WO2022095233A1 - 散热装置和具有散热装置的涡轮压裂设备 - Google Patents

散热装置和具有散热装置的涡轮压裂设备 Download PDF

Info

Publication number
WO2022095233A1
WO2022095233A1 PCT/CN2020/136931 CN2020136931W WO2022095233A1 WO 2022095233 A1 WO2022095233 A1 WO 2022095233A1 CN 2020136931 W CN2020136931 W CN 2020136931W WO 2022095233 A1 WO2022095233 A1 WO 2022095233A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
core
noise reduction
cabin
dissipation device
Prior art date
Application number
PCT/CN2020/136931
Other languages
English (en)
French (fr)
Inventor
原伟鹏
张日奎
张鹏
于晓
齐鑫
马廷戎
柳文文
许朝阳
林超
Original Assignee
烟台杰瑞石油装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油装备技术有限公司 filed Critical 烟台杰瑞石油装备技术有限公司
Publication of WO2022095233A1 publication Critical patent/WO2022095233A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/12Filtering, cooling, or silencing cooling-air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/048Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using electrical drives

Definitions

  • the present invention relates to a heat dissipation device and a turbo fracturing device having the heat dissipation device.
  • the radiators currently used in turbo fracturing equipment include vertical radiators, horizontal radiators and cabin radiators. Among them, the installation space occupied by the vertical radiator is small, but the noise is large and the blown hot air will affect other parts of the equipment, which is not applicable in some cases.
  • the hot air blown from the horizontal radiator will not affect other components and equipment, but because the core is arranged in multiple layers, the heat dissipation of each core is relatively low, and the arrangement of the multi-layer core is relatively low. This makes the passage of silicon dust and guar gum powder poor, and it is easy to block the core fins, resulting in insufficient heat dissipation, requiring frequent maintenance, and also having the disadvantage of high noise.
  • the flying sand and gravel particles and branches during the driving process will collide with the core body and cause damage to the core body, thereby increasing the cost of equipment use.
  • the shelter-type radiator can solve the problem of equipment layout and prevent core blockage, there is still the problem of high noise.
  • some turbo fracturing equipment takes measures such as reducing the speed of the radiator fan, making the radiator larger, or adding a noise reduction cabin outside the equipment, but these noise reduction methods It brings the problem of overweight to the equipment again.
  • This cooling device can be used not only for oilfield turbo fracturing equipment, but also for cooling systems and generator cooling systems of other oilfield equipment.
  • the object of the present invention is to provide a heat dissipation device and a turbo fracturing equipment having the heat dissipation device.
  • the heat dissipation device provided by the present invention can be an air suction type heat dissipation device.
  • the heat dissipation device of each turbo fracturing device will not affect other heat dissipation devices, and a limited amount of heat dissipation device can be achieved. Higher work efficiency in the work space.
  • the heat dissipation device of the present invention can adjust the operating speed of the gas guiding device according to the inlet temperature of the target fluid, thereby avoiding energy waste and unnecessary noise.
  • a noise reduction core is arranged inside the heat sink, and the gas can flow through the streamlined curved surface of the noise reduction core, so as to achieve noise reduction without affecting the gas flow.
  • a heat dissipation device includes:
  • a cabin body at least one air inlet is arranged on the cabin body, and an air outlet is also arranged on the cabin body;
  • a heat dissipation core disposed at the air inlet, the heat dissipation core allows gas to pass through
  • the air guide device draws out the air in the cabin toward the air outlet;
  • the noise reduction core is arranged in the cabin, and the noise reduction core is a structure that gradually gathers in the direction of the air outlet;
  • the heat dissipation device is configured so that the gas enters the cabin from the air inlet and flows through the heat dissipation core body, the surface of the noise reduction core body, the gas guide device, and finally is discharged. the cabin.
  • the heat sink is configured to be able to suck in the gas and discharge it out of the cabin after the heat is dissipated.
  • a noise reduction core is also arranged inside the heat sink, and the gas can flow through the noise reduction core, so as to further reduce noise without affecting the flow of the gas.
  • the noise reduction core comprises:
  • the core base is a hollow tower-shaped structure
  • the punched outer layer structure is a hollow tower-shaped structure with an open bottom, and the punched outer layer structure is sleeved on the outside of the core base;
  • a core noise reduction material is filled between the core base and the punched outer layer structure.
  • the structure of the noise reduction core allows the hot gas flow to flow through the perforated outer structure and to contact the noise reduction material between the perforated outer structure and the core base via the holes in the perforated outer structure for noise reduction.
  • the noise reduction core may be hollow, for example, so that it does not affect the overall weight of the heat sink.
  • the punching plate can also prevent the noise reduction material from being tangled or detached from the fan (an example of a gas guiding device) blade and damaging the fan blade.
  • the heat dissipation core is provided with a pipeline for the flow of the target fluid, and the heat dissipation core is configured to allow gas to flow through the heat dissipation core and the target fluid in the pipeline to occur heat exchange.
  • the heat dissipation device can specifically cool down various target fluids.
  • the heat dissipation device can be an oil-spreading heat dissipation device using oil as the target fluid or a water-spreading heat dissipation device using water as the target fluid.
  • the heat dissipation device further includes:
  • a temperature sensor disposed at the inlet of the conduit and configured to sense a target fluid temperature at the inlet
  • control device communicatively coupled to the temperature sensor and a motor that controls the gas directing device, the control device configured to be capable of determining that the temperature of the target fluid sensed by the temperature sensor is below a predetermined temperature control the gas guiding device to operate at an operating speed less than the rated value.
  • the gas guiding device is a fan
  • the control device is configured to control the fan to rotate less than a rated speed when it is determined that the temperature of the target fluid sensed by the temperature sensor is lower than a predetermined value rotation speed.
  • the cooling device of the present invention can adjust the operating speed of the gas guiding device according to the inlet temperature of the target fluid, can avoid energy waste and avoid unnecessary noise.
  • the predetermined value pre-stored in the control device is set based on the following criteria: in at least half of the predetermined working cycle of the heat dissipation device, the temperature sensed by the temperature sensor The temperature of the target fluid is lower than the predetermined value.
  • the gas guiding device is operated at an operating speed lower than the rated value for at least half of the working time, which can save energy and avoid unnecessary noise.
  • the outer surface of the heat dissipation core is provided with a louver protection layer
  • the louver protection layer has a plurality of blades
  • the blades include a blade protection plate, a blade punching plate, and a blade protection plate located on the blade protection plate. , the blade noise reduction layer between the blade punching plates.
  • the noise generated at the fins of the heat dissipation core can be absorbed by the noise reduction material on the blades.
  • the blades of the louver protective layer can be closed to prevent the heat dissipation core from getting wet when it rains, to prevent the heat dissipation core from sticking to the silica dust and guar gum powder suspended in the air, and to avoid dust accumulation. Blockage of the fins of the cooling core.
  • the blades of the louver protective layer can also be closed to prevent the flying sand particles and branches and other debris from causing damage to the heat dissipation core.
  • a cabin shield surrounding the gas guiding device is provided at the air outlet of the cabin, and the cabin shield includes a punching plate, an upper shield, and a punching plate filled in the punching plate.
  • the noise is further reduced by allowing the airflow to contact the noise-reducing material through the holes in the punched holes as it flows through the cabin cladding.
  • the arrangement of the punching plate of the cabin shield can prevent the noise reduction material from breaking and falling off after a long time of work, which may affect other components.
  • an air inlet is provided on the side of the cabin, at least one of the heat dissipation cores is disposed at the air intake, and each of the heat dissipation cores is formed as a vertical plate-like structure , and the heat dissipation cores are arranged end to end, and the heat dissipation cores allow gas to pass through.
  • An air outlet is provided on the top of the cabin.
  • air inlets are provided at the side and top of the cabin, and an air outlet is provided at the side of the cabin where the air inlet is not provided.
  • the heat dissipation efficiency of the heat dissipation device can be improved. And allows the manufacturer to set the position of the air outlet and the air inlet of the heat sink according to specific usage requirements.
  • the surface of the noise reduction core facing the air inlet is in a concave shape.
  • the shape of the noise reduction core is a pyramid, a cone or a truncated cone.
  • the heat dissipation device is a shelter-type heat dissipation device or a straight-tube heat dissipation device.
  • a turbo fracturing equipment includes the heat dissipation device according to any one of the above solutions.
  • a noise reduction core is arranged inside the heat dissipation device of the turbo fracturing equipment, and the gas can flow through the noise reduction core, so as to achieve noise reduction without affecting the gas flow.
  • FIG. 1 shows a schematic diagram of a heat dissipation device according to a preferred embodiment of the present invention, in which part of the external structure is removed to reveal its internal structure;
  • FIG. 2 is an exploded schematic view of a heat sink according to a preferred embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a combination of a heat dissipation device according to a preferred embodiment of the present invention.
  • FIG. 4 is a front view of a heat sink according to a preferred embodiment of the present invention, and a part of the external structure is removed in this figure to reveal its internal structure;
  • FIG. 5 is a schematic diagram of a noise reduction core of a heat dissipation device according to a preferred embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a louver protective layer of a heat dissipation device according to a preferred embodiment of the present invention.
  • FIG. 7 is a bottom view of the top structure of the heat sink according to the preferred embodiment of the present invention, with part of the structure of the cabin fender removed to show the noise reduction material inside;
  • FIG. 8 is a schematic diagram of the communication relationship between the temperature sensor, the control device and the motor according to the preferred embodiment of the present invention.
  • Figure 9 is a top surface schematic view of two turbo fracturing apparatuses placed side by side in accordance with a preferred embodiment of the present invention.
  • the present invention provides a heat dissipation device. 1-9 illustrate various preferred embodiments according to the present invention.
  • the directional terms mentioned herein are only for the purpose of example and not for the purpose of limitation, and various directional terms can be understood with reference to the heat sink shown in FIGS. 1-3 .
  • the "top of the cabin” mentioned herein can be understood as the position of the end of the cabin opposite to the horizontal when the cabin is placed on a horizontal surface, which may or may not have a top wall;
  • “Side of the pod” refers to the connection of the pod between its top and the horizontal at the point facing the outside world.
  • the “top and sides” of the pod are conceptual terms that do not necessarily include a solid structure, for example, as will be described later, the pod may be a frame structure consisting of uprights and beams with open sides structure.
  • the noise source of the cooling device is mainly divided into two parts: one is the wind whistle generated when the air flows through the cooling core; the other is the aerodynamic noise generated by the high-speed rotating fan blade tip.
  • the present invention has made several improvements.
  • the heat dissipation device 100 is a shelter-type heat dissipation device, which includes a cabin body composed of a vertical frame structure 1 , a heat dissipation core body 4 , a gas guide device 6 , a lowering Noise core 5 and other structures.
  • the vertical frame structure 1 may be in the form of a column, and a cabin body of a roughly cuboid structure is formed by connecting beams.
  • the pods can also be straight-tube pods or other forms of pods.
  • air inlets are provided at the four sides of the cabin, and air outlets are provided at the top of the cabin.
  • the positions of the air inlet and the air outlet can be selected in various ways.
  • the top of the cabin can also be provided with an air inlet, and the air outlet can be provided at the cabin without an air inlet. of the side.
  • the various settings of the air inlet and outlet allow the producer to choose according to actual needs.
  • the heat dissipation core 4 is a vertical structure arranged in the cabin between two adjacent uprights and blocks the air inlet, preferably a vertical plate-like structure as shown in FIG. 2 .
  • the noise reduction core 5 is arranged in the center of the cabin and is formed into a structure gradually converging from the bottom to the air outlet of the cabin (in this embodiment, toward the top), preferably, the noise reduction core 5 faces the cabin
  • the surface of the air inlet (that is, facing the heat dissipation core 4) is an overall concave streamlined curved surface.
  • the gas guiding device 6 is arranged at the air outlet at the top of the cabin.
  • the gas guiding device 6 is, for example, a fan, and a fan protection structure 12 such as a protective net is provided outside the fan.
  • the motor 13 is mounted on the fan guard structure 12 via a motor mount 14 for powering the gas guide 6 .
  • the gas guiding device 6 may also be a mechanism such as a suction fan, a vacuum pump, and the like.
  • each side of the cabin is provided with a heat dissipation core 4
  • each heat dissipation core 4 is formed into a vertical plate-like structure, and all the heat dissipation cores 4 are arranged end to end.
  • the heat dissipation device 100 When the heat dissipation device 100 is in operation, the air outside the cabin can be sucked into the cabin from any position on the side thereof, and the air can flow through the heat dissipation core 4 to achieve cooling.
  • Such an arrangement can improve the heat dissipation efficiency of the heat dissipation device 100 .
  • the heat dissipation core 4 on each side is not limited to one, and a plurality of heat dissipation cores 4 can be provided on each side of the cabin, which are arranged side by side up and down or left and right, and the cores are connected end to end.
  • the heat dissipation core 4 is provided with a pipeline for the target fluid to flow, and the heat dissipation core 4 is configured to allow heat exchange between the gas and the target fluid in the pipeline when the gas flows through the heat dissipation core 4, thereby Cools the target fluid down.
  • the inlet 41 of the pipeline of the heat dissipation core 4 may be provided at the bottom of the heat dissipation core 4
  • the outlet 42 of the target fluid of the heat dissipation core 4 may be provided at the top of the heat dissipation core 4 .
  • the target fluid may be oil, and such a heat sink is an oil spread heat sink.
  • the target fluid may be water
  • the heat dissipation device may be a water-dispersed heat dissipation device.
  • passages that allow other target fluids to flow therethrough may also be provided in the heat sink.
  • the outer surface of the heat dissipation core 4 is further provided with fins to increase the contact area between the heat dissipation core 4 and the gas.
  • the flow paths of the airflow through the heat sink 100 are shown by arrows in FIG. 4 .
  • the hot air flow can enter the cabin from the air inlet of the cabin, and successively flow through the smooth streamlined curved surface of the noise reduction core 5 , the gas guiding device 6 and finally exit the cabin.
  • the heat dissipation device 100 is an air intake type heat dissipation device, it does not affect other heat dissipation devices located around it during operation.
  • the gas flows through the streamlined curved surface of the noise reduction core 5, thereby achieving further noise reduction without affecting the flow of the gas.
  • the heat dissipation device 100 further includes a temperature sensor 16 and a control device 17 .
  • the communication relationship between the temperature sensor 16 , the control device 17 and the motor 13 is shown in FIG. 8 , and the arrows in FIG. 8 indicate the transmission direction of the signal.
  • the temperature sensor 16 is disposed at the inlet 41 of the oil circuit of the heat dissipation core 4 and is configured to sense the temperature of the target fluid at the inlet, and the temperature sensor 16 can transmit a sensor signal containing the sensed temperature information to Control device 17 .
  • the control device 17 is communicatively connected to the temperature sensor 16 and the motor 13 that controls the gas guiding device 6, and the control device 17, after receiving a signal from the temperature sensor 16, is able to determine whether the temperature of the target fluid sensed by the temperature sensor 16 is lower than The predetermined value, when it is determined that the temperature of the target fluid sensed by the temperature sensor 16 is lower than the predetermined value, a control signal is sent to the motor 13 to control the gas guiding device 6 to operate at an operating speed less than the rated value.
  • the control device 17 can control the fan to operate at a speed lower than the rated speed when it is determined that the temperature of the target fluid sensed by the temperature sensor 16 is lower than a predetermined value.
  • the predetermined value pre-stored in the control device 17 is set based on a criterion that the intake air temperature sensed by the temperature sensor 16 is lower than the predetermined value during at least half of the predetermined duty cycle of the heat sink 100 .
  • Such an arrangement enables the gas guiding device 6 to operate at a sub-rated operating speed for at least half of the working time, which can save energy and avoid unnecessary noise.
  • the noise reduction core 5 includes a core base 51 , a punched outer layer structure 52 and a core noise reduction material 53 .
  • the core body base 51 is a hollow tower structure; the punched outer layer structure 52 is a hollow tower structure with an open bottom.
  • the surface of the tower-shaped structure can be an overall smooth curved surface, or can be composed of a plurality of facets.
  • Each outward facing surface of the punched outer layer structure 52 preferably forms an overall concave shape.
  • the shape of the punched outer layer structure 52 Fittedly sleeved on the outside of the core base 51 .
  • the punched outer layer structure 52 and the core body base 51 do not have to be shaped to match, and the core body base 51 can be any shape, as long as the punched outer layer structure 52 forms a hollow structure.
  • the core noise reduction material 53 is filled between the core base 51 and the punched outer layer. Such a structure allows the hot air flow to flow through the streamlined curved surface of the perforated outer layer structure 52 and can contact the core noise reduction material 53 through the holes in the perforated outer layer structure 52 to achieve noise reduction.
  • the noise reduction core 5 has a hollow structure, and thus does not significantly increase the overall weight of the heat dissipation device 100 . Referring to FIGS. 2 and 3 , the outer surface of the heat dissipation core 4 is provided with a louver protection layer 15 for protecting the heat dissipation core 4 .
  • the specific structure of the shutter protection layer 15 is shown in FIG. 6 .
  • the shutter protection layer 15 includes a protection layer frame 151 and a plurality of parallel blades 152 installed in the protection layer frame 151.
  • the blades 152 include a blade protection plate 1522, a blade punching plate 1521, and a blade protection plate 1522.
  • the blade punching plate 1521 The blade noise reduction layer 1523 in between.
  • the blades 152 are opened, usually at an angle of less than 90 degrees relative to the vertical line, and the noise reduction material is obliquely facing the heat dissipation core 4 .
  • the noise generated at the fins of the heat dissipation core 4 can be absorbed by the noise reduction material on the blades 15 .
  • the provision of the blade punching plate 1521 can prevent the noise reduction material from breaking and falling off after a long time of operation and being sucked into the gaps between the fins of the heat dissipation core 4 and blocking the heat dissipation core 4 .
  • the blades 15 of the louver protection layer 15 are in an open state, so that the air intake can be unblocked.
  • the blades 15 of the shutter protective layer 15 can be closed to prevent the heat dissipation core 4 from getting wet when it rains, to prevent the heat dissipation core 4 from sticking to the silica dust and guar powder suspended in the air, and to avoid The accumulation of dust causes clogging of the fins of the heat dissipation core 4 .
  • the blades 15 of the shutter protection layer 15 can also be closed to prevent the flying sand particles and branches and other debris from causing damage to the heat dissipation core 4 .
  • a noise reduction structure may also be provided at the top of the heat dissipation device 100 .
  • a preferred embodiment of the top structure of the heat dissipation device 100 is shown in FIG. 7 , which shows a bottom view of the top structure.
  • the heat sink 100 includes a cabin body shield 2, the cabin body shield 2 includes a punching plate 21 on its bottom surface, an upper shield on its top surface, and a shield lowering plate located between the punching plate 21 and the upper shield.
  • Noise material 22 For illustrative purposes, a portion of the perforated plate 21 of the cabin fender 2 in FIG. 7 has been removed to expose the fender noise reduction material 22 .
  • the punching plate 21 can also fix the noise reduction material, so as to prevent the noise reduction material from being wound on the blades 15 of the gas guiding device 6 and damaging the blades 15 of the gas guiding device 6 when the noise reduction material is broken or falls off.
  • a cabin bottom guard plate 9 is installed on the cabin body base 3 , a dust exhaust hole 7 is provided on the cabin body bottom guard plate 9 , and the cabin body guard plate 2 is provided with The manhole is covered with a manhole cover 10, and a ladder 11 can be connected between the manhole and the bottom guard.
  • the maintenance personnel enter the cabin through the manhole and the ladder 11, and can maintain the entire radiator 100 through the maintenance channel on the bottom guard plate, and the accumulated water, dust and sundries in the interior can be drained. Dust hole 7 clears out the sundries.
  • the noise reduction core 5 is located in the center of the bottom of the cabin, it is relatively easy to generate dust on the surface to block the noise reduction material and reduce the noise reduction effect. Setting the noise reduction core 5 to the aforementioned assembly structure can make the noise reduction core 5 It is convenient for maintenance. During maintenance, it is only necessary to periodically purge and replace the noise reduction material, so this setting greatly reduces the maintenance time and cost.
  • the heat dissipation device 100 may have other alternative structures not shown in the figures.
  • the noise reduction core 5 can be configured as a pyramid, a cone, a truncated cone, etc., or an irregular shape.
  • the motor 13 may be a hydraulically driven motor, an electric motor, an air motor, or the like.
  • the above-mentioned heat dissipation device 100 may be a lubricating oil radiator, or may be a water heat dissipation device integrated with an engine or other types of heat dissipation devices.
  • the present invention also provides a turbo fracturing device having the above heat dissipation device.
  • a plurality of turbo fracturing equipment can be arranged in a set, for example, as shown in FIG. 9, two turbo fracturing equipment can be arranged side by side on the surface.
  • the first turbo fracturing equipment 200 of the two turbo fracturing equipment includes a first engine 201 and a first heat sink 202 arranged at its gooseneck
  • the second turbo fracturing equipment 300 includes a first engine 201 arranged at its gooseneck.
  • the first heat dissipation device 202 and the second heat dissipation device 302 are the shelter heat dissipation equipment shown in FIG. 1 to FIG.
  • the first heat dissipation device 202 and the second heat dissipation device 302 both suck in the hot air from the side and cool the air. Expelling from the top, the flow direction of the gas as it is drawn in is shown by arrows in FIG. 9 . It can be seen that, since the first heat dissipation device 202 and the second heat dissipation device 302 are air suction heat dissipation devices, the heat dissipation device of each turbo fracturing device will not affect the other heat dissipation devices when multiple turbo fracturing devices are operating side by side. Influence, can achieve higher work efficiency in limited work space.
  • the heat dissipation device provided by the present invention is provided with various noise reduction means.
  • the heat dissipation device can adjust the power of the gas guiding device according to the intake air temperature, so as to avoid energy waste and unnecessary noise.
  • a noise reduction core is also arranged inside the heat dissipation device, and the gas can flow through the outer surface of the noise reduction core, so as to further reduce noise without affecting the flow of the gas.
  • the heat dissipation device is an air suction type heat dissipation device. When multiple turbo fracturing equipment is operating side by side, the heat dissipation device of each turbo fracturing equipment will not affect other heat dissipation devices, and can achieve higher temperature in a limited working space. work efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种散热装置(100)和具有其的涡轮压裂设备,散热装置(100)包括:舱体、散热芯体(4)、气体导引装置(6)和降噪芯体(5),散热芯体(4)设置在舱体的进气口处并能够使气体通过,气体导引装置(6)设置在出气口处并用于将舱体内的空气向舱体的出气口方向抽出;降噪芯体(5)设置在舱体内,降噪芯体(5)为自其底部向出气口方向逐渐聚拢的结构,散热装置被配置为使得气体从进气口进入舱体并先后流经散热芯体(4)、降噪芯体(5)的表面、气体导引装置(6)并最终排出舱体,散热装置为吸气式散热装置,其能够根据目标流体的进口端的温度而调节气体导引装置(6)的运转速率,能够避免能源浪费和避免造成不必要的噪声,降噪芯体(5)的平滑曲面能够允许在不影响气体流动的前提下实现降噪。

Description

散热装置和具有散热装置的涡轮压裂设备 技术领域
本发明涉及一种散热装置和具有这种散热装置的涡轮压裂设备。
背景技术
目前应用于涡轮压裂设备的散热器形式有立式散热器、卧式散热器和方舱式散热器。其中,立式散热器占用的安装空间小,但是噪音大、吹出的热风会对设备的其他部件造成影响,部分情况下并不适用。卧式散热器吹出的热风向上,不会对其他的部件和设备造成影响,但是由于是芯体式呈多层排布的,每层芯体的散热量相对较低,而且多层芯体的布置使得硅尘土和瓜胶粉的通过性较差,容易堵塞芯体翅片,造成散热量不足,需要经常维保,并且也存在噪音大的缺点。另外对立式散热器和卧式散热器来说,行车过程中飞起的沙石颗粒和树枝等会磕碰芯体造成芯体损坏,从而导致设备使用成本升高。
方舱式散热器虽然可以解决设备布置和防止芯体堵塞的问题,但是仍然存在噪音大的问题。为了解决方舱式散热器的噪音大的问题,一些涡轮压裂设备采取降低散热器风扇转速、将散热器做大、或者是在设备的外部增加降噪舱体等措施,但这些降噪方式又给设备带来了超重的问题。
另一方面,成套压裂设备作业时,设备并排布置,相邻设备之间的间距比较小,常规的吹风式散热器会对相邻两台设备的散热造成影响。
因此,需要提供一种散热装置,以至少部分地解决上述问题。这种散热装置既能用于油田涡轮压裂设备,也能用于其他油田设备的散热系统和发电机散热系统等。
发明内容
本发明的目的在于,提供一种散热装置和具有这种散热装置的涡轮压裂设备。本发明所提供的散热装置可以为吸气式散热装置,例如 在多个涡轮压裂设备并排作业时每一个涡轮压裂设备的散热装置都不会对其他的散热装置造成影响,可以实现有限的作业空间内更高的作业效率。并且本发明的散热装置能够根据目标流体的进口温度而调节气体导引装置的运转速率,能够避免能源浪费和避免造成不必要的噪声。散热装置内部设置有降噪芯体,气体能够流经降噪芯体的流线型曲面,从而在不影响气体流动的前提下实现降噪。
根据本发明一个方面,提供了一种散热装置,所述散热装置包括:
舱体,在所述舱体上设置至少一个进气口,在所述舱体上还设置一个出气口;
设置在所述进气口处的散热芯体,所述散热芯体允许气体通过;
设置在所述出气口处的气体导引装置,所述气体导引装置将舱体内的空气向所述出气口方向抽出;以及
降噪芯体,所述降噪芯体设置在所述舱体内,所述降噪芯体为向所述出气口方向逐渐聚拢的结构;
其中,所述散热装置被配置为使得气体从所述进气口进入所述舱体并先后流经所述散热芯体、所述降噪芯体的表面、所述气体导引装置并最终排出所述舱体。
根据本方案,散热装置被构造为能够将气体吸入并在散热之后排出舱体。散热装置内部还设置有降噪芯体,气体能够流经降噪芯体,从而在不影响气体流动的前提下进一步降噪。
在一种实施方式中,所述降噪芯体包括:
芯体基部,所述芯体基部为中空的塔形结构;
冲孔外层结构,所述冲孔外层结构为中空且底部敞开的塔形结构,所述冲孔外层结构套放在所述芯体基部的外侧;以及
芯体降噪材料,所述芯体降噪材料填充在所述芯体基部和所述冲孔外层结构之间。
根据本方案,降噪芯体的结构允许热气流流经冲孔外层结构,并能够经由冲孔外层结构上的孔与位于冲孔外层结构和芯体基部之间的降噪材料接触以实现降噪。降噪芯体例如可以为中空结构,因而不 会影响散热装置的整体重量。并且,冲孔板还能够防止降噪材料破碎或者脱落时缠绕到风扇(气体导引装置的一种示例)叶片上损坏风扇的叶片。
在一种实施方式中,所述散热芯体内设置有供目标流体流动的管路,所述散热芯体被构造为允许气体流经所述散热芯体时和所述管路内的目标流体发生热交换。
根据本方案,散热装置具体可以为多种目标流体降温,例如散热装置可以为以油作为目标流体的油散式散热装置或以水作为目标流体的水散式散热装置。
在一种实施方式中,所述散热装置还包括:
温度传感器,所述温度传感器设置在所述管路的进口处并被配置为用于感测进口处的目标流体温度;以及
控制装置,所述控制装置和所述温度传感器、控制所述气体导引装置的马达通信地连接,所述控制装置被配置为能够在确定所述温度传感器感测到的目标流体温度低于预定值时控制所述气体导引装置以小于额定值的运转速率运行。
在一种实施方式中,所述气体导引装置为风扇,所述控制装置被配置为在确定所述温度传感器感测到的目标流体的温度低于预定值时控制所述风扇以小于额定转速的转速运转。
根据上述两种方案,并且本发明的散热装置能够根据目标流体的进口温度而调节气体导引装置的运转速率,能够避免能源浪费和避免造成不必要的噪声。
在一种实施方式中,所述控制装置内预存的所述预定值基于如下标准而被设定:在所述散热装置的预定工作周期内的至少一半时长中,所述温度传感器感测到的目标流体的温度低于所述预定值。
根据本方案,在至少一半的工作时间内气体导引装置以低于额定值的运转速率运转,这样的设置既能够节约能源,又能够避免不必要的噪声。
在一种实施方式中,所述散热芯体的外表面设置有百叶防护层, 所述百叶防护层具有多个叶片,所述叶片包括叶片防护板、叶片冲孔板和位于所述叶片防护板、所述叶片冲孔板之间的叶片降噪层。
根据本方案,散热芯体的翅片处产生的噪音能够被叶片上的降噪材料吸收。并且,当散热装置工作完成后可将百叶防护层的叶片关闭,以防止下雨时淋湿散热芯体、避免散热芯体粘住空气中悬浮的硅尘土和瓜胶粉、避免因灰尘堆积造成散热芯体的翅片的堵塞。在行车的过程中也可关闭百叶防护层的叶片,防止飞起的沙石颗粒和树枝等杂物对散热芯体造成损坏。
在一种实施方式中,所述舱体的出气口处设置有围绕所述气体导引装置的舱体护板,所述舱体护板包括冲孔板、上护板和填充在所述冲孔板和所述上护板之间的护板降噪材料。
根据本方案,允许气流在流经舱体护板时经由冲孔上的孔和降噪材料接触从而进一步减少噪音。并且,舱体护板的冲孔板的设置能够防止长时间的工作之后,降噪材料破碎和脱落,进而可能对其他部件造成影响。
在一种实施方式中,进气口设置在所述舱体的侧部,所述进气口处设置有至少一个所述散热芯体,每一个所述散热芯体形成为立式的板状结构,且所述散热芯体首尾相接地设置,所述散热芯体允许气体通过。出气口设置在所述舱体的顶部。或者,在舱体的侧部和顶部都设置有进气口,在舱体不设置进气口的侧部设置一个出气口。
根据本方案,能够提升散热装置的散热效率。并且允许生产者根据具体的使用需求设定散热装置的出气口和进气口的位置。
在一种实施方式中,所述降噪芯体的和所述进气口相面对的表面为内凹的形状。
在一种实施方式中,所述降噪芯体的形状为棱锥、圆锥或截圆锥。
根据上述两个方案,给出了几种具体的降噪芯体的形状选择,这些形状的降噪芯体均能够在便于气体流动的同时实现降噪。
在一种实施方式中,所述散热装置为方舱式散热装置或直筒式散热装置。
根据本发明的另一个方面,提供了一种涡轮压裂设备,所述涡轮压裂设备包括根据上述方案中任意一项所述的散热装置。
根据本方案,涡轮压裂设备的散热装置内部设置有降噪芯体,气体能够流经降噪芯体,从而在不影响气体流动的前提下实现降噪。
附图说明
为了更好地理解本发明的上述及其他目的、特征、优点和功能,可以参考附图中所示的优选实施方式。附图中相同的附图标记指代相同的部件。本领域技术人员应该理解,附图旨在示意性地阐明本发明的优选实施方式,对本发明的范围没有任何限制作用,图中各个部件并非按比例绘制。
图1示出了根据本发明的优选实施方式的散热装置的示意图,该图中移除了部分外部结构以用于露出其内部构造;
图2为根据本发明的优选实施方式的散热装置的分解示意图;
图3为根据本发明的优选实施方式的散热装置的组合示意图;
图4为根据本发明的优选实施方式的散热装置的正视图,并且该图中移除了部分外部结构以用于露出其内部构造;
图5为根据本发明的优选实施方式的散热装置的降噪芯体的示意图;
图6为根据本发明的优选实施方式的散热装置的百叶防护层的示意图;
图7为根据本发明的优选实施方式的散热装置的顶部结构的仰视图,其中舱体护板的部分结构被移除以示出其内部的降噪材料;
图8为根据本发明的优选实施方式的温度传感器、控制装置和马达的通信关系示意图;以及
图9为根据本发明的优选实施方式的两个涡轮压裂设备并排放置的顶表面示意图。
附图标记清单:
100散热装置
1立式框架结构
2舱体护板
21冲孔板
22护板降噪材料
3舱体底座
4散热芯体
41目标流体的进口
42目标流体的出口
5降噪芯体
51芯体基部
52冲孔外层结构
53芯体降噪材料
6气体导引装置
7排尘孔
9舱体底护板
10人孔盖
11爬梯
12风扇防护结构
13马达
14马达座
15百叶防护层
151防护层框架
152叶片
1521叶片冲孔板
1522叶片防护板
1523叶片降噪层
16温度传感器
17控制装置
200第一涡轮压裂设备
201第一发动机
202第一散热装置
300第二涡轮压裂设备
302第二发动机
302第二散热装置
具体实施方式
现在参考附图,详细描述本发明的具体实施方式。这里所描述的仅仅是根据本发明的优选实施方式,本领域技术人员可以在所述优选实施方式的基础上想到能够实现本发明的其他方式,所述其他方式同样落入本发明的范围。
本发明提供了一种散热装置。图1-图9示出了根据本发明的多个优选实施方式。首先需要说明的是,本文所提到的方向性术语仅为示例的目的而非限定的目的,各个方向性术语可以参照图1-图3所示的散热装置而进行理解。例如,本文所提到的“舱体的顶部”可以被理解为是当舱体放置在水平面上时舱体的和水平面相对的一端位置处,其可以具有顶壁也可以不具有顶壁;“舱体的侧部”指的是舱体的连接在其顶部和水平面之间的和外界相面对的位置处。舱体的“顶部和侧部”均为概念性术语,其不一定包括实体结构,例如将在后文所述的,舱体可以为由立柱和横梁构成的框架结构,其侧部为敞开的结构。
散热装置的噪音来源主要分为两部分:一是由于空气流经散热芯体时产生的风啸;二是由于高速旋转的风扇叶尖产生的气动噪音。为了降低这两部分的噪音,本发明进行了多处改进。
首先参考图1和图2,以散热装置100为例,散热装置100为方舱式散热装置,其包括由立式框架结构1构成的舱体、散热芯体4、气体导引装置6、降噪芯体5等结构。其中,立式框架结构1可以是立柱形式,通过横梁连接构成大致长方体结构的舱体,例如按图1所示,通过两根平行的横梁分别连接两根相邻的立柱,所述两根横梁之 间再连接一根横梁,当然也可以用其他连接方式。在其他未示出的实施方式中,舱体也可以是直筒式舱体或其他形式的舱体。
如图1所示,在本实施方式中,舱体的四个侧部处均设置有进气口,其顶部处设置有出气口。在其他未示出的实施方式中,进气口和出气口的位置可以具有多种选择,例如舱体的顶部也可以设置有进气口,出气口可以设置在舱体的不设置进气口的侧部。进气口和出气口的各种设置方式允许生产者根据实际需要进行选择。
散热芯体4为设置在舱体内位于两根相邻立柱之间并阻挡进气口的立式结构,优选地为图2中所示的立板状结构,散热芯体4上设置有用于为气流降温的翅片。降噪芯体5设置在舱体中央并形成为自其底部向舱体的出气口处(在本实施方式中为朝向顶部)逐渐聚拢的结构,优选地,降噪芯体5面对舱体的进气口(即面对散热芯体4)的表面为整体内凹的流线型曲面。气体导引装置6设置在舱体顶部的出气口处,气体导引装置6例如为风扇,风扇的外部设置有风扇防护结构12,例如护网。马达13通过马达座14安装在风扇防护结构12上以用于对气体导引装置6提供动力。在其他未示出的实施方式中,气体导引装置6还可以是抽风机、真空泵等机构。
继续参考图2,可以看到舱体内每个侧部都设置有散热芯体4,每一个散热芯体4形成为立式的板状结构,且所有散热芯体4首尾相接地设置。在散热装置100作业时,能够将舱体外部气体从其侧面的任何位置处吸入舱体并使得气体流经散热芯体4实现降温。这样的设置能够提升散热装置100的散热效率。当然每个侧部的散热芯体4不限于一个,在舱体的每一侧上可以设置多个散热芯体4,其上下或左右并排布置,芯体首尾连接。
在一种实施方式中,散热芯体4内设置有供目标流体流动的管路,散热芯体4被构造为允许气体流经散热芯体4时和管路内的目标流体发生热交换,从而使目标流体降温。参考图2,散热芯体4的管路的进口41可以设置在散热芯体4的底部处,散热芯体4的目标流体的出口42可以设置在散热芯体4的顶部处。例如,目标流体可以为油, 这样的散热装置为油散式散热装置。或者,目标流体可以为水,散热装置可以为水散式散热装置。或者,散热装置内还可以设置允许其他目标流体流经的通路。并且优选地,散热芯体4的外表面还设置有翅片以增大散热芯体4和气体的接触面积。
气流流经散热装置100的流动路径在图4中由箭头示出。参考图4,热气流能够从舱体的进气口进入舱体,并先后流经降噪芯体5的平滑的流线型曲面、气体导引装置6并最终排出舱体。由于散热装置100为吸气式散热装置,因而其作业时不会对位于其周围的其他的散热装置造成影响。而气体通过流经降噪芯体5的流线型曲面,从而实现在不影响气体流动的前提下进一步降噪。
散热装置100还包括温度传感器16和控制装置17,温度传感器16、控制装置17以及马达13的通信关系在图8中示出,图8中的箭头表示信号的传递方向。具体地,温度传感器16设置在散热芯体4的油路的进口41处并被配置为用于感测进口处的目标流体的温度,温度传感器16能够将包含感测温度信息的传感器信号传递至控制装置17。控制装置17和温度传感器16、控制气体导引装置6的马达13通信地连接,控制装置17在接收到来自温度传感器16的信号后能够确定温度传感器16感测到的目标流体的温度是否低于预定值,在确定温度传感器16感测到的目标流体的温度低于预定值时向马达13发送控制信号,以控制气体导引装置6以小于额定值的运转速率运转。当气体导引装置6为风扇时,控制装置17能够在确定温度传感器16感测到的目标流体的温度低于预定值时控制风扇以小于额定转速的转速运转。
可以理解,若进口处的目标流体的温度高于或等于预定值时,则需要加大抽气力度以加大空气的流动才能起到达到预定降温目的,因而在进口的目标流体的温度高时增大气体导引装置6的运行功率,在进口处的目标流体的温度较低时则没必要使气体导引装置6以大功率运行。使气体导引装置6以较低的运转速率运转(例如使风扇以较小的转速转动)能够尽可能地减少噪声。
优选地,控制装置17内预存的预定值基于如下标准而被设定:在散热装置100的预定工作周期内的至少一半时长中,温度传感器16感测到的进气温度低于预定值。这样的设置使得在至少一半的工作时间内气体导引装置6以低于额定值的运转速率运转,这样的设置既能够节约能源,又能够避免不必要的噪声。
同样优选地,参考图5,降噪芯体5包括芯体基部51、冲孔外层结构52和芯体降噪材料53。芯体基部51为中空的塔形结构;冲孔外层结构52为中空且底部敞开的塔形结构。该塔形结构的表面可以是整体圆滑的曲面,也可以由多个棱面构成,冲孔外层结构52每个朝外的表面优选均形成整体内凹的形状,冲孔外层结构52形状适配地套放在芯体基部51的外侧。当然冲孔外层结构52与芯体基部51不必形状适配,芯体基部51可以是任意形状,只要与冲孔外层结构52形成中空结构即可。芯体降噪材料53填充在芯体基部51和冲孔外层之间。这样的结构允许热气流流经冲孔外层结构52的流线型曲面,并能够经由冲孔外层结构52上的孔与芯体降噪材料53接触以实现降噪。降噪芯体5为中空结构,因而不会明显增加散热装置100的整体重量。参考图2和图3,散热芯体4的外表面设置有用于保护散热芯体4的百叶防护层15。
百叶防护层15的具体结构在图6中示出。百叶防护层15包括防护层框架151和安装在防护层框架151内的多个平行的叶片152,叶片152包括叶片防护板1522、叶片冲孔板1521和位于叶片防护板1522、叶片冲孔板1521之间的叶片降噪层1523。当散热装置作业时,叶片152打开,通常呈相对于竖直线小于90度的角度,所述降噪材料斜对着散热芯体4。散热芯体4的翅片处产生的噪音能够被叶片15上的降噪材料吸收。并且,叶片冲孔板1521的设置能够防止长时间的工作之后,降噪材料破碎和脱落而被吸到散热芯体4的翅片的间隙之间并堵塞散热芯体4。
当散热装置100工作时,百叶防护层15的叶片15处于打开状态,以便进气畅通。当散热装置100工作完成后可将百叶防护层15的叶 片15关闭,以防止下雨时淋湿散热芯体4、避免散热芯体4粘住空气中悬浮的硅尘土和瓜胶粉、避免因灰尘堆积造成散热芯体4的翅片的堵塞。在行车的过程中也可关闭百叶防护层15的叶片15,防止飞起的沙石颗粒和树枝等杂物对散热芯体4造成损坏。
散热装置100的顶部处也可以设置降噪结构,散热装置100的顶部结构的优选实施方式在图7中示出,图7示出了顶部结构的仰视图。散热装置100包括舱体护板2,舱体护板2包括位于其底表面的冲孔板21、位于其顶表面的上护板和位于冲孔板21、上护板之间的护板降噪材料22。为了示意的目的,图7中的舱体护板2的部分冲孔板21被移除从而露出护板降噪材料22。这样的设置使得气流在流经舱体护板2时经由冲孔板21上的孔和降噪材料接触从而进一步减少噪音。并且,冲孔板21还能够固定住降噪材料,防止降噪材料破碎或者脱落时缠绕到气体导引装置6叶片15上损坏气体导引装置6的叶片15。
另一方面,由于散热装置100底部比较容易产生集尘,且下雨时,底部比较容易产生积水,因而需要定期对散热装置100进行维保。如图1和图2所示,本实施方式在舱体底座3上安装有舱体底护板9,舱体底护板9上设置有排尘孔7,并在舱体护板2上设置人孔,人孔上覆盖人孔盖10,在人孔和底护板之间可以连接有爬梯11。维保时维保人员通过人孔和爬梯11进入到舱体内,通过底护板上的维保通道可以对整个散热装置100内部进行维保,将内部的积水、灰尘和杂物可以通过排尘孔7将杂物清理出去。
降噪芯体5因在舱体内的底部中心,比较容易在表面产生集尘堵塞降噪材料,降低降噪效果,而将降噪芯体5设置为前述的装配结构能够使得降噪芯体5方便维保,在进行维保时只需要对降噪材料定期进行吹扫和更换即可,因而这样的设置大大降低了维保的时间和成本。
除了上述的具体结构,散热装置100可以具有其他图中未示出的替代性结构。例如,降噪芯体5可以被设置为棱锥、圆锥、截圆锥等结构,也可以是不规则的形状。同样地,马达13可以为液压驱动的 马达、电动马达、气动马达等。并且,上述的散热装置100可以为润滑油散热器,也可以为集成发动机的水散和其他类型的散热装置。
本发明还提供一种具有上述散热设备的涡轮压裂设备。多个涡轮压裂设备可以成套设置,例如,如图9所示,两个涡轮压裂设备可以并排设置在地面。其中,两个涡轮压裂设备中的第一涡轮压裂设备200包括布置在其鹅颈部的第一发动机201和第一散热装置202,第二涡轮压裂设备300包括布置在其鹅颈部的第二发动机301和第二散热装置302。第一散热装置202和第二散热装置302为图1-图7中所示的方舱散热设备,因而第一散热装置202和第二散热装置302均从侧面吸入热气流并将降温后的气流从顶部排出,气体被吸入时的流动方向在图9中以箭头示出。可以看到,由于第一散热装置202和第二散热装置302为吸气式散热装置,在多个涡轮压裂设备并排作业时每一个涡轮压裂设备的散热装置都不会对其他的散热装置造成影响,可以实现有限的作业空间内更高的作业效率。
本发明所提供的散热装置设置有多种降噪手段。其中,散热装置能够根据进气温度而调节气体导引装置的功率,能够避免能源浪费和避免造成不必要的噪声。散热装置内部还设置有降噪芯体,气体能够流经降噪芯体的外表面,从而在不影响气体流动的前提下进一步降噪。并且,散热装置为吸气式散热装置,在多个涡轮压裂设备并排作业时每一个涡轮压裂设备的散热装置都不会对其他的散热装置造成影响,可以实现有限的作业空间内更高的作业效率。
本发明的多种实施方式的以上描述出于描述的目的提供给相关领域的一个普通技术人员。不意图将本发明排他或局限于单个公开的实施方式。如上,以上教导的领域中的普通技术人员将明白本发明的多种替代和变型。因此,虽然具体描述了一些替代实施方式,本领域普通技术人员将明白或相对容易地开发其他实施方式。本发明旨在包括这里描述的本发明的所有替代、改型和变型,以及落入以上描述的本发明的精神和范围内的其他实施方式。

Claims (15)

  1. 一种散热装置,其特征在于,所述散热装置(100)包括:
    舱体,在所述舱体上设置至少一个进气口,在所述舱体上还设置一个出气口;
    设置在所述进气口处的散热芯体(4),所述散热芯体允许气体通过;
    设置在所述出气口处的气体导引装置(6),所述气体导引装置将舱体内的空气向所述出气口方向抽出;以及
    降噪芯体(5),所述降噪芯体设置在所述舱体内,所述降噪芯体为向所述出气口方向逐渐聚拢的结构;
    其中,所述散热装置被配置为使得气体从所述进气口进入所述舱体并先后流经所述散热芯体、所述降噪芯体的表面、所述气体导引装置并最终排出所述舱体。
  2. 根据权利要求1所述的散热装置,其特征在于,所述降噪芯体(5)包括:
    芯体基部(51),所述芯体基部为中空的塔形结构;
    冲孔外层结构(52),所述冲孔外层结构为中空且底部敞开的塔形结构,所述冲孔外层结构套放在所述芯体基部的外侧;以及
    芯体降噪材料(53),所述芯体降噪材料填充在所述芯体基部和所述冲孔外层结构之间。
  3. 根据权利要求1所述的散热装置,其特征在于,所述散热装置用于使目标流体降温,所述散热芯体内设置有供目标流体流动的管路,所述散热芯体被构造为允许气体流经所述散热芯体时和所述管路内的目标流体发生热交换。
  4. 根据权利要求3所述的散热装置,其特征在于,所述散热装置还包括:
    温度传感器(16),所述温度传感器设置在所述管路的进口(41)处并被配置为用于感测进口处的目标流体的温度;以及
    控制装置(17),所述控制装置和所述温度传感器(16)、控制所述气体导引装置的马达(13)通信地连接,所述控制装置被配置为能够在确定所述温度传感器感测到的目标流体的温度低于预定值时控制所述气体导引装置以小于额定值的运转速率运行。
  5. 根据权利要求4所述的散热装置,其特征在于,所述气体导引装置(6)为风扇,所述控制装置(17)被配置为在确定所述温度传感器(16)感测到的目标流体的温度低于预定值时控制所述风扇以小于额定转速的转速运转。
  6. 根据权利要求4或5所述的散热装置,其特征在于,所述控制装置(17)内预存的所述预定值基于如下标准而被设定:在所述散热装置(100)的预定工作周期内的至少一半时长中,所述温度传感器(16)感测到的目标流体的温度低于所述预定值。
  7. 根据权利要求1所述的散热装置,其特征在于,所述散热芯体(4)的外表面设置有百叶防护层(15),所述百叶防护层(15)具有多个叶片,所述叶片(152)包括叶片防护板(1522)、叶片冲孔板(1521)和位于所述叶片防护板、所述叶片冲孔板之间的叶片降噪层(1523)。
  8. 根据权利要求1所述的散热装置,其特征在于,所述舱体的出气口处设置有围绕所述气体导引装置的舱体护板(2),所述舱体护板(2)包括冲孔板(21)、上护板和填充在所述冲孔板和所述上护板之间的护板降噪材料(22)。
  9. 根据权利要求1所述的散热装置,其特征在于,所述进气口设置在所述舱体的侧部,所述进气口处设置有至少一个所述散热芯体,每一个所述散热芯体形成为立式的板状结构,且所述散热芯体首尾相接地设置。
  10. 根据权利要求9所述的散热装置,其特征在于,所述出气口设置在所述舱体的顶部。
  11. 根据权利要求9所述的散热装置,其特征在于,在所述舱体的顶部也设置有进气口,所述出气口设置在所述舱体的不设置进气口 的侧部。
  12. 根据权利要求1或2所述的散热装置,其特征在于,所述降噪芯体的和所述进气口相面对的表面为内凹的形状。
  13. 根据权利要求1所述的散热装置,其特征在于,所述降噪芯体的形状为棱锥、圆锥或截圆锥。
  14. 根据权利要求1所述的散热装置,其特征在于,所述散热装置为方舱式散热装置或直筒式散热装置。
  15. 一种涡轮压裂设备,其特征在于,所述涡轮压裂设备包括根据权利要求1-14中任意一项所述的散热装置。
PCT/CN2020/136931 2020-11-06 2020-12-16 散热装置和具有散热装置的涡轮压裂设备 WO2022095233A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011232423.8 2020-11-06
CN202011232423.8A CN112228208A (zh) 2020-11-06 2020-11-06 散热装置和具有散热装置的涡轮压裂设备

Publications (1)

Publication Number Publication Date
WO2022095233A1 true WO2022095233A1 (zh) 2022-05-12

Family

ID=74123289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136931 WO2022095233A1 (zh) 2020-11-06 2020-12-16 散热装置和具有散热装置的涡轮压裂设备

Country Status (2)

Country Link
CN (1) CN112228208A (zh)
WO (1) WO2022095233A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6435264B1 (en) * 1998-08-21 2002-08-20 Komatsu Ltd. Cooling system for working vehicle
CN102602323A (zh) * 2012-04-01 2012-07-25 辽宁华孚石油高科技股份有限公司 涡轮发动机驱动的压裂泵车
US20160010557A1 (en) * 2013-03-15 2016-01-14 Mitsubishi Heavy Industries, Ltd. Gas turbine silencer, and gas turbine provided with same
CN105484835A (zh) * 2016-01-09 2016-04-13 中航长沙设计研究院有限公司 一种航空发动机地面试验尾气热回收消音塔
CN106593620A (zh) * 2015-10-16 2017-04-26 首帆动力科技股份有限公司 一种柴油发电机组的排风散热装置
CN110005516A (zh) * 2018-12-07 2019-07-12 苏州睿昕汽车配件有限公司 一种由环形风扇和护风圈组成的导流冷却系统
CN110306621A (zh) * 2019-06-27 2019-10-08 三一重机有限公司 发动机节能散热系统和挖掘机
CN110735688A (zh) * 2019-11-13 2020-01-31 廖林波 汽车用排气系统消音器
CN210284212U (zh) * 2019-12-05 2020-04-10 江苏华复轨道交通科技有限公司 一种具有降噪功能的设备舱裙板

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6435264B1 (en) * 1998-08-21 2002-08-20 Komatsu Ltd. Cooling system for working vehicle
CN102602323A (zh) * 2012-04-01 2012-07-25 辽宁华孚石油高科技股份有限公司 涡轮发动机驱动的压裂泵车
US20160010557A1 (en) * 2013-03-15 2016-01-14 Mitsubishi Heavy Industries, Ltd. Gas turbine silencer, and gas turbine provided with same
CN106593620A (zh) * 2015-10-16 2017-04-26 首帆动力科技股份有限公司 一种柴油发电机组的排风散热装置
CN105484835A (zh) * 2016-01-09 2016-04-13 中航长沙设计研究院有限公司 一种航空发动机地面试验尾气热回收消音塔
CN110005516A (zh) * 2018-12-07 2019-07-12 苏州睿昕汽车配件有限公司 一种由环形风扇和护风圈组成的导流冷却系统
CN110306621A (zh) * 2019-06-27 2019-10-08 三一重机有限公司 发动机节能散热系统和挖掘机
CN110735688A (zh) * 2019-11-13 2020-01-31 廖林波 汽车用排气系统消音器
CN210284212U (zh) * 2019-12-05 2020-04-10 江苏华复轨道交通科技有限公司 一种具有降噪功能的设备舱裙板

Also Published As

Publication number Publication date
CN112228208A (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
US11713663B2 (en) Heat radiator and turbo fracturing unit comprising the same
US8698342B2 (en) Wind turbine generating apparatus
JP4545795B2 (ja) 発電機冷却システムを備えた風力タービン
JP5595057B2 (ja) 風力発電装置
JP3989693B2 (ja) 風力発電装置
KR20120111913A (ko) 풍력 발전 장치
JP2011163179A5 (zh)
CN210468539U (zh) 变电站的室内通风系统
CN102878022A (zh) 风力涡轮机冷却布局结构
WO2022095233A1 (zh) 散热装置和具有散热装置的涡轮压裂设备
JP5794882B2 (ja) トンネル用換気設備
EP2213877A2 (en) Wind turbine having a Nacelle with cooler top
CN212454609U (zh) 动力舱散热系统和工程设备
CN219974698U (zh) 一种风力发电机用机舱罩散热结构
CN213838747U (zh) 散热装置和具有散热装置的涡轮压裂设备
CN217590752U (zh) 一种功率放大产品用的散热装置
JP2005139952A (ja) 空冷式インタークーラを備えた建設機械
CN206879301U (zh) 一种新型的光伏电站监控装置柜散热系统
CN209959574U (zh) 一种强冷式风机散热装置
WO2018201812A1 (zh) 涵道风扇
CN111521012B (zh) 一种封闭式中频炉冷却装置
CN209818224U (zh) 一种机舱通风降温装置
JP2004006558A (ja) 電子機器用冷却装置
CN109661148B (zh) 一种基于物联网的游戏电子通讯装置
CN217214373U (zh) 一种干式变压器的散热机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960690

Country of ref document: EP

Kind code of ref document: A1