WO2022095207A1 - 一种脚架及无人机 - Google Patents

一种脚架及无人机 Download PDF

Info

Publication number
WO2022095207A1
WO2022095207A1 PCT/CN2020/135427 CN2020135427W WO2022095207A1 WO 2022095207 A1 WO2022095207 A1 WO 2022095207A1 CN 2020135427 W CN2020135427 W CN 2020135427W WO 2022095207 A1 WO2022095207 A1 WO 2022095207A1
Authority
WO
WIPO (PCT)
Prior art keywords
support rod
tripod
absorbing member
hole
energy
Prior art date
Application number
PCT/CN2020/135427
Other languages
English (en)
French (fr)
Inventor
杨章珂
赵鹏飞
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Publication of WO2022095207A1 publication Critical patent/WO2022095207A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C25/58Arrangements or adaptations of shock-absorbers or springs

Definitions

  • the present disclosure relates to the technical field of unmanned aerial vehicles, and in particular, to a tripod and an unmanned aerial vehicle.
  • the tripod can be used to support the drone when it lands. Due to the large speed of the drone when it hits the ground, and the large weight of the fuselage of the large drone, when the drone hits the ground, the tripod receives a greater impact. In the process of long-term use, the impact will affect the structure of the tripod and the fuselage, as well as the service life of the electronic devices on the fuselage.
  • the tripod in order to improve the ability of the tripod to withstand impact, the tripod is usually made of a lightweight and high-strength carbon fiber composite material.
  • the most common form of application is to use carbon fiber composite pipes (hereinafter referred to as carbon tubes) to make tripods, so that the tripods can withstand tension, compression, bending and torsion loads in all directions.
  • the tripod made of carbon tubes has poor resistance to radial inward loads relative to axial tension and compression, and a small impact force radially inward along the carbon tubes can cause partial damage to the carbon tubes. Destruction, in turn, may cause global failure, damage the entire tripod, or even, may affect the life of the body and the electronics on the body.
  • the present disclosure is proposed to provide a tripod and an unmanned aerial vehicle that overcome or at least partially solve the above-mentioned problems.
  • the tripod includes:
  • the first end of the support rod is connected with the fuselage of the UAV, the second end extends away from the fuselage, and the support rod is provided with axial direction an extended first through hole;
  • an inner insert which is embedded in the first through hole of the support rod, and is used for buffering the radial impact on the support rod when the drone lands.
  • the inner insert is embedded in the first through hole and disposed close to the first end;
  • the support rod is a support rod made of carbon fiber composite material
  • the inner insert is in an interference fit with the support rod
  • the inserts include: at least one of metal inserts, wood inserts, and plastic inserts.
  • the foot stand further includes a connecting piece, the connecting piece is connected to the first end of the support rod, and is used for connecting the support rod to the fuselage.
  • the connecting member includes: a connecting portion and a mounting post disposed on the connecting portion; wherein,
  • the connecting part is used for connecting with the fuselage
  • the installation column is provided with a connection hole, and the installation column is sleeved outside the first end of the support rod through the connection hole for connecting the support rod.
  • the tripod further includes: an energy absorbing member, the energy absorbing member is sandwiched between the hole wall of the connecting hole and the first end of the support rod, and the energy absorbing member is used for When the UAV is landed, the energy of the radial impact of the ground on the support rod is absorbed, so as to reduce the radial impact on the support rod.
  • the energy absorbing member is provided with a second through hole extending in the axial direction, the shape of the second through hole is adapted to the outer diameter of the support rod, and the energy absorbing member passes through the first through hole.
  • Two through holes are sleeved outside the first end of the support rod;
  • the energy absorbing member has a first side wall close to the hole wall of the connecting hole and a second side wall close to the support rod, and the energy absorbing member is located between the first side wall and the second side wall.
  • a plurality of radially extending hole structures are also disposed therebetween, and the plurality of hole structure arrays are distributed between the first side wall and the second side wall to form a honeycomb structure.
  • the energy absorbing member is an annular energy absorbing member
  • the cross-sectional area of the hole structure gradually decreases.
  • the cross-sectional shape of the hole structure includes at least one of a circle, an ellipse, and a polygon.
  • the energy-absorbing member includes at least two sub-energy-absorbing members, and the at least two sub-energy-absorbing members are circumferentially enclosed to form the energy-absorbing member;
  • the energy absorbing member is an aluminum energy absorbing member.
  • the tripod further includes: a fastener, the fastener enables the connecting piece to hold the energy-absorbing member, and the energy-absorbing member to hold the first end of the support rod, thereby The tripod is fixed on the fuselage.
  • the present disclosure also discloses an unmanned aerial vehicle, comprising: a fuselage and the tripod according to any one of the foregoing; wherein,
  • the support rod of the tripod is connected to the fuselage.
  • the inner insert since the inner insert is embedded in the first through hole of the support rod, when the drone hits the ground and the tripod is subjected to a large impact, the inner insert can buffer the support
  • the radial impact on the rod improves the ability of the tripod to withstand the radial impact and prolongs the service life of the tripod.
  • the impact force transmitted from the tripod to the body can be reduced, and the service life of the body and the electronic devices on the body can be improved.
  • FIG. 1 is a schematic structural diagram of a certain angle of a tripod of the present disclosure
  • Fig. 2 is the exploded structure schematic diagram of the tripod shown in Fig. 1;
  • Fig. 3 is the structural representation of the tripod A-A section described in Fig. 2;
  • Fig. 4 is the structural representation of the position of the tripod B shown in Fig. 3;
  • FIG. 5 is a schematic structural diagram of another angle of the tripod shown in FIG. 3;
  • Fig. 6 is the structural representation of the position of tripod C shown in Fig. 5;
  • FIG. 7 is a schematic structural diagram of an energy absorbing member of the present disclosure at a certain angle
  • FIG. 8 is a schematic structural diagram of the energy absorbing member of the present disclosure from another angle
  • FIG. 9 is a schematic structural diagram of another angle of an energy absorbing member of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another energy absorbing member of the present disclosure at a certain angle
  • FIG. 11 is a schematic diagram of a connection mode of an energy absorbing member of the present disclosure.
  • the embodiments of the present disclosure provide a tripod, which can be used for unmanned aerial vehicles, and the unmanned aerial vehicles can be applied in various fields of production and life, especially in agricultural plant protection, aerial photography, inspection, surveying and mapping , investigation, etc.
  • the tripod can be connected to the bottom of the fuselage of the drone to support the fuselage.
  • the tripod can include, but is not limited to, any one of a fixed tripod and a foldable tripod.
  • the embodiments of the present disclosure only take a fixed tripod as an example for description, and other types of tripods are implemented with reference to That's it.
  • FIG. 1 a schematic structural diagram of a certain angle of a tripod according to the present disclosure is shown.
  • FIG. 2 an exploded structural diagram of the tripod shown in FIG. 1 is shown.
  • FIG. 4 The structural schematic diagram of the cross-section of the tripod A-A described, with reference to FIG. 4 , the structural schematic diagram of the position of the tripod B shown in FIG. 3 is shown, and the structural schematic diagram of another angle of the tripod shown in FIG. 3 is shown with reference to FIG. 5 . 6 , a schematic diagram of the structure of the position of the tripod C shown in FIG. 5 is shown.
  • the tripod may include: a plurality of support rods 10, the first end of the support rod 10 is connected with the fuselage 20 of the drone, the second end extends away from the fuselage 20, and the support rod 10 is provided with a first through hole 101 extending in the axial direction; and
  • the inner insert 11 is embedded in the first through hole 101 of the support rod 10 for buffering the radial impact on the support rod 10 when the drone lands.
  • the inner insert 11 since the inner insert 11 is embedded in the first through hole 101 of the support rod 10, when the drone lands on the ground and the tripod is subjected to a large impact, the inner insert 11 can buffer and support The radial impact on the rod 10 improves the ability of the tripod to withstand the radial impact, and further improves the service life of the tripod. Moreover, the impact force transmitted from the tripod to the body 20 can be reduced, and the service life of the body 20 and the electronic devices on the body 20 can be improved.
  • the support rod 10 when the drone lands, the support rod 10 will not only be impacted in the axial direction, but also be impacted in the radial direction.
  • the insert 11 when the support rod 10 is subjected to radial impact, the insert 11 can be used to absorb radial impact energy , so that the radial impact received by the support rod 10 can be buffered at the inner insert 11 , and the ability of the support rod 10 to withstand radial impact can be improved, and further, the ability of the entire tripod to withstand radial impact can be improved. In this way, when the drone lands, the tripod is not easily damaged under the action of radial impact.
  • the fuselage 20 shown in the drawings of the present disclosure is only a part of the fuselage of the UAV. Specifically, the fuselage 20 shown in the drawings may be arranged at the bottom of the fuselage of the UAV.
  • the middle frame can be used to install the tripod.
  • the number of the support rods 10 may be 4, 6, or 8, etc.
  • the positions of other support rods 10 not shown can be set according to actual needs, and the specific structures thereof can refer to the structures of the shown support rods 10 , which will not be repeated here.
  • the inner insert 11 can be embedded in the first through hole 101 and disposed close to the first end, so as to improve the ability of the first end of the support rod 10 to withstand radial impact and avoid the occurrence of the first end. Local damage due to radial impact.
  • the area where the support rod 10 is susceptible to local damage is the connection between the support rod 10 and the fuselage 20 , that is, the first end of the support rod 10 , the insert 11 is embedded in the first through hole 101 and disposed close to the first end, so that local damage in this area can be avoided, and further, global failure caused by local damage can be avoided.
  • the inner insert 11 can also be arranged at any position of the support rod 10 according to actual needs, for example, at a position close to the second end, or at the first end and the first end. Between the two ends, the embodiment of the present disclosure does not limit the specific position of the inner insert 11 in the support rod 10 .
  • the inner insert 11 may have an interference fit with the support rod 10 , that is, the outer diameter of the inner insert 11 is slightly larger than the inner diameter of the first through hole 101 , so as to enhance the reliable connection between the inner insert 11 and the support rod 10 Therefore, the buffering effect of the inner insert 11 on the radial impact of the support rod 10 can be further improved.
  • the outer diameter of the inner insert 11 may also be equal to or slightly smaller than the inner diameter of the first through hole 101 , so as to facilitate the embedding of the inner insert 11 in the first through hole 101 .
  • the outer diameter of the inner insert 11 is not specifically limited.
  • the insert 11 may include at least one of a metal insert, a wooden insert, and a plastic insert, and the specific material of the insert 11 may not be limited in this embodiment of the present disclosure.
  • the foot stand may further include a connecting piece 12 , and the connecting piece 12 is connected to the first end of the support rod 10 for connecting the support rod 10 to the fuselage 20 .
  • the connecting member 12 can be fixed on the fuselage 20 by welding, clipping or fastener connection, and the like, and the support rod 10 can be connected to the connecting member 12 .
  • the support rod 10 can be connected to the fuselage 20 through the connecting member 12 .
  • the connecting member 12 may include: a connecting portion 121 and a mounting post 122 disposed on the connecting portion 121; wherein the connecting portion 121 may be used to connect with the fuselage 20; the mounting post 122 is provided with a connecting hole, and the mounting post 122 is sleeved outside the first end of the support rod 10 through the connecting hole, and is used for connecting the support rod 10 .
  • the connecting portion 121 can be fixed on the fuselage 20 by welding, clipping or fastener connection, etc.
  • the mounting post 122 can be fixedly connected on the connecting portion 121
  • the first end of the support rod 10 can be embedded in the in the connecting hole of the mounting post 122 .
  • the support rod 10 and the mounting post 122 may also be connected by fasteners such as screws and bolts.
  • the foot stand may further include: an energy absorbing member 13, the energy absorbing member 13 may be sandwiched between the hole wall of the connecting hole and the first end of the support rod 10, and the energy absorbing member 13
  • the component 13 can be used to absorb the energy of the radial impact of the ground on the support rod 10 when the UAV lands, thereby reducing the radial impact on the support rod 10, and further, it can improve the radial impact of the tripod. The ability to shock increases the service life of the tripod.
  • the energy absorbing member 13 since the energy absorbing member 13 is sandwiched between the hole wall of the connecting hole and the first end of the support rod 10, when the UAV lands and the ground has radial impact on the support rod 10 , the energy absorbing member 13 can absorb the energy of radial impact and reduce the radial impact on the first end of the support rod 10 . Since the first end of the support rod 10 is an area prone to local damage, arranging the energy absorbing member 13 at the first end of the support rod 10 can further avoid local damage in the region of the first end of the support rod 10, and further, can avoid Global failure due to local damage.
  • a gap D is likely to be formed between the energy absorbing member 13 and the connecting member 12 .
  • a buffer structure may be provided in the gap D to buffer the axial impact of the support rod 10 .
  • the buffer structure may be made of materials such as foam, plastic, etc., which can absorb impact loads.
  • FIG. 7 a schematic structural diagram of an energy absorbing member of the present disclosure is shown at a certain angle.
  • FIG. 8 a structural schematic diagram of another angle of the energy absorbing member of the present disclosure is shown.
  • FIG. 10 A schematic structural diagram of another disclosed energy absorbing member from another angle, referring to FIG. 10 , which shows a structural schematic diagram of another energy absorbing member of the present disclosure at a certain angle.
  • the energy absorbing member 13 is provided with a second through hole 131 extending in the axial direction.
  • the shape of the second through hole 131 is adapted to the outer diameter of the support rod 10 , and the energy absorbing member 13 can be inserted through the second through hole 131 connected to the outside of the first end of the support rod 10; the energy absorbing member 13 has a first side wall 132 close to the hole wall of the connecting hole and a second side wall 133 close to the support rod 10, and the energy absorbing member 13 is on the first side Between the wall 132 and the second side wall 133 are further provided a plurality of hole structures 134 extending in the radial direction, and the plurality of hole structures 134 are arrayed between the first side wall 132 and the second side wall 133 to form a honeycomb shape The structure is used to absorb the radial impact energy transmitted by the support rod 10 to the energy absorbing member 13 , thereby reducing the radial impact on the support rod 10 .
  • the second through hole 131 of the energy absorbing member 13 is sleeved outside the first end of the support rod 10. Since the energy absorbing member 13 is provided with a plurality of hole structures 134 extending in the radial direction, the plurality of hole structures 134 can The honeycomb structure is formed, so that the energy absorbing member 13 can absorb the energy of radial impact and protect the support rod 11 and the fuselage 20 connected with the support rod 11 .
  • the energy absorbing member 13 may be an annular energy absorbing member, so that the energy absorbing member 13 can be sleeved outside the first end of the support rod 10 .
  • the first side wall 132 can be used as the outer side wall of the energy absorbing member 13
  • the second side wall 133 can be used as the inner side wall of the energy absorbing member 13 .
  • the first side wall 132 and the second side wall 133 cover the two ends of the hole structure 134 respectively.
  • the honeycomb-shaped pore structure 134 is blocked to prevent impurities such as water and dust from entering the pore structure 134 , thereby improving the cleanliness and service life of the pore structure 134 .
  • cover plates 135 can also be provided on the top and bottom of the energy absorbing member 13 , and the cover plates 135 can cover the hole structure 134 from the upper and lower ends of the energy absorbing member 13 to prevent the hole structure 134 from being exposed and improve the performance of the energy absorbing member 13 . Aesthetic appearance.
  • the cross-sectional area of the hole structure 134 is gradually reduced, so that the hole structure 134 can better absorb the transmission of the support rod 10 to the second side wall.
  • the energy of the radial impact on the 133 can further improve the buffering effect of the energy absorbing member 13 on the radial impact.
  • the cross-sectional shape of the hole structure 134 includes: at least one of a circle, an ellipse, and a polygon, and the polygon may include, but is not limited to, a triangle, a quadrilateral, a hexagon, and the like.
  • the cross-sectional shape of the structure 134 is not particularly limited.
  • the energy-absorbing member 13 may include at least two sub-energy-absorbing members 130 , and the at least two sub-energy-absorbing members 130 are enclosed in the circumferential direction to form the energy-absorbing member 13 .
  • the energy absorbing member 13 is divided into at least two sub-energy absorbing members 130 in the circumferential direction, which is beneficial to connecting the energy absorbing member 13 to the connecting hole of the mounting post 122 .
  • the first end of the support rod 10 can be inserted into the second through hole 131 enclosed by the at least two sub-energy-absorbing members 130 , and then the at least two sub-energy-absorbing members 130 can be inserted into the connecting holes of the mounting post 122 Inside, by adjusting the gap between the at least two sub-energy-absorbing members 130, the two sub-energy-absorbing members 130 can be embedded in the connecting hole, and the two sub-energy-absorbing members 130 can be made to hug the support rod 10 tightly. At the first end, the support rod 10 is reliably connected to the mounting post 122 .
  • the number of the sub-energy-absorbing members 130 may also be other values, for example, 3
  • the number of sub-energy-absorbing members 130 in the energy-absorbing member 13 is not specifically limited in the embodiment of the present disclosure.
  • the connecting member 12 may be a hoop-type structure, and at least two sub-energy absorbing members 130 are tightly held to form an integral absorbing member 130 .
  • Capability 13 The tripod may further include: fasteners 14, the fasteners 14 make the connecting member 12 hug the energy absorbing member 13, and the energy absorbing member 13 hug the first end of the support rod 10, so as to fix the tripod on the on the fuselage 20.
  • the fasteners 14 may be bolts, or a combination of screws and nuts.
  • the energy absorbing member 13 can be an aluminum energy absorbing member. Since metal aluminum has the advantages of low density and good impact resistance, in the case where the energy absorbing member 13 is an aluminum energy absorbing member, the energy absorption can be reduced. The weight of the energy-absorbing member 13 can also make the impact resistance of the energy-absorbing member 13 better.
  • the tripod according to the embodiments of the present disclosure may at least include the following advantages:
  • the inner insert since the inner insert is embedded in the first through hole of the support rod, when the drone hits the ground and the tripod is subjected to a large impact, the inner insert can buffer the support
  • the radial impact on the rod improves the ability of the tripod to withstand the radial impact and prolongs the service life of the tripod.
  • the impact force transmitted from the tripod to the body can be reduced, and the service life of the body and the electronic devices on the body can be improved.
  • An embodiment of the present disclosure further provides an unmanned aerial vehicle, the unmanned aerial vehicle comprising: a fuselage and the tripod according to any of the above embodiments, wherein a support rod of the tripod is connected to the fuselage,
  • the structure of the tripod can be the same as that of the tripod described in any of the foregoing embodiments, and details are not described herein.
  • the inserts in the support rod can buffer the radial impact on the support rod and increase the bearing diameter of the tripod.
  • the ability to impact in the direction increases the service life of the tripod.
  • the impact force transmitted from the tripod to the body can be reduced, and the service life of the body and the electronic devices on the body can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Vibration Dampers (AREA)

Abstract

一种脚架及无人机,所述脚架具体包括:设有多个支撑杆(10),所述支撑杆(10)的第一端与所述无人机的机身(20)连接,第二端向远离所述机身(20)的方向延伸,所述支撑杆(10)内设置有沿轴向延伸的第一通孔(101);以及内嵌件(11),所述内嵌件(11)嵌设于所述支撑杆(10)的第一通孔(101)内,用于在所述无人机着地时缓冲所述支撑杆(10)受到的径向冲击,在无人机着地,所述脚架受到较大冲击的情况下,所述内嵌件可以缓冲所述支撑杆受到的径向冲击,提高所述脚架承受径向冲击的能力,提升所述脚架的使用寿命,而且,可以减小从所述脚架传递至所述机身的冲击力,提高机身以及机身上的电子器件的使用寿命。

Description

一种脚架及无人机
本申请要求在2020年11月09日提交中国专利局、申请号为202022588484.X、发明名称为“一种脚架及无人机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及无人机技术领域,特别是涉及一种脚架以及一种无人机。
背景技术
脚架可以用于在无人机着地时,对无人机进行支撑。由于无人机着地时具有较大的速度,而且,大型无人机的机身的重量大,因此,无人机在着地时,脚架受到的冲击较大。长期使用的过程中,冲击会对脚架和机身的结构,以及,对机身上的电子器件的使用寿命均会造成影响。
现有的技术中,为了提高脚架承受冲击的能力,脚架通常会采用轻质高强的碳纤维复合材料制成。最常见的应用形式为采用碳纤维复合材料管材(以下简称碳管)来制成脚架,以使得脚架可以承受各个方向的拉压弯扭载荷。
然而,采用碳管制成的脚架,相对于轴向的拉压,其抵抗径向向内载荷的能力较差,沿着碳管径向向内很小的冲击力就能造成碳管的局部破坏,进而,可能会引发全局失效,损坏整个脚架,甚至,可能会影响到机身和机身上的电子器件的使用寿命。
概述
鉴于上述问题,提出了本公开以便提供一种克服上述问题或者至少部分地解决上述问题的一种脚架以及一种无人机。
为了解决上述问题,本公开公开了一种脚架,应用于无人机,所述脚架包括:
支撑杆,设有多个,所述支撑杆的第一端与所述无人机的机身连接,第二端向远离所述机身的方向延伸,所述支撑杆内设置有沿轴向延伸的第一通孔;以及
内嵌件,所述内嵌件嵌设于所述支撑杆的第一通孔内,用于在所述无人 机着地时缓冲所述支撑杆受到的径向冲击。
可选地,所述内嵌件嵌设于所述第一通孔内且靠近所述第一端设置;
和/或,所述支撑杆为采用碳纤维复合材质制成的支撑杆;
和/或,所述内嵌件与所述支撑杆过盈配合;
和/或,所述内嵌件包括:金属内嵌件、木质内嵌件、塑料内嵌件中的至少一种。
可选地,所述脚架还包括连接件,所述连接件连接于所述支撑杆的第一端,用于将所述支撑杆连接于所述机身。
可选地,所述连接件包括:连接部以及设置在所述连接部上的安装柱;其中,
所述连接部用于与所述机身连接;
所述安装柱上设有连接孔,所述安装柱通过所述连接孔套接在所述支撑杆的第一端外,用于连接所述支撑杆。
可选地,所述脚架还包括:吸能件,所述吸能件夹设于所述连接孔的孔壁和所述支撑杆的第一端之间,所述吸能件用于在所述无人机着陆时吸收地面对所述支撑杆的径向冲击的能量,从而减小所述支撑杆受到的径向冲击。
可选地,所述吸能件内设有沿轴向延伸的第二通孔,所述第二通孔的形状与所述支撑杆的外径适配,所述吸能件通过所述第二通孔套接在所述支撑杆的第一端外;
所述吸能件具有靠近所述连接孔的孔壁的第一侧壁以及靠近所述支撑杆的第二侧壁,所述吸能件在所述第一侧壁和所述第二侧壁之间还设置有多个沿径向延伸的孔结构,所述多个孔结构阵列分布在所述第一侧壁和所述第二侧壁之间,以形成蜂窝状结构。
可选地,所述吸能件为圆环形的吸能件;
和/或,在所述第一侧壁指向所述第二侧壁的方向上,所述孔结构的截面面积逐渐减小。
和/或,所述孔结构的截面形状包括:圆形、椭圆形以及多边形中的至少一种。
可选地,所述吸能件包括至少两个子吸能件,所述至少两个子吸能件沿周向围合形成所述吸能件;
和/或,所述吸能件为铝质吸能件。
可选地,所述脚架还包括:紧固件,所述紧固件使所述连接件抱紧所述 吸能件、所述吸能件抱紧所述支撑杆的第一端,从而将所述脚架固定在所述机身上。
第二方面,本公开还公开了一种无人机,包括:机身以及前述任一项所述的脚架;其中,
所述脚架的支撑杆连接于所述机身。
本公开包括以下优点:
本公开实施例中,由于内嵌件嵌设在支撑杆的第一通孔内,在无人机着地,所述脚架受到较大冲击的情况下,所述内嵌件可以缓冲所述支撑杆受到的径向冲击,提高所述脚架承受径向冲击的能力,提升所述脚架的使用寿命。而且,可以减小从所述脚架传递至所述机身的冲击力,提高机身以及机身上的电子器件的使用寿命。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图简述
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开的一种脚架某一角度的结构示意图;
图2是图1所示的脚架的分解结构示意图;
图3是图2所述的脚架A-A截面的结构示意图;
图4是图3所示的脚架B位置的结构示意图;
图5是图3所示的脚架另一角度的结构示意图;
图6是图5所示的脚架C位置的结构示意图;
图7是本公开的一种吸能件某一角度的结构示意图;
图8是本公开的吸能件另一角度的结构示意图;
图9是本公开的一种吸能件再一角度的结构示意图;
图10是本公开的另一种吸能件某一角度的结构示意图;
图11是本公开的一种吸能件的连接方式示意图;
附图标记说明:10-支撑杆,101-第一通孔,11-内嵌件,12-连接件,121-连接部,122-安装柱,13-吸能件,130-子吸能件,131-第二通孔,132-第一侧壁,133-第二侧壁,134-孔结构,135-盖板,14-紧固件,20-机身,D-间隙。
详细描述
为使本公开的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本公开作进一步详细的说明。显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供了一种脚架,所述脚架可以用于无人机,所述无人机可以被应用在生产、生活的各个领域,尤其应用在农业植保、航拍、巡检、测绘、侦查等各方面。所述脚架可以连接于所述无人机的机身底部,对机身进行支撑。具体地,所述脚架可以包括但不局限于固定式脚架、折叠式脚架中的任意一种,本公开实施例仅以固定式脚架为例进行说明,其他类型的脚架参照执行即可。
参照图1,示出了本公开的一种脚架某一角度的结构示意图,参照图2,示出了图1所示的脚架的分解结构示意图,参照图3,示出了图2所述的脚架A-A截面的结构示意图,参照图4,示出了图3所示的脚架B位置的结构示意图,参照图5,示出了图3所示的脚架另一角度的结构示意图,参照图6,示出了图5所示的脚架C位置的结构示意图。
所述脚架具体可以包括:支撑杆10,设有多个,支撑杆10的第一端与所述无人机的机身20连接,第二端向远离机身20的方向延伸,支撑杆10内设置有沿轴向延伸的第一通孔101;以及
内嵌件11,内嵌件11嵌设于支撑杆10的第一通孔101内,用于在所述无人机着地时缓冲支撑杆10受到的径向冲击。
本公开实施例中,由于内嵌件11嵌设在支撑杆10的第一通孔101内,在无人机着地,所述脚架受到较大冲击的情况下,内嵌件11可以缓冲支撑杆10受到的径向冲击,提高所述脚架承受径向冲击的能力,进而,可以提 升脚架的使用寿命。而且,可以减小从所述脚架传递至机身20的冲击力,提高机身20以及机身20上的电子器件的使用寿命。
在实际应用中,在所述无人机着地时,支撑杆10不仅会受到轴向的冲击,还会受到径向的冲击。本公开实施例中,由于支撑杆10的第一通孔101内嵌设有内嵌件11,在支撑杆10受到径向冲击的情况下,内嵌件11可以用于吸收径向的冲击能量,使得支撑杆10受到的径向冲击在内嵌件11处得以缓冲,提高支撑杆10承受径向冲击的能力,进而,可以提高整个脚架承受径向冲击的能力。这样,在无人机着地时,所述脚架不易在径向冲击的作用下损坏。
需要说明的是,本公开的附图中示出的机身20仅为无人机机身的一部分,具体地,附图中示出了的机身20可以为设置在无人机机身底部的中框,所述中框可以用于安装脚架。而且,本公开实施例所述的脚架中,支撑杆10的数量可以为4个、6个或者8个等,在说明书附图中,为了清楚的示意出支撑杆10的具体结构,仅示出了一个支撑杆10,隐藏了所述脚架中其他的支撑杆10。在实际应用中,未示出的其他支撑杆10的位置可以根据实际需要进行设置,其具体结构可以参照已示出的支撑杆10的结构,在此不做赘述。
本公开实施例中,内嵌件11可以嵌设于第一通孔101内且靠近所述第一端设置,以提高支撑杆10的第一端承受径向冲击的能力,避免第一端出现由于径向冲击导致的局部破坏。
在实际应用中,在无人机着地时,在径向冲击的作用下,支撑杆10易受发生局部破坏的区域为支撑杆10与机身20的连接处,即支撑杆10的第一端,将内嵌件11嵌设于第一通孔101内且靠近所述第一端设置,可以避免该区域发生局部破坏,进而,可以避免由于局部破坏引发的全局失效。
可以理解的是,在实际应用中,内嵌件11还可以根据实际需要设置在支撑杆10的任意位置,例如,靠近所述第二端的位置,或者,位于所述第一端和所述第二端之间,本公开实施例对于内嵌件11在支撑杆10内的具体位置不做限定。
可选地,内嵌件11可以与支撑杆10过盈配合,即内嵌件11的外径略 大于第一通孔101的内径,以增强内嵌件11与支撑杆10之间的连接可靠性,进而,可以进一步提升内嵌件11对于支撑杆10的径向冲击的缓冲效果。
当然,在实际应用中,内嵌件11的外径也可以等于或者略小于第一通孔101的内径,以方便将内嵌件11嵌设于第一通孔101内,本公开实施例对于内嵌件11的外径不做具体限定。
可选地,内嵌件11可以包括金属内嵌件、木质内嵌件、塑料内嵌件中的至少一种,本公开实施例对于内嵌件11的具体材质可以不做限定。
在本公开的一种可选实施例中,所述脚架还可以包括连接件12,连接件12连接于支撑杆10的第一端,用于将支撑杆10连接于机身20。
具体地,连接件12可以通过焊接、卡接或者紧固件连接等连接方式固定于机身20上,支撑杆10可以连接于连接件12上。这样,支撑杆10可以通过连接件12连接于机身20。
可选地,连接件12可以包括:连接部121以及设置在连接部121上的安装柱122;其中,连接部121可以用于与机身20连接;安装柱122上设有连接孔,安装柱122通过所述连接孔套接在支撑杆10的第一端外,用于连接支撑杆10。
具体地,连接部121可以通过焊接、卡接或者紧固件连接等连接方式固定于机身20上,安装柱122可以固定连接于连接部121上,支撑杆10的第一端可以嵌设于安装柱122的连接孔内。在实际应用中,为了增加支撑杆10与安装柱122之间的连接可靠性,支撑杆10与安装柱122之间还可以采用螺钉、螺栓等紧固件进行连接。
在本公开的一些实施例中,所述脚架还可以包括:吸能件13,吸能件13可以夹设于所述连接孔的孔壁和支撑杆10的第一端之间,吸能件13可以用于在所述无人机着陆时吸收地面对支撑杆10的径向冲击的能量,从而减小支撑杆10受到的径向冲击,进而,可以提高所述脚架承受径向冲击的能力,提升所述脚架的使用寿命。
具体地,由于吸能件13夹设于所述连接孔的孔壁和支撑杆10的第一端之间,在所述无人机着陆、地面对支撑杆10存在径向冲击的情况下,吸能 件13可以吸收径向冲击的能量,减小支撑杆10的第一端受到的径向冲击。由于支撑杆10的第一端为易发生局部破坏的区域,在支撑杆10的第一端设置吸能件13,可以进一步避免支撑杆10的第一端的区域发生局部破坏,进而,可以避免由于局部破坏引发的全局失效。
如图6所示,在所述脚架受到冲击的情况下,吸能件13与连接件12支之间容易形成间隙D。在实际应用中,可以在间隙D内设置有缓冲结构,以缓冲支撑杆10的轴向冲击。具体地,所述缓冲结构可以采用泡棉、塑胶等能够吸收冲击载荷的材料制成。
参照图7,示出了本公开的一种吸能件某一角度的结构示意图,参照图8,示出了本公开的吸能件另一角度的结构示意图,参照图9,示出了本公开的一种吸能件再一角度的结构示意图,参照图10,示出了本公开的另一种吸能件某一角度的结构示意图。具体地,吸能件13内设有沿轴向延伸的第二通孔131,第二通孔131的形状与支撑杆10的外径适配,吸能件13可以通过第二通孔131套接在支撑杆10的第一端外;吸能件13具有靠近所述连接孔的孔壁的第一侧壁132以及靠近支撑杆10的第二侧壁133,吸能件13在第一侧壁132和第二侧壁133之间还设置有多个沿径向延伸的孔结构134,多个孔结构134阵列分布在第一侧壁132和第二侧壁133之间,以形成蜂窝状结构,以吸收支撑杆10传递至吸能件13的径向冲击的能量,从而减小支撑杆10受到的径向冲击。
具体地,吸能件13的第二通孔131套接在支撑杆10的第一端外,由于吸能件13上设置有多个沿径向延伸的孔结构134,多个孔结构134可以形成蜂窝结构,便于吸能件13吸收径向冲击的能量,保护支撑杆11以及与支撑杆11连接的机身20。
可选地,吸能件13可以为圆环形的吸能件,以便于将吸能件13套接在支撑杆10的第一端外。第一侧壁132可以作为吸能件13的外侧壁,第二侧壁133可以作为吸能件13的内侧壁,第一侧壁132和第二侧壁133分别遮盖在孔结构134的两端,对蜂窝状的孔结构134进行封堵,避免水、灰尘等杂质进入到孔结构134内,提高孔结构134的洁净程度和使用寿命。
在实际应用中,吸能件13的顶部和底部还可以设置盖板135,盖板135 可以从吸能件13的上下两端遮盖孔结构134,避免孔结构134外露,提高吸能件13的外观美观性。
可选地,在第一侧壁132指向第二侧壁133的方向上,孔结构134的截面面积逐渐减小,这样,有利于孔结构134更好的吸收支撑杆10传递至第二侧壁133上的径向冲击的能量,进而,可以进一步提升吸能件13对于径向冲击的缓冲效果。
示例的,孔结构134的截面形状包括:圆形、椭圆形以及多边形中的至少一种,所述多边形可以包括但不局限于三边形、四边形以及六边形等,本公开实施例对于孔结构134的截面形状不做具体限定。
如图10所示,吸能件13可以包括至少两个子吸能件130,至少两个子吸能件130沿周向围合形成吸能件13。在实际应用中,将吸能件13沿周向拆分为至少两个子吸能件130,有利于将吸能件13连接于安装柱122的连接孔内。
示例的,可以将支撑杆10的第一端伸入至少两个子吸能件130围合形成的第二通孔131内,然后,再将至少两个子吸能件130嵌入安装柱122的连接孔内,通过至少两个子吸能件130之间的间隙调节,可以将两个子吸能件130嵌设于所述连接孔内,并且,可以使得两个子吸能件130可以抱紧支撑杆10的第一端,将支撑杆10可靠的连接于安装柱122。
需要说明的是,图10中,仅示出了吸能件130包括两个子吸能件130的情况,而在实际应用中,子吸能件130的数量还可以为其他的值,例如,3个、4个或者6个等,本公开实施例对于吸能件13中的子吸能件130的数量不做具体限定。
参照图11,示出了本公开的一种吸能件的连接方式示意图,如图10所示,连接件12可以为抱箍式结构,抱紧至少两个子吸能件130,形成整体的吸能件13。所述脚架还可以包括:紧固件14,紧固件14使连接件12抱紧吸能件13、吸能件13抱紧支撑杆10的第一端,从而将所述脚架固定在机身20上。示例的,紧固件14可以为螺栓、或者螺钉与螺母的组合。
可选地,吸能件13可以为铝质吸能件,由于金属铝具有密度小,耐冲击性能较好的优点,在吸能件13为铝质吸能件的情况下,既可以降低吸能 件13的重量,还可以使得吸能件13的耐冲击性能较好。
综上,本公开实施例所述的脚架至少可以包括以下优点:
本公开实施例中,由于内嵌件嵌设在支撑杆的第一通孔内,在无人机着地,所述脚架受到较大冲击的情况下,所述内嵌件可以缓冲所述支撑杆受到的径向冲击,提高所述脚架承受径向冲击的能力,提升所述脚架的使用寿命。而且,可以减小从所述脚架传递至所述机身的冲击力,提高机身以及机身上的电子器件的使用寿命。
本公开实施例还提供了一种无人机,所述无人机包括:机身以及上述任一实施例所述的脚架,所述脚架的支撑杆连接于所述机身,
本实施例中,所述脚架的结构可以与前述任一实施例所述的脚架的结构相同,在此不做赘述。
本公开实施例中,在无人机着地,所述脚架受到较大冲击的情况下,支撑杆内的内嵌件可以缓冲所述支撑杆受到的径向冲击,提高所述脚架承受径向冲击的能力,提升所述脚架的使用寿命。而且,可以减小从所述脚架传递至所述机身的冲击力,提高机身以及机身上的电子器件的使用寿命。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本公开的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本公开的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
以上对本公开所提供的一种脚架以及一种无人机,进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。综上所述,本说明书内容不应理解为对本公开的限制。

Claims (10)

  1. 一种脚架,应用于无人机,其特征在于,所述脚架包括:
    支撑杆,设有多个,所述支撑杆的第一端与所述无人机的机身连接,第二端向远离所述机身的方向延伸,所述支撑杆内设置有沿轴向延伸的第一通孔;以及
    内嵌件,所述内嵌件嵌设于所述支撑杆的第一通孔内,用于在所述无人机着地时缓冲所述支撑杆受到的径向冲击。
  2. 根据权利要求1所述的脚架,其特征在于,所述内嵌件嵌设于所述第一通孔内且靠近所述第一端设置;
    和/或,所述支撑杆为采用碳纤维复合材质制成的支撑杆;
    和/或,所述内嵌件与所述支撑杆过盈配合;
    和/或,所述内嵌件包括:金属内嵌件、木质内嵌件、塑料内嵌件中的至少一种。
  3. 根据权利要求1所述的脚架,其特征在于,所述脚架还包括连接件,所述连接件连接于所述支撑杆的第一端,用于将所述支撑杆连接于所述机身。
  4. 根据权利要求3所述的脚架,其特征在于,所述连接件包括:连接部以及设置在所述连接部上的安装柱;其中,
    所述连接部用于与所述机身连接;
    所述安装柱上设有连接孔,所述安装柱通过所述连接孔套接在所述支撑杆的第一端外,用于连接所述支撑杆。
  5. 根据权利要求4所述的脚架,其特征在于,所述脚架还包括:吸能件,所述吸能件夹设于所述连接孔的孔壁和所述支撑杆的第一端之间,所述吸能件用于在所述无人机着陆时吸收地面对所述支撑杆的径向冲击的能量,从而减小所述支撑杆受到的径向冲击。
  6. 根据权利要求5所述的脚架,其特征在于,所述吸能件内设有沿轴向延伸的第二通孔,所述第二通孔的形状与所述支撑杆的外径适配,所述吸能件通过所述第二通孔套接在所述支撑杆的第一端外;
    所述吸能件具有靠近所述连接孔的孔壁的第一侧壁以及靠近所述支撑杆的第二侧壁,所述吸能件在所述第一侧壁和所述第二侧壁之间还设置有多个沿径向延伸的孔结构,所述多个孔结构阵列分布在所述第一侧壁和所述第二侧壁之间,以形成蜂窝状结构。
  7. 根据权利要求6所述的脚架,其特征在于,所述吸能件为圆环形的吸能件;
    和/或,在所述第一侧壁指向所述第二侧壁的方向上,所述孔结构的截面面积逐渐减小;
    和/或,所述孔结构的截面形状包括:圆形、椭圆形以及多边形中的至少一种。
  8. 根据权利要求5所述的脚架,其特征在于,所述吸能件包括至少两个子吸能件,所述至少两个子吸能件沿周向围合形成所述吸能件;
    和/或,所述吸能件为铝质吸能件。
  9. 根据权利要求5所述的脚架,其特征在于,所述脚架还包括:紧固件,所述紧固件使所述连接件抱紧所述吸能件、所述吸能件抱紧所述支撑杆的第一端,从而将所述脚架固定在所述机身上。
  10. 一种无人机,其特征在于,包括:机身以及权利要求1至9任一项所述的脚架;其中,
    所述脚架的支撑杆连接于所述机身。
PCT/CN2020/135427 2020-11-09 2020-12-10 一种脚架及无人机 WO2022095207A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202022588484.XU CN214267947U (zh) 2020-11-09 2020-11-09 一种脚架及无人机
CN202022588484.X 2020-11-09

Publications (1)

Publication Number Publication Date
WO2022095207A1 true WO2022095207A1 (zh) 2022-05-12

Family

ID=77775090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135427 WO2022095207A1 (zh) 2020-11-09 2020-12-10 一种脚架及无人机

Country Status (2)

Country Link
CN (1) CN214267947U (zh)
WO (1) WO2022095207A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9540101B2 (en) * 2012-02-15 2017-01-10 Aurora Flight Sciences Corporation System, apparatus and method for long endurance vertical takeoff and landing vehicle
CN205891219U (zh) * 2016-03-23 2017-01-18 北京臻迪科技股份有限公司 一种飞行器的脚架机构和飞行器
CN207242047U (zh) * 2017-07-12 2018-04-17 李春玲 一种用于农业播种的采用无线遥控技术的新型无人机
CN108482658A (zh) * 2018-03-09 2018-09-04 芜湖翼讯飞行智能装备有限公司 一种摄像无人机
CN108945403A (zh) * 2018-08-17 2018-12-07 华南农业大学 一种节能型的多旋翼无人机起降装置及方法
CN208306981U (zh) * 2018-04-12 2019-01-01 佛山天源创新科技有限公司 一种缓冲型无人机脚架

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9540101B2 (en) * 2012-02-15 2017-01-10 Aurora Flight Sciences Corporation System, apparatus and method for long endurance vertical takeoff and landing vehicle
CN205891219U (zh) * 2016-03-23 2017-01-18 北京臻迪科技股份有限公司 一种飞行器的脚架机构和飞行器
CN207242047U (zh) * 2017-07-12 2018-04-17 李春玲 一种用于农业播种的采用无线遥控技术的新型无人机
CN108482658A (zh) * 2018-03-09 2018-09-04 芜湖翼讯飞行智能装备有限公司 一种摄像无人机
CN208306981U (zh) * 2018-04-12 2019-01-01 佛山天源创新科技有限公司 一种缓冲型无人机脚架
CN108945403A (zh) * 2018-08-17 2018-12-07 华南农业大学 一种节能型的多旋翼无人机起降装置及方法

Also Published As

Publication number Publication date
CN214267947U (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
KR101683134B1 (ko) 풍력타워용 면진장치
US9712107B2 (en) Modular support assembly for a solar power system
US20140117600A1 (en) High stiffness vibration damping apparatus, methods and systems
US7549387B2 (en) Shock absorbing seat pedestal
US20210190263A1 (en) Internally Damped Crossbar Assembly Having a Friction Damped Isolator
JP5398933B1 (ja) 耐力パネル構造
US20140250820A1 (en) Truss system with integral channels
US11524636B2 (en) Internally damped crossbar assembly having a slip plate damper
WO2022095207A1 (zh) 一种脚架及无人机
CN203996880U (zh) 无人机弹簧脚架及无人机
CN107061178B (zh) 风机减震型屋顶塔架及风力发电设备
JP5916828B2 (ja) 遮音壁の設計方法および遮音壁
JP2005248509A (ja) 制振装置及び制振構造
CN112709373B (zh) 装配式形状记忆合金耗能组合柱及安装方法
JP5709487B2 (ja) 遮音壁の設計方法および遮音壁
KR101688413B1 (ko) 이중 구조형 암대를 가진 지주
US20100307286A1 (en) Dual conic-shaped flying wheel
CN207179577U (zh) 一种倒挂式船舶强光双头搜索灯安装架
WO2023272445A1 (zh) 机框、脚架及无人飞行器
JP2003343645A (ja) 小規模建築物用制振装置
WO2022095068A1 (zh) 脚架及无人机
CN111174020A (zh) 一种管路减振抗冲击用弹性马脚
CN219696697U (zh) 一种天线安装配件
CN110972540B (zh) 多方向微振动大阻尼隔减振器
CN216142508U (zh) 一种水塔固定支架

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960664

Country of ref document: EP

Kind code of ref document: A1