WO2022095042A1 - 一种碳纤维增强聚醚醚酮复合材料 - Google Patents

一种碳纤维增强聚醚醚酮复合材料 Download PDF

Info

Publication number
WO2022095042A1
WO2022095042A1 PCT/CN2020/127579 CN2020127579W WO2022095042A1 WO 2022095042 A1 WO2022095042 A1 WO 2022095042A1 CN 2020127579 W CN2020127579 W CN 2020127579W WO 2022095042 A1 WO2022095042 A1 WO 2022095042A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
carbon fiber
composite material
ether ketone
polyether ether
Prior art date
Application number
PCT/CN2020/127579
Other languages
English (en)
French (fr)
Inventor
汪玉婷
Original Assignee
汪玉婷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 汪玉婷 filed Critical 汪玉婷
Priority to PCT/CN2020/127579 priority Critical patent/WO2022095042A1/zh
Publication of WO2022095042A1 publication Critical patent/WO2022095042A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters

Definitions

  • the invention relates to the technical field of composite materials, in particular to a carbon fiber reinforced polyether ether ketone composite material.
  • Carbon fiber is a special fiber composed of carbon elements. It has the characteristics of high temperature resistance, friction resistance, electrical conductivity, thermal conductivity and corrosion resistance. Its shape is fibrous, soft, and can be processed into various fabrics. Because of its graphite microcrystalline structure is preferentially oriented along the fiber axis, it has a high strength and modulus. The density of carbon fiber is low, so the specific strength and specific modulus are high.
  • the main use of carbon fiber is as a reinforcing material to be compounded with resin, metal, ceramic and carbon to manufacture advanced composite materials. Carbon fiber reinforced epoxy resin composites have the highest specific strength and specific modulus among existing engineering materials.
  • Polyether ether ketone is a high polymer composed of repeating units containing one ketone bond and two ether bonds in the main chain structure, and is a special polymer material. It has physical and chemical properties such as high temperature resistance and chemical resistance. It is a semi-crystalline polymer material with a melting point of 334 ° C, a softening point of 168 ° C, and a tensile strength of 132 to 148 MPa. It can be used as high temperature resistant structural materials and electrical insulating materials. Reinforcing materials can be prepared by compounding with glass fibers or carbon fibers. Generally, a type of polyarylene ether polymer obtained by condensation with aromatic dihydric phenol is used.
  • carbon fiber and polyetheretherketone are commonly used to make composite materials.
  • the existing carbon fiber polyetheretherketone composite materials not only have poor heat dissipation and chemical solvent resistance, but also have large weight, low rigidity, poor comprehensive performance, and poor service life. Short, not conducive to promotion and use.
  • the purpose of the present invention is to provide a carbon fiber reinforced polyether ether ketone composite material, so as to solve the problems of poor heat dissipation, poor chemical solvent corrosion resistance, large weight and low rigidity of the existing carbon fiber polyether ether ketone composite material proposed in the above background technology. , the problem of short service life.
  • a carbon fiber reinforced polyether ether ketone composite material comprising an internal structure layer, characterized in that: both sides of the internal structure layer are provided with intermediate strength layers, the outer side of the intermediate strength layer is provided with a surface resistance layer, the The internal structure layer is composed of a phenolic resin layer, a polyetheretherketone layer and a polyester resin layer, the phenolic resin layer, the polyetheretherketone layer and the polyester resin layer are arranged in order from top to bottom, and the intermediate strength layer is made of carbon fiber layer, alumina fiber layer and boron carbide fiber layer, the carbon fiber layer is located in the middle of the intermediate strength layer, the alumina fiber layer and the boron carbide fiber layer are located on the upper and lower sides of the carbon fiber layer, respectively, the surface resistance layer is composed of A petroleum asphalt layer, a quartz layer and a silicon carbide layer are formed, the petroleum asphalt layer is located inside the surface resistance layer, the quartz layer is located on the surface of the petroleum asphalt layer, and the silicon carbide layer is located on the surface of the quartz
  • the content of carbon fibers in the intermediate strength layer is 20-40% of the total mass of the composite material.
  • the thickness of the phenolic resin layer is 3-5 mm
  • the polyetheretherketone layer is injection-molding grade polyetheretherketone.
  • the polyester resin layer is a foam structure thermoplastic resin matrix, and the porosity of the foam accounts for 30%-40% of the total volume of the matrix.
  • the carbon fiber layer is prepared from a three-dimensional structural fabric, and the three-dimensional structural fabric is three-dimensional and six-directional.
  • both the alumina fiber layer and the boron carbide fiber layer are prepared from a two-dimensional laminated structure fabric, and the two-dimensional laminated structure fabric is twill.
  • the tensile strength of the carbon fiber layer is 4000 MPa, and the tensile modulus of the carbon fiber layer is 300 Gpa.
  • the composite material has good heat dissipation, anti-ultraviolet light aging, chemical solvent corrosion resistance, etc. Good performance, in line with the national low-carbon economy and energy saving and emission reduction requirements.
  • the present invention has the comprehensive and excellent properties of light weight, high rigidity, damage resistance, high temperature resistance and erosion resistance through the intermediate strength layer and the coordination among the carbon fiber layer, the alumina fiber layer and the boron carbide fiber layer. For refractory pipes and weapon launch barrels.
  • the present invention can effectively resist the impact or impact of hard objects by setting the surface resistance layer and the cooperation between the petroleum asphalt layer, the quartz layer and the silicon carbide layer, which can ensure that the composite material is not damaged and improve the composite performance. The service life of the material.
  • Fig. 1 is the sectional schematic diagram of the structure of the present invention
  • Fig. 2 is the cross-sectional schematic diagram of the internal structure layer of the present invention.
  • FIG. 3 is a schematic cross-sectional view of an intermediate strength layer of the present invention.
  • FIG. 4 is a schematic cross-sectional view of the surface resist layer of the present invention.
  • the present invention provides a carbon fiber reinforced polyetheretherketone composite material as shown in Figures 1-4, comprising an internal structure layer 1, as shown in Figure 1, both sides of the internal structure layer 1 are provided with intermediate strength layers 2, The outer side of the intermediate strength layer 2 is provided with a surface resistance layer 3;
  • the internal structure layer 1 is composed of a phenolic resin layer 4, a polyetheretherketone layer 5 and a polyester resin layer 6.
  • the phenolic resin layer 4, the polyetheretherketone layer 5 and the polyester resin layer 6 are from top to bottom.
  • the thickness of the phenolic resin layer 4 is 3-5mm
  • the polyether ether ketone layer 5 is injection-molding grade polyether ether ketone
  • the polyester resin layer 6 is a foam structure thermoplastic resin matrix, and the porosity of the foam accounts for 30% of the total volume of the matrix.
  • the composite material has good heat dissipation, anti-ultraviolet light aging, and anti-aging properties. Chemical solvent corrosion and other significant good performance, in line with the national low-carbon economy and energy saving and emission reduction requirements;
  • the intermediate strength layer 2 is composed of a carbon fiber layer 7 , an alumina fiber layer 8 and a boron carbide fiber layer 9 , the carbon fiber layer 7 is located in the middle of the intermediate strength layer 2 , the alumina fiber layer 8 and the boron carbide fiber layer 9 . They are respectively located on the upper and lower sides of the carbon fiber layer 7.
  • the carbon fiber layer 7 is prepared from a three-dimensional structural fabric, and the three-dimensional structural fabric is three-dimensional and six-directional.
  • the alumina fiber layer 8 and the boron carbide fiber layer 9 are both prepared from two-dimensional laminated structure fabric
  • the two-dimensional laminated structure fabric is twill shape
  • the tensile strength of the carbon fiber layer 7 is 4000MPa
  • the tensile modulus of the carbon fiber layer 7 is 300Gpa
  • the content of carbon fiber in the intermediate strength layer 2 is 20-20% of the total mass of the composite material. 40%, through the intermediate strength layer 2, and the coordination between the carbon fiber layer 7, the alumina fiber layer 8 and the boron carbide fiber layer 9, it has the comprehensive advantages of light weight, high stiffness, damage resistance, high temperature resistance, and erosion resistance. performance, which can be used in refractory pipes and weapon launch barrels;
  • the surface resistance layer 3 is composed of a petroleum asphalt layer 10, a quartz layer 11 and a silicon carbide layer 12.
  • the petroleum asphalt layer 10 is located inside the surface resistance layer 3, and the quartz layer 11 is located on the surface of the petroleum asphalt layer 10.
  • the silicon layer 12 is located on the surface of the quartz layer 11.

Landscapes

  • Laminated Bodies (AREA)

Abstract

一种碳纤维增强聚醚醚酮复合材料,涉及复合材料技术领域,包括内部结构层,所述内部结构层的两侧均设有中间强度层,所述中间强度层的外侧设有表面抵抗层,所述内部结构层由酚醛树脂层、聚醚醚酮层和聚酯树脂层构成,所述酚醛树脂层、聚醚醚酮层和聚酯树脂层由上到下依次排列,所述中间强度层由碳纤维层、氧化铝纤维层和碳化硼纤维层构成,所述表面抵抗层由石油沥青层、石英层和碳化硅层构成。通过设置内部结构层,以及酚醛树脂层、聚醚醚酮层和聚酯树脂层之间的配合设置,使得复合材料具有散热性好、抗紫外光老化、耐化学溶剂腐蚀等显著良好性能,符合国家低碳经济与节能减排的要求。

Description

一种碳纤维增强聚醚醚酮复合材料 技术领域
本发明涉及复合材料技术领域,具体为一种碳纤维增强聚醚醚酮复合材料。
背景技术
碳纤维是由碳元素组成的一种特种纤维。具有耐高温、抗摩擦、导电、导热及耐腐蚀等特性外形呈纤维状、柔软、可加工成各种织物,由于其石墨微晶结构沿纤维轴择优取向,因此沿纤维轴方向有很高的强度和模量。碳纤维的密度小,因此比强度和比模量高。碳纤维的主要用途是作为增强材料与树脂、金属、陶瓷及炭等复合,制造先进复合材料。碳纤维增强环氧树脂复合材料,其比强度及比模量在现有工程材料中是最高的。
聚醚醚酮是在主链结构中含有一个酮键和两个醚键的重复单元所构成的高聚物,属特种高分子材料。具有耐高温、耐化学药品腐蚀等物理化学性能,是一类半结晶高分子材料,熔点334℃,软化点168℃,拉伸强度132~148MPa,可用作耐高温结构材料和电绝缘材料,可与玻璃纤维或碳纤维复合制备增强材料。一般采用与芳香族二元酚缩合而得的一类聚芳醚类高聚物。
现有技术常用碳纤维和聚醚醚酮制作复合材料,但是,现有的碳纤维聚醚醚酮制作复合材料不仅散热性差、耐化学溶剂腐蚀性差,而且重量大、刚度小,综合性能差,使用寿命短,不利于推广使用。
因此,发明一种碳纤维增强聚醚醚酮复合材料来解决上述问题很有必要。
发明内容
本发明的目的在于提供一种碳纤维增强聚醚醚酮复合材料,以解决上述背景技术中提出的现有的碳纤维聚醚醚酮制作复合材料散热性差、耐化学溶剂腐蚀性差,重量大、刚度小,使用寿命短的问题。
为实现以上目的,本发明通过以下技术方案予以实现:
一种碳纤维增强聚醚醚酮复合材料,包括内部结构层,其特征在于:所述内部结构层的两侧均设有中间强度层,所述中间强度层的外侧设有表面抵抗层,所述内部结构层由酚醛树脂层、聚醚醚酮层和聚酯树脂层构成,所述酚醛树脂层、聚醚醚酮层和聚酯树脂层由上到下依次排列,所述中间强度层由碳纤维层、氧化铝纤维层和碳化硼纤维层构成,所述碳纤维层位于中间强度层的中部,所述氧化铝纤维层和碳化硼纤维层分别位于碳纤维层的上下两侧,所述表面抵抗层由石油沥青层、石英层和碳化硅层构成,所述石油沥青层位于表面抵抗层的内部,所述石英层位于石油沥青层的表面,所述碳化硅层位于石英层的表面。
可选的,所述中间强度层中碳纤维的含量为复合材料总质量的20-40%。
可选的,所述酚醛树脂层厚度为3-5mm,所述聚醚醚酮层为注塑级聚醚醚酮。
可选的,所述聚酯树脂层为泡沫结构热塑性树脂基体,泡沫的孔隙率占基体总体积的30%-40%。
可选的,所述碳纤维层由三维结构织物制备而成,所述三维结构织物呈三维六向状。
可选的,所述氧化铝纤维层和碳化硼纤维层均由二维叠层结构织物制备而成,所述二维叠层结构织物为斜纹状。
可选的,所述碳纤维层的拉伸强度为4000MPa,所述碳纤维层的拉伸模量为300Gpa。
本发明的技术效果和优点:
1、本发明通过设置内部结构层,以及酚醛树脂层、聚醚醚酮层和聚酯树脂层之间的配合设置,使得复合材料具有散热性好、抗紫外光老化、耐化学溶剂腐蚀等显著良好性能,符合国家低碳经济与节能减排的要求。
2、本发明通过中间强度层,以及碳纤维层、氧化铝纤维层和碳化硼纤维 层之间的配合设置,具有重量轻、刚度大、抗破坏、耐高温、耐冲蚀的综合优异性能,能够用于耐火管道和武器发射筒状部件。
3、本发明通过设置表面抵抗层,以及石油沥青层、石英层和碳化硅层之间的配合设置,可有效抵抗硬质物体的冲击或撞击,能够保证了复合材料不被损伤,提高了复合材料的使用寿命。
附图说明
图1为本发明结构的剖面示意图;
图2为本发明内部结构层的剖面示意图;
图3为本发明中间强度层的剖面示意图;
图4为本发明表面抵抗层的剖面示意图。
图中:1、内部结构层;2、中间强度层;3、表面抵抗层;4、酚醛树脂层;5、聚醚醚酮层;6、聚酯树脂层;7、碳纤维层;8、氧化铝纤维层;9、碳化硼纤维层;10、石油沥青层;11、石英层;12、碳化硅层。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,术语“设置”、“安装”、 “相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接;可以是机械连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
本发明提供了如图1-4所示的一种碳纤维增强聚醚醚酮复合材料,包括内部结构层1,由图1所示,内部结构层1的两侧均设有中间强度层2,中间强度层2的外侧设有表面抵抗层3;
由图2所示,内部结构层1由酚醛树脂层4、聚醚醚酮层5和聚酯树脂层6构成,酚醛树脂层4、聚醚醚酮层5和聚酯树脂层6由上到下依次排列,酚醛树脂层4厚度为3-5mm,聚醚醚酮层5为注塑级聚醚醚酮,聚酯树脂层6为泡沫结构热塑性树脂基体,泡沫的孔隙率占基体总体积的30%-40%,通过设置内部结构层1,以及酚醛树脂层4、聚醚醚酮层5和聚酯树脂层6之间的配合设置,使得复合材料具有散热性好、抗紫外光老化、耐化学溶剂腐蚀等显著良好性能,符合国家低碳经济与节能减排的要求;
由图3所示,中间强度层2由碳纤维层7、氧化铝纤维层8和碳化硼纤维层9构成,碳纤维层7位于中间强度层2的中部,氧化铝纤维层8和碳化硼纤维层9分别位于碳纤维层7的上下两侧,碳纤维层7由三维结构织物制备而成,三维结构织物呈三维六向状,氧化铝纤维层8和碳化硼纤维层9均由二维叠层结构织物制备而成,二维叠层结构织物为斜纹状,碳纤维层7的拉伸强度为4000MPa,碳纤维层7的拉伸模量为300Gpa,中间强度层2中碳纤维的含量为复合材料总质量的20-40%,通过中间强度层2,以及碳纤维层7、氧化铝纤维层8和碳化硼纤维层9之间的配合设置,具有重量轻、刚度大、抗破坏、耐高温、耐冲蚀的综合优异性能,能够用于耐火管道和武器发射筒状部件;
由图4所示,表面抵抗层3由石油沥青层10、石英层11和碳化硅层12 构成,石油沥青层10位于表面抵抗层3的内部,石英层11位于石油沥青层10的表面,碳化硅层12位于石英层11的表面,通过设置表面抵抗层3,以及石油沥青层10、石英层11和碳化硅层12之间的配合设置,可有效抵抗硬质物体的冲击或撞击,能够保证了复合材料不被损伤,提高了复合材料的使用寿命。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种碳纤维增强聚醚醚酮复合材料,包括内部结构层(1),其特征在于:所述内部结构层(1)的两侧均设有中间强度层(2),所述中间强度层(2)的外侧设有表面抵抗层(3),所述内部结构层(1)由酚醛树脂层(4)、聚醚醚酮层(5)和聚酯树脂层(6)构成,所述酚醛树脂层(4)、聚醚醚酮层(5)和聚酯树脂层(6)由上到下依次排列,所述中间强度层(2)由碳纤维层(7)、氧化铝纤维层(8)和碳化硼纤维层(9)构成,所述碳纤维层(7)位于中间强度层(2)的中部,所述氧化铝纤维层(8)和碳化硼纤维层(9)分别位于碳纤维层(7)的上下两侧,所述表面抵抗层(3)由石油沥青层(10)、石英层(11)和碳化硅层(12)构成,所述石油沥青层(10)位于表面抵抗层(3)的内部,所述石英层(11)位于石油沥青层(10)的表面,所述碳化硅层(12)位于石英层(11)的表面。
  2. 根据权利要求1所述的一种碳纤维增强聚醚醚酮复合材料,其特征在于:
    所述中间强度层(2)中碳纤维的含量为复合材料总质量的20-40%。
  3. 根据权利要求1所述的一种碳纤维增强聚醚醚酮复合材料,其特征在于:
    所述酚醛树脂层(4)厚度为3-5mm,所述聚醚醚酮层(5)为注塑级聚醚醚酮。
  4. 根据权利要求1所述的一种碳纤维增强聚醚醚酮复合材料,其特征在于:
    所述聚酯树脂层(6)为泡沫结构热塑性树脂基体,泡沫的孔隙率占基体总体积的30%-40%。
  5. 根据权利要求1所述的一种碳纤维增强聚醚醚酮复合材料,其特征在于:
    所述碳纤维层(7)由三维结构织物制备而成,所述三维结构织物呈三维 六向状。
  6. 根据权利要求1所述的一种碳纤维增强聚醚醚酮复合材料,其特征在于:
    所述氧化铝纤维层(8)和碳化硼纤维层(9)均由二维叠层结构织物制备而成,所述二维叠层结构织物为斜纹状。
  7. 根据权利要求1所述的一种碳纤维增强聚醚醚酮复合材料,其特征在于:
    所述碳纤维层(7)的拉伸强度为4000MPa,所述碳纤维层(7)的拉伸模量为300Gpa。
PCT/CN2020/127579 2020-11-09 2020-11-09 一种碳纤维增强聚醚醚酮复合材料 WO2022095042A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/127579 WO2022095042A1 (zh) 2020-11-09 2020-11-09 一种碳纤维增强聚醚醚酮复合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/127579 WO2022095042A1 (zh) 2020-11-09 2020-11-09 一种碳纤维增强聚醚醚酮复合材料

Publications (1)

Publication Number Publication Date
WO2022095042A1 true WO2022095042A1 (zh) 2022-05-12

Family

ID=81458544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127579 WO2022095042A1 (zh) 2020-11-09 2020-11-09 一种碳纤维增强聚醚醚酮复合材料

Country Status (1)

Country Link
WO (1) WO2022095042A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770313A (en) * 1989-01-25 1998-06-23 Asahi Kasei Kogyo Kabushiki Kaisha Prepreg, composite molded body and method of manufacture of the composite molded body
CN105298403A (zh) * 2015-11-24 2016-02-03 山东大学 一种带有耐磨防护层的连续碳纤维抽油杆及其制备方法
CN106593933A (zh) * 2016-12-26 2017-04-26 重庆旭穆科技有限公司 一种散热风扇材料
CN108859304A (zh) * 2018-07-20 2018-11-23 山东大学 一种拉挤成型复合板材
CN211710190U (zh) * 2019-09-29 2020-10-20 苏州厚盈新材料有限公司 一种保温效果好的聚醚醚酮管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770313A (en) * 1989-01-25 1998-06-23 Asahi Kasei Kogyo Kabushiki Kaisha Prepreg, composite molded body and method of manufacture of the composite molded body
CN105298403A (zh) * 2015-11-24 2016-02-03 山东大学 一种带有耐磨防护层的连续碳纤维抽油杆及其制备方法
CN106593933A (zh) * 2016-12-26 2017-04-26 重庆旭穆科技有限公司 一种散热风扇材料
CN108859304A (zh) * 2018-07-20 2018-11-23 山东大学 一种拉挤成型复合板材
CN211710190U (zh) * 2019-09-29 2020-10-20 苏州厚盈新材料有限公司 一种保温效果好的聚醚醚酮管

Similar Documents

Publication Publication Date Title
AU2007201894A1 (en) High-temperature-resistant composite
JPWO2013015101A1 (ja) 炭素繊維強化炭素複合体およびその製造方法
CN105139954B (zh) 一种特高压纤维复合材料骨架架空导线
WO2022095042A1 (zh) 一种碳纤维增强聚醚醚酮复合材料
CN103936450B (zh) 一种尖锐前缘的制备方法
CN212691219U (zh) 一种隔热板
CN101957148A (zh) 非金属散热器的构造、材质和形式
CN109707952A (zh) 一种具有梯度密度的防热隔热结构
CN104709094B (zh) 一种高速铁路动车组用碳纤维增强碳一体化受电弓滑板
CN203411478U (zh) 连续碳纤维增强的坩埚预制体
WO2023024692A1 (zh) 一种固毡热场件及单晶炉
CN215111227U (zh) 一种耐高温耐腐蚀耐压长寿命承压大口径三通管道元件
CN108505686A (zh) 一种纤维增强复合材料管冰组合柱
CN207469873U (zh) 一种碳纤维增强拉挤板
WO2022071141A1 (ja) 成形用基材およびそれを用いた成形品とその製造方法
CN211074954U (zh) 一种隔热板
CN202927295U (zh) 一种保温耐腐蚀的玻璃钢管
CN211280054U (zh) 一种复合增强玻璃钢
CN202862671U (zh) 树脂、石墨、碳纤维复合材料芯
CN206177018U (zh) 一种新型复合隔热砖结构
CN219327543U (zh) 一种拼接式碳纤维盾构隧道
CN216887193U (zh) 一种航空航天飞行器用碳/碳复合材料隔热瓦
CN218804478U (zh) 耐烧蚀复合材料隔热制品
CN217582695U (zh) 一种大规格增强隔热酚醛夹布导向环
CN213339765U (zh) 一种高强度、防水型轨道交通多芯控制电缆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960499

Country of ref document: EP

Kind code of ref document: A1