WO2022095111A1 - 芯轴部件的制作方法、芯轴部件及应用其的纺织机械 - Google Patents

芯轴部件的制作方法、芯轴部件及应用其的纺织机械 Download PDF

Info

Publication number
WO2022095111A1
WO2022095111A1 PCT/CN2020/129021 CN2020129021W WO2022095111A1 WO 2022095111 A1 WO2022095111 A1 WO 2022095111A1 CN 2020129021 W CN2020129021 W CN 2020129021W WO 2022095111 A1 WO2022095111 A1 WO 2022095111A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
powder raw
interface model
mandrel part
model cylinder
Prior art date
Application number
PCT/CN2020/129021
Other languages
English (en)
French (fr)
Inventor
刘虎城
陈新庆
Original Assignee
三阳纺织有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三阳纺织有限公司 filed Critical 三阳纺织有限公司
Publication of WO2022095111A1 publication Critical patent/WO2022095111A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/027Compositions based on metals or inorganic oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0004Materials; Production methods therefor metallic
    • F16D2200/0008Ferro
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0004Materials; Production methods therefor metallic
    • F16D2200/0026Non-ferro
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0082Production methods therefor
    • F16D2200/0086Moulding materials together by application of heat and pressure

Definitions

  • the invention relates to the technical field of manufacturing of mechanical friction parts, in particular to a manufacturing method of a mandrel part, a mandrel part and a textile machine using the mandrel part.
  • mandrel-like components used to withstand the frictional force in rotating motion in mechanical equipment are bi-material or multi-material components.
  • This kind of mandrel parts can also be made by powder metallurgy process.
  • metal powder materials with better strength and plasticity are used as core support materials during the production process, which plays the role of basic support and preventing deformation and fracture.
  • the pre-physical or chemical treatment of the interface of the two different powders will also be carried out.
  • the present invention provides a method for manufacturing a mandrel part, which can produce an interface structure on a sintered bi-material or multi-material interface through a simplified interface manufacturing process, which can be especially used to manufacture mandrel parts such as textile machinery.
  • a method for manufacturing a mandrel part wherein the mandrel part is a bi-material or multi-material cylindrical mandrel part, manufactured by a powder metallurgy method, at least comprising:
  • first powder material as the core support material
  • second powder material as the working surface material
  • charge according to the design specifications including the first powder material as the core support material, and the second powder material as the working surface material outside.
  • an interface model cylinder is placed between the first powder raw material and the second powder raw material, and the interface model cylinder is a thin-walled cylinder made of a thermally decomposable material with an undulating structure on the cylinder wall.
  • the first powder raw material and the second powder raw material are each removed by means of degassing, pre-burning or degreasing between the first powder raw material and the second powder raw material, and after removing the interface model cylinder, the first powder raw material and the second powder raw material are Metallurgical sintering forms the core support and the working surface layer, and forms a non-linear interface structure corresponding to the shape of the cylinder wall relief structure of the interface model cylinder at the sintering interface of the core support and the working surface layer;
  • the laid first powder raw material and the second powder raw material are both non-bonded powder, and they should be compacted while loading.
  • the powder raw materials are respectively laid in the spaces on the inner and outer sides of the interface model cylinder, degassing and sintering are performed, and the interface model cylinder is decomposed during the degassing and pre-burning process; or, the laid first powder Both the raw material and the second powder raw material are mixed with a molding agent, and after the first powder raw material and the second powder raw material are respectively laid in the spaces on the inner and outer sides of the interface model cylinder, degreasing and sintering are performed, and in the degreasing process
  • the interface model cartridge is decomposed during the process and removed together with the molding agent.
  • the core support structure is solid or hollow.
  • the process from charging to sintering is carried out in a hot-pressing mold, and the adopted hot-pressing mold structure includes a mold upper cover, a mold lower cover and a ring sleeve.
  • a flat positioning portion is provided at the lower end of the interface model cylinder, and a positioning ring groove for receiving the positioning portion is provided on the upper surface of the lower mold cover.
  • an exhaust passage is provided on the ring sleeve.
  • the pressure loaded on the hot-pressing mold is not higher than 20MPa, and after the degassing and pre-burning or degreasing is completed, the pressure is increased to carry out sintering. .
  • the first powder raw material and the second powder raw material are Fe-based, Ni-based, Cu-based or Mg-based.
  • the manufacturing material of the interface model cylinder is an organic polymer.
  • a textile machine comprising a mandrel component as described above.
  • the present invention provides a method for manufacturing a mandrel component, by using a first powder raw material as a core support raw material, using a second powder raw material as a working surface layer raw material, and placing a cylinder wall between the first powder raw material and the second powder raw material
  • An interface model cartridge made of a thermally decomposable material with an undulating structure that can be removed between the first powder feedstock and the second powder feedstock by degassing, preburning or degreasing, and the interface model cartridge is removed after removing the interface model.
  • the first powder raw material and the second powder raw material are respectively metallurgically sintered to form the core support and the working surface layer, and at the sintering interface of the core support and the working surface layer, a non-straight line corresponding to the shape of the cylinder wall relief structure of the interface model cylinder is formed Interface structure, such interface structure can play the role of reducing the risk of bonding failure between material layers and blocking the extension path of cracks or brittle intermediate products with appropriate interface occlusion mentioned above.
  • the method of the present invention is simple and fast to operate. , It basically has no effect on the implementation procedure of the powder metallurgy process.
  • the removal of the interface model tube is carried out naturally in the degassing pre-burning or degreasing procedure.
  • the operation of the pressing process can obtain products with the same density and qualified mechanical properties as the conventional process.
  • FIG. 1 is a schematic structural diagram of an interface model cylinder used in the methods of various embodiments of the present invention.
  • FIG. 2 is a schematic schematic diagram of the process operation performed in the hot pressing mold in the method of each embodiment of the present invention.
  • FIG. 3 is another schematic structural diagram of the interface model tube used in the methods of various embodiments of the present invention.
  • FIG. 4 is a schematic diagram showing the principle of performing a process operation in a hot pressing mold of another configuration in the method of various embodiments of the present invention.
  • a powder metallurgy method is used to manufacture a bi-material or multi-material cylindrical mandrel part, which is used in textile machinery equipment.
  • the shape of the product in this embodiment is a regular cylindrical shape after physical simplification. It is easy to understand that the structure and shape of the mandrel components in the mechanical equipment may be various. For example, stepped, spliced, hollow, etc., as long as it satisfies the internal and external dual-material structure, and can be manufactured by the method described in the present invention.
  • the hot-pressing mold structure includes a mold upper cover 4 , a mold lower cover 5 and a ring sleeve 6 , and the mold upper cover 4 , the mold lower cover 5 and the ring sleeve 6 enclose the powder raw material addition cavity of the mandrel part and the ring sleeve 6 . Forming cavity.
  • the manufacturing method of the above-mentioned mandrel component includes:
  • the first powder material 1 as the core support material, use the second powder material 2 as the working surface material, and charge according to the design specifications, including the first powder material 1 as the core support material, and the second powder material as the working surface material.
  • the powder raw material 2 is outside, and an interface model cylinder 3 is placed between the first powder raw material 1 and the second powder raw material 2.
  • the interface model cylinder 3 is a thermally decomposable material with an undulating structure on the wall.
  • the produced thin-walled cylinder here, the thickness of the thin-walled cylinder is selected in principle to be 1.5 mm or less, preferably 0.5 mm or less), can be degassed and pre-fired between the first powder raw material 1 and the second powder raw material 2.
  • the first powder raw material 1 and the second powder raw material 2 are individually metallurgically sintered to form a core support and a working surface layer at the sintering interface of the core support and the working surface layer.
  • a non-linear interface structure corresponding to the shape of the cylindrical wall relief structure of the interface model cylinder 3 is formed.
  • the interface model cylinder 3 is first put into the center of the mold cavity, and the first powder raw material 1 and the second powder raw material 2 are both non-bonded powders, and they are compacted while charging. , carry out degassing and pre-sintering, and decompose the interface model cylinder 3 during the degassing and pre-sintering process.
  • a straight positioning portion 7 at the lower end of the interface model cylinder 3 it is preferable to set a straight positioning portion 7 at the lower end of the interface model cylinder 3 , and correspondingly set a positioning ring groove to receive the positioning portion 7 on the upper surface of the lower mold cover 5 , so that It is easy to keep the position of the interface model cylinder 3 from moving during charging and compaction.
  • the final temperature of the above degassing and pre-burning in this embodiment is based on the ability to completely decompose the interface model cylinder 3.
  • the manufacturing material of the interface model cylinder 3 preferably contains organic polymers, and the organic polymers include polyethylene and polypropylene. , one or more of polyvinyl chloride and polystyrene, the thermal decomposition temperature is generally not more than 600 °C, in addition, the main element powder (That is, when the matrix elements and main elements are different, the first and second powder raw materials with relatively low melting points are selected), which can well promote the fusion of the two-phase materials under the premise of controlling the amount of organic matter.
  • the powder raw material 1 and the second powder raw material 2 can be selected from Fe-based, Ni-based, Cu-based or Mg-based metal materials, and can be mixed with alloy or element powder.
  • the processes of degassing, pre-sintering and sintering in this embodiment are all carried out in a hot-pressing die.
  • the powder loading stage the powder loading body is shaken or compacted while the powder is being loaded, and the degassing and pre-sintering procedure is performed
  • the pressure is applied to the hot-pressing die is not more than 20MPa, after the degassing and pre-sintering procedure is completed, the pressure is increased to perform sintering.
  • an exhaust channel 8 can be processed on the ring sleeve 6 of the hot-pressing die.
  • the exhaust passage 8 can be a structure with one main passage and several branch passages as shown in the figure.
  • a medium carbon Fe-based alloy powder containing about 0.3 wt % of silicon and about 0.6 wt % of manganese was used as the first powder raw material 1
  • a high-carbon Fe-based alloy powder containing about 14 wt % of Cr and 2.5 wt % of Mo was used as the first powder raw material 1.
  • the second powder raw material 2, the interface model cylinder 3, select a thin-walled polyvinyl chloride cylinder with a thickness of about 0.4 mm, the degassing and pre-sintering temperature is 280 ° C, and sintered at a final sintering temperature of about 1350 ° C according to the method of Example 1 for 5 hours, The maximum pressure applied during the period was 150MPa.
  • a cylindrical mandrel product with a density of about 97% can be obtained, and the non-linear interface structure at the material interface is uniform in shape.
  • the preparation target, the used hot-pressing mold and the used process in this embodiment are basically the same as those in the embodiment 1, and the used interface model cylinder 3 is also the same, the difference is that the In the charging according to the design specifications, the first powder raw material 1 and the second powder raw material 2 laid down are mixed with a molding agent with a volume content of 7%. After a powder raw material 1 and a second powder raw material 2 are respectively laid in the inner and outer spaces of the interface model cylinder 3, they are degreasing and sintered. During the degreasing process, the interface model cylinder 3 is decomposed, together with the molding agent. is removed.
  • the final temperature of the above degreasing process in this embodiment is based on the ability to completely decompose the molding agent and the interface model cylinder 3, and the degreasing and sintering processes in this embodiment are both performed in a hot-pressing mold.
  • the powder loading body in the hot-pressing mold is tamped while charging before the program.
  • the pressure loaded on the hot-pressing mold does not exceed 20MPa.
  • the pressure is increased.
  • sintering is performed.
  • the hot-pressing die with the exhaust channel 8 shown in FIG. 4 is preferably selected.
  • a medium carbon Fe-based alloy powder containing about 0.3wt% of silicon and about 0.6wt% of manganese is used as the first powder raw material 1, and a phenolic resin-based molding agent is added with a volume content of 7% to contain about 14wt% of Cr, 2.5
  • the high-carbon Fe-based alloy powder with wt% Mo was used as the second powder raw material 2, and the phenolic resin-based molding agent was added with a volume content of 7%.
  • the interface model cylinder 3 was selected as a thin-walled polyvinyl chloride cylinder with a thickness of about 0.4 mm, and the degreasing temperature was 500 °C, sintered at a final sintering temperature of about 1350 °C for 5 hours according to the method of Example 2, and the maximum pressure applied during the period was 150 MPa. Finally, a cylindrical mandrel product with a density of about 97% can also be obtained, and the non-linear interface structure at the material interface is uniform in shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

芯轴部件的制作方法,所制作的芯轴部件为双材料或多材料柱状件,可用于诸如纺织机械,使用第一粉末原料作为芯部支撑原料,使用第二粉末原料作为工作表层原料,按设计规格装料,第一粉末原料在内,第二粉末原料在外,在第一、第二粉末原料之间放置一个界面模型筒,该界面模型筒筒壁具有起伏结构,可热分解,能够以除气预烧或脱脂的方式在第一、第二粉末原料之间去除,并在去除界面模型筒后第一、第二粉末原料各自冶金烧结形成芯部支撑和工作表层,在烧结界面处形成与界面模型筒的筒壁起伏结构形状相对应的非直线界面构造。该方法操作简单、快捷,不需要分别压制粉末,不用增加对界面进行处理的单独操作程序,芯部支撑可构造为实心或空心,应用广。

Description

芯轴部件的制作方法、芯轴部件及应用其的纺织机械 技术领域
本发明涉及机械摩擦零部件制造技术领域,具体涉及一种芯轴部件的制作方法、芯轴部件以及应用该芯轴部件的纺织机械。
背景技术
机械设备中很多用来承受旋转运动中摩擦力的芯轴类部件是双材料或多材料部件,芯层材料起基础支撑作用,表层材料作为耐磨工作部,承受或准备承受来自旋转工作部件强加的摩擦力,这类芯轴部件也可以采用粉末冶金工艺制作,例如在制作过程中使用强度和塑性均较佳的金属粉末材料作为芯部支撑材料,起基础支撑和预防变形、断裂的作用,使用强度和耐磨性更突出的金属粉末材料作为耐磨工作部材料。在具体的粉末冶金工艺操作中,除了确保使所选粉末材料与所需性能指标匹配,以及确保使烧结参数与材料特性匹配外,还会通过对两种不同粉末界面的预先物理或化学处理以确保异种材料界面的烧结结合强度,例如以适当的界面咬合来减少材料层间结合失效风险,并阻断裂纹或脆性中间产物的延伸路径。目前对材料界面的这种预先处理往往对粉末冶金工艺的实施程序产生较大影响,例如不得不分别压制粉末或者不得不增加用于对界面进行处理的单独程序。
发明内容
基于上述问题,本发明提供一种芯轴部件的制作方法,通过简化的界面制造工艺在烧结双材料或多材料界面上制造出界面构造,尤其可用来制作例如纺织机械的芯轴部件。
本发明的目的是通过以下技术方案实现的。
一种芯轴部件的制作方法,所述芯轴部件为双材料或多材料柱状芯轴部件,采用粉末冶金方法制作,至少包括:
使用第一粉末原料作为芯部支撑原料,使用第二粉末原料作为工作表层原料,按设计规格装料,作为芯部支撑原料的第一粉末原料在内,作为工作表层原料的第二粉末原料在外,在所述第一粉末原料和所述第二粉末原料之间放置一个界面模型筒,所述界面模型筒为筒壁具有起伏结构的、由可热分解的材料 制作的薄壁筒,能够以除气预烧或脱脂的方式在所述第一粉末原料和所述第二粉末原料之间去除,并在去除所述界面模型筒后,所述第一粉末原料和所述第二粉末原料各自冶金烧结形成芯部支撑和工作表层,在芯部支撑和工作表层的烧结界面处形成与所述界面模型筒的筒壁起伏结构形状相对应的非直线界面构造;
其中,在所述按设计规格装料中:
先将界面模型筒放入模具型腔中心部位,所铺设的第一粉末原料和第二粉末原料均为非粘结粉末,边装料边紧实,在将所述第一粉末原料、第二粉末原料分别铺设在所述界面模型筒内外两侧空间中后,进行除气预烧和烧结,在所述除气预烧过程中使所述界面模型筒分解;或者,所铺设的第一粉末原料和第二粉末原料均与成型剂混合,在将所述第一粉末原料、第二粉末原料分别铺设在所述界面模型筒内外两侧空间中后,进行脱脂和烧结,在所述脱脂过程中使所述界面模型筒分解,与所述成型剂一起被去除。
如上所述的一种芯轴部件的制作方法,所述芯部支撑构造为实心或空心。
如上所述的一种芯轴部件的制作方法,自装料到烧结的过程均在热压模具中进行,所采用的热压模具结构包括模具上盖、模具下盖和环套。
如上所述的一种芯轴部件的制作方法,在所述界面模型筒下端具有平直的定位部,在所述模具下盖上表面设置有接纳所述定位部的定位环槽。
如上所述的一种芯轴部件的制作方法,在所述环套上设置有排气通道。
如上所述的一种芯轴部件的制作方法,在除气预烧或脱脂进行时,对热压模具加载的压力不高于20MPa,在完成除气预烧或脱脂后,增加压力,进行烧结。
如上所述的一种芯轴部件的制作方法,所述第一粉末原料和第二粉末原料为Fe基、Ni基、Cu基或Mg基。
如上所述的一种芯轴部件的制作方法,所述界面模型筒的制作材料为有机聚合物。
一种芯轴部件,通过如上所述的方法制作。
一种纺织机械,含有如上所述的芯轴部件。
本发明的有益效果在于:
本发明提供的一种芯轴部件的制作方法,通过使用第一粉末原料作为芯部支撑原料,使用第二粉末原料作为工作表层原料,在第一粉末原料和第二粉末原料之间放置筒壁具有起伏结构的、由可热分解的材料制作的界面模型筒,该界面模型筒能够以除气预烧或脱脂的方式在第一粉末原料和第二粉末原料之间去除,并在去除界面模型筒后,第一粉末原料和第二粉末原料各自冶金烧结形成芯部支撑和工作表层,在芯部支撑和工作表层的烧结界面处形成与界面模型筒的筒壁起伏结构形状相对应的非直线界面构造,这样的界面构造可以起到前面所说的以适当的界面咬合来减少材料层间结合失效风险,并阻断裂纹或脆性中间产物的延伸路径的作用,本发明的方法操作简单、快捷,对粉末冶金工艺的实施程序基本没有影响,界面模型筒的去除在除气预烧或脱脂程序中自然进行,不需要分别压制粉末,也不用增加对界面进行处理的单独操作程序,通过对热压工艺的操作,可以获得与常规工艺同样致密且力学性能合格的制品。
附图说明
图1为本发明各实施例的方法中所采用的界面模型筒结构示意图。
图2为本发明各实施例的方法中在热压模具中进行工艺操作的原理示意图。
图3为本发明各实施例的方法中所采用的界面模型筒另一结构示意图。
图4为本发明各实施例的方法中在另一构造的热压模具中进行工艺操作的原理示意图。
图中各附图标记所代表的组件为:
第一粉末原料-1,第二粉末原料-2,界面模型筒-3,模具上盖-4、模具下盖-5,环套-6,定位部7,排气通道-8。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施方式。
实施例1
首先参见图2,本实施例在图2所示的热压模具中,采用粉末冶金方法制作双材料或多材料柱状芯轴部件,该柱状芯轴部件应用在纺织机械设备中。
需要说明的是,为了对本发明原理作出浅显易懂的介绍,本实施例的制品形状为实物简化后的规则的柱状形状,容易理解,机械设备中的芯轴类部件结构形状可能是多样的,例如阶梯状的、拼接状的、空心状的等等,但只要满足 内外双材料构造,并能够采用本发明描述的方法制造即可。
具体的,热压模具结构包括模具上盖4、模具下盖5和环套6,所述模具上盖4、模具下盖5和环套6围成所述芯轴部件的粉末原料加入腔和成型型腔。
结合图1、图2,上述芯轴部件的制作方法包括:
使用第一粉末原料1作为芯部支撑原料,使用第二粉末原料2作为工作表层原料,按设计规格装料,作为芯部支撑原料的第一粉末原料1在内,作为工作表层原料的第二粉末原料2在外,在所述第一粉末原料1和所述第二粉末原料2之间放置一个界面模型筒3,所述界面模型筒3为筒壁具有起伏结构的、由可热分解的材料制作的薄壁筒(这里薄壁筒原则上选择厚度1.5mm以下,优选0.5mm以下),能够以除气预烧的方式在所述第一粉末原料1和所述第二粉末原料2之间去除,并在去除所述界面模型筒3后,所述第一粉末原料1和所述第二粉末原料2各自冶金烧结形成芯部支撑和工作表层,在芯部支撑和工作表层的烧结界面处形成与所述界面模型筒3的筒壁起伏结构形状相对应的非直线界面构造。
其中,与本实施例的“除气预烧的方式”相对应,在所述按设计规格装料中,先将界面模型筒3放入模具型腔中心部位,所铺设的第一粉末原料1和第二粉末原料2均为非粘结粉末,边装料边紧实,在将所述第一粉末原料1、第二粉末原料2分别铺设在所述界面模型筒3内外两侧空间中后,进行除气预烧和烧结,在所述除气预烧过程中使所述界面模型筒3分解。
虽然本发明的附图以所述芯部支撑构造为实心为例,但容易理解,其也可以为空心,当为空心时,可以借助另外的中心装料筒来实现装料。
另外,如图3所示,最好在所述界面模型筒3下端设置一个平直的定位部7,相应在所述模具下盖5上表面设置接纳所述定位部7的定位环槽,这样在装料和紧实中容易保持界面模型筒3的位置不至于移动。
本实施例上述除气预烧的最终温度以能够完全分解所述界面模型筒3为准,所述界面模型筒3的制作材料优选含有有机聚合物,所述有机聚合物包括聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯中的一种或多种,其热分解温度一般不超过600℃,另外,在有机材料中加入质量分数不低于5%、不超过30%的主元素粉末(即基体元素,主元素不同时,选择第一、第二粉末原料中熔点相对较低的), 可在控制有机用量的前提下,很好促进两相材料的熔合,本实施例中的第一粉末原料1和第二粉末原料2可以选自Fe基、Ni基、Cu基或Mg基金属材料,合金或元素粉末混合均可。
如图2所示,本实施例除气预烧和烧结的过程均在热压模具中进行,在装粉阶段边装粉边对粉末装载体震实或紧实,在进行除气预烧程序时,对所述热压模具加载的压力不超过20MPa,在完成所述除气预烧程序后,增加压力,进行烧结。
作为对进一步改进的举例而非限制,如图4所示,可以在热压模具的环套6上加工出排气通道8,在热压模具封闭性较好的情况下,以便于分解气的顺利导出,排气通道8可以是如图所示的具有一个主通路和若干个支路的结构。
验证例1
以含有约0.3wt%的硅、约0.6wt%的锰的中碳Fe基合金粉末作为第一粉末原料1,以含有约14wt%的Cr、2.5wt%的Mo的高碳Fe基合金粉作为第二粉末原料2,界面模型筒3选择厚度0.4mm左右的聚氯乙烯薄壁筒,除气预烧温度280℃,按照实施例1的方法在约1350℃的最终烧结温度下烧结5小时,期间所施加的最大压力150MPa。最后,可得到致密度约97%的柱状芯轴部件制品,材料界面处的非直线界面构造形状均匀。
实施例2
仍然参见图1-图4,本实施例与实施例1中的制备目标、所采用的热压模具和所采用的工艺基本相同,所采用的界面模型筒3也相同,不同之处在于在所述按设计规格装料中,所铺设的第一粉末原料1和第二粉末原料2均与体积含量为7%的成型剂混合,在将界面模型筒3放入模具型腔中心部位并且将第一粉末原料1、第二粉末原料2分别铺设在界面模型筒3内外两侧空间中后,进行脱脂和烧结,在所述脱脂过程中使所述界面模型筒3分解,与所述成型剂一起被去除。
本实施例上述脱脂过程的最终温度以能够完全分解所述成型剂和所述界面模型筒3为准,并且,本实施例脱脂和烧结的过程均在热压模具中进行,在进行所述脱脂程序前边装料边将所述热压模具中的粉末装载体捣实,在进行所述脱脂程序时,对所述热压模具加载的压力不超过20MPa,在完成所述脱脂程序 后,增加压力,进行烧结,本实施例优选选择图4所示的带有排气通道8的热压模具。
验证例2
以含有约0.3wt%的硅、约0.6wt%的锰的中碳Fe基合金粉末作为第一粉末原料1,以体积含量7%加入酚醛树脂基成型剂,以含有约14wt%的Cr、2.5wt%的Mo的高碳Fe基合金粉作为第二粉末原料2,以体积含量7%加入酚醛树脂基成型剂,界面模型筒3选择厚度0.4mm左右的聚氯乙烯薄壁筒,脱脂温度500℃,按照实施例2的方法在约1350℃的最终烧结温度下烧结5小时,期间所施加的最大压力150MPa。最后,也可得到致密度约97%的柱状芯轴部件制品,材料界面处的非直线界面构造形状均匀。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种芯轴部件的制作方法,所述芯轴部件为双材料或多材料柱状芯轴部件,其特征在于,采用粉末冶金方法制作,至少包括:
    使用第一粉末原料(1)作为芯部支撑原料,使用第二粉末原料(2)作为工作表层原料,按设计规格装料,作为芯部支撑原料的第一粉末原料(1)在内,作为工作表层原料的第二粉末原料(2)在外,在所述第一粉末原料(1)和所述第二粉末原料(2)之间放置一个界面模型筒(3),所述界面模型筒(3)为筒壁具有起伏结构的、由可热分解的材料制作的薄壁筒,能够以除气预烧或脱脂的方式在所述第一粉末原料(1)和所述第二粉末原料(2)之间去除,并在去除所述界面模型筒(3)后,所述第一粉末原料(1)和所述第二粉末原料(2)各自冶金烧结形成芯部支撑和工作表层,在芯部支撑和工作表层的烧结界面处形成与所述界面模型筒(3)的筒壁起伏结构形状相对应的非直线界面构造;
    其中,在所述按设计规格装料中:
    先将界面模型筒(3)放入模具型腔中心部位,所铺设的第一粉末原料(1)和第二粉末原料(2)均为非粘结粉末,边装料边紧实,在将所述第一粉末原料(1)、第二粉末原料(2)分别铺设在所述界面模型筒(3)内外两侧空间中后,进行除气预烧和烧结,在所述除气预烧过程中使所述界面模型筒(3)分解;或者,所铺设的第一粉末原料(1)和第二粉末原料(2)均与成型剂混合,在将所述第一粉末原料(1)、第二粉末原料(2)分别铺设在所述界面模型筒(3)内外两侧空间中后,进行脱脂和烧结,在所述脱脂过程中使所述界面模型筒(3)分解,与所述成型剂一起被去除。
  2. 根据权利要求1所述的一种芯轴部件的制作方法,其特征在于,所述芯部支撑构造为实心或空心。
  3. 根据权利要求1所述的一种芯轴部件的制作方法,其特征在于,自装料到烧结的过程均在热压模具中进行,所采用的热压模具结构包括模具上盖(4)、模具下盖(5)和环套(6)。
  4. 根据权利要求3所述的一种芯轴部件的制作方法,其特征在于,在所述界面模型筒(3)下端具有平直的定位部(7),在所述模具下盖(5)上表面设置有接纳所述定位部(7)的定位环槽。
  5. 根据权利要求3所述的一种芯轴部件的制作方法,其特征在于,在所述 环套(6)上设置有排气通道(8)。
  6. 根据权利要求3所述的一种芯轴部件的制作方法,其特征在于,在除气预烧或脱脂进行时,对热压模具加载的压力不高于20MPa,在完成除气预烧或脱脂后,增加压力,进行烧结。
  7. 根据权利要求1所述的一种芯轴部件的制作方法,其特征在于,所述第一粉末原料(1)和第二粉末原料(2)为Fe基、Ni基、Cu基或Mg基。
  8. 根据权利要求1所述的一种芯轴部件的制作方法,其特征在于,所述界面模型筒(3)的制作材料为有机聚合物。
  9. 一种芯轴部件,通过权利要求1-8任一项所述的方法制作。
  10. 一种纺织机械,含有权利要求9所述的芯轴部件。
PCT/CN2020/129021 2020-11-05 2020-11-16 芯轴部件的制作方法、芯轴部件及应用其的纺织机械 WO2022095111A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011225138.3 2020-11-05
CN202011225138.3A CN112343948B (zh) 2020-11-05 2020-11-05 芯轴部件的制作方法、芯轴部件及应用其的纺织机械

Publications (1)

Publication Number Publication Date
WO2022095111A1 true WO2022095111A1 (zh) 2022-05-12

Family

ID=74429305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129021 WO2022095111A1 (zh) 2020-11-05 2020-11-16 芯轴部件的制作方法、芯轴部件及应用其的纺织机械

Country Status (2)

Country Link
CN (1) CN112343948B (zh)
WO (1) WO2022095111A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101049634A (zh) * 2007-04-29 2007-10-10 北京科技大学 一种滚珠丝杠副插管型不锈钢反向器的制备方法
JP2008025657A (ja) * 2006-07-19 2008-02-07 Hitachi Powdered Metals Co Ltd 軸受ユニットの製造方法
CN101205949A (zh) * 2006-12-22 2008-06-25 富准精密工业(深圳)有限公司 动压轴承及转轴的制造方法
CN101956763A (zh) * 2010-10-11 2011-01-26 陈友贵 无缝烧结双金属衬套的加工方法
JP2015117779A (ja) * 2013-12-19 2015-06-25 株式会社ジェイテクト ピンタイプ保持器付き転がり軸受
CN109666857A (zh) * 2018-12-28 2019-04-23 江西洪达自润滑轴承有限公司 一种具有极低摩擦系数的平面滑动轴承及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8204133L (sv) * 1982-07-05 1984-01-06 Nyby Uddeholm Ab Pressning med sneva toleranser
CN100513018C (zh) * 2007-07-12 2009-07-15 深圳大学 一种加固型快速粉末冶金模具制造方法
CN102009175B (zh) * 2010-10-08 2013-08-21 李亚东 一种多层壳芯复合结构零件的制备方法
CN108421981A (zh) * 2017-08-28 2018-08-21 深圳市富优驰科技有限公司 Pom塑件作为可熔芯注射成型的应用
CN107855468A (zh) * 2017-11-10 2018-03-30 江门耀兴精铸制品有限公司 一种铝合金金属铸造模具
CN108941584B (zh) * 2018-09-07 2019-09-03 韶关市欧莱高新材料有限公司 一种长钼管溅射靶材的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025657A (ja) * 2006-07-19 2008-02-07 Hitachi Powdered Metals Co Ltd 軸受ユニットの製造方法
CN101205949A (zh) * 2006-12-22 2008-06-25 富准精密工业(深圳)有限公司 动压轴承及转轴的制造方法
CN101049634A (zh) * 2007-04-29 2007-10-10 北京科技大学 一种滚珠丝杠副插管型不锈钢反向器的制备方法
CN101956763A (zh) * 2010-10-11 2011-01-26 陈友贵 无缝烧结双金属衬套的加工方法
JP2015117779A (ja) * 2013-12-19 2015-06-25 株式会社ジェイテクト ピンタイプ保持器付き転がり軸受
CN109666857A (zh) * 2018-12-28 2019-04-23 江西洪达自润滑轴承有限公司 一种具有极低摩擦系数的平面滑动轴承及其制备方法

Also Published As

Publication number Publication date
CN112343948B (zh) 2021-08-06
CN112343948A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
EP2236229B1 (en) Method for manufacturing a powder based article
KR20150063457A (ko) 경사 기능 재료로 이루어진 신규한 조성물을 갖는 금속 또는 세라믹 물품의 성형방법과 그 성형방법을 포함하는 물품
CN110216277B (zh) 一种难熔金属复合管材的制备方法
JP2022501509A (ja) 加圧焼結によりプリフォームから複雑な形を有する部品を製造する方法
CN101845581B (zh) 一种金属陶瓷表面耐磨材料的制备方法
JP2011523592A (ja) 工作物、特に成形工具または成形工具部分を製造する方法および装置
CN110193601B (zh) 一种双层或多层难熔金属复合管材的制备方法
JP2001501254A (ja) ネットシェープを備えたダイ及びモールド、及び同左の製造方法
WO2022095111A1 (zh) 芯轴部件的制作方法、芯轴部件及应用其的纺织机械
WO2011072961A1 (en) Process for sintering powders assisted by pressure and electric current
JPWO2004087351A1 (ja) ダイカストマシン用断熱プランジャースリーブ
US20180221957A1 (en) Method for producing a part consisting of a composite material
US20100178525A1 (en) Method for making composite sputtering targets and the tartets made in accordance with the method
JP2014001427A (ja) 焼結部品の製造方法
KR100749396B1 (ko) 분말야금을 이용한 티타늄 성형제품 및 이의 제조방법
JPH02240201A (ja) 圧粉体の成形金型及び圧粉体の製造方法
WO2009117043A1 (en) A method for making composite sputtering targets and the targets made in accordance with the method
WO2022095112A1 (zh) 滑动件的制作方法、滑动件及应用该滑动件的纺织机械
JPH03232906A (ja) 複合焼結品
RU82697U1 (ru) Заготовка для формования горячим прессованием изделия сложной формы
JP2006118033A (ja) 組成傾斜超硬合金の作製方法
JPH05156319A (ja) 径方向に傾斜機能層を形成した円筒状または円柱状セラ ミックスー金属系複合体およびその製造方法。
JP4178070B2 (ja) 焼結用予成形体のキャニング方法およびそれによる焼結材料の製造方法
JP2004237301A (ja) 有層鋼材製部材およびその製造方法
CN116145090B (zh) 一种钛基管状合金靶材及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960568

Country of ref document: EP

Kind code of ref document: A1