est-à-dire non méthylée, sont préparés à une concentration de 5 mg dans 0,75 mL de D2O. Les solutions sont évaporées à sec sous courant d’azote puis reconstituées dans 0,75 mL de D2O. Cette opération est répétée deux fois afin d’assurer un échange total des protons des fonctions hydroxyle.
[0028] Il est à noter que la méthyl-cyclodextrine utilisée conformément à l’invention, bien que pouvant correspondre à un produit pur, correspond généralement à un mélange de méthyl-cyclodextrines de structures différentes. C’est le cas par exemple du produit KLEPTOSE® CRYSMEB détenu par la Demanderesse, qui présente notamment les propriétés physico-chimiques telles que déterminées dans la thèse de JACQUET Romain précitée, en particulier au chapitre 2, partie B (pages 59 à 83).
[0029] Il en résulte que le MS mesuré est dans ce cas une moyenne des substitutions qui s’opèrent sur l’ensemble des unités glucopyranoses de l’ensemble du mélange de méthyl- cyclodextrines.
[0030] Ce mélange peut notamment contenir de la cyclodextrine native résiduelle, c’est-à- dire non méthylée, mais qui se trouvent généralement en quantités négligeables, en particulier inférieures à 1% en poids sec par rapport au poids sec total de la méthyl- cyclodextrine, préférentiellement inférieur à 0,5%, préférentiellement encore inférieur à 0,1%.
[0031] Dans le contexte de l’invention, les compositions comprennent au moins une méthyl- cyclodextrine présentant un degré de substitution molaire compris entre 0,05 et 1 ,5. Avantageusement, la méthyl-cyclodextrine a un MS compris entre 0,1 et 1 ,4, préférentiellement entre 0,1 et 1 ,3, préférentiellement entre 0,2 et 1 ,2, préférentiellement entre 0,3 et 1 ,1 , préférentiellement entre 0,3 et 1 , préférentiellement entre 0,5 et 0,9, préférentiellement entre 0,6 et 0,8, par exemple 0,7, notamment 0,67. Par exemple, la méthyl-cyclodextrine peut avoir un MS compris entre 0,10 et 1 ,40, entre 0,10 et 1 ,30, entre 0,10 et 1 ,20, entre 0,15 et 1 ,40, entre 0,15 et 1 ,30, entre 0,15 et 1 ,20, entre 0,20 et 1 ,40, entre 0,20 et 1 ,30, entre 0,20 et 1 ,20, entre 0,20 et 1 ,10, entre 0,25 et 1 ,40, entre 0,25 et 1 ,30, entre 0,25 et 1 ,20, entre 0,25 et 1 ,10, entre 0,15 et 0,90, entre 0,15 et 0,80, entre 0,25 et 1 ,00, entre 0,25 et 0,90, entre 0,25 et 0,80, entre 0,30 et 1 ,40, entre 0,30 et 1 ,30, entre 0,30 et 1 ,20, entre 0,30 et 1 ,00, entre 0,50 et 0,90, entre 0,60 et 0,80.
[0032] Préférentiellement, au moins 50% des groupements méthyles de la méthyl- cyclodextrine utilisée dans le cadre de la présente invention sont situés au niveau de l’hydroxyle porté par le carbone C2 de l’unité glucopyranose, préférentiellement entre 60 et 80%, typiquement de l’ordre de 75%.
[0033] Parallèlement, les autres groupements méthyles sont généralement majoritairement situés au niveau de l’hydroxyle porté par le carbone C3 et/ou C6 de l’unité glucopyranose.
[0034] L’homme du métier sait comment déterminer la répartition des groupements méthyles sur les hydroxyles de l’unité glucopyranose de la méthyl-cyclodextrine par exemple par RMN.
[0035] Avantageusement, la méthyl-cyclodextrine utilisée dans le cadre de la présente invention comporte 7 unités a-D-glucopyranose. Il s’agit donc d’une méthyl-p-cyclodextrine.
[0036] Dans un mode de réalisation particulier, la méthyl-cyclodextrine est une méthyl-p- cyclodextrine et a un MS compris entre 0,05 et 1 ,5, préférentiellement compris entre 0,1 et 1 ,4, préférentiellement entre 0,1 et 1 ,3, préférentiellement entre 0,2 et 1 ,2, préférentiellement entre 0,3 et 1 ,1 , préférentiellement entre 0,4 et 1 , préférentiellement entre 0,5 et 0,9, préférentiellement entre 0,6 et 0,8, par exemple 0,7, notamment 0,67. Par exemple, la méthyl-cyclodextrine peut avoir un MS compris entre 0,10 et 1 ,40, entre 0,10 et 1 ,30, entre 0,10 et 1 ,20, entre 0,15 et 1 ,40, entre 0,15 et 1 ,30, entre 0,15 et 1 ,20, entre 0,20 et 1 ,40, entre 0,20 et 1 ,30, entre 0,20 et 1 ,20, entre 0,20 et 1 ,10, entre 0,25 et 1 ,40, entre 0,25 et 1 ,30, entre 0,25 et 1 ,20, entre 0,25 et 1 ,10, entre 0,25 et 1 ,00, entre 0,25 et 0,90, entre 0,25 et 0,80, entre 0,30 et 1 ,40, entre 0,30 et 1 ,30, entre 0,30 et 1 ,20, entre 0,30 et 1 ,00, entre 0,50 et 0,90, entre 0,60 et 0,80.
[0037] La méthyl-cyclodextrine peut être substituée sur l’hydroxyle porté par le carbone C2 des unités glucopyranoses, ou par les carbones C3 et/ou C6 des unités glucopyranoses, ou par une combinaison des carbones C2, C3 et/ou C6, de préférence C2 et C6 des unités glucopyranoses.
[0038] Dans un autre mode de réalisation particulier, la méthyl-cyclodextrine est une méthyl-cyclodextrine, de préférence une méthyl-p-cyclodextrine, dont au moins 50% des groupements méthyle sont situés au niveau de l’hydroxyle porté par le carbone C2 de l’unité glucopyranose, préférentiellement entre 60 et 80%, typiquement de l’ordre de 75%, et a un MS compris entre 0,05 et 1 ,5, préférentiellement compris entre 0,1 et 1 ,4, préférentiellement entre 0,1 et 1 ,3, preferentiellement entre 0,2 et 1 ,2, preferentiellement entre 0,3 et 1 ,1 , préférentiellement entre 0,4 et 1 , préférentiellement entre 0,5 et 0,9, préférentiellement entre 0,6 et 0,8, par exemple 0,7, notamment 0,67. Par exemple, la méthyl-cyclodextrine peut avoir un MS compris entre 0,10 et 1 ,40, entre 0,10 et 1 ,30, entre 0,10 et 1 ,20, entre 0,15 et 1 ,40, entre 0,15 et 1 ,30, entre 0,15 et 1 ,20, entre 0,20 et 1 ,40, entre 0,20 et 1 ,30, entre 0,20 et 1 ,20, entre 0,20 et 1 ,10, entre 0,25 et 1 ,40, entre 0,25 et 1 ,30, entre 0,25 et 1 ,20, entre 0,25 et 1 , 10, entre 0,25 et 1 ,00, entre 0,25 et 0,90, entre 0,25 et 0,80, entre 0,30 et 1 ,40, entre 0,30 et 1 ,30, entre 0,30 et 1 ,20, entre 0,30 et 1 ,00, entre 0,50 et 0,90, entre 0,60 et 0,80.
[0039] Dans un mode de réalisation préféré, la composition de méthyl-cyclodextrines comprend une ou plusieurs méthyl- p-cyclodextrines choisies parmi le groupe consistant en des méthyl-p-cyclodextrines substituées sur l’hydroxyle porté par le carbone C2 des unités glucopyranoses, des méthyl-p-cyclodextrines substituées sur l’hydroxyle porté par le carbone C3 et/ou C6 des unités glucopyranoses, des méthyl-p-cyclodextrines substituées sur l’hydroxyle porté par les carbones C2, C3 et/ou C6, de préférence C2 et C6 des unités glucopyranoses et ayant un MS compris entre 0,05 et 1 ,5, préférentiellement compris entre 0,1 et 1 ,4, préférentiellement entre 0,1 et 1 ,3, préférentiellement entre 0,2 et 1 ,2, préférentiellement entre 0,3 et 1 ,1 , préférentiellement entre 0,4 et 1 , préférentiellement entre 0,5 et 0,9, préférentiellement entre 0,6 et 0,8, par exemple 0,7, notamment 0,67. Par exemple, la méthyl-cyclodextrine peut avoir un MS compris entre 0,10 et 1 ,40, entre 0,10 et 1 ,30, entre 0,10 et 1 ,20, entre 0,15 et 1 ,40, entre 0,15 et 1 ,30, entre 0,15 et 1 ,20, entre 0,20 et 1 ,40, entre 0,20 et 1 ,30, entre 0,20 et 1 ,20, entre 0,20 et 1 ,10, entre 0,25 et 1 ,40, entre 0,25 et 1 ,30, entre 0,25 et 1 ,20, entre 0,25 et 1 ,10, entre 0,25 et 1 ,00, entre 0,25 et 0,90, entre 0,25 et 0,80, entre 0,30 et 1 ,40, entre 0,30 et 1 ,30, entre 0,30 et 1 ,20, entre 0,30 et 1 ,00, entre 0,50 et 0,90, entre 0,60 et 0,80. De préférence, la composition de méthyl- cyclodextrines comprend au moins 50, 60, ou 75 % de méthyles substituées sur l’hydroxyle porté par le carbone C2 des unités glucopyranoses.
[0040] Comme évoqué précédemment, la méthyl-cyclodextrine selon l’invention peut être un mélange. L’analyse par spectrométrie de masse du produit KLEPTOSE® CRYSMEB, qui est une méthyl-p-cyclodextrine, révèle en particulier qu’il s’agit d’un produit polydispersé, comprenant sept groupes de méthyl-cyclodextrines majoritaires, qui se distinguent par leur DS. Ce DS, qui en théorie peut varier de 0 à 21 pour une méthyl-p-cyclodextrine, varie de 2 à 8 dans le produit KLEPTOSE® CRYSMEB.
[0041] Avantageusement, les compositions de l’invention comprennent un mélange de méthyl-cyclodextrines comprenant au moins 50, 60, 70, 80 ou 90% de méthyl- cyclodextrines présentant un MS compris entre 0,2 et 1 ,2. De preference au moins 40, 50, 60, 70, 80 ou 90% de méthyl-cyclodextrines présentent un MS compris entre 0,3 et 1 ,1. De préférence au moins 30, 40, 50, 60, 70, 80 ou 90% de méthyl-cyclodextrines présentent un MS compris entre 0,5 et 0,9. Encore plus préférentiellement, au moins 25, 30, 40, 50, 60, 70, 80 ou 90% de méthyl-cyclodextrines présentent un MS compris entre 0,6 et 0,8.
[0042] Les compositions de méthyl-cyclodextrines peuvent être éventuellement préparées en ajoutant différentes méthyl-cyclodextrines présentant des MS définis pour obtenir des compositions telles que définies dans la présente invention ou elles peuvent être obtenues comme résultat de la synthèse de celles-ci.
[0043] Ainsi dans un autre mode de réalisation particulier, la composition de méthyl- cyclodextrines, de préférence de méthyl-p-cyclodextrines, présente le profil de substitution, exprimée en pourcentages molaires, suivant :
- 0 à 5 % de méthyl-p-cyclodextrines comprennent 2 groupements méthyles (DS de 2) ; -5 à 15 % de méthyl-p-cyclodextrines comprennent 3 groupements méthyles (DS de 3) ;
- 20 à 25 % de méthyl-p-cyclodextrines comprennent 4 groupements méthyles (DS de 4) ;
- 25 à 40 % de méthyl-p-cyclodextrines comprennent 5 groupements méthyles (DS de 5) ;
- 15 à 25 % de méthyl-p-cyclodextrines comprennent 6 groupements méthyles (DS de 6) ;
- 5 à 15 % de méthyl-p-cyclodextrines comprennent 7 groupements méthyles (DS de 7) ;
- 0 à 5% de méthyl-p-cyclodextrines comprennent 8 groupements méthyles (DS de 8).
[0044] la somme totale étant généralement de l’ordre de 100%, bien que la composition puisse contenir éventuellement des traces de méthyl-cyclodextrines de DS différent, ainsi que des traces de cyclodextrine native, c’est-à-dire non méthylée.
[0045] Le profil de substitution peut être déterminé par toute technique bien connue de l’homme du métier, par exemple par ESI-SM ou MALDI-TOF-SM. Les conditions optimales de détermination du profil de substitution par ces deux méthodes sont notamment largement discutées dans la thèse de Romain JACQUET précitée, au chapitre 2, partie B, points II.3 et II.2 (page 67 à 82) et à l’Annexe II.
[0046] Dans un mode de réalisation préféré, la composition de méthyl-cyclodextrines, de préférence de méthyl-p-cyclodextrines, est telle qu’au moins 50% des groupements méthyles sont situés au niveau de l’hydroxyle porté par le carbone C2 des unités glucopyranoses, préférentiellement entre 60 et 80%, typiquement de l’ordre de 75%, et qui présente le profil de substitution, exprimé en pourcentages molaires, suivant :
- 0 à 5 % de méthyl-p-cyclodextrines comprennent 2 groupements méthyles (DS de 2) ;
- 5 à 15 % de méthyl-p-cyclodextrines comprennent 3 groupements méthyles (DS de 3) ; - 20 a 25 % de methyl-p-cyclodextrines comprennent 4 groupements méthylés (DS de 4) ;
- 25 à 40 % de méthyl-p-cyclodextrines comprennent 5 groupements méthyles (DS de 5) ;
- 15 à 25 % de méthyl-p-cyclodextrines comprennent 6 groupements méthyles (DS de 6) ;
- 5 à 15 % de méthyl-p-cyclodextrines comprennent 7 groupements méthyles (DS de 7) ;
- 0 à 5 % de méthyl-p-cyclodextrines comprennent 8 groupements méthyles (DS de 8) ; la somme totale étant généralement de l’ordre de 100%, bien que la composition puisse contenir éventuellement des traces de méthyl-cyclodextrines de DS différent, ainsi que des traces de cyclodextrine native, c’est-à-dire non méthylée.
[0047] Il est par ailleurs tout à fait possible d’envisager de faire varier en proportions ou d’isoler des molécules ou groupes de molécules de méthyl-cyclodextrines, notamment en fonction de leur DS.
[0048] Ainsi, dans un autre mode de réalisation particulier, la méthyl-cyclodextrine est une méthyl-p-cyclodextrine qui présente un DS choisi parmi un nombre entier allant de 2 à 8, en particulier 2, 3, 4, 5, 6, 7 ou 8.
[0049] Dans un autre mode de réalisation préféré, la méthyl-cyclodextrine est une méthyl- P-cyclodextrine dont au moins 50% des groupements méthyles sont situés au niveau de l’hydroxyle porté par le carbone C2 des unités glucopyranoses, préférentiellement entre 60 et 80%, typiquement de l’ordre de 75%, et qui présente un DS choisi parmi un nombre entier allant de 2 à 8, en particulier 2, 3, 4, 5, 6, 7 ou 8.
[0050] Dans un autre mode de réalisation particulier, la méthyl-cyclodextrine, en particulier la méthyl-p-cyclodextrine, a un MS compris entre 0,1 et 0,3, en particulier entre 0,2 et 0,3, notamment entre 0,20 et 0,30. Dans un autre mode de réalisation particulier, la méthyl- cyclodextrine, en particulier la méthyl-p-cyclodextrine, a un MS compris entre 0,3 et 0,5 notamment entre 0,30 et 0,50. Dans un autre mode de réalisation particulier, la méthyl- cyclodextrine, en particulier la méthyl-p-cyclodextrine, a un MS compris entre 0,5 et 0,6 notamment entre 0,50 et 0,60. Dans un autre mode de réalisation particulier, la méthyl- cyclodextrine, en particulier la méthyl-p-cyclodextrine, a un MS compris entre 0,6 et 0,7 notamment entre 0,60 et 0,70. Dans un autre mode de réalisation particulier, la méthyl- cyclodextrine, en particulier la méthyl-p-cyclodextrine, a un MS compris entre 0,7 et 0,8 notamment entre 0,70 et 0,80. Dans un autre mode de réalisation particulier, la méthyl- cyclodextrine, en particulier la méthyl-p-cyclodextrine, a un MS compris entre 0,8 et 0,9 notamment entre 0,80 et 0,90. Dans un autre mode de réalisation particulier, la méthyl- cyclodextrine, en particulier la méthyl-p-cyclodextrine, a un MS compris entre 0,9 et 1 ,1 notamment entre 0,90 et 1 ,10. Dans un autre mode de réalisation particulier, la méthyl- cyclodextrine, en particulier la methyl-p-cyclodextrine, a un MS compris entre 1 ,1 et 1 ,2 notamment entre 1 ,10 et 1 ,20.
[0051] Généralement, la méthyl-cyclodextrine utilisée conformément à l’invention présente un taux de sucres réducteurs inférieur à 1% en poids sec, préférentiellement inférieur à 0,5%.
[0052] La composition de méthyl-p-cyclodextrines selon l’invention peut être obtenue par le procédé décrit dans le brevet US 6,602,860 B1. Un exemple d’une telle composition est le produit KLEPTOSE® CRYSMEB qui présente un degré de substitution molaire de 0,7 ou plus précisément de 0,67 méthyles par unité de glucose.
[0053] Facultativement, la composition selon la présente invention peut comprendre en outre une cyclodextrine, en particulier p-cyclodextrine, non substituée et/ou une cyclodextrine, en particulier p-cyclodextrine, substituée par des groupes sulfobutyléther (SBE-), hydroxyéthyles, hydroxypropyles (HP-), carboxyméthyles, carboxyéthyles, acétyles, triacétyles, succinyles, éthyles, propyles, butyles, sulfates, de préférence sulfobutyles et hydroxypropyles, de préférence avec un degré de substitution molaire compris entre 0,05 et 1 ,5.
[0054] Cependant de préférence, la composition de l’invention ne comprend pas d’autres cyclodextrines que la méthyl-cyclodextrine utile à l’invention (et éventuellement de la cyclodextrine native sous forme de traces, comme évoqué précédemment).
[0055] Facultativement, la méthyl-cyclodextrine selon l’invention, en particulier la méthyl- P-cyclodextrine, peut être substituée par des groupes additionnels, notamment choisis parmi ceux énumérés avant. Il pourra donc par exemple s’agir d’une méthyl- p- cyclodextrine sulfatée.
[0056] Cependant de préférence, la méthyl-cyclodextrine utile à l’invention, en particulier la méthyl-p-cyclodextrine, n’est pas substituée par d’autres groupes que des groupements méthyle.
[0057] Dans un mode alternatif de l’invention, les méthyl-cyclodextrines telles que définies dans la présente demande et composées d’unités a-D-glucopyranoses reliées entre elles par des liaisons a-1 ,4 peuvent être substituées en partie ou totalité par des unités a-D- glucopyranoses reliées entre elles par des liaisons a-1 ,6, dans les compositions pharmaceutiques de la présente invention.
[0058] Dans un mode de réalisation préféré de l’invention, la méthyl-cyclodextrine est l’unique principe actif de la composition pharmaceutique. [0059] Dans un autre mode de realisation, la composition pharmaceutique comprend en outre un ou plusieurs principe(s) actif(s) typiquement choisis parmi ceux utiles à la prévention et/ou au traitement des symptômes et/ou pathologiques associées à la stéatose hépatique.
[0060] Les compositions selon la présente invention peuvent également comprendre au moins un excipient pharmaceutiquement acceptable. On peut utiliser tout excipient adapté pour les formes galéniques connues de l’homme du métier en particulier en vue d’une administration systémique, préférentiellement en vue d’une administration orale d’une administration parentérale, d’une administration cutanée ou mucosale, notamment par voie sous-cutanée, intraveineuse, intramusculaire, intrapéritonéale, nasale, pulmonaire, rectale, dermique, intrathécale ou rachidienne, de préférence orale.
[0061] On peut citer par exemple des solutions salines, physiologiques, isotoniques, tamponnées, etc., compatibles avec un usage pharmaceutique et connues de l’homme du métier. Les compositions peuvent contenir un ou plusieurs agents ou véhicules choisis parmi les dispersants, solubilisants, stabilisants, conservateurs, etc. Des agents ou véhicules utilisables dans des formulations (liquides et/ou injectables) sont notamment la méthylcellulose, l’hydroxyméthylcellulose, la carboxyméthylcellulose, le polysorbate 80, le mannitol, la gélatine, le lactose, des huiles végétales, l’acacia, les liposomes, etc. Les compositions peuvent être formulées sous forme de suspensions injectables, gels, huiles, comprimés, suppositoires, poudres, gélules, capsules, aérosols, etc., éventuellement au moyen de formes galéniques ou de dispositifs assurant une libération prolongée et/ou retardée. Pour ce type de formulation, on utilise avantageusement un agent tel que la cellulose, des carbonates ou des amidons.
[0062] Les compositions susceptibles d’être administrées par voie injectable chez un individu dans le cadre de l’invention comprennent entre 1 et 100 mg/kg, préférentiellement entre 20 et 70 mg/kg, encore plus préférentiellement entre 30 et 50 mg/kg, et d’une manière encore plus préférée 40 mg/kg de méthyl-cyclodextrine telle que définie dans la présente invention, par rapport au poids total de l’individu. Bien entendu, l’homme du métier est en mesure d’adapter la dose de méthyl-cyclodextrine définie dans la présente demande en fonction du poids de l’individu à traiter et du mode d’administration.
[0063] Selon un mode de réalisation préféré de l’invention, la composition pharmaceutique est susceptible d’être administrée sous forme orale.
[0064] Lorsque la composition pharmaceutique selon l’invention est utilisée sous forme orale, la quantité de méthyl-cyclodextrine à administrer en quantité apte à réduire le stockage de lipides dans le foie du patient. Le dosage par voie orale pourra par exemple être compris entre 10 mg/kg/jour et 10000 mg/kg/jour, de préférence entre 20 mg/kg/jour et 7000 mg/kg/jour, entre 50 mg/kg/jour et 5000 mg/kg/jour, entre 75 mg/kg/jour et 4000 mg/kg/jour, entre 100 mg/kg/jour et 3000 mg/kg/jour, entre 200 mg/kg/jour et 2000 mg/kg/jour, entre 300 mg/kg/jour et 1000 mg/kg/jour, de manière encore plus préférée entre 400mg/kg/jour et 800 mg/kg/jour.
[0065] Les exemples qui suivent servent à illustrer et montrer d’autres aspects et avantages de l’invention et doivent être considérés non limitatifs.
[0066]
Fig. 1
[0067] [Fig. 1] montre l’évolution du poids corporel au cours du temps des 4 groupes d’animaux de l’Exemple 2
Fig. 2
[0068] [Fig. 2] est une représentation schématique de la lipogenèse de novo et des différents gènes impliqués dans cette voie de biosynthèse.
Fig. 3
[0069] [Fig. 3] montre le niveau d’expression de différents gènes impliqués dans la lipogenèse de novo chez les 4 groupes d’animaux de l’Exemple 2
Fig. 4
[0070] [Fig. 4] est une représentation schématique de la synthèse du cholestérol de novo, avec les différentes enzymes impliquées.
Fig. 5
[0071] [Fig. 5] montre le niveau d’expression de différents gènes impliqués dans la synthèse du cholestérol de novo, chez les 4 groupes d’animaux de l’Exemple 2
Fig. 6
[0072] [Fig. 5] montre le niveau d’expression de différents gènes impliqués dans la synthèse du cholestérol de novo, chez les 4 groupes d’animaux de l’Exemple 2
Fig. 7
[0073] [Fig. 7] montre l’évolution du poids corporel au cours du temps des 4 groupes d’animaux de l’Exemple 3 Fig. 8
[0074] [Fig. 8] montre le poids du foie et du tissu adipeux à l’issue de l’étude chez les 4 groupes d’animaux de l’Exemple 3
Fig. 9
[0075] [Fig. 9] montre les taux sériques de cholestérol, triglycérides, acides gras non saturés et LDLc au cours du temps chez les 4 groupes d’animaux de l’Exemple 3.
Fig. 10
[0076] [Fig. 10] montre la mesure du pourcentage de lipides dans le foie et la quantité de cholestérol stockée dans le foie chez les 4 groupes d’animaux de l’Exemple 3
Exemples
[0077] Exemple 1 : Matériels et méthodes
[0078] Des Hamsters Golden Syrian origin LVG mâles ont été utilisés pour les études ci- dessous. L’alimentation de base était constituée de l’aliment AO4C commercialisé par la société SAFE diet. Dans les régimes hypercholestérolémiques, du cholestérol a été ajouté (fournisseur MP Biomedicals)
[0079] Différentes cyclod extri nés ont été testées
-d’une part l’hydroxypropyl-p-cyclodextrine (HPBCD) commercialisée par la société Demanderesse sous le nom « KLEPTOSE® HPB » (oral grade) ;
- d'autre part la méthyl-p-cyclodextrine (MCD) « KLEPTOSE® CRYSMEB », détenue par la Demanderesse.
[0080] Exemple 2 : Effet préventif de la méthyl-p-cyclodextrine sur les pathologies hépatiques liées à l’hypercholestérolémie
[0081] Dans cette étude, 40 Hamsters « Golden Syrian origin LVG » ont été répartis en 4 groupes de 10 et soumis pendant 6 semaines aux régimes suivants :
- Groupe « contrôle » : régime normal
- Groupe « HC contrôle » : régime hypercholesterolémique (contenant 2.5% en poids de cholestérol)
- Groupe « HC+Crysmeb » : régime hypercholesterolémique (contenant 2.5% en poids de cholestérol) + 3% en poids de Crysmeb (MCD)
- Groupe « HC+HPBCD » : régime hypercholesterolémique (contenant 2.5% en poids de cholestérol) + 3% en poids de HPBCD. [0082] Marqueurs physiologiques
[0083] La Figure 1 montre l’évolution du poids corporel des animaux au cours de l’étude. On constate que le régime hypercholesterolémique n’a pas eu d’impact sur le poids corporel. A l’inverse, les 2 groupes ayant eu une supplémentation en cyclodextrines ont eu une progression plus lente.
[0084] A la fin de 42 jours d’étude, les animaux ont été sacrifiés et le poids de différents organes a été mesuré.
[0085] Le Tableau 1 décrit le poids de l’aorte, du cerveau, du foie, de l’intestin grêle et du tissu adipeux de l’épididyme dans les différents groupes de traitement : [0086] [Tableau 1]
Figure imgf000016_0001
[0087] Comme indiqué dans le Tableau 1 , les tissus qui ont été le plus affectés par le traitement par les cyclodextrines sont les tissues impliqués dans le stockage du gras : le foie et le tissu adipeux de l’épididyme (qui est fortement corrélé à la masse adipeuse totale d’un individu). L’effet de diminution de la masse adipeuse était le plus marqué avec la MCD Crysmeb.
[0088] Le Tableau 2 montre les taux de triglycérides plasmatiques dans les différents groupes à différents moments de l’étude : au début (jour 0 D0), au jour 14 (D14), au jour 28 (D28) et à la fin de l’étude (jour 43 D43) [0089] [Tableau 2]
Figure imgf000017_0001
[0090] On constate que le régime HC a induit une forte augmentation du taux de triglycérides dans le sang, par rapport au groupe contrôle. Cette augmentation a été normalisée par l’ajout de cyclodextrines, avec un effet plus marqué pour la MCD Crysmeb.
[0091] Le Tableau 3 fournit les données biochimiques mesurées dans le foie des animaux à la fin des 42 jours de traitement.
[0092] [Tableau 3]
Figure imgf000017_0002
Figure imgf000018_0001
[0093] Comme le montre le Tableau 3, le régime HC a induit une forte augmentation de la quantité de lipides stockés dans le foie, principalement sous forme de cholestérol, mais aussi sous forme de triglycérides. L’ajout de cyclodextrine dans l’alimentation a eu pour effet de diminuer ce stockage. L’effet était encore plus marqué pour MCD, pour le lequel des taux normaux de % de lipides, stockage de cholestérol et de triglycérides ont été mesurés.
[0094] Biomarqueurs (quantité d’ARN messagers exprimés dans le foie)
[0095] Les niveaux d’expression de différents gènes impliqués dans la lipodogenèse de novo (Figure 3) et dans la synthèse de cholestérol de novo (Figure 5) et l’élimination du cholestérol (Figure 6) ont été mesurés dans le foie à la fin de l’étude, dans les 4 groupes d’animaux.
[0096] Le régime riche en cholestérol a induit une expression accrue de SCD1 , ce qui doit conduire à une augmentation de la production d’acides gras insaturés, tels que les triglycérides. L’ajout de HPBCD dans l’alimentation a conduit à une inhibition de l’expression des gènes SCD1 et ACC comparée au groupe contrôle, qui pourrait être liée à une diminution de la synthèse et du stockage d’acides gras tels que les triglycérides. L’ajout de MCD dans l’alimentation a conduit à un effet encore plus marqué que l’ajout de HPBCD et a conduit à une inhibition globale de l’expression des gènes FAS, ACC, SCD1 et SREBP1 (Figure 3).
[0097] Comme le montre la Figure 5, le régime HC a conduit à une diminution de l’expression du gène CYP51 comparé au groupe contrôle, et donc à une diminution de la synthèse de cholestérol. L”ajout de HPBCD a eu peu d’effet. Par contraste, l’ajout de MCB Crysmeb a conduit à une augmentation de l’expression des gènes SREB2, CYP51a1 , HMGCR, et donc à une synthèse accrue de cholestérol, à la place de la synthèse d’acides gras.
[0098] Comme le montre la Figure 6, l’ajout de MCD normalise l’expression des gènes impliqués dans l’élimination du cholestérol, par rapport au groupe HC. Cette normalisation est plus importante avec la MCD qu’avec la HPBCD. [0099] En conclusion, les differents paramétrés mesures démontrent que la methyl- cyclodextrine selon l’invention permet de lutter efficacement contre les dérèglements dû à un régime hypercholesterolémique (augmentation du stockage d’acides gras dans le foie et turnover accru d’acides gras).
[0100] L’utilisation de la méthyl-cyclodextrine selon l’invention favorise une diminution du stockage de lipides dans le foie et une augmentation de l’élimination de cholestérol.
[0101] Ces effets sont plus importants avec la MCD selon l’invention, qu’avec une autre cyclodextrine, l’HPBCD.
[0102] Exemple 3 : Effet curatif de la méthyl-p-cyclodextrine sur les pathologies hépatiques liées à l’hypercholestérolémie
[0103] Le même protocole que l’Exemple 2 a été réalisé, mais avec une première phase d’induction de l’hypercholestérolémie pendant 2 semaines, suivie d’une deuxième phase de traitement pendant laquelle les cyclodextrines ont été ajoutées à l’alimentation des groupes « HC+Crysmeb » et « HC+HPBCD ».
[0104] Dans cette étude, 40 Hamsters « Golden Syrian origin LVG » ont été répartis en 4 groupes de 10 et soumis pendant 6 semaines aux régimes suivants :
- Groupe « contrôle » : régime normal
- Groupe « HC contrôle » : régime hypercholesterolémique (contenant 2.5% en poids de cholestérol)
- Groupe « HC+Crysmeb » : régime hypercholesterolémique (contenant 2.5% en poids de cholestérol) de J1 à J14 puis régime hypercholesterolémique (contenant 2.5% en poids de cholestérol) + 3% en poids de Crysmeb (MCD) de J15 à J42.
- Groupe « HC+HPBCD » : régime hypercholesterolémique (contenant 2.5% en poids de cholestérol) de J1 à J14 puis régime hypercholesterolémique (contenant 2.5% en poids de cholestérol) + 3% en poids de HPBCD de J15 à J42.
[0105] Marqueurs physiologiques
[0106] La Figure 7 montre l’évolution du poids corporel des animaux au cours de l’étude. On constate que le régime hypercholesterolémique n’a pas eu d’impact sur le poids corporel. A l’inverse, les 2 groupes ayant eu une supplémentation en cyclodextrines ont eu une progression plus lente.
[0107] A la fin de 42 jours d’étude, les animaux ont été sacrifiés et le poids de différents organes a été mesuré. [0108] La Figure 8, qui décrit le poids du foie et du tissu adipeux de l’epididyme dans les différents groupes de traitement, montre que les tissus qui ont été le plus affectés par le traitement par les cyclodextrines sont les tissues impliqués dans le stockage du gras : le foie et le tissu adipeux de l’épididyme (qui est fortement corrélé à la masse adipeuse totale d’un individu). L’effet de diminution de la masse adipeuse était le plus marqué avec la MCD Crysmeb.
[0109] La Figure 9 montre les concentrations sériques de cholestérol, acides gras non saturés, triglycérides et LDLc dans les différents groupes de traitement au cours du temps.
[0110] On constate que le régime HC a induit une forte augmentation du taux de triglycérides et de cholestérol dans le sang, par rapport au groupe contrôle. L’ajout de la MCD Crysmeb après 14 jours de régime HC a permis de réduire significativement ces concentrations, qui se rapprochent de celles du groupe contrôle.
[0111] Comme le montre la Figure 10, le régime HC a induit une forte augmentation de la quantité de lipides stockés dans le foie, notamment sous forme de cholestérol. L’ajout de cyclodextrine dans l’alimentation après la phase d’induction a eu pour effet de diminuer ce stockage.
[0112] Au niveau histologique, on a observé l’apparition de vacuoles microvésiculaires et une infiltration par des cellules inflammatoires dans le groupe HC. L’exposition à la MCD a permis de diminuer la sévérité de ces signes histologiques dans le groupe HC+ Crysmeb (données non fournies).
[0113] En conclusion, les différents paramètres mesurés démontrent que la méthyl- cyclodextrine selon l’invention permet de lutter efficacement contre les dérèglements dû à un régime hypercholesterolémique (augmentation du stockage d’acides gras dans le foie et turnover accru d’acides gras), même lorsque la MCD est administrée après la phase d’induction de ces dérèglements.
L’utilisation de la méthyl-cyclodextrine selon l’invention favorise une diminution du stockage de lipides dans le foie et une augmentation de l’élimination de cholestérol, avec un effet curatif, en plus de l’effet préventif démontré à l’Exemple 2.
[0114] Ces effets sont plus importants avec la MCD selon l’invention, qu’avec une autre cyclodextrine, l’HPBCD.
[0115] Ainsi, la Demanderesse a démontré qu’une méthyl-cyclodextrine selon l’invention était capable de :
- réduire le stockage de lipides dans le corps, et notamment dans le foie ; - augmentation le métabolisme et l’élimination de cholestérol ;
- améliorer l’histologie hépatique.
[0116] Ces effets ont été observés lorsque la méthyl-cyclodextrine selon l’invention était administrée pendant l’induction de l’hypercholestérolémie (modèle d’effet préventif) ou après le début de l’induction de l’hypercholestérolémie (modèle d’effet curatif).
[0117] Les effets observés étaient supérieurs à ceux observés avec une autre cyclodextrine, l’hydroxypropyl-p-cyclodextrine.

Claims

Revendications
[Revendication 1] Composition pharmaceutique comprenant au moins une méthyl- cyclodextrine pour son utilisation dans le traitement et/ou la prévention de la stéatose hépatique et de maladies associées à une stéatose hépatique.
[Revendication 2] Composition pharmaceutique pour son utilisation selon la revendication 1 , caractérisée en ce que la stéatose hépatique est choisie parmi la maladie de stéatose hépatique non alcoolique (« Non-Alcoholic Fatty Liver Disease » NAFLD) et la stéatohépatite non alcoolique (« Non-Alcoholic SteatoHepatitis » NASH).
[Revendication 3] Composition pharmaceutique pour son utilisation selon la revendication 1 ou 2, caractérisée en ce que la méthyl-cyclodextrine présente un degré de substitution molaire compris entre compris entre 0,05 et 1 ,5, préférentiellement entre 0,2 et 1 ,2, encore plus préférentiellement entre 0,4 et 0,9, de manière préférée en toutes entre 0,6 et 0,8.
[Revendication 4] Composition pharmaceutique pour son utilisation selon l’une quelconque des revendications précédentes, caractérisée en ce que la méthyl- cyclodextrine est une méthyl-p-cyclodextrine.
[Revendication 5] Composition pharmaceutique pour son utilisation selon l’une quelconque des revendications précédentes, caractérisée en ce que la méthyl- cyclodextrine est substituée sur l’hydroxyle porté par le carbone C2 des unités glucopyranoses, ou par les carbones C3 et/ou C6 des unités glucopyranoses, ou par une combinaison des carbones C2, C3 et/ou C6, de préférence C2 et C6 des unités glucopyranoses.
[Revendication 6] Composition pharmaceutique pour son utilisation selon l’une quelconque des revendications précédentes, caractérisée en ce que la composition de méthyl-cyclodextrines comprend une ou plusieurs méthyl-p-cyclodextrines choisies parmi le groupe consistant en des méthyl-p-cyclodextrines substituées sur l’hydroxyle porté par le carbone C2 des unités glucopyranoses, des méthyl-p-cyclodextrines substituées sur l’hydroxyle porté par les carbones C3 et/ou C6 des unités glucopyranoses, des méthyl-p- cyclodextrines substituées sur l’hydroxyle porté par les carbones C2, C3 et/ou C6, de préférence C2 et C6 des unités glucopyranoses et lesdites méthyl-p-cyclodextrines présentant un degré de substitution molaire compris entre 0,6 et 0,8.
[Revendication 7] Composition pharmaceutique pour son utilisation selon l’une quelconque des revendications précédentes, caractérisée en ce que la composition de méthyl-cyclodextrines comprend au moins 50, 60, ou 75 % de méthyles substituées sur l’hydroxyle porté par le carbone C2 des unités glucopyranoses.
[Revendication 8] Composition pharmaceutique pour son utilisation selon l’une quelconque des revendications précédentes, caractérisée ce que la composition est susceptible d’être administrée par administration par voie orale.
[Revendication 9] Composition pharmaceutique pour son utilisation selon l’une quelconque des revendications précédentes, favorisant en outre une diminution du stockage de lipides, de préférence une diminution du stockage de lipides dans le foie.
[Revendication 10] Composition pharmaceutique pour son utilisation selon l’une quelconque des revendications précédentes, favorisant en outre une augmentation de l’élimination de cholestérol.
PCT/EP2021/025430 2020-11-05 2021-11-04 Compositions a base de methyl-cyclodextrines pour le traitement et/ou la prevention de la steatose hepatique WO2022096151A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MX2023005255A MX2023005255A (es) 2020-11-05 2021-11-04 Composiciones que comprenden metilciclodextrinas para el tratamiento y/o la prevencion de la esteatosis hepatica.
EP21805838.6A EP4240371A1 (fr) 2020-11-05 2021-11-04 Compositions a base de methyl-cyclodextrines pour le traitement et/ou la prevention de la steatose hepatique
AU2021374726A AU2021374726A1 (en) 2020-11-05 2021-11-04 Compositions comprising methyl cyclodextrins for the treatment and/or prevention of hepatic steatosis
KR1020237018567A KR20230093516A (ko) 2020-11-05 2021-11-04 간 지방증의 치료 및/또는 예방을 위한 메틸 사이클로덱스트린을 포함하는 조성물
CA3197127A CA3197127A1 (fr) 2020-11-05 2021-11-04 Compositions a base de methyl-cyclodextrines pour le traitement et/ou la prevention de la steatose hepatique
JP2023525452A JP2023547633A (ja) 2020-11-05 2021-11-04 脂肪肝の治療及び/又は予防のためのメチルシクロデキストリンを含む組成物
US18/251,358 US20240000827A1 (en) 2020-11-05 2021-11-04 Compositions comprising methyl cyclodextrins for the treatment and/or prevention of hepatic steatosis
CN202180074737.6A CN116456991A (zh) 2020-11-05 2021-11-04 包含甲基环糊精的用于治疗和/或预防肝脂肪变性的组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2011361A FR3115682B1 (fr) 2020-11-05 2020-11-05 Compositions à base de méthyl-cyclodextrines pour le traitement et/ou la prévention de la stéatose hépatique
FRFR2011361 2020-11-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/251,358 Continuation-In-Part US20240000827A1 (en) 2020-11-05 2021-11-04 Compositions comprising methyl cyclodextrins for the treatment and/or prevention of hepatic steatosis

Publications (1)

Publication Number Publication Date
WO2022096151A1 true WO2022096151A1 (fr) 2022-05-12

Family

ID=75278079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/025430 WO2022096151A1 (fr) 2020-11-05 2021-11-04 Compositions a base de methyl-cyclodextrines pour le traitement et/ou la prevention de la steatose hepatique

Country Status (10)

Country Link
US (1) US20240000827A1 (fr)
EP (1) EP4240371A1 (fr)
JP (1) JP2023547633A (fr)
KR (1) KR20230093516A (fr)
CN (1) CN116456991A (fr)
AU (1) AU2021374726A1 (fr)
CA (1) CA3197127A1 (fr)
FR (1) FR3115682B1 (fr)
MX (1) MX2023005255A (fr)
WO (1) WO2022096151A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602860B1 (en) 1999-11-12 2003-08-05 Josef Pitha Crystalline mixtures of partial methyl ethers of beta-cyclodextrin and related compounds
RO133396A0 (ro) * 2018-12-05 2019-06-28 Universitatea De Vest "Vasile Goldiş" Din Arad Sistem drug delivery crisină - random methyl - beta cyclodextrin () cu potenţial antifibrotic ridicat în prevenţia/regenerarea leziunilor fibrotice hepatice
EP3578547A1 (fr) * 2015-02-16 2019-12-11 The University of Queensland Sulfonylurées, composés apparentés, et leur utilisation
EP3581188A1 (fr) * 2013-12-13 2019-12-18 Roquette Freres Compositions a base de methyl-cyclodextrines pour le traitement et/ou la prévention de maladies du snc par augmentation du taux de cholestérol-hdl

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602860B1 (en) 1999-11-12 2003-08-05 Josef Pitha Crystalline mixtures of partial methyl ethers of beta-cyclodextrin and related compounds
EP3581188A1 (fr) * 2013-12-13 2019-12-18 Roquette Freres Compositions a base de methyl-cyclodextrines pour le traitement et/ou la prévention de maladies du snc par augmentation du taux de cholestérol-hdl
EP3578547A1 (fr) * 2015-02-16 2019-12-11 The University of Queensland Sulfonylurées, composés apparentés, et leur utilisation
RO133396A0 (ro) * 2018-12-05 2019-06-28 Universitatea De Vest "Vasile Goldiş" Din Arad Sistem drug delivery crisină - random methyl - beta cyclodextrin () cu potenţial antifibrotic ridicat în prevenţia/regenerarea leziunilor fibrotice hepatice

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JACQUET ROMAIN: "Thèse de Chimie", 27 November 2013, UNIVERSITÉ D'ORLÉANS, article "Cyclodextrines hydrophiles : caractérisation et étude de leurs propriétés énantiosélective et complexante. Utilisation de la chromatographie en phase liquide et de la spectrométrie de masse", pages: 59 - 83
PINZÓN-GARCÍA ANA DELIA ET AL: "Evidence of hypoglycemic, lipid-lowering and hepatoprotective effects of the Bixin and Bixin: [beta]-CD inclusion compound in high-fat-fed obese mice", BIOMEDICINE AND PHARMACOTHERAPY, ELSEVIER, FR, vol. 106, 11 July 2018 (2018-07-11), pages 363 - 372, XP085454823, ISSN: 0753-3322, DOI: 10.1016/J.BIOPHA.2018.06.144 *
ROMAIN JACQUET: "thèse", pages: 67 - 82
WALENBERGH M.A. SOFIE ET AL: "Weekly Treatment of 2-Hydroxypropyl-[beta]-cyclodextrin Improves Intracellular Cholesterol Levels in LDL Receptor Knockout Mice", INT J MOL SCI, 2 September 2015 (2015-09-02), XP055822082, Retrieved from the Internet <URL:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4613241/> [retrieved on 20210707] *

Also Published As

Publication number Publication date
CN116456991A (zh) 2023-07-18
US20240000827A1 (en) 2024-01-04
FR3115682A1 (fr) 2022-05-06
KR20230093516A (ko) 2023-06-27
MX2023005255A (es) 2023-07-24
CA3197127A1 (fr) 2022-05-12
AU2021374726A1 (en) 2023-06-08
EP4240371A1 (fr) 2023-09-13
JP2023547633A (ja) 2023-11-13
FR3115682B1 (fr) 2023-02-24

Similar Documents

Publication Publication Date Title
EP3082831B1 (fr) Compositions a base de methyl-cyclodextrines pour le traitement et/ou la prevention de maladies par augmentation du taux de cholesterol-hdl
EP1871394B1 (fr) Composition anti-inflammatoire et/ou analgesique pour l`intestin comprenant des maltodextrines branchees
EP2395998A1 (fr) Association d&#39; avermectines ou mylbemycines avec des récepteurs adrénergiques pour le traitement ou la prévention des affections dermatologiques
EP1879654A2 (fr) Combinaison pharmaceutique comprenant un agent antifongique et un actif choisi parmi le carvéol, l&#39;eugénol, le thymol, le bornéol, le carvacrol, et les ionones alpha- et beta-.
EP3592360B1 (fr) Acefapc pour le traitement des maladies acétylcholine dépendantes
EP1206257B1 (fr) Utilisation d&#39;acides amines pour la fabrication de medicaments destines au traitement des insulino-resistances
WO2003053431A2 (fr) Compositions pharmaceutiques a base de derives d&#39;azetidine
WO2022096151A1 (fr) Compositions a base de methyl-cyclodextrines pour le traitement et/ou la prevention de la steatose hepatique
EP2254567B1 (fr) N-acetyl-taurinate de zinc pour son utilisation dans une méthode de prévention et/ou de traitement des maladies avec accumulation de lipofuscine
EP2214789A2 (fr) Nouvelle composition pour traiter les effets secondaires des traitements anticancereux
EP1469823B1 (fr) Utilisation cosmetique ou dermatologique de la vitamine a ou de ses esters, en association avec une beta-cyclodextrine partiellement methylee
FR2848454A1 (fr) Composition pharmaceutique comprenant une association de calcitriol et d&#39;un corticosteroide
FR2471189A1 (fr) Procede de preparation d&#39;un agent anti-tumoral comprenant un composant cellulaire de streptococcus pyogenes
EP4093370A1 (fr) Composition comprenant de l&#39;acide hyaluronique et un polyol et/ou de la carboxyméthylcellulose
EP3297626A1 (fr) Composition ophtalmique comprenant de l&#39;acide lipoique et un polymere muco-mimetique
BE1028268B1 (fr) Cyclodextrine utilisée dans le traitement et la prévention de la bronchoconstriction en phase tardive de l&#39;asthme provoqué par des allergènes
FR3046727A3 (fr) Association d&#39;acide lipoique et de taurine en tant qu&#39;agent osmoprotecteur
EP3297733A1 (fr) Association d&#39;acide lipoique et de taurine en tant qu&#39;agent osmoprotecteur
FR3128873A1 (fr) Phytoecdysones et/ou dérivés de 20-hydroxyecdysone en combinaison avec un principe actif visant à restaurer l’expression SMN pour leur utilisation dans le traitement de l’amyotrophie spinale

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21805838

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525452

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 3197127

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18251358

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180074737.6

Country of ref document: CN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023008468

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20237018567

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021374726

Country of ref document: AU

Date of ref document: 20211104

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021805838

Country of ref document: EP

Effective date: 20230605

ENP Entry into the national phase

Ref document number: 112023008468

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230503