WO2022095548A1 - 一种旋挖钻机方桩工法及设备 - Google Patents

一种旋挖钻机方桩工法及设备 Download PDF

Info

Publication number
WO2022095548A1
WO2022095548A1 PCT/CN2021/113784 CN2021113784W WO2022095548A1 WO 2022095548 A1 WO2022095548 A1 WO 2022095548A1 CN 2021113784 W CN2021113784 W CN 2021113784W WO 2022095548 A1 WO2022095548 A1 WO 2022095548A1
Authority
WO
WIPO (PCT)
Prior art keywords
square
shaft
sprocket
hole
square pile
Prior art date
Application number
PCT/CN2021/113784
Other languages
English (en)
French (fr)
Inventor
郑彪
郑杰
李常伟
Original Assignee
成都欣皓地基基础工程有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011217145.9A external-priority patent/CN112343502B/zh
Priority claimed from CN202110002338.0A external-priority patent/CN112796307A/zh
Priority claimed from CN202110091908.8A external-priority patent/CN112796671A/zh
Priority claimed from CN202110280580.4A external-priority patent/CN113026751A/zh
Priority claimed from CN202110767464.5A external-priority patent/CN113356203A/zh
Application filed by 成都欣皓地基基础工程有限责任公司 filed Critical 成都欣皓地基基础工程有限责任公司
Priority to CN202211403827.8A priority Critical patent/CN116044305A/zh
Priority to CN202180005321.9A priority patent/CN114555888B/zh
Priority to US17/714,693 priority patent/US11891892B2/en
Publication of WO2022095548A1 publication Critical patent/WO2022095548A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/001Drilling a non circular hole
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/34Concrete or concrete-like piles cast in position ; Apparatus for making same
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B4/00Drives for drilling, used in the borehole
    • E21B4/006Mechanical motion converting means, e.g. reduction gearings
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B4/00Drives for drilling, used in the borehole
    • E21B4/16Plural down-hole drives, e.g. for combined percussion and rotary drilling; Drives for multi-bit drilling units
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/002Drilling with diversely driven shafts extending into the borehole

Definitions

  • the invention belongs to the technical field of engineering construction, and particularly relates to a square pile construction method and equipment for a rotary drilling rig.
  • the square supporting piles are designed with a large diameter. At present, most of them are formed by manual digging, and a few of them are mechanically formed. Due to the limitations of related equipment and technology, the construction quality and efficiency are generally unsatisfactory.
  • manual digging has at least the following major disadvantages: 1. High risk factor and high safety protection cost; 2. Large loss of protective wall materials; 3. The construction efficiency is seriously low, and the work efficiency cost is falsely high; 4. The comprehensive cost of manual digging construction Too high (including manual hole digging fee, electricity fee, wall protection material fee, wall protection formwork fee, safety measure fee, work efficiency cost caused by low labor efficiency, etc.).
  • the purpose of the present invention is to provide a method and equipment for the construction of a square pile of a rotary drilling rig.
  • the technical solution adopted in the present invention is: a method for constructing a square pile of a rotary drilling rig, comprising the following steps:
  • S1 site leveling
  • S2 measuring and laying out
  • S3 wellhead concrete retaining wall
  • S4 drilling rig in place
  • S5 drilling rig vertical adjustment
  • S7 Compound hole drilling: On the basis of drilling the pilot hole, continue to drill the compound hole, and form a pre-formed hole after pilot hole drilling and compound hole drilling
  • S8 Square hole drilling: According to After the above-mentioned pilot hole drilling and compound hole drilling of the drilling machine reaches the pre-formed hole, the square hole drilling is carried out
  • S9 circular drilling and hole cleaning: after step S8, the bottom of the hole is cleaned, and the bottom of the hole is cleaned repeatedly from one end to the other end. Sweep the bottom of the hole until the sediment at the bottom of the hole is basically removed
  • S10 Square drilling to clear the hole: Use a square cleaning drill to clean the bottom of the hole.
  • step S10 the following steps are also included:
  • the pilot hole drilling in step S6 includes the following two drilling methods:
  • the compound hole drilling in step S7 includes the following two hole forming methods:
  • the circular pick sand drill is used to drill the near end of the square pile by the rotary drilling rig until the designed pile bottom elevation reaches the pre-formed hole.
  • the size of the circular pick sand fishing drill or drill bit is smaller than the size of the circular pick sand fishing drill bit in mode (1).
  • the square hole drilling in step S8 is performed with a square pile drill bit
  • the square pile drill bit includes a box body
  • the box body is installed with a power drive device, a power transmission mechanism and an execution device
  • the power drive device includes a power transmission shaft , the first connecting square head, the pulling and pressing plate and the pressure conducting plate
  • the middle part of the box body is installed with a power transmission shaft
  • the power transmission shaft is rotatably connected with the box body
  • the number of the bearings is two
  • the two bearings They are located on the upper and lower sides of the box, respectively.
  • the upper and lower sides of the bearing are respectively provided with a first bearing pressure plate and a second bearing pressure plate.
  • the first bearing pressure plate and the second bearing pressure plate are connected with the box by screws.
  • the upper end of the box is connected with a pulling and pressing plate by screws
  • the upper outer wall of the power transmission shaft is provided with a shoulder
  • the shoulder is located in the lifting and pressing plate
  • a pressure conduction plate is arranged on the lower side of the shoulder, the pressure conduction plate is fixedly connected to the upper side of the box body, and the upper side of the power transmission shaft is fixedly connected with a power input first connection square head.
  • the power drive device is connected with a power transmission mechanism
  • the power transmission mechanism includes a first driving sprocket, a second driving sprocket, a power input sprocket, a first chain, a reversing transmission box, a transmission shaft, a a sprocket, a second sprocket and a second chain
  • the middle of the power transmission shaft is connected with a first driving sprocket and a second driving sprocket
  • the first driving chain wheel is located on the upper side of the second driving chain wheel
  • the left and right sides of the inner cavity of the box are connected with a reversing transmission case
  • the upper end of the input shaft of the reversing transmission case is connected with a power input sprocket, and between the power input sprocket on the left and the first driving sprocket
  • a first chain is installed between the power input sprocket on the right side and the second driving sprocket
  • an output shaft is provided
  • the power transmission mechanism is connected with an execution device, the execution device includes a first execution part and a second execution part, and a first execution part is installed on the left and right sides under the box body, and the first execution part
  • the first sprocket, the second sprocket and the second chain are in driving connection with the transmission shaft, and the end of the transmission shaft away from the box body is equipped with a second execution component.
  • the first execution component includes a rotating shaft body and a first excavation actuating element, the rotating shaft body is rotatably connected to the box, the outer wall of the rotating shaft is fixedly connected with a first excavating actuating element, and the rotating shaft body is rotatably connected to the box.
  • a second sprocket is installed at the front and rear ends, the transmission shaft is connected with a first sprocket, the first sprocket corresponds to the left and right positions of the second sprocket, and the first sprocket and the second sprocket are connected.
  • a second chain is installed between.
  • the second execution component includes a crawler-type driving wheel, a crawler-type driven wheel, a crawler-type chain rail, a second excavation actuator, a power plate and a driven shaft, and the crawler-type driving wheel and the transmission shaft are far away from the box body.
  • a crawler chain rail is installed between the crawler-type driving wheel and the crawler-type driven wheel, the outer wall of the crawler chain rail is fixedly connected with a power plate, and the front and rear sides of the power plate are connected with a second excavation actuator.
  • a lifting protection shaft is connected to the lower side of the box body, and the lifting protection shaft is located on the lower side of the first power transmission shaft.
  • the square hole drilling in step S8 is performed with a square pile drill bit
  • the square pile drill bit includes a power head component, a power transmission component and a third execution component
  • the power head component includes a frame, a second connecting square head , a second power transmission shaft, a slewing bearing, the middle part of the frame is installed with a slewing bearing on both sides, the frame is rotatably connected with a second power transmission shaft through the slewing bearing, and the upper end of the second power transmission shaft is fixedly connected
  • the execution part includes a transmission shaft, a shaft sleeve and an execution cutting element, the shaft sleeve is connected to the outer edge of the frame, and the transmission shaft is rotatably connected inside the shaft sleeve through a bearing.
  • the executing cutting element includes a first executing cutting element and a second executing cutting element, the first executing cutting element and the second executing cutting element are respectively fixedly connected to the lower ends of two adjacent transmission shafts, and the The first cutting elements and the second cutting elements are staggered.
  • a power transmission part is arranged between the third execution part and the power head part, and the power transmission part comprises a driving sprocket, a first driven sprocket, a second driven sprocket, and a first transmission chain and the second transmission chain, two driving sprockets are installed on the upper end of the second power transmission shaft, the positions of the two driving sprockets are corresponding up and down, and the upper end of the transmission shaft on the left side is connected with a first driven sprocket, The upper end of the transmission shaft on the right side is connected with a second driven sprocket, a first transmission chain is installed between the driving sprocket on the upper side and the first driven sprocket, and the driving sprocket on the lower side is connected to the first driven sprocket.
  • a second transmission chain is installed between the second driven sprockets.
  • the second power transmission shaft is a stepped shaft, and the stepped portion of the second power transmission shaft is located on the lower side of the frame.
  • the drive sprocket is adapted to both the first driven sprocket and the second driven sprocket, and the first driven sprocket and the second driven sprocket are the same, and the outside of the drive sprocket
  • the diameter length is greater than the outer diameter length of the first driven sprocket and the second driven sprocket.
  • the slewing bearing is an external toothless slewing bearing.
  • the drilling of the square hole in step S8 is performed by using a square pile drill bit
  • the square pile drill bit includes a box body, and the edge inside the box body is longitudinally provided with evenly arranged grinding bushings, and the evenly arranged grinding bushings are The lower ends of the grinding bushings all extend through the lower side wall of the box body to the lower end of the box body, and a grinding head is fixedly arranged, and the upper ends of the grinding bushings all pass through the upper side wall of the box body and extend to the upper end of the box body , a hydraulic motor is fixedly arranged, the side wall of the hydraulic motor is fixedly arranged with an oil outlet, the upper end of the oil outlet is arranged with an oil inlet, the inside of the box is fixedly arranged with an oil tank, and the oil tank is provided with at least two , a motor and a hydraulic pump are fixedly arranged between each of the oil tanks.
  • the motor includes a first motor, an output end of the first motor is fixedly provided with a first hydraulic pump, a side wall of the first hydraulic pump is fixedly provided with a first inlet and a first outlet, and the first motor
  • a second motor is fixed on the right end of the second motor, a second hydraulic pump is fixed on the output end of the second motor, and a second inlet and a second outlet are fixed on the side wall of the second hydraulic pump.
  • an anti-rotation plate is fixed on the upper side wall of the box body, a third connecting square head is longitudinally arranged inside the anti-rotation plate, and the lower side wall of the third connecting square head is connected to the box body
  • the upper side wall of the third connecting square head is fixedly connected, the side wall of the third connecting square head is fixedly provided with a symmetrical square head reinforcing plate, and the side of the square head reinforcing plate far away from the third connecting square head and the inner wall of the anti-rotation plate Fixed connection.
  • a grinding head drive shaft is longitudinally arranged inside the grinding sleeve, the lower end of the grinding head drive shaft is fixedly connected with the grinding head, and the upper end of the grinding head drive shaft passes through the grinding
  • the upper side wall of the shaft sleeve is fixedly connected with the output end of the hydraulic motor, and the upper end of the shaft wall of the drive shaft of the grinding head is rotatably connected with the grinding shaft sleeve.
  • the grinding head includes a cutter body and a protruding part, and the protruding parts are evenly arranged around the cutter body.
  • the oil outlet of the hydraulic motor is connected to the oil tank
  • the first inlet of the first hydraulic pump and the second inlet of the second hydraulic pump are both connected to the oil tank
  • the first inlet of the first hydraulic pump is connected to the oil tank.
  • Both the outlet and the second outlet of the second hydraulic pump are connected to the hydraulic motor.
  • the square hole cleaning drill bit in step S10 is a square pile hole cleaning drill, including a fourth connection square head of power input and an installation rack plate, the bottom of the fourth connection square head of power input is connected to an installation plate, and the installation plate The bottom is connected to the outer ring of the slewing bearing with external teeth, the inner ring of the slewing bearing with external teeth is connected to the middle of the top of the installation rack plate, and the left and right sides of the inner top of the installation rack plate are longitudinally provided with movable grooves.
  • a bearing is installed on the inner wall of the groove, the inner wall of the bearing is connected with the outer wall of the connecting column, the top of the connecting column is connected with the transmission gear, the outer ring of the slewing bearing with external teeth is meshed with the transmission gear, and the connecting columns on the left and right sides are connected with the transmission gear.
  • the bottom of the spool is respectively connected with bobbin 1 and bobbin 2
  • the middle part of the mounting rack plate is provided with a sliding column longitudinally
  • the top and bottom of the front of the sliding column are respectively provided with connecting shaft 1 and connecting shaft 5.
  • the outer wall of the sliding column is sleeved with a tensile connection sleeve.
  • the upper, middle and lower parts of the front of the tensile connection sleeve are respectively provided with connecting shaft 2, connecting shaft 3 and connecting shaft 4.
  • the bobbin 1 and the bobbin 2 A wire rope 1 and a wire rope 2 are respectively wound on it, the other end of the wire rope 1 is connected to the connection shaft 2 through the conversion of the connection shaft 1, and the other end of the wire rope 2 is connected to the connection shaft 4 through the conversion of the connection shaft 5.
  • the left and right sides of the top of the installation rack plate are hinged with soil sandwich plates, the connecting shaft 3 is connected with the transmission shaft through a pin shaft, and the other end of the transmission shaft is hinged with the soil sandwich plate.
  • the present invention has the following beneficial effects: the present invention provides a new rotary drilling rig square pile construction method, which can use equipment for square pile construction throughout the process, effectively reduces the underground operations of laborers, and avoids project safety production risks from the source.
  • the invention also provides three square pile drill bits and one square pile hole cleaning drill in conjunction with the square pile construction method, further realizing the mechanization of the whole square pile construction.
  • Fig. 1 is the schematic flow chart of the square pile construction method of the rotary drilling rig of the present invention
  • FIG. 2 is a schematic structural diagram of the bottom pile drill bit according to an embodiment of the present invention.
  • Fig. 3 is the A-A sectional structure schematic diagram of Fig. 2;
  • Fig. 4 is the B-B sectional structure schematic diagram of Fig. 2;
  • Fig. 5 is a schematic diagram of the right side view of Fig. 2;
  • FIG. 6 is a schematic structural diagram of a second execution component under an embodiment of the square pile drill bit of FIG. 2;
  • Fig. 7 is the top view structure schematic diagram of Fig. 2;
  • FIG. 8 is a schematic diagram of the three-dimensional structure of FIG. 2;
  • FIG. 9 is a schematic diagram of the first execution component under another embodiment of the square pile drill bit of FIG. 2;
  • Fig. 10 is a schematic diagram of a second execution component under another embodiment of the square pile drill bit of Fig. 2;
  • Fig. 11 is a schematic diagram of the structure of the bottom pile drill bit according to the second embodiment of the present invention.
  • Figure 12 is a schematic view of the bottom view of Figure 11;
  • FIG. 13 is a schematic top view structure diagram of FIG. 11;
  • Fig. 14 is the A-A structure schematic diagram of Fig. 13;
  • Figure 15 is a schematic diagram of the B-B structure of Figure 14;
  • Fig. 16 is the three-dimensional schematic diagram of Fig. 11;
  • Fig. 17 is a schematic structural diagram of two execution components of the square pile drill bit of Fig. 11;
  • FIG. 18 is a schematic three-dimensional structure diagram of the first execution cutting element
  • FIG. 19 is a schematic three-dimensional structure diagram of the second execution cutting element
  • Fig. 20 is a schematic top-view structural diagram of the bottom pile drill bit according to the third embodiment of the present invention.
  • Fig. 21 is the front view structure schematic diagram of Fig. 20;
  • Figure 22 is a schematic view of the cross-sectional structure along the line A-A of Figure 20;
  • Figure 23 is a schematic view of the cross-sectional structure taken along the line B-B of Figure 21;
  • FIG. 24 is a cross-sectional structural schematic diagram of the grinding sleeve of the square pile drill bit of FIG. 20;
  • Figure 25 is a schematic view of the grinding head structure of the square pile drill bit of Figure 20;
  • Fig. 26 is a schematic diagram of the structure of a hole-clearing drill for a rotary excavation pile according to an embodiment of the present invention (closed state);
  • Figure 27 is a left side view of Figure 26;
  • Fig. 28 is the perspective view of Fig. 26;
  • Fig. 29 is a schematic diagram of the unfolded structure of the soil-incorporated plate of the square pile hole cleaning drill shown in Fig. 26 .
  • the first object of the present invention is to provide a method for constructing a square pile of a rotary drilling rig. According to different geological structures and different design specifications of square anti-sliding piles, different construction machines, techniques, drilling tools, etc. are adopted.
  • the embodiments of the present invention All take the square pile of design specification (2.0m ⁇ 3.0m) as an example. As shown in Figure 1, the shown construction method specifically includes the following steps:
  • S1 Site leveling: The land at the construction site is leveled and compacted in advance.
  • the drilling rig is in place: The drilling rig moves to the retaining wall. Before the drilling rig is in place, the ground is compacted to ensure the stability of the drilling rig. During the drilling process, there will be no inclination or displacement due to subsidence.
  • Drilling rig vertical adjustment In order to ensure the verticality of the pile foundation after the hole is formed, adjust the verticality of the drilling rig's drill pipe according to the level that comes with the drilling rig, so that the drilling rig's drill pipe corresponds to the center of the retaining wall.
  • Guide hole drilling guide holes are set in the protective wall, and the drilling is carried out based on the guide holes to form square pile drilling.
  • pilot hole drilling in step S6 is divided into the following two methods:
  • Pilot hole drilling method 1 four-corner pilot hole method: The geological survey report reveals that the stratum structure is relatively stable and the pile foundation is not easy to collapse. Take the square pile as an example] Open plum-shaped pilot holes at 4 corners of the pile foundation, and each pilot hole should be drilled to the designed hole bottom elevation.
  • Pilot-hole drilling method 2 single-hole pilot-hole method: the geological survey report reveals that the stratum structure is unstable and the pile foundation is easy to collapse. 3.0m) square pile as an example], in order to prevent the deviation of the pile hole, according to the topography and site conditions, a pilot hole is opened in the direction of the pile foundation away from the far end of the drilling rig, and drilled to the designed hole bottom elevation;
  • the compound hole drilling specifically includes the following two hole forming methods, respectively corresponding to methods 1 and 2 of step S6:
  • A. Compound hole drilling method 1.
  • Four-corner lead-in method Plum-shaped lead-in pile foundation with relatively stable geology.
  • the rotary drilling rig uses a ⁇ 2000mm circular pick sand drill to drill in the center of the square pile until it reaches the design pile.
  • the bottom elevation reaches the pre-formed hole (corresponding to method 1 of step 6: four-corner lead-in method).
  • Double-hole drilling method 2 single-hole lead-in method: the geological survey report reveals that the stratum structure is unstable, and the pile foundation with a single lead-in hole is easy to collapse. Use a ⁇ 1500mm or ⁇ 1800mm circular pick sand drill to rotate the square pile against the side. Drill at the proximal end of the drilling rig until the elevation of the designed pile bottom reaches the pre-formed hole (corresponding to Method 2 of Step 6: single-hole lead-in method).
  • S8 Square hole drilling: According to the above-mentioned pilot hole drilling and compound hole drilling through the drilling machine, after the pre-formed hole is reached, the square hole drilling is carried out, and the kinetic energy of the drilling machine is used to convert the lateral rotational kinetic energy through the conversion of the kinetic energy transmission component mechanism. Longitudinal rotation kinetic energy is generated, and then the excavation and trimming process is carried out through the square pile drill execution component mechanism.
  • each side if it is necessary to bury the casing in case of serious collapse of the hole, each side should be increased by 100mm according to the design specifications, and a square steel casing should be made according to the length corresponding to the depth of the collapsed hole and lowered to the level below the collapsed hole.
  • the circular drill should be repeated many times during the drilling process of the square hole. Slag and square holes are drilled until the square holes are drilled to the designed hole bottom elevation.
  • step S9 Circular drilling and hole cleaning: After step S8, clean the sediment at the bottom of the hole. First, use a ⁇ 800mm hole cleaning drill to clean the four corner points of sediment, and then use a ⁇ 2000mm hole cleaning drill to clean the entire bottom of the hole, and repeat from one end to the other. the bottom of the hole until the sediment at the bottom of the hole is basically removed.
  • S10 Square drilling and hole cleaning: Use a square hole cleaning bit to clean the bottom of the hole.
  • the principle of square hole cleaning is to use a movable connecting rod combined with a double loose-leaf slag inclusion plate. Under the strong self-gravity of the hole cleaner, the center is pulled at a slow speed.
  • the movable connecting rod, the double-leaf slag inclusion plate closes by itself, scrapes all the slag at the bottom of the hole to the center of the hole bottom and forms an inverted triangle slag inclusion space, and then uses the rotary drilling rig drill pipe to pull the square pile hole cleaner, this step can be repeated Complete the cleaning of the sediment at the bottom of the hole several times until the sediment at the bottom of the hole is completely removed.
  • Reinforcement cage manufacturing and installation Reinforcing cages are prepared and pre-processed according to design requirements in the special processing plant area; binding and welding are performed at the construction site.
  • the construction points for the production and installation of the reinforcement cage in step S12 are as follows: the diameter of the reinforcement cage and the reinforcement specifications are as per the design requirements; the thickness of the reinforcement cage protective layer is 50mm; the section of the main reinforcement should not be damaged during welding; Pad, rainproof and waterproof.
  • the rebar cage can be hoisted and installed only after it has passed the acceptance inspection.
  • the inspection contents are: the length and diameter of the cage should meet the requirements; whether the welding of the hoisting frame on the top of the rebar cage meets the safe hoisting construction, and whether the longitudinal bars of the supporting piles are anchored into the crown beams. Whether the length meets the design requirements,
  • the square pile reinforcement cage should be hoisted in parallel with the four-corner support hoisting frame. When hoisting and lowering, it should be hoisted high and lowered slowly. At the same time, the reinforcement cage should be fixed by a special person to avoid scratching the hole wall of the square pile as much as possible. Bottom sediment.
  • S13 Concrete pouring: The concrete pouring method adopts the underwater concrete pouring method.
  • the square pile is designed with a large cross-section. Two sets of conduits are used for construction at the same time. , Concrete pouring.
  • the length of the conduit is determined according to the measured hole depth.
  • the distance between the lower end of the conduit and the bottom of the hole is 200mm to 400mm to control the discharge gap at the bottom of the hole.
  • the initial irrigation amount is a key indicator of concrete infusion. After the initial irrigation, it should be ensured that the depth of the catheter is not less than 2.0m.
  • the concrete strength is submerged concrete according to the design requirements, and the mixing ratio is provided by the mixing station and strictly enforced. After each concrete pouring, the rising height of the concrete surface should be measured in time, the buried depth of the conduit should be calculated, and the conduit should be removed in time. The embedded depth of the conduit should not be greater than 8.0m; When the concrete is poured to the top of the pile, the elevation of the concrete surface should be carefully detected, and the conduit can be lifted only after it is confirmed that it is qualified. In the process of concrete pouring, manpower and material resources should be well organized, continuous pouring should not be stopped in the middle, and the underwater pouring of concrete should be completed in the shortest time.
  • the top of the pile should not be too low, and there is a layer of laitance in contact with the concrete on the upper layer of the concrete that needs to be chiseled. For this reason, the concrete height needs to be over poured by 500mm. The chisel is removed, and the perfusion recorder will record the perfusion during the perfusion process.
  • the second object of the present invention is to provide a brand-new square pile drill bit (mainly used in step S8 of the above-mentioned construction method) in conjunction with the above-mentioned construction method.
  • An embodiment of the square pile drill bit is a square pile drill bit for a square bored cast-in-place pile foundation as shown in FIGS. 2-10 .
  • the "casting" referred to in the "cast-in-place pile foundation" here does not specifically refer to a certain process, nor does it refer to S13 in the above-mentioned construction method, but represents the form of pile formation is "cast-in-place pile”.
  • the square pile drill bit used here is mainly used in step S8 of the above-mentioned construction method.
  • the square pile drill bit includes a box body 14, and the box body 14 is installed with a power drive device, a power transmission mechanism and an execution device.
  • the box body 14 has a rectangular parallelepiped shape.
  • the power driving device includes a first power transmission shaft 18 , a power input first connecting square head 11 , a pulling and pressing plate 15 and a pressure conducting plate 12 .
  • a first power transmission shaft 18 is installed in the middle of the box body 14 , and the first power transmission shaft 18 is rotatably connected to the box body 14 through a bearing 17 .
  • the number of the bearings 17 is two, and the two bearings 17 are respectively located in the circular holes of the upper and lower wall plates of the box body 14 .
  • the first bearing pressing plate 13 , the second bearing pressing plate 16 and the box body 14 are connected by screws.
  • the bearing 17 is installed between the first bearing pressing plate 13 and the second bearing pressing plate 16 , and the bearing 17 is fixed by the first bearing pressing plate 13 and the second bearing pressing plate 16 , and the upper end of the box body 14 is connected with a lifting plate by screws.
  • the pressing plate 15 the upper outer wall of the first power transmission shaft 18 is provided with a shoulder 130 , and the shoulder 130 is located in the lifting and pressing plate 15 .
  • a pressure conduction plate 12 is disposed on the lower side of the shoulder 130 , and the pressure conduction plate 12 is fixedly connected to the upper side of the box body 14 .
  • the shoulder 130 is integrally formed with the first power transmission shaft 18 and has a stable structure.
  • the upper side of the first power transmission shaft 18 is fixedly connected with a power input first connecting square head 11 .
  • the square pile drill bit is connected to the existing rotary drilling rig through the first connecting square head 11 , and the rotary drilling rig drives the first connecting square head 11 to rotate to realize power input.
  • the power drive device is connected with a power transmission mechanism, and the power transmission mechanism includes a first driving sprocket 19, a second driving sprocket 110, a power input sprocket 127, a first chain 128, a reversing transmission box 123, a transmission shaft 122 , the first sprocket 129 , the second sprocket 121 and the second chain 126 .
  • a first drive sprocket 19 and a second drive sprocket 110 are connected to the middle of the first power transmission shaft 18 through screws.
  • the first drive sprocket 19 is located on the upper side of the second drive sprocket 110 .
  • the left and right sides of the inner cavity of the box body 14 are connected with a reversing transmission case 123 by bolts.
  • the transmission mode of the reversing transmission box 123 is deceleration transmission, and the deceleration transmission is a mature prior art, and the matching ratio (speed ratio) can be adjusted according to the size of the gear.
  • the speed reduction transmission is adopted, which can realize the controllable reduction of the rotation speed.
  • the upper end of the input shaft of the reversing transmission box 123 is connected with a power input sprocket 127 by screws.
  • the drive sprockets 110 are located at the same height. It should be noted that, in FIG.
  • a first chain 128 is installed between the power input sprocket 127 on the left and the first driving sprocket 19 and between the power input sprocket 127 on the right and the second driving sprocket 110 .
  • Output shafts are provided on both the front and rear sides of the reversing transmission case 123 , and the output shaft of the reversing transmission case 123 is connected with a transmission shaft 122 through a coupling 124 .
  • the power transmission mechanism is connected with an actuator, and the actuator includes a first actuator 118 and a second actuator 112 .
  • a first execution part 118 is installed on the left and right sides of the lower part of the box 14 , and the first execution part 118 and the transmission shaft 122 are drively connected through a first sprocket 129 , a second sprocket 121 and a second chain 126 .
  • the end of the transmission shaft 122 away from the box body 14 is installed with the second execution component 112 .
  • the first executing member 118 includes a rotating shaft body 120 and a first excavating executing element 119 .
  • the first excavation execution element 119 is a hard protruding structure.
  • the rotating shaft body 120 is rotatably connected with the box body 14 , and the outer wall of the rotating shaft body 120 is fixedly connected with the first excavation actuator 119 .
  • Second sprockets 121 are installed on both the front and rear ends of the rotating shaft body 120 .
  • the transmission shaft 122 is connected with a first sprocket 129 by screws.
  • the first sprocket 129 corresponds to the left and right positions of the second sprocket 121 .
  • the second chain 126 and the transmission shaft 122 drive the rotating shaft body 120 to rotate through the second chain 126 .
  • the first excavation actuator 119 arranged on the first actuator 118 is a hard protrusion, preferably a "bullet"-shaped protrusion.
  • the arrangement of the first excavation actuators 119 may be uniformly arranged and parallel to the rotating shaft body 120 as shown in FIGS.
  • a preferred solution is: the gap between the first excavation actuators 119 is 10-20 mm.
  • the second actuator 112 includes a crawler-type driving wheel 115 , a crawler-type driven wheel 113 , a crawler chain rail 114 , a second excavation actuator 117 , a power plate 116 and a driven shaft 125 .
  • the crawler-type driving wheel 115 is connected with the end of the transmission shaft 122 away from the box body 14 by screws.
  • a driven shaft 125 is rotatably connected to the lower left and right sides of the box body 14 , and crawler driven wheels 113 are connected to the front and rear ends of the driven shaft 125 through bolts.
  • the positions of the crawler-type driving wheel 115 and the crawler-type driven wheel 113 correspond to left and right, and a crawler-type chain rail 114 is installed between the crawler-type driving wheel 115 and the crawler-type driven wheel 113 .
  • a power plate 116 is fixedly connected to the outer wall of the crawler chain rail 114 , and second excavation actuators 117 are welded on the front and rear sides of the power plate 116 .
  • the transmission shaft 122 drives the crawler-type driving wheel 115 to rotate, thereby making the crawler chain rail 114 rotate.
  • the second excavation actuator 117 rotates following the crawler chain rail 114 .
  • a group of the second excavation actuators 117 and power plates 116 may be provided on each second actuator 112 , or as shown in FIG.
  • the second excavation actuator 117 is preferably in the shape of a "bullet head".
  • a preferred solution is that the "bullet" direction of the second excavation actuator 117 is consistent with the rotation direction of the crawler-type driving wheel 115 .
  • the lower side of the box body 14 is connected with a pull-up protection shaft 111 through screws.
  • the lifting protection shaft 111 is located on the lower side of the first power transmission shaft 18 .
  • the lifting protection shaft 111 realizes the protection against falling, preventing the first power transmission shaft 18 from falling.
  • the working principle of this embodiment when the square pile drill bit works downward, the downward pre-pressure is transmitted to the first power transmission shaft 18 through the power input first connecting square head 11 , and the first power transmission shaft 18 transmits the pre-pressure through the pressure transmission plate 12 . The pressure is transmitted to the casing 14 .
  • the first power transmission shaft 18 When the square pile drill bit moves upward, the first power transmission shaft 18 is in a matched state with the pulling and pressing plate 15 through the shoulder 130 , and then the pulling force is transmitted to the box body 14 .
  • the first power transmission shaft 18 When power is input, the first power transmission shaft 18 is in a rotating state, the box body 14 is stationary, and the power driven by the power head of the rotary drilling rig is input into the first connecting square head 11 and the power source.
  • the power transmission mechanism transmits the power on the power drive device to the execution device.
  • the power head of the rotary drilling rig drives the first power transmission shaft 18 to rotate through the power input of the first connecting square head 11, and is transmitted through the first chain 128.
  • the first power transmission shaft 18 drives the power input sprocket 127 to rotate
  • the power input sprocket 127 drives the output shaft of the reversing transmission case 123 to rotate
  • the output shaft of the reversing transmission case 123 drives the transmission shaft 122 to rotate
  • the transmission shaft 122 drives the first execution part 118 and the second Execution component 112 works.
  • the transmission shaft 122 drives the rotating shaft body 120 to rotate through the second chain 126 , the first excavation actuator 119 rotates with the rotating shaft body 120 , the transmission shaft 122 can also drive the crawler-type driving wheel 115 to rotate, and the crawler-type driving wheel 115 drives the crawler chain rail.
  • 114 rotates, and the second excavation actuator 117 rotates following the crawler chain rail 114 for downward excavation.
  • the square pile drill is used to excavate on the basis of the round hole, and the hole wall is cut flat.
  • FIGS. 11-19 is a cutting type square pile drill bit, including a power head part 21 , a power transmission part 27 and a third execution part 211 .
  • the power head part 21 includes a frame 22 , a second connecting square head 24 , a second power transmission shaft 25 , and a slewing bearing 26 .
  • a slewing bearing 26 is installed on the upper and lower sides of the middle of the frame 22 , the frame 22 is rotatably connected with a second power transmission shaft 25 through the slewing bearing 26 , and the upper end of the second power transmission shaft 25 is fixedly connected with a second connection
  • the square head 24, the rotary drilling rig inputs power through the second connecting square head 24, and drives the second power transmission shaft 25 to rotate.
  • the third execution component 211 is evenly mounted on the outer edge of the frame 22 .
  • the third execution part 211 includes a transmission shaft 215 , a shaft sleeve 216 and an execution cutting element 212 .
  • the shaft sleeve 216 is connected to the outer edge of the frame 22 through screws, and a transmission shaft 215 is rotatably connected inside the shaft sleeve 216 through a bearing.
  • the executing cutting elements 212 include a first executing cutting element 217 and a second executing cutting element 218 .
  • the first cutting elements 217 and the second cutting elements 218 are fixedly connected to the lower ends of the adjacent two transmission shafts 215 respectively, and the first cutting elements 217 and the second cutting elements 218 are staggered.
  • the cutting part of the cutting element 212 itself has a structure in which the cutting parts are distributed in a staggered height, as shown in FIG. 17 , so as to realize the relocation of the cutting position and the cross cutting.
  • a single first cutting element 217 includes a plurality of symmetrically arranged "two"-shaped structures, the upper and lower sides of the "two"-shaped structure are of equal length, and several protrusions are arranged on the horizontal structure.
  • a single second executing cutting element 218 includes a plurality of “one”-shaped structures symmetrically arranged, and the number, shape and size of the “one”-shaped structures are all corresponding to the “two”-shaped structure of the first executing cutting element 217, and can be It is just snapped into the middle of the two lateral structures; similarly, several protrusions are also arranged on the lateral structure of the "one"-shaped structure.
  • the protrusions on the lateral structures of the two are staggered.
  • three "two"-shaped structures on a single first executing cutting element 217 and three "one"-shaped structures on a single second executing cutting element 218 are respectively set.
  • the plurality of cutting elements 212 are arranged in a rectangular shape as a whole, and the cutting elements 212 are arranged in sequence along the inner wall of the box without interfering with each other, and are used for cutting square hole piles.
  • a power transmission part 27 is provided between the third execution part 211 and the power head part 21 , and the power transmission part 27 includes a driving sprocket 23 , a first driven sprocket 29 , The second driven sprocket 210 , the first transmission chain 213 and the second transmission chain 214 .
  • Two driving sprockets 23 are installed on the upper end of the second power transmission shaft 25 , and the positions of the two driving sprockets 23 correspond up and down.
  • the upper end of the transmission shaft 215 on the left is connected with a first driven sprocket 29 through screws, and the upper end of the transmission shaft 215 on the right is connected with a second driven sprocket 210 through screws.
  • the first driven sprocket 29 and the upper driving sprocket 23 are located on the same plane, and the second driven sprocket 210 and the lower driving sprocket 23 are located on the same plane.
  • a first transmission chain 213 is installed between the driving sprocket 23 on the upper side and the first driven sprocket 29
  • a second transmission chain is installed between the driving chain 23 and the second driven sprocket 210 on the lower side
  • the chain 214 drives the first driven sprocket 29 and the second driven sprocket 210 to rotate through the driving sprocket 23, and then drives the execution cutting element 212 to rotate for cutting (in order to avoid too many lines affecting the cleanliness, it is not shown in FIG. 14 ). out the first transmission chain 213 and the second transmission chain 214).
  • the driving sprocket 23 is adapted to both the first driven sprocket 29 and the second driven sprocket 210 , and the first driven sprocket 29 and the second driven sprocket 210 have the same outer diameter and length.
  • the outer diameter of the driving sprocket 23 is greater than the outer diameter of the first driven sprocket 29 and the second driven sprocket 210, that is, the large sprocket drives the small sprocket to rotate, so as to achieve the purpose of speeding up the transmission. .
  • the second power transmission shaft 25 is a stepped shaft, and the stepped part of the second power transmission shaft 25 is located on the lower side of the frame 22 to realize the power input and rotation of the second power transmission shaft 25, and the frame 22 is in a stationary state At the same time, when the slewing bearing 26 fails, the stepped portion of the second power transmission shaft 25 can realize the support and protection function of the frame 22.
  • the slewing bearing 26 is an external toothless slewing bearing.
  • the upper side of the frame 22 is connected with a protective cover 28 by screws.
  • the rotary drilling rig inputs power through the second connecting square head 24 to drive the second power transmission shaft 25 to rotate, and the second power transmission shaft 25 simultaneously drives the upper and lower driving sprockets 23 to rotate. Since the driving sprocket 23 on the upper side is drivingly connected with the first driven sprocket 29 through the first transmission chain 213 , the driving sprocket 23 on the lower side is drivingly connected with the second driven sprocket 210 through the second driving chain 214 , thereby The drive shaft 215 is driven to rotate, and then the execution cutting element 212 is driven to rotate for cutting, and a square hole pile is drilled on the basis of the round hole pile.
  • the third embodiment of the square pile drill bit is shown in Figures 20-25.
  • the hydraulic grinding square pile drill bit includes a box body 31.
  • the inner edge of the box body 31 is longitudinally provided with uniformly arranged grinding bushings 32 .
  • the lower ends of the evenly arranged grinding shaft sleeves 32 all extend through the lower side wall of the box body 31 to the lower outer end of the box body 31 and are fixedly provided with a grinding head 33 .
  • the upper ends of the grinding shaft sleeves 32 penetrate through the upper side wall of the box body 31 and extend to the outer end of the upper side of the box body 31 and are fixedly provided with a hydraulic motor 34 .
  • the side wall of the hydraulic motor 34 is fixedly provided with an oil outlet, and the upper end of the oil outlet is fixedly provided with an oil inlet.
  • a symmetrical oil tank 35 is fixed inside the box body 31, and the oil outlet and the oil inlet are respectively connected to the corresponding oil tanks 35 through pipelines to realize oil in and out; Multiple fuel tanks 35 can be provided according to actual needs, and two are shown in the figure.
  • a first motor 36 is fixedly arranged between the two oil tanks 35 , and a first hydraulic pump 37 is fixedly arranged at the output end of the first motor 36 .
  • the side wall of the first hydraulic pump 37 is fixedly provided with a first inlet and a first outlet, the right end of the first motor 36 is fixedly provided with a second motor 38, the output end of the second motor 38 is fixedly provided with a second hydraulic pump 39,
  • the side walls of the two hydraulic pumps 39 are fixedly provided with a second inlet and a second outlet.
  • the oil outlet of the hydraulic motor 34 is fixedly connected to the oil tank 35, the first inlet of the first hydraulic pump 37 and the second inlet of the second hydraulic pump 39 are fixedly connected to the oil tank 35, and the first outlet of the first hydraulic pump 37 and the second inlet of the second hydraulic pump 39 are fixedly connected to the oil tank 35.
  • the second outlets of the two hydraulic pumps 39 are both fixedly connected to the hydraulic motor 34 .
  • An anti-rotation plate 310 is fixedly disposed on the upper side wall of the box body 31 , and a third connecting square head 311 is longitudinally disposed inside the anti-rotation plate 310 .
  • the lower side wall of the third connecting square head 311 is fixedly connected with the upper side wall of the box body 31
  • the side wall of the third connecting square head 311 is fixedly provided with a symmetrical square head reinforcing plate 312
  • the square head reinforcing plate 312 is far away from the third connection
  • One side of the square head 311 is fixedly connected to the inner wall of the anti-rotation plate 310 .
  • a grinding head drive shaft 313 is longitudinally disposed inside the grinding head drive shaft 313 , and a bearing spacer 318 is arranged between the grinding head drive shaft 313 and the grinding shaft sleeve 32 .
  • the lower end is fixedly connected to the grinding head 33 through the bearing 319 .
  • the upper end of the grinding head drive shaft 313 penetrates the upper side wall of the grinding shaft sleeve 32 and is fixedly connected with the output end of the hydraulic motor 34 .
  • the upper end of the shaft wall of the grinding head drive shaft 313 is rotatably connected to the grinding shaft sleeve 32 through a locking nut 314 .
  • the lower end of the hydraulic motor 34 is fixedly provided with a clip 315 .
  • the clip 315 is a connecting part between the hydraulic motor 34 and the grinding head drive shaft 313, and is specifically a structure composed of a key and a clip.
  • the grinding head drive shaft 313 is provided with a hole and a key, and the output shaft of the hydraulic motor 34 is correspondingly provided with a shaft and a key.
  • the grinding head 33 includes a cutter body 316 and a convex part 317 made of hard alloy material.
  • the convex parts 317 are evenly arranged around the cutter body 316; A square positioning stop is provided on the cutter body 316 of the cutting head 33 .
  • the third connection square head 311 of the rotary drilling rig is directly and rigidly connected (rigidly connected) on the box body 31 of the square pile drill bit, and between the third connection square head 311 and the box body 31 A square head reinforcing plate 312 is provided to strengthen its connection strength.
  • the power of the grinding head 33 of the square pile drill is driven by the hydraulic system, and the power of the hydraulic system is driven by an independent motor.
  • the first hydraulic pump 37 and the second hydraulic pump 39 are driven to work, and the first hydraulic pump 37 and the second hydraulic pump 39 are respectively connected by the first inlet and the second inlet Hydraulic oil is sucked from the oil tank 35 , and the hydraulic oil is transmitted from the first outlet and the second outlet through the hydraulic system to each hydraulic motor 34 through each oil outlet and oil inlet, and then drives the hydraulic motor 34 to rotate.
  • the hydraulic motor 34 is installed on the square pile drill bit box 31 , and the output shaft of the hydraulic motor 34 is connected with the transmission shaft 313 of the grinding head 33 , thereby realizing the rotation of the grinding head 33 .
  • the axes of the grinding head 33 are regularly distributed along the four walls of the square pile bit box 31, and the hydraulic system is connected in series or in parallel according to the actual working conditions, so as to realize all grinding of the four walls of the square pile bit box 31. Rotation of the head 33.
  • a rotary excavation square pile clearing drill includes a fourth connecting square head 41 for inputting power and a mounting frame plate 44.
  • the bottom of the fourth connecting square head 41 is welded with a mounting plate, and the bottom of the mounting plate is connected with the outer ring of the slewing bearing 42 with external teeth; the inner ring of the slewing bearing 42 with external teeth is screwed to the mounting frame plate 44 by screws. top middle.
  • the slewing bearing 42 is similar in structure to a bearing, and its inner and outer rings have mounting stops and mounting screw holes, respectively, and the inner and outer rings can rotate independently;
  • the connection with the outer ring of the slewing bearing 42 here specifically refers to the connection between the mounting plate and the outer ring part of the slewing bearing 42 through the positioning notch and the screw.
  • the fourth connecting square head 41 of the power input rotates, it can drive the slewing bearing 42
  • the outer ring part of the slewing bearing 42 rotates to transmit power, and the inner ring part of the slewing bearing 42 is connected with the mounting rack plate 44 to keep the mounting rack plate 44 stationary.
  • the left and right sides of the inner top of the mounting rack plate 44 are longitudinally provided with movable grooves, the inner walls of the movable grooves are mounted with bearings, and the inner walls of the bearings are connected with the outer walls of the connecting columns.
  • the top of the connecting column extends to the outside of the mounting rack plate 44 and is connected with the transmission gear 43 .
  • the outer ring of the slewing bearing 42 with external teeth meshes with each transmission gear 43 respectively.
  • the bottoms of the connecting posts on the left and right sides are respectively connected with the first bobbin 45 and the second bobbin 46 .
  • the power is input through the input fourth connecting square head 41 to drive the external tooth slewing bearing 42 to make a rotary motion, and the rotary motion is transmitted to the bobbin one 45 and the bobbin two 46 respectively through the transmission gear 43, and drives the bobbin one 45. and spool two 46 turns.
  • a sliding column is longitudinally arranged in the middle of the mounting rack plate 44 , and a connecting shaft 1 47 and a connecting shaft 5 412 are respectively provided on the top and bottom of the front surface of the sliding column.
  • a tensile connecting sleeve 410 is sleeved on the outer wall of the sliding column, and a connecting shaft 2 49 , a third connecting shaft 414 and a fourth connecting shaft 413 are respectively provided on the upper, middle and bottom of the front of the stretching connecting sleeve 410 .
  • the first bobbin 45 and the second bobbin 46 are respectively wound with a wire rope 1 48 and a wire rope 2 411 .
  • the other end of the wire rope one 48 is connected to the connecting shaft two 49 through the connecting shaft one 47, and the other end of the wire rope two 411 is connected to the connecting shaft four 413 through the connecting shaft five 412.
  • the wire rope 1 48 and the wire rope 2 411 on the bobbin one 45 and the bobbin two 46 are a bobbin take-up, a bobbin pay-off, the bobbin one 45 and the bobbin two 46 have an outer diameter, a rotating The angular velocity is exactly the same, so that the lengths of the winding and the pay-off are equal.
  • the top, left and right sides of the mounting frame plate 44 are hinged with soil sandwich plates 416 .
  • the transmission shafts 415 are arranged symmetrically, and the number is equal to the number of the soil-inclusion plates 416 .
  • the bobbin one 45 rotates and the wire rope one 48 moves upward and shortens, it drives the stretching connection sleeve 410 to move upward, and the angle between the transmission shafts 415 is reduced (due to the view, only one transmission shaft is shown in FIG. 26 ). 415), drive the soil clamping plate 416 to fold in the middle to perform the soil clamping operation; at the same time, the second wire rope 411 on the second bobbin 46 is lengthened with the same length.
  • the power input fourth connection square head 41 drives the bobbin two 46 to rotate in the opposite direction (the direction of rotation is opposite to the direction of rotation of the arrow in Figure 26, that is, the direction of rotation when the soil is mixed.
  • the direction shown in the figure is only for illustration. In practice, it can be rotated clockwise or counterclockwise according to the actual situation and the winding direction of the wire), and the wire rope 2 411 on it moves downward to shorten, and the soil clamping plate 416 is under the action of its own weight.
  • the outer wall of the soil sandwich plate 416 is provided with a wear-resistant and anti-corrosion layer, and the wear-resistant and anti-corrosion layer is a wear-resistant and anti-corrosion paint, which prolongs the service life and improves the wear resistance and corrosion resistance.
  • the outer wall of the slewing bearing 42 with external teeth and the outer wall of the transmission gear 43 are provided with a lubricating layer, and the lubricating layer is lubricating oil, which improves the transmission performance.
  • the working principle of this embodiment the power is input through the fourth connecting square head 41 to drive the external tooth slewing bearing 42 to perform a rotary motion, and the rotary motion is transmitted to the first bobbin 45 and the second bobbin 46 through the transmission gear 43, and then drives the winding
  • the bobbin one 45 and the bobbin two 46 rotate.
  • the wire rope 1 48 wound on the bobbin 1 45 and the wire rope 2 411 wound on the bobbin 2 46 are respectively wound in positive and negative directions.
  • Reel one 45 and reel two 46 rotate in the same direction
  • wire rope one 48 and wire rope two 411 on reel one 45 and reel two 46 are one reel for take-up and one reel for pay-off
  • the outer diameter and rotational angular velocity of the first bobbin 45 and the bobbin two 46 are exactly the same, so that the lengths of the winding and the pay-off are equal.
  • the soil clamping plate 416 is connected to the mounting frame plate 44 through a pin, and the soil clamping plate 416 can rotate around its respective rotation center.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Earth Drilling (AREA)

Abstract

本发明属于工程施工技术领域,具体涉及一种旋挖钻机方桩工法及设备。具体技术方案包括:一种旋挖钻机方桩工法,步骤包括:场地平整;测量放线;井口砼护壁;钻机就位;钻机调垂;引孔钻进;复孔钻进;方孔钻进;圆钻清孔;方钻清孔。本发明提供了一种新的旋挖钻机方桩工法,可以全程使用设备进行方桩施工,有效减少了劳务人员的井下作业,从源头上规避了项目安全生产风险。本发明还配合该方桩施工工法提供了三种方桩钻头和一种方桩清孔钻,进一步实现了方桩施工的全程机械化。

Description

一种旋挖钻机方桩工法及设备 技术领域
本发明属于工程施工技术领域,具体涉及一种旋挖钻机方桩工法及设备。
背景技术
随着我国社会经济的不断发展,国家基础设施建设投资目前更多地向中西部特别是云贵高原、攀西高原、青藏高原等高山险地区域倾斜。国家拟建或在建的多条高速(如四川沿江高速、乐西高速等)或高铁(如川藏铁路等)等基建项目地处多条地震带上,且山高路险,极易发生山体崩塌、泥石流等地质灾害,其临边支护要求较高,施工图设计也加入了更多的方形支护抗滑桩的设计元素。
方形支护桩设计孔径较大,目前大都采用人工挖孔的形式成桩,极少数采用的机械式成孔,因相关机具及技术的局限,其施工质量和效率普遍不理想。
而人工挖孔至少存在如下几大弊端:1、危险系数高,安全防护成本高;2、护壁材料损耗量大;3、施工效率严重低下,工效成本虚高;4、人工挖孔施工综合成本太高(含人工挖孔费、电费、护壁材料费、护壁模板费,安全措施费、人工效率低造成的工效成本等)。
发明内容
本发明的目的是提供一种旋挖钻机方桩工法及设备。
为实现上述发明目的,本发明所采用的技术方案是:一种旋挖钻机方桩工法,包括如下步骤:
S1:场地平整;S2:测量放线;S3:井口砼护壁;S4:钻机就位;S5:钻机调垂;S6:引孔钻进:护壁内设置引孔,基于引孔进行钻进形成方桩钻孔;S7:复孔钻进:在钻进引孔的基础上,继续钻进复孔,在引孔钻进和复孔钻进后形成预成孔;S8:方孔钻进:根据上述通过钻机的引孔钻进和复孔钻进达到预成孔后,进行方孔钻进;S9:圆钻清孔:在步骤S8之后,进行孔底沉渣清理,从一端到另一端反复平扫孔底,直至基本将孔底沉渣清除干净;S10:方钻清孔:用方形清孔钻头进行孔底沉渣清理。
优选的,步骤S10后,还包括如下步骤:
S11:测量沉渣;S12:钢筋笼制安;S13:砼浇注。
优选的,根据地质构造的不同,步骤S6引孔钻进包括以下2种钻进方式:
(1)四角引孔法:对于地层结构稳定的桩基,采用圆形截齿捞砂钻头在桩基4个角开梅花状引孔,每个引孔钻至设计孔底标高,;
(2)单孔引孔法:对于地层构造不稳定的桩基,采用圆形截齿捞砂钻或钻头,在该桩基偏离钻机远端方向开引孔,并钻进至设计孔底标高,所述圆形截齿捞砂钻 或钻头的尺寸大于方式(1)中圆形截齿捞砂钻头的尺寸。
优选的,根据地质构造的不同,步骤S7复孔钻进包括以下2种成孔方式:
(1)四角引孔法:对于地层结构稳定的桩基,采用圆形截齿捞砂钻在方桩中心钻进,直至钻进到设计桩底标高达到预成孔;
(2)单孔引孔法:对于地层构造不稳定的桩基,采用圆形截齿捞砂钻在方桩靠旋挖钻机近端钻进,直至钻进到设计桩底标高达到预成孔,所述圆形截齿捞砂钻或钻头的尺寸小于方式(1)中圆形截齿捞砂钻头的尺寸。
优选的,步骤S8方孔钻进采用方桩钻头进行,所述方桩钻头包括箱体,所述箱体安装有动力驱动装置、动力传动机构和执行装置,所述动力驱动装置包括动力传动轴、第一连接方头、提拉压板和压力传导板,所述箱体中部安装有动力传动轴,所述动力传动轴与箱体转动连接,所述轴承数量为两个,两个所述轴承分别位于箱体上下两侧,所述轴承上下两侧分别设置有第一轴承压板和第二轴承压板,所述第一轴承压板、第二轴承压板与箱体之间通过螺钉连接,所述轴承安装于第一轴承压板和第二轴承压板之间,所述箱体上端通过螺钉连接有提拉压板,所述动力传动轴上侧外壁设置有挡肩,所述挡肩位于提拉压板内,所述挡肩下侧设置有压力传导板,所述压力传导板固定连接于箱体上侧,所述动力传动轴上侧固定连接有动力输入第一连接方头。
优选的,所述动力驱动装置连接有动力传动机构,所述动力传动机构包括第一主动链轮、第二主动链轮、动力输入链轮、第一链条、换向传动箱、传动轴、第一链轮、第二链轮和第二链条,所述动力传动轴中部连接有第一主动链轮和第二主动链轮,所述第一主动链轮位于第二主动链轮上侧,所述箱体内腔的左右两侧均连接有换向传动箱,所述换向传动箱输入轴上端连接有动力输入链轮,左侧的所述动力输入链轮与第一主动链轮之间、右侧的所述动力输入链轮与第二主动链轮之间均安装有第一链条,所述换向传动箱前后两侧均设置有输出轴,所述换向传动箱输出轴通过联轴器连接有传动轴。
优选的,所述动力传动机构连接有执行装置,所述执行装置包括第一执行部件和第二执行部件,所述箱体下方左右两侧均安装有第一执行部件,所述第一执行部件与传动轴之间通过第一链轮、第二链轮和第二链条传动连接,所述传动轴远离箱体的一端均安装有第二执行部件。
优选的,所述第一执行部件包括旋转轴体和第一挖掘执行元件,所述旋转轴体与箱转动连接,所述旋转轴体外壁固定连接有第一挖掘执行元件,所述旋转轴体前后两端均安装有第二链轮,所述传动轴连接有第一链轮,所述第一链轮与从第二链轮位置左右对应,所述第一链轮与第二链轮之间安装有第二链条。
优选的,所述第二执行部件包括履带式驱动轮、履带式从动轮、履带链轨、第 二挖掘执行元件、动力板和从动轴,所述履带式驱动轮与传动轴远离箱体的一端连接,所述箱体下方左右两侧均转动连接有从动轴,所述从动轴前后两端均连接有履带式从动轮,所述履带式驱动轮和履带式从动轮位置左右对应,所述履带式驱动轮和履带式从动轮之间安装有履带链轨,所述履带链轨外壁固定连接有动力板,所述动力板前后两侧均连接有第二挖掘执行元件。
优选的,所述箱体下侧连接有提拉保护轴,所述提拉保护轴位于第一动力传动轴下侧。
优选的,步骤S8方孔钻进采用方桩钻头进行,所述方桩钻头包括动力头部件、动力传动部件和第三执行部件,所述动力头部件包括机架、第二连接方头、第二动力传动轴、回转支承,所述机架中部上下两侧均安装有回转支承,所述机架通过回转支承转动连接有第二动力传动轴,所述第二动力传动轴上端固定连接有第二连接方头,所述机架外侧边缘均匀安装有第三执行部件。
优选的,所述执行部件包括传动轴、轴套和执行切削元件,所述轴套连接于机架外侧边缘,所述轴套内部通过轴承转动连接有传动轴。
优选的,所述执行切削元件包括第一执行切削元件和第二执行切削元件,所述第一执行切削元件和第二执行切削元件分别固定连接于相邻的两个传动轴下端,且所述第一执行切削元件和第二执行切削元件交错分布。
优选的,所述第三执行部件与动力头部件之间设置有动力传动部件,所述动力传动部件包括主动链轮、第一从动链轮、第二从动链轮、第一传动链条和第二传动链条,所述第二动力传动轴上端安装有两个主动链轮,两个所述主动链轮位置上下对应,左侧的所述传动轴上端连接有第一从动链轮,右侧的所述传动轴上端连接有第二从动链轮,上侧的所述主动链轮与第一从动链轮之间安装有第一传动链条,下侧的所述主动链轮与第二从动链轮之间安装有第二传动链条。
优选的,所述第二动力传动轴为台阶轴,且所述第二动力传动轴的台阶部分位于机架下侧。
优选的,所述主动链轮与第一从动链轮、第二从动链轮均适配,且所述第一从动链轮和第二从动链轮相同,所述主动链轮外径长度大于第一从动链轮和第二从动链轮的外径长度。
优选的,所述回转支承为无外齿式回转支承。
优选的,步骤S8方孔钻进采用方桩钻头进行,所述方桩钻头包括箱体,所述箱体内部的边缘纵向设置有均匀排布的磨削轴套,均匀排布的所述磨削轴套的下端均贯穿箱体的下侧壁延伸至箱体的下端,固定设置有磨削头,所述磨削轴套的上端均贯穿箱体的上侧壁并延伸至箱体的上端,固定设置有液压马达,所述液压马达的侧壁固定设置有出油口,所述出油口的上端设置进油口,所述箱体的内部固定设置 油箱,所述油箱设置至少2个,各所述油箱间固定设置电机和液压泵。
优选的,所述电机包括第一电机,所述第一电机的输出端固定设置第一液压泵,所述第一液压泵的侧壁固定设置第一进口和第一出口,所述第一电机的右端固定设置第二电机,所述第二电机的输出端固定设置第二液压泵,所述第二液压泵的侧壁固定设置有第二进口和第二出口。
优选的,所述箱体的上侧壁固定设置有防转板,所述防转板的内部纵向设置有第三连接方头,所述第三连接方头的下侧壁与所述箱体的上侧壁固定连接,所述第三连接方头的侧壁固定设置有对称的方头加强板,所述方头加强板远离第三连接方头的一侧与所述防转板的内壁固定连接。
优选的,所述磨削轴套的内部纵向设置有磨削头传动轴,所述磨削头传动轴的下端与所述磨削头固定连接,所述磨削头传动轴的上端贯穿磨削轴套的上侧壁并与所述液压马达的输出端固定连接,所述磨削头传动轴轴壁的上端与所述磨削轴套转动连接。
优选的,所述磨削头包括刀体和凸起部件,所述凸起部件均匀排布在刀体周围。
优选的,所述液压马达的出油口与油箱连接,所述第一液压泵的第一进口和第二液压泵的第二进口均与所述油箱连接,所述第一液压泵的第一出口和第二液压泵的第二出口均与液压马达连接。
优选的,步骤S10所述方形清孔钻头为方桩清孔钻,包括动力输入第四连接方头与安装机架板,所述动力输入第四连接方头底部连接安装板,所述安装板底部与带外齿回转支承外圈连接,所述带外齿回转支承内圈接在安装机架板顶部中间,所述安装机架板内顶部左右两侧均纵向开设有活动槽,所述活动槽内壁安装有轴承,所述轴承的内壁与连接柱外壁连接,所述连接柱的顶部与传动齿轮连接,所述带外齿回转支承的外圈与传动齿轮啮合,左右两侧所述连接柱的底部分别与绕线筒一、绕线筒二连接,所述安装机架板内中部纵向设有滑柱,所述滑柱正面顶部与底部分别设有连接轴一与连接轴五,所述滑柱的外壁套设有拉伸连接套,所述拉伸连接套正面上方、中部与下方分别设有连接轴二、连接轴三与连接轴四,所述绕线筒一与绕线筒二上分别缠绕有钢丝绳一与钢丝绳二,所述钢丝绳一的另一端通过连接轴一转换打结连接在连接轴二上,所述钢丝绳二的另一端通过连接轴五转换打结连接在连接轴四上,所述安装机架板顶部左右两侧均铰接有夹土板,所述连接轴三通过销轴与传递轴连接,所述传递轴的另一端与夹土板铰接。
本发明具有以下有益效果:本发明提供了一种新的旋挖钻机方桩工法,可以全程使用设备进行方桩施工,有效减少了劳务人员的井下作业,从源头上规避了项目安全生产风险。本发明还配合该方桩施工工法提供了三种方桩钻头和一种方桩清孔钻,进一步实现了方桩施工的全程机械化。
附图说明
图1为本发明旋挖钻机方桩工法流程示意图;
图2为本发明一种实施方式下方桩钻头结构示意图;
图3为图2的A-A剖视结构示意图;
图4为图2的B-B剖视结构示意图;
图5为图2右视结构示意图;
图6为图2方桩钻头一种实施方式下第二执行部件结构示意图;
图7为图2俯视结构示意图;
图8为图2立体结构示意图;
图9为图2方桩钻头另一种实施方式下第一执行部件示意图;
图10为图2方桩钻头另一种实施方式下第二执行部件示意图;
图11为本发明第二种实施方式下方桩钻头结构示意图;
图12为图11仰视结构示意图;
图13为图11俯视结构示意图;
图14为图13的A-A结构示意图;
图15为图14的B-B结构示意图;
图16为图11的立体结构示意图;
图17为图11方桩钻头的两个执行部件结构示意图;
图18为第一执行切削元件立体结构示意图;
图19为第二执行切削元件立体结构示意图;
图20为本发明第三种实施方式下方桩钻头俯视结构示意图;
图21为图20的前视结构示意图;
图22为图20的A-A向剖视结构示意图;
图23为图21的B-B向剖视结构示意图;
图24为图20方桩钻头的磨削轴套剖视结构示意图;
图25为图20方桩钻头的磨削头结构示意图;
图26为本发明一种实施方式下旋挖方桩清孔钻结构示意图(关闭状态);
图27为图26的左侧视图;
图28为图26的立体图;
图29为图26方桩清孔钻的夹土板展开结构示意图。
具体实施方式
下面将结合本发明中的附图,对本发明的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。
在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
本发明的第一目的是提供一种旋挖钻机方桩工法,根据地质构造的不同和方形抗滑桩设计规格的不同,采取的施工机械、工艺、钻具等不尽相同,本发明实施例均以设计规格(2.0m×3.0m)的方桩为例。如图1所示,所示工法具体包括如下步骤:
S1:场地平整:预先对施工位置土地平整并压实。
S2:测量放线:在平整的场地上测量数据并对场地放线,标出需要施工钻挖位置。
S3:井口砼护壁:在需要施工钻挖位置通过混凝土浇筑护壁。
S4:钻机就位:钻机移动至护壁处,钻机就位前,压实地面,确保钻机的平稳,在钻进过程中不会因沉陷产生倾斜或位移。
S5:钻机调垂:为确保桩基成孔后的垂直度,根据钻机自带的水平仪调整好钻机钻杆的垂直度,使得钻机钻杆与护壁中心位置对应。
S6:引孔钻进:护壁内设置引孔,基于引孔进行钻进形成方桩钻孔。
根据地质构造的不同,步骤S6中的引孔钻进具体分为以下2种方式钻进:
A.引孔钻进方式1,四角引孔法:地勘报告揭示地层构造较稳定,不易塌孔的桩基,采用φ800mm圆形截齿捞砂钻头【以设计规格(2.0m×3.0m)的方桩为例】在该桩基4个角开梅花状引孔,每个引孔应钻至设计孔底标高。
B.引孔钻进方式2,单孔引孔法:地勘报告揭示地层构造不稳定,容易塌孔的桩基,采用φ1500mm圆形截齿捞砂钻或钻头【以设计规格(2.0m×3.0m)的方桩为例】,为防止桩孔偏位,根据地形地貌及场地条件在该桩基偏离钻机远端方向开引孔,并钻进至设计孔底标高;
S7:复孔钻进:在钻进引孔的基础上,继续钻进复孔,在引孔钻进和复孔钻进后形成预成孔。
根据地质构造的不同,所述复孔钻进具体包括以下两种成孔方式,分别与步骤S6的方式1、2对应:
A.复孔钻进方式1,四角引孔法:地质较稳定的梅花状引孔桩基,旋挖钻机采用φ2000mm圆形截齿捞砂钻在方桩中心钻进,直至钻进到设计桩底标高达到预成孔(对应步骤6的方式1:四角引孔法)。
B.复孔钻进方式2,单孔引孔法:地勘报告揭示地层构造不稳定,容易塌孔单 引孔的桩基,采用φ1500mm或φ1800mm圆形截齿捞砂钻在方桩靠旋挖钻机近端钻进,直至钻进到设计桩底标高达到预成孔(对应步骤6的方式2:单孔引孔法)。
因单孔引孔法桩基地质构造较不稳定,在钻进过程中若遇塌孔较为严重时,应合理并及时采取泥浆护壁或深基方桩钢护筒护壁的方式跟进施工。
S8:方孔钻进:根据上述通过钻机的引孔钻进和复孔钻进达到预成孔后,进行方孔钻进,利用钻机的动能,经过动能传动部件机构转换,将横向旋转动能转换成纵向旋转动能,再通过方桩钻头执行部件机构进行掘进修边处理。在方孔钻进过程中,若遇塌孔严重需要埋设护筒时,应根据设计规格每边加大100mm并按与塌孔深度相应长度制作方形钢护筒下放至塌孔标高以下,以起到护壁防止塌孔的作用。因方孔钻进过程中孔壁有大量孔渣掉落至预成孔的孔底,而方桩钻头不具备捞渣功能,所以应在方孔钻进过程中多次重复进行圆形钻头捞渣及方孔钻进,直至方孔钻进到设计孔底标高。
S9:圆钻清孔:在步骤S8之后,进行孔底沉渣清理,先用φ800mm清孔钻清理四个角点沉渣,再用φ2000mm清孔钻清理整个孔底,从一端到另一端反复平扫孔底,直至基本将孔底沉渣清除干净。
S10:方钻清孔:用方形清孔钻头进行孔底沉渣清理,方形清孔的原理是利用活动连杆结合双活页夹渣板,在清孔器强大自重力作用下,慢速提拉中心活动连杆,双活页夹渣板自行闭合将孔底沉渣全部刮至孔底中心处并形成倒三角的夹渣空间,然后用旋挖钻机钻杆提拉方桩清孔器,此步骤可重复多次完成对孔底沉渣的清理,直至完全清除孔底沉渣。
S11:测量沉渣:方钻清孔完毕后利用沉渣盘测量孔底沉渣,合格后方可进行下一步工序;若不合格将进行二次或多次清孔,也可利用圆形清孔钻头反复清孔。
S12:钢筋笼制安:钢筋笼在专用加工厂区按设计要求备料、初加工;在施工现场进行绑扎及焊接成型。
步骤S12中钢筋笼制作安装的施工要点为:钢筋笼直径配筋规格按设计要求;钢筋笼保护层厚度50mm;焊接时不能使主筋断面受损;制作堆放场地应保持平整、清洁,上覆下垫、防雨防水。
钢筋吊装:钢筋笼经验收合格后方可进行吊装安放,检查内容为:笼长、笼径应符合要求;钢筋笼笼顶吊装骨架焊接是否满足安全吊装施工,支护桩纵筋锚入冠梁的长度是否符合设计要求,
方桩钢筋笼吊装应采用四角支撑吊装骨架平行吊装,吊装下放时应高吊慢放,同时在钢筋笼四方由专人扶正,尽量避免剐蹭方桩孔壁,避免造成孔壁渣土掉落形成孔底沉渣。
S13:砼浇注:砼灌注采用水下砼灌注法,方桩设计横断面较大,采用两组导 管同时进行施工,其工艺流程包括:吊车就位、测量孔深、核算导管长度、下设导管、砼浇注。
其中,导管长度根据实测孔深确定,施工中导管下端距孔底按200mm~400mm控制孔底出料间隙。
初灌要求:初灌量是砼灌注的关键指标,初灌后应保证导管埋置深度不少于2.0m。
砼浇注:砼强度按设计要求采用水下砼,配合比由拌和站提供并严格执行。每次砼浇注后应及时测量砼面上升高度,计算导管埋深,并及时拆卸导管,导管埋置深度不宜大8.0m;每次拆卸导管后,导管埋置深度不得少于3.0m;当确认砼灌至桩顶时,应仔细探测砼面标高,确认合格后,方可提升导管。砼浇注过程中应组织好人力、物力,连续灌注,不得中间停顿,水下灌注砼应在最短时间内完成。控制最后一次浇筑量,桩顶不得偏低,混凝土上层存在一层与混凝土接触的浮浆层需要凿除,为此混凝土高度需超浇500mm,将设计标高以上的部分用人工或人工配合风镐剔凿,灌注过程中由灌注记录员做好灌注记录。
砼浇注进程中,若有埋设方形钢护筒的桩基,应根据护筒体积及护筒外部塌孔空洞情况核算适量的超灌系数并适量超灌,在砼浇注完成后实时利用吊车等机械将钢护筒拔出。在完成砼浇注48小时后,根据设计要求,将设计桩顶标高以上的部分用人工或人工配合风镐剔凿,完成桩头破除。再根据相关规范要求达到养护期后方可进行桩基检测完成养护成桩即可。
本发明的第二目的是配合上述工法提供一种全新的方桩钻头(主要用于上述工法的步骤S8。)。
所述方桩钻头的一种实施方式如图2-10所示的一种方形钻孔灌注桩基用方桩钻头。需要说明的是:此处的“灌注桩基用”所称的“灌注”并非具体指某一道工序,更不是指代上述工法中的S13,而是代表成桩的形式是“灌注成桩”;此处所用的方桩钻头主要用于上述工法步骤S8。所述方桩钻头包括箱体14,所述箱体14安装有动力驱动装置、动力传动机构和执行装置。箱体14呈长方体状。所述动力驱动装置包括第一动力传动轴18、动力输入第一连接方头11、提拉压板15和压力传导板12。所述箱体14中部安装有第一动力传动轴18,所述第一动力传动轴18通过轴承17与箱体14转动连接。所述轴承17数量为两个,两个所述轴承17分别位于箱体14上下壁板的圆孔内,所述轴承17上下两侧分别设置有第一轴承压板13和第二轴承压板16。所述第一轴承压板13、第二轴承压板16与箱体14之间通过螺钉连接。所述轴承17安装于第一轴承压板13和第二轴承压板16之间,通过第一轴承压板13和第二轴承压板16对轴承17进行固定,所述箱体14上端通过螺钉连接有提拉压板15,所述第一动力传动轴18上侧外壁设置有挡肩130,所述挡肩130位于提拉 压板15内。所述挡肩130下侧设置有压力传导板12,所述压力传导板12固定连接于箱体14上侧。挡肩130与第一动力传动轴18为一体成型,结构稳固。
如图3、4所示,所述第一动力传动轴18上侧固定连接有动力输入第一连接方头11。在使用时,所述方桩钻头通过所述第一连接方头11连接于现有的旋挖钻机上,旋挖钻机驱动第一连接方头11旋转,实现动力输入。
所述动力驱动装置连接有动力传动机构,所述动力传动机构包括第一主动链轮19、第二主动链轮110、动力输入链轮127、第一链条128、换向传动箱123、传动轴122、第一链轮129、第二链轮121和第二链条126。所述第一动力传动轴18中部通过螺钉连接有第一主动链轮19和第二主动链轮110。所述第一主动链轮19位于第二主动链轮110上侧。所述箱体14内腔的左右两侧均通过螺栓连接有换向传动箱123,所述换向传动箱123为T形换向传动箱,例如T系列螺旋伞齿轮转向器,为成熟的现有技术。所述换向传动箱123的传动方式为降速传动,所述降速传动为成熟的现有技术,根据齿轮大小调整配合比(速比)即可。采用降速传动,可实现转速的可控降低。所述换向传动箱123输入轴上端通过螺钉连接有动力输入链轮127,左侧的动力输入链轮127与第一主动链轮19位于同一高度,右侧的动力输入链轮127与第二主动链轮110位于同一高度。需要说明的是,图4中,第一主动链轮19和第二主动链轮110重叠,图中只标出第一主动链轮19。左侧的所述动力输入链轮127与第一主动链轮19之间、右侧的所述动力输入链轮127与第二主动链轮110之间均安装有第一链条128。所述换向传动箱123前后两侧均设置有输出轴,所述换向传动箱123输出轴通过联轴器124连接有传动轴122。
所述动力传动机构连接有执行装置,所述执行装置包括第一执行部件118和第二执行部件112。所述箱体14下方左右两侧均安装有第一执行部件118,所述第一执行部件118与传动轴122之间通过第一链轮129、第二链轮121和第二链条126传动连接,所述传动轴122远离箱体14的一端均安装有第二执行部件112。
如图4、5所示,所述第一执行部件118包括旋转轴体120和第一挖掘执行元件119。所述第一挖掘执行原件119为坚硬的凸起结构。所述旋转轴体120与箱体14转动连接,所述旋转轴体120外壁固定连接有第一挖掘执行元件119。所述旋转轴体120前后两端均安装有第二链轮121。所述传动轴122通过螺钉连接有第一链轮129,所述第一链轮129与从第二链轮121位置左右对应,所述第一链轮129与第二链轮121之间安装有第二链条126,传动轴122通过第二链条126带动旋转轴体120转动。所述第一执行部件118布置的第一挖掘执行元件119为坚硬的凸起,优选为“子弹头”形状的凸起。第一挖掘执行元件119的排布方式可以如图4、5所示,均匀排布,与旋转轴体120平行;也可以如图9所示,在旋转轴体120表面呈螺旋状分布。优选的方案为:各第一挖掘执行元件119间的间隙为10-20mm。
如图4、6所示,所述第二执行部件112包括履带式驱动轮115、履带式从动轮113、履带链轨114、第二挖掘执行元件117、动力板116和从动轴125。所述履带式驱动轮115与传动轴122远离箱体14的一端通过螺钉连接。所述箱体14下方左右两侧均转动连接有从动轴125,所述从动轴125前后两端均通过螺栓连接有履带式从动轮113。所述履带式驱动轮115和履带式从动轮113位置左右对应,所述履带式驱动轮115和履带式从动轮113之间安装有履带链轨114。所述履带链轨114外壁固定连接有动力板116,所述动力板116前后两侧均焊接有第二挖掘执行元件117,传动轴122带动履带式驱动轮115转动,从而使履带链轨114转动,第二挖掘执行元件117跟随履带链轨114进行转动。每个第二执行部件112上可以设置一组所述第二挖掘执行元件117和动力板116,也可以如图10所示,设置多组第二挖掘执行元件117和动力板116。所述第二挖掘执行元件117优选为“子弹头”形状。优选的方案为:第二挖掘执行元件117的“子弹头”朝向方向与履带式驱动轮115旋转方向保持一致。
如图3所示,所述箱体14下侧通过螺钉连接有提拉保护轴111。所述提拉保护轴111位于第一动力传动轴18下侧,当提拉压板15出现故障时,由提拉保护轴111实现防掉保护,防止第一动力传动轴18掉落。
本实施方式的工作原理:当方桩钻头向下工作时,向下预压力通过动力输入第一连接方头11传递至第一动力传动轴18,第一动力传动轴18通过压力传导板12将预压力传递至箱体14。当方桩钻头向上运动时,第一动力传动轴18通过挡肩130与提拉压板15处于配合状态,进而将提拉作用力传递至箱体14。动力输入时,第一动力传动轴18处于旋转状态,箱体14静止不动,由旋挖钻机动力头驱动动力输入第一连接方头11,输入动力源。动力传动机构将动力驱动装置上的动力传递给执行装置,旋挖钻机动力头通过动力输入第一连接方头11带动第一动力传动轴18转动,通过第一链条128传动,第一动力传动轴18带动动力输入链轮127转动,动力输入链轮127带动换向传动箱123输出轴转动,通过换向传动箱123输出轴带动传动轴122转动,传动轴122带动第一执行部件118与第二执行部件112工作。传动轴122通过第二链条126带动旋转轴体120转动,第一挖掘执行元件119跟随旋转轴体120转动,传动轴122同时能够带动履带式驱动轮115转动,履带式驱动轮115带动履带链轨114转动,第二挖掘执行元件117跟随履带链轨114转动,用于向下掘进,方桩钻头在圆孔的基础上进行掘进,将孔壁切平整。
所述方桩钻头的另一种实施方式如图11-19所示,一种切削式方桩钻头,包括动力头部件21、动力传动部件27和第三执行部件211。所述动力头部件21包括机架22、第二连接方头24、第二动力传动轴25、回转支承26。所述机架22中部上下两侧均安装有回转支承26,所述机架22通过回转支承26转动连接有第二动力传动 轴25,所述第二动力传动轴25上端固定连接有第二连接方头24,旋挖钻机通过第二连接方头24输入动力,带动第二动力传动轴25转动。
所述机架22外侧边缘均匀安装有第三执行部件211。如图17-19所示,所述第三执行部件211包括传动轴215、轴套216和执行切削元件212。所述轴套216通过螺钉连接于机架22外侧边缘,所述轴套216内部通过轴承转动连接有传动轴215。所述执行切削元件212包括第一执行切削元件217和第二执行切削元件218。所述第一执行切削元件217和第二执行切削元件218分别固定连接于相邻的两个传动轴215下端,且所述第一执行切削元件217和第二执行切削元件218交错分布。执行切削元件212自身结构切削部分高低交错分布,如图17所示,以此来实现切削位置让位和交叉切削。一种实施方式下,单个第一执行切削元件217包括对称设置的多个“二”字形结构,“二”字形结构上下两横等长,且横向结构上设置数个凸起。对应的,单个第二执行切削元件218包括对称设置的多个“一”字形结构,“一”字形结构的数量、形状、大小均与第一执行切削元件217的“二”字形结构对应,可刚好卡合到两个横向结构中间;同样的,“一”字形结构的横向结构上也设置数个凸起。当第一执行切削元件217和第二执行切削元件218卡合配合时,两者横向结构上的凸起间错设置。一种实施方式下(图示实施方式),单个第一执行切削元件217上的“二”字形结构和单个第二执行切削元件218上的“一”字形结构分别设置为3个。如图12所示,多个执行切削元件212整体呈矩形排列,各执行切削元件212沿箱体内壁依次排布,彼此各不干涉,用于切削出方孔桩。
如图14、15所示,所述第三执行部件211与动力头部件21之间设置有动力传动部件27,所述动力传动部件27包括主动链轮23、第一从动链轮29、第二从动链轮210、第一传动链条213和第二传动链条214。所述第二动力传动轴25上端安装有两个主动链轮23,两个所述主动链轮23位置上下对应。左侧的所述传动轴215上端通过螺钉连接有第一从动链轮29,右侧的所述传动轴215上端通过螺钉连接有第二从动链轮210。第一从动链轮29与上侧的主动链轮23位于同一平面,第二从动链轮210与下侧的主动链轮23位于同一平面。上侧的所述主动链轮23与第一从动链轮29之间安装有第一传动链条213,下侧的所述主动链23与第二从动链轮210之间安装有第二传动链条214,通过主动链轮23带动第一从动链轮29、第二从动链轮210转动,进而带动执行切削元件212转动,进行切削(为避免线条过多影响整洁,图14中未示意出第一传动链条213和第二传动链条214)。
所述主动链轮23与第一从动链轮29、第二从动链轮210均适配,且所述第一从动链轮29和第二从动链轮210外径长度相同。所述主动链轮23外径长度大于第一从动链轮29和第二从动链轮210的外径长度,即通过大链轮带动小链轮转动,以此来实现传动增速的目的。
所述第二动力传动轴25为台阶轴,且所述第二动力传动轴25的台阶部分位于机架22下侧,实现第二动力传动轴25动力输入转动,机架22处于静止不动状态,同时可实现当回转支承26出现故障时,第二动力传动轴25台阶部分可对机架22实现支承和保护功能。所述回转支承26为无外齿式回转支承。所述机架22上侧通过螺钉连接有防护罩28。
本实施方式的工作原理:旋挖钻机通过第二连接方头24输入动力,带动第二动力传动轴25转动,第二动力传动轴25同时带动上下两个主动链轮23转动。由于上侧的主动链轮23通过第一传动链条213与第一从动链轮29传动连接,下侧的主动链轮23通过第二传动链条214与第二从动链轮210传动连接,从而带动传动轴215转动,进而带动执行切削元件212转动,进行切削,在圆孔桩的基础上钻出方孔桩。
所述方桩钻头的第三种实施方式如图20-25所示,液压式磨削方桩钻头,包括箱体31,箱体31内部的边缘纵向设置有均匀排布的磨削轴套32。均匀排布的磨削轴套32的下端均贯穿箱体31的下侧壁延伸至箱体31的下侧外端并固定设置有磨削头33。磨削轴套32的上端均贯穿箱体31的上侧壁并延伸至箱体31的上侧外端并固定设置有液压马达34。液压马达34的侧壁固定设置有出油口,出油口的上端固定设置有进油口。箱体31的内部固定设置有对称的油箱35,出油口和进油口分别通过管线与各对应的油箱35连接,实现进出油;具体进出油方向如图22中的箭头方向所示。油箱35可以根据实际需要设置多个,图示为设置2个的情况。两个油箱35之间固定设置有第一电机36,第一电机36的输出端固定设置有第一液压泵37。第一液压泵37的侧壁固定设置有第一进口和第一出口,第一电机36的右端固定设置有第二电机38,第二电机38的输出端固定设置有第二液压泵39,第二液压泵39的侧壁固定设置有第二进口和第二出口。液压马达34的出油口与油箱35连接固定,第一液压泵37的第一进口和第二液压泵39的第二进口均与油箱35固定连接,第一液压泵37的第一出口和第二液压泵39的第二出口均与液压马达34固定连接。
箱体31的上侧壁固定设置有防转板310,防转板310的内部纵向设置有第三连接方头311。第三连接方头311的下侧壁与箱体31的上侧壁固定连接,第三连接方头311的侧壁固定设置有对称的方头加强板312,方头加强板312远离第三连接方头311的一侧与防转板310的内壁固定连接。
如图24所示,磨削轴套32的内部纵向设置有磨削头传动轴313,磨削头传动轴313与磨削轴套32之间设置轴承隔圈318,磨削头传动轴313的下端通过轴承319与磨削头33固定连接。
磨削头传动轴313的上端贯穿磨削轴套32的上侧壁并与液压马达34的输出端固定连接。磨削头传动轴313轴壁的上端通过锁紧螺母314与磨削轴套32转动连接。 液压马达34的下端固定设置有夹子315。夹子315是液压马达34和磨削头传动轴313的连接部件,具体为键和夹子组成的结构。磨削头传动轴313上设置有孔和键,液压马达34的输出轴上对应设置轴和键。夹子315将两处锁紧夹紧实现连接,这是成熟的现有技术,也可以通过其他现有技术实现液压马达34和磨削头传动轴313的连接。如图25所示,磨削头33包括刀体316和坚硬的合金材质的凸起部件317,凸起部件317均匀排布的设置在刀体316的周围;图中顶部方形凸起部分为磨削头33刀体316部分上设置的一个方形定位止口。
本实施方式的工作原理:将旋挖钻机的第三连接方头311直接硬性连接(刚性连接)于方桩钻头的箱体31之上,并在第三连接方头311与箱体31之间设置方头加强板312,对其连接强度进行加强。本实施方式下,方桩钻头的磨削头33的动力由液压系统进行驱动,液压系统的动力由独立电机驱动。当第一电机36和第二电机38接通电源转动后,带动第一液压泵37和第二液压泵39工作,第一液压泵37和第二液压泵39分别由第一进口和第二进口从油箱35吸入液压油,液压油分别由第一出口和第二出口经液压系统通过各出油口和进油口传递至各个液压马达34,进而带动液压马达34转动。液压马达34安装于方桩钻头箱体31上,其液压马达34的输出轴与磨削头33的传动轴313相连接,从而实现磨削头33的转动。磨削头33的轴沿方桩钻头箱体31四壁规则分布,并根据工况实际情况,进行液压系统的串联或者并联连接,以此来实现方桩钻头箱体31四壁的所有磨削头33的转动。
本发明的第三目的是配合上述工法提供一种全新的方形清孔钻头(主要用于上述工法的步骤S10)。具体如图26-29所示,一种旋挖方桩清孔钻,包括用于输入动力的第四连接方头41与安装机架板44。所述第四连接方头41底部焊接有安装板,所述安装板底部与带外齿回转支承42外圈连接;所述带外齿回转支承42内圈通过螺钉螺接在安装机架板44顶部中间。回转支承42类似轴承结构,其内外圈分别有安装止口和安装螺钉孔,内外圈可分别独立旋转;带外齿回转支承42指在其外圈部分有渐开线的齿形结构。此处的与回转支承42外圈连接具体指安装板通过定位止口和螺钉与回转支承42的外圈部分进行连接,当动力输入的第四连接方头41回转运动时,可带动回转支承42的外圈部分转动以传递动力,而回转支承42内圈部分与安装机架板44连接,保持安装机架板44的静止不动。所述安装机架板44内顶部左右两侧均纵向开设有活动槽,所述活动槽内壁安装有轴承,所述轴承的内壁与连接柱外壁连接。所述连接柱的顶部延伸至安装机架板44外部,与传动齿轮43连接。所述带外齿回转支承42的外圈分别与各传动齿轮43啮合。左右两侧所述连接柱的底部分别与绕线筒一45、绕线筒二46连接。动力通过输入第四连接方头41输入,带动外齿回转支承42作回转运动,并将回转运动通过传动齿轮43分别传递至绕线筒一45和绕线筒二46,带动绕线筒一45和绕线筒二46转动。
所述安装机架板44内中部纵向设有滑柱,所述滑柱正面顶部与底部分别设有连接轴一47与连接轴五412。所述滑柱的外壁套设有拉伸连接套410,所述拉伸连接套410正面上方、中部与下方分别设有连接轴二49、连接轴三414与连接轴四413。所述绕线筒一45与绕线筒二46上分别缠绕有钢丝绳一48与钢丝绳二411。所述钢丝绳一48的另一端通过连接轴一47转换打结连接在连接轴二49上;所述钢丝绳二411的另一端通过连接轴五412转换打结连接在连接轴四413上。绕线筒一45和绕线筒二46上的钢丝绳一48与钢丝绳二411为一个绕线筒收线、一个绕线筒放线,绕线筒一45和绕线筒二46外径、转动角速度完全一致,从而实现绕线和放线的长度相等。所述安装机架板44顶部左右两侧均铰接有夹土板416,所述连接轴三414通过销轴与传递轴415连接,所述传递轴415的另一端与夹土板416铰接。传递轴415对称设置,数量与夹土板416数量相等。绕线筒一45旋转且钢丝绳一48向上运动收短时,带动拉伸连接套410向上运动,各传递轴415之间的夹角收小(由于视图关系,图26只示意出1个传递轴415),带动夹土板416向中合拢进行夹土操作;同时,绕线筒二46上的钢丝绳二411同长度放长。如图27所示,动力输入第四连接方头41带动绕线筒二46反向旋转(旋转方向与图26中箭头旋转方向相反,即与夹土时的旋转方向相反。需要说明的是:图示方向仅为示意,实践中可以根据实际情况、线的缠绕方向实现顺时针旋转打开或逆时针旋转打开),且其上钢丝绳二411向下运动收短,夹土板416在自重作用下有向下打开趋势,拉伸连接套410向下运动,两传递轴415之间的夹角变大,实现夹土板416的打开;同时,绕线筒一45转动使钢丝绳一48同长度放长。
所述夹土板416的外壁设有耐磨防腐蚀层,耐磨防腐蚀层为耐磨防腐蚀涂料,延长了使用寿命,提高了耐磨、防腐蚀性能。所述带外齿回转支承42外壁与传动齿轮43的外壁均设有润滑层,润滑层为润滑油,提高了传动性。
本实施方式工作原理:动力通过第四连接方头41输入,带动外齿回转支承42作回转运动,回转运动通过传动齿轮43分别传递至绕线筒一45和绕线筒二46,进而带动绕线筒一45和绕线筒二46转动。绕线筒一45上缠绕的钢丝绳一48与绕线筒二46上缠绕的钢丝绳二411分别进行正反方向的缠绕。绕线筒一45和绕线筒二46作相同方向旋转,绕线筒一45和绕线筒二46上的钢丝绳一48与钢丝绳二411为一个绕线筒收线、一个绕线筒放线,绕线筒一45和绕线筒二46外径、转动角速度完全一致,这样就实现了绕线和放线的长度相等。夹土板416通过销轴连接于安装机架板44上,夹土板416可绕着各自的转动中心作转动。这样当动力输入第四连接方头41正向旋转时,绕线筒一45旋转且钢丝绳一48向上运动收短,带动拉伸连接套410向上运动,两传递轴415之间的夹角收小,带动夹土板416向中合拢进行夹土操作,同时绕线筒二46上的钢丝绳二411同长度放长。当动力输入第四连接方 头41反向旋转时,绕线筒二46反向旋转,其上钢丝绳二411向下运动收短,夹土板416在自重作用下有向下打开趋势,拉伸连接套410向下运动,两传递轴415之间的夹角变大,实现夹土板416的打开,同时绕线筒一45转动使钢丝绳一48同长度放长。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形、变型、修改、替换,均应落入本发明权利要求书确定的保护范围内。

Claims (24)

  1. 一种旋挖钻机方桩工法,其特征在于:包括如下步骤:
    S1:场地平整;
    S2:测量放线;
    S3:井口砼护壁;
    S4:钻机就位;
    S5:钻机调垂;
    S6:引孔钻进:护壁内设置引孔,基于引孔进行钻进形成方桩钻孔;
    S7:复孔钻进:在钻进引孔的基础上,继续钻进复孔,在引孔钻进和复孔钻进后形成预成孔;
    S8:方孔钻进:根据上述通过钻机的引孔钻进和复孔钻进达到预成孔后,进行方孔钻进;
    S9:圆钻清孔:在步骤S8之后,进行孔底沉渣清理,从一端到另一端反复平扫孔底,清除孔底沉渣;
    S10:方钻清孔:用方形清孔钻头继续进行孔底沉渣清理。
  2. 根据权利要求1所述的一种旋挖钻机方桩工法,其特征在于:步骤S10后,还包括如下步骤:
    S11:测量沉渣;
    S12:钢筋笼制安;
    S13:砼浇注。
  3. 根据权利要求1所述的一种旋挖钻机方桩工法,其特征在于:根据地质构造的不同,步骤S6引孔钻进包括以下2种钻进方式:
    (1)四角引孔法:对于地层结构稳定的桩基,采用圆形截齿捞砂钻头在桩基4个角开梅花状引孔,每个引孔钻至设计孔底标高;
    (2)单孔引孔法:对于地层构造不稳定的桩基,采用圆形截齿捞砂钻或钻头,在该桩基偏离钻机远端方向开引孔,并钻进至设计孔底标高,所述圆形截齿捞砂钻或钻头的尺寸大于方式(1)中圆形截齿捞砂钻头的尺寸。
  4. 根据权利要求1所述的一种旋挖钻机方桩工法,其特征在于:根据地质构造的不同,步骤S7复孔钻进包括以下2种成孔方式:
    (1)四角引孔法:对于地层结构稳定的桩基,采用圆形截齿捞砂钻在方桩中心钻进,直至钻进到设计桩底标高达到预成孔;
    (2)单孔引孔法:对于地层构造不稳定的桩基,采用圆形截齿捞砂钻在方桩靠旋挖钻机近端钻进,直至钻进到设计桩底标高达到预成孔,所述圆形截齿捞砂钻的尺寸小于方式(1)中圆形截齿捞砂钻头的尺寸。
  5. 根据权利要求1所述的一种旋挖钻机方桩工法,其特征在于:步骤S8方孔 钻进采用方桩钻头进行,所述方桩钻头包括箱体(14),所述箱体(14)安装有动力驱动装置、动力传动机构和执行装置,所述动力驱动装置连接有动力传动机构,所述动力传动机构包括第一主动链轮(19)、第二主动链轮(110)、动力输入链轮(127)、第一链条(128)、换向传动箱(123)、传动轴(122)、第一链轮(129)、第二链轮(121)和第二链条(126),所述动力传动轴(18)中部连接有第一主动链轮(19)和第二主动链轮(110),所述第一主动链轮(19)位于第二主动链轮(110)上侧,所述箱体(14)内腔的左右两侧均连接有换向传动箱(123),所述换向传动箱(123)输入轴上端连接有动力输入链轮(127),左侧的所述动力输入链轮(127)与第一主动链轮(19)之间、右侧的所述动力输入链轮(127)与第二主动链轮(110)之间均安装有第一链条(128),所述换向传动箱(123)前后两侧均设置有输出轴,所述换向传动箱(123)输出轴通过联轴器(124)连接有传动轴(122)。
  6. 根据权利要求5所述的一种旋挖钻机方桩工法,其特征在于:所述动力驱动装置包括动力传动轴(18)、第一连接方头(11)、提拉压板(15)和压力传导板(12),所述箱体(14)中部安装有动力传动轴(18),所述动力传动轴(18)通过轴承(17)与箱体(14)转动连接,所述轴承(17)上下两侧分别设置有第一轴承压板(13)和第二轴承压板(16),所述第一轴承压板(13)、第二轴承压板(16)与箱体(14)固定连接,所述箱体(14)上端连接有提拉压板(15),所述动力传动轴(18)上侧外壁设置有挡肩(130),所述挡肩(130)位于提拉压板(15)内,所述挡肩(130)下侧设置有压力传导板(12),所述压力传导板(12)固定连接于箱体(14)上侧,所述动力传动轴(18)上侧固定连接有动力输入第一连接方头(11)。
  7. 根据权利要求6所述的一种旋挖钻机方桩工法,其特征在于:所述动力传动机构连接有执行装置,所述执行装置包括第一执行部件(118)和第二执行部件(112),所述箱体(14)下方左右两侧均安装有第一执行部件(118),所述第一执行部件(118)与传动轴(122)之间通过第一链轮(129)、第二链轮(121)和第二链条(126)传动连接,所述传动轴(122)远离箱体(14)的一端均安装有第二执行部件(112)。
  8. 根据权利要求7所述的一种旋挖钻机方桩工法,其特征在于:所述第一执行部件(18)包括旋转轴体(120)和第一挖掘执行元件(19),所述旋转轴体(120)与箱体(4)转动连接,所述旋转轴体(120)外壁固定连接有第一挖掘执行元件(119),所述旋转轴体(120)前后两端均安装有第二链轮(121),所述传动轴(122)连接有第一链轮(129),所述第一链轮(129)与从第二链轮(121)位置左右对应,所述第一链轮(129)与第二链轮(121)之间安装有第二链条(126)。
  9. 根据权利要求8所述的一种旋挖钻机方桩工法,其特征在于:所述第二执行部件(112)包括履带式驱动轮(115)、履带式从动轮(113)、履带链轨(114)、 第二挖掘执行元件(117)、动力板(116)和从动轴(125),所述履带式驱动轮(115)与传动轴(122)远离箱体(14)的一端连接,所述箱体(14)下方左右两侧均转动连接有从动轴(125),所述从动轴(125)前后两端均连接有履带式从动轮(113),所述履带式驱动轮(115)和履带式从动轮(113)位置左右对应,所述履带式驱动轮(115)和履带式从动轮(113)之间安装有履带链轨(114),所述履带链轨(114)外壁固定连接有动力板(116),所述动力板(116)前后两侧均连接有第二挖掘执行元件(117)。
  10. 根据权利要求9所述的一种旋挖钻机方桩工法,其特征在于:所述箱体(14)下侧连接有提拉保护轴(111),所述提拉保护轴(111)位于第一动力传动轴(18)下侧。
  11. 根据权利要求1所述的一种旋挖钻机方桩工法,其特征在于:步骤S8方孔钻进采用方桩钻头进行,所述方桩钻头包括动力头部件(21)、动力传动部件(27)和第三执行部件(211),所述动力头部件(21)包括机架(22)、第二连接方头(24)、第二动力传动轴(25)、回转支承(26),所述机架(22)中部上下两侧均安装有回转支承(26),所述机架(22)通过回转支承(26)转动连接有第二动力传动轴(25),所述第二动力传动轴(25)上端固定连接有第二连接方头(24),所述机架(22)外侧边缘均匀安装有第三执行部件(211)。
  12. 根据权利要求11所述的一种旋挖钻机方桩工法,其特征在于:所述执行部件(211)包括传动轴(215)、轴套(216)和执行切削元件(212),所述轴套(216)连接于机架(22)外侧边缘,所述轴套(216)内部通过轴承转动连接有传动轴(215)。
  13. 根据权利要求12所述的一种旋挖钻机方桩工法,其特征在于:所述执行切削元件(212)包括第一执行切削元件(217)和第二执行切削元件(218),所述第一执行切削元件(217)和第二执行切削元件(218)分别固定连接于相邻的两个传动轴(215)下端,且所述第一执行切削元件(217)和第二执行切削元件(218)交错分布。
  14. 根据权利要求13所述的一种旋挖钻机方桩工法,其特征在于:所述第三执行部件(211)与动力头部件(21)之间设置有动力传动部件(27),所述动力传动部件(27)包括主动链轮(23)、第一从动链轮(29)、第二从动链轮(210)、第一传动链条(213)和第二传动链条(214),所述第二动力传动轴(25)上端安装有两个主动链轮(23),两个所述主动链轮(23)位置上下对应,左侧的所述传动轴(215)上端连接有第一从动链轮(29),右侧的所述传动轴(215)上端连接有第二从动链轮(210),上侧的所述主动链轮(23)与第一从动链轮(29)之间安装有第一传动链条(213),下侧的所述主动链轮(23)与第二从动链轮(210)之间安装有第二传动链条(214)。
  15. 根据权利要求14所述的一种旋挖钻机方桩工法,其特征在于:所述第二动力传动轴(25)为台阶轴,所述第二动力传动轴(25)的台阶部分位于机架(22)下侧。
  16. 根据权利要求14所述的一种旋挖钻机方桩工法,其特征在于:所述主动链轮(23)与第一从动链轮(29)、第二从动链轮(210)均适配,且所述第一从动链轮(29)和第二从动链轮(210)外径长度相同,所述主动链轮(23)外径长度大于第一从动链轮(29)和第二从动链轮(210)的外径长度。
  17. 根据权利要求14所述的一种旋挖钻机方桩工法,其特征在于:所述回转支承(26)为无外齿式回转支承。
  18. 根据权利要求1所述的一种旋挖钻机方桩工法,其特征在于:步骤S8方孔钻进采用方桩钻头进行,所述方桩钻头包括箱体(31),所述箱体(31)内部的边缘纵向设置有均匀排布的磨削轴套(32),均匀排布的所述磨削轴套(32)的下端贯穿箱体(31)的下侧壁延伸至箱体(31)的下端,固定设置有磨削头(33),所述磨削轴套(32)的上端贯穿箱体(31)的上侧壁并延伸至箱体(31)的上端,固定设置有液压马达(34),所述液压马达(34)的侧壁固定设置有出油口,所述出油口的上端设置进油口,所述箱体(31)的内部固定设置油箱(35),所述油箱(35)设置至少2个,各所述油箱(35)间固定设置电机和液压泵。
  19. 根据权利要求18所述的一种旋挖钻机方桩工法,其特征在于:所述电机包括第一电机(36),所述第一电机(36)的输出端固定设置第一液压泵(37),所述第一液压泵(37)的侧壁固定设置第一进口和第一出口,所述第一电机(36)的右端固定设置第二电机(38),所述第二电机(38)的输出端固定设置第二液压泵(39),所述第二液压泵(39)的侧壁固定设置有第二进口和第二出口。
  20. 根据权利要求19所述的一种旋挖钻机方桩工法,其特征在于:所述液压马达(34)的出油口与油箱(35)连接,所述第一液压泵(37)的第一进口和第二液压泵(39)的第二进口均与所述油箱(35)连接,所述第一液压泵(37)的第一出口和第二液压泵(39)的第二出口均与液压马达(34)连接。
  21. 根据权利要求19所述的一种旋挖钻机方桩工法,其特征在于:所述箱体(31)的上侧壁固定设置有防转板(310),所述防转板(310)的内部纵向设置有第三连接方头(311),所述第三连接方头(311)的下侧壁与所述箱体(31)的上侧壁固定连接,所述第三连接方头(311)的侧壁固定设置有对称的方头加强板(312),所述方头加强板(312)远离第三连接方头(311)的一侧与所述防转板(310)的内壁固定连接。
  22. 根据权利要求21所述的一种旋挖钻机方桩工法,其特征在于:所述磨削轴套(32)的内部纵向设置有磨削头传动轴(313),所述磨削头传动轴(313)的下 端与所述磨削头(33)固定连接,所述磨削头传动轴(313)的上端贯穿磨削轴套(32)的上侧壁并与所述液压马达(34)的输出端固定连接,所述磨削头传动轴(313)轴壁的上端与所述磨削轴套(32)转动连接。
  23. 根据权利要求18所述的一种旋挖钻机方桩工法,其特征在于:所述磨削头(33)包括刀体(316)和凸起部件(317),所述凸起部件(317)均匀排布在刀体(316)周围。
  24. 根据权利要求1所述的一种旋挖钻机方桩工法,其特征在于:步骤S10所述方形清孔钻头为方桩清孔钻,包括动力输入第四连接方头(41)与安装机架板(44),所述动力输入第四连接方头(41)底部连接安装板,所述安装板底部与带外齿回转支承(42)外圈连接,所述带外齿回转支承(42)内圈接在安装机架板(44)顶部中间,所述安装机架板(44)内顶部左右两侧均纵向开设有活动槽,所述活动槽内壁安装有轴承,所述轴承的内壁与连接柱外壁连接,所述连接柱的顶部与传动齿轮(43)连接,所述带外齿回转支承(42)的外圈与传动齿轮(43)啮合,左右两侧所述连接柱的底部分别与绕线筒一(45)、绕线筒二(46)连接,所述安装机架板(44)内中部纵向设有滑柱,所述滑柱正面顶部与底部分别设有连接轴一(47)与连接轴五(412),所述滑柱的外壁套设有拉伸连接套(410),所述拉伸连接套(410)正面上方、中部与下方分别设有连接轴二(49)、连接轴三(414)与连接轴四(413),所述绕线筒一(45)与绕线筒二(46)上分别缠绕有钢丝绳一(48)与钢丝绳二(411),所述钢丝绳一(48)的另一端通过连接轴一(47)转换打结连接在连接轴二(49)上,所述钢丝绳二(411)的另一端通过连接轴五(412)转换打结连接在连接轴四(413)上,所述安装机架板(44)顶部左右两侧均铰接有夹土板(416),所述连接轴三(414)通过销轴与传递轴(415)连接,所述传递轴(415)的另一端与夹土板(416)铰接。
PCT/CN2021/113784 2020-11-04 2021-08-20 一种旋挖钻机方桩工法及设备 WO2022095548A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202211403827.8A CN116044305A (zh) 2021-01-04 2021-08-20 方桩钻头及核心部件
CN202180005321.9A CN114555888B (zh) 2021-01-04 2021-08-20 一种旋挖钻机方桩工法及设备
US17/714,693 US11891892B2 (en) 2020-11-04 2022-04-06 Square pile construction method and equipment of a rotary drilling rig

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN202011217145.9A CN112343502B (zh) 2020-11-04 2020-11-04 一种方形钻孔灌注桩基用方桩钻头
CN202011217145.9 2020-11-04
CN202110002338.0A CN112796307A (zh) 2021-01-04 2021-01-04 一种旋挖钻机方桩工法
CN202110002338.0 2021-01-04
CN202110091908.8A CN112796671A (zh) 2021-01-23 2021-01-23 切削式方桩钻头
CN202110091908.8 2021-01-23
CN202110280580.4A CN113026751A (zh) 2021-03-16 2021-03-16 旋挖方桩清孔钻
CN202110280580.4 2021-03-16
CN202110767464.5A CN113356203A (zh) 2021-07-07 2021-07-07 液压式磨削方桩钻头
CN202110767464.5 2021-07-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/714,693 Continuation US11891892B2 (en) 2020-11-04 2022-04-06 Square pile construction method and equipment of a rotary drilling rig

Publications (1)

Publication Number Publication Date
WO2022095548A1 true WO2022095548A1 (zh) 2022-05-12

Family

ID=81457497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113784 WO2022095548A1 (zh) 2020-11-04 2021-08-20 一种旋挖钻机方桩工法及设备

Country Status (2)

Country Link
US (1) US11891892B2 (zh)
WO (1) WO2022095548A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116752538A (zh) * 2023-08-23 2023-09-15 济南新芯微电子有限公司 一种自动清理坑土的钻孔灌桩机构

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115198735B (zh) * 2022-07-29 2023-11-24 山西机械化建设集团有限公司 一种露天采矿无序回填区内sddc抗滑桩的施工方法
CN116971721B (zh) * 2023-09-06 2024-01-26 巨野县公路事业发展中心 一种用于桥梁施工的钻孔装置
CN116927695B (zh) * 2023-09-15 2023-12-05 山东千颐科技有限公司 一种旋挖钻岩石钻进装置

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68925740T2 (de) * 1988-03-31 1996-07-04 Fujimori Shuichi Pfahlformmethode
JP2000008372A (ja) * 1998-06-25 2000-01-11 Marutoku Kigyo:Kk 地中壁の施工法
CN105113986A (zh) * 2015-10-12 2015-12-02 北车建设工程有限责任公司 一种方形桩成孔设备
CN105887814A (zh) * 2016-04-19 2016-08-24 成都四海岩土工程有限公司 一种旋挖嵌岩扩底桩施工方法
CN107587840A (zh) * 2017-09-26 2018-01-16 中铁大桥局集团第五工程有限公司 一种矩形桩基成孔施工方法
CN107803942A (zh) * 2017-10-20 2018-03-16 中国建筑土木建设有限公司 方形桩线切割设备及硬岩地层方形桩的机械开挖方法
JP2018062806A (ja) * 2016-10-13 2018-04-19 株式会社絹田熔工 ソイルセメント杭の形成方法
CN109681116A (zh) * 2019-01-31 2019-04-26 四川省交通运输厅交通勘察设计研究院 一种实现方形成孔的方桩旋挖装置及其旋挖方法
CN209129534U (zh) * 2018-11-29 2019-07-19 中冶集团武汉勘察研究院有限公司 用于回转钻机方桩一次性成孔的扩孔器
CN112343502A (zh) * 2020-11-04 2021-02-09 成都欣皓地基基础工程有限责任公司 一种方形钻孔灌注桩基用方桩钻头
CN112796307A (zh) * 2021-01-04 2021-05-14 成都欣皓地基基础工程有限责任公司 一种旋挖钻机方桩工法
CN112796671A (zh) * 2021-01-23 2021-05-14 成都欣皓地基基础工程有限责任公司 切削式方桩钻头
CN113026751A (zh) * 2021-03-16 2021-06-25 成都欣皓地基基础工程有限责任公司 旋挖方桩清孔钻

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2950902A (en) * 1956-08-21 1960-08-30 Howard V Olds Earth digging apparatus
US5026216A (en) 1988-03-31 1991-06-25 Yoshinobu Koiwa Shaft construction method
CN204753593U (zh) 2015-06-24 2015-11-11 江苏建筑职业技术学院 钻孔灌注桩清淤装置
CN110820729B (zh) 2019-11-07 2021-04-16 云南建投基础工程有限责任公司 一种集高效与安全于一体的抗滑桩旋挖机械快速成孔方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68925740T2 (de) * 1988-03-31 1996-07-04 Fujimori Shuichi Pfahlformmethode
JP2000008372A (ja) * 1998-06-25 2000-01-11 Marutoku Kigyo:Kk 地中壁の施工法
CN105113986A (zh) * 2015-10-12 2015-12-02 北车建设工程有限责任公司 一种方形桩成孔设备
CN105887814A (zh) * 2016-04-19 2016-08-24 成都四海岩土工程有限公司 一种旋挖嵌岩扩底桩施工方法
JP2018062806A (ja) * 2016-10-13 2018-04-19 株式会社絹田熔工 ソイルセメント杭の形成方法
CN107587840A (zh) * 2017-09-26 2018-01-16 中铁大桥局集团第五工程有限公司 一种矩形桩基成孔施工方法
CN107803942A (zh) * 2017-10-20 2018-03-16 中国建筑土木建设有限公司 方形桩线切割设备及硬岩地层方形桩的机械开挖方法
CN209129534U (zh) * 2018-11-29 2019-07-19 中冶集团武汉勘察研究院有限公司 用于回转钻机方桩一次性成孔的扩孔器
CN109681116A (zh) * 2019-01-31 2019-04-26 四川省交通运输厅交通勘察设计研究院 一种实现方形成孔的方桩旋挖装置及其旋挖方法
CN112343502A (zh) * 2020-11-04 2021-02-09 成都欣皓地基基础工程有限责任公司 一种方形钻孔灌注桩基用方桩钻头
CN112796307A (zh) * 2021-01-04 2021-05-14 成都欣皓地基基础工程有限责任公司 一种旋挖钻机方桩工法
CN112796671A (zh) * 2021-01-23 2021-05-14 成都欣皓地基基础工程有限责任公司 切削式方桩钻头
CN113026751A (zh) * 2021-03-16 2021-06-25 成都欣皓地基基础工程有限责任公司 旋挖方桩清孔钻

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116752538A (zh) * 2023-08-23 2023-09-15 济南新芯微电子有限公司 一种自动清理坑土的钻孔灌桩机构
CN116752538B (zh) * 2023-08-23 2023-12-08 济南新芯微电子有限公司 一种自动清理坑土的钻孔灌桩机构

Also Published As

Publication number Publication date
US20220228440A1 (en) 2022-07-21
US11891892B2 (en) 2024-02-06

Similar Documents

Publication Publication Date Title
WO2022095548A1 (zh) 一种旋挖钻机方桩工法及设备
CN112554177B (zh) 一种超长小直径钻孔灌注桩施工方法
CN107938656A (zh) 复杂复建基坑工程桩基施工方法
CN111535308B (zh) 一种全长钢套管施工装置及其施工方法
CN111197305A (zh) 超长大直径钻孔灌注桩的施工方法
CN112796307A (zh) 一种旋挖钻机方桩工法
CN111364444A (zh) 浅埋岩层段地连墙成槽施工方法
CN107724383A (zh) 旋挖灌注桩施工方法
CN113006042B (zh) 一种建筑垃圾土地层大型水工构筑物地基加固施工工艺
CN109653682A (zh) 钻径可调的钻头及挖孔机
CN112609690A (zh) 一种填海地质复杂区域旋挖钻孔灌注桩的施工方法
CN112144514A (zh) 旋挖钻机遇易塌砂卵石地层成孔成桩的简易方法
CN113373925B (zh) 在砂岩地层中用旋挖钻机安装钢板桩的方法及装置
CN113863273A (zh) 一种邻近运营铁路的钻孔桩的施工方法
CN114555888B (zh) 一种旋挖钻机方桩工法及设备
CN111236262A (zh) 一种csm+trd地下连续墙综合施工工法
WO2023109014A1 (zh) 一种裸岩河床钢管桩施工设备及施工方法
CN218060412U (zh) 综合管廊围护墙施工结构
CN216640561U (zh) 一种新型组合式围护结构
CN212477725U (zh) 一种分片组合式全桩护筒的桩机
CN115637973A (zh) 一种长护筒无套管旋挖硬切割咬合桩成孔施工工艺
CN212865915U (zh) 一种实现钻孔灌注桩免凿桩头的专用机具
CN114837209A (zh) 岩溶发育地区深厚砂层大直径桩基施工方法
CN112936614A (zh) 穿越水工钢筋混凝土基础修建地下连续墙的机械
CN218542153U (zh) 适用于超深灌注桩的螺旋钻机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21888247

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 27.06.2023 AND 14.11.2023)