WO2022095979A1 - 识别节点方法、装置、设备及可读存储介质 - Google Patents

识别节点方法、装置、设备及可读存储介质 Download PDF

Info

Publication number
WO2022095979A1
WO2022095979A1 PCT/CN2021/129118 CN2021129118W WO2022095979A1 WO 2022095979 A1 WO2022095979 A1 WO 2022095979A1 CN 2021129118 W CN2021129118 W CN 2021129118W WO 2022095979 A1 WO2022095979 A1 WO 2022095979A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
node
information
base station
sent
Prior art date
Application number
PCT/CN2021/129118
Other languages
English (en)
French (fr)
Inventor
姜大洁
杨坤
袁璞
秦飞
孙鹏
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP21888671.1A priority Critical patent/EP4221296A4/en
Publication of WO2022095979A1 publication Critical patent/WO2022095979A1/zh
Priority to US18/140,608 priority patent/US20230261708A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • H04B7/061Antenna selection according to transmission parameters using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/04013Intelligent reflective surfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/04Traffic adaptive resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/246Connectivity information discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present application belongs to the field of communication technologies, and in particular relates to a method, apparatus, device and readable storage medium for identifying a node.
  • Smart surface devices consist of large-scale device arrays and array control modules.
  • a large-scale device array is a large number of device units arranged regularly and repeatedly on a planar substrate. In order to achieve considerable signal manipulation effects, hundreds or thousands of device units are usually required to form a device array.
  • Each device unit has a variable device structure.
  • the device unit contains a Positive Intrinsic-Negative (PIN) diode. The switching state of the PIN diode determines the response of the device unit to external wireless signals. model.
  • the array control module of the smart surface can control the working state of each device unit, so as to dynamically or semi-statically control the response mode of each device unit to the wireless signal.
  • PIN Positive Intrinsic-Negative
  • the wireless response signals of each device unit of the large-scale device array are superimposed on each other, forming a specific beam propagation characteristic on the macroscopic level.
  • the control module is the "brain" of the smart surface device. It determines the wireless signal response beam of the smart surface according to the needs of the communication system, making the original static communication environment “smart” and “controllable”.
  • Embodiments of the present application provide a node identification method, apparatus, device, and readable storage medium, which enable a terminal to identify a node associated with a base station.
  • a first aspect provides a node identification method, executed by a terminal, including:
  • the base station acquires first information, where the first information is related to a signal sent by the base station;
  • the base station determine one or more nodes associated with the base station
  • the node includes at least one of the following:
  • a node identification method executed by a node, including:
  • the characteristic change information of the first signal is associated with the information of the node.
  • a node identification method executed by a base station, including:
  • a second signal is sent to a first node associated with the base station, and relevant information of the second signal corresponds to the first node.
  • a node identification device including:
  • a first acquiring module configured to acquire first information, where the first information is related to a signal sent by the base station;
  • a first determining module configured to determine one or more nodes associated with the base station according to the first information
  • the node includes at least one of the following:
  • a fifth aspect provides a node identification device, comprising:
  • a processing module for changing or controlling the characteristics of the first signal sent by the base station associated with the node
  • the characteristic change information of the first signal is associated with the information of the node.
  • a node identification device comprising:
  • the fourth sending module is configured to send a second signal to the first node associated with the base station, where the relevant information of the second signal corresponds to the first node.
  • a terminal comprising: a processor, a memory, and a program stored on the memory and executable on the processor, the program being executed by the processor to implement the method described in the first aspect steps of the method described.
  • a network-side device including: a processor, a memory, and a program stored on the memory and executable on the processor, the program being executed by the processor to achieve the second The steps of the method of aspect or the third aspect.
  • a ninth aspect provides a readable storage medium, on which a program or an instruction is stored, and when the program or instruction is executed by a processor, the first aspect, the second aspect or the third aspect is implemented steps of the method.
  • a tenth aspect provides a computer program product, the computer program product being stored in a non-volatile storage medium, the computer program product being executed by at least one processor to implement the first aspect, the second aspect or the first aspect The steps of the processing method described in the three aspects.
  • a chip in an eleventh aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the first aspect, the second Aspect or the method of processing described in the third aspect.
  • the terminal can identify one or more nodes associated with the base station, and assist the base station to more accurately adjust the beam of each node, thereby improving the signal strength of the terminal or improving the positioning accuracy based on multiple nodes.
  • Fig. 1 is the schematic diagram of SSB in NR
  • FIG. 2 is a block diagram of a wireless communication system to which an embodiment of the present application can be applied;
  • FIG 3 is one of the schematic diagrams of the node identification method in the embodiment of the present application.
  • FIG. 4 is the second schematic diagram of the node identification method in the embodiment of the present application.
  • FIG. 6 is a schematic diagram of a scenario where a node is used for relay in an embodiment of the present application
  • FIG. 7a and 7b are schematic diagrams of the UE determining the feature carried by SSB1/SSB2 by detecting the phase change feature carried by the SSB in an embodiment of the present application;
  • Fig. 8 is the node information carried in the signal sent by the base station facing different nodes in the embodiment of the present application;
  • FIG. 9 is one of the schematic diagrams of the node identification device in the embodiment of the present application.
  • FIG. 10 is the second schematic diagram of the node identification device in the embodiment of the present application.
  • FIG. 11 is the second schematic diagram of the node identification device in the embodiment of the present application.
  • FIG. 12 is a schematic diagram of a terminal in an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a network side device in an embodiment of the present application.
  • first, second, etc. in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specified order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • NR terminology is used in most of the following description, although these techniques are also applicable to applications other than NR system applications, such as 6th generation ( 6th Generation, 6G) communication system.
  • LIS Large Intelligent Surface
  • SRA Smart Reflect Array
  • RRA Reconfigurable Reflect Array
  • Smart surface technology has been applied in many technical fields, and there are many different design schemes according to different application scenarios.
  • the device unit includes tunable resonator (Tunable Resonator) variable capacitance type, guided wave (Guided Wave) waveguide type, element rotation (Element Rotation) polarization type, etc.; according to the wireless signal output form, it is divided into reflection Type intelligent surface and transmission type intelligent surface; according to the wireless signal response parameter classification, including phase control type intelligent surface, amplitude control type intelligent surface and amplitude-phase joint control type intelligent surface; according to the response parameter control classification is divided into continuous control type and discrete control type ; According to the frequency or speed of controlling the amplitude and phase of the smart surface, it is divided into static, semi-static/dynamically controlled smart surfaces, of which static smart surfaces can be applied to existing systems, for example, the fourth generation generation, 4G)/fifth generation mobile communication technology (fifth-generation, 5G) system.
  • the Intelligent Reflecting Surface which is widely discussed in the academic circle, is a phase control intelligent surface based on signal reflection, which controls the phase of the reflected signal of the device unit through 1-bit (bit) indication information to achieve 0 or Phase flip of ⁇ .
  • Smart surface devices are thin in thickness and light in weight, enabling flexible deployment.
  • RIS reflection units The types of RIS reflection units are as follows:
  • Tunable resonator A variable capacitor is integrated into the resonator to generate a phase shift by changing the frequency-agile patch resonator frequency.
  • Rotation technology of circularly polarized waves design using the reflection law of electromagnetic waves.
  • reflect arrays/smart surfaces are divided into two categories:
  • Static reflective array/smart surface The structure and function of the reflective array can be fixed. For an incident wave at an angle, the metasurface unit causes a fixed change in the amplitude, phase, and polarization of the incident wave. The corresponding reflected waves are obtained.
  • Dynamic reflective array/smart surface The structure and function of the reflective array can be controlled. For an incident wave at an angle, the amplitude, phase, polarization and other characteristics of the incident wave can be changed through programmable control. change to get the corresponding reflected wave.
  • switching elements such as diodes, etc.
  • PIN diodes are currently a common choice for controlling reconfigurable metasurfaces. PIN diodes have a wide range of RF impedance and low distortion, and are widely used in microwave RF fields.
  • the switching element in the reflection unit has a plurality of different states, and the switching of the different states can be realized by controlling the on-off of the switching element. When the switching element is on or off, the structure and performance of the corresponding reflection unit have great changes. That is, the reflection units in different states have different control modes for the amplitude, phase, polarization and other characteristics of the incident wave.
  • smart surfaces can directly modulate the wavefront of electromagnetic signals and various electromagnetic parameters, such as phase, amplitude, frequency, and even polarization, without complex baseband processing and RF transceiver operations, smart surfaces can not only change the wireless channel environment to enhance In addition to the reception quality of the third-party signal, it can also be used to directly modulate the signal.
  • adjusting the reflection phase/amplitude of the smart surface electromagnetic unit is not only used to maximize the received signal-to-noise ratio of incident electromagnetic waves, but also for the information transmission of the LIS itself.
  • the receiving end receives the information of the smart surface itself by detecting the phase/amplitude change of the reflected signal of the smart surface.
  • smart surfaces are composed of a large number of device units and have no RF and baseband processing capabilities, such smart surfaces are called passive smart surfaces.
  • the base station Since the smart surface is composed of a large number of device units and has no radio frequency and baseband processing capabilities, the base station cannot obtain channel information from the base station to the smart surface and from the smart surface to the terminal, respectively.
  • the received signal of the base station or terminal is formed by the superposition of the response signals of a large number of smart surface device units, and changing the working state of one or a small number of device units cannot make the received signal change significantly.
  • a possible measurement scheme is to install a small number of active device units in the smart surface, so that the smart surface can perform channel measurement and feedback; the base station uses compressed sensing or deep learning algorithms to calculate reasonable smart surface configuration parameters from limited channel information .
  • Communication systems based on smart surfaces need an efficient channel measurement mechanism to improve end-to-end signal quality as much as possible on the premise of ensuring low complexity of smart surfaces.
  • This smart surface with some active devices installed has the ability to receive signals and even transmit signals, and is a smart surface (or active smart surface) that combines active and passive components.
  • an SSB in NR includes a primary synchronization signal (Primary Synchronisation Signal, PSS) distributed over four consecutive Orthogonal frequency division multiplex (OFDM) symbols, a secondary synchronization signal (Secondary Synchronisation Signal, Signal, SSS) and physical broadcast channel (Physical broadcast channel, PBCH).
  • An SSB burst set (burst set) period includes multiple SSBs (for example, including 8 SSBs), and different SSBs may correspond to different beam directions.
  • the SSB burst set period supported by NR is 5 milliseconds (ms), 10ms, 20ms, etc.
  • the wireless communication system includes a terminal 21 , a network side device 22 and a smart surface device 23 .
  • the terminal 21 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 21 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), PDA, Netbook, Ultra-Mobile Personal Computer (UMPC), Mobile Internet Device (Mobile Internet Device, MID), Wearable Device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc. It should be noted that, the embodiment of the present application does not limit the specific type of the terminal 21.
  • the network side device 22 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service set (BasicServiceSet, BSS), Extended Service Set (ExtendedServiceSet, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, Wireless Local Area Network (WLAN) access point, Wireless Fidelity (WiFi) node, Transmitting Receiving Point (TRP), wireless access network node or some other suitable term in the field, as long as the same technical effect is achieved, the base station does not Limited to the specified technical vocabulary, it should be noted that in the embodiments of this application, only the base station in the NR system is used as an example, but the specific type of the base station is not limited.
  • the present application provides a node identification method, which is executed by a terminal, including step 301 and step 302 .
  • Step 301 Obtain first information, where the first information is related to a signal sent by a base station;
  • Step 302 Determine one or more nodes associated with the base station according to the first information
  • the node includes at least one of the following:
  • IAB Integrated Access and Backhaul
  • one or more nodes associated with the serving cell are identified or determined, or one or more nodes associated with a neighboring cell are determined.
  • the base station can know whether the node exists, or the deployment location of the node or the parameters of the node (eg, pattern set, bit quantization accuracy, control signal characteristics, etc.).
  • application scenarios in which the terminal identifies different nodes may include:
  • Scenario 1 A scenario where the node is used for relay:
  • terminal 1 is located between the base station and the node, and terminal 1 receives SSB2; terminal 2 is located in the coverage area of the node, but cannot receive SSB2.
  • the base station can more accurately adjust the beams of terminal 1 and terminal 2.
  • the signal of terminal 2 can be enhanced through the joint optimization of the base station and LIS, and the signal of terminal 1 can be enhanced through the beam adjustment of the base station. .
  • the system When the data traffic rate of the UE exceeds the current channel capacity, the system provides stronger signal quality through nodes or increases the multiplexing of data streams, thereby increasing the data communication rate of the UE.
  • the cell may configure and associate multiple nodes for the UE, the UE can identify multiple nodes, and further, the UE may feed back the desired beam of each node to the base station.
  • Scenario 3 Scenario for positioning based on multiple nodes:
  • the UE can identify the signals of multiple nodes, which can improve the node-based positioning accuracy.
  • the application scenarios in which the terminal identifies different nodes are not limited to the above three scenarios.
  • step 301 includes: detecting a first signal sent by a base station; determining first information according to the first signal, where the first information includes: characteristic change information of the first signal, the first information
  • the characteristic change information of a signal corresponds to the information of the node (for example, the index of the node), and the characteristic change of the first signal is changed or controlled by the node
  • Step 302 includes: according to the characteristic of the first signal Change information, to determine the information of one or more nodes associated with the base station.
  • the method before detecting the first signal sent by the base station, the method further includes: determining whether the terminal can detect the signal sent by the node; if the terminal can detect the signal sent by the node signal, the step of detecting the first signal sent by the base station is performed.
  • the method further includes: sending a detection result of the first signal, where the detection result includes: whether the signal sent by the node can be detected (that is, whether the node pairing is successful), and /or, whether the information of the node associated with the base station (for example, the index of the node) can be determined.
  • the information of the node associated with the base station is determined according to the characteristic change information of the first signal, including:
  • the index of the node associated with the base station is determined; wherein the first association relationship includes the association relationship between the feature change rule of the first signal and the index of the node .
  • the first association relationship is agreed upon in an agreement or sent by the base station to the terminal.
  • the method further includes: if a node associated with the base station is activated or deactivated, acquiring information of the activated or deactivated node by receiving signaling sent by the base station; or if the node is activated or deactivated If the association relationship between the feature change rule of the first signal and the node index is changed, the updated association relationship between the feature change law of the first signal and the node index is obtained by receiving signaling sent by the base station.
  • the characteristics of the first signal may include one or more of the following: (1) phase, (2) amplitude, (3) polarization mode, (4) frequency, (5) orbital angular momentum (Orbital Angular Momentum) Angular Momentum, OAM) method.
  • the characteristic change of the first signal is changed or controlled by the node, including:
  • phase, amplitude, polarization mode, frequency and/or OAM mode of the first signal are changed or controlled by adjusting the on or off of the diode associated with the node;
  • phase, amplitude, polarization mode, frequency and/or OAM mode of the first signal are changed or controlled by applying different voltages to the node.
  • the characteristics of the first signal vary in the time domain and/or the frequency domain.
  • the characteristics of the first signal may be one or more of the manner in which the characteristics of the first signal change with time-domain resources, the granularity of the time-domain resources changed, the change period, the time unit information of the change, and the starting position of the change period.
  • the item is agreed in the protocol or sent by the base station to the terminal.
  • the time-domain resource granularity is every M orthogonal frequency division multiplex (OFDM) symbols, where M is greater than or equal to 1; or, every N time slots, N is greater than or equal to 1 ; Or, for every K synchronization signal block (Synchronization Signal and PBCH block, SSB) cycles, K is greater than or equal to 1.
  • OFDM orthogonal frequency division multiplex
  • the characteristics of the first signal vary with frequency domain resources, and one or more of the changed frequency domain resource granularities are agreed in a protocol or sent by the base station to the terminal. .
  • the granularity of the frequency domain resource is a subcarrier, a subcarrier group, a bandwidth part (Bandwidth Part, BWP), a BWP group, a radio bearer (Radio Bearer, RB), an RB bundle (bundle) or an RB Group.
  • the first signal includes at least one of the following: (1) SSB, (2) Channel State Information Reference Signal (CSI-RS), (3) System Information Block (System Information Block, SIB) 1, (4) demodulation reference signal (Demodulation Reference Signal, DMRS), (5) tracking reference signal (tracking reference signal, TRS).
  • CSI-RS Channel State Information Reference Signal
  • SIB System Information Block
  • DMRS Demodulation Reference Signal
  • TRS tracking reference signal
  • a second signal sent by a base station to a first node is received, and relevant information of the second signal corresponds to the first node; according to the second signal, the first node is determined.
  • information, the first information includes: related information of the second signal; in step 302, one or more nodes associated with the base station are determined according to the related information of the second signal.
  • the related information of the second signal includes at least one of the following: sequence format, sequence phase, initial sequence, scrambling sequence, and an orthogonal mask (Orthogonal Cover Code) of the sequence.
  • determining one or more nodes associated with the base station according to the relevant information of the second signal includes:
  • the index of the node associated with the base station is determined; wherein the second association relationship includes: the association relationship between the relevant information of the second signal and the index of the node.
  • the second association relationship is agreed upon in an agreement or sent by the base station to the terminal.
  • the second signal includes one or more of the following: (1) SSB, (2) CSI-RS, (3) DMRS, (4) message 2 (MSG2), (5) message 4 (MSG4), (6) Message B (MSGB).
  • CSI-RS or DMRS is quasi-co-located with SSB.
  • step 301 first information sent by a base station is received, where the first information indicates a third association relationship, where the third association relationship includes an association relationship between a third signal and an index of a node .
  • the third signal includes one or more of the following: (1) SSB, (2) CSI-RS, (3) DMRS.
  • the method further includes: sending information of one or more nodes identified by the terminal (for example, node identification information) to the network side, optionally, the information of the one or more nodes for the network side to adjust the beam of the node associated with the terminal.
  • information of one or more nodes identified by the terminal for example, node identification information
  • the method further includes: acquiring signals of the multiple nodes; and locating the terminal according to the signals of the multiple nodes.
  • the terminal can identify one or more nodes associated with the base station, and assist the base station to more accurately adjust the beam of each node, thereby improving the signal strength of the terminal or improving the positioning accuracy based on multiple nodes.
  • an embodiment of the present application provides a node identification method, which is executed by the RIS, and the specific steps include: step 401 .
  • Step 401 Change or control the characteristic of the first signal sent by the base station associated with the node, wherein the characteristic change information of the first signal is associated with the information of the node.
  • the characteristics of the first signal include one or more of the following: (1) phase, (2) amplitude, (3) polarization mode, (4) frequency, and (5) OAM mode.
  • the changing or controlling the characteristics of the first signal includes:
  • Mode 1 changing or controlling the phase, amplitude, polarization mode, frequency and/or OAM mode of the first signal sent by the base station associated with the node by adjusting the on or off of the diode associated with the node;
  • Mode 2 The phase, amplitude, polarization mode, frequency and/or OAM mode of the first signal sent by the base station associated with the node are changed or controlled by applying different voltages to the node.
  • the characteristics of the first signal vary in the time domain and/or the frequency domain.
  • the characteristics of the first signal may be one or more of the manner in which the characteristics of the first signal change with time-domain resources, the granularity of the time-domain resources changed, the change period, the time unit information of the change, and the starting position of the change period.
  • the item is agreed in the protocol or sent by the base station to the terminal.
  • the time-domain resource granularity is that every M OFDM symbols, M is greater than or equal to 1; or, every N time slots, N is greater than or equal to 1; or, every K SSB cycles, K is greater than or equal to 1 .
  • the characteristics of the first signal vary with frequency domain resources, and one or more of the changed frequency domain resource granularities are agreed in a protocol or sent by the base station to the terminal. .
  • the frequency domain resource granularity is subcarrier, subcarrier group, BWP, BWP group, RB, RB bundle or RB group.
  • the first signal includes at least one of the following: (1) SSB, (2) CSI-RS, (3) SIB1, (4) DMRS, (5) TRS.
  • the method before changing or controlling the characteristics of the first signal sent by the base station associated with the node, the method further includes:
  • the configuration information indicates one or more of the following:
  • the first association relationship includes the association relationship between the characteristic change rule of the first signal and the index of the node
  • the second association relationship includes: an association relationship between the related information of the second signal and the index of the node, and the second signal includes one or more of the following: SSB, CSI-RS, DMRS, MSG2, MSG4, MSGB ;
  • the third association relationship includes an association relationship between a third signal and an index of a node, where the third signal includes one or more of the following: SSB, CSI-RS, and DMRS.
  • a node implicitly indicates the information of the node, such as the index of the node, by changing or controlling the characteristic change of the base station signal, so that the terminal can identify one or more nodes associated with the base station based on the characteristic change information of the signal. Nodes, assist the base station to more accurately adjust the beam of each node, thereby improving the strength of the terminal signal or improving the positioning accuracy based on multiple nodes.
  • an embodiment of the present application provides a node identification method, which is performed by a base station, and the specific steps include: step 501 .
  • Step 501 Send a second signal to a first node associated with the base station, where relevant information of the second signal corresponds to the first node.
  • the related information of the second signal includes at least one of the following:
  • the second signal includes one or more of the following: (1) SSB, (2) CSI-RS, (3) DMRS, (4) MSG2, (5) MSG4, (6) MSGB.
  • the method further includes:
  • the configuration information indicates one or more of the following:
  • the first association relationship includes the association relationship between the characteristic change rule of the first signal and the index of the node
  • the second association relationship includes: the association relationship between the related information of the second signal and the index of the node;
  • the third association relationship includes an association relationship between a third signal and an index of a node, where the third signal includes one or more of the following: SSB, CSI-RS, and DMRS.
  • the terminal can identify one or more nodes associated with the base station based on the received second signal, and assist the base station to more accurately adjust the beam of each node, thereby improving the signal strength of the terminal or improving the signal strength based on multiple The positioning accuracy of the node.
  • Embodiment 1 Embodiment 1
  • Embodiment 2 Embodiment 3
  • the node is a RIS.
  • Embodiment 1 The RIS changes/controls the first signal feature to implicitly indicate the information of the RIS
  • Step 1 The base station sends a configuration message, which includes one or more of the following:
  • RIS signal manipulation/signal modulation parameters number of RIS states, coding modulation method (differential or direct modulation), RIS type (manipulating signal characteristics, amplitude/phase/polarization direction, etc.), RIS switching timing (in the loop Prefix (Cyclic prefix, CP) to switch or switch in symbols);
  • the base station sends corresponding configuration information (through an interface between the base station and the RIS), indicating configuration parameters of the first signal, and the like.
  • the RIS encodes the modulation information according to the configuration information and an index or ID (index/ID) of the RIS, and determines a forwarding pattern (pattern) corresponding to each symbol or each transmission occasion (occasion) of the first signal.
  • the number of symbols or transmission opportunities configured by the first signal is not less than the number of coded modulation information that the RIS needs to transmit.
  • Step 2 the UE detects the first signal sent by the base station
  • the first signal includes multiple symbols, or multiple transmission opportunities
  • the base station uses the same transmit beam to transmit the first signal, and the RIS works according to the forwarding pattern determined in the previous step.
  • Step 3 The UE determines the information of the RIS, such as the index of the RIS, according to the characteristic change rule of the first signal and the first correlation relationship (coding and modulation mode of the RIS).
  • the UE first determines whether the UE can discover the RIS signal (whether the UE can pair with the RIS);
  • the index (or feature index) of the RIS corresponding to the first signal feature is determined.
  • the feature change rule X corresponds to the RIS index 1
  • the feature change rule Y corresponds to the RIS index 2
  • the feature change rule Z corresponds to the RIS index 3.
  • the protocol definition or the base station notifies the terminal of the association relationship between the characteristic change rule of the first signal and the index of the RIS.
  • the first signal includes at least one of the following: SSB, CSI-RS, SIB1, DMRS, TRS, etc. or other signals and the like.
  • the characteristics of the first signal include at least one characteristic that changes with time, such as phase, amplitude, polarization mode, frequency, and OAM mode.
  • RIS changes/controls at least one of the phase, amplitude, polarization mode, frequency, and OAM mode of the first signal
  • RIS changes/controls at least one of the phase, amplitude, polarization mode, frequency, and OAM mode of the first signal by adjusting the diode associated with the RIS unit on or off, or applying different voltages to the RIS unit.
  • the information of the activated or deactivated node is obtained by receiving the signaling sent by the base station, or, if there is a correlation between the RIS and the characteristics of the first signal. If it is changed, the UE is notified of the change of the cell system message, that is, the base station notifies the UE of the change of the system message through a paging message, and the UE reads the system message to obtain the change information.
  • the UE reports the detection result of the first signal, and the detection result indicates whether the UE detects the RIS, whether the RIS index detection is successful, and the like.
  • Mode 1-1 The characteristics of the first signal vary only in the time domain.
  • One or more of the manner in which the characteristics of the first signal change with time, the time granularity of the change, the change period, and the starting position of the change period may be defined by the protocol or notified to the terminal by the base station.
  • the SSB period can be 5 milliseconds (ms), 10 ms, 20 ms, 40 ms, etc., that is, the signal characteristics of the base station can be changed per time granularity.
  • the RIS implicitly indicates the information of the RIS by changing the signal characteristics of the SSB.
  • the first feature is: the phases of each SSB burst set in the four SSB burst set cycles are phase 1, phase 2, phase 1, and phase 2, respectively, see Figure 7a;
  • the second feature is: the phases of each SSB burst set in the four SSB burst set cycles are phase 1, phase 1, phase 2, and phase 2, respectively, see Figure 7b;
  • the first feature and the second feature can be associated to RIS index 1 and RIS index 2 (or feature index 1 and feature index 2), respectively.
  • the UE can determine which feature is carried by the SSB1/SSB2 by detecting the phase change feature carried by the SSB, thereby determining the index of the RIS associated with the SSB1/SSB2.
  • Mode 1-2 The characteristics of the first signal vary only in the frequency domain.
  • the manner in which the characteristics of the first signal vary with frequency domain resources, and the changed frequency domain resource granularity, is defined by the protocol or broadcast by the base station.
  • Modes 1-3 The characteristics of the first signal vary in the frequency domain and the time domain.
  • the RIS implicitly indicates the RIS-related information, such as the index of the RIS, to the UE by changing/controlling the characteristics of the first signal sent by the base station that change with time and frequency domain resources.
  • Embodiment 2 The RIS information is carried in the signals sent by the base station for different RISs.
  • Method 2-1 The base station has 5 SSBs, of which SSB2, SSB3 and SSB4 are sent by the base station towards RIS1, and SSB 0 and SSB 1 are the other two SSBs.
  • the RIS1-oriented SSBs (SSB2, SSB3, and SSB4) sent by the base station carry information related to RIS1, such as the initial sequence of PSS or SSS of SSB2, SSB3, and SSB4, the scrambling sequence, or the cover code, etc. RIS 1 related.
  • the initial sequence, the scrambling sequence, or the association between the cover code and the information of RIS1 may be defined by the protocol or indicated by the base station (for example, through SIB/MIB) to the UE.
  • the UE determines that the RIS associated with the SSB or that the RIS exists within the coverage of the SSB can be used.
  • the UE further determines whether the UE needs RIS assistance in the subsequent RIS-based beam training.
  • Method 2-2 SSB does not carry information related to RIS1, and the CSI-RS, DMRS, MSG2, MSG4 or MSGB sent to RIS carries information related to RIS1.
  • the initial sequence of CSI-RS or DMRS, scrambling sequence, or cover code, etc. are related to RIS 1.
  • the association between the initial sequence, the scrambling sequence, or the cover code and the RIS1 information is a protocol definition or a base station (for example, through SIB, Master Information Block (Master Information Block, MIB), Radio Resource Control (Radio Resource Control, RRC) ) signaling, media access control layer (Media Access Control, MAC) control element (Control Element, CE) or layer 1 signaling) indicates the UE.
  • SIB Master Information Block
  • RRC Radio Resource Control
  • media access control layer Media Access Control
  • CE Control Element, CE
  • CE Control Element, CE
  • the UE determines the information of the RIS associated with the UE by detecting the CSI-RS or DMRS (the index of the RIS carried in the reference signal, the preliminary result of the RIS beam training).
  • CSI-RS or DMRS is quasi-co-located with SSB.
  • Method 2-3 Both SSB and CSI-RS/DMRS carry information related to RIS1.
  • the UE If the RIS is increased or decreased in the cell, or the relationship between the existing RIS in the cell and the characteristics of the first signal is changed, the UE is notified by the cell system message change, that is, the base station notifies the UE of the system message change through paging, and the UE reads Get system messages for change information.
  • Embodiment 3 The base station directly indicates which SSBs are associated with the RIS.
  • the UE receives the SSB notified by the base station and the index of the RIS associated with the SSB, for example, SSB1 is associated with RIS1, SSB2 is associated with RIS2, and SSB3 is not associated with any RIS;
  • the UE receives the CSI-RS/DMRS notified by the base station and the index of the RIS associated with the CSI-RS/DMRS.
  • the UE is notified by the cell system message change, that is, the base station notifies the UE of the system message change through the paging message. Read system messages for change information.
  • the RIS in the above three embodiments may also be some kind of relay, such as a layer 1 relay, a layer 2 relay, a layer 3 relay, or an integrated access and backhaul (Integrated Access and Bachhaul, IAB) node.
  • a layer 1 relay a layer 2 relay
  • a layer 3 relay a layer 3 relay
  • an integrated access and backhaul Integrated Access and Bachhaul, IAB
  • an embodiment of the present application provides a node identification device, and the device 900 includes:
  • a first obtaining module 901 configured to obtain first information, where the first information is related to a signal sent by a base station;
  • the first determining module 902 is configured to determine one or more nodes associated with the base station according to the first information; wherein, the nodes include at least one of the following: a reconfigurable smart surface node; a relay node; and an IAB node.
  • the first obtaining module 901 is further configured to: detect a first signal sent by a base station; and determine first information according to the first signal, where the first information includes: characteristics of the first signal change information;
  • the first determining module 902 is further configured to: determine information of one or more nodes associated with the base station according to the characteristic change information of the first signal.
  • the apparatus 900 further includes:
  • the second determination module is configured to determine whether the terminal can detect the signal sent by the node; if the terminal can detect the signal sent by the node, triggering to determine the first information based on the first signal step.
  • the apparatus 900 further includes:
  • a first sending module configured to send a detection result of the first signal, where the detection result includes: whether the signal sent by the node can be detected, and/or whether the information of the node associated with the base station can be determined.
  • the first determining module 902 is further configured to: determine the index of the node associated with the base station according to the characteristic change information of the first signal and the first association relationship; wherein the first association relationship includes The relationship between the feature change rule of the first signal and the index of the node.
  • the first association relationship is agreed upon in an agreement or sent by the base station to the terminal.
  • the apparatus 900 further includes:
  • the second acquiring module is configured to acquire the information of the activated or deactivated node by receiving the signaling sent by the base station if the node associated with the base station is activated or deactivated; or if the characteristic of the first signal changes If the association relationship between the law and the index of the node is changed, the updated association between the change law of the characteristics of the first signal and the index of the node is obtained by receiving the signaling sent by the base station.
  • the characteristics of the first signal include one or more of the following: phase, amplitude, polarization mode, frequency, and OAM mode.
  • the characteristic change of the first signal is changed or controlled by the node, including: changes in the phase, amplitude, polarization mode, frequency and/or OAM mode of the first signal are adjusted
  • the node associated diode is changed or controlled by turning on or off; or, the phase, amplitude, polarization mode, frequency and/or OAM mode of the first signal are changed by applying different voltages to the node. or controlled.
  • the characteristics of the first signal may be one or more of the manner in which the characteristics of the first signal change with time-domain resources, the granularity of the time-domain resources changed, the change period, the time unit information of the change, and the starting position of the change period.
  • the item is agreed in the protocol or sent by the base station to the terminal.
  • the time-domain resource granularity is that every M OFDM symbols, M is greater than or equal to 1; or, every N time slots, N is greater than or equal to 1; or, every K SSB cycles, K is greater than or equal to 1 .
  • the characteristics of the first signal vary with frequency domain resources, and one or more of the changed frequency domain resource granularities are agreed in a protocol or sent by the base station to the terminal. .
  • the frequency domain resource granularity is subcarrier, subcarrier group, BWP, BWP group, RB, RB bundle or RB group.
  • the first signal includes at least one of the following: SSB, CSI-RS, SIB1, DMRS, and TRS.
  • the first obtaining module 901 is further configured to: receive a second signal sent by the base station to the first node, and relevant information of the second signal corresponds to the first node; according to the second signal , determine first information, where the first information includes: related information of the second signal;
  • the first determining module 902 is further configured to: determine one or more nodes associated with the base station according to the relevant information of the second signal.
  • the related information of the second signal includes at least one of the following:
  • Sequence format sequence phase, initial sequence, scrambling sequence, and orthogonal mask of the sequence.
  • the first determining module 902 is further configured to: determine the index of the node associated with the base station according to the relevant information of the second signal and the second association relationship;
  • the second association relationship includes: the association relationship between the related information of the second signal and the index of the node.
  • the second association relationship is agreed upon in an agreement or sent by the base station to the terminal.
  • the second signal includes one or more of the following: SSB, CSI-RS, DMRS, MSG2, MSG4, and MSGB.
  • the first obtaining module 901 is further configured to: receive first information sent by the base station, where the first information indicates a third association relationship, where the third association relationship includes the relationship between the third signal and the node Index relationship.
  • the third signal includes one or more of the following: SSB, CSI-RS, and DMRS.
  • the apparatus 900 further includes:
  • the second sending module is configured to send the information of one or more nodes identified by the terminal to the network side.
  • the apparatus 900 further includes:
  • the third sending module is configured to send the beam of one or more nodes expected by the terminal to the network side if the terminal identifies one or more nodes.
  • the apparatus provided in this embodiment of the present application can implement each process implemented by the method embodiment shown in FIG. 3 , and achieve the same technical effect. To avoid repetition, details are not described here.
  • an embodiment of the present application provides a node identification device, and the device 1000 includes:
  • the processing module 1001 is configured to change or control the characteristic of the first signal sent by the base station associated with the node; wherein, the characteristic change information of the first signal is associated with the information of the node.
  • the characteristics of the first signal include one or more of the following: phase, amplitude, polarization mode, frequency, and OAM mode.
  • the feature of changing or controlling the first signal sent by the base station associated with the node includes:
  • phase, amplitude, polarization mode, frequency and/or OAM mode of the first signal sent by the base station associated with the node is changed or controlled by applying different voltages to the node.
  • the characteristics of the first signal may be one or more of the manner in which the characteristics of the first signal change with time-domain resources, the granularity of the time-domain resources changed, the change period, the time unit information of the change, and the starting position of the change period.
  • the item is agreed in the protocol or sent by the base station to the terminal.
  • the time-domain resource granularity is that every M OFDM symbols, M is greater than or equal to 1; or, every N time slots, N is greater than or equal to 1; or, every K SSB cycles, K is greater than or equal to 1 .
  • the characteristics of the first signal vary with frequency domain resources, and one or more of the changed frequency domain resource granularities are agreed in a protocol or sent by the base station to the terminal. .
  • the frequency domain resource granularity is subcarrier, subcarrier group, BWP, BWP group, RB, RB bundle or RB group.
  • the first signal includes at least one of the following: SSB, CSI-RS, SIB1, DMRS, and TRS.
  • the apparatus 1000 further includes:
  • a second obtaining module configured to receive configuration information sent by the base station associated with the node
  • the configuration information indicates one or more of the following:
  • the characteristics of the first signal are at least one of the time-domain resource granularity of the time-domain resource change, the change period, the changed time unit information, and the starting position of the change period;
  • the first association relationship includes the association relationship between the characteristic change rule of the first signal and the index of the node
  • the second association relationship includes: an association relationship between the related information of the second signal and the index of the node, and the second signal includes one or more of the following: SSB, CSI-RS, DMRS, MSG2, MSG4, MSGB ;
  • the third association relationship includes an association relationship between a third signal and an index of a node, where the third signal includes one or more of the following: SSB, CSI-RS, and DMRS.
  • the apparatus provided in this embodiment of the present application can implement each process implemented by the method embodiment shown in FIG. 4 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • an embodiment of the present application provides a node identification device, and the device 1100 includes:
  • the fourth sending module 1101 is configured to send a second signal to a first node associated with the base station, where relevant information of the second signal corresponds to the first node.
  • the related information of the second signal includes at least one of the following: a sequence format, a sequence phase, an initial sequence, a scrambling sequence, and an orthogonal mask of the sequence.
  • the second signal includes one or more of the following: SSB, CSI-RS, DMRS, MSG2, MSG4, and MSGB.
  • the apparatus 1100 includes:
  • a fifth sending module configured to send configuration information to the first node
  • the configuration information indicates one or more of the following:
  • the characteristics of the first signal are at least one of the time-domain resource granularity of the time-domain resource change, the change period, the changed time unit information, and the starting position of the change period;
  • the first association relationship includes the association relationship between the characteristic change rule of the first signal and the index of the node
  • the second association relationship includes: the association relationship between the related information of the second signal and the index of the node;
  • the third association relationship includes an association relationship between a third signal and an index of a node, where the third signal includes one or more of the following: SSB, CSI-RS, and DMRS.
  • the apparatus provided in this embodiment of the present application can implement each process implemented by the method embodiment shown in FIG. 5 , and achieve the same technical effect. To avoid repetition, details are not described here.
  • FIG. 12 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1200 includes but is not limited to: a radio frequency unit 1201, a network module 1202, an audio output unit 1203, an input unit 1204, a sensor 1205, a display unit 1206, a user input unit 1207, an interface unit 1208, a memory 1209, a processor 1210 and other components .
  • the terminal 1200 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 1210 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power source such as a battery
  • the terminal structure shown in FIG. 12 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 1204 may include a graphics processor (Graphics Processing Unit, GPU) 12041 and a microphone 12042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 1206 may include a display panel 12061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1207 includes a touch panel 12071 and other input devices 12072 .
  • the touch panel 12071 is also called a touch screen.
  • the touch panel 12071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 12072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which are not described herein again.
  • the radio frequency unit 1201 receives the downlink data from the network side device, and then processes it to the processor 1210; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 1201 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 1209 may be used to store software programs or instructions as well as various data.
  • the memory 1209 may mainly include a stored program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 1209 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 1210 may include one or more processing units; optionally, the processor 1210 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs or instructions, etc. Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 1210.
  • the terminal provided in this embodiment of the present application can implement each process implemented by the method embodiment shown in FIG. 3 , and achieve the same technical effect. To avoid repetition, details are not described here.
  • the network side device 1300 includes: an antenna 1301 , a radio frequency device 1302 , and a baseband device 1303 .
  • the antenna 1301 is connected to the radio frequency device 1302 .
  • the radio frequency device 1302 receives information through the antenna 1301, and sends the received information to the baseband device 1303 for processing.
  • the baseband device 1303 processes the information to be sent and sends it to the radio frequency device 1302
  • the radio frequency device 1302 processes the received information and sends it out through the antenna 1301 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 1303 , and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 1303 .
  • the baseband apparatus 1303 includes a processor 1304 and a memory 1305 .
  • the baseband device 1303 may include, for example, at least one baseband board on which a plurality of chips are arranged, as shown in FIG. 13 , one of the chips is, for example, the processor 1304 , which is connected to the memory 1305 to call a program in the memory 1305 to execute
  • the network devices shown in the above method embodiments operate.
  • the baseband device 1303 may further include a network interface 1306 for exchanging information with the radio frequency device 1302, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in this embodiment of the present application further includes: instructions or programs that are stored in the memory 1305 and run on the processor 1304, and the processor 1304 calls the instructions or programs in the memory 1305 to execute the instructions or programs shown in FIGS. 10-11. In order to avoid repetition, it is not repeated here.
  • An embodiment of the present application further provides a program product, where the program product is stored in a non-volatile storage medium, and the program product is executed by at least one processor to implement the processing method as described in FIG. 3 to FIG. 5 .
  • An embodiment of the present application further provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the method embodiment shown in FIG. 3 to FIG. 5 is implemented. , and can achieve the same technical effect, in order to avoid repetition, it is not repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network-side device program or instruction to implement the above-mentioned FIG. 3-
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run a network-side device program or instruction to implement the above-mentioned FIG. 3-
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种节点识别方法、装置、设备及可读存储介质,该方法包括:获取第一信息,所述第一信息与基站发送的信号相关;根据所述第一信息,确定基站关联的一个或多个节点。

Description

识别节点方法、装置、设备及可读存储介质
相关申请的交叉引用
本申请主张在2020年11月06日在中国提交的中国专利申请No.202011233774.0的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种识别节点方法、装置、设备及可读存储介质。
背景技术
智能表面设备由大规模器件阵列和阵列控制模块构成。大规模器件阵列是在平面底板上规则的重复排列的大量器件单元。为达到可观的信号操控效果,通常需要几百或者几千个器件单元组成器件阵列。每个器件单元都具有可变的器件结构,例如,器件单元中包含一个正-本征-负(Positive Intrinsic-Negative,PIN)二极管,PIN二极管的开关状态决定了器件单元对外界无线信号的响应模式。智能表面的阵列控制模块可以控制每个器件单元的工作状态,从而动态或半静态的控制每个器件单元对无线信号的响应模式。大规模器件阵列的每个器件单元的无线响应信号互相叠加,在宏观上形成特定的波束传播特征。控制模块是智能表面设备的“大脑”,根据通信系统的需求确定智能表面的无线信号响应波束,使得原来静态的通信环境变得“智能”、“可控”。
目前,终端如何识别与基站关联的节点是亟待解决的问题。
发明内容
本申请实施例提供一种节点识别方法、装置、设备及可读存储介质,实现了终端识别与基站关联的节点。
第一方面,提供一种节点识别方法,由终端执行,包括:
获取第一信息,所述第一信息与基站发送的信号相关;
根据所述第一信息,确定基站关联的一个或多个节点;
其中,所述节点包括以下至少一项:
可重构智能表面节点;
中继节点;
IAB节点。
第二方面,提供一种节点识别方法,由节点执行,包括:
改变或控制由所述节点关联的基站发送的第一信号的特征;
其中,所述第一信号的特征变化信息与所述节点的信息关联。
第三方面,提供一种节点识别方法,由基站执行,包括:
向所述基站关联的第一节点发送第二信号,所述第二信号的相关信息与所述第一节点对应。
第四方面,提供一种节点识别装置,包括:
第一获取模块,用于获取第一信息,所述第一信息与基站发送的信号相关;
第一确定模块,用于根据所述第一信息,确定基站关联的一个或多个节点;
其中,所述节点包括以下至少一项:
可重构智能表面节点;
中继节点;
IAB节点。
第五方面,提供一种节点识别装置,包括:
处理模块,用于改变或控制由所述节点关联的基站发送的第一信号的特征;
其中,所述第一信号的特征变化信息与所述节点的信息关联。
第六方面,提供一种节点识别装置,包括:
第四发送模块,用于向基站关联的第一节点发送第二信号,所述第二信号的相关信息与所述第一节点对应。
第七方面,提供一种终端,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如第 一方面所述的方法的步骤。
第八方面,提供一种网络侧设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如第二方面或第三方面所述的方法的步骤。
第九方面,提供一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面,第二方面或第三方面所述的方法的步骤。
第十方面,提供一种计算机程序产品,所述计算机程序产品被存储在非易失的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如第一方面,第二方面或第三方面所述的处理的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面,第二方面或第三方面所述的处理的方法。
在本申请实施例中,终端可以识别出基站关联的一个或多个节点,协助基站更准确的调整每个节点的波束,从而提高终端信号的强度或者提高基于多个节点的定位精度。
附图说明
图1是NR中的SSB的示意图;
图2是本申请实施例可应用的一种无线通信系统的框图;
图3是本申请实施例中节点识别方法的示意图之一;
图4是本申请实施例中节点识别方法的示意图之二;
图5是本申请实施例中节点识别方法的示意图之一;
图6是本申请实施例中节点用于relay的场景的示意图;
图7a和图7b是本申请实施例中UE通过检测SSB携带的相位变化特征确定SSB1/SSB2携带的特征的示意图;
图8是本申请实施例中基站面向不同节点发送的信号中携带节点信息;
图9是本申请实施例中节点识别装置的示意图之一;
图10是本申请实施例中节点识别装置的示意图之二;
图11是本申请实施例中节点识别装置的示意图之二;
图12是本申请实施例中终端的示意图;
图13是本申请实施例中网络侧设备的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述指定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
为了便于理解本申请实施例,下面先介绍以下技术点:
一、智能表面/超材料表面:
智能表面是一种新兴的技术,有如下多个相关的术语,它们表示的都是类似的技术或者实体,这些术语包括:
大型智能表面(Large Intelligent Surface,LIS);
智能反射阵列(Smart Reflect Array,SRA);
可配置反射阵列(Reconfigurable Reflect Array,RRA);
智能反射表面(Intelligent Reflecting Surface,IRS);
可重构智能表面(Reconfigurable Intelligent Surface,RIS)。
智能表面技术在多个技术领域有所应用,根据应用场景不同有很多种不同的设计方案。按照器件单元的物理原理分类包含可调谐谐振器(Tunable Resonator)可变电容型、导波(Guided Wave)波导型、元素旋转(Element Rotation)极化型等;按照无线信号输出形式,分为反射型智能表面和透射型智能表面;按照无线信号响应参数分类包括相位控制型智能表面,幅度控制型智能表面和幅度相位联合控制型智能表面;按照响应参数控制分类分为连续控制型和离散控制型;按照控制智能表面幅度和相位的频次或快慢分为静态,半静态/动态控制的智能表面,其中静态的智能表面目前就可以应用到已有系统中,例如,第四代移动通信技术(fourth generation,4G)/第五代移动通信技术(fifth-generation,5G)系统。考虑器件设计和制作的复杂度,学术界普遍选择使用单一无线信号响应参数的离散控制型器件单元进行研究。目前,学术界广泛讨论的智能反射表面(Intelligent Reflecting Surface,IRS)就是一种基于信号反射的相位控制智能表面,通过1比特(bit)的指示信息控制器件单元的反射信号的相位,实现0或π的相位翻转。
得益于不需要射频和基带处理电路,智能表面设备相比与传统无线通信收发设备有几点优势:
(1)智能表面设备有更低的成本和实现复杂度;
(2)智能表面设备具有更低的功耗;
(3)智能表面不会引入额外的接收端热噪声;
(4)智能表面设备厚度薄、重量小,可以实现灵活的部署。
RIS反射单元种类的有以下几种:
(1)可调谐谐振器:一个可变电容器被整合到谐振器中,通过改变频率捷变(frequency-agile)贴片谐振器频率,产生相移。
(2)导波控制法:在这种情况下,到达的空间波被天线耦合到导波上,随后导波相移,再重新发射,形成了一个天线移相器。
(3)圆极化波的旋转技术:利用电磁波的反射规律进行设计。
从是否可动态控制的角度划分,反射阵列/智能表面分为两大类:
(1)静态的反射阵列/智能表面:反射阵列的结构和功能可以是固定的,对于一个角度的入射波,超表面单元导致入射波的幅度、相位、极化方式等特性发生固定的改变,得到相应的反射波。
(2)动态的反射阵列/智能表面:反射阵列的结构和功能是可以控制的,对于一个角度的入射波,可以通过可编程控制使得入射波的幅度、相位、极化方式等特性发生不同的改变,得到相应的反射波。对反射超表面实现可编程控制,须在反射单元中引入开关元件(如二极管等)。PIN二极管是目前控制可重构超表面的常见选择,PIN二极管具备较宽范围的射频阻抗,并且失真低,在微波射频领域具有广泛应用。反射单元中的开关元件使其具有多个不同的状态,并且通过控制开关元件的通断可实现不同状态的切换。开关元件在通、断两种情况下,对应反射单元的结构和性能均有较大变化。即,不同状态的反射单元对入射波的幅度、相位、极化等特性有不同的调控模式。
二、智能表面对信号进行直接调制:
因为智能表面可以直接调控电磁信号的波前和各种电磁参数,例如相位、振幅、频率、甚至极化,而无需复杂的基带处理和射频收发操作,因而智能表面除了可以改变无线信道环境从而增强第三方信号的接收质量之外,还可以被用于对信号进行直接调制。
例如,调整智能表面电磁单元的反射相位/幅度不仅用于最大化入射电磁波的接收信噪比,还可用于LIS本身的信息传输。接收端通过检测智能表面反射信号的相位/幅度变化,来接收智能表面本身的信息。
三、无源智能表面:
由于智能表面由大量的器件单元构成并且没有射频和基带处理能力,因此称此类智能表面为无源智能表面。
四、有源无源结合的智能表面(或有源智能表面):
由于智能表面由大量的器件单元构成并且没有射频和基带处理能力,所以基站无法分别获得基站到智能表面以及智能表面到终端的信道信息。基站或终端的接收信号由大量的智能表面器件单元的响应信号叠加形成,改变一个或者少量的器件单元的工作状态并不能使接收信号产生明显的变化。一种可能的测量方案是在智能表面中安装少量有源器件单元,使得智能表面能够进行信道测量和反馈;基站使用压缩感知或者深度学习算法从有限的信道信息中推算出合理的智能表面配置参数。基于智能表面的通信系统需要一个高效的信道测量机制,在保证智能表面低复杂度的前提下,尽量提升端到端的信号质量。这种安装了部分有源器件的智能表面具备接收信号甚至发送信号的能力,是一种有源无源结合的智能表面(或有源智能表面)。
五、关于新空口(New Radio,NR)中的同步信号块(Synchronization Signal and PBCH block,SSB):
参见图1,NR中的一个SSB包括分布在连续的4个正交频分复用(Orthogonal frequency division multiplex,OFDM)符号上的主同步信号(Primary Synchronisation Signal,PSS),辅同步信号(Secondary Synchronisation Signal,SSS)和物理广播信道(Physical broadcast channel,PBCH)。一个SSB突发集(burst set)周期中包括多个SSB(比如包括8个SSB),不同的SSB可以对应不同的波束方向。NR支持的SSB burst set周期为5毫秒(ms)、10ms、20ms等。
参见图2,图中示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端21、网络侧设备22和智能表面设备23。其中,终端21也可以称作终端设备或者用户终端(User Equipment,UE),终端21可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端21的具 体类型。
网络侧设备22可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base TransceiverStation,BTS)、无线电基站、无线电收发机、基本服务集(BasicServiceSet,BSS)、扩展服务集(ExtendedServiceSet,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、无线局域网(Wireless Local Area Network,WLAN)接入点、无线保真(Wireless Fidelity,WiFi)节点、发送接收点(Transmitting Receiving Point,TRP)、无线接入网节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于指定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过一些的实施例及其应用场景对本申请实施例提供的一种节点识别方法、装置、设备及可读存储介质进行详细地说明。
参见图3,本申请提供一种节点识别方法,由终端执行,包括步骤301和步骤302。
步骤301:获取第一信息,所述第一信息与基站发送的信号相关;
步骤302:根据所述第一信息,确定基站关联的一个或多个节点;
其中,所述节点包括以下至少一项:
可重构智能表面(Reconfigurable Intelligent Surface,RIS)节点;
中继节点;
接入和回传一体化(Integrated Access and Backhaul,IAB)节点。
比如,根据第一信息,识别或确定服务小区关联的一个或多个节点,或者确定邻区关联的一个或多个节点。
可以理解的是,该基站可以知晓是否存在所述节点,或所述节点的部署位置或节点的参数(比如,模式(pattern)集合,比特(bit)量化精度,操控信号特征等)。
在本申请实施例中,终端识别不同节点的应用场景可以包括:
场景1:节点用于中继(relay)的场景:
也就是说,基站本身不能覆盖到终端,终端必须通过节点才能接入基站 小区,参见图6,终端1位于基站和节点之间,终端1收到SSB2;终端2位于节点覆盖区,但是无法收到基站的信号;这样终端1只能收到基站发送的信号,终端2只能收到节点1改变的基站的信号。这样终端2识别节点1并上报给基站,基站可更准确的调整终端1和终端2的波束,例如通过基站和LIS的联合优化来增强终端2的信号,通过基站波束调整来增强终端1的信号。
场景2:UE覆盖增强场景:
当UE的数据业务速率超过当前信道容量时,系统通过节点提供更强的信号质量或者增加数据流复用,从而提高UE的数据通信速率。
可选的,小区可以为UE配置关联多个节点,UE能识别出多个节点,进一步地,该UE可以向基站反馈期望的每个节点的波束。
场景3:基于多个节点进行定位的场景:
UE能识别多个节点的信号,能提高基于节点的定位精度。
可以理解的是,本申请实施例中,终端识别不同节点的应用场景并不限于以上三种场景。
在一些实施例中,步骤301包括:检测基站发送的第一信号;根据所述第一信号,确定第一信息,所述第一信息包括:所述第一信号的特征变化信息,所述第一信号的特征变化信息对应节点的信息(比如,节点的索引(index)),所述第一信号的特征变化是所述节点改变或控制的;步骤302包括:根据所述第一信号的特征变化信息,确定基站关联的一个或多个节点的信息。
在本申请实施例中,在检测基站发送的第一信号之前,所述方法还包括:确定所述终端是否能检测到所述节点发送的信号;如果所述终端能检测到所述节点发送的信号,则执行所述检测基站发送的第一信号的步骤。
在本申请实施例中,所述方法还包括:发送所述第一信号的检测结果,所述检测结果包括:是否能检测到所述节点发送的信号(即所述节点配对是否成功),和/或,是否能确定基站关联的所述节点的信息(比如,所述节点的index)。
在本申请实施例中,所述根据所述第一信号的特征变化信息,确定基站 关联的节点的信息,包括:
根据所述第一信号的特征变化信息,以及第一关联关系,确定基站关联的节点的索引;其中,所述第一关联关系包括所述第一信号的特征变化规律与节点的索引的关联关系。
可选地,第一关联关系由协议约定或者由所述基站发送给所述终端的。
在本申请实施例中,所述方法还包括:如果所述基站关联的节点被激活或者关闭,则通过接收基站发送的信令来获取所述被激活或者关闭的节点的信息;或者如果所述第一信号的特征变化规律与节点的索引的关联关系发生变更,则通过接收基站发送的信令来获取更新后的所述第一信号的特征变化规律与节点的索引的关联关系。
可选地,所述第一信号的特征可以包括以下一项或多项:(1)相位,(2)幅度,(3)极化方式,(4)频率,(5)轨道角动量(Orbital Angular Momentum,,OAM)方式。
在本申请实施例中,所述第一信号的特征变化是所述节点改变或控制的,包括:
所述第一信号的相位,幅度,极化方式,频率和/或OAM方式的变化是调整所述节点关联的二极管的开或关来改变或控制的;
或者,
所述第一信号的相位,幅度,极化方式,频率和/或OAM方式的变化是为所述节点施加不同的电压改变或控制的。
在本申请实施例中,所述第一信号的特征在时域和/或频域上变化。
在本申请实施例中,所述第一信号的特征随时域资源变化的方式,变化的时域资源粒度,变化周期,变化的时间单元信息,以及变化周期的起始位置中的一项或多项是协议约定的或者由所述基站发送给所述终端的。
在本申请实施例中,所述时域资源粒度是每M个正交频分复用(Orthogonal frequency division multiplex,OFDM)符号,M大于等于1;或者,每N个时隙,N大于等于1;或者,每K个同步信号块(Synchronization Signal and PBCH block,SSB)周期,K大于等于1。
在本申请实施例中,所述第一信号的特征随频域资源变化的方式,变化 的频域资源粒度中的一项或多项是协议约定的或者由所述基站发送给所述终端的。
在本申请实施例中,所述频域资源粒度是是子载波,子载波组,带宽部分(Bandwidth Part,BWP),BWP组,无线承载(Radio Bearer,RB),RB束(bundle)或RB组。
在本申请实施例中,所述第一信号包括以下至少一项:(1)SSB,(2)信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),(3)系统信息块(System Information Block,SIB)1,(4)解调参考信号(Demodulation Reference Signal,DMRS),(5)跟踪参考信号(tracking reference signal,TRS)。
在本申请实施例中,在步骤301中,接收基站向第一节点发送的第二信号,所述第二信号的相关信息与所述第一节点对应;根据所述第二信号,确定第一信息,所述第一信息包括:所述第二信号的相关信息;在步骤302中,根据所述第二信号的相关信息,确定基站关联的一个或多个节点。
在本申请实施例中,所述第二信号的相关信息包括以下至少一项:序列格式,序列相位,初始序列,加扰序列,以及序列的正交掩码(Orthogonal Cover Code)。
在本申请实施例中,所述根据所述第二信号的相关信息,确定基站关联的一个或多个节点,包括:
根据所述第二信号的相关信息,以及第二关联关系,确定基站关联的节点的索引;其中,所述第二关联关系包括:所述第二信号的相关信息与节点的索引的关联关系。
可选地,所述第二关联关系由协议约定或者由所述基站发送给所述终端的。
在本申请实施例中,所述第二信号包括以下一项或多项:(1)SSB、(2)CSI-RS,(3)DMRS,(4)消息2(MSG2),(5)消息4(MSG4),(6)消息B(MSGB)。可选地,CSI-RS或DMRS与SSB准共址。
在本申请实施例中,在步骤301中,接收基站发送的第一信息,所述第一信息指示第三关联关系,其中,所述第三关联关系包括第三信号与节点的 索引的关联关系。
可选地,所述第三信号包括以下一项或多项:(1)SSB、(2)CSI-RS、(3)DMRS。
在本申请实施例中,所述方法还包括:向网络侧发送所述终端识别的一个或多个节点的信息(例如节点的标识信息),可选地,所述一个或多个节点的信息用于网络侧调整与所述终端关联的节点的波束。
在本申请实施例中,如果所述终端识别出多个节点,所述方法还包括:获取所述多个节点的信号;根据所述多个节点的信号,定位所述终端。
在本申请实施例中,终端可以识别出基站关联的一个或多个节点,协助基站更准确的调整每个节点的波束,从而提高终端信号的强度或者提高基于多个节点的定位精度。
参见图4,本申请实施例提供一种节点识别方法,由RIS执行,具体步骤包括:步骤401。
步骤401:改变或控制由所述节点关联的基站发送的第一信号的特征,其中,所述第一信号的特征变化信息与所述节点的信息关联。
在本申请实施例中,所述第一信号的特征包括以下一项或多项:(1)相位,(2)幅度,(3)极化方式,(4)频率,(5)OAM方式。
在本申请实施例中,所述改变或控制所述第一信号的特征,包括:
方式1:通过调整节点关联的二极管的开或关来改变或控制由所述节点关联的基站发送的第一信号的相位,幅度,极化方式,频率和/或OAM方式;
方式2:通过为节点施加不同的电压改变或控制由所述节点关联的基站发送的第一信号的相位,幅度,极化方式,频率和/或OAM方式。
在本申请实施例中,所述第一信号的特征在时域和/或频域上变化。
在本申请实施例中,所述第一信号的特征随时域资源变化的方式,变化的时域资源粒度,变化周期,变化的时间单元信息,以及变化周期的起始位置中的一项或多项是协议约定的或者由所述基站发送给所述终端的。
在本申请实施例中,所述时域资源粒度是每M个OFDM符号,M大于等于1;或者,每N个时隙,N大于等于1;或者,每K个SSB周期,K大于等于1。
在本申请实施例中,所述第一信号的特征随频域资源变化的方式,变化的频域资源粒度中的一项或多项是协议约定的或者由所述基站发送给所述终端的。
在本申请实施例中,所述频域资源粒度是子载波,子载波组,BWP,BWP组,RB,RB bundle或RB组。
在本申请实施例中,所述第一信号包括以下至少一项:(1)SSB,(2)CSI-RS,(3)SIB1,(4)DMRS,(5)TRS。
在本申请实施例中,在改变或控制由所述节点关联的基站发送的第一信号的特征之前,所述方法还包括:
接收所述节点关联的基站发送的配置信息;
所述配置信息指示以下的一项或多项:
(1)第一关联关系;
(2)第二关联关系;
(3)第三关联关系;
(4)所述第一信号的特征随时域资源变化的时域资源粒度,变化周期,变化的时间单元信息,变化周期的起始位置中的至少一项;
(5)所述第一信号的特征随频域资源变化的方式,变化的频域资源粒度中的至少一项;
其中,所述第一关联关系包括所述第一信号的特征变化规律与节点的索引的关联关系;
所述第二关联关系包括:所述第二信号的相关信息与节点的索引的关联关系,所述第二信号包括以下一项或多项:SSB、CSI-RS,DMRS,MSG2,MSG4,MSGB;
所述第三关联关系包括第三信号与节点的索引的关联关系,所述第三信号包括以下一项或多项:SSB、CSI-RS、DMRS。
在本申请实施例中,节点通过改变或控制基站信号的特征变化,隐式指示该节点的信息,比如节点的index,使得终端基于该信号的特征变化信息识别出与基站关联的一个或多个节点,协助基站更准确的调整每个节点的波束,从而提高终端信号的强度或者提高基于多个节点的定位精度。
参见图5,本申请实施例提供一种节点识别方法,由基站执行,具体步骤包括:步骤501。
步骤501:向所述基站关联的第一节点发送第二信号,所述第二信号的相关信息与所述第一节点对应。
在本申请实施例中,所述第二信号的相关信息包括以下至少一项:
(1)序列格式,(2)序列相位,(3)初始序列,(4)加扰序列,以及(5)序列的正交掩码。
在本申请实施例中,所述第二信号包括以下一项或多项:(1)SSB、(2)CSI-RS,(3)DMRS,(4)MSG2,(5)MSG4,(6)MSGB。
在本申请实施例中,所述方法还包括:
向所述第一节点发送配置信息;
其中,所述配置信息指示以下的一项或多项:
(1)第一关联关系;
(2)第二关联关系;
(3)第三关联关系;
(4)所述第一信号的特征随时域资源变化的时域资源粒度,变化周期,变化的时间单元信息,变化周期的起始位置中的至少一项;
(5)所述第一信号的特征随频域资源变化的方式,变化的频域资源粒度中的至少一项;
其中,所述第一关联关系包括所述第一信号的特征变化规律与节点的索引的关联关系;
所述第二关联关系包括:所述第二信号的相关信息与节点的索引的关联关系;
所述第三关联关系包括第三信号与节点的索引的关联关系,所述第三信号包括以下一项或多项:SSB、CSI-RS、DMRS。
在本申请实施例中,终端可以基于接收到的第二信号识别出基站关联的一个或多个节点,协助基站更准确的调整每个节点的波束,从而提高终端信号的强度或者提高基于多个节点的定位精度。
下面结合实施例1、实施例2和实施例3介绍本申请实施例,其中节点 是RIS。
实施例1:RIS改变/控制第一信号特征来隐式指示RIS的信息
步骤1:基站发送配置消息,配置消息包含一下的一项或多项:
(1)第一信号的配置参数,信号标识相关参数,时频资源,周期或者非周期参数等;
(2)RIS的信号操控/信号调制的参数,RIS状态数量,编码调制方式(差分或者直接调制),RIS类型(操控信号特征,幅度/相位/极化方向等),RIS切换时机(在循环前缀(Cyclic prefix,CP)内进行切换或者在符号切换);
可选的,基站(通过基站与RIS的接口)发送相应的配置信息,指示第一信号的配置参数等。
RIS按照配置信息和RIS的索引或标识(index/ID)编码调制信息,确定第一信号的每一个符号或者每一个发送时机(occasion)对应的转发模式(pattern)。
其中,第一信号配置的符号或者发送时机数量不小于RIS需要传输的编码调制信息的数量。
步骤2:UE检测基站发送的第一信号;
所述第一信号包含了多个符号,或者多个发送时机;
基站使用相同的发送波束发送第一信号,RIS按照上一步骤中确定的转发pattern进行工作。
步骤3:UE根据所述第一信号的特征变化规律,和第一关联关系(RIS的编码调制方式),确定RIS的信息,例如RIS的index。
UE首先确定UE是否能够发现RIS信号(UE是否能与RIS配对);
如果可以检测到RIS信号,确定第一信号特征对应的RIS的index(或特征index)。
参见表1,特征变化规律X对应RIS的索引1,特征变化规律Y对应RIS的索引2,特征变化规律Z对应RIS的索引3。
表1
第一信号的特征变化规律 RIS的索引
特征变化规律X 1
特征变化规律Y 2
特征变化规律Z 3
其中,协议定义或基站通知终端第一信号的特征变化规律与RIS的index的关联关系。
可选地,第一信号包括如下至少一项:SSB,CSI-RS,SIB1,DMRS,TRS等或其他信号等。
可选地,所述第一信号的特征包括相位,幅度,极化方式,频率,OAM方式等至少一项随时间变化的特征。
在本申请实施例中,RIS改变/控制第一信号特征的具体方法:
(1)RIS改变/控制第一信号的相位,幅度,极化方式,频率,OAM方式中的至少一项;
(2)RIS通过调整RIS单元关联的二极管开或关,或者为RIS单元施加不同的电压等方式来改变/控制第一信号的相位,幅度,极化方式,频率,OAM方式中的至少一项。
如果小区中增加或减少(激活或者关闭)RIS,则通过接收基站发送的信令来获取所述被激活或者关闭的节点的信息,或者,如果已有RIS与第一信号的特征的关联关系发生变更,则通过小区系统消息变更的方式通知UE,即基站通过寻呼(paging)消息通知UE发生系统消息变更,UE读取系统消息获取变更信息。
可选的,UE上报第一信号的检测结果,该检测结果指示UE是否检测到RIS,RIS index检测是否成功等。
方式1-1:第一信号的特征只在时域上变化。
所述第一信号的特征随时间变化的方式,变化的时间粒度,以及变化周期,以及变化周期的起始位置中的一项或多项,可以是协议定义的或者基站通知终端的。
RIS改变/控制第一信号特征的时间粒度可以是每M(M>=1)个OFDM符号,每N个(N>=1)时隙,每K(K>=1)个SSB周期。其中,SSB周期可以是5毫秒(ms),10ms,20ms,40ms等等,即每时间粒度可以改变基站的信号特征。
以第一信号为SSB为例,RIS通过改变SSB的信号特征隐式指示RIS的信息。
(1)变化的时间粒度:最快1个SSB突发集(burst set)周期变化一次;
(2)变化周期:4个SSB burst set周期;
(3)第一信号的特征随时间变化的方式:
第一种特征为:4个SSB burst set周期中每个SSB burst set的相位分别为相位1,相位2,相位1,相位2,参见图7a;
第二种特征为:4个SSB burst set周期中每个SSB burst set的相位分别为相位1,相位1,相位2,相位2,参见图7b;
第一种特征和第二种特征可以分别关联到RIS index 1和RIS index 2(或特征index 1和特征index 2)。
这样,UE通过检测SSB携带的相位变化特征就可以确定SSB1/SSB2携带的是哪一种特征,从而确定SSB1/SSB2关联的RIS的index。
方式1-2:第一信号的特征只在频域上变化。
所述第一信号的特征随频域资源不同变化的方式,变化的频域资源粒度,是协议定义的或者基站广播的。
RIS改变/控制第一信号特征的频域资源粒度可以是每M(M>=1)个子载波,RB,RB bundle,RB组(包含几个RB);即,每频域资源粒度可以改变基站的信号特征。
方式1-3:第一信号的特征在频域和时域上变化。
在本实施例中,RIS通过改变/控制基站发送的第一信号随时间和频域资源变化的特征,向UE隐式指示RIS相关的信息,如RIS的index。
实施例2:基站面向不同RIS发送的信号中携带RIS信息。
方法2-1:基站有5个SSB,其中SSB2,SSB3和SSB4是基站面向RIS1发送的,SSB 0和SSB 1是另外的两个SSB。
参见图8,基站发送的面向RIS 1的SSB(SSB2,SSB3和SSB4)携带有与RIS1相关的信息,例如SSB2,SSB3和SSB4的PSS或者SSS的初始序列,加扰序列,或者cover code等与RIS 1相关。
其中,初始序列,加扰序列,或者cover code与RIS1的信息的关联关系 可以是协议定义或者基站(例如通过SIB/MIB)指示UE的。
可选地,UE通过检测SSB,确定该SSB关联的RIS或者说该SSB覆盖范围内存在RIS可以使用。
可选地,UE在后续的基于RIS的波束训练中进一步确定UE是否需要RIS辅助。
方法2-2:SSB不携带与RIS1相关的信息,面向RIS发送的CSI-RS、DMRS、MSG2、MSG4或MSGB携带与RIS1相关的信息。
其中,CSI-RS或DMRS的初始序列,加扰序列,或者cover code等与RIS 1相关。
可选地,初始序列,加扰序列,或者cover code与RIS1信息的关联关系是协议定义或者基站(例如通过SIB、主信息块(Master Information Block,MIB)、无线资源控制(Radio Resource Control,RRC)信令、媒体接入控制层(Media Access Control,MAC)控制单元(Control Element,CE)或层1信令)指示UE的。
UE通过检测CSI-RS或DMRS,确定该UE关联的RIS的信息(参考信号中携带的RIS的index,RIS波束训练的初步结果)。
可选地,CSI-RS或DMRS与SSB准共址。
方法2-3:SSB和CSI-RS/DMRS等都携带与RIS1相关的信息。
如果小区中增加或减少RIS,或者小区中已有RIS与第一信号的特征的关联关系发生变更,则通过小区系统消息变更的方式通知UE,即基站通过paging通知UE发生系统消息变更,UE读取系统消息获取变更信息。
实施例3:基站直接指示哪些SSB与RIS关联。
比如,UE接收基站通知的SSB以及SSB关联的RIS的index,例如SSB1与RIS1关联,SSB2与RIS2关联,SSB3不与任何RIS关联;
UE接收基站通知的CSI-RS/DMRS以及CSI-RS/DMRS关联的RIS的index。
如果小区中增加或减少RIS,或者小区中已有RIS与第一信号的特征的关联关系发生变更,则通过小区系统消息变更的方式通知UE,即基站通过paging消息通知UE发生系统消息变更,UE读取系统消息获取变更信息。
可以理解的是,上述三个实施例中的RIS也可以是某种relay,例如层1relay,层2relay,层3relay,或者集成接入和回传(Integrated Access and Bachhaul,IAB)节点。
参见图9,本申请实施例提供一种节点识别装置,该装置900包括:
第一获取模块901,用于获取第一信息,所述第一信息与基站发送的信号相关;
第一确定模块902,用于根据所述第一信息,确定基站关联的一个或多个节点;其中,所述节点包括以下至少一项:可重构智能表面节点;中继节点;IAB节点。
在本申请实施例中,第一获取模块901进一步用于:检测基站发送的第一信号;根据所述第一信号,确定第一信息,所述第一信息包括:所述第一信号的特征变化信息;
所述第一确定模块902进一步用于:根据所述第一信号的特征变化信息,确定基站关联的一个或多个节点的信息。
在本申请实施例中,装置900还包括:
第二确定模块,用于确定所述终端是否能检测到所述节点发送的信号;如果所述终端能检测到所述节点发送的信号,则触发根据所述第一信号,确定第一信息的步骤。
在本申请实施例中,装置900还包括:
第一发送模块,用于发送所述第一信号的检测结果,所述检测结果包括:是否能检测到节点发送的信号,和/或,是否能确定基站关联的节点的信息。
在本申请实施例中,第一确定模块902进一步用于:根据所述第一信号的特征变化信息,以及第一关联关系,确定基站关联的节点的索引;其中,所述第一关联关系包括所述第一信号的特征变化规律与节点的索引的关联关系。
在本申请实施例中,第一关联关系由协议约定或者由所述基站发送给所述终端的。
在本申请实施例中,装置900还包括:
第二获取模块,用于如果所述基站关联的节点被激活或者关闭,则通过 接收基站发送的信令来获取所述被激活或者关闭的节点的信息;或者如果所述第一信号的特征变化规律与节点的索引的关联关系发生变更,则通过接收基站发送的信令来获取更新后的所述第一信号的特征变化规律与节点的索引的关联关系。
在本申请实施例中,所述第一信号的特征包括以下一项或多项:相位,幅度,极化方式,频率,OAM方式。
在本申请实施例中,所述第一信号的特征变化是所述节点改变或控制的,包括:所述第一信号的相位,幅度,极化方式,频率和/或OAM方式的变化是调整所述节点关联的二极管的开或关来改变或控制的;或者,所述第一信号的相位,幅度,极化方式,频率和/或OAM方式的变化是为所述节点施加不同的电压改变或控制的。
在本申请实施例中,所述第一信号的特征随时域资源变化的方式,变化的时域资源粒度,变化周期,变化的时间单元信息,以及变化周期的起始位置中的一项或多项是协议约定的或者由所述基站发送给所述终端的。
在本申请实施例中,所述时域资源粒度是每M个OFDM符号,M大于等于1;或者,每N个时隙,N大于等于1;或者,每K个SSB周期,K大于等于1。
在本申请实施例中,所述第一信号的特征随频域资源变化的方式,变化的频域资源粒度中的一项或多项是协议约定的或者由所述基站发送给所述终端的。
在本申请实施例中,所述频域资源粒度是子载波,子载波组,BWP,BWP组,RB,RB bundle或RB组。
在本申请实施例中,所述第一信号包括以下至少一项:SSB,CSI-RS,SIB1,DMRS,TRS。
在本申请实施例中,第一获取模块901进一步用于:接收基站向第一节点发送的第二信号,所述第二信号的相关信息与所述第一节点对应;根据所述第二信号,确定第一信息,所述第一信息包括:所述第二信号的相关信息;
所述第一确定模块902进一步用于:根据所述第二信号的相关信息,确定基站关联的一个或多个节点。
在本申请实施例中,所述第二信号的相关信息包括以下至少一项:
序列格式,序列相位,初始序列,加扰序列,以及序列的正交掩码。
在本申请实施例中,所述第一确定模块902进一步用于:根据所述第二信号的相关信息,以及第二关联关系,确定基站关联的节点的索引;
其中,所述第二关联关系包括:所述第二信号的相关信息与节点的索引的关联关系。
在本申请实施例中,所述第二关联关系由协议约定或者由所述基站发送给所述终端的。
在本申请实施例中,所述第二信号包括以下一项或多项:SSB、CSI-RS,DMRS,MSG2,MSG4,MSGB。
在本申请实施例中,第一获取模块901进一步用于:接收基站发送的第一信息,所述第一信息指示第三关联关系,其中,所述第三关联关系包括第三信号与节点的索引的关联关系。
在本申请实施例中,所述第三信号包括以下一项或多项:SSB、CSI-RS、DMRS。
在本申请实施例中,装置900还包括:
第二发送模块,用于向网络侧发送所述终端识别的一个或多个节点的信息。
在本申请实施例中,装置900还包括:
第三发送模块,用于如果所述终端识别出一个或多个节点,向网络侧发送所述终端期望的一个或多个节点的波束。
本申请实施例提供的装置能够实现图3所示的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
参见图10,本申请实施例提供一种节点识别装置,该装置1000包括:
处理模块1001,用于改变或控制由所述节点关联的基站发送的第一信号的特征;其中,所述第一信号的特征变化信息与所述节点的信息关联。
在本申请实施例中,所述第一信号的特征包括以下一项或多项:相位,幅度,极化方式,频率,OAM方式。
在本申请实施例中,所述改变或控制由所述节点关联的基站发送的第一 信号的特征,包括:
通过调整节点关联的二极管的开或关来改变或控制由所述节点关联的基站发送的第一信号的相位,幅度,极化方式,频率和/或OAM方式;
或者,
通过为节点施加不同的电压改变或控制由所述节点关联的基站发送的第一信号的相位,幅度,极化方式,频率和/或OAM方式。
在本申请实施例中,所述第一信号的特征随时域资源变化的方式,变化的时域资源粒度,变化周期,变化的时间单元信息,以及变化周期的起始位置中的一项或多项是协议约定的或者由所述基站发送给所述终端的。
在本申请实施例中,所述时域资源粒度是每M个OFDM符号,M大于等于1;或者,每N个时隙,N大于等于1;或者,每K个SSB周期,K大于等于1。
在本申请实施例中,所述第一信号的特征随频域资源变化的方式,变化的频域资源粒度中的一项或多项是协议约定的或者由所述基站发送给所述终端的。
在本申请实施例中,所述频域资源粒度是子载波,子载波组,BWP,BWP组,RB,RB bundle或RB组。
在本申请实施例中,所述第一信号包括以下至少一项:SSB,CSI-RS,SIB1,DMRS,TRS。
在本申请实施例中,装置1000还包括:
第二获取模块,用于接收所述节点关联的基站发送的配置信息;
所述配置信息指示以下的一项或多项:
第一关联关系;
第二关联关系;
第三关联关系;
所述第一信号的特征随时域资源变化的时域资源粒度,变化周期,变化的时间单元信息,变化周期的起始位置中的至少一项;
所述第一信号的特征随频域资源变化的方式,变化的频域资源粒度中的至少一项;
其中,所述第一关联关系包括所述第一信号的特征变化规律与节点的索引的关联关系;
所述第二关联关系包括:所述第二信号的相关信息与节点的索引的关联关系,所述第二信号包括以下一项或多项:SSB、CSI-RS,DMRS,MSG2,MSG4,MSGB;
所述第三关联关系包括第三信号与节点的索引的关联关系,所述第三信号包括以下一项或多项:SSB、CSI-RS、DMRS。
本申请实施例提供的装置能够实现图4所示的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
参见图11,本申请实施例提供一种节点识别装置,该装置1100包括:
第四发送模块1101,用于向所述基站关联的第一节点发送第二信号,所述第二信号的相关信息与所述第一节点对应。
在本申请实施例中,所述第二信号的相关信息包括以下至少一项:序列格式,序列相位,初始序列,加扰序列,以及序列的正交掩码。
在本申请实施例中,所述第二信号包括以下一项或多项:SSB、CSI-RS,DMRS,MSG2,MSG4,MSGB。
在本申请实施例中,装置1100包括:
第五发送模块,用于向所述第一节点发送配置信息;
其中,所述配置信息指示以下的一项或多项:
第一关联关系;
第二关联关系;
第三关联关系;
所述第一信号的特征随时域资源变化的时域资源粒度,变化周期,变化的时间单元信息,变化周期的起始位置中的至少一项;
所述第一信号的特征随频域资源变化的方式,变化的频域资源粒度中的至少一项;
其中,所述第一关联关系包括所述第一信号的特征变化规律与节点的索引的关联关系;
所述第二关联关系包括:所述第二信号的相关信息与节点的索引的关联 关系;
所述第三关联关系包括第三信号与节点的索引的关联关系,所述第三信号包括以下一项或多项:SSB、CSI-RS、DMRS。
本申请实施例提供的装置能够实现图5所示的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图12为实现本申请实施例的一种终端的硬件结构示意图。
该终端1200包括但不限于:射频单元1201、网络模块1202、音频输出单元1203、输入单元1204、传感器1205、显示单元1206、用户输入单元1207、接口单元1208、存储器1209、以及处理器1210等部件。
本领域技术人员可以理解,终端1200还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1210逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图12中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1204可以包括图形处理器(Graphics Processing Unit,GPU)12041和麦克风12042,图形处理器12041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1206可包括显示面板12061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板12061。用户输入单元1207包括触控面板12071以及其他输入设备12072。触控面板12071,也称为触摸屏。触控面板12071可包括触摸检测装置和触摸控制器两个部分。其他输入设备12072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1201将来自网络侧设备的下行数据接收后,给处理器1210处理;另外,将上行的数据发送给网络侧设备。通常,射频单元1201包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1209可用于存储软件程序或指令以及各种数据。存储器1209可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储 操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1209可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器1210可包括一个或多个处理单元;可选的,处理器1210可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1210中。
本申请实施例提供的终端能够实现图3所示的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种网络侧设备。如图13所示,该网络侧设备1300包括:天线1301、射频装置1302、基带装置1303。天线1301与射频装置1302连接。在上行方向上,射频装置1302通过天线1301接收信息,将接收的信息发送给基带装置1303进行处理。在下行方向上,基带装置1303对要发送的信息进行处理,并发送给射频装置1302,射频装置1302对收到的信息进行处理后经过天线1301发送出去。
上述频带处理装置可以位于基带装置1303中,以上实施例中网络侧设备执行的方法可以在基带装置1303中实现,该基带装置1303包括处理器1304和存储器1305。
基带装置1303例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图13所示,其中一个芯片例如为处理器1304,与存储器1305连接,以调用存储器1305中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置1303还可以包括网络接口1306,用于与射频装置1302交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本申请实施例的网络侧设备还包括:存储在存储器1305上并可 在处理器1304上运行的指令或程序,处理器1304调用存储器1305中的指令或程序执行图10-图11所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种程序产品,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如图3-图5所述的处理的方法的步骤。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述图3-图5所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述图3-图5所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (44)

  1. 一种节点识别方法,由终端执行,包括:
    获取第一信息,所述第一信息与基站发送的信号相关;
    根据所述第一信息,确定基站关联的一个或多个节点;
    其中,所述节点包括以下至少一项:
    可重构智能表面节点;
    中继节点;
    接入和回传一体化IAB节点。
  2. 根据权利要求1所述的方法,其中,获取第一信息,包括:
    检测基站发送的第一信号;
    根据所述第一信号,确定第一信息,所述第一信息包括:所述第一信号的特征变化信息;
    所述根据所述第一信息,确定基站关联的节点的信息,包括:
    根据所述第一信号的特征变化信息,确定基站关联的一个或多个节点的信息。
  3. 根据权利要求2所述的方法,其中,在检测基站发送的第一信号之前,所述方法还包括:
    确定所述终端是否能检测到所述节点发送的信号;
    如果所述终端能检测到所述节点发送的信号,则执行根据所述第一信号,确定第一信息的步骤。
  4. 根据权利要求3所述的方法,其中,所述方法还包括:
    发送所述第一信号的检测结果,所述检测结果包括:是否能检测到节点发送的信号,和/或,是否能确定基站关联的节点的信息。
  5. 根据权利要求2所述的方法,其中,所述根据所述第一信号的特征变化信息,确定基站关联的节点的信息,包括:
    根据所述第一信号的特征变化信息,以及第一关联关系,确定基站关联的节点的索引;
    其中,所述第一关联关系包括所述第一信号的特征变化规律与节点的索 引的关联关系。
  6. 根据权利要求5所述的方法,其中,所述第一关联关系由协议约定或者由所述基站发送给所述终端的。
  7. 根据权利要求5所述的方法,其中,所述方法还包括:
    如果所述基站关联的节点被激活或者关闭,则通过接收基站发送的信令来获取所述被激活或者关闭的节点的信息;
    或者,
    如果所述第一信号的特征变化规律与节点的索引的关联关系发生变更,则通过接收基站发送的信令来获取更新后的所述第一信号的特征变化规律与节点的索引的关联关系。
  8. 根据权利要求2所述的方法,其中,所述第一信号的特征包括以下一项或多项:相位,幅度,极化方式,频率,轨道角动量OAM方式。
  9. 根据权利要求8所述的方法,其中,
    所述第一信号的相位,幅度,极化方式,频率和/或OAM方式的变化是通过所述节点关联的二极管的开或关来改变或控制的;
    或者,
    所述第一信号的相位,幅度,极化方式,频率和/或OAM方式的变化是通过为所述节点施加不同的电压改变或控制的。
  10. 根据权利要求2所述的方法,其中,所述第一信号的特征随时域资源变化的方式,变化的时域资源粒度,变化周期,变化的时间单元信息,以及变化周期的起始位置中的一项或多项是协议约定的或者由所述基站发送给所述终端的。
  11. 根据权利要求2所述的方法,其中,所述时域资源粒度是每M个正交频分复用符号,M大于或等于1;或者,每N个时隙,N大于或等于1;或者,每K个同步信号块SSB周期,K大于或等于1。
  12. 根据权利要求2所述的方法,其中,所述第一信号的特征随频域资源变化的方式,变化的频域资源粒度中的一项或多项是协议约定的或者由所述基站发送给所述终端的。
  13. 根据权利要求12所述的方法,其中,所述频域资源粒度是子载波,子 载波组,带宽部分BWP,BWP组,无线承载RB,RB束或RB组。
  14. 根据权利要求2-13任一项所述的方法,其中,所述第一信号包括以下至少一项:SSB,信道状态信息参考信号CSI-RS,系统信息块1,解调参考信号DMRS,跟踪参考信号TRS。
  15. 根据权利要求1所述的方法,其中,所述获取第一信息,包括:
    接收基站向第一节点发送的第二信号,所述第二信号的相关信息与所述第一节点对应;
    根据所述第二信号,确定第一信息,所述第一信息包括:所述第二信号的相关信息;
    所述根据所述第一信息,确定基站关联的一个或多个节点,包括:
    根据所述第二信号的相关信息,确定基站关联的一个或多个节点。
  16. 根据权利要求15所述的方法,其中,所述第二信号的相关信息包括以下至少一项:
    序列格式,序列相位,初始序列,加扰序列,以及序列的正交掩码。
  17. 根据权利要求15所述的方法,其中,所述根据所述第二信号的相关信息,确定基站关联的一个或多个节点,包括:
    根据所述第二信号的相关信息,以及第二关联关系,确定基站关联的节点的索引;
    其中,所述第二关联关系包括:所述第二信号的相关信息与节点的索引的关联关系。
  18. 根据权利要求17所述的方法,其中,所述第二关联关系由协议约定或者由所述基站发送给所述终端的。
  19. 根据权利要求15所述的方法,其中,
    所述第二信号包括以下一项或多项:SSB、CSI-RS,DMRS,消息2,消息4,消息B。
  20. 根据权利要求1所述的方法,其中,所述获取第一信息,包括:
    接收基站发送的第一信息,所述第一信息指示第三关联关系,其中,所述第三关联关系包括第三信号与节点的索引的关联关系。
  21. 根据权利要求20所述的方法,其中,所述第三信号包括以下一项或多 项:SSB、CSI-RS、DMRS。
  22. 根据权利要求1所述的方法,其中,所述方法还包括:
    向网络侧发送所述终端识别的一个或多个节点的信息。
  23. 根据权利要求1所述的方法,其中,如果所述终端识别出一个或多个节点,所述方法还包括:
    向网络侧发送所述终端期望的一个或多个节点的信息。
  24. 一种节点识别方法,由节点执行,包括:
    改变或控制由所述节点关联的基站发送的第一信号的特征;
    其中,所述第一信号的特征变化信息与所述节点的信息关联。
  25. 根据权利要求24所述的方法,其中,所述第一信号的特征包括以下一项或多项:相位,幅度,极化方式,频率,OAM方式。
  26. 根据权利要求24所述的方法,其中,所述改变或控制由所述节点关联的基站发送的第一信号的特征,包括:
    通过调整所述节点关联的二极管的开或关来改变或控制由所述节点关联的基站发送的第一信号的相位,幅度,极化方式,频率和/或OAM方式;
    或者,
    通过为所述节点施加不同的电压改变或控制由所述节点关联的基站发送的第一信号的相位,幅度,极化方式,频率和/或OAM方式。
  27. 根据权利要求24所述的方法,其中,所述第一信号的特征随时域资源变化的方式,变化的时域资源粒度,变化周期,变化的时间单元信息,以及变化周期的起始位置中的一项或多项是协议约定的或者由所述基站发送给终端的。
  28. 根据权利要求27所述的方法,其中,所述时域资源粒度是每M个正交频分复用符号,M大于等于1;或者,每N个时隙,N大于等于1;或者,每K个SSB周期,K大于等于1。
  29. 根据权利要求24所述的方法,其中,所述第一信号的特征随频域资源变化的方式,变化的频域资源粒度中的一项或多项是协议约定的或者由所述基站发送给终端的。
  30. 根据权利要求29所述的方法,其中,所述频域资源粒度是子载波,子 载波组,BWP,BWP组,RB,RB束或RB组。
  31. 根据权利要求24-30任一项所述的方法,其中,所述第一信号包括以下至少一项:SSB,CSI-RS,系统信息块1,DMRS,TRS。
  32. 根据权利要求24所述的方法,其中,在改变或控制由所述节点关联的基站发送的第一信号的特征之前,所述方法还包括:
    接收所述节点关联的基站发送的配置信息;
    所述配置信息指示以下的一项或多项:
    第一关联关系;
    第二关联关系;
    第三关联关系;
    所述第一信号的特征随时域资源变化的时域资源粒度,变化周期,变化的时间单元信息,变化周期的起始位置中的至少一项;
    所述第一信号的特征随频域资源变化的方式,变化的频域资源粒度中的至少一项;
    其中,所述第一关联关系包括所述第一信号的特征变化规律与节点的索引的关联关系;
    所述第二关联关系包括:第二信号的相关信息与节点的索引的关联关系,所述第二信号包括以下一项或多项:SSB、CSI-RS,DMRS,消息2,消息4,消息B;
    所述第三关联关系包括第三信号与节点的索引的关联关系,所述第三信号包括以下一项或多项:SSB、CSI-RS、DMRS。
  33. 一种节点识别方法,由基站执行,包括:
    向所述基站关联的第一节点发送第二信号,所述第二信号的相关信息与所述第一节点对应。
  34. 根据权利要求33所述的方法,其中,所述第二信号的相关信息包括以下至少一项:
    序列格式,序列相位,初始序列,加扰序列,以及序列的正交掩码。
  35. 根据权利要求33所述的方法,其中,
    所述第二信号包括以下一项或多项:SSB、CSI-RS,DMRS,消息2,消 息4,消息B。
  36. 根据权利要求33所述的方法,其中,所述方法还包括:
    向所述第一节点发送配置信息;
    其中,所述配置信息指示以下的一项或多项:
    第一关联关系;
    第二关联关系;
    第三关联关系;
    第一信号的特征随时域资源变化的时域资源粒度,变化周期,变化的时间单元信息,变化周期的起始位置中的至少一项,所述第一信号包括以下至少一项:SSB,CSI-RS,系统信息块1,DMRS,TRS;
    所述第一信号的特征随频域资源变化的方式,变化的频域资源粒度中的至少一项;
    其中,所述第一关联关系包括所述第一信号的特征变化规律与节点的索引的关联关系;
    所述第二关联关系包括:所述第二信号的相关信息与节点的索引的关联关系;
    所述第三关联关系包括第三信号与节点的索引的关联关系,所述第三信号包括以下一项或多项:SSB、CSI-RS、DMRS。
  37. 一种节点识别装置,包括:
    第一获取模块,用于获取第一信息,所述第一信息与基站发送的信号相关;
    第一确定模块,用于根据所述第一信息,确定基站关联的一个或多个节点;
    其中,所述节点包括以下至少一项:
    可重构智能表面节点;
    中继节点;
    IAB节点。
  38. 一种节点识别装置,包括:
    处理模块,用于改变或控制由所述节点关联的基站发送的第一信号的特 征;
    其中,所述第一信号的特征变化信息与所述节点的信息关联。
  39. 一种节点识别装置,包括:
    第四发送模块,用于向基站关联的第一节点发送第二信号,所述第二信号的相关信息与所述第一节点对应。
  40. 一种终端,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现如权利要求1至23中任一项所述的方法的步骤。
  41. 一种网络侧设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现如权利要求24至36中任一项所述的方法的步骤。
  42. 一种可读存储介质,所述可读存储介质上存储程序或指令,其中,所述程序或指令被处理器执行时实现如权利要求1至36中任一项所述的方法的步骤。
  43. 一种芯片,包括处理器和通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至36中任一项所述的方法的步骤。
  44. 一种计算机程序产品,其中,所述计算机程序产品被存储在非易失的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如权利要求1至36中任一项所述的方法的步骤。
PCT/CN2021/129118 2020-11-06 2021-11-05 识别节点方法、装置、设备及可读存储介质 WO2022095979A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21888671.1A EP4221296A4 (en) 2020-11-06 2021-11-05 NODE IDENTIFICATION METHOD AND APPARATUS, APPARATUS AND READABLE STORAGE MEDIUM
US18/140,608 US20230261708A1 (en) 2020-11-06 2023-04-27 Node identification method and apparatus, device, and readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011233774.0A CN114449528A (zh) 2020-11-06 2020-11-06 识别节点方法、装置、设备及可读存储介质
CN202011233774.0 2020-11-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/140,608 Continuation US20230261708A1 (en) 2020-11-06 2023-04-27 Node identification method and apparatus, device, and readable storage medium

Publications (1)

Publication Number Publication Date
WO2022095979A1 true WO2022095979A1 (zh) 2022-05-12

Family

ID=81360704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129118 WO2022095979A1 (zh) 2020-11-06 2021-11-05 识别节点方法、装置、设备及可读存储介质

Country Status (4)

Country Link
US (1) US20230261708A1 (zh)
EP (1) EP4221296A4 (zh)
CN (1) CN114449528A (zh)
WO (1) WO2022095979A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115361107A (zh) * 2022-10-20 2022-11-18 华南理工大学 信令指示方法、装置、通信设备及可读存储介质
WO2023246528A1 (zh) * 2022-06-25 2023-12-28 大唐移动通信设备有限公司 Ssb传输方法、装置及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220322321A1 (en) * 2021-04-01 2022-10-06 Qualcomm Incorporated Reconfigurablle intelligent surface (ris) information update
WO2024026667A1 (en) * 2022-08-02 2024-02-08 Qualcomm Incorporated Coordination between network devices
CN117202363B (zh) * 2023-11-03 2024-02-13 鹏城实验室 空口资源分配方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027713A1 (en) * 2018-07-30 2020-02-06 Telefonaktiebolaget Lm Ericsson (Publ) Iab nodes with multiple mts – multi-path connectivity
CN111416646A (zh) * 2020-02-17 2020-07-14 北京大学 传播环境可调控方法、装置、电子设备和计算机存储介质
CN111436062A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 一种同步信号发送和接收的方法及装置
CN113382439A (zh) * 2020-03-09 2021-09-10 维沃移动通信有限公司 信息上报方法、接入方式确定方法、终端和网络设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501955B1 (en) * 2000-06-19 2002-12-31 Intel Corporation RF signal repeater, mobile unit position determination system using the RF signal repeater, and method of communication therefor
US7580672B2 (en) * 2003-06-27 2009-08-25 Qualcomm Incorporated Synthetic path diversity repeater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027713A1 (en) * 2018-07-30 2020-02-06 Telefonaktiebolaget Lm Ericsson (Publ) Iab nodes with multiple mts – multi-path connectivity
CN111436062A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 一种同步信号发送和接收的方法及装置
CN111416646A (zh) * 2020-02-17 2020-07-14 北京大学 传播环境可调控方法、装置、电子设备和计算机存储介质
CN113382439A (zh) * 2020-03-09 2021-09-10 维沃移动通信有限公司 信息上报方法、接入方式确定方法、终端和网络设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4221296A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246528A1 (zh) * 2022-06-25 2023-12-28 大唐移动通信设备有限公司 Ssb传输方法、装置及存储介质
CN115361107A (zh) * 2022-10-20 2022-11-18 华南理工大学 信令指示方法、装置、通信设备及可读存储介质
CN115361107B (zh) * 2022-10-20 2023-02-14 华南理工大学 信令指示方法、装置、通信设备及可读存储介质

Also Published As

Publication number Publication date
EP4221296A4 (en) 2024-03-27
EP4221296A1 (en) 2023-08-02
CN114449528A (zh) 2022-05-06
US20230261708A1 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
WO2022095979A1 (zh) 识别节点方法、装置、设备及可读存储介质
US11617155B2 (en) Method and apparatus for UE power saving in RRC_IDLE/INACTIVE STATE
EP4228097A1 (en) Operating mode indication method, apparatus, and device
EP3494648B1 (en) 5g beam group discontinuous reception
US8265661B2 (en) Methods and systems for idle mode operation in multi-mode mobile stations
CN108337729B (zh) 在周边感知联网(nan)中使用同步信标的系统、装置和方法
WO2019214382A1 (zh) 通信的方法和通信装置
US11838861B2 (en) Handling UE context upon inactivity
US20230136962A1 (en) Terminal Information Obtaining Method, Terminal, and Network Side Device
CN114172773B (zh) 调制方法及装置、通信设备和可读存储介质
US20180331730A1 (en) Technique for bi-static radar operation simultaneously with an active mmwave link
JP2021517752A (ja) 同期信号ブロックのための関連区間を決定する方法及び装置
US20230072085A1 (en) Method and apparatus for processing synchronous signal block,communications device, and readable storage medium
CN111225433A (zh) 一种信息处理方法及信息处理装置
KR102243484B1 (ko) 수신 노드, 송신 노드, 및 송신 방법
WO2022052937A1 (zh) 工作状态的切换方法及装置、终端及可读存储介质
WO2022151423A1 (zh) 一种寻呼指示方法及装置
WO2021218909A1 (zh) 频域偏移的确定方法及装置、通信设备和可读存储介质
WO2022247832A1 (zh) 无线通信方法、装置和设备
WO2023274249A1 (zh) 空间关系指示方法和设备
WO2023040933A1 (zh) 波束信息的确定方法、终端及网络侧设备
US20240040628A1 (en) Communication method, user equipment, base station and storage medium
US11626913B2 (en) Method and apparatus for beam management after channel setup
WO2023241539A1 (zh) 波束指示方法、装置及终端
WO2023143562A1 (zh) 来波方向估计方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888671

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021888671

Country of ref document: EP

Effective date: 20230427

NENP Non-entry into the national phase

Ref country code: DE