WO2022095594A1 - 图像显示装置及可穿戴设备 - Google Patents

图像显示装置及可穿戴设备 Download PDF

Info

Publication number
WO2022095594A1
WO2022095594A1 PCT/CN2021/117417 CN2021117417W WO2022095594A1 WO 2022095594 A1 WO2022095594 A1 WO 2022095594A1 CN 2021117417 W CN2021117417 W CN 2021117417W WO 2022095594 A1 WO2022095594 A1 WO 2022095594A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
light
display device
image display
line
Prior art date
Application number
PCT/CN2021/117417
Other languages
English (en)
French (fr)
Inventor
郑光
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202022585211.XU external-priority patent/CN214041882U/zh
Priority claimed from CN202011241353.2A external-priority patent/CN112180606A/zh
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21888293.4A priority Critical patent/EP4242726A4/en
Publication of WO2022095594A1 publication Critical patent/WO2022095594A1/zh
Priority to US18/195,091 priority patent/US20230273442A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0025Diffusing sheet or layer; Prismatic sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • G02B6/0088Positioning aspects of the light guide or other optical sheets in the package
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • G02B6/0091Positioning aspects of the light source relative to the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • G02B2027/0125Field-of-view increase by wavefront division
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/014Head-up displays characterised by optical features comprising information/image processing systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1323Arrangements for providing a switchable viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor

Definitions

  • the present application relates to the field of electronic technology, and in particular, to an image display device and a wearable device.
  • Embodiments of the present application provide an image display device and a wearable device, which can improve the display effect of the image display device.
  • a light emitting unit the light emitting unit is used for emitting an optical signal, the optical signal is transmitted to the waveguide assembly, and is then transmitted through the waveguide assembly to form an outgoing optical signal, and the center of the outgoing optical signal deviates from the center of the user's viewing angle .
  • the implementation of this application provides a wearable device, which includes:
  • An image display device is provided in the casing, and the image display device is the above-mentioned image display device.
  • FIG. 1 is a schematic diagram of directions and angles provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a first structure of an image display device provided by an embodiment of the present application.
  • FIG. 3 is a schematic side view of the structure of the image display device shown in FIG. 2 .
  • FIG. 5 is a schematic diagram of a second structure of an image display device provided by an embodiment of the present application.
  • FIG. 6 is a display effect diagram of the image display device shown in FIG. 5 .
  • FIG. 7 is a side view of the image display device shown in FIG. 5 .
  • FIG. 9 is a schematic diagram of a fourth structure of an image display device provided by an embodiment of the present application.
  • FIG. 10 is a side view of the image display device shown in FIG. 9 .
  • FIG. 11 is a schematic top view of the prism in the image display device shown in FIG. 10 .
  • FIG. 12 is a three-dimensional schematic diagram of the prism shown in FIG. 10 .
  • FIG. 14 is a schematic diagram of a fifth structure of an image display device provided by an embodiment of the present application.
  • FIG. 15 is a side view of the image display device shown in FIG. 14 .
  • FIG. 16 is a schematic top view of the prism in the image display device shown in FIG. 14 .
  • FIG. 17 is a three-dimensional schematic diagram of the prism shown in FIG. 14 .
  • FIG. 19 is another schematic structural diagram of a prism of an image display device according to an embodiment of the present application.
  • FIG. 20 is a display effect diagram of the prism shown in FIG. 19 replacing the prism in the display device shown in FIG. 14 .
  • FIG. 21 is a schematic diagram of a sixth structure of an image display device provided by an embodiment of the present application.
  • FIG. 23 is a three-dimensional schematic diagram of the prism shown in FIG. 21 .
  • FIG. 24 is a side view of the prism shown in FIG. 21 .
  • FIG. 25 is a display effect diagram of the image display device shown in FIG. 21 .
  • FIG. 27 is a schematic diagram of an eighth structure of an image display device provided by an embodiment of the present application.
  • FIG. 28 is a schematic diagram of a ninth structure of an image display device provided by an embodiment of the present application.
  • FIG. 29 is a schematic structural diagram of a wearable device provided by an embodiment of the present application.
  • FIG. 32 is a top view of the light shielding member shown in FIG. 30 .
  • FIG. 33 is another schematic structural diagram of a light shielding member in a wearable device according to an embodiment of the present application.
  • FIG. 35 is a schematic structural diagram of a Fabry-Perot spatial filter in a wearable device provided by an embodiment of the present application.
  • FIG. 36 is a schematic diagram of the effect of the light shielding member shown in FIG. 35 .
  • FIG. 37 is another schematic structural diagram of a light shielding member in a wearable device provided by an embodiment of the present application.
  • FIG. 38 is a schematic diagram of another state of the light shielding member shown in FIG. 37 .
  • FIG. 40 is a corresponding diagram of the rainbow pattern and the viewing angle of the human eye provided by the embodiment of the present application.
  • FIG. 41 is a schematic diagram of the direction of the sun and the human eye according to an embodiment of the present application.
  • FIG. 42 is a schematic diagram of another direction of the sun and the human eye according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of directions and angles provided by an embodiment of the present application.
  • the user is looking ahead horizontally as an example for illustration. center of.
  • the line of sight level is parallel to the standard horizontal direction
  • the standard level at the middle of the user's vertical viewing angle is the line of sight level.
  • the vertical line of sight in the embodiment of the present application is parallel to the standard vertical direction and perpendicular to the standard horizontal direction.
  • the pitch angle is the angle between the standard vertical direction relative to the user's viewing angle center O and the plane where the user's viewing angle center O is located, and the pitch direction is the direction corresponding to the pitch angle.
  • the azimuth is the angle between the standard horizontal direction relative to the user's viewing angle center O and the plane where the user's viewing angle center O is located, and the azimuth direction is the direction corresponding to the azimuth angle.
  • the angle and position of the waveguide plate 240 and the projector 220 are matched.
  • the accompanying drawing is a schematic top view corresponding to the single-purpose image display device 200 , and the structure of the other-purpose image display device is axisymmetric to it (not shown in the figure).
  • the optical projector 220 and the waveguide plate 240 are distributed in an orthogonal state, that is, the optical signal (the light corresponding to the solid line in the figure) emitted by the optical projector 220 propagates along the normal line of its exit interface, and enters the waveguide plate in the direction of orthogonal incidence.
  • 240 which is also incident-coupled into the surface of the grating 260 in an orthogonal direction and diffracted.
  • the azimuth angle of the projector 220 is 0 degrees.
  • the viewing angle of the human eye is set as the standard horizontal direction
  • the placement direction of the waveguide plate 240 is orthogonal to the line of sight direction of the human eye 300
  • the coupling-in grating 260 and the coupling-out grating 280 are both parallel to the waveguide plate 240 , and are coupled through the waveguide plate 240 and the coupling-out grating 280 .
  • the direction of the outgoing optical signal is consistent with the normal direction of the waveguide plate 240 , that is, consistent with the viewing angle direction of the human eye. Please refer to FIG. 3 .
  • FIG. 3 FIG.
  • FIG. 3 is a schematic side view of the image display device shown in FIG. 2 .
  • the viewing angle of the human eye is set as a standard horizontal plane, and the direction of the optical signal coupled out through the coupling-in grating 260, the coupling-out grating 280 and the waveguide plate 240 is also a standard horizontal direction, and the corresponding optical projector 220 and the waveguide plate 240 are distributed in an orthogonal state. It can be understood that, taking the waveguide plate 240 as a reference, the pitch angle of the projector 220 is 0 degrees.
  • the black solid line frame in the figure represents the field of view of a certain size centered directly in front of the human eye when the human eye is looking straight ahead, and the intersection of the black dotted lines is the central field of view position that the human eye looks straight ahead, that is, the user's viewing angle center O.
  • the dotted tree pattern represents the virtual image generated by the image display device 200 .
  • the scene directly viewed by the human eye is an image in which the center of the virtual image coincides with the center of the viewing angle of the real scene.
  • the light emitting unit 210 may be a micro-projection system, and the micro-projection system may be based on digital light processing (Digital Light Processing, DLP), liquid crystal on silicon (Liquid Crystal on Silicon, LCOS) or micro light emitting diode (Micro Light Emitting Diode, Micro- LED), organic light-emitting diode (Organic Light-Emitting Diode, OLED) or Micro-OLED display solutions such as micro-projection light path.
  • DLP Digital Light Processing
  • LCOS liquid crystal on silicon
  • micro- LED micro light emitting diode
  • OLED Organic Light-Emitting Diode
  • Micro-OLED display solutions such as micro-projection light path.
  • the image output by the micro-projection system can be located at infinity, that is, the single field of view light output by the micro-projection system is parallel light.
  • the light emitting unit 210 is used for emitting an optical signal, the optical signal is transmitted to the waveguide assembly 230 and then transmitted through the waveguide assembly 230 to form an outgoing optical signal.
  • the light signal emitted by the light emitting unit 210 is conducted through the waveguide assembly 230 and then enters the user's eyes 300 to form a virtual image, the light signal corresponding to the real scene enters the user's eyes 300 to form a real image, and the virtual image and the real image are superimposed to form an augmented reality image.
  • the center of the outgoing light signal deviates from the center O of the user's view angle, so that the center of the virtual image formed by the outgoing light signal can be deviated from the center O of the user's view angle.
  • the center of the virtual image avoids the center of the user's angle of view, and avoids the center of the user's angle of view with the highest sensitivity O, reduce the visual difference caused by different brightness, improve the display effect and user experience.
  • the optical signal emitted by the light emitting unit 210 is incident on the waveguide assembly 230 at an incident angle with the incident surface 242 of the waveguide assembly 230 , so that the optical signal is transmitted through the waveguide assembly 230 and formed to exit from the exit surface 244 of the waveguide assembly 230 Angle the outgoing light signal, and make the center of the outgoing light signal deviate from the user's viewing angle center O on the line of sight level and/or the line of sight vertical plane, wherein the user's view angle center O is located at the junction of the line of sight horizontal plane and the line of sight vertical plane.
  • the side of the waveguide component facing the light emitting unit has a normal line, that is, the incident surface of the waveguide component has a normal line, the optical signal and the normal line F on the orthographic projection of the line of sight level have a first included angle, and the outgoing light signal and the normal line at the line of sight level have a first included angle.
  • the orthographic projection has a second included angle, the first included angle and the second included angle being equal.
  • the center of the virtual image is staggered from the center of the user's perspective, which can improve the matching problem caused by different brightness.
  • the center of the virtual image avoids the center of the user's viewing angle, avoids the center of the user's viewing angle with the highest sensitivity, and reduces the brightness difference. The visual difference to improve the display effect and user experience.
  • the center of the virtual image is staggered from the center of the user's viewing angle, so as to prevent the virtual image from being too high and the most important central area of the real scene cannot be seen clearly.
  • FIG. 5 is a top view of the image display device
  • the central light signal L102 in the figure may be equivalent to a diagram of the orthographic projection of the central light signal on the line of sight level
  • the outgoing light signal L104 may be equivalent to the outgoing light signal in the line of sight. Illustration of an orthographic projection of the horizontal plane.
  • FIG. 7 is a side view of the image display device shown in FIG. 5 .
  • the normal F of the side of the waveguide assembly 230 facing the light emitting unit 210 may have a third angle ⁇ 1 with the line of sight level H, that is, the side of the waveguide assembly 230 facing the light emitting unit 210 is not perpendicular to the line of sight level.
  • the orthographic projection of the optical signal and the normal F on the vertical plane of the line of sight has a fourth angle ⁇ 2, the outgoing light signal has a fifth angle with the line of sight horizontal plane, the fourth angle ⁇ 2 is equal to the third angle ⁇ 1, and the fifth angle is equal to The sum of the fourth included angle ⁇ 2 and the third included angle ⁇ 1.
  • the central optical signal L102 in the optical signal is also used as an example for description.
  • the waveguide assembly 230 can be inclined as required, that is, the side of the waveguide assembly 230 facing the light emitting unit 210 is not perpendicular to the line of sight level H, so that the normal F of the side of the waveguide assembly 230 facing the light emitting unit 210 and the line of sight level have the first Triangle ⁇ 1.
  • the outgoing optical signal L104 after the central optical signal L102 is conducted and exited by the waveguide assembly 230 can be parallel to the line of sight level H, that is, the central optical signal L102 emitted by the light emitting unit 210 is at a fourth angle with the normal F in the elevation direction.
  • ⁇ 2 is incident into the waveguide plate assembly, and the orthographic projection of the central optical signal L102 and the normal line F on the vertical plane of the line of sight has a fourth angle ⁇ 2.
  • the fifth angle between the central light signal L102 in the elevation direction and the line of sight level is an angle of 2 ⁇ , so that the angle between the outgoing light signal L104 and the orthographic projection of the normal F on the line of sight vertical plane is ⁇ 3, and the outgoing light signal L104 and the line of sight level H
  • the included angle is 0 degrees, i.e. parallel to the line of sight level.
  • FIG. 7 is a side view of the image display device 200
  • the central light signal L102 in the figure may be equivalent to the diagram of the orthographic projection of the central light signal on the vertical plane of the line of sight
  • the outgoing light signal L104 may be equivalent to the outgoing light signal Illustration of the orthographic projection of L104 on the vertical plane of the line of sight.
  • the normal line F may also be parallel to the line of sight level.
  • the angle between the outgoing light signal L104 and the line of sight horizontal plane H is ⁇ degrees, that is, the center of the virtual image formed by the light signal appears to be staggered from the orthographic projection of the user's viewing angle center O on the line of sight vertical plane.
  • the light emitting unit 210 may be fixedly arranged, so that the central light signal L102 emitted by the light emitting unit 210 is incident on the waveguide assembly 230 at a specific incident angle.
  • the waveguide assembly 230 can be set as required. If the normal F of the waveguide assembly 230 facing the light emitting unit 210 and the line of sight level have a third angle ⁇ 1, the central optical signal L102 emitted by the light emitting unit 210 and the normal F have a third angle ⁇ 1.
  • the orthographic projection on the line-of-sight plane has a first included angle ⁇ 1
  • the orthographic projection of the central optical signal L102 and the normal F on the line-of-sight vertical plane has a fourth included angle ⁇ 2, so that the virtual image formed by the light signal appearing in the light emitting unit 210 has a fourth included angle ⁇ 2.
  • the center is offset from the center O of the user's viewing angle in the horizontal plane of the sight line, but not in the vertical plane of the sight line.
  • the orthographic projection of the central light signal L102 emitted by the light emitting unit 210 and the normal F on the line of sight has a first included angle ⁇ 1, and the center light
  • the orthographic projection of the signal L102 and the normal line F on the vertical plane of the line of sight forms a fourth angle ⁇ 2, so that the center of the virtual image formed by the light signal appearing in the light emitting unit 210 and the center O of the user's view angle are not only offset in the line of sight level, but also in the line of sight.
  • the vertical line of sight is offset.
  • the light emitting unit 210 may be inclined relative to the waveguide assembly 230 .
  • the positional relationship between the optical path of the optical signal emitted by the light emitting unit 210 and the waveguide assembly 230 is no longer limited to the mutually orthogonal positional relationship, which provides more space for ergonomic design and ID design, and helps to achieve better performance. Comfort and appearance.
  • the angle of the waveguide assembly 230 can be changed while keeping the position of the virtual image unchanged.
  • the pitch angle of the waveguide assembly 230 may not be placed at 0 degrees, but may be placed with a pitch angle of ⁇ .
  • the overall appearance and housing design of the wearable device accommodating the waveguide assembly 230 are more flexible, which helps to improve the appearance performance.
  • the overall appearance and housing of the wearable device can be more ergonomic, contributing to better comfort.
  • the image display device 200 may further include a first transmission mechanism 410.
  • the light emission unit 210 is disposed on the first transmission mechanism 410.
  • the first transmission mechanism 410 can drive the light emission unit 210 to move to change the angle of the incident angle and the angle of the output angle.
  • the first transmission mechanism 410 can drive the light emitting unit 210 to move to adjust the incident angle of the incident light guide assembly 230 of the central optical signal emitted by the light emitting unit 210, so that the center of the outgoing optical signal deviates from the center O of the user's viewing angle.
  • the side of the waveguide assembly 230 facing the light emitting unit 210 can be perpendicular to the line of sight level, and the first transmission mechanism 410 can change the light emitting unit 210 to change the incident angle of the light signal and the corresponding exit angle of the outgoing light signal, so as to make the virtual image
  • the center of the virtual image is staggered from the orthographic projection of the user's viewing angle center O on the line of sight horizontal plane or the orthographic projection perpendicular to the line of sight, or the center of the virtual image can be staggered from the orthographic projection of the user's visual angle center O on the line of sight horizontal plane and the line of sight vertical plane.
  • the side of the waveguide assembly 230 facing the light emitting unit 210 may not be perpendicular to the line of sight level.
  • the first transmission mechanism 410 can change the light emitting unit 210 to change the incident angle of the light signal and the corresponding exit angle of the outgoing light signal, so that the The center of the virtual image is staggered from the orthographic projection of the user's viewing angle center O on the line of sight horizontal plane or the orthographic projection perpendicular to the line of sight, or the center of the virtual image and the orthographic projection of the user's visual angle center O on both the line of sight horizontal plane and the line of sight vertical plane can be staggered.
  • the first transmission mechanism 410 may be a micro motor, an electromagnetic drive, a sliding block, a sliding table, a micro rail car, or the like.
  • the projector is fixed on the first transmission mechanism 410 .
  • the first transmission mechanism 410 can be used to provide the external force required for the movement of the light emitting unit 210, so that the light emitting unit 210 can move, so as to change the incident waveguide of the light signal emitted by the light emitting unit 210 The angle of incidence of the assembly 230 .
  • the angle of the first included angle ⁇ 1 may be set as required, for example, the first included angle ⁇ 1 may be less than 16 degrees or less than 12 degrees or less than 8 degrees. It can be understood that the first included angle ⁇ 1 can be selected based on the industrial design (Industrial Design, ID) of the wearable device, or can be designed based on the comfort of the offset angle of the virtual image relative to the human eye. It should be noted that the above-mentioned angle range of the first included angle ⁇ 1 is just an example, and those skilled in the art can adjust the range of the first included angle ⁇ 1 as needed. For example, the range of the first included angle ⁇ 1 can be 0 degrees to 8 degrees degrees, 0 degrees to 16 degrees, 2 degrees to 8 degrees, 3 degrees to 16 degrees, etc.
  • the angle of the fourth included angle ⁇ 2 may be set as required, for example, the fourth included angle ⁇ 2 may be less than 16 degrees or less than 12 degrees or less than 8 degrees. It can be understood that the fourth angle ⁇ 2 can be selected based on the industrial design (Industrial Design, ID) of the wearable device, or can be designed based on the comfort of the offset angle of the virtual image relative to the human eye. It should be noted that the above-mentioned angle range of the fourth included angle ⁇ 2 is just an example, and those skilled in the art can adjust the range of the fourth included angle ⁇ 2 as needed. For example, the range of the fourth included angle ⁇ 2 can be 0 degrees to 8 degrees degrees, 0 degrees to 16 degrees, 2 degrees to 8 degrees, or 3 degrees to 16 degrees, etc.
  • first included angle ⁇ 1 and the fourth included angle ⁇ 2 may or may not be equal.
  • the first included angle ⁇ 1 and the fourth included angle ⁇ 2 can be selected independently without affecting each other.
  • the first included angle ⁇ 1 and the fourth included angle ⁇ 2 can also be selected in linkage, that is, the sum of the first included angle ⁇ 1 and the fourth included angle ⁇ 2 is within a certain range, such as 0 degrees to 8 degrees, 0 degrees to 16 degrees, 2 degrees ⁇ 12 degrees, or 3 degrees to 16 degrees, etc.
  • the image display device 200 in this embodiment is suitable for binoculars, that is, the image display device 200 is provided with a symmetrical structure corresponding to the binoculars. It should be noted that, because the image display device 200 shifts the display position of the virtual image, the binocular display image no longer has a binocular fusion display relationship, and the image display device 200 in this embodiment is more suitable for monocular.
  • the image display device may further include a prism, please refer to FIG. 9 , FIG. 9 is a schematic diagram of the fourth structure of the image display device provided by the embodiment of the present application, and FIG. 10 is a side view of the image display device shown in FIG. 9 .
  • the prism 324 is arranged between the waveguide assembly 230 and the light emitting unit 210.
  • the light emitting surface of the light emitting unit 210 is directly opposite to the prism 324.
  • the prism 324 is used to change the transmission path of the light signal to change the angle of the incident angle and the angle of the output angle. .
  • the prism 324 can change the angle of the incident angle and the angle of the outgoing angle, so that the center of the outgoing optical signal is located on the line of sight level and deviates from the center O of the viewing angle of the user.
  • the following also takes the central optical signal in the optical signal as an example for description.
  • the central light signal L102 emitted by the light emitting unit 210 is incident into the prism 324 and exits after multiple reflections inside the prism 324.
  • the prism 324 can change the transmission angle of the central light signal L102, so that the central light signal L102 after passing through the prism 324.
  • the waveguide component 230 is incident at an incident angle to the waveguide component 230, and is transmitted through the waveguide component 230 and exits at an exit angle with the exit surface of the waveguide component 230, so that the center of the outgoing optical signal is located at the line of sight level and deviates from the center O of the user's viewing angle.
  • the structure of the prism can be set as required.
  • 11 is a schematic top view of the prism in the image display device shown in FIG. 10
  • FIG. 12 is a three-dimensional schematic diagram of the prism shown in FIG. 10
  • FIG. 13 is a side view of the prism shown in FIG. 10.
  • the prism 324 may include a first incident surface S1, a first reflecting surface S2, a second reflecting surface S3 and a first exit surface S4, and the optical signal passes through the first incident surface S1, the first reflecting surface S2, the second reflecting surface S3 and the first exit surface S4 in sequence.
  • the first exit surface S4 conducts conduction, the first incident surface S1 and the first reflection surface S2 have a sixth angle ⁇ 1, the extension line of the first reflection surface S2 and the second reflection surface S3 have a seventh angle ⁇ 2, and the first exit surface S4 and the side of the waveguide assembly 230 facing the prism 324 have an eighth angle ⁇ 3, the eighth angle ⁇ 3 is equal to the first angle ⁇ 1, and the difference between the sixth angle ⁇ 1 and the seventh angle ⁇ 2 is equal to the eighth angle Half of the included angle ⁇ 3.
  • the center optical signal in the optical signal is taken as an example for description.
  • the dotted line at the top of the figure is the surface of the waveguide assembly 230 facing the light emitting unit 210 , that is, the incident surface of the waveguide assembly 230
  • the dotted line L106 is the light path of the central optical signal L102 .
  • the prism 324 is set to include a first incident surface S1, a first reflecting surface S2, a second reflecting surface S3, and a first exit surface S4, wherein the first incident surface S1 and the waveguide assembly 230 face the light emitting unit 210. surface is parallel.
  • the sixth angle between the first incident surface S1 and the first reflection surface S2 is ⁇ 1
  • the seventh angle between the extension line of the first incident surface S1 of the prism 324 and the second reflection surface S3 is ⁇ 2.
  • the optical signal emitted by the light emitting unit 210 is parallel to the normal of the side of the waveguide assembly 230 facing the light emitting unit 210.
  • the prism 324 can change the transmission angle of the optical signal emitted by the light emitting unit 210, so that the optical signal incident on the waveguide assembly 230 can be changed.
  • the included angle with the orthographic projection of the normal on the line of sight level is the first included angle ⁇ 1.
  • the optical signal sent by the light emitting unit 220 can be parallel to the orthographic projection of the normal line F of the incident surface of the waveguide assembly 240 on the line-of-sight plane, and then the transmission path of the optical signal is changed through the prism, so that the optical signal incident on the waveguide assembly 240 and the normal line F are at the same level.
  • the line-of-sight plane is incident at a preset angle such as ⁇ 1.
  • FIG. 14 is a schematic diagram of the fifth structure of the image display device provided by the embodiment of the present application
  • FIG. 15 is a side view of the image display device shown in FIG. 14
  • FIG. 16 is FIG. 14.
  • FIG. 17 is a three-dimensional schematic diagram of the prism shown in FIG. 14
  • FIG. 18 is a side view of the prism shown in FIG. 14 .
  • the prism 324 may include a second incident surface S6 and a second exit surface S7, the second incident surface S6 is parallel to the side of the waveguide assembly 230 facing the prism 324, and the second incident surface S6 and the second exit surface S7 are on the vertical plane of the line of sight
  • the orthographic projection has the tenth included angle u
  • the orthographic projection of the second incident surface S6 and the second exit surface S7 on the line of sight level has the eleventh included angle v
  • the prism 324 has the second refractive index n2
  • the tenth included angle u satisfies the formula:
  • the eleventh included angle v and the fourth included angle ⁇ 2 satisfy the formula:
  • n2 ⁇ sinv sin( ⁇ 2+v);
  • n2 is the second refractive index
  • u is the tenth included angle
  • is the first included angle
  • v is the eleventh included angle
  • ⁇ 2 is the fourth included angle.
  • the light of the central field of view in the optical signal is taken as an example for description.
  • the central field of view light emitted by the light emitting unit 210 is incident on the second prism 324 and is refracted in the second prism 324, so that the central field of view light passing through the prism 324 is aligned with the normal F
  • the incident light enters the waveguide assembly 230 at an angle of ⁇ , and exits the waveguide assembly 230 along an angle ⁇ with the normal line F.
  • the optical signal of the central field of view of the incident waveguide assembly 230 and the outgoing light signal are symmetrical with respect to the normal line F, and the two are distributed axially symmetrically with respect to the normal line. ; and then the outgoing light signal enters the human eye 300 to display a virtual image.
  • the angle between the normal F of the waveguide assembly 230 facing the prism 324 and the line of sight level H is ⁇ 1
  • the central field of view light emitted by the light emitting unit 210 is parallel to the line of sight level.
  • the optical axis of the incident surface of the second prism 324 is consistent with the light direction of the central field of view of the light emitting unit 210 , and the included angle between the two and the normal direction is ⁇ .
  • the angle between the outgoing light signal and the horizontal plane of the line of sight is 0 degrees, and the angle between the outgoing light signal and the orthographic projection of the normal line on the vertical plane of the line of sight is ⁇ .
  • the dotted line L108 is the path of the light exiting through the waveguide assembly 230 .
  • the refractive index of the second prism 324 is set to be n2
  • the surfaces of the second prism 324 are the second incident surface S6 and the second exit surface S7, wherein the second incident surface S6 and the waveguide assembly 230 face the prism 324.
  • the surfaces are parallel.
  • the angle between the second incident surface S6 and the second exit surface S7 of the second prism 324 in the plan view direction is u, that is, the angle between the orthographic projection of the second entrance surface S6 and the second exit surface S7 on the line-of-sight plane is u.
  • the included angle in the side view direction is v, that is, the included angle between the orthographic projection of the second incident surface S6 and the second exit surface S7 on the vertical plane of the line of sight is v.
  • v the included angle between the orthographic projection of the second incident surface S6 and the second exit surface S7 on the vertical plane of the line of sight.
  • the prism 324 can also change the angle of the incident angle and the angle of the outgoing angle, so that the center of the outgoing optical signal is located on the vertical plane of the line of sight and deviates from the center O of the user's viewing angle.
  • FIG. 19 is another schematic structural diagram of the prism of the image display device provided by the embodiment of the application.
  • the prism 324 includes a second incident surface S6 and a second exit surface S7, the second incident surface S6 is parallel to the surface of the waveguide plate assembly facing the prism 324, and the second incident surface S6 and the second exit surface S7 are in the line of sight
  • the orthographic projection of the vertical plane has an eleventh included angle v
  • the prism 324 has a second refractive index n2
  • the orthographic projection of the normal F of the side of the optical signal and the waveguide assembly 230 toward the light emitting unit 210 on the vertical plane of the line of sight has a fourth folded angle
  • the angle ⁇ 2, the eleventh included angle v and the fourth included angle ⁇ 2 satisfy the formula:
  • n2 is the second refractive index
  • v is the eleventh included angle
  • ⁇ 2 is the fourth included angle
  • the direction of the light signal emitted by the light emitting unit 210 is modulated by the second prism 324 and then enters the waveguide assembly 230 at an angle of ⁇ 2 to the normal line F.
  • the normal line F is parallel to the horizontal direction of the line of sight, and the angle between the central field of view light emitted through the second prism 324 in the elevation direction and the horizontal direction of the line of sight is ⁇ .
  • the central field of view light emitted by the light emitting unit 210 is parallel to the orthographic projection of the normal line F on the line of sight level, and the outgoing light signal is parallel to the orthographic projection of the normal line F on the line of sight level.
  • the surface of the waveguide assembly 230 facing the prism 324 is perpendicular to the line-of-sight plane, because the angle between the incident angle and the orthographic projection of the normal line on the line-of-sight plane is ⁇ , and the angle between the outgoing optical signal and the orthographic projection of the normal line on the line-of-sight plane is also ⁇ , and the optical signal incident on the waveguide assembly 230 and the outgoing optical signal are symmetrical with respect to the normal F, therefore, the center of the virtual image formed by the outgoing light deviates from the orthographic projection of the user's viewing angle center O on the vertical plane of the line of sight, as shown in FIG. 20 .
  • the prism 324 can also change the angle of the incident angle and the angle of the outgoing angle, so that the center of the outgoing optical signal is staggered from the orthographic projection of the user's viewing angle center O on the vertical plane of the line of sight, and the center of the outgoing optical signal and the user's viewing angle center O are in the line of sight level.
  • the orthographic projection is staggered.
  • FIG. 21 is a schematic diagram of the sixth structure of the image display device provided by the embodiment of the present application
  • FIG. 22 is a schematic top view of the prism in the image display device shown in FIG. 21,
  • FIG. 21 is a three-dimensional schematic diagram of the prism shown in FIG. 21
  • FIG. 24 is a side view of the prism shown in FIG. 21 .
  • the prism 324 includes a first incident surface S1, a first reflecting surface S2, a second reflecting surface S3, a first exit surface S4 and a bottom surface S5, and the optical signal passes through the first incident surface S1, the first reflecting surface S2, and the second reflecting surface in sequence S3 is conducted with the first exit surface S4, the first incident surface S1 and the first reflection surface S2 have a sixth angle ⁇ 1, and the extension line of the first incident surface S1 and the second reflection surface S3 have a seventh included angle ⁇ 2,
  • the first exit surface S4 and the waveguide assembly 230 have an eighth angle ⁇ 3, the difference between the sixth angle ⁇ 1 and the seventh angle ⁇ 2 is equal to half of the eighth angle ⁇ 3, and the first exit surface S4 and the bottom surface S5 have a ninth angle.
  • the included angle ⁇ 4 the normal line F between the optical signal and the waveguide assembly 230 facing the light emitting unit 210 has a fourth included angle ⁇ 2 in the vertical direction
  • the process of transmitting the optical signal through the first incident surface, the first reflecting surface, the second reflecting surface, and the first exiting surface can refer to the prism in the above-mentioned embodiment, and details are not repeated here.
  • the main difference between this embodiment and the above-mentioned embodiment is that in this embodiment, the first exit surface S4 and the bottom surface S5 have a ninth angle ⁇ 4.
  • the first exit surface S4 and the bottom surface S5 have a ninth angle ⁇ 4
  • the normal line F is parallel to the line of sight level, and the central light signal L102 emitted by the light emitting unit 210 is modulated by the first prism 324, and then enters the waveguide assembly 230 at an angle of ⁇ with respect to the normal line F in the elevation direction, and the outgoing light signal is the same as the line of sight level.
  • the included angle of the orthographic projection on the vertical plane of the line of sight is ⁇
  • the center of the virtual image formed by the outgoing light signal is staggered from the orthographic projection of the user's viewing angle center O on the vertical plane of the line of sight
  • the center of the virtual image formed by the outgoing light signal is different from the user's perspective.
  • the center O is also staggered in the orthographic projection of the line-of-sight plane, as shown in Figure 25.
  • the prism 324 may be fixedly installed in the image display device 200, and the structure of the prism 324 may be the structure of the prism in any one of the above embodiments, which will not be repeated here.
  • the prism may also be movably arranged within the image display device.
  • FIG. 26 is a schematic diagram of a seventh structure of an image display device provided by an embodiment of the present application.
  • the image display device 200 may further include a second transmission mechanism 420, the prism 324 is disposed on the second transmission mechanism 420, and the second transmission mechanism 420 can drive the prism 324 to move, so as to change the angle of the incident angle and the angle of the exit angle, so as to change the outgoing light The center of the virtual image formed by the signal.
  • the prism 324 is fixed on the second transmission mechanism 420 . Therefore, when the second transmission mechanism 420 moves, the second transmission mechanism 420 can be used to provide the external force required for the prism 324 to move, so that the prism 324 can move to change the incidence of the light signal emitted by the light emitting unit 210 into the waveguide assembly 230 horn.
  • the second transmission mechanism 420 may also include a micro motor and a turntable, the prism 324 is fixed on the turntable, and the micromotor can drive the turntable and the prism 324 to rotate.
  • the second transmission mechanism 420 may also be other structures, such as including electromagnetic drives, guide rails, sliders, sliding tables, or miniature rail cars.
  • the waveguide assembly 230 may be fixedly disposed in the display device, and the structure of the waveguide assembly 230 may be the structure of the waveguide assembly 230 in any one of the above embodiments, which will not be repeated here.
  • the waveguide assembly may also be movably disposed within the image display device.
  • FIG. 27 is a schematic diagram of an eighth structure of an image display device provided by an embodiment of the present application.
  • the image display device 200 includes a third transmission mechanism 430.
  • the waveguide assembly 230 is disposed on the third transmission mechanism 430.
  • the third transmission mechanism 430 can drive the waveguide assembly 230 to move to change the angle of the incident angle and the angle of the exit angle.
  • the waveguide assembly 230 is fixed on the third transmission mechanism 430 . Therefore, when the third transmission mechanism 430 moves, the third transmission mechanism 430 can be used to provide the external force required for the movement of the waveguide assembly 230 , so that the waveguide assembly 230 can move, so as to change the light signal emitted by the light emitting unit 210 into the waveguide assembly 230 The incident angle or the outgoing angle of the outgoing optical signal and the outgoing surface of the waveguide assembly 230 .
  • the third transmission mechanism 430 may also include a micro motor and a turntable, the waveguide assembly 230 is fixed on the turntable, and the micromotor can drive the turntable and the waveguide assembly 230 to rotate.
  • the third transmission mechanism 430 may also be other structures, such as including electromagnetic drives, guide rails, sliders, sliding tables, or miniature rail cars.
  • the third transmission mechanism 430 may drive the waveguide assembly 230 to change the angle between the normal line of the side of the waveguide assembly 230 facing the light emitting unit 210 and the line of sight level and/or the line of sight vertical plane.
  • the third transmission mechanism 430 drives the waveguide assembly 230 to move, so that the normal of the side of the waveguide assembly 230 facing the light emitting unit 210 is parallel to the line of sight level or at a ⁇ degree, even if the side of the waveguide assembly 230 facing the light emitting unit 210 is perpendicular to Eye level or not perpendicular to eye level.
  • the third transmission mechanism 430 drives the waveguide assembly 230 to move, so that the normal of the side of the waveguide assembly 230 facing the light emitting unit 210 is parallel to the vertical plane of the line of sight or at an ⁇ degree, even if the waveguide assembly 230 faces the light emitting unit 210 side Perpendicular to the line of sight vertical or not to the line of sight vertical. Therefore, the center of the virtual image formed by the outgoing optical signal is staggered from the projection of the user's viewing angle center O on the line of sight horizontal plane and/or the line of sight vertical plane.
  • the waveguide plate is disposed toward the light emitting unit 210
  • the coupling grating 22 is disposed on the side of the waveguide plate away from the light emitting unit 210
  • the coupling grating 22 is opposite to the light emitting unit 210
  • the coupling-out grating 23 is also disposed on the side of the waveguide plate away from the light emitting unit 210 , and the position of the coupling-out grating 23 is opposite to the position of the human eye 200 .
  • FIG. 28 is a schematic diagram of a ninth structure of an image display device provided by an embodiment of the present application.
  • the image display device 200 may further include a fourth transmission mechanism 440, and the outcoupling grating is disposed on the fourth transmission mechanism 440, and the fourth transmission mechanism 440 can drive the outcoupling grating to move, so as to change the angle of the outgoing angle.
  • the fourth transmission mechanism 440 can drive the outcoupling grating to move, so as to change the angle between the outgoing light signal and the outgoing angle of the outgoing surface of the waveguide assembly 230 .
  • the fourth gear mechanism 440 can change the angle between the outcoupling grating and the line of sight level and/or the line of sight vertical.
  • the fourth transmission mechanism 440 can make the outcoupling grating perpendicular to the line of sight level, or not perpendicular to the line of sight. vertical.
  • the fourth transmission mechanism 440 may include a guide rail and a micro drive motor, the coupling-out grating is disposed on the guide rail, and the micro-drive motor can drive the coupling-out grating to move along the guide rail to change the outgoing angle of the outgoing light signal.
  • the fourth transmission mechanism 440 may also be other mechanisms, such as a magnetic driver and a guide rail, and the specific structure of the fourth transmission mechanism 440 is limited in this embodiment.
  • the image display device may select one or more of the first transmission mechanism, the second transmission mechanism, the third transmission mechanism and the fourth transmission mechanism as required.
  • the image display apparatus may include a first transmission mechanism that moves the light emitting unit and a second transmission mechanism that moves the prism.
  • the image display device may include a third transmission mechanism for moving the waveguide assembly and a first transmission mechanism for moving the light emitting unit.
  • the image display device may include a second transmission mechanism for moving the prism and a fourth transmission mechanism for moving the coupled-out grating.
  • Embodiments of the present application further provide a wearable device, and the wearable device may be one of augmented reality display devices such as smart glasses or a smart helmet.
  • the wearable device can be smart glasses as an example.
  • FIG. 29 is a schematic structural diagram of a wearable device provided by an embodiment of the present application.
  • the wearable device 10 includes a housing 120 and an image display device 200.
  • the image display device 200 is disposed in the housing 120.
  • the structure of the image display device 200 may adopt the structure of the image display device in any one of the above embodiments, which is not repeated here. Repeat.
  • the image display device in this embodiment may further include a light shielding member. Please refer to FIG. 30 for details.
  • FIG. 30 is another schematic structural diagram of the image display device in the wearable device shown in FIG. 29 .
  • the waveguide assembly 230 includes a waveguide plate 240 , an in-coupling grating 260 and an out-coupling grating 280 , and the light emitting unit 220 is used to emit an optical signal that enters the coupling-in grating 260 and exits through the coupling-out grating 280 , and enters the optical signal of the coupling-in grating 260 .
  • the maximum angle with the central axis of the optical signal is the emission angle ⁇ , and the preset field of view angle is twice the emission angle ⁇ .
  • the optical signal enters the waveguide plate 240 after being diffracted by the coupling-in grating 260, and is totally reflected in the waveguide plate 240 until diffracted at the out-coupling grating 280 and exits to the user's eye 300.
  • the maximum incident angle of total emission the incident light greater than the first included angle cannot be totally reflected in the waveguide plate 240 , and the incident light smaller than or equal to the first included angle can be totally reflected in the waveguide plate 240 .
  • the light shielding member 290 may be disposed on the side of the waveguide assembly 230 facing the external light. Specifically, the light shielding member 290 may be disposed on the side of the coupling-out grating 280 facing away from the optical waveguide plate 240 , or may be disposed on the side of the waveguide plate 240 facing the external light.
  • FIG. 31 is a side view of the light shielding member shown in FIG. 30
  • FIG. 32 is a top view of the light shielding member shown in FIG. 30
  • the light-shielding member 290 may include a plurality of light-shielding parts 292 and a plurality of light-transmitting parts 294 , and the plurality of light-shielding parts 292 and the plurality of light-transmitting parts 294 are arranged alternately.
  • the light shielding part 292 may absorb or block light, and the light shielding part 292 may be made of a light absorbing material.
  • the light-transmitting part 294 can allow light to pass through smoothly, and the light-transmitting part 294 can be made of a transparent material.
  • the light-shielding member 290 may further include two substrates 298 , and the light-shielding portion 292 and the light-transmitting portion 294 are disposed between the two substrates 298 .
  • the FOV of the light-shielding member 290 is adjusted so that the FOV of the light-shielding member 290 is smaller than or close to the FOV of the diffractive optical waveguide, and the light larger than the FOV of the diffractive optical waveguide is blocked by the light-shielding portion 292. Block the absorption and will not irradiate the optical waveguide so that the dispersion phenomenon, i.e. the rainbow pattern effect, will not be produced.
  • the plurality of shading portions 292 of the shading member 290 are arranged at intervals, and the plurality of shading portions 292 are arranged along the first direction, such as horizontally or vertically, that is, the shading portions 292 and the light-transmitting portions 294 are periodically staggered along one direction.
  • the light shielding member 290 capable of shielding the external light with a greater than preset viewing angle from entering the waveguide assembly 230 may also be of other structures.
  • a plurality of light-shielding portions may be arranged at intervals, and each light-shielding portion is annular, and the plurality of light-shielding portions are concentric rings.
  • the plurality of light shielding portions 292 may include a first light shielding portion 2926 arranged along a first direction and a second light shielding portion 2928 arranged along a second direction. Orientation is vertical. No matter which direction the external light enters the light shielding member 290, the light blocking member 290 can block or absorb the external light larger than the preset viewing angle.
  • the first shading portion 2926 and the second shading portion 2928 may be made of electrochromic materials, and the wearable device 10 may further include a light source detector, which can detect the angle of light.
  • the light source detector detects that the external light enters the light-shielding member 290 along the first direction
  • the first light-shielding portion 2926 is controlled to be in a light-transmitting state
  • the corresponding second light-shielding portion 2928 is controlled to be in a colored state
  • the first light-shielding portion 2926 is controlled to be in a colored state
  • the second light-shielding portion 2928 is controlled to be in a light-transmitting state.
  • the first light shielding portion 2926 parallel to the external light is controlled to be in a light-transmitting state
  • the second light-shielding portion 2928 perpendicular to the external light is controlled to be in a colored state and play a light-shielding role.
  • the second light shielding part 2928 parallel to the external light is controlled to be in a light-transmitting state
  • the first light-shielding part 2926 perpendicular to the external light is controlled to be in a colored state and play a light-shielding role.
  • FIG. 34 is another schematic structural diagram of the wearable device provided by the embodiment of the present application.
  • the wearable device 10 further includes a light sensor 172 .
  • the light sensor 172 is used to detect the light intensity of external light
  • the light shielding part includes an electrochromic part 2922 .
  • the electrochromic portion 2922 is controlled to be in a colored state to block external light with an incident angle greater than the preset viewing angle; when the light intensity detected by the light sensor 172 is When not greater than the preset light intensity threshold, the electrochromic portion 2922 is controlled to be in a light-transmitting state, so that external light can pass through the light-shielding portion.
  • the electrochromic part includes five layers of electrochromic layers, and the electrochromic layers of different layers can be controlled to be colored by pressing buttons.
  • five layers block the external light of 50 degrees from entering the waveguide assembly, and three layers block the external light of 45 degrees from entering the waveguide assembly.
  • Waveguide assembly a layer shields 40 degrees of external light from entering the waveguide assembly. It can also automatically control the electrochromic layers of different layers to be colored by recognizing the angle of external light, so as to block external light greater than 40 degrees or 45 degrees or 50 degrees from entering the waveguide assembly.
  • the light source detector can identify the angle of the external light greater than the preset intensity, so as to control the different electrochromic layers to be colored.
  • electrochromism refers to a phenomenon in which the optical properties (such as reflectivity, light transmittance, absorption rate, etc.) of a material undergo a stable and reversible color change under the action of an external electric field. Electrochromism appears in appearance as a reversible change in the color and transparency of a material. Materials with electrochromic properties may be referred to as electrochromic materials. Devices made using electrochromic materials may be referred to as electrochromic cells.
  • the electrochromic part includes a first transparent electrode, an electrochromic material, and a second transparent electrode arranged in sequence.
  • the first transparent electrode and the second transparent electrode are used to control the electrochromic material to switch between a colored state and a light-transmitting state. For example, when a certain voltage is applied between the first transparent electrode and the second transparent electrode, the electrochromic material undergoes a redox reaction under the action of the voltage, so that the color changes, such as black or dark gray or other Colors that block or absorb external light.
  • the electrochromic part is described in detail below.
  • the electrochromic part may include two layers of conductive layers (ie, a first transparent electrode and a second transparent electrode) arranged in layers, and a color-changing layer, an electrolyte layer, and an ion storage layer located between the two conductive layers.
  • conductive layers ie, a first transparent electrode and a second transparent electrode
  • the conductive layer can be a transparent conductive layer, which has excellent conductivity and good optical transmittance.
  • the transparent conductive layer may be at least one of indium tin oxide (ITO), tin oxide (SnO 2 ), antimony tin oxide (ATO), and the like.
  • the color-changing layer that is, the electrochromic material
  • the color-changing layer is the core layer of the electrochromic portion and also the generating layer of the color-changing reaction.
  • the color-changing layer can be divided into inorganic electrochromic materials and organic electrochromic materials according to the type.
  • the inorganic electrochromic material may be tungsten trioxide (WO3) or nickel oxide (NiO).
  • Organic electrochromic materials mainly include polythiophenes and their derivatives, viologens, tetrathiafulvalenes, and metal phthalocyanine compounds.
  • the electrolyte layer is composed of a special conductive material, such as a liquid electrolyte material containing a solution of lithium perchlorate, sodium perchlorate, etc., or a solid electrolyte material.
  • the ion storage layer plays a role of storing charges in the electrochromic portion, that is, storing corresponding counter ions when the color-changing layer material undergoes a redox reaction, thereby ensuring the charge balance of the entire electrochromic portion.
  • the color-changing layer of the electrochromic part undergoes a redox reaction under the action of the voltage, thereby causing a color change.
  • the electrochromic portion can be changed from white to black.
  • the electrochromic part can be changed from black to white.
  • the electrochromic part may have the following characteristics: when a certain voltage is applied to make the electrochromic part change to a certain color, the electrochromic part can still maintain the color for a long time even if the voltage is removed. For example, when a voltage of 1.2V was applied, the electrochromic portion turned black, and after the voltage was removed, the electrochromic portion remained black for more than 24 hours.
  • the light shielding member can also be of other structures.
  • the light shielding member 290 includes a Fabry-Perot spatial filter 296, and the Fabry-Perot spatial filter 296 is used to shield external light larger than a preset angle of view.
  • the Fabry-Perot spatial filter 296 uses laminated materials with different refractive indices to produce filters with different light transmittances at different angles, ensuring that the transmittance of external light greater than the preset field of view is extremely low. To block or obstruct external light larger than the preset field of view. For example, reduce the transmittance of external light with an angle greater than or equal to 45 degrees from the horizontal viewing angle to less than 10%.
  • the light shielding member 290 further includes a liquid crystal layer 2924, and the liquid crystal layer 2924 is used to block external light larger than a preset viewing angle.
  • the liquid crystal layer 2924 is arranged in different ways under the control of different voltages, so as to control the angle of light transmission. In the initial state of the liquid crystal layer 2924, there is no angle-selective transmission of external light.
  • voltage control is applied to the liquid crystal layer 2924, that is, when the liquid crystal layer 2924 is in an electrical control state, the external light has a certain FOV angle to selectively transmit. Different voltages control the deflection angle of the liquid crystal molecules in the liquid crystal layer 2924, so as to realize the angle selection of the external light.
  • the liquid crystal arrangement becomes orderly, so that the light can pass easily; when the power is not turned on, the arrangement becomes chaotic , preventing light from passing through.
  • the maximum rotation angle of the human eye glasses is 30 degrees upward and downward, and the color discrimination boundary is 50 degrees upward and 40 degrees downward.
  • the sun is the main strong light source, producing
  • the rainbow pattern is mainly concentrated in the range of 45 degrees to 90 degrees, as shown in Figure 40.
  • the rainbow pattern is mainly concentrated in the shaded area in the figure. Therefore, the preset field of view angle can be set to be less than or equal to 45 degrees, which can solve the problem of rainbow patterns.
  • the preset field of view can be understood as the angle between the sun and the user's horizontal viewing angle, which blocks or absorbs external light with an angle greater than or equal to 45 degrees from the user's horizontal viewing angle, so that it cannot enter the waveguide assembly, thereby preventing the occurrence of rainbow patterns.
  • a1 when the angle between the sunlight and the user's horizontal viewing angle is a1, that is, less than the preset viewing angle, it can be incident on the user's eyes, and the angle between the sunlight and the user's horizontal viewing angle is When a2 is larger than the preset field of view, it is impossible to enter the waveguide component to form a rainbow pattern.
  • the smart glasses can be used as a visual intelligent auxiliary device of the mobile terminal.
  • the smart glasses can display information such as time, weather, and exercise steps to the user. Specifically, they can be displayed and displayed to the user through the lenses of the smart glasses. Smart glasses can also provide arrival reminders, timed alarm clocks, voice calls, to-do reminders and other functions. Users can get instant messages and answer voice calls through smart glasses without holding the mobile terminal.
  • the mobile terminal can always be placed in the pocket. Or in the bag, no need to take it out for operation.
  • the display interface of the mobile terminal such as the main interface, notification bar, application program interface, etc. of the mobile terminal, can also be obtained through the smart glasses.
  • the voice module can be integrated on the smart glasses, and the voice module can realize voice recognition and voice control functions, such as controlling the display of smart glasses according to the voice, obtaining voice and implementing the translation function (convenient for users to communicate with foreigners), and can also play audio (such as music) , broadcast, etc.).
  • voice recognition and voice control functions such as controlling the display of smart glasses according to the voice, obtaining voice and implementing the translation function (convenient for users to communicate with foreigners), and can also play audio (such as music) , broadcast, etc.).
  • the smart glasses can also integrate a positioning module.
  • the smart glasses can realize the navigation function according to the positioning module, and display the navigation information such as maps or road directions on the lens, and can also be superimposed with the real image to realize the increase of the real display function.
  • the user does not need to look down at the mobile terminal, and can travel according to the navigation information displayed by the lens.
  • you can also play the navigation voice through the voice dial to assist the navigation.
  • a touch module can also be integrated on the smart glasses, and the function modules of the smart glasses can be controlled through the touch module. Such as answering voice calls, turning off the alarm clock, adjusting the volume, etc.
  • the lenses of the smart glasses may be sunglasses lenses, and the smart glasses not only have strong intelligent functions, but also have better appearance and practicability. It can be understood that when the lens can realize the display function, the lens can be a special lens, such as superimposing an ultra-thin and high-transmittance flexible display screen.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请实施例提供一种图像显示装置及可穿戴设备,图像显示装置包括:波导组件;光发射单元,光发射单元用于发出光信号,光信号传输至波导组件并经由波导组件传导后出射形成出射光信号,出射光信号的中心偏离用户视角中心。

Description

图像显示装置及可穿戴设备
本申请要求于2020年11月09日提交中国专利局、申请号为202011241353.2、发明名称为“图像显示装置及可穿戴设备”的中国专利申请的优先权,以及于2020年11月09日提交中国专利局、申请号为202022585211.X、实用新型名称为“图像显示装置及可穿戴设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,特别涉及一种图像显示装置及可穿戴设备。
背景技术
随着智能技术的发展,能够实现更多功能的可穿戴设备所应用的领域越来越多,可穿戴设备也越来越受用户欢迎,为用户的生活、工作带来了极大的便利。其中,可穿戴设备可以借助其包括的图像显示装置实现增强现实功能,图像显示装置能够将虚拟图像投影在真实场景中,但是相关技术中的图像显示装置显示的虚拟图像的中心和用户的视角中心重合,影响显示效果。
发明内容
本申请实施例提供一种图像显示装置及可穿戴设备,能够提高图像显示装置的显示效果。
本申请实施提供一种图像显示装置,其包括:
波导组件;
光发射单元,所述光发射单元用于发出光信号,所述光信号传输至所述波导组件并经由所述波导组件传导后出射形成出射光信号,所述出射光信号的中心偏离用户视角中心。
本申请实施提供一种可穿戴设备,其包括:
壳体;以及
图像显示装置,设置于所述壳体内,所述图像显示装置如上述所述的图像显示装置。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的方向和角度示意图。
图2为本申请实施例提供的图像显示装置的第一种结构示意图。
图3为图2所示的图像显示装置的侧方向结构示意图。
图4为图2所示的图像显示装置的显示效果图。
图5为本申请实施例提供的图像显示装置的第二种结构示意图。
图6为图5所示的图像显示装置的显示效果图。
图7为图5所示的图像显示装置的侧视图。
图8为本申请实施例提供的图像显示装置的第三种结构示意图。
图9为本申请实施例提供的图像显示装置的第四种结构示意图。
图10为图9所示的图像显示装置的侧视图。
图11为图10所示图像显示装置中棱镜的俯视示意图。
图12为图10所示棱镜的三维示意图。
图13为图10所示棱镜的侧视图。
图14为本申请实施例提供的图像显示装置的第五种结构示意图。
图15为图14所示的图像显示装置的侧视图。
图16为图14所示的图像显示装置中棱镜的俯视示意图。
图17为图14所示的棱镜的三维示意图。
图18为图14所示的棱镜的侧视图。
图19为本申请实施例提供的图像显示装置的棱镜的另一结构示意图。
图20为图19所示的棱镜替换图14所示显示装置中棱镜的显示效果图。
图21为本申请实施例提供的图像显示装置的第六种结构示意图。
图22为图21所示的图像显示装置中棱镜的俯视示意图。
图23为图21所示的棱镜的三维示意图。
图24为图21所示的棱镜的侧视图。
图25为图21所示的图像显示装置的显示效果图。
图26为本申请实施例提供的图像显示装置的第七种结构示意图。
图27为本申请实施例提供的图像显示装置的第八种结构示意图。
图28为本申请实施例提供的图像显示装置的第九种结构示意图。
图29为本申请实施例提供的可穿戴设备的结构示意图。
图30为图29所示的可穿戴设备中图像显示装置的另一结构示意图。
图31为图30所示遮光件的侧视图。
图32为图30所示遮光件的俯视图。
图33为本申请实施例提供的可穿戴设备中遮光件的另一结构示意图。
图34为本申请实施例提供的可穿戴设备的另一结构示意图。
图35为本申请实施例提供的可穿戴设备中遮光件为法布里珀罗空间滤波器的结构示意图。
图36为图35所示的遮光件的效果示意图。
图37为本申请实施例提供的可穿戴设备中遮光件的又一结构示意图。
图38为图37所示的遮光件的另一状态示意图。
图39为本申请实施例提供的人眼视场的示意图。
图40为本申请实施例提供的彩虹纹与人眼视角的对应图。
图41为本申请实施例提供的太阳与人眼的方向示意图。
图42为本申请实施例提供的太阳与人眼的另一方向示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,图1为本申请实施例提供的方向和角度示意图。为了方便理解本申请实施例的图像显示装置的光信号传播途径,以用户水平注视前方为例进行说明,用户视角范围内的中心为用户视角中心O,用户视角中心O位于用户能看到的图像的中心。本申请实施例中的视线水平面平行于标准水平方向,位于用户垂直视角范围中间位置的标准水平面为视线水平面,视线水平面到用户视角范围内顶端和底端的视角角度相等。本申请实施例中的视线垂直面平行于标准垂直方向,且垂直于标准水平方向,位于用户水平视角范围中间位置的标准垂直面为用户视线垂直面,视线垂直面到用户视角范围内左端和右端的视角角度相等。例如,用户垂直视角范围有150度,位于用户垂直视角中间位置即位于用户垂直视角75度的标准水平面为视线水平面,用户水平视角范围有160度,位于用户水平视角中间位置即位于用户水平视角80度的标准垂直面为视线垂直面。视线水平面与视线垂直面交接位置为人眼中心视角方向即用户视角中心O。俯仰角为相对用户视角中心O在标准垂直方向与用户视角中心O所处平面内的夹角,俯仰方向为俯仰角对应方向。方位角为相对用户视角中心O在标准水平方向与用户视角中心O所处平面内的夹角,方位方向为方位角对应方向。
随着技术不断完善和需求的逐渐提高,增强现实的可穿戴设备获得了越来越多的关注,相应而来的是众多光学解决方案的出现。其中,衍射波导方案具有适配性好、外观轻薄、真实视野影响小等优势。衍射波导方案主要包括波导板和投影光机。具体的,可穿戴设备包括图像显示装置,具体请参阅图2,图2为本申请实施例提供的图像显示装置的第一种结构示意图。图像显示装置200主要包括投影光机220、波导板240、耦入光栅260和耦出光栅280,波导板240和投影光机220的角度及位置匹 配。需要说明的是,附图为对应单目的图像显示装置200的俯视示意图,另外一目的图像显示装置结构与之轴对称(图中未示出)。投影光机220与波导板240呈正交状态分布,即投影光机220出射的光信号(图中实线对应的光线)沿其出射界面法线传播,并以正交入射的方向进入波导板240,同样以正交的方向入射耦入光栅260表面并发生衍射。可以理解为,以波导板240为基准,投影光机220方位角度为0度。设定人眼视角为标准水平方向,波导板240放置方向与人眼300视线方向正交,耦入光栅260、耦出光栅280均与波导板240平行,经波导板240和耦出光栅280耦出的光信号方向与波导板240法线方向一致,即与人眼视角方向一致。请结合图3,图3为图2所示的图像显示装置的侧方向结构示意图。设置人眼视角是标准水平面,经耦入光栅260、耦出光栅280及波导板240耦出的光信号方向也为标准水平方向,对应的投影光机220与波导板240呈正交状态分布。可以理解为,以波导板240为基准,投影光机220俯仰角度为0度。
根据上述设置,若不考虑人眼自有的内外侧视场大小不一致性,而仅以直视前方的视角为基准,可以看到真实场景与图像显示装置200产生的虚拟图像相对关系如图4所示,图中黑色实线框图表示人眼直视前方时以人眼正前方为中心的一定大小的视场,黑色虚线的交点即为人眼正视前方的中心视场位置即用户视角中心O。虚线树状图案表示图像显示装置200产生的虚拟图像。人眼直接观看到的景象是虚拟图像中心与真实场景视角中心重合的图像。
本申请实施例还提供一种图像显示装置,具体请参阅图5,图5为本申请实施例提供的图像显示装置的第二种结构示意图。图像显示装置200包括光发射单元210和波导组件230。光发射单元210用于发出光信号。光发射单元210可以是微型投影系统,微型投影系统可以是基于数字光处理(Digital Light Processing,DLP)、液晶附硅(Liquid Crystal on Silicon,LCOS)或微型发光二极管(Micro Light Emitting Diode,Micro-LED)、有机发光二极管(Organic Light-Emitting Diode,OLED)或Micro-OLED等显示方案的微型投影光路。微型投影系统输出的图像可以位于无穷远处,即微型投影系统输出的单一视场光线为平行光线。微型投影系统出瞳位置在其硬件结构外部,上述微型投影系统直接耦入波导组件230。可以理解的,光发射单元210还可以为其他设备,在此不对光发射单元210的具体类型进行限制。例如,上述实施例中的投影光机为光发射单元210的示例性设备。
光发射单元210用于发出光信号,光信号传输至波导组件230并经由波导组件230传导后出射形成出射光信号,出射光信号的中心偏离用户视角中心O。
光发射单元210发出的光信号通过波导组件230传导后进入用户的眼睛300中形成虚拟图像,实景场景对应的光线信号进入用户的眼睛300中形成真实图像,虚拟图像和真实图像叠加形成增强现实图像。出射光信号的中心偏离用户视角中心O,从而可以将出射光信号形成的虚拟图像中心与用户视角中心O错开。由于虚拟图像与真实场景图像的亮度很难完美匹配,当虚拟图像的亮度小于或大于真实场景的亮度时,虚拟图像的中心避开用户视角中心用户视角中心,避开敏感度最高的用户视角中心O,降低亮度不一样带来的视觉差异,提高显示效果和用户体验。
其中,光发射单元210发出的光信号以与波导组件230的入射面242成入射角入射至波导组件230,以使光信号经由波导组件230传导后形成以与波导组件230的出射面244成出射角出射的出射光信号,并使出射光信号的中心在视线水平面和/或视线垂直面偏离用户视角中心O,其中,用户视角中心O位于视线水平面和视线垂直面的交界位置。用户视角中心O可以为视线水平面和视线垂直面的交界线,也可以为视线水平面和视线垂直面的一个交界点。根据需要可以设置光发射单元210或波导组件230,以使出射光信号的中心与用户视角中心O在视线水平面和/或视线垂直面的正投影错开。
波导组件朝向光发射单元一侧具有法线,即波导组件的入射面具有法线,光信号与法线F在视线水平面的正投影具有第一夹角,出射光信号与法线在视线水平面的正投影具有第二夹角,第一夹角和第二夹角相等。
为了方便理解本实施例中的图像显示装置,下面以光信号中的中心光信号为例进行说明。请继续参阅图5,中心光信号L102通过波导组件230传导后形成出射光信号L104,其中,中心光信号L102与法线F在视线水平面的正投影具有第一夹角α1,出射光信号L104与法线F在视线水平面的正投影 具有第二夹角α2,第一夹角α1和第二夹角α2相等,并且,中心光信号L102和出射光信号L104相对法线F对称。出射光信号L104偏离用户视角中心O,从而可以将出射光信号L104形成的虚拟图像中心与用户视角中心O错开,具体如图6所示,避免了虚拟图像与用户视角中心相互影响带来的危险。如虚拟图像会影响用户观察用户视角中心用户视角中心的真实图像,造成用户无法及时注意真实图像。另外,由于虚拟图像与真实场景图像的亮度很难完美匹配,当虚拟图像与真实场景图像融合时,虚拟图像中心与用户视角中心错开,可以改善亮度不一样带来的匹配问题。示例性地,当虚拟图像的亮度小于或大于真实场景的亮度时,虚拟图像的中心避开用户视角中心用户视角中心,避开敏感度最高的用户用户视角中心用户视角中心,降低亮度不一样带来的视觉差异,提高显示效果和用户体验。当虚拟图像的亮度远大于真实场景的亮度时,虚拟图像的中心与用户视角中心用户视角中心错开,避免虚拟图像过高导致真实场景最重要的中心区域无法看清。
需要说明的,因为图5为图像显示装置的俯视图,所以图中中心光信号L102可以相当于为中心光信号在视线水平面的正投影的示图,出射光信号L104可以相当于出射光信号在视线水平面的正投影的的示图。
可选的,请参阅图7,图7为图5所示的图像显示装置的侧视图。波导组件230朝向光发射单元210一侧的法线F可以与视线水平面H具有第三夹角β1,即波导组件230朝向光发射单元210一侧不是垂直于视线水平面。光信号与法线F在视线垂直面的正投影具有第四夹角β2,出射光信号与视线水平面具有第五夹角,第四夹角β2与第三夹角β1相等,第五夹角等于第四夹角β2和第三夹角β1之和。出射光信号与法线F的夹角为β3,其中,β3=β2=β1=β。
为了更好的理解本实施例,同样以光信号中的中心光信号L102为例进行说明。其中,波导组件230可以根据需要倾斜设置,即波导组件230朝向光发射单元210一侧不垂直于视线水平面H,从而使波导组件230朝向光发射单元210一侧的法线F与视线水平面具有第三夹角β1。为保证中心光信号L102经波导组件230传导出射后的出射光信号L104能够平行于视线水平面H,即光发射单元210发出的中心光信号L102在俯仰方向上以与法线F呈第四夹角β2入射进入波导板组件,中心光信号L102与法线F在视线垂直面的正投影具有第四夹角β2,由于法线F与视线水平面H的夹角为β角度,光发射单元210发出的中心光信号L102俯仰方向上与视线水平面的第五夹角为2β角度,使得出射光信号L104与法线F在视线垂直面的正投影的夹角为β3,以及出射光信号L104与视线水平面H夹角为0度,即平行于视线水平面。
需要说明的,因为图7为图像显示装置200的侧视图,所以图中中心光信号L102可以相当于中心光信号在视线垂直面的正投影的示图,出射光信号L104可以相当于出射光信号L104在视线垂直面的正投影的示图。
可以理解的,在其他一些实施方式中,法线F也可以与视线水平面平行。使得出射光信号L104与视线水平面H夹角为β度,即出现光信号形成的虚拟图像的中心与用户视角中心O在视线垂直面的正投影错开。
本实施例中的波导组件230可以根据需要灵活设置,波导组件230朝向光发射单元210一侧可以相对光发射单元210倾斜设置,即与视线水平面或标准水平面不垂直设置。波导组件230朝向光发射单元210一侧可以相对光发射单元210垂直设置,即与视线水平面或标准水平面垂直。
可以理解的,光发射单元210可以固定设置,以使其发射的中心光信号L102以特定入射角入射波导组件230。其中,波导组件230可以根据需要设置,若波导组件230朝向光发射单元210一侧的法线F与视线水平面具有第三夹角β1,则光发射单元210发射的中心光信号L102与法线F在视线水平面的正投影具有第一夹角α1,中心光信号L102与法线F在视线垂直面的正投影呈第四夹角β2,以使光发射单元210出现的光信号形成的虚拟图像的中心与用户视角中心O在视线水平面偏移,在视线垂直面不偏移。若波导组件230朝向光发射单元210一侧的法线F与视线水平面平行,则光发射单元210发射的中心光信号L102与法线F在视线水平面的正投影具有第一夹角α1,中心光信号L102与法线F在视线垂直面的正投影呈第四夹角β2,以使光发射单元210出现的光信号形成的虚拟图像 的中心与用户视角中心O不仅在视线水平面偏移,也在视线垂直面偏移。
其中,光发射单元210可以相对波导组件230可以倾斜设置。光发射单元210发出的光信号的光路与波导组件230之间位置关系不再局限于相互正交的位置关系,对人体工学设计及ID设计提供了更大的空间,有助于实现更好的舒适度及外观表现。例如,在视线垂直面上,可以保持虚拟图像位置不变的同时,改变波导组件230的角度。波导组件230的俯仰角可以不为0度放置,而可以实现具有俯仰角为β放置。因为波导组件230可以倾斜放置,从而使容纳波导组件230的可穿戴设备的整体外观和壳体设计更灵活,有助于提高外观表现。可穿戴设备的整体外观和壳体可以更加符合人体工程学,有助于实现更好的舒适度。
可选的,光发射单元还可以移动设置。示例性地,请参阅图8,图8为本申请实施例提供的图像显示装置的第三种结构示意图。
图像显示装置200还可以包括第一传动机构410,光发射单元210设置于第一传动机构410,第一传动机构410能够驱动光发射单元210移动,以改变入射角的角度和出射角的角度。第一传动机构410可以带动光发射单元210移动,以调节光发射单元210发射的中心光信号的入射波导组件230的入射角,从而实现出射光信号的中心偏离用户视角中心O。
波导组件230朝向光发射单元210一侧可以垂直于视线水平面,第一传动机构410可以改变光发射单元210,以改变光信号的入射角,以及对应的出射光信号的出射角,从而使虚拟图像的中心与用户视角中心O在视线水平面的正投影或在视线垂直的正投影错开,或者,可以使虚拟图像的中心与用户视角中心O在视线水平面和视线垂直面的正投影均错开。
波导组件230朝向光发射单元210一侧也可以不垂直于视线水平面,第一传动机构410可以改变光发射单元210,以改变光信号的入射角,以及对应的出射光信号的出射角,从而使虚拟图像的中心与用户视角中心O在视线水平面的正投影或在视线垂直的正投影错开,或者,可以使虚拟图像的中心与用户视角中心O在视线水平面和视线垂直面的正投影均错开。
其中,第一传动机构410可以为微型电机、电磁驱动器以及滑块、滑台或微型轨道车等。投影机固定在第一传动机构410上。从而,当第一传动机构410移动时,第一传动机构410可以用于提供光发射单元210移动所需的外力,使得光发射单元210能够移动,以改变光发射单元210发出的光信号入射波导组件230的入射角。
需要说明的是,本实施例中第一夹角α1的角度可以根据需要设置,如第一夹角α1可以小于16度或小于12度或小于8度。可以理解的,第一夹角α1可以基于可穿戴设备的工业设计(Industrial Design,ID)选择,也可以根据虚拟图像相对人眼的偏移角度的舒适性考虑进行设计。需要说明的是,上述第一夹角α1的角度范围只是示例性举例,本领域技术人员根据需要可以调整第一夹角α1的范围,例如,第一夹角α1的范围可以为0度~8度,0度~16度,2度~8度,3度~16度等。
本实施例中第四夹角β2的角度可以根据需要设置,如第四夹角β2可以小于16度或小于12度或小于8度。可以理解的,第四夹角β2可以基于可穿戴设备的工业设计(Industrial Design,ID)选择,也可以根据虚拟图像相对人眼的偏移角度的舒适性考虑进行设计。需要说明的是,上述第四夹角β2的角度范围只是示例性举例,本领域技术人员根据需要可以调整第四夹角β2的范围,例如,第四夹角β2的范围可以为0度~8度,0度~16度,2度~8度,或3度~16度等。
可以理解的,第一夹角α1和第四夹角β2的角度可以相等也可以不相等。第一夹角α1和第四夹角β2可以单独选择,相互不影响。第一夹角α1和第四夹角β2也可以联动选择,即第一夹角α1和第四夹角β2的和在一定范围内,如0度~8度,0度~16度,2度~12度,或3度~16度等。
本实施例中的图像显示装置200适用于双目,即图像显示装置200对应双目设置对称结构。需要说明的是,由于图像显示装置200将虚拟图像的显示位置进行偏移,双目显示图像不再具有双目融合显示关系,本实施例中的图像显示装置200更加适用于单目。
图像显示装置还可以包括棱镜,请参阅图9,图9为本申请实施例提供的图像显示装置的第四种结构示意图,图10为图9所示的图像显示装置的侧视图。棱镜324设置于波导组件230和光发射单元 210之间,光发射单元210的出光面与棱镜324正对设置,棱镜324用于改变光信号的传输路径,以改变入射角的角度和出射角的角度。
其中,棱镜324可以改变入射角的角度和出射角的角度,以使出射光信号的中心位于视线水平面且偏离用户视角中心O。
下面同样以光信号中的中心光信号为例进行说明。光发射单元210发出的中心光信号L102入射进入棱镜324,并在棱镜324内部发生多次反射后出射,棱镜324可以改变中心光信号L102的传输角度,以使经过棱镜324后的中心光信号L102以与波导组件230成入射角入射波导组件230,并经波导组件230传导后与波导组件230的出射面呈出射角出射,以使出射光信号的中心位于视线水平面且偏离用户视角中心O。
棱镜的结构可以根据需要设置。示例性地,请参阅图11至13,图11为图10所示图像显示装置中棱镜的俯视示意图,图12为图10所示棱镜的三维示意图,图13为图10所示棱镜的侧视图。棱镜324可以包括第一入射面S1、第一反射面S2、第二反射面S3和第一出射面S4,光信号依次通过第一入射面S1、第一反射面S2、第二反射面S3和第一出射面S4传导,第一入射面S1和第一反射面S2具有第六夹角θ1,第一反射面S2的延长线与第二反射面S3具有第七夹角θ2,第一出射面S4与波导组件230朝向棱镜324的一侧具有第八夹角θ3,第八夹角θ3与第一夹角α1的角度相等,第六夹角θ1和第七夹角θ2的差值等于第八夹角θ3的一半。
结合附图,以光信号中的中心光信号为例进行说明。图中顶部虚线为波导组件230朝向光发射单元210的表面即波导组件230的入射面,虚线L106为中心光信号L102出射的光线路径。根据光线传播顺序,设定棱镜324分别包括第一入射面S1、第一反射面S2、第二反射面S3、第一出射面S4,其中第一入射面S1与波导组件230朝向光发射单元210的表面平行。第一入射面S1与第一反射面S2之间的第六夹角为θ1,棱镜324第一入射面S1延长线与第二反射面S3之间的第七夹角为θ2。波导组件230朝向光发射单元210的表面与棱镜324的第一出射面S4之间的第八夹角为θ3。根据出射光的中心光信号以与法线呈α角度入射进入波导组件230的需求,第八夹角θ3角度与第一夹角α1一致,同时θ1、θ2、α1之间具有满足关系2(θ1-θ2)=θ3=α1。光发射单元210发出的光信号与波导组件230朝向光发射单元210一侧的法线平行,通过棱镜324可以改变光发射单元210发出的光信号的传输角度,以使入射波导组件230的光信号与法线在视线水平面的正投影的夹角为第一夹角α1。
光发射单元220发送的光信号与波导组件240入射面的法线F在视线水平面的正投影可以平行,然后通过棱镜改变光信号的传输路径,使入射波导组件240的光信号与法线F在视线水平面成预设角度如α1入射。
棱镜还可以为其他结构。示例性地,请参阅图14至18,图14为本申请实施例提供的图像显示装置的第五种结构示意图,图15为图14所示的图像显示装置的侧视图,图16为图14所示的图像显示装置中棱镜的俯视示意图,图17为图14所示的棱镜的三维示意图,图18为图14所示的棱镜的侧视图。其中,棱镜324可以包括第二入射面S6和第二出射面S7,第二入射面S6与波导组件230朝向棱镜324的一侧平行,第二入射面S6和第二出射面S7在视线垂直面的正投影具有第十夹角u,第二入射面S6和第二出射面S7在视线水平面的正投影具有第十一夹角v,棱镜324具有第二折射率n2,第十夹角u和第一夹角α满足公式:
n2·sinu=sin(α+u);
第十一夹角v和第四夹角β2满足公式:
n2·sinv=sin(β2+v);
其中,n2为第二折射率,u为第十夹角,α为第一夹角,v为第十一夹角,β2为第四夹角。
同样以光信号中的中心视场光线为例进行说明。
在方位角方向上,光发射单元210发出的中心视场光线,入射第二棱镜324,并在第二棱镜324内发生折射,以使透过棱镜324的中心视场光线以与法线F成α角度入射进入波导组件230,并沿与法线F成α角度出射波导组件230,入射波导组件230的中心视场光信和出射光信号相对法线F对称, 二者相对法线呈轴对称分布;之后出射光信号进入人眼300显示虚拟图像。
在俯仰方向上,波导组件230朝向棱镜324一侧的法线F与视线水平面H夹角为β1,光发射单元210发出的中心视场光线为平行于视线水平面,经过第二棱镜324调制后的中心视场光线俯仰方向上以与法线F成β2角度入射进入波导组件230,其中,β2=β1=β,由于法线F与视线水平面H夹角为β1,则经过第二棱镜324出射的中心视场光线俯仰方向上与视线水平面夹角为2β。第二棱镜324的入射面光轴与光发射单元210的中心视场光线方向一致,且二者与法线方向夹角为β。出射光信号与视线水平面夹角为0度,与法线在视线垂直面的正投影的夹角为β。
具体的,虚线L108为经波导组件230出射的光线路径。根据光线传播顺序,设定第二棱镜324折射率为n2,第二棱镜324的表面分别为第二入射面S6,第二出射面S7,其中第二入射面S6与波导组件230朝向棱镜324的表面平行。第二棱镜324第二入射面S6与第二出射面S7之间俯视方向的夹角为u,即第二入射面S6与第二出射面S7在视线水平面的正投影的夹角为u。侧视方向夹角为v,即第二入射面S6与第二出射面S7在视线垂直面的正投影的夹角为v。根据出射光以方位角α及俯仰角β入射进入波导组件230的需求,u角度与方位角α、v角度与俯仰角β及第二棱镜324折射率n2之间具有关系如下:n2·sinu=sin(α+u);n2·sinv=sin(β+v)。
在其他一些实施例中,棱镜324还可以改变入射角的角度和出射角的角度,以使出射光信号的中心位于视线垂直面且偏离用户视角中心O。
具体的,请参阅图19,图19为本申请实施例提供的图像显示装置的棱镜的另一结构示意图,本实施例与图14所示实施例的主要区别在于棱镜的结构,本实施例中,请结合图18,棱镜324包括第二入射面S6、第二出射面S7,第二入射面S6与波导板组件朝向棱镜324的表面平行,第二入射面S6和第二出射面S7在视线垂直面的正投影具有第十一夹角v,棱镜324具有第二折射率n2,光信号与波导组件230朝向光发射单元210一侧的法线F在视线垂直面的正投影具有第四夹角β2,第十一夹角v和第四夹角β2满足公式:
n2·sinv=sin(β2+v),
其中,n2为第二折射率,v为第十一夹角,β2为第四夹角。
在俯仰方向上,若法线F与视线水平面H夹角平行,则光发射单元210发出的光信号方向经过第二棱镜324调制后,以与法线F呈β2角度入射进入波导组件230,由于法线F与视线水平方向平行,则经过第二棱镜324出射的中心视场光线俯仰方向上与视线水平方向夹角为β。出射光信号与视线水平方向夹角为β度,其中,β2=β1=β。
在方位角方向上,光发射单元210发出的中心视场光线与法线F在视线水平面的正投影平行,出射光信号与与法线F在视线水平面的正投影平行。
波导组件230朝向棱镜324的表面垂直于视线水平面,因为入射角与法线在视线垂直面的正投影的夹角为β,出射光信号与法线在视线垂直面的正投影的夹角也为β,且入射波导组件230的光信号和出射光信号相对法线F对称,因此,出射光形成的虚拟图像的中心与用户视角中心O在视线垂直面的正投影偏离,如图20所示。
棱镜324还可以改变入射角的角度和出射角的角度,以使出射光信号的中心与用户视角中心O在视线垂直面的正投影错开,且出射光信号的中心与用户视角中心O在视线水平面的正投影错开。
示例性地,请参阅图21至24,图21为本申请实施例提供的图像显示装置的第六种结构示意图,图22为图21所示的图像显示装置中棱镜的俯视示意图,图23为图21所示的棱镜的三维示意图,图24为图21所示的棱镜的侧视图。棱镜324包括第一入射面S1、第一反射面S2、第二反射面S3、第一出射面S4和底面S5,光信号依次通过第一入射面S1、第一反射面S2、第二反射面S3和第一出射面S4传导,第一入射面S1和第一反射面S2具有第六夹角θ1,第一入射面S1延长线与第二反射面S3之间具有第七夹角为θ2,第一出射面S4与波导组件230具有第八夹角θ3,第六夹角θ1和第七夹角θ2的差值等于第八夹角θ3的一半,第一出射面S4与底面S5具有第九夹角θ4,光信号与波导组件230朝向光发射单元210一侧的法线F在垂直方向上具有第四夹角β2,第九夹角θ4和第四夹角 β满足关系n1·sinθ4=sin(β2+θ4),其中,n1为棱镜324的折射率,θ4为第九夹角,β2为第四夹角。
光信号经第一入射面、第一反射面、第二反射面、第一出射面的传导的过程可以参阅上述实施例中的棱镜,在此不再赘述。本实施例与上述实施例的主要区别在于,本实施例中第一出射面S4与底面S5具有第九夹角θ4。本实施例中,第一出射面S4与底面S5具有第九夹角θ4,第九夹角θ4和第四夹角β2满足关系n1·sinθ4=sin(β2+θ4),其中,n1为第一棱镜324的折射率,θ4为第九夹角,β2为第四夹角。
可以使第一出射面S4与底面S5具有第九夹角θ4,使其非正交,定义其第一出射面S4相对底面S5角度为θ4,则θ4与偏转角β2及第一棱镜324折射率n1存在以下关系n1·sinθ4=sin(β2+θ4),可以减小第一棱镜324垂直方向的匹配尺寸。
法线F与视线水平面平行,光发射单元210发出的中心光信号L102经过第一棱镜324调制后,在俯仰方向上以与法线F呈β角度入射进入波导组件230,出射光信号与视线水平面在视线垂直面的正投影的夹角为β,出射光信号形成的虚拟图像的中心与用户视角中心O在视线垂直面的正投影错开,而且,出射光信号形成的虚拟图像的中心与用户视角中心O还在在视线水平面面的正投影错开,如图25所示。
棱镜324可以固定设置图像显示装置200内,棱镜324的结构可以为上述任意一个实施例中的棱镜的结构,在此不再赘述。
棱镜也可以可移动设置在图像显示装置内。示例性地,请参阅图26,图26为本申请实施例提供的图像显示装置的第七种结构示意图。图像显示装置200还可以包括第二传动机构420,棱镜324设置于第二传动机构420,第二传动机构420能够驱动棱镜324移动,以改变入射角的角度和出射角的角度,以改变出射光信号形成的虚拟图像的中心。
其中,棱镜324固定在第二传动机构420上。从而,当第二传动机构420移动时,第二传动机构420可以用于提供棱镜324移动所需的外力,使得棱镜324能够移动,以改变光发射单元210发出的光信号入射波导组件230的入射角。示例性地,第二传动机构420也可以包括微型电机和转台,棱镜324固定在转台上,微型电机可以驱动转台和棱镜324转动。第二传动机构420还可以为其他结构,如包括电磁驱动器、导轨、滑块、滑台或微型轨道车等。
波导组件230可以固定设置于显示装置内,波导组件230的结构可以为上述任意一个实施例中的波导组件230的结构,在此不再赘述。
波导组件也可以可移动的设置在图像显示装置内。示例性地,请参阅图27,图27为本申请实施例提供的图像显示装置的第八种结构示意图。图像显示装置200包括第三传动机构430,波导组件230设置于第三传动机构430,第三传动机构430能够驱动波导组件230移动,以改变入射角的角度和出射角的角度。
波导组件230固定在第三传动机构430上。从而,当第三传动机构430移动时,第三传动机构430可以用于提供波导组件230移动所需的外力,使得波导组件230能够移动,以改变光发射单元210发出的光信号入射波导组件230的入射角或出射光信号与波导组件230的出射面的出射角。示例性地,第三传动机构430也可以包括微型电机和转台,波导组件230固定在转台上,微型电机可以驱动转台和波导组件230转动。第三传动机构430还可以为其他结构,如包括电磁驱动器、导轨、滑块、滑台或微型轨道车等。
示例性地,第三传动机构430可以驱动波导组件230,改变波导组件230朝向光发射单元210一侧的法线与视线水平面和/或视线垂直面的角度。例如,第三传动机构430驱动波导组件230移动,以使波导组件230朝向光发射单元210一侧的法线与视线水平面平行或成β度,即使波导组件230朝向光发射单元210一侧垂直于视线水平面或不垂直于视线水平面。又例如,第三传动机构430驱动波导组件230移动,以使波导组件230朝向光发射单元210一侧的法线与视线垂直面平行或成α度,即使波导组件230朝向光发射单元210一侧垂直于视线垂直面或不垂直于视线垂直面。从而使出射光信号 形成的虚拟图像的中心与用户视角中心O在视线水平面和/或视线垂直面的投影错开。
可以理解的,上述实施例中的波导组件230可以包括波导板240、耦入光栅260和耦出光栅280。耦入光栅设置在波导板背离光发射单元210一侧。耦出光栅设置在波导板背离光发射单元210一侧。光发射单元210发射的光信号入射至波导组件230后,依次在耦入光栅处发生衍射、在波导板内发生全反射、以及在耦出光栅处发生衍射后出射,并形成出射光信号。
波导板朝向光发射单元210设置,耦入光栅22设置在波导板背离光发射单元210的一侧,耦入光栅22与光发射单元210的位置相对。耦出光栅23也设置在波导板背离光发射单元210的一侧,耦出光栅23与人眼200的位置相对。
光发射单元210发出的光信号入射至波导板,随后光信号透过波导板传输至耦入光栅,并在耦入光栅处发生衍射,使衍射后的光信号满足波导板的全反射条件,随后光信号在波导板内发生全反射,并传导至耦出光栅23,随后光信号同样在耦出光栅23处发生衍射,经耦出光栅23衍射后的光信号透过波导板,并以设定的出射角出射,出射后的光信号被人眼200接收到。从而,人眼即可观察到光信号对应的虚拟图像。
请参阅图28,图28为本申请实施例提供的图像显示装置的第九种结构示意图。图像显示装置200还可以包括第四传动机构440,耦出光栅设置于第四传动机构440,第四传动机构440能够驱动耦出光栅移动,以改变出射角的角度。第四传动机构440可以驱动耦出光栅移动,以改变出射光信号与波导组件230出射面的出射角的角度。例如,第四传动机构440可以改变耦出光栅与视线水平面和/或视线垂直面之间的角度。第四传动机构440可以使耦出光栅与视线水平面垂直,也可以与视线水平面之间不垂直,第四传动机构440可以使耦出光栅与视线垂直面垂直,也可以与视线垂直面之间不垂直。
第四传动机构440可以包括导轨和微型驱动电机,耦出光栅设置于导轨上,微型驱动电机可以驱动耦出光栅沿导轨移动,以改变出射光信号的出射角。第四传动机构440也可以为其他机构,如磁性驱动器和导轨等,本实施例对第四传动机构440的具体结构进行限定。
需要说明的是,本实施例中图像显示装置可以根据需要从第一传动机构、第二传动机构、第三传动机构和第四传动机构中选择一个或多个。例如,图像显示装置可以包括移动光发射单元的第一传动机构和移动棱镜的第二传动机构。又例如,图像显示装置可以包括移动波导组件的第三传动机构和移动光发射单元的第一传动机构。又例如,图像显示装置可以包括移动棱镜的第二传动机构和移动耦出光栅的第四传动机构。
本申请实施例还提供一种可穿戴设备,可穿戴设备可以为智能眼镜或智能头盔等增强现实显示设备中的一种。为了更好的理解可穿戴设备,下面以可穿戴设备可以为智能眼镜为例进行详细说明。具体请参阅图29,图29为本申请实施例提供的可穿戴设备的结构示意图。可穿戴设备10包括壳体120和图像显示装置200,图像显示装置200设置于壳体120内,图像显示装置200的结构可以采用上述任意一个实施例中的图像显示装置的结构,在此不再赘述。
本实施例中的图像显示装置还可以包括遮光件。具体请参阅图30,图30为图29所示的可穿戴设备中图像显示装置的另一结构示意图。
遮光件290设置于波导组件230一侧,遮光件290用于遮挡入射角大于预设视场角的外部光线进入波导组件230。波导组件230具有波导视场角,预设视场角小于或等于波导视场角。遮光件290设置在波导组件230一侧,并能够遮挡大于预设视场角的外部光线进入波导组件230,将入射到波导组件230会产生不规律的光衍射和色散现象的外部光线遮挡,使其无法进入波导组件230,改善彩虹纹现象,提高显示效果。
其中,波导组件230包括波导板240、耦入光栅260和耦出光栅280,光发射单元220用于发出光信号进入耦入光栅260并经过耦出光栅280出射,进入耦入光栅260的光信号与光信号的中轴线的最大夹角为发射夹角θ,预设视场角为发射夹角θ的2倍。光信号经过耦入光栅260衍射后进入波导板240,并在波导板240全反射,直到在耦出光栅280衍射并出射到用户的眼睛300,发射夹角θ可以理解为能够在波导板240能全发射最大的入射角度,大于第一夹角的入射光无法在波导板240内全反射, 小于或等于第一夹角的入射光能够在波导板240内全反射。
其中,遮光件290可以设置于波导组件230朝向外部光线一侧。具体的,遮光件290可以设置于耦出光栅280背离光波导板240一侧,也可以设置于波导板240朝向外部光线一侧。
请结合图31和图32,图31为图30所示遮光件的侧视图,图32为图30所示遮光件的俯视图。遮光件290可以包括多个遮光部292和多个透光部294,多个遮光部292和多个透光部294交错设置。遮光部292可以吸收或阻挡光线,遮光部292可以由吸光材料制成。透光部294可以让光线顺利通过,透光部294可以由透明材料制成。
示例性地,遮光部292可以为黑色油墨柱,透光部294可以为透明树脂。黑色油墨为黑色柱状的周期性结构,不同波长的光线照射到黑色油墨会被吸收。透明树脂为透光材质,不同光线照射到透明树脂可以低损透射传播。因此,相邻两个遮光部292可以用于遮挡入射角大于预设视场角的外部光线,透光部294可以用于入射角小于或等于视场角的外部光线通过。预设视场角内的外部光线可以正常透射,预设视场角外的外部光线无法透射,会被黑色油墨遮挡吸收。
其中,遮光件290还可以包括两个基板298,遮光部292和透光部294设置在两个基板298之间。
其中,透光部294和遮光部292满足关系tanα=w/h,预设视场角满足关系FOV=arctanα,其中,w为相邻两个遮光部292之间的透光部294的宽度,h为遮光部292的高度,FOV为预设视场角。
通过调整透光部294的宽度和遮光部292的高度,调整遮光件290的FOV,使遮光件290的FOV小于或接近衍射光波导的FOV,使大于衍射光波导的FOV的光线被遮光部292挡住吸收,不会照射到光波导从而不会产生色散现象即彩虹纹效果。
遮光件290的多个遮光部292间隔设置,且多个遮光部292沿第一方向排布,如横向设置或纵向设置,即遮光部292和透光部294沿一个方向周期性交错排列。
可以理解的,能够遮挡大于预设视场角的外部光线进入波导组件230的遮光件290还可以为其他结构。示例性地,多个遮光部可以间隔设置,且每一遮光部均为环状,多个遮光部为同心环。另一示例中,如图33所示,多个遮光部292可以包括沿第一方向排布的第一遮光部2926和沿第二方向排布的第二遮光部2928,第一方向和第二方向垂直。无论外部光线是沿哪个方向入射遮光件290,遮光件290都可以阻挡或吸收大于预设视场角的外部光线。
其中,第一遮光部2926和第二遮光部2928可以采用电致变色材料制成,可穿戴设备10还可以包括光源探测器,光源探测器能够探测光线角度。当光源探测器探测到外部光线沿第一方向进入遮光件290时,控制第一遮光部2926为透光状态,控制对应第二遮光部2928为着色状态;当光源探测器探测到外部光线沿第二方向进入遮光件290时,控制第一遮光部2926为着色状态,控制第二遮光部2928为透光状态。当外部光线沿第一方向入射时,控制与外部光线平行的第一遮光部2926为透光状态,控制与外部光线垂直的第二遮光部2928为着色状态并起到遮光作用。当外部光线沿第二方向入射时,控制与外部光线平行的第二遮光部2928为透光状态,控制与外部光线垂直的第一遮光部2926为着色状态并起到遮光作用。
请参阅图34,图34为本申请实施例提供的可穿戴设备的另一结构示意图。可穿戴设备10还包括光线传感器172,光线传感器172用于检测外部光线的光强度,遮光部包括电致变色部2922。当光线传感器172检测到的光强度大于预设光强阈值时,控制电致变色部2922为着色状态,以遮挡入射角大于预设视场角的外部光线;当光线传感器172检测到的光强度不大于预设光强阈值时,控制电致变色部2922为透光状态,以使外部光线通过遮光部。
通过光线传感器172与电致变色部2922配合,当外部环境光的光强度较大时,控制遮光部的电致变色部2922为着色状态如黑色,从而遮挡入射角大于预设视场角的外部光线,改善彩虹纹问题,当外部环境光的光强度较小时,控制遮光部的电致变色部2922为透光状态如透明,基本不会阻挡外部光线,给用户提供了最大的视场角和最大亮度的环境图像。
上述任意一个实施例中的电致变色部可以包括多层电致变色层,每一层电致变色层都单独控制,通过控制不同层电致变色层处于着色状态或透光状态,可以控制遮光部的高度,可以理解的,着色状 态下的电致变色层可以阻挡吸收外部光线,透光状态下的电致变色层无法阻挡吸收外部光线,即遮光部的高度由着色状态下的电致变色层决定,通过控制不同层电致变色层为着色状态可以改变遮光件的视场角。例如,电致变色部包括五层电致变色层,可以通过按键控制不同层电致变色层为着色状态,如五层遮挡50度的外部光线进入波导组件,三层遮挡45度的外部光线进入波导组件,一层遮挡40度的外部光线进入波导组件。还可以通过识别外部光线角度自动控制不同层电致变色层为着色状态,从而遮挡大于40度或45度或50度等的外部光线进入波导组件。其中,光源探测器能够识别大于预设强度的外部光线的角度,从而控制不同层电致变色层为着色状态。
本实施例中,电致变色是指材料的光学属性(如反射率、透光率、吸收率等)在外加电场的作用下发生稳定、可逆的颜色变化的现象。电致变色在外观上表现为材料的颜色和透明度的可逆变化。具有电致变色性能的材料可以称为电致变色材料。利用电致变色材料制成的器件可以称为电致变色单元。
电致变色部包括依次设置的第一透明电极、电致变色材料、第二透明电极,第一透明电极和第二透明电极用于控制电致变色材料在着色状态和透光状态之间切换。例如,当在第一透明电极和第二透明电极之间加上一定的电压时,电致变色材料在电压作用下发生氧化还原反应,从而发生颜色变化,如变成黑色或深灰色或其他能够阻挡或吸收外部光线的颜色。
为了更好的理解电致变色部,下面电致变色部进行详细说明。
电致变色部可以包括层叠设置的两层导电层(即第一透明电极和第二透明电极),以及位于两个导电层之间的变色层、电解质层、离子存储层。
其中,导电层可以是透明导电层,具备优异的导电性和较好的光学透过性。透明导电层可以是氧化铟锡(ITO)、氧化锡(SnO2)和氧化锡锑(ATO)等中的至少一项。
变色层即电致变色材料是电致变色部的核心层,也是变色反应的发生层。变色层按照类型可分为无机电致变色材料和有机电致变色材料。无机电致变色材料可以是三氧化钨(WO3)或者氧化镍(NiO)。有机电致变色材料主要有聚噻吩类及其衍生物、紫罗精类、四硫富瓦烯、金属酞菁类化合物等。
电解质层由特殊的导电材料组成,如包含有高氯酸锂、高氯酸纳等的溶液的液态电解质材料,或者也可以是固态电解质材料。
离子存储层在电致变色部中起到存储电荷的作用,即在变色层材料发生氧化还原反应时存储相应的反离子,从而保证整个电致变色部的电荷平衡。
当在两个透明导电层之间加上一定的电压时,电致变色部的变色层在电压作用下发生氧化还原反应,从而发生颜色变化。例如,当施加在两个透明导电层之间的电压由0V变为1.2V时,该电致变色部可以由白色变为黑色。当施加在两个透明导电层之间的电压由1.2V变为-0.2V时,该电致变色部可以由黑色变为白色。
可以理解的,电致变色部可以具有如下特性:当施加一定电压使电致变色部变为某一颜色后,即便去掉电压该电致变色部仍然能够较长时间保持该颜色。例如,当施加1.2V的电压时,该电致变色部变为黑色,之后去掉电压,该电致变色部仍然能够保持黑色超过24小时。
可以理解的,遮光件还可以为其他结构。示例性地,如图35和图36所示,遮光件290包括法布里珀罗空间滤波器296,法布里珀罗空间滤波器296用于遮挡大于预设视场角的外部光线。法布里珀罗空间滤波器296为通过不同折射率的叠层材料,制作出不同角度光线透过率不一样的滤波器,保证大于预设视场角的外部光线透过率极低,起到遮挡或阻碍大于预设视场角外部光线的作用。例如,将光线与水平视角夹角大于或等于45度的外部光线的透光率降到10%以下。
另一示例中,如图37和图38所示,遮光件290还包括液晶层2924,液晶层2924用于遮挡大于预设视场角的外部光线。液晶层2924在不同电压的控制下排列方式不一样,从而控制光透过的角度。初始状态的液晶层2924状态,对外部光线没有角度选择透射。给液晶层2924施加电压控制时,即当液晶层2924处于电控制状态时,对外部光线有一定的FOV角度选择透射。不同电压控制液晶层2924中液晶分子的偏转角度,从而实现对外部光线的角度选择,在通电时导通,使液晶排列变得有秩序,使光线容易通过;不通电时,排列则变得混乱,阻止光线通过。
可以理解的,如图39所示,人眼的眼镜最大转动角度为向上和向下30度,颜色辨别界线为向上50度向下40度,而外部环境下,太阳作为主要的强光源,产生彩虹纹主要集中在45度至90度的范围,如图40所示。其中,产生彩虹纹主要集中在图中阴影区。因此,可以设置预设视场角小于或等于45度,从而可以解决彩虹纹问题。预设视场角可以理解为太阳与用户水平视角的夹角,将与用户水平视角夹角大于或等于45度的外部光线的阻挡或吸收,使其无法进入波导组件,从而防止产生彩虹纹问题。示例性地,如图41和图42所示,太阳光与用户水平视角的夹角为a1即小于预设视场角时,可以入射到用户的眼睛,太阳光与用户水平视角的夹角为a2即大于预设视场角时,无法入射波导组件形成彩虹纹。
在一些实施例中,智能眼镜可以作为移动终端的可视化智能辅助设备,如智能眼镜可以展示时间、天气、运动步数等信息给用户,具体的可以通过智能眼镜的镜片显示并展示给用户。智能眼镜还可以提供到站提醒、定时闹钟、语音电话、待办事项提醒等功能,用户可以不握持移动终端而是通过智能眼镜获取即时消息、接听语音电话等,移动终端可以一直放置在口袋或包包里,不需要拿出来进行操作。还可以通过智能眼镜获取移动终端的显示界面,如移动终端的主界面、通知栏、应用程序界面等。
智能眼镜上可以集成语音模块,语音模块可以实现语音识别和语音控制功能,如根据语音控制智能眼镜的显示,获取语音并实施翻译功能(方便用户与外国人交流),还可以播放音频(如音乐、广播等)。
智能眼镜上还可以集成定位模块,智能眼镜可以根据定位模块实现导航功能,并将导航信息如地图或道路指引等显示在镜片上,还可以和实景图像叠加,实现增加现实显示功能。用户不需要在低头看移动终端,可以根据镜片显示的导航信息行进。此外,还可以通过语音拨快播放导航语音,辅助导航。
智能眼镜上还可以集成触控模块,可以通过触控模块控制智能眼镜的功能模块。如接听语音电话、关闭闹钟、调节音量等。
智能眼镜的镜片可以为太阳镜镜片,智能眼镜不仅具有较强的智能功能,还具有较好的外观和实用性。可以理解的,当镜片可以实现显示功能时,镜片可以为特质的镜片,如叠加超薄高透光柔性显示屏。
在本申请的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
上文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,上文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。
以上对本申请实施例提供的图像显示装置及可穿戴设备进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (22)

  1. 一种图像显示装置,其中,包括:
    波导组件;
    光发射单元,所述光发射单元用于发出光信号,所述光信号传输至所述波导组件并经由所述波导组件传导后出射形成出射光信号,所述出射光信号的中心偏离用户视角中心。
  2. 根据权利要求1所述的图像显示装置,其中,所述光发射单元发出的所述光信号以与所述波导组件的入射面成入射角入射至所述波导组件,以使所述光信号经由所述波导组件传导后形成以与所述波导组件的出射面成出射角出射的出射光信号,并使所述出射光信号的中心在视线水平面和/或视线垂直面偏离用户视角中心,其中,所述用户视角中心位于所述视线水平面和所述视线垂直面的交界位置。
  3. 根据权利要求2所述的图像显示装置,其中,所述光信号与所述波导组件朝向光发射单元一侧的法线在所述视线水平面的正投影具有第一夹角,所述出射光信号与所述法线在所述视线水平面的正投影具有第二夹角,所述第一夹角和所述第二夹角相等。
  4. 根据权利要求3所述的图像显示装置,其中,所述法线与所述视线水平面具有第三夹角,所述光信号与所述法线在所述视线垂直面的正投影具有第四夹角,所述出射光信号与所述视线水平面具有第五夹角,所述第四夹角与所述第三夹角相等,所述第五夹角等于所述第四夹角和所述第三夹角之和。
  5. 根据权利要求2-4中任一项所述的图像显示装置,其中,所述图像显示装置包括第一传动机构,所述光发射单元设置于所述第一传动机构,所述第一传动机构能够驱动所述光发射单元移动,以改变所述入射角的角度和所述出射角的角度。
  6. 根据权利要求1所述的图像显示装置,其中,图像显示装置还包括棱镜,所述棱镜设置于所述波导组件和光发射单元之间,所述光发射单元的出光面与所述棱镜正对设置,所述棱镜用于改变光信号的传输路径,以改变所述入射角的角度和所述出射角的角度。
  7. 根据权利要求6所述的图像显示装置,其中,所述棱镜改变所述入射角的角度和所述出射角的角度,以使所述出射光信号的中心位于视线水平面且偏离用户视角中心。
  8. 根据权利要求7所述的图像显示装置,其中,所述棱镜包括第一入射面、第一反射面、第二反射面和第一出射面,所述光信号依次通过所述第一入射面、所述第一反射面、所述第二反射面和所述第一出射面传导,所述第一入射面和所述第一反射面具有第六夹角,所述第一反射面的延长线与所述第二反射面具有第七夹角,所述第一出射面与所述波导组件具有第八夹角,所述第六夹角和所述第七夹角的差值等于所述第八夹角的一半。
  9. 根据权利要求6所述的图像显示装置,其中,所述棱镜改变所述入射角的角度和所述出射角的角度,以使所述出射光信号的中心位于视线垂直面且偏离用户视角中心。
  10. 根据权利要求7所述的图像显示装置,其中,所述棱镜包括第二入射面、第二出射面,所述第二入射面与所述波导板组件朝向所述棱镜的表面平行,所述第二入射面和所述第二出射面在视线水平面的正投影具有第十一夹角,所述棱镜具有第二折射率,所述光信号与所述波导组件朝向光发射单元一侧的法线在所述视线垂直面的正投影具有第四夹角,所述第十一夹角和所述第四夹角满足公式n2·sinv=sin(β2+v),其中,n2为第二折射率,v为第十一夹角,β2为第四夹角。
  11. 根据权利要求4所述的图像显示装置,其中,所述棱镜改变所述入射角的角度和所述出射角的角度,以使所述出射光信号的中心与用户视角中心在视线垂直面的正投影错开,且所述出射光信号的中心与用户视角中心在视线水平面的正投影错开。
  12. 根据权利要求11所述的图像显示装置,其中,
    所述棱镜包括第一入射面、第一反射面、第二反射面、第一出射面和底面,所述光信号依次通过所述第一入射面、所述第一反射面、所述第二反射面和所述第一出射面传导,所述第一入射面和所述第一反射面具有第六夹角,所述第一反射面的延长线与所述第二反射面具有第七夹角,所述第一出 射面与所述波导组件具有第八夹角,所述第六夹角和所述第七夹角的差值等于所述第八夹角的一半,所述第一出射面与所述底面具有第九夹角,所述光信号与所述波导组件朝向光发射单元一侧的法线在垂直方向上具有第四夹角,所述第九夹角和第四夹角满足关系n1·sinθ4=sin(β2+θ4),其中,n1为棱镜的折射率,所述θ 4为第九夹角,所述β2为第四夹角。
  13. 根据权利要求6-12中任一项所述的图像显示装置,其中,所述图像显示装置还包括第二传动机构,所述棱镜设置于所述第二传动机构,所述第二传动机构能够驱动所述棱镜移动,以改变所述入射角的角度和所述出射角的角度。
  14. 根据权利要求1-4中任一项所述的图像显示装置,其中,所述图像显示装置包括第三传动机构,所述波导组件设置于所述第三传动机构,所述第三传动机构能够驱动所述波导组件移动,以改变所述入射角的角度和所述出射角的角度。
  15. 根据权利要求1-4中任一项所述的图像显示装置,其中,所述波导组件包括:
    波导板;
    耦入光栅,设置在所述波导板背离所述光发射单元一侧;以及
    耦出光栅,设置在所述波导板背离所述光发射单元一侧;其中
    所述光信号入射至所述波导组件后,依次在所述耦入光栅处发生衍射、在所述波导板内发生全反射、以及在所述耦出光栅处发生衍射后出射。
  16. 根据权利要求15所述的图像显示装置,其中,所述图像显示装置还包括第四传动机构,所述耦出光栅设置于所述第四传动机构,所述第四传动机构能够驱动所述耦出光栅移动,以改变所述出射角的角度。
  17. 一种可穿戴设备,其中,包括:
    壳体;以及
    图像显示装置,设置于所述壳体内,所述图像显示装置如权利要求1-8中任一项所述的图像显示装置。
  18. 根据权利要求17所述的可穿戴设备,其中,所述图像显示装置还包括:
    遮光件,设置于所述波导组件一侧,所述遮光件用于遮挡入射角大于预设视场角的外部光线进入所述波导组件。
  19. 根据权利要求18所述的可穿戴设备,其中,所述遮光件包括多个遮光部和多个透光部,多个所述遮光部和多个所述透光部交错设置,相邻两个所述遮光部用于遮挡入射角大于所述预设视场角的外部光线,所述透光部用于入射角小于或等于所述预设视场角的外部光线通过。
  20. 根据权利要求18所述的可穿戴设备,其中,所述可穿戴设备还包括光线传感器,所述光线传感器用于检测外部光线的光强度,所述遮光部包括电致变色部;
    当所述光线传感器检测到的光强度大于预设光强阈值时,控制所述电致变色部为着色状态,以遮挡入射角大于所述预设视场角的外部光线;
    当所述光线传感器检测到的光强度不大于预设光强阈值时,控制所述电致变色部为透光状态,以使所述外部光线通过所述遮光部。
  21. 根据权利要求18所述的可穿戴设备,其中,所述遮光件包括法布里珀罗空间滤波器,所述法布里珀罗空间滤波器用于遮挡入射角大于所述预设视场角的外部光线。
  22. 根据权利要求18所述的可穿戴设备,其中,所述遮光件包括液晶层,所述液晶层用于遮挡入射角大于所述预设视场角的外部光线。
PCT/CN2021/117417 2020-11-09 2021-09-09 图像显示装置及可穿戴设备 WO2022095594A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21888293.4A EP4242726A4 (en) 2020-11-09 2021-09-09 IMAGE DISPLAY DEVICE AND WEARABLE APPARATUS
US18/195,091 US20230273442A1 (en) 2020-11-09 2023-05-09 Image display device and wearable apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202022585211.XU CN214041882U (zh) 2020-11-09 2020-11-09 图像显示装置及可穿戴设备
CN202011241353.2 2020-11-09
CN202022585211.X 2020-11-09
CN202011241353.2A CN112180606A (zh) 2020-11-09 2020-11-09 图像显示装置及可穿戴设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/195,091 Continuation US20230273442A1 (en) 2020-11-09 2023-05-09 Image display device and wearable apparatus

Publications (1)

Publication Number Publication Date
WO2022095594A1 true WO2022095594A1 (zh) 2022-05-12

Family

ID=81457508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117417 WO2022095594A1 (zh) 2020-11-09 2021-09-09 图像显示装置及可穿戴设备

Country Status (3)

Country Link
US (1) US20230273442A1 (zh)
EP (1) EP4242726A4 (zh)
WO (1) WO2022095594A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230204958A1 (en) * 2021-12-28 2023-06-29 David Fliszar Eyewear electronic tinting lens with integrated waveguide

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102375235A (zh) * 2010-08-18 2012-03-14 索尼公司 显示设备
CN107850787A (zh) * 2015-07-22 2018-03-27 索尼公司 光学装置、图像显示装置和显示装置
CN108427193A (zh) * 2017-02-14 2018-08-21 深圳梦境视觉智能科技有限公司 增强现实显示系统
CN108700714A (zh) * 2016-01-06 2018-10-23 伊奎蒂公司 具有枢转成像光导的头戴式显示器
US20200249754A1 (en) * 2019-02-05 2020-08-06 Samsung Electronics Co., Ltd. Eye-tracking device and display apparatus including the same
CN111505827A (zh) * 2020-05-22 2020-08-07 Oppo广东移动通信有限公司 光学显示组件和智能穿戴设备
CN111562674A (zh) * 2020-05-20 2020-08-21 Oppo广东移动通信有限公司 光学显示组件和智能穿戴设备
CN112180606A (zh) * 2020-11-09 2021-01-05 Oppo广东移动通信有限公司 图像显示装置及可穿戴设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6197295B2 (ja) * 2013-01-22 2017-09-20 セイコーエプソン株式会社 光学デバイス及び画像表示装置
GB201720605D0 (en) * 2017-12-11 2018-01-24 Wave Optics Ltd Display for augmented reality or virtual reality
TWI830772B (zh) * 2018-08-26 2024-02-01 以色列商魯姆斯有限公司 近眼顯示器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102375235A (zh) * 2010-08-18 2012-03-14 索尼公司 显示设备
CN107850787A (zh) * 2015-07-22 2018-03-27 索尼公司 光学装置、图像显示装置和显示装置
CN108700714A (zh) * 2016-01-06 2018-10-23 伊奎蒂公司 具有枢转成像光导的头戴式显示器
CN108427193A (zh) * 2017-02-14 2018-08-21 深圳梦境视觉智能科技有限公司 增强现实显示系统
US20200249754A1 (en) * 2019-02-05 2020-08-06 Samsung Electronics Co., Ltd. Eye-tracking device and display apparatus including the same
CN111562674A (zh) * 2020-05-20 2020-08-21 Oppo广东移动通信有限公司 光学显示组件和智能穿戴设备
CN111505827A (zh) * 2020-05-22 2020-08-07 Oppo广东移动通信有限公司 光学显示组件和智能穿戴设备
CN112180606A (zh) * 2020-11-09 2021-01-05 Oppo广东移动通信有限公司 图像显示装置及可穿戴设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4242726A4

Also Published As

Publication number Publication date
US20230273442A1 (en) 2023-08-31
EP4242726A4 (en) 2024-05-08
EP4242726A1 (en) 2023-09-13

Similar Documents

Publication Publication Date Title
CN112180606A (zh) 图像显示装置及可穿戴设备
US10540822B2 (en) Display instrument and image display method
EP2535760B1 (en) Display apparatus
CN112255799B (zh) 可穿戴设备及可穿戴设备的控制方法
JP6892213B2 (ja) 表示装置及び表示装置の初期設定方法
KR102270952B1 (ko) 표시 장치
US11656459B2 (en) Display apparatus with a glasses type frame and an image display device
US8427734B2 (en) Three-dimensional image display device and electrochromic module thereof
JP7099322B2 (ja) 表示装置
CN111819488B (zh) 光学装置、图像显示装置和显示设备
CN214041882U (zh) 图像显示装置及可穿戴设备
US20230273442A1 (en) Image display device and wearable apparatus
CN112147781A (zh) 穿戴设备
US20140247211A1 (en) Image display apparatus
CN112189336A (zh) 显示装置
CN210015296U (zh) 头戴装置
CN213338223U (zh) 图像显示装置及可穿戴设备
CN116500804B (zh) 一种时分复用的逆反射立体显示装置
CN209858861U (zh) 穿戴设备
JPH07209600A (ja) 情報表示装置
US20220091421A1 (en) Optical device, image display device, and display device
CN116300208A (zh) 背光模组、显示装置及其驱动方法
CN106610546A (zh) 立体显示装置及其控制方法
JP6862641B2 (ja) 表示装置及び表示装置の初期設定方法
WO2021157247A1 (ja) 調光装置、画像表示装置及び表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021888293

Country of ref document: EP

Effective date: 20230608