WO2022095038A1 - 无人机控制方法、装置与控制终端 - Google Patents

无人机控制方法、装置与控制终端 Download PDF

Info

Publication number
WO2022095038A1
WO2022095038A1 PCT/CN2020/127567 CN2020127567W WO2022095038A1 WO 2022095038 A1 WO2022095038 A1 WO 2022095038A1 CN 2020127567 W CN2020127567 W CN 2020127567W WO 2022095038 A1 WO2022095038 A1 WO 2022095038A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
area
obstacle
uav
processor
Prior art date
Application number
PCT/CN2020/127567
Other languages
English (en)
French (fr)
Inventor
陈建林
李振初
汪泽蓉
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/127567 priority Critical patent/WO2022095038A1/zh
Priority to CN202080081370.6A priority patent/CN114787740A/zh
Publication of WO2022095038A1 publication Critical patent/WO2022095038A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions

Definitions

  • the present application relates to the technical field of unmanned aerial vehicles, and in particular, to a control method, device, control terminal and computer-readable storage medium of an unmanned aerial vehicle.
  • UAVs are used in many fields.
  • application fields such as surveying and mapping, agriculture, and inspection
  • the use of drones to replace manual operations can greatly improve operational efficiency.
  • the UAV In the process of the UAV performing the operation task, the UAV has the need to fly between the take-off point and the operation area, and if it encounters obstacles during the flight, the UAV will not be able to reach the destination smoothly. It may even collide with obstacles and explode.
  • Embodiments of the present application provide a method, device, control terminal, and computer-readable storage medium for controlling an unmanned aerial vehicle.
  • One of the purposes is to solve the problem between the first position of the unmanned aerial vehicle outside the operation area and the second position of the unmanned aerial vehicle in the operation area.
  • the technical problem that the destination cannot be reached smoothly due to the obstruction of obstacles.
  • a first aspect of the embodiments of the present application provides a method for controlling an unmanned aerial vehicle, which is applied to a control terminal, and the method includes:
  • a target route is generated according to the first position outside the operation area, the second position inside the operation area and the area corresponding to the obstacle, and the UAV is controlled to fly according to the target route; wherein,
  • the first position includes a home point or a take-off point, and the second position is any waypoint in the operation area.
  • a second aspect of the embodiments of the present application provides a method for controlling an unmanned aerial vehicle.
  • the unmanned aerial vehicle is equipped with a radar and a camera, and the method is applied to a control terminal, and the control terminal is used for remote control with the unmanned aerial vehicle.
  • communication, and receive the image transmission picture sent by the UAV, the method includes:
  • the display transparency of the compass is improved.
  • a third aspect of the embodiments of the present application provides an unmanned aerial vehicle control device, comprising: a processor and a memory storing a computer program, the processor implements the following steps when executing the computer program:
  • a target route is generated according to the first position outside the operation area, the second position inside the operation area and the area corresponding to the obstacle, and the UAV is controlled to fly according to the target route; wherein,
  • the first position includes a home point or a take-off point, and the second position is any waypoint in the operation area.
  • a fourth aspect of the embodiments of the present application provides an unmanned aerial vehicle control device, comprising: a processor and a memory storing a computer program, the processor implements the following steps when executing the computer program:
  • the display transparency of the compass is improved.
  • a fifth aspect of the embodiments of the present application provides a control terminal, including: a display device, an antenna device, a processor, and a memory storing a computer program;
  • the antenna device is used to establish communication with the drone
  • the processor implements the following steps when executing the computer program:
  • a target route is generated according to the first position outside the operation area, the second position inside the operation area and the area corresponding to the obstacle, and the UAV is controlled to fly according to the target route; wherein,
  • the first position includes a home point or a take-off point, and the second position is any waypoint in the operation area.
  • a sixth aspect of the embodiments of the present application provides a control terminal, including: a display device, an antenna device, a processor, and a memory storing a computer program;
  • the antenna device is used to establish communication with the drone, and the drone is equipped with a radar and a camera;
  • the processor implements the following steps when executing the computer program:
  • the image transmission screen or the map model is displayed on the display interface of the control terminal through the display device, and the image transmission screen or the map model is superimposed and displayed to indicate the flight direction of the UAV the compass;
  • the display transparency of the compass is improved.
  • a seventh aspect of an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the method provided in the first aspect.
  • An eighth aspect of an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the method provided in the second aspect is implemented.
  • the first UAV control method provided by the embodiment of the present application can obtain the user's operation of creating obstacles in other areas other than the work area, so that the area corresponding to the created obstacles and the first position outside the work area can be obtained.
  • a target route is generated with the second position in the operation area, and the drone is controlled to fly along the target route, so that the drone can safely and quickly bypass the area corresponding to the obstacle and quickly reach the destination.
  • FIG. 1 is a schematic diagram of a scenario in which a UAV needs to return home during an operation provided by an embodiment of the present application.
  • FIG. 2 is a flowchart of a first drone control method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a scene in which a target route provided by an embodiment of the present application avoids an area corresponding to an obstacle in a horizontal plane direction.
  • FIG. 4 is a schematic diagram of a scene in which a target route avoids an area corresponding to an obstacle in a vertical plane direction provided by an embodiment of the present application.
  • FIG. 5 is a route planning diagram of a first route provided by an embodiment of the present application.
  • FIG. 6 is a route planning diagram of a second route provided by an embodiment of the present application.
  • FIG. 7 is a route planning diagram including a first route and a second route provided by an embodiment of the present application.
  • FIG. 8 is a route planning diagram including a transition line provided by an embodiment of the present application.
  • FIG. 9 is a flowchart of a second drone control method provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a compass provided by an embodiment of the present application.
  • FIG. 11 is a display page including a colored area provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a scene of a fixed-head operation of a UAV provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of another scenario of the fixed-head operation of the UAV provided by the embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a drone control device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a control terminal provided by an embodiment of the present application.
  • UAVs are used in many fields.
  • application fields such as surveying and mapping, agriculture, and inspection
  • the use of drones to replace manual operations can greatly improve operational efficiency.
  • the UAV flies in the operation area most of the time, but in some cases, the UAV also needs to fly outside the operation area.
  • the UAV needs to fly from the take-off point outside the operation area to the operation starting point in the operation area, and then start the flight operation along the planned route at the operation starting point.
  • the drone also needs to return from the end point in the operation area to the take-off point outside the operation area.
  • the drone may also need to return to the take-off point to replenish the power or medicine due to insufficient power or insufficient medicine required for the operation.
  • the drone also needs to fly from the take-off point to the operation interruption point. Continue to work.
  • the first position outside the work area can be the take-off point, or another home point other than the take-off point
  • the second position can be any waypoint within the work area, such as the work start point, work end point, or work point break point.
  • FIG. 1 is a schematic diagram of a scenario in which a UAV needs to return home during an operation provided by an embodiment of the present application.
  • the UAV encountered an obstacle when it returned to the take-off point from the operation interruption point, and the obstacle would not prevent the UAV from flying from the take-off point to the operation starting point or returning from the operation end point to the take-off point. point constitutes a hindrance.
  • the embodiment of the present application provides a first drone control method, which can be applied in the control terminal.
  • the control terminal can have various implementations.
  • the control terminal may be a remote controller with its own display device.
  • the control terminal may be a combination of a remote control and a mobile terminal, that is, the remote control and the mobile terminal may be connected in a wired or wireless manner, and a corresponding application program (APP) may be installed on the mobile terminal.
  • APP application program
  • the interaction with the drone can be realized through the APP.
  • the control terminal may also be a mobile terminal, and the mobile terminal may provide a virtual remote control to the user through an APP.
  • the control terminal may also be a combination of a remote controller and flying glasses.
  • FIG. 2 is a flowchart of a first drone control method provided by an embodiment of the present application, and the method may include the following steps:
  • Map models can be obtained in multiple ways.
  • the map model can be invoked through the API of the third-party map software.
  • the drone can be used for surveying and mapping in advance, and a map model can be established according to the pictures taken during the surveying and mapping process.
  • the operation area can be the operation object of the drone.
  • the operation area can be a plot of land to be surveyed and mapped by the drone.
  • the operation area can be the farmland where the drone is to spray medicine.
  • the drones used in agricultural applications are plant protection drones, and the operation area of the plant protection drone can be created according to the plot data of the plot to be operated.
  • the plot data of the plot to be operated can be obtained in various ways.
  • the user can control the drone to fly along the boundary of the plot to be operated, so as to obtain the plot data of the plot to be operated.
  • the field data can also be measured by the user walking along the field by holding a remote control.
  • the parcel data can also be measured by hand-held RTK.
  • the user can perform the operation of creating obstacles in other areas outside the work area, and the control terminal obtains the user's operation of creating obstacles, and can create the area corresponding to the obstacles on the map model.
  • Creating obstacles can be done in a variety of ways.
  • the user can select a point by touching in other areas outside the work area, so that the control terminal can generate an area corresponding to the obstacle on the point touched by the user.
  • the control terminal can generate an area corresponding to the obstacle on the point touched by the user.
  • the user selects a point by touch, he or she may press and hold a certain position, so that the position can be selected.
  • the control terminal can pop up an obstacle creation menu on the display interface, and the user can input the shape parameters and size parameters corresponding to the obstacle on the obstacle creation menu, thereby controlling the According to the shape parameter and size parameter input by the user, the terminal can generate an area corresponding to the obstacle whose shape and size match the parameters input by the user with the point touched by the user as the center.
  • the shape parameter can be, for example, options of various shapes such as circle and polygon.
  • the user's touch and drag operations on the boundary point of the area corresponding to the obstacle can also be acquired, and the user's touch and drag operations can be obtained according to the user's touch Adjust the area corresponding to the obstacle with the drag operation.
  • the obstacle editing interface can be entered according to the user's triggering operation of the obstacle creation function, the drawing operation performed by the user on the obstacle editing interface can be obtained, and the user's drawing operation can be The area corresponding to the obstacles on the boundary.
  • S206 Generate a target route according to the first position outside the work area, the second position within the work area, and the area corresponding to the obstacle.
  • the first position outside the operation area can be the take-off point, or another return point other than the take-off point
  • the second position can be any waypoint in the operation area, such as the starting point of the operation, the operation point End point or job interruption point.
  • a target route can be generated according to the first position, the second position and the area corresponding to the obstacle.
  • the drone needs to return from the end of the operation to the take-off point. It can also be a situation in the middle of the operation that requires the drone to fly between the operation interruption point and the take-off point. The details of each situation have been described above. , and will not be repeated here.
  • FIG. 3 is a schematic diagram of a scene in which a target route provided by an embodiment of the present application circumvents an area corresponding to an obstacle in a horizontal plane direction.
  • the generated target route can also avoid the area corresponding to the obstacle in the vertical plane direction, for example, the drone can be controlled to cross the area corresponding to the obstacle at a higher height.
  • FIG. 4 is a schematic diagram of a scene in which a target route provided by an embodiment of the present application circumvents an area corresponding to an obstacle in a vertical plane direction.
  • the height corresponding to the obstacle input by the user can be obtained when the user performs the operation of creating the obstacle, so that the generated target route can instruct the drone to rise to the specified height when approaching the area corresponding to the obstacle the corresponding area of the obstacle.
  • the height corresponding to the obstacle can be measured in various ways.
  • the entire obstacle can be photographed by a camera on the drone, and the height corresponding to the obstacle can be calculated according to the photographed image.
  • the drone can also be raised to a level corresponding to the top of the obstacle, so that the current flying height of the drone can be determined as the height corresponding to the obstacle.
  • the obstacle can also be detected according to the radar mounted on the UAV, and the height corresponding to the obstacle can be calculated.
  • the user can also perform an operation of adding a via point on the map model, and after acquiring the user's operation of adding a via point, the control terminal can The corresponding area and the waypoints added by the user generate the target route.
  • the generated target route may pass through the waypoint on the basis of avoiding the area corresponding to the obstacle.
  • the first UAV control method provided by the embodiment of the present application can obtain the user's operation of creating obstacles in other areas other than the work area, so that the area corresponding to the created obstacles and the first position outside the work area can be obtained.
  • a target route is generated with the second position in the operation area, and the drone is controlled to fly along the target route, so that the drone can safely and quickly bypass the area corresponding to the obstacle and quickly reach the destination.
  • FIG. 5 is a route planning diagram of the first route provided by the embodiment of the present application. It can be seen that the first route can be in the shape of a "bow", which can cover most of the area of the operation area, and the user can also adjust the generated first route, such as adjusting the uniformly retracted distance of the boundary of the first route, the first route The spacing between parallel flight segments on a flight path, the arrangement angle of the first flight path, and the like.
  • the first route in the shape of a "bow" includes multiple turning route segments, and the UAV will adjust the flight speed accordingly when the turning route segment or the turning route segment is approaching.
  • the aircraft can stop spraying the medicine during the turning process. Therefore, there may be a part of the working area at the turning point where the medicine is not sprayed, or the medicine may be sprayed unevenly due to changes in the flight speed.
  • the operation area can be swept by the drone, that is, the drone can perform supplementary medicine spraying on the boundary part of the operation area.
  • a first route that can roughly cover the operation area can be generated according to the boundary of the operation area, and a second route used to sweep the operation area can be generated.
  • you can control the The UAV performs flight operations according to the first route and the second route in the operation area.
  • the calling sequence of the first route and the second route is not limited in this embodiment of the present application.
  • the flight of the drone can be controlled by the second route, or the drone can be controlled first according to the second route and then controlled by the first route.
  • the end point of the first route and the start point of the second route can be made to coincide or be as close as possible (the distance between the two points is within a preset threshold), or the end point of the second route and the first route can be made
  • the starting points of the routes are coincident or as close as possible, so that the UAV can quickly connect to the flight of another route after completing the flight of one route, and improve the operation efficiency.
  • the second route may be generated based on the boundaries of the work area and the spray pattern of the drone.
  • the spray width of the drone can be the width that the drone can spray the drug to cover.
  • the boundary of the operation area can be uniformly retracted according to the spray width of the UAV, so that the second route can be generated based on the uniformly retracted boundary of the operation area.
  • the uniform retraction distance can be half of the spray width of the drone, so that the medicine can be sprayed to the boundary of the operation area when the drone sweeps along the second route.
  • FIG. 6 is a route planning diagram of the second route provided by the embodiment of the present application.
  • the first route may include designated route segments that do not need to be sprayed, according to the first route.
  • the route control drone When the route control drone is flying, the drone can be controlled to stop spraying in the designated route segment of the first route, while other route segments other than the designated route segment can be sprayed normally.
  • Designated flight segments that are not sprayed can be determined in a number of ways.
  • the designated route segment can determine the spray area to be covered by the sweeping operation according to the second route and the spray width of the UAV, so that the first route located in the spray area can be A route segment of a route is determined as the designated route segment.
  • the spray area that can be covered by the sweeping operation can also be directly determined according to the boundary of the operation area and the spray width of the UAV, that is, the boundary of the operation area can be uniformly shrunk by the spray width of the UAV.
  • the area between the boundary of the retracted working area and the original boundary of the working area can be determined as the spraying area, and after the spraying area is determined, the route segment of the first route located in the spraying area can be determined as the the specified route segment.
  • a medicine box carrying pesticides and a continuous level gauge connected to the medicine box are mounted on the drone, and the continuous level gauge is used to obtain continuous liquid level changes in the medicine box.
  • the control terminal displays the current dosage/dosing ratio on the display interface of the control terminal with a progress bar according to the measurement result of the continuous liquid level meter, and Display the drug quantity value or the drug addition ratio value near the progress bar; or, during the spraying operation of the drone, the control terminal uses the progress on the display interface of the control terminal according to the measurement result of the continuous liquid level meter.
  • the bar shows the current dosage/dosing ratio, and displays either the dosage value or the dosing ratio value near the progress bar.
  • the progress bar can be in the shape of a circle, a long bar or other shapes that are convenient for users to check the amount of medicine.
  • FIG. 7 is a route planning diagram including a first route and a second route provided by an embodiment of the present application. It can be seen that by controlling the UAV to perform edge sweeping operations according to the second route, the UAV is controlled in the designated route segment of the first route (the route segment of the first route in the spraying area between the two borders in the figure) Without spraying, it can prevent excessive spraying of medicines in the boundary part of the operation area, and ensure the operation effect of plant protection operations.
  • the shape of the work area may be irregular, and the first route generated according to the boundary of the work area may include at least a first sub-route separated, a second sub-route, and a first sub-route for connecting the first sub-route.
  • the transition line with the second sub-route Referring to FIG. 8 , FIG. 8 is a route planning diagram including a transition line provided by an embodiment of the present application. It can be seen that the first route generated according to the boundary of the operation area may include the first sub-route A and the second sub-route B.
  • the transition line C realizes the connection between the first sub-route A and the second sub-route B. It can be understood that, in an example, the transition line may also belong to the designated route segment, that is, the drone can be controlled to stop spraying when the transition line is flying.
  • the planned route may also be marked on the map model.
  • the route segments that do not need to be sprayed, the route segments that need to be sprayed, and the route segments that have been sprayed on the route can be marked with different colors, so that users can easily obtain the operation progress of the drone and the spraying plan.
  • the first UAV control method provided by the embodiment of the present application can obtain the user's operation of creating obstacles in other areas other than the operation area, so that the area corresponding to the created obstacles and the first position outside the operation area can be obtained.
  • a target route is generated with the second position in the operation area, and the drone is controlled to fly along the target route, so that the drone can safely and quickly bypass the area corresponding to the obstacle and quickly reach the destination.
  • Obstacle avoidance is an important function to ensure the safe flight of UAVs.
  • the plant protection drones because the plant protection drones need to spray drugs during the operation, and the spraying of drugs will block the vision of the drones to a certain extent, the plant protection drones are usually based on radar to achieve obstacle avoidance and visual avoidance. Obstacles can be used as an aid for radar obstacle avoidance.
  • the radar mounted on the UAV may include an omnidirectional radar.
  • the omnidirectional radar can detect obstacles in multiple directions, and the detected obstacle information can be sent to the control terminal, and the control terminal can send the obstacle information to the control terminal.
  • the object information is displayed on the display interface through the compass. Since the compass displayed on the display interface is superimposed on the map model or image transmission screen, the compass will block the map model or image transmission screen to a certain extent, causing inconvenience for users to view the map model or image transmission screen.
  • the above image transmission picture may be captured by a camera mounted on the drone.
  • the drone can be equipped with a camera, which can transmit the picture captured by the camera to the control terminal through image transmission technology, and the control terminal can display the received picture on the display interface in real time.
  • the real-time display can be displayed on the display interface.
  • the picture above is called a picture transmission picture, a Liveview picture or an FPV (first-person perspective) picture.
  • the user can switch it through a switching operation.
  • the user can switch the currently displayed content to a map model or an image transmission screen according to requirements.
  • the compass will be superimposed and displayed on it, which will block the image transmission screen or the map model behind it.
  • FIG. 9 is a flowchart of a second drone control method provided by an embodiment of the present application, and the method may include the following steps:
  • S902 Obtain 360-degree obstacle information around the drone detected by the radar, and obtain the image transmission image captured by the camera.
  • the UAV can be equipped with radar and camera, and the UAV can transmit the obstacle information detected by the radar and the image transmission picture captured by the camera to the control terminal.
  • a compass can be used to indicate the direction of flight of the drone.
  • the compass may include an outer ring marked with direction information, where the direction information may be, for example, southeast, northwest, and the like.
  • the center of the compass may include a drone icon for simulating a drone, and the orientation of the drone icon may be fixed, for example, may be fixed towards the top of the display interface.
  • the outer ring of the compass can be rotated correspondingly to indicate the flight direction of the UAV with the UAV icon.
  • FIG. 10 is a schematic diagram of a compass provided by an embodiment of the present application.
  • the obstacle information may at least include the obstacle direction and the obstacle distance.
  • the 360-degree space of the compass can be divided into multiple sectors, and each sector can correspond to a direction.
  • the obstacle direction of corresponds to the obstacle distance of the first obstacle displayed on the sector.
  • the first obstacle can be any obstacle around the drone.
  • the sector corresponding to the obstacle direction of the first obstacle may be referred to as the first sector.
  • the numerical value corresponding to the obstacle distance may be directly displayed on the first sector, and in one embodiment, further The colored portion in the first sector may be extended according to the obstacle distance of the first obstacle.
  • FIG. 10 As shown in FIG. 10, when the obstacle distance of the first obstacle is displayed on the first sector, the area covered by the colored part can be expanded in the first sector along the direction from the outside to the inside. Yes, the closer the obstacle is, the larger the area covered by the colored part can be expanded, so that the user can more easily pay attention to the obstacle in the corresponding direction of the sector.
  • the drone When it is determined that there are no obstacles around the drone, it can be determined that the drone is in a relatively safe flight environment. If the preset conditions are met at the same time, the display transparency of the compass can be improved, so that the image transmission screen or map model behind the compass will not It is occluded to provide convenience for users to view the image transmission screen or map model.
  • the preset condition may include that no obstacle is detected around the UAV within a first preset time period, and/or within a second preset time period, no user's response to the UAV is detected
  • the activation operation of the compass may be, for example, touching and clicking on the compass.
  • the second UAV control method provided by the embodiment of the present application can improve the display transparency of the compass when it is determined that there are no obstacles around the UAV and meet the preset conditions, and on the premise of ensuring flight safety, the image transmission behind the compass can be transmitted.
  • the screen or map model will not be blocked, which provides convenience for users to view the image transmission screen or map model.
  • the compass can be used to display 360-degree obstacle information around the drone.
  • the 360 degrees around the drone may be 360 degrees on the horizontal plane, such as the front, rear, left, and right directions of the drone.
  • a colored area may be displayed on the upper part of the display interface for prompting.
  • the colored area displayed at the top of the display interface can be used to indicate the presence of obstacles above the drone.
  • the upper width of the colored region may be greater than the lower width, forming a water drop-like shape.
  • FIG. 11 is a display page including a colored area provided by an embodiment of the present application.
  • the length of the colored area in the vertical direction may be negatively correlated with the distance between the upper obstacle and the UAV, that is, the closer the distance between the upper obstacle and the UAV, the longer the colored area is in the vertical direction. The length can be longer.
  • the obstacle distance of the obstacle above the UAV can be determined according to the obstacle information, and the length of the colored area to be displayed in the vertical direction can be determined according to the obstacle distance,
  • a colored area of the determined length can be displayed above the display interface.
  • the UAV may be equipped with multiple radars, for example, an omnidirectional radar and a one-way radar corresponding to an upward viewing angle may be equipped. In this way, the obstacle information of obstacles above the UAV can be passed through the single-direction radar. detected by radar.
  • FIG. 12 is a schematic diagram of a scene of a fixed-head operation of an unmanned aerial vehicle provided by an embodiment of the present application. It can be seen that when the drone is flying in a specific route segment, the direction of its nose is opposite to the flight direction. If the drone is only equipped with a camera on the side of the nose, the image transmission screen seen by the user will be different from that of the drone. The flight direction does not match.
  • the drone can be equipped with multiple cameras, and different cameras can correspond to different shooting directions.
  • the drone can be equipped with two cameras, front and rear.
  • the UAV when the UAV is flying along the route with a fixed yaw angle, it can automatically switch to display the image transmission images shot by different cameras according to the flight direction of the UAV in real time, that is, the currently displayed image can be switched to the shooting direction.
  • Image transmission images captured by cameras that match the flight direction of the drone Referring to FIG. 13 , FIG. 13 is a schematic diagram of another scenario of the fixed-head operation of the UAV provided by the embodiment of the present application.
  • the user can switch the display of the image transmission screen or the map model through the switching operation.
  • the user's switching operation can also realize the switching of the image transmission images captured by different cameras.
  • a sector-shaped area corresponding to the shooting direction of the target camera may also be displayed in the compass according to the target camera corresponding to the currently displayed image transmission picture. Referring to FIG. 10, in the example shown in FIG. 10, it can be known from the position of the fan-shaped area that the currently displayed image transmission image is the image transmission image of the rear-view camera.
  • the method further includes:
  • the second route is generated according to the boundary of the operation area and the spray width of the UAV.
  • generating the second route according to the boundary of the operation area and the spray width of the UAV including:
  • the boundary of the operation area is uniformly retracted according to the spray width of the UAV, and the second route is generated based on the retracted boundary of the operation area.
  • the uniformly retracted distance includes half of the spray width of the drone.
  • controlling the UAV to perform flight operations in the operation area according to the first route and the second route including:
  • the designated route segment is determined in the following manner:
  • the spray area that the UAV can cover by sweeping is determined, and the first route is located in the route segment within the spray area Determined as the designated route segment.
  • the first route includes at least a first sub-route, a second sub-route, and a transition line, and the first sub-route and the second sub-route are connected through the transition line.
  • the designated flight segment includes the transition line.
  • the method further includes:
  • the first route is identified in the map model.
  • the identifying the first route in the map model includes:
  • the designated route segment in the first route, the route segment for spraying, and the route segment for which spraying has been completed are respectively marked with different colors.
  • the second UAV control method provided by the embodiment of the present application can improve the display transparency of the compass when it is determined that there are no obstacles around the UAV and meet the preset conditions, and on the premise of ensuring flight safety, the image transmission behind the compass can be transmitted.
  • the screen or map model will not be blocked, which provides convenience for users to view the image transmission screen or map model.
  • FIG. 14 is a schematic structural diagram of a drone control device provided by an embodiment of the present application.
  • the drone control device provided by the embodiment of the present application may include: a processor 1401 and a memory 1402 storing a computer program.
  • the processor thereof may implement the following steps when executing the computer program stored in the memory:
  • the drone is required to fly between a first position outside the work area and a second position within the work area, according to the first position, the second position and the obstacle corresponding
  • the target route is generated in the area of and the UAV is controlled to fly according to the target route; wherein, the first position includes a return point or a take-off point, and the second position is any waypoint in the operation area. .
  • the processor is used when identifying the area corresponding to the obstacle on the map model according to the user's operation of creating an obstacle in an area other than the work area, to obtain the user's work experience in the work area.
  • Other areas other than the area are selected by touching the point; the area corresponding to the obstacle is generated with the point as the center.
  • the processor is configured to, when generating the area corresponding to the obstacle with the point as the center, generate the shape and the shape parameter with the point as the center according to the shape parameters and size parameters input by the user. Areas corresponding to obstacles whose size matches the size parameter.
  • the processor when the processor generates the target route according to the first position, the second position, and the area corresponding to the obstacle, the processor is configured to: The target route is generated based on the area corresponding to the obstacle and the waypoints added by the user on the map model.
  • the target route and the area corresponding to the obstacle have no intersection.
  • the second position includes an operation start point or an operation end point in the operation area.
  • the processor is further configured to, when the UAV flies to the operation area, control the UAV to perform a flight operation in the operation area according to the first route and the second route, wherein , the first route is generated according to the boundary of the operation area, and the second route is used for sweeping the operation area.
  • the second route is generated according to the boundary of the operation area and the spray width of the UAV.
  • the processor when the processor generates the second route according to the boundary of the operation area and the spray width of the UAV, the processor is configured to: The boundary is indented uniformly, and the second route is generated based on the indented boundary of the operation area.
  • the uniformly retracted distance includes half of the spray width of the drone.
  • the processor is used to control the UAV to fly on the designated route of the first route when controlling the drone to fly in the operation area according to the first route and the second route. stop spraying.
  • the processor when determining the designated route segment, is configured to, according to the boundary between the spray width of the UAV and the operation area, determine the area that the UAV can cover through the edge sweeping operation. spraying the area, and determining the route segment where the first route is located in the spraying area as the designated route segment.
  • the first route includes at least a first sub-route, a second sub-route, and a transition line, and the first sub-route and the second sub-route are connected through the transition line.
  • the designated flight segment includes the transition line.
  • the processor is further configured to identify the first route in the map model.
  • the processor when the processor identifies the first route in the map model, the processor is configured to, in the map model, identify the designated route segment of the first route, the route segment to be sprayed, and the route segment that has been sprayed.
  • the route segments that have been sprayed are marked with different colors.
  • the first UAV control device provided by the embodiment of the present application can obtain the user's operation of creating obstacles in other areas other than the work area, so as to obtain the corresponding area of the created obstacle, the first position outside the work area and the A target route is generated at the second position in the operation area, and the drone is controlled to fly along the target route, so that the drone can safely and quickly bypass the area corresponding to the obstacle and quickly reach the destination.
  • the processor thereof may implement the following steps when executing the computer program stored in the memory:
  • the display transparency of the compass is improved.
  • the preset condition includes that no obstacle is detected around the drone within the first preset time period, and/or, the user's movement of the compass to the compass is not sensed within the second preset period of time. Activate action.
  • the obstacle information includes at least an obstacle direction and an obstacle distance.
  • the processor is further configured to, when it is determined according to the obstacle information that there is an obstacle above the UAV, display a colored area above the display interface, where the colored area is used for prompting. There is an obstacle above the drone.
  • the upper width of the colored area is larger than the lower width.
  • the processor is configured to, when displaying a colored area above the display interface, determine the obstacle distance corresponding to the obstacle above the UAV according to the obstacle information; according to the obstacle distance; , determine the length of the colored area to be displayed in the vertical direction, wherein the closer the obstacle distance is, the longer the length of the colored area to be displayed in the vertical direction; Areas are displayed above the display interface.
  • the 360-degree space of the compass is divided into a plurality of sectors corresponding to different directions, and the processor correspondingly displays 360-degree obstacle information around the drone in the 360-degree space of the compass is used to, for any obstacle around the UAV, display the obstacle distance of the obstacle on the sector corresponding to the obstacle direction of the obstacle.
  • the drone is equipped with multiple cameras, and different cameras correspond to different shooting directions.
  • the processor is further configured to, according to the flight direction of the UAV, switch the display shooting direction to match the flight direction when the UAV performs a flight operation along the route at a fixed yaw angle.
  • the image transmission screen captured by the camera.
  • the processor is further configured to switch and display image transmission images captured by different cameras on the display interface of the control terminal according to a user's switching operation.
  • the processor is further configured to display, in the compass, a sector-shaped area corresponding to the shooting direction of the target camera according to the target camera corresponding to the currently displayed image transmission picture.
  • the processor is further configured to acquire the operation area of the unmanned aerial vehicle; control the unmanned aerial vehicle to perform flight operations in the operation area according to the first route and the second route, wherein the first route A route is generated according to the boundary of the operation area, and the second route is used for sweeping the operation area.
  • the second route is generated according to the boundary of the operation area and the spray width of the UAV.
  • the processor when the processor generates the second route according to the boundary of the operation area and the spray width of the UAV, the processor is configured to: The boundary is indented uniformly, and the second route is generated based on the indented boundary of the operation area.
  • the uniformly retracted distance includes half of the spray width of the drone.
  • the processor is used to control the UAV to fly on the designated route of the first route when controlling the drone to fly in the operation area according to the first route and the second route. stop spraying.
  • the processor when determining the designated route segment, is configured to, according to the boundary between the spray width of the UAV and the operation area, determine the area that the UAV can cover through the edge sweeping operation. spraying the area, and determining the route segment where the first route is located in the spraying area as the designated route segment.
  • the first route includes at least a first sub-route, a second sub-route, and a transition line, and the first sub-route and the second sub-route are connected through the transition line.
  • the designated flight segment includes the transition line.
  • the processor is further configured to identify the first route in the map model.
  • the processor when the processor identifies the first route in the map model, the processor is configured to, in the map model, identify the designated route segment in the first route, the route segment for spraying, and The route segments that have been sprayed are marked with different colors.
  • the second UAV control method provided by the embodiment of the present application can improve the display transparency of the compass when it is determined that there are no obstacles around the UAV and meet the preset conditions, and on the premise of ensuring flight safety, the image transmission behind the compass can be transmitted.
  • the screen or map model will not be blocked, which provides convenience for users to view the image transmission screen or map model.
  • FIG. 15 is a schematic structural diagram of a control terminal provided by an embodiment of the present application.
  • the control terminal may include: a display device 1501, an antenna device 1502, a processor 1503, and a memory 1504 storing a computer program; wherein, the antenna device is used to establish communication with the drone.
  • the processor of the control terminal may implement the following steps when executing the computer program stored in the memory:
  • the drone is required to fly between a first position outside the work area and a second position within the work area, according to the first position, the second position and the obstacle corresponding
  • the target route is generated in the area of and the UAV is controlled to fly according to the target route; wherein, the first position includes a return point or a take-off point, and the second position is any waypoint in the operation area. .
  • the processor is used when identifying the area corresponding to the obstacle on the map model according to the user's operation of creating an obstacle in an area other than the work area, to obtain the user's work experience in the work area.
  • Other areas other than the area are selected by touching the point; the area corresponding to the obstacle is generated with the point as the center.
  • the processor is configured to, when generating the area corresponding to the obstacle with the point as the center, generate the shape and the shape parameter with the point as the center according to the shape parameters and size parameters input by the user. Areas corresponding to obstacles whose size matches the size parameter.
  • the processor when the processor generates the target route according to the first position, the second position, and the area corresponding to the obstacle, the processor is configured to: The target route is generated based on the area corresponding to the obstacle and the waypoints added by the user on the map model.
  • the target route and the area corresponding to the obstacle have no intersection.
  • the second position includes an operation start point or an operation end point in the operation area.
  • the processor is further configured to, when the UAV flies to the operation area, control the UAV to perform a flight operation in the operation area according to the first route and the second route, wherein , the first route is generated according to the boundary of the operation area, and the second route is used for sweeping the operation area.
  • the second route is generated according to the boundary of the operation area and the spray width of the UAV.
  • the processor when the processor generates the second route according to the boundary of the operation area and the spray width of the UAV, the processor is configured to: The boundary is indented uniformly, and the second route is generated based on the indented boundary of the operation area.
  • the uniformly retracted distance includes half of the spray width of the drone.
  • the processor is used to control the UAV to fly on the designated route of the first route when controlling the drone to fly in the operation area according to the first route and the second route. stop spraying.
  • the processor when determining the designated route segment, is configured to, according to the boundary between the spray width of the UAV and the operation area, determine the area that the UAV can cover through the edge sweeping operation. spraying the area, and determining the route segment where the first route is located in the spraying area as the designated route segment.
  • the first route includes at least a first sub-route, a second sub-route, and a transition line, and the first sub-route and the second sub-route are connected through the transition line.
  • the designated flight segment includes the transition line.
  • the processor is further configured to identify the first route in the map model.
  • the processor when the processor identifies the first route in the map model, the processor is configured to, in the map model, identify the designated route segment of the first route, the route segment to be sprayed, and the route segment that has been sprayed.
  • the route segments that have been sprayed are marked with different colors.
  • the first control terminal provided by the embodiment of the present application can acquire the user's operation of creating obstacles in other areas other than the work area, so as to obtain the corresponding area of the created obstacle, the first position outside the work area and the work area in the work area.
  • the second position of the device generates a target route, and controls the drone to fly along the target route, so that the drone can safely and quickly bypass the area corresponding to the obstacle and quickly reach the destination.
  • the drone connected to the antenna device may be equipped with a radar and a camera, and the processor may implement the following steps when executing the computer program stored in the memory:
  • the image transmission screen or the map model is displayed on the display interface of the control terminal through the display device, and the image transmission screen or the map model is superimposed and displayed to indicate the flight direction of the UAV the compass;
  • the display transparency of the compass is improved.
  • the preset condition includes that no obstacle is detected around the drone within the first preset time period, and/or, the user's movement of the compass to the compass is not sensed within the second preset period of time. Activate action.
  • the obstacle information includes at least an obstacle direction and an obstacle distance.
  • the processor is further configured to, when it is determined according to the obstacle information that there is an obstacle above the UAV, display a colored area above the display interface, where the colored area is used for prompting. There is an obstacle above the drone.
  • the upper width of the colored area is larger than the lower width.
  • the processor is configured to, when displaying a colored area above the display interface, determine the obstacle distance corresponding to the obstacle above the UAV according to the obstacle information; according to the obstacle distance; , determine the length of the colored area to be displayed in the vertical direction, wherein the closer the obstacle distance is, the longer the length of the colored area to be displayed in the vertical direction; Areas are displayed above the display interface.
  • the 360-degree space of the compass is divided into a plurality of sectors corresponding to different directions, and the processor correspondingly displays 360-degree obstacle information around the drone in the 360-degree space of the compass is used to, for any obstacle around the UAV, display the obstacle distance of the obstacle on the sector corresponding to the obstacle direction of the obstacle.
  • the drone is equipped with multiple cameras, and different cameras correspond to different shooting directions.
  • the processor is further configured to, according to the flight direction of the UAV, switch the display shooting direction to match the flight direction when the UAV performs a flight operation along the route at a fixed yaw angle.
  • the image transmission screen captured by the camera.
  • the processor is further configured to switch and display image transmission images captured by different cameras on the display interface of the control terminal according to a user's switching operation.
  • the processor is further configured to display, in the compass, a sector-shaped area corresponding to the shooting direction of the target camera according to the target camera corresponding to the currently displayed image transmission picture.
  • the processor is further configured to acquire the operation area of the unmanned aerial vehicle; control the unmanned aerial vehicle to perform flight operations in the operation area according to the first route and the second route, wherein the first route A route is generated according to the boundary of the operation area, and the second route is used for sweeping the operation area.
  • the second route is generated according to the boundary of the operation area and the spray width of the UAV.
  • the processor when the processor generates the second route according to the boundary of the operation area and the spray width of the UAV, the processor is configured to: The boundary is indented uniformly, and the second route is generated based on the indented boundary of the operation area.
  • the uniformly retracted distance includes half of the spray width of the drone.
  • the processor is used to control the UAV to fly on the designated route of the first route when controlling the drone to fly in the operation area according to the first route and the second route. stop spraying.
  • the processor when determining the designated route segment, is configured to, according to the boundary between the spray width of the UAV and the operation area, determine the area that the UAV can cover through the edge sweeping operation. spraying the area, and determining the route segment where the first route is located in the spraying area as the designated route segment.
  • the first route includes at least a first sub-route, a second sub-route, and a transition line, and the first sub-route and the second sub-route are connected through the transition line.
  • the designated flight segment includes the transition line.
  • the processor is further configured to identify the first route in the map model.
  • the processor when the processor identifies the first route in the map model, the processor is configured to, in the map model, identify the designated route segment in the first route, the route segment for spraying, and The route segments that have been sprayed are marked with different colors.
  • the second control terminal provided by the embodiment of the present application can improve the display transparency of the compass when it is determined that there are no obstacles around the drone and meet preset conditions, and enable the image transmission screen or map behind the compass to be transmitted on the premise of ensuring flight safety.
  • the model will not be blocked, which provides convenience for users to view the image transmission screen or map model.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the first drone control provided by the embodiments of the present application is implemented method.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the second type of drone control provided by the embodiments of the present application is implemented method.
  • Embodiments of the present application may take the form of a computer program product implemented on one or more storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having program code embodied therein.
  • Computer-usable storage media includes permanent and non-permanent, removable and non-removable media, and storage of information can be accomplished by any method or technology.
  • Information may be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase-change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Flash Memory or other memory technology, Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
  • PRAM phase-change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • ROM read only memory
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • Flash Memory or other memory technology
  • CD-ROM Compact Disc Read Only Memory
  • CD-ROM Compact Disc Read Only Memory
  • DVD Digital Versatile Disc
  • Magnetic tape cassettes magnetic tape magnetic disk storage or other magnetic storage devices or any other non-

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种无人机控制方法,包括:在控制终端的显示界面上显示地图模型,在地图模型上标识无人机的作业区域(S202);根据用户在作业区域以外的其它区域创建障碍物的操作,在地图模型上标识所创建的障碍物对应的区域(S204);根据在作业区域外的第一位置、在作业区域内的第二位置以及障碍物对应的区域生成目标航线(S206),并控制无人机根据目标航线飞行(S208)。无人机控制方法解决了无人机在作业区域外的第一位置与作业区域内的第二位置之间飞行时,因障碍物的阻挡而无法顺利到达目的地的技术问题。

Description

无人机控制方法、装置与控制终端 技术领域
本申请涉及无人机技术领域,尤其涉及一种无人机控制方法、装置、控制终端及计算机可读存储介质。
背景技术
随着无人机技术的成熟,无人机被应用于多个领域。在测绘、农业、巡检等应用领域中,利用无人机代替人工作业可以大幅提高作业效率。在无人机执行作业任务的过程中,无人机具有在起飞点与作业区域之间飞行的需求,而在飞行过程若遇到障碍物的阻挡,则无人机将无法顺利到达目的地,甚至可能与障碍物碰撞而发生炸机。
发明内容
本申请实施例提供了一种无人机控制方法、装置、控制终端及计算机可读存储介质,目的之一是解决无人机在作业区域外的第一位置与作业区域内的第二位置之间飞行时,因障碍物的阻挡而无法顺利到达目的地的技术问题。
本申请实施例第一方面提供了一种无人机控制方法,应用于控制终端,所述方法包括:
在所述控制终端的显示界面上显示地图模型,在所述地图模型上标识所述无人机的作业区域;
根据用户在所述作业区域以外的其它区域创建障碍物的操作,在所述地图模型上标识所创建的障碍物对应的区域;
根据在所述作业区域外的第一位置、在所述作业区域内的第二位置以及所述障碍物对应的区域生成目标航线,并控制所述无人机根据所述目标航线飞行;其中,所述第一位置包括返航点或起飞点,所述第二位置为所述作业区域内的任一航点。
本申请实施例第二方面提供了一种无人机控制方法,所述无人机搭载有雷达和摄像头,所述方法应用于控制终端,所述控制终端用于与所述无人机进行远程通信,并接收所述无人机发送的图传画面,所述方法包括:
获取通过所述雷达探测的所述无人机周边360度的障碍物信息,并获取所述摄像头拍摄的图传画面;
在所述控制终端的显示界面上显示所述图传画面或地图模型,并在所述图传画面或所述地图模型上叠加显示用于指示所述无人机的飞行方向的罗盘;
以所述罗盘的中心模拟所述无人机的位置,在所述罗盘的360度空间内对应显示所述无人机周边360度的障碍物信息;
当根据所述障碍物信息确定所述无人机周边无障碍物且满足预设条件时,提高所述罗盘的显示透明度。
本申请实施例第三方面提供了一种无人机控制装置,包括:处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:
在控制终端的显示界面上显示地图模型,在所述地图模型上标识所述无人机的作业区域;
根据用户在所述作业区域以外的其它区域创建障碍物的操作,在所述地图模型上标识所创建的障碍物对应的区域;
根据在所述作业区域外的第一位置、在所述作业区域内的第二位置以及所述障碍物对应的区域生成目标航线,并控制所述无人机根据所述目标航线飞行;其中,所述第一位置包括返航点或起飞点,所述第二位置为所述作业区域内的任一航点。
本申请实施例第四方面提供了一种无人机控制装置,包括:处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:
获取通过无人机上搭载的雷达探测的所述无人机周边360度的障碍物信息,并获取所述无人机上搭载的摄像头拍摄的图传画面;
在控制终端的显示界面上显示所述图传画面或地图模型,并在所述图传画面或所述地图模型上叠加显示用于指示所述无人机的飞行方向的罗盘;
以所述罗盘的中心模拟所述无人机的位置,在所述罗盘的360度空间内对应显示所述无人机周边360度的障碍物信息;
当根据所述障碍物信息确定所述无人机周边无障碍物且满足预设条件时,提高所述罗盘的显示透明度。
本申请实施例第五方面提供了一种控制终端,包括:显示装置、天线装置、处理器和存储有计算机程序的存储器;
所述天线装置用于与无人机建立通信;
所述处理器在执行所述计算机程序时实现以下步骤:
通过所述显示装置在所述控制终端的显示界面上显示地图模型,在所述地图模型上标识所述无人机的作业区域;
根据用户在所述作业区域以外的其它区域创建障碍物的操作,在所述地图模型上标识所创建的障碍物对应的区域;
根据在所述作业区域外的第一位置、在所述作业区域内的第二位置以及所述障碍物对应的区域生成目标航线,并控制所述无人机根据所述目标航线飞行;其中,所述第一位置包括返航点或起飞点,所述第二位置为所述作业区域内的任一航点。
本申请实施例第六方面提供了一种控制终端,包括:显示装置、天线装置、处理器和存储有计算机程序的存储器;
所述天线装置用于与无人机建立通信,所述无人机搭载有雷达和摄像头;
所述处理器在执行所述计算机程序时实现以下步骤:
获取通过所述雷达探测的所述无人机周边360度的障碍物信息,并获取所述摄像头拍摄的图传画面;
通过所述显示装置在所述控制终端的显示界面上显示所述图传画面或地图模型,并在所述图传画面或所述地图模型上叠加显示用于指示所述无人机的飞行方向的罗盘;
以所述罗盘的中心模拟所述无人机的位置,在所述罗盘的360度空间内对应显示所述无人机周边360度的障碍物信息;
当根据所述障碍物信息确定所述无人机周边无障碍物且满足预设条件时,提高所述罗盘的显示透明度。
本申请实施例第七方面提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述第一方面提供的方法。
本申请实施例第八方面提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述第二方面提供的方法。
本申请实施例提供的第一种无人机控制方法,可以获取用户在作业区域以外的其它区域创建障碍物的操作,从而可以根据所创建的障碍物对应的区域、作业区域外的第一位置与作业区域内的第二位置生成目标航线,控制无人机沿所述目标航线飞行,使无人机可以安全、快速的绕开障碍物对应的区域,快速到达目的地。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的无人机在作业中途有返航需求的场景示意图。
图2是本申请实施例提供的第一种无人机控制方法的流程图。
图3是本申请实施例提供的目标航线在水平面方向上绕开障碍物对应的区域的场景示意图。
图4是本申请实施例提供的目标航线在垂直面方向上绕开障碍物对应的区域的场景示意图。
图5是本申请实施例提供的第一航线的航线规划图。
图6是本申请实施例提供的第二航线的航线规划图。
图7是本申请实施例提供的包括第一航线与第二航线的航线规划图。
图8是本申请实施例提供的包括过渡线的航线规划图。
图9是本申请实施例提供的第二种无人机控制方法的流程图。
图10是本申请实施例提供的罗盘的示意图。
图11是本申请实施例提供的包括有色区域的显示页面。
图12是本申请实施例提供的无人机定机头作业的场景示意图。
图13是本申请实施例提供的无人机定机头作业的另一场景示意图。
图14是本申请实施例提供的无人机控制装置的结构示意图。
图15是本申请实施例提供的控制终端的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
随着无人机技术的成熟,无人机被应用于多个领域。在测绘、农业、巡检等应用 领域中,利用无人机代替人工作业可以大幅提高作业效率。
在无人机执行作业任务的过程中,无人机大多数时间是飞行在作业区域内的,但在一些情况中,无人机也需要在作业区域外飞行。例如在任务开始时,无人机需要先从作业区域外的起飞点飞行至作业区域内的作业起点,继而在作业起点开始沿规划的航线进行飞行作业。在作业完成后,无人机也需要从作业区域内的作业终点返航至作业区域外的起飞点。在作业过程中,无人机也可能由于电量不足或者作业所需的药量不足而需要返回起飞点进行电量或药物的补充,补充完成后,无人机也需要从起飞点飞行回作业中断点继续进行作业。
当无人机在作业区域外的第一位置与作业区域内的第二位置之间飞行时,若无人机遇到了障碍物,则可能由于障碍物阻挡而无法继续沿航线飞行,严重的,甚至可能与障碍物发生碰撞而导致炸机。这里,作业区域外的第一位置可以是起飞点,也可以是起飞点以外的其他返航点,而第二位置可以是作业区域内的任一航点,比如可以是作业起点、作业终点或作业中断点。
可以参考图1,图1是本申请实施例提供的无人机在作业中途有返航需求的场景示意图。如图1所示,无人机在作业中断点返航至起飞点时遇到了障碍物的阻挡,而该障碍物并不会对无人机从起飞点飞行至作业起点或从作业终点返航至起飞点构成阻碍。
为解决无人机在作业区域外的第一位置与作业区域内的第二位置之间飞行被障碍物阻挡的问题,本申请实施例提供了第一种无人机控制方法,该方法可以应用于控制终端。控制终端可以有多种实施方式。在一种实施方式中,控制终端可以是自带显示装置的遥控器。在一种实施方式中,控制终端可以是遥控器与移动终端的组合,即遥控器与移动终端之间可以通过有线或无线的方式连接,移动终端上可以安装相应的应用程序(APP),用户可以通过APP实现与无人机之间的交互。在一种实施方式中,控制终端也可以是移动终端,移动终端可以通过APP向用户提供虚拟的遥控器。在一种实施方式中,控制终端还可以是遥控器与飞行眼镜的组合。
可以参考图2,图2是本申请实施例提供的第一种无人机控制方法的流程图,该方法可以包括以下步骤:
S202、在控制终端的显示界面上显示地图模型,在所述地图模型上标识所述无人机的作业区域。
地图模型可以有多种获取方式。在一种实施方式中,可以通过第三方地图软件的API的调用地图模型。在一种实施方式中,可以预先通过无人机进行测绘,根据测绘 过程拍摄的图片建立地图模型。
作业区域可以是无人机的作业对象,比如在测绘应用中,作业区域可以是无人机要进行测绘的地块,在农业应用中,作业区域可以是无人机要进行喷洒药物的农田。可以以农业应用为例,农业应用中所使用的无人机为植保无人机,植保无人机的作业区域可以根据待作业地块的地块数据创建得到。待作业地块的地块数据可以有多种获取方式。在一种实施方式中,用户可以操控无人机沿待作业地块的边界飞行,从而测量得到待作业地块的地块数据。在一种实施方式中,地块数据也可以由用户手持遥控器沿地块行走测量得到。在一种实施方式中,地块数据也可以通过手持RTK测量得到的。
S204、根据用户在作业区域以外的其它区域创建障碍物的操作,在地图模型上标识所创建的障碍物对应的区域。
用户可以在作业区域外的其它区域进行创建障碍物的操作,而控制终端获取到用户创建障碍物的操作,可以在地图模型上创建障碍物对应的区域。
创建障碍物的操作方式可以有多种。在一种实施方式中,用户可以在作业区域外的其它区域通过触摸选择点位,从而控制终端可以在用户所触摸的点位上生成障碍物对应的区域。在一个例子中,用户在通过触摸选择点位时,可以是对某个位置进行长按,从而该位置可以被选中。
在一种实施方式中,当用户完成点位的选择后,控制终端可以在显示界面上弹出障碍物创建菜单,用户可以在障碍物创建菜单上输入障碍物对应的形状参数和尺寸参数,从而控制终端可以根据用户输入的形状参数和尺寸参数,以用户所触摸的点位为中心生成形状、尺寸均与用户所输入的参数相匹配的障碍物对应的区域。这里,形状参数比如可以是圆形、多边形等各种形状的选项。
在一种实施方式中,当障碍物对应的区域在地图模型上被创建后,还可以获取用户对障碍物对应的区域的边界点进行的触摸和拖动操作,并可以根据用户的所述触摸和拖动操作对障碍物对应的区域进行调整。
创建障碍物还可以有其他的操作方式。在一种实施方式中,可以根据用户对创建障碍物功能的触发操作进入障碍物编辑界面,可以获取用户在所述障碍物编辑界面进行的绘制操作,根据用户的所述绘制操作可以生成具有封闭边界的障碍物对应的区域。
S206、根据在作业区域外的第一位置、在作业区域内的第二位置以及所述障碍物对应的区域生成目标航线。
S208、控制所述无人机根据所述目标航线飞行。
如前文所述,作业区域外的第一位置可以是起飞点,也可以是起飞点以外的其他返航点,而第二位置可以是作业区域内的任一航点,比如可以是作业起点、作业终点或作业中断点。在需要无人机在作业区域外的第一位置与作业区域内的第二位置之间飞行时,可以根据第一位置、第二位置以及障碍物对应的区域生成目标航线。而需要无人机在作业区域外的第一位置与作业区域内的第二位置之间飞行的情况也有多种,比如可以是作业开始时需要无人机从起飞点飞行至作业起点,也可以是作业结束后需要无人机从作业终点返航至起飞点,还可以是作业中途出现需要无人机在作业中断点与起飞点之间飞行的情况,各种情况的详情在前文中已有描述,在此不再赘述。
当无人机以根据第一位置、第二位置以及障碍物对应的区域生成的目标航线飞行时,无人机可以绕开障碍物对应的区域,顺利到达目的地。在一种实施方式中,生成的目标航线可以在水平面方向上绕开障碍物对应的区域,即在俯视角度上看,目标航线与障碍物对应的区域之间可以无交集。可以参见图3,图3是本申请实施例提供的目标航线在水平面方向上绕开障碍物对应的区域的场景示意图。
在一种实施方式中,生成的目标航线还可以在垂直面方向上绕开障碍物对应的区域,比如可以控制无人机以更高的高度跨越所述障碍物对应的区域。可以参见图4,图4是本申请实施例提供的目标航线在垂直面方向上绕开障碍物对应的区域的场景示意图。对于这种实施方式,可以在用户进行创建障碍物的操作时获取用户输入的障碍物对应的高度,从而,生成的目标航线可以指示无人机接近障碍物对应的区域时上升至指定高度跨越所述障碍物对应的区域。
障碍物对应的高度可以有多种方式测量得到,在一种实施方式中,可以通过无人机上的摄像头对障碍物整体进行拍摄,根据所拍摄图像可以计算出障碍物对应的高度。在一种实施方式中,也可以使无人机升高至障碍物顶部对应的水平面,从而可以将无人机当前的飞行高度确定为障碍物对应的高度。在一种实施方式中,也可以根据无人机搭载的雷达对障碍物进行探测,测算出障碍物对应的高度。
在一种实施方式中,用户还可以在地图模型上进行添加途经点位的操作,控制终端在获取到用户添加途经点位的操作后,可以根据第一位置、第二位置、所述障碍物对应的区域以及用户添加的途经点位生成目标航线。生成的目标航线可以在绕开所述障碍物对应的区域的基础上经过所述途经点位。
本申请实施例提供的第一种无人机控制方法,可以获取用户在作业区域以外的其它区域创建障碍物的操作,从而可以根据所创建的障碍物对应的区域、作业区域外的第一位置与作业区域内的第二位置生成目标航线,控制无人机沿所述目标航线飞行, 使无人机可以安全、快速的绕开障碍物对应的区域,快速到达目的地。
当无人机从起飞点飞行至作业区域时,无人机可以根据预先规划的航线进行飞行作业。这里,预先规划的航线可以包括第一航线,该第一航线可以是控制终端根据作业区域的边界自动生成的。可以参考图5,图5是本申请实施例提供的第一航线的航线规划图。可见,第一航线可以呈“弓”字形,其可以覆盖作业区域的大部分面积,并且,用户还可以对生成的第一航线进行调整,比如调整第一航线的边界统一内缩的距离、第一航线上的平行航线段之间的间距、第一航线的布置角度等等。
呈“弓”字形的第一航线包括多个转弯的航线段,而无人机在转弯的航线段或接近转弯的航线段时会相应的调整飞行速度,并且出于飞行安全的考虑,无人机在转弯的过程中可以停止喷洒药物,从而,转弯处的作业区域可能存在部分面积未喷洒到药物,或者由于飞行速度的变化存在药物喷洒不均匀的情况。
为解决上述问题,在一种实施方式中,可以通过无人机对作业区域进行扫边,即可以由无人机针对作业区域的边界部分进行补充式的药物喷洒。具体的,可以在作业任务开始之前,根据作业区域的边界生成可以大体覆盖作业区域的第一航线,并可以生成用于对该作业区域进行扫边的第二航线,在开始作业时,可以控制无人机在作业区域内根据第一航线与第二航线进行飞行作业。
在控制无人机根据第一航线与第二航线进行飞行作业时,第一航线与第二航线的调用顺序本申请实施例不作限制,比如可以先根据第一航线控制无人机飞行再根据第二航线控制无人机飞行,也可以先根据第二航线控制无人机飞行再根据第一航线控制无人机飞行。在一种实施方式中,可以在生成航线使第一航线的终点与第二航线的起点重合或尽可能接近(两点的距离在预设阈值内),或者使第二航线的终点与第一航线的起点重合或尽可能接近,从而无人机可以在完成任一航线的飞行后快速衔接另一航线的飞行,提高作业效率。
在一种实施方式中,可以根据作业区域的边界以及无人机的喷幅生成第二航线。这里,无人机的喷幅可以是无人机喷洒药物能够覆盖的宽度。在一个例子中,可以根据无人机的喷幅对作业区域的边界进行统一内缩,从而可以基于统一内缩后的作业区域的边界生成第二航线。这里,统一内缩的距离可以是无人机喷幅的一半,从而可以使无人机沿第二航线扫边时药物正好喷洒到作业区域的边界。可以参考图6,图6是本申请实施例提供的第二航线的航线规划图。
考虑到第一航线与第二航线可能具有重叠的喷洒区域,为防止这些区域喷洒过量的药物,在一种实施方式中,第一航线可以包括不需要进行喷洒的指定航线段,在根 据第一航线控制无人机飞行时,可以控制无人机在第一航线的指定航线段停止喷洒,而在指定航线段以外的其它航线段可以正常喷洒。
不进行喷洒的指定航线段可以多种确定方式。在一种实施方式中,指定航线段可以在第二航线确定后,根据第二航线与无人机的喷幅确定扫边作业将覆盖的喷洒区域,从而可以将位于所述喷洒区域内的第一航线的航线段确定为所述指定航线段。在一种实施方式中,也可以直接根据作业区域的边界以及无人机的喷幅确定扫边作业所能覆盖的喷洒区域,即可以将作业区域的边界统一内缩一个无人机的喷幅,则内缩后的作业区域的边界与作业区域的原边界之间的区域可以确定为喷洒区域,在确定喷洒区域后,可以将位于所述喷洒区域内的第一航线的航线段确定为所述指定航线段。
在另一优选实施例中,无人机上搭载有承载农药的药箱和连接药箱的连续液位计,所述连续液位计用于获取所述药箱内的连续液位变化。往无人机上的药箱加药的过程中,所述控制终端根据所述连续液位计测量的结果,在控制终端的显示界面上用进度条显示目前的加药量/加药比例,并在进度条附近显示药量数值或加药比例数值;或者,在无人机进行喷药作业中,所述控制终端根据所述连续液位计测量的结果,在控制终端的显示界面上用进度条显示目前的加药量/加药比例,并在进度条附近显示药量数值或加药比例数值。所述进度条可以是圆形、长条形及其他方便用户查看药量的形状。
可以参考图7,图7是本申请实施例提供的包括第一航线与第二航线的航线规划图。可见,通过在控制无人机根据第二航线进行扫边作业的同时,控制无人机在第一航线的指定航线段(位于图中两边界之间的喷洒区域的第一航线的航线段)不进行喷洒,可以防止作业区域的边界部分发生药物喷洒过量的情况,保证植保作业的作业效果。
在一些情况中,作业区域的形状可能较为不规则,此时根据作业区域的边界生成的第一航线可以至少包括分离的第一子航线、第二子航线以及用于连接所述第一子航线与第二子航线的过渡线。可以参考图8,图8是本申请实施例提供的包括过渡线的航线规划图。可见,根据作业区域的边界生成的第一航线可以包括第一子航线A与第二子航线B,由于第一子航线A的终点与第二子航线B的起点相隔一定的距离,因此需要通过过渡线C实现第一子航线A与第二子航线B之间的连接。可以理解的,在一个例子中,该过渡线也可以属于所述的指定航线段,即可以控制无人机在所述过渡线飞行时停止喷洒。
在一种实施方式中,还可以将规划的航线在地图模型上标识。并且,可以对航线上不需要进行喷洒的航线段、需要喷洒的航线段、已完成喷洒的航线段分别以不同的 颜色进行标识,以方便用户获取无人机的作业进度以及喷洒规划。
本申请实施例提供的第一种无人机控制方法,可以获取用户在作业区域以外的其它区域创建障碍物的操作,从而可以根据所创建的障碍物对应的区域、作业区域外的第一位置与作业区域内的第二位置生成目标航线,控制无人机沿所述目标航线飞行,使无人机可以安全、快速的绕开障碍物对应的区域,快速到达目的地。
以上为对本申请实施例提供的第一种无人机控制方法的详细说明。
避障是保障无人机安全飞行的重要功能。实现避障的方式有多种,比如视觉避障、雷达避障等。对于植保无人机,由于植保无人机在作业过程中需要喷洒药物,而药物的喷洒会对无人机的视野造成一定的遮挡,因此,植保无人机通常基于雷达实现避障,视觉避障可以作为雷达避障的辅助。
在一种实施方式中,无人机上搭载的雷达可以包括全向雷达,全向雷达可以对多个方向的障碍物进行探测,探测得到的障碍物信息可以发送给控制终端,控制终端可以将障碍物信息通过罗盘在显示界面上显示。由于在显示界面上显示的罗盘是叠加显示在地图模型或图传画面上的,因此罗盘会地图模型或图传画面造成一定的遮挡,给用户查看地图模型或图传画面造成不便。
上述的图传画面可以是无人机上搭载的摄像头拍摄的。具体的,无人机可以搭载有摄像头,其可以将摄像头拍摄的画面通过图像传输技术传输给控制终端,控制终端可以将接收的画面实时显示在显示界面上,这里,可以将实时显示在显示界面上的画面称为图传画面、Liveview画面或者FPV(第一人称视角)画面。
对于显示界面上显示的内容,用户可以通过切换操作进行切换,比如,用户可以根据需求切换当前显示的内容为地图模型或者图传画面。但无论当前显示的是图传画面还是地图模型,所述罗盘都会叠加显示在其上,对背后的图传画面或地图模型造成遮挡。
为解决上述问题,本申请实施例提供了第二种无人机控制方法。该方法可以应用于控制终端,该控制终端可以用于与无人机进行远程通信,并可以接收无人机发送的图传画面。可以参考图9,图9是本申请实施例提供的第二种无人机控制方法的流程图,该方法可以包括以下步骤:
S902、获取通过雷达探测的无人机周边360度的障碍物信息,并获取所述摄像头拍摄的图传画面。
如前文所述,无人机可以搭载有雷达与摄像头,无人机可以将雷达探测的障碍物信息以及摄像头拍摄的图传画面传输给控制终端。
可以理解的,雷达的探测能力是有限的,对于距离过远的障碍物,雷达并不能探测到其对应的障碍物信息,因此,对于本文所描述的通过雷达探测到的障碍物信息,应当理解为是在雷达的能力范围内探测到的障碍物信息。
S904、在控制终端的显示界面上显示所述图传画面或地图模型,并在所述图传画面或所述地图模型上叠加显示用于指示所述无人机的飞行方向的罗盘。
S906、以所述罗盘的中心模拟无人机的位置,在所述罗盘的360度空间内对应显示无人机周边360度的障碍物信息。
罗盘可以用于指示无人机的飞行方向。在一种实施方式中,罗盘可以包括标识有方向信息的外圈,这里的方向信息比如可以是东南西北等。罗盘的中心可以包括用于模拟无人机的无人机图标,该无人机图标的朝向可以固定,比如可以固定朝向显示界面的上方。在无人机的飞行方向发生变化时,所述罗盘的外圈可以相应的旋转,以配合无人机图标指示出无人机的飞行方向。可以参考图10,图10是本申请实施例提供的罗盘的示意图。
在一种实施方式中,障碍物信息可以至少包括障碍物方向与障碍物距离。在通过罗盘显示障碍物信息时,在一个例子中,可以将罗盘的360度空间划分为多个扇区,每个扇区可以对应一个方向,则对于第一障碍物,可以在第一障碍物的障碍物方向对应扇区上显示第一障碍物的障碍物距离,这里,第一障碍物可以是无人机周边的任一障碍物。
可以将第一障碍物的障碍物方向对应的扇区称为第一扇区。在通过第一扇区显示第一障碍物的障碍物距离时,在一种实施方式中,可以将该障碍物距离对应的数值直接显示在第一扇区上,在一种实施方式中,还可以根据第一障碍物的障碍物距离对第一扇区中有色部分进行扩展。可以继续参考图10,如图10所示,在第一扇区上显示第一障碍物的障碍物距离时,可以在第一扇区沿由外而内的方向扩展有色部分覆盖的面积,具体的,障碍物距离越近,可以通过扩展使有色部分覆盖的面积越大,以使用户可以更容易的关注到该扇区对应方向的障碍物情况。
S908、当根据所述障碍物信息确定无人机周边无障碍物且满足预设条件时,提高所述罗盘的显示透明度。
当确定无人机周边无障碍物时,可以确定无人机处于相对安全的飞行环境,若同时符合预设条件,则可以提高罗盘的显示透明度,使罗盘背后的图传画面或地图模型不会被遮挡,为用户查看图传画面或地图模型提供便利。
在一种实施方式中,预设条件可以包括在第一预设时长内在所述无人机周边均未 探测到障碍物,和/或,在第二预设时长内未感应到用户对所述罗盘的激活操作,这里的激活操作比如可以是对罗盘进行触碰点击。通过在一定延时后再将罗盘透明化,可以进一步确保罗盘透明化时无人机处于安全的飞行环境,提高飞行作业的安全性。
本申请实施例提供的第二种无人机控制方法,可以在确定无人机周边无障碍物且满足预设条件时提高罗盘的显示透明度,在确保飞行安全的前提下使罗盘背后的图传画面或地图模型不会被遮挡,为用户查看图传画面或地图模型提供了便利。
如前文所述,罗盘可以用于显示无人机周边360度的障碍物信息。这里,无人机周边的360度可以是水平面上的360度,例如无人机的前、后、左、右等方向。而对于无人机上方的障碍物,在一种实施方式中,可以通过在显示界面的上方显示有色区域进行提示。
在显示界面的上方显示的有色区域可以用于提示无人机上方存在障碍物。在一个例子中,有色区域的上部宽度可以大于下部宽度,形成类似水滴的形状。可以参考图11,图11是本申请实施例提供的包括有色区域的显示页面。进一步的,该有色区域在竖直方向上的长度可以与上方障碍物与无人机之间距离负相关,即上方障碍物与无人机之间的距离越近,该有色区域在竖直方向上的长度可以越长。具体的,在显示界面的上方显示有色区域时,可以根据障碍物信息确定无人机上方障碍物的障碍物距离,根据该障碍物距离可以确定待显示的有色区域在竖直方向上的长度,从而可以在显示界面上方显示所确定长度的有色区域。通过这种水滴状且可拉长的有色区域,可以生动的显示无人机上方障碍物的障碍物距离,障碍物距离越近,可以给用户越强的压迫感。
在一种实施方式中,无人机可以搭载有多个雷达,比如可以搭载有全向雷达以及对应上视视角的单向雷达,如此,无人机上方障碍物的障碍物信息可以通过该单向雷达探测得到。
植保无人机在沿规划的航线飞行时通常是定机头作业的,即无人机在飞行过程中的偏航角可以是锁定的,如此,在一些特定的航线段上,无人机机头面对的方向并不一定是无人机当前的飞行方向,相应的,安装在无人机机头侧的摄像头所拍摄的画面也将与无人机的飞行方向不匹配。可以参考图12,图12是本申请实施例提供的无人机定机头作业的场景示意图。可见,无人机在特定的航线段飞行时,其机头方向与飞行方向相反,若无人机只搭载有一个机头侧的摄像头,用户所看到的图传画面将与无人机的飞行方向不匹配。
为解决上述图传画面与无人机飞行方向不匹配的问题,在一种实施方式中,无人 机可以搭载有多个摄像头,不同的摄像头可以对应不同的拍摄方向,比如,在一个例子中,无人机可以搭载有前后两个摄像头。如此,在无人机以固定偏航角沿航线进行飞行作业时,可以实时根据无人机的飞行方向,自动切换显示不同摄像头拍摄的图传画面,即可以将当前显示的画面切换为拍摄方向与无人机的飞行方向匹配的摄像头拍摄的图传画面。可以参考图13,图13是本申请实施例提供的无人机定机头作业的另一场景示意图。
如前文所述,用户可以通过切换操作切换显示图传画面或地图模型。而在无人机搭载有多个摄像头时,用户的切换操作还可以实现对不同摄像头拍摄的图传画面的切换。在一种实施方式中,还可以根据当前显示的图传画面对应的目标摄像头,在罗盘中显示与所述目标摄像头的拍摄方向对应的扇形区域。可以继续参见图10,在图10所示的例子中,可以通过扇形区域的位置获知当前所显示的图传画面为后视摄像头的图传画面。
下面是本申请实施例提供的第二种无人机控制方法的其他实施方式。
可选的,所述方法还包括:
获取所述无人机的作业区域;
控制所述无人机在所述作业区域根据第一航线与第二航线进行飞行作业,其中,所述第一航线是根据所述作业区域的边界生成的,所述第二航线用于对所述作业区域进行扫边。
可选的,所述第二航线是根据所述作业区域的边界以及所述无人机的喷幅生成的。
可选的,根据所述作业区域的边界以及所述无人机的喷幅生成所述第二航线,包括:
根据所述无人机的喷幅对所述作业区域的边界进行统一内缩,并基于内缩后的所述作业区域的边界生成所述第二航线。
可选的,所述统一内缩的距离包括所述无人机的喷幅的一半。
可选的,所述控制所述无人机在所述作业区域根据第一航线与第二航线进行飞行作业,包括:
控制所述无人机在所述第一航线的指定航线段停止喷洒。
可选的,所述指定航线段通过以下方式确定:
根据所述无人机的喷幅与所述作业区域的边界,确定所述无人机通过扫边作业所能覆盖的喷洒区域,并将所述第一航线位于所述喷洒区域内的航线段确定为所述指定航线段。
可选的,所述第一航线至少包括第一子航线、第二子航线与过渡线,所述第一子航线与所述第二子航线通过所述过渡线进行连接。
可选的,所述指定航线段包括所述过渡线。
可选的,所述方法还包括:
在所述地图模型中标识所述第一航线。
可选的,所述在所述地图模型中标识所述第一航线,包括:
在所述地图模型中对所述第一航线中的所述指定航线段、进行喷洒的航线段以及已完成喷洒的航线段分别以不同的颜色进行标识。
由于以上的实施方式在前文中已有相应说明,因此在此不再赘述。
本申请实施例提供的第二种无人机控制方法,可以在确定无人机周边无障碍物且满足预设条件时提高罗盘的显示透明度,在确保飞行安全的前提下使罗盘背后的图传画面或地图模型不会被遮挡,为用户查看图传画面或地图模型提供了便利。
下面可以参考图14,图14是本申请实施例提供的无人机控制装置的结构示意图。本申请实施例提供的无人机控制装置可以包括:处理器1401和存储有计算机程序的存储器1402。
对于本申请实施例提供的第一种无人机控制装置,其处理器在执行存储器存储的计算机程序时可以实现以下步骤:
在控制终端的显示界面上显示地图模型,在所述地图模型上标识所述无人机的作业区域;
根据用户在所述作业区域以外的其它区域创建障碍物的操作,在所述地图模型上标识所创建的障碍物对应的区域;
若需要所述无人机在所述作业区域外的第一位置与所述作业区域内的第二位置之间飞行时,根据所述第一位置、所述第二位置以及所述障碍物对应的区域生成目标航线,并控制所述无人机根据所述目标航线飞行;其中,所述第一位置包括返航点或起飞点,所述第二位置为所述作业区域内的任一航点。
可选的,所述处理器在根据用户在所述作业区域以外的其它区域创建障碍物的操作,在所述地图模型上标识所述障碍物对应的区域时用于,获取用户在所述作业区域以外的其它区域通过触摸选择的点位;以所述点位为中心生成障碍物对应的区域。
可选的,所述处理器在以所述点位为中心生成障碍物对应的区域时用于,根据用户输入的形状参数和尺寸参数,以所述点位为中心生成形状与所述形状参数匹配、尺寸与所述尺寸参数匹配的障碍物对应的区域。
可选的,所述处理器在根据所述第一位置、所述第二位置以及所述障碍物对应的区域生成目标航线时用于,根据所述第一位置、所述第二位置、所述障碍物对应的区域以及用户在所述地图模型上添加的途经点位生成目标航线。
可选的,所述目标航线与所述障碍物对应的区域无交集。
可选的,所述第二位置包括所述作业区域内作业起点或作业终点。
可选的,所述处理器还用于,当所述无人机飞行至所述作业区域时,控制所述无人机在所述作业区域根据第一航线与第二航线进行飞行作业,其中,所述第一航线是根据所述作业区域的边界生成的,所述第二航线用于对所述作业区域进行扫边。
可选的,所述第二航线是根据所述作业区域的边界以及所述无人机的喷幅生成的。
可选的,所述处理器在根据所述作业区域的边界以及所述无人机的喷幅生成所述第二航线时用于,根据所述无人机的喷幅对所述作业区域的边界进行统一内缩,并基于内缩后的所述作业区域的边界生成所述第二航线。
可选的,所述统一内缩的距离包括所述无人机的喷幅的一半。
可选的,所述处理器在控制所述无人机在所述作业区域根据第一航线与第二航线进行飞行作业时用于,控制所述无人机在所述第一航线的指定航线段停止喷洒。
可选的,所述处理器在确定所述指定航线段时用于,根据所述无人机的喷幅与所述作业区域的边界,确定所述无人机通过扫边作业所能覆盖的喷洒区域,并将所述第一航线位于所述喷洒区域内的航线段确定为所述指定航线段。
可选的,所述第一航线至少包括第一子航线、第二子航线与过渡线,所述第一子航线与所述第二子航线通过所述过渡线进行连接。
可选的,所述指定航线段包括所述过渡线。
可选的,所述处理器还用于,在所述地图模型中标识所述第一航线。
可选的,所述处理器在所述地图模型中标识所述第一航线时用于,在所述地图模型中对所述第一航线的所述指定航线段、进行喷洒的航线段以及已完成喷洒的航线段分别以不同的颜色进行标识。
以上提供了第一种无人机控制装置的多种实施方式,其具体实现可以参考前文中的相关说明,在此不再赘述。
本申请实施例提供的第一种无人机控制装置,可以获取用户在作业区域以外的其它区域创建障碍物的操作,从而根据所创建的障碍物对应的区域、作业区域外的第一位置与作业区域内的第二位置生成目标航线,控制无人机沿所述目标航线飞行,使无人机可以安全、快速的绕开障碍物对应的区域,快速到达目的地。
对于本申请实施例提供的第二种无人机控制装置,其处理器在执行存储器存储的计算机程序时可以实现以下步骤:
获取通过无人机上搭载的雷达探测的所述无人机周边360度的障碍物信息,并获取所述无人机上搭载的摄像头拍摄的图传画面;
在控制终端的显示界面上显示所述图传画面或地图模型,并在所述图传画面或所述地图模型上叠加显示用于指示所述无人机的飞行方向的罗盘;
以所述罗盘的中心模拟所述无人机的位置,在所述罗盘的360度空间内对应显示所述无人机周边360度的障碍物信息;
当根据所述障碍物信息确定所述无人机周边无障碍物且满足预设条件时,提高所述罗盘的显示透明度。
可选的,所述预设条件包括在第一预设时长内在所述无人机周边均未探测到障碍物,和/或,在第二预设时长内未感应到用户对所述罗盘的激活操作。
可选的,所述障碍物信息至少包括障碍物方向及障碍物距离。
可选的,所述处理器还用于,当根据所述障碍物信息确定所述无人机的上方存在障碍物时,在所述显示界面的上方显示有色区域,所述有色区域用于提示所述无人机上方存在障碍物。
可选的,所述有色区域的上部宽度大于下部宽度。
可选的,所述处理器在所述显示界面的上方显示有色区域时用于,根据所述障碍物信息确定所述无人机上方的障碍物对应的障碍物距离;根据所述障碍物距离,确定待显示的有色区域在竖直方向上的长度,其中,所述障碍物距离越近,所述待显示的有色区域的在竖直方向上的长度越长;将所述待显示的有色区域在所述显示界面上方显示。
可选的,所述罗盘的360度空间被划分为多个对应不同方向的扇区,所述处理器在所述罗盘的360度空间内对应显示所述无人机周边360度的障碍物信息时用于,针对所述无人机周边的任一障碍物,在所述障碍物的障碍物方向对应的扇区上显示所述障碍物的障碍物距离。
可选的,所述无人机搭载有多个所述摄像头,不同的所述摄像头对应不同的拍摄方向。
可选的,所述处理器还用于,在所述无人机以固定偏航角沿航线进行飞行作业时,根据所述无人机的飞行方向,切换显示拍摄方向与所述飞行方向匹配的摄像头拍摄的图传画面。
可选的,所述处理器还用于,根据用户的切换操作,在所述控制终端的显示界面上切换显示不同摄像头拍摄的图传画面。
可选的,所述处理器还用于,根据当前显示的图传画面对应的目标摄像头,在所述罗盘中显示与所述目标摄像头的拍摄方向对应的扇形区域。
可选的,所述处理器还用于,获取所述无人机的作业区域;控制所述无人机在所述作业区域根据第一航线与第二航线进行飞行作业,其中,所述第一航线是根据所述作业区域的边界生成的,所述第二航线用于对所述作业区域进行扫边。
可选的,所述第二航线是根据所述作业区域的边界以及所述无人机的喷幅生成的。
可选的,所述处理器在根据所述作业区域的边界以及所述无人机的喷幅生成所述第二航线时用于,根据所述无人机的喷幅对所述作业区域的边界进行统一内缩,并基于内缩后的所述作业区域的边界生成所述第二航线。
可选的,所述统一内缩的距离包括所述无人机的喷幅的一半。
可选的,所述处理器在控制所述无人机在所述作业区域根据第一航线与第二航线进行飞行作业时用于,控制所述无人机在所述第一航线的指定航线段停止喷洒。
可选的,所述处理器在确定所述指定航线段时用于,根据所述无人机的喷幅与所述作业区域的边界,确定所述无人机通过扫边作业所能覆盖的喷洒区域,并将所述第一航线位于所述喷洒区域内的航线段确定为所述指定航线段。
可选的,所述第一航线至少包括第一子航线、第二子航线与过渡线,所述第一子航线与所述第二子航线通过所述过渡线进行连接。
可选的,所述指定航线段包括所述过渡线。
可选的,所述处理器还用于,在所述地图模型中标识所述第一航线。
可选的,所述处理器在所述地图模型中标识所述第一航线时用于,在所述地图模型中对所述第一航线中的所述指定航线段、进行喷洒的航线段以及已完成喷洒的航线段分别以不同的颜色进行标识。
以上提供了第二种无人机控制装置的多种实施方式,其具体实现可以参考前文中的相关说明,在此不再赘述。
本申请实施例提供的第二种无人机控制方法,可以在确定无人机周边无障碍物且满足预设条件时提高罗盘的显示透明度,在确保飞行安全的前提下使罗盘背后的图传画面或地图模型不会被遮挡,为用户查看图传画面或地图模型提供了便利。
下面可以参考图15,图15是本申请实施例提供的控制终端的结构示意图。
本申请实施例提供的控制终端可以包括:显示装置1501、天线装置1502、处理器 1503和存储有计算机程序的存储器1504;其中,所述天线装置用于与无人机建立通信。
对于本申请实施例提供的第一种控制终端,其处理器在执行存储器存储的计算机程序时可以实现以下步骤:
通过所述显示装置在所述控制终端的显示界面上显示地图模型,在所述地图模型上标识所述无人机的作业区域;
根据用户在所述作业区域以外的其它区域创建障碍物的操作,在所述地图模型上标识所创建的障碍物对应的区域;
若需要所述无人机在所述作业区域外的第一位置与所述作业区域内的第二位置之间飞行时,根据所述第一位置、所述第二位置以及所述障碍物对应的区域生成目标航线,并控制所述无人机根据所述目标航线飞行;其中,所述第一位置包括返航点或起飞点,所述第二位置为所述作业区域内的任一航点。
可选的,所述处理器在根据用户在所述作业区域以外的其它区域创建障碍物的操作,在所述地图模型上标识所述障碍物对应的区域时用于,获取用户在所述作业区域以外的其它区域通过触摸选择的点位;以所述点位为中心生成障碍物对应的区域。
可选的,所述处理器在以所述点位为中心生成障碍物对应的区域时用于,根据用户输入的形状参数和尺寸参数,以所述点位为中心生成形状与所述形状参数匹配、尺寸与所述尺寸参数匹配的障碍物对应的区域。
可选的,所述处理器在根据所述第一位置、所述第二位置以及所述障碍物对应的区域生成目标航线时用于,根据所述第一位置、所述第二位置、所述障碍物对应的区域以及用户在所述地图模型上添加的途经点位生成目标航线。
可选的,所述目标航线与所述障碍物对应的区域无交集。
可选的,所述第二位置包括所述作业区域内作业起点或作业终点。
可选的,所述处理器还用于,当所述无人机飞行至所述作业区域时,控制所述无人机在所述作业区域根据第一航线与第二航线进行飞行作业,其中,所述第一航线是根据所述作业区域的边界生成的,所述第二航线用于对所述作业区域进行扫边。
可选的,所述第二航线是根据所述作业区域的边界以及所述无人机的喷幅生成的。
可选的,所述处理器在根据所述作业区域的边界以及所述无人机的喷幅生成所述第二航线时用于,根据所述无人机的喷幅对所述作业区域的边界进行统一内缩,并基于内缩后的所述作业区域的边界生成所述第二航线。
可选的,所述统一内缩的距离包括所述无人机的喷幅的一半。
可选的,所述处理器在控制所述无人机在所述作业区域根据第一航线与第二航线 进行飞行作业时用于,控制所述无人机在所述第一航线的指定航线段停止喷洒。
可选的,所述处理器在确定所述指定航线段时用于,根据所述无人机的喷幅与所述作业区域的边界,确定所述无人机通过扫边作业所能覆盖的喷洒区域,并将所述第一航线位于所述喷洒区域内的航线段确定为所述指定航线段。
可选的,所述第一航线至少包括第一子航线、第二子航线与过渡线,所述第一子航线与所述第二子航线通过所述过渡线进行连接。
可选的,所述指定航线段包括所述过渡线。
可选的,所述处理器还用于,在所述地图模型中标识所述第一航线。
可选的,所述处理器在所述地图模型中标识所述第一航线时用于,在所述地图模型中对所述第一航线的所述指定航线段、进行喷洒的航线段以及已完成喷洒的航线段分别以不同的颜色进行标识。
以上提供了第一种控制终端的多种实施方式,其具体实现可以参考前文中的相关说明,在此不再赘述。
本申请实施例提供的第一种控制终端,可以获取用户在作业区域以外的其它区域创建障碍物的操作,从而根据所创建的障碍物对应的区域、作业区域外的第一位置与作业区域内的第二位置生成目标航线,控制无人机沿所述目标航线飞行,使无人机可以安全、快速的绕开障碍物对应的区域,快速到达目的地。
对于本申请实施例提供的第二种控制终端,其天线装置所连接的无人机可以搭载有雷达和摄像头,其处理器在执行存储器存储的计算机程序时可以实现以下步骤:
获取通过所述雷达探测的所述无人机周边360度的障碍物信息,并获取所述摄像头拍摄的图传画面;
通过所述显示装置在所述控制终端的显示界面上显示所述图传画面或地图模型,并在所述图传画面或所述地图模型上叠加显示用于指示所述无人机的飞行方向的罗盘;
以所述罗盘的中心模拟所述无人机的位置,在所述罗盘的360度空间内对应显示所述无人机周边360度的障碍物信息;
当根据所述障碍物信息确定所述无人机周边无障碍物且满足预设条件时,提高所述罗盘的显示透明度。
可选的,所述预设条件包括在第一预设时长内在所述无人机周边均未探测到障碍物,和/或,在第二预设时长内未感应到用户对所述罗盘的激活操作。
可选的,所述障碍物信息至少包括障碍物方向及障碍物距离。
可选的,所述处理器还用于,当根据所述障碍物信息确定所述无人机的上方存在障碍物时,在所述显示界面的上方显示有色区域,所述有色区域用于提示所述无人机上方存在障碍物。
可选的,所述有色区域的上部宽度大于下部宽度。
可选的,所述处理器在所述显示界面的上方显示有色区域时用于,根据所述障碍物信息确定所述无人机上方的障碍物对应的障碍物距离;根据所述障碍物距离,确定待显示的有色区域在竖直方向上的长度,其中,所述障碍物距离越近,所述待显示的有色区域的在竖直方向上的长度越长;将所述待显示的有色区域在所述显示界面上方显示。
可选的,所述罗盘的360度空间被划分为多个对应不同方向的扇区,所述处理器在所述罗盘的360度空间内对应显示所述无人机周边360度的障碍物信息时用于,针对所述无人机周边的任一障碍物,在所述障碍物的障碍物方向对应的扇区上显示所述障碍物的障碍物距离。
可选的,所述无人机搭载有多个所述摄像头,不同的所述摄像头对应不同的拍摄方向。
可选的,所述处理器还用于,在所述无人机以固定偏航角沿航线进行飞行作业时,根据所述无人机的飞行方向,切换显示拍摄方向与所述飞行方向匹配的摄像头拍摄的图传画面。
可选的,所述处理器还用于,根据用户的切换操作,在所述控制终端的显示界面上切换显示不同摄像头拍摄的图传画面。
可选的,所述处理器还用于,根据当前显示的图传画面对应的目标摄像头,在所述罗盘中显示与所述目标摄像头的拍摄方向对应的扇形区域。
可选的,所述处理器还用于,获取所述无人机的作业区域;控制所述无人机在所述作业区域根据第一航线与第二航线进行飞行作业,其中,所述第一航线是根据所述作业区域的边界生成的,所述第二航线用于对所述作业区域进行扫边。
可选的,所述第二航线是根据所述作业区域的边界以及所述无人机的喷幅生成的。
可选的,所述处理器在根据所述作业区域的边界以及所述无人机的喷幅生成所述第二航线时用于,根据所述无人机的喷幅对所述作业区域的边界进行统一内缩,并基于内缩后的所述作业区域的边界生成所述第二航线。
可选的,所述统一内缩的距离包括所述无人机的喷幅的一半。
可选的,所述处理器在控制所述无人机在所述作业区域根据第一航线与第二航线 进行飞行作业时用于,控制所述无人机在所述第一航线的指定航线段停止喷洒。
可选的,所述处理器在确定所述指定航线段时用于,根据所述无人机的喷幅与所述作业区域的边界,确定所述无人机通过扫边作业所能覆盖的喷洒区域,并将所述第一航线位于所述喷洒区域内的航线段确定为所述指定航线段。
可选的,所述第一航线至少包括第一子航线、第二子航线与过渡线,所述第一子航线与所述第二子航线通过所述过渡线进行连接。
可选的,所述指定航线段包括所述过渡线。
可选的,所述处理器还用于,在所述地图模型中标识所述第一航线。
可选的,所述处理器在所述地图模型中标识所述第一航线时用于,在所述地图模型中对所述第一航线中的所述指定航线段、进行喷洒的航线段以及已完成喷洒的航线段分别以不同的颜色进行标识。
以上提供了第二种控制终端的多种实施方式,其具体实现可以参考前文中的相关说明,在此不再赘述。
本申请实施例提供的第二种控制终端,可以在确定无人机周边无障碍物且满足预设条件时提高罗盘的显示透明度,在确保飞行安全的前提下使罗盘背后的图传画面或地图模型不会被遮挡,为用户查看图传画面或地图模型提供了便利。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例提供的第一种无人机控制方法。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例提供的第二种无人机控制方法。
以上针对每个保护主题均提供了多种实施方式,在不存在冲突或矛盾的基础上,本领域技术人员可以根据实际情况自由对各种实施方式进行组合,由此构成各种不同的技术方案。而本申请文件限于篇幅,未能对所有组合而得的技术方案展开说明,但可以理解的是,这些未能展开的技术方案也属于本申请实施例公开的范围。
本申请实施例可采用在一个或多个其中包含有程序代码的存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。计算机可用存储介质包括永久性和非永久性、可移动和非可移动媒体,可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括但不限于:相变内存(PRAM)、静态随机存取存储器 (SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本申请实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (113)

  1. 一种无人机控制方法,其特征在于,应用于控制终端,所述方法包括:
    在所述控制终端的显示界面上显示地图模型,在所述地图模型上标识所述无人机的作业区域;
    根据用户在所述作业区域以外的其它区域创建障碍物的操作,在所述地图模型上标识所创建的障碍物对应的区域;
    根据在所述作业区域外的第一位置、在所述作业区域内的第二位置以及所述障碍物对应的区域生成目标航线,并控制所述无人机根据所述目标航线飞行;其中,所述第一位置包括返航点或起飞点,所述第二位置为所述作业区域内的任一航点。
  2. 根据权利要求1所述的方法,其特征在于,所述根据用户在所述作业区域以外的其它区域创建障碍物的操作,在所述地图模型上标识所述障碍物对应的区域,包括:
    获取用户在所述作业区域以外的其它区域通过触摸选择的点位;
    以所述点位为中心生成障碍物对应的区域。
  3. 根据权利要求2所述的方法,其特征在于,所述以所述点位为中心生成障碍物对应的区域,包括:
    根据用户输入的形状参数和尺寸参数,以所述点位为中心生成形状与所述形状参数匹配、尺寸与所述尺寸参数匹配的障碍物对应的区域。
  4. 根据权利要求1所述的方法,其特征在于,所述根据在所述作业区域外的第一位置、在所述作业区域内的第二位置以及所述障碍物对应的区域生成目标航线,包括:
    根据在所述作业区域外的第一位置、在所述作业区域内的第二位置、所述障碍物对应的区域以及用户在所述地图模型上添加的途经点位生成目标航线。
  5. 根据权利要求1所述的方法,其特征在于,所述目标航线与所述障碍物对应的区域无交集。
  6. 根据权利要求1所述的方法,其特征在于,所述第二位置包括所述作业区域内作业起点或作业终点。
  7. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    当所述无人机飞行至所述作业区域时,控制所述无人机在所述作业区域根据第一航线与第二航线进行飞行作业,其中,所述第一航线是根据所述作业区域的边界生成的,所述第二航线用于对所述作业区域进行扫边。
  8. 根据权利要求7所述的方法,其特征在于,所述第二航线是根据所述作业区域的边界以及所述无人机的喷幅生成的。
  9. 根据权利要求8所述的方法,其特征在于,根据所述作业区域的边界以及所述无人机的喷幅生成所述第二航线,包括:
    根据所述无人机的喷幅对所述作业区域的边界进行统一内缩,并基于内缩后的所述作业区域的边界生成所述第二航线。
  10. 根据权利要求9所述的方法,其特征在于,所述统一内缩的距离包括所述无人机的喷幅的一半。
  11. 根据权利要求7所述的方法,其特征在于,所述控制所述无人机在所述作业区域根据第一航线与第二航线进行飞行作业,包括:
    控制所述无人机在所述第一航线的指定航线段停止喷洒。
  12. 根据权利要求11所述的方法,其特征在于,所述指定航线段通过以下方式确定:
    根据所述无人机的喷幅与所述作业区域的边界,确定所述无人机通过扫边作业所能覆盖的喷洒区域,并将所述第一航线位于所述喷洒区域内的航线段确定为所述指定航线段。
  13. 根据权利要求12所述的方法,其特征在于,所述第一航线至少包括第一子航线、第二子航线与过渡线,所述第一子航线与所述第二子航线通过所述过渡线进行连接。
  14. 根据权利要求13所述的方法,其特征在于,所述指定航线段包括所述过渡线。
  15. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    在所述地图模型中标识所述第一航线。
  16. 根据权利要求15所述的方法,其特征在于,所述在所述地图模型中标识所述第一航线,包括:
    在所述地图模型中对所述第一航线的所述指定航线段、进行喷洒的航线段以及已完成喷洒的航线段分别以不同的颜色进行标识。
  17. 一种无人机控制方法,其特征在于,所述无人机搭载有雷达和摄像头,所述方法应用于控制终端,所述控制终端用于与所述无人机进行远程通信,并接收所述无人机发送的图传画面,所述方法包括:
    获取通过所述雷达探测的所述无人机周边360度的障碍物信息,并获取所述摄像头拍摄的图传画面;
    在所述控制终端的显示界面上显示所述图传画面或地图模型,并在所述图传画面 或所述地图模型上叠加显示用于指示所述无人机的飞行方向的罗盘;
    以所述罗盘的中心模拟所述无人机的位置,在所述罗盘的360度空间内对应显示所述无人机周边360度的障碍物信息;
    当根据所述障碍物信息确定所述无人机周边无障碍物且满足预设条件时,提高所述罗盘的显示透明度。
  18. 根据权利要求17所述的方法,其特征在于,所述预设条件包括在第一预设时长内在所述无人机周边均未探测到障碍物,和/或,在第二预设时长内未感应到用户对所述罗盘的激活操作。
  19. 根据权利要求17所述的方法,其特征在于,所述障碍物信息至少包括障碍物方向及障碍物距离。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    当根据所述障碍物信息确定所述无人机的上方存在障碍物时,在所述显示界面的上方显示有色区域,所述有色区域用于提示所述无人机上方存在障碍物。
  21. 根据权利要求20所述的方法,其特征在于,所述有色区域的上部宽度大于下部宽度。
  22. 根据权利要求21所述的方法,其特征在于,所述在所述显示界面的上方显示有色区域,包括:
    根据所述障碍物信息确定所述无人机上方的障碍物对应的障碍物距离;
    根据所述障碍物距离,确定待显示的有色区域在竖直方向上的长度,其中,所述障碍物距离越近,所述待显示的有色区域的在竖直方向上的长度越长;
    将所述待显示的有色区域在所述显示界面上方显示。
  23. 根据权利要求19所述的方法,其特征在于,所述罗盘的360度空间被划分为多个对应不同方向的扇区,所述在所述罗盘的360度空间内对应显示所述无人机周边360度的障碍物信息,包括:
    针对所述无人机周边的任一障碍物,在所述障碍物的障碍物方向对应的扇区上显示所述障碍物的障碍物距离。
  24. 根据权利要求17所述的方法,其特征在于,所述无人机搭载有多个所述摄像头,不同的所述摄像头对应不同的拍摄方向。
  25. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    在所述无人机以固定偏航角沿航线进行飞行作业时,根据所述无人机的飞行方向,切换显示拍摄方向与所述飞行方向匹配的摄像头拍摄的图传画面。
  26. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    根据用户的切换操作,在所述控制终端的显示界面上切换显示不同摄像头拍摄的图传画面。
  27. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    根据当前显示的图传画面对应的目标摄像头,在所述罗盘中显示与所述目标摄像头的拍摄方向对应的扇形区域。
  28. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    获取所述无人机的作业区域;
    控制所述无人机在所述作业区域根据第一航线与第二航线进行飞行作业,其中,所述第一航线是根据所述作业区域的边界生成的,所述第二航线用于对所述作业区域进行扫边。
  29. 根据权利要求28所述的方法,其特征在于,所述第二航线是根据所述作业区域的边界以及所述无人机的喷幅生成的。
  30. 根据权利要求29所述的方法,其特征在于,根据所述作业区域的边界以及所述无人机的喷幅生成所述第二航线,包括:
    根据所述无人机的喷幅对所述作业区域的边界进行统一内缩,并基于内缩后的所述作业区域的边界生成所述第二航线。
  31. 根据权利要求30所述的方法,其特征在于,所述统一内缩的距离包括所述无人机的喷幅的一半。
  32. 根据权利要求28所述的方法,其特征在于,所述控制所述无人机在所述作业区域根据第一航线与第二航线进行飞行作业,包括:
    控制所述无人机在所述第一航线的指定航线段停止喷洒。
  33. 根据权利要求32所述的方法,其特征在于,所述指定航线段通过以下方式确定:
    根据所述无人机的喷幅与所述作业区域的边界,确定所述无人机通过扫边作业所能覆盖的喷洒区域,并将所述第一航线位于所述喷洒区域内的航线段确定为所述指定航线段。
  34. 根据权利要求32所述的方法,其特征在于,所述第一航线至少包括第一子航线、第二子航线与过渡线,所述第一子航线与所述第二子航线通过所述过渡线进行连接。
  35. 根据权利要求34所述的方法,其特征在于,所述指定航线段包括所述过渡线。
  36. 根据权利要求32所述的方法,其特征在于,所述方法还包括:
    在所述地图模型中标识所述第一航线。
  37. 根据权利要求36所述的方法,其特征在于,所述在所述地图模型中标识所述第一航线,包括:
    在所述地图模型中对所述第一航线中的所述指定航线段、进行喷洒的航线段以及已完成喷洒的航线段分别以不同的颜色进行标识。
  38. 一种无人机控制装置,其特征在于,包括:处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:
    在控制终端的显示界面上显示地图模型,在所述地图模型上标识所述无人机的作业区域;
    根据用户在所述作业区域以外的其它区域创建障碍物的操作,在所述地图模型上标识所创建的障碍物对应的区域;
    根据在所述作业区域外的第一位置、在所述作业区域内的第二位置以及所述障碍物对应的区域生成目标航线,并控制所述无人机根据所述目标航线飞行;其中,所述第一位置包括返航点或起飞点,所述第二位置为所述作业区域内的任一航点。
  39. 根据权利要求38所述的装置,其特征在于,所述处理器在根据用户在所述作业区域以外的其它区域创建障碍物的操作,在所述地图模型上标识所述障碍物对应的区域时用于,获取用户在所述作业区域以外的其它区域通过触摸选择的点位;以所述点位为中心生成障碍物对应的区域。
  40. 根据权利要求39所述的装置,其特征在于,所述处理器在以所述点位为中心生成障碍物对应的区域时用于,根据用户输入的形状参数和尺寸参数,以所述点位为中心生成形状与所述形状参数匹配、尺寸与所述尺寸参数匹配的障碍物对应的区域。
  41. 根据权利要求38所述的装置,其特征在于,所述处理器在根据在所述作业区域外的第一位置、在所述作业区域内的第二位置以及所述障碍物对应的区域生成目标航线时用于,根据在所述作业区域外的第一位置、在所述作业区域内的第二位置、所述障碍物对应的区域以及用户在所述地图模型上添加的途经点位生成目标航线。
  42. 根据权利要求38所述的装置,其特征在于,所述目标航线与所述障碍物对应的区域无交集。
  43. 根据权利要求38所述的装置,其特征在于,所述第二位置包括所述作业区域内作业起点或作业终点。
  44. 根据权利要求38所述的装置,其特征在于,所述处理器还用于,当所述无人机飞行至所述作业区域时,控制所述无人机在所述作业区域根据第一航线与第二航线进行飞行作业,其中,所述第一航线是根据所述作业区域的边界生成的,所述第二航线用于对所述作业区域进行扫边。
  45. 根据权利要求44所述的装置,其特征在于,所述第二航线是根据所述作业区域的边界以及所述无人机的喷幅生成的。
  46. 根据权利要求45所述的装置,其特征在于,所述处理器在根据所述作业区域的边界以及所述无人机的喷幅生成所述第二航线时用于,根据所述无人机的喷幅对所述作业区域的边界进行统一内缩,并基于内缩后的所述作业区域的边界生成所述第二航线。
  47. 根据权利要求46所述的装置,其特征在于,所述统一内缩的距离包括所述无人机的喷幅的一半。
  48. 根据权利要求44所述的装置,其特征在于,所述处理器在控制所述无人机在所述作业区域根据第一航线与第二航线进行飞行作业时用于,控制所述无人机在所述第一航线的指定航线段停止喷洒。
  49. 根据权利要求48所述的装置,其特征在于,所述处理器在确定所述指定航线段时用于,根据所述无人机的喷幅与所述作业区域的边界,确定所述无人机通过扫边作业所能覆盖的喷洒区域,并将所述第一航线位于所述喷洒区域内的航线段确定为所述指定航线段。
  50. 根据权利要求49所述的装置,其特征在于,所述第一航线至少包括第一子航线、第二子航线与过渡线,所述第一子航线与所述第二子航线通过所述过渡线进行连接。
  51. 根据权利要求50所述的装置,其特征在于,所述指定航线段包括所述过渡线。
  52. 根据权利要求48所述的装置,其特征在于,所述处理器还用于,在所述地图模型中标识所述第一航线。
  53. 根据权利要求52所述的装置,其特征在于,所述处理器在所述地图模型中标识所述第一航线时用于,在所述地图模型中对所述第一航线的所述指定航线段、进行喷洒的航线段以及已完成喷洒的航线段分别以不同的颜色进行标识。
  54. 一种无人机控制装置,其特征在于,包括:处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:
    获取通过无人机上搭载的雷达探测的所述无人机周边360度的障碍物信息,并获取所述无人机上搭载的摄像头拍摄的图传画面;
    在控制终端的显示界面上显示所述图传画面或地图模型,并在所述图传画面或所述地图模型上叠加显示用于指示所述无人机的飞行方向的罗盘;
    以所述罗盘的中心模拟所述无人机的位置,在所述罗盘的360度空间内对应显示所述无人机周边360度的障碍物信息;
    当根据所述障碍物信息确定所述无人机周边无障碍物且满足预设条件时,提高所述罗盘的显示透明度。
  55. 根据权利要求54所述的装置,其特征在于,所述预设条件包括在第一预设时长内在所述无人机周边均未探测到障碍物,和/或,在第二预设时长内未感应到用户对所述罗盘的激活操作。
  56. 根据权利要求54所述的装置,其特征在于,所述障碍物信息至少包括障碍物方向及障碍物距离。
  57. 根据权利要求56所述的装置,其特征在于,所述处理器还用于,当根据所述障碍物信息确定所述无人机的上方存在障碍物时,在所述显示界面的上方显示有色区域,所述有色区域用于提示所述无人机上方存在障碍物。
  58. 根据权利要求57所述的装置,其特征在于,所述有色区域的上部宽度大于下部宽度。
  59. 根据权利要求58所述的装置,其特征在于,所述处理器在所述显示界面的上方显示有色区域时用于,根据所述障碍物信息确定所述无人机上方的障碍物对应的障碍物距离;根据所述障碍物距离,确定待显示的有色区域在竖直方向上的长度,其中,所述障碍物距离越近,所述待显示的有色区域的在竖直方向上的长度越长;将所述待显示的有色区域在所述显示界面上方显示。
  60. 根据权利要求56所述的装置,其特征在于,所述罗盘的360度空间被划分为多个对应不同方向的扇区,所述处理器在所述罗盘的360度空间内对应显示所述无人机周边360度的障碍物信息时用于,针对所述无人机周边的任一障碍物,在所述障碍物的障碍物方向对应的扇区上显示所述障碍物的障碍物距离。
  61. 根据权利要求54所述的装置,其特征在于,所述无人机搭载有多个所述摄像头,不同的所述摄像头对应不同的拍摄方向。
  62. 根据权利要求61所述的装置,其特征在于,所述处理器还用于,在所述无人机以固定偏航角沿航线进行飞行作业时,根据所述无人机的飞行方向,切换显示拍摄 方向与所述飞行方向匹配的摄像头拍摄的图传画面。
  63. 根据权利要求61所述的装置,其特征在于,所述处理器还用于,根据用户的切换操作,在所述控制终端的显示界面上切换显示不同摄像头拍摄的图传画面。
  64. 根据权利要求61所述的装置,其特征在于,所述处理器还用于,根据当前显示的图传画面对应的目标摄像头,在所述罗盘中显示与所述目标摄像头的拍摄方向对应的扇形区域。
  65. 根据权利要求54所述的装置,其特征在于,所述处理器还用于,获取所述无人机的作业区域;控制所述无人机在所述作业区域根据第一航线与第二航线进行飞行作业,其中,所述第一航线是根据所述作业区域的边界生成的,所述第二航线用于对所述作业区域进行扫边。
  66. 根据权利要求65所述的装置,其特征在于,所述第二航线是根据所述作业区域的边界以及所述无人机的喷幅生成的。
  67. 根据权利要求66所述的装置,其特征在于,所述处理器在根据所述作业区域的边界以及所述无人机的喷幅生成所述第二航线时用于,根据所述无人机的喷幅对所述作业区域的边界进行统一内缩,并基于内缩后的所述作业区域的边界生成所述第二航线。
  68. 根据权利要求67所述的装置,其特征在于,所述统一内缩的距离包括所述无人机的喷幅的一半。
  69. 根据权利要求65所述的装置,其特征在于,所述处理器在控制所述无人机在所述作业区域根据第一航线与第二航线进行飞行作业时用于,控制所述无人机在所述第一航线的指定航线段停止喷洒。
  70. 根据权利要求69所述的装置,其特征在于,所述处理器在确定所述指定航线段时用于,根据所述无人机的喷幅与所述作业区域的边界,确定所述无人机通过扫边作业所能覆盖的喷洒区域,并将所述第一航线位于所述喷洒区域内的航线段确定为所述指定航线段。
  71. 根据权利要求69所述的装置,其特征在于,所述第一航线至少包括第一子航线、第二子航线与过渡线,所述第一子航线与所述第二子航线通过所述过渡线进行连接。
  72. 根据权利要求71所述的装置,其特征在于,所述指定航线段包括所述过渡线。
  73. 根据权利要求69所述的装置,其特征在于,所述处理器还用于,在所述地图模型中标识所述第一航线。
  74. 根据权利要求73所述的装置,其特征在于,所述处理器在所述地图模型中标识所述第一航线时用于,在所述地图模型中对所述第一航线中的所述指定航线段、进行喷洒的航线段以及已完成喷洒的航线段分别以不同的颜色进行标识。
  75. 一种控制终端,其特征在于,包括:显示装置、天线装置、处理器和存储有计算机程序的存储器;
    所述天线装置用于与无人机建立通信;
    所述处理器在执行所述计算机程序时实现以下步骤:
    通过所述显示装置在所述控制终端的显示界面上显示地图模型,在所述地图模型上标识所述无人机的作业区域;
    根据用户在所述作业区域以外的其它区域创建障碍物的操作,在所述地图模型上标识所创建的障碍物对应的区域;
    根据在所述作业区域外的第一位置、在所述作业区域内的第二位置以及所述障碍物对应的区域生成目标航线,并控制所述无人机根据所述目标航线飞行;其中,所述第一位置包括返航点或起飞点,所述第二位置为所述作业区域内的任一航点。
  76. 根据权利要求75所述的控制终端,其特征在于,所述处理器在根据用户在所述作业区域以外的其它区域创建障碍物的操作,在所述地图模型上标识所述障碍物对应的区域时用于,获取用户在所述作业区域以外的其它区域通过触摸选择的点位;以所述点位为中心生成障碍物对应的区域。
  77. 根据权利要求76所述的控制终端,其特征在于,所述处理器在以所述点位为中心生成障碍物对应的区域时用于,根据用户输入的形状参数和尺寸参数,以所述点位为中心生成形状与所述形状参数匹配、尺寸与所述尺寸参数匹配的障碍物对应的区域。
  78. 根据权利要求75所述的控制终端,其特征在于,所述处理器在根据在所述作业区域外的第一位置、在所述作业区域内的第二位置以及所述障碍物对应的区域生成目标航线时用于,根据在所述作业区域外的第一位置、在所述作业区域内的第二位置、所述障碍物对应的区域以及用户在所述地图模型上添加的途经点位生成目标航线。
  79. 根据权利要求75所述的控制终端,其特征在于,所述目标航线与所述障碍物对应的区域无交集。
  80. 根据权利要求75所述的控制终端,其特征在于,所述第二位置包括所述作业区域内作业起点或作业终点。
  81. 根据权利要求75所述的控制终端,其特征在于,所述处理器还用于,当所述无人机飞行至所述作业区域时,控制所述无人机在所述作业区域根据第一航线与第二航线进行飞行作业,其中,所述第一航线是根据所述作业区域的边界生成的,所述第二航线用于对所述作业区域进行扫边。
  82. 根据权利要求81所述的控制终端,其特征在于,所述第二航线是根据所述作业区域的边界以及所述无人机的喷幅生成的。
  83. 根据权利要求82所述的控制终端,其特征在于,所述处理器在根据所述作业区域的边界以及所述无人机的喷幅生成所述第二航线时用于,根据所述无人机的喷幅对所述作业区域的边界进行统一内缩,并基于内缩后的所述作业区域的边界生成所述第二航线。
  84. 根据权利要求83所述的控制终端,其特征在于,所述统一内缩的距离包括所述无人机的喷幅的一半。
  85. 根据权利要求81所述的控制终端,其特征在于,所述处理器在控制所述无人机在所述作业区域根据第一航线与第二航线进行飞行作业时用于,控制所述无人机在所述第一航线的指定航线段停止喷洒。
  86. 根据权利要求85所述的控制终端,其特征在于,所述处理器在确定所述指定航线段时用于,根据所述无人机的喷幅与所述作业区域的边界,确定所述无人机通过扫边作业所能覆盖的喷洒区域,并将所述第一航线位于所述喷洒区域内的航线段确定为所述指定航线段。
  87. 根据权利要求86所述的控制终端,其特征在于,所述第一航线至少包括第一子航线、第二子航线与过渡线,所述第一子航线与所述第二子航线通过所述过渡线进行连接。
  88. 根据权利要求87所述的控制终端,其特征在于,所述指定航线段包括所述过渡线。
  89. 根据权利要求85所述的控制终端,其特征在于,所述处理器还用于,在所述地图模型中标识所述第一航线。
  90. 根据权利要求89所述的控制终端,其特征在于,所述处理器在所述地图模型中标识所述第一航线时用于,在所述地图模型中对所述第一航线的所述指定航线段、进行喷洒的航线段以及已完成喷洒的航线段分别以不同的颜色进行标识。
  91. 一种控制终端,其特征在于,包括:显示装置、天线装置、处理器和存储有 计算机程序的存储器;
    所述天线装置用于与无人机建立通信,所述无人机搭载有雷达和摄像头;
    所述处理器在执行所述计算机程序时实现以下步骤:
    获取通过所述雷达探测的所述无人机周边360度的障碍物信息,并获取所述摄像头拍摄的图传画面;
    通过所述显示装置在所述控制终端的显示界面上显示所述图传画面或地图模型,并在所述图传画面或所述地图模型上叠加显示用于指示所述无人机的飞行方向的罗盘;
    以所述罗盘的中心模拟所述无人机的位置,在所述罗盘的360度空间内对应显示所述无人机周边360度的障碍物信息;
    当根据所述障碍物信息确定所述无人机周边无障碍物且满足预设条件时,提高所述罗盘的显示透明度。
  92. 根据权利要求91所述的控制终端,其特征在于,所述预设条件包括在第一预设时长内在所述无人机周边均未探测到障碍物,和/或,在第二预设时长内未感应到用户对所述罗盘的激活操作。
  93. 根据权利要求91所述的控制终端,其特征在于,所述障碍物信息至少包括障碍物方向及障碍物距离。
  94. 根据权利要求93所述的控制终端,其特征在于,所述处理器还用于,当根据所述障碍物信息确定所述无人机的上方存在障碍物时,在所述显示界面的上方显示有色区域,所述有色区域用于提示所述无人机上方存在障碍物。
  95. 根据权利要求94所述的控制终端,其特征在于,所述有色区域的上部宽度大于下部宽度。
  96. 根据权利要求95所述的控制终端,其特征在于,所述处理器在所述显示界面的上方显示有色区域时用于,根据所述障碍物信息确定所述无人机上方的障碍物对应的障碍物距离;根据所述障碍物距离,确定待显示的有色区域在竖直方向上的长度,其中,所述障碍物距离越近,所述待显示的有色区域的在竖直方向上的长度越长;将所述待显示的有色区域在所述显示界面上方显示。
  97. 根据权利要求93所述的控制终端,其特征在于,所述罗盘的360度空间被划分为多个对应不同方向的扇区,所述处理器在所述罗盘的360度空间内对应显示所述无人机周边360度的障碍物信息时用于,针对所述无人机周边的任一障碍物,在所述障碍物的障碍物方向对应的扇区上显示所述障碍物的障碍物距离。
  98. 根据权利要求91所述的控制终端,其特征在于,所述无人机搭载有多个所述摄像头,不同的所述摄像头对应不同的拍摄方向。
  99. 根据权利要求98所述的控制终端,其特征在于,所述处理器还用于,在所述无人机以固定偏航角沿航线进行飞行作业时,根据所述无人机的飞行方向,切换显示拍摄方向与所述飞行方向匹配的摄像头拍摄的图传画面。
  100. 根据权利要求98所述的控制终端,其特征在于,所述处理器还用于,根据用户的切换操作,在所述控制终端的显示界面上切换显示不同摄像头拍摄的图传画面。
  101. 根据权利要求98所述的控制终端,其特征在于,所述处理器还用于,根据当前显示的图传画面对应的目标摄像头,在所述罗盘中显示与所述目标摄像头的拍摄方向对应的扇形区域。
  102. 根据权利要求91所述的控制终端,其特征在于,所述处理器还用于,获取所述无人机的作业区域;控制所述无人机在所述作业区域根据第一航线与第二航线进行飞行作业,其中,所述第一航线是根据所述作业区域的边界生成的,所述第二航线用于对所述作业区域进行扫边。
  103. 根据权利要求102所述的控制终端,其特征在于,所述第二航线是根据所述作业区域的边界以及所述无人机的喷幅生成的。
  104. 根据权利要求103所述的控制终端,其特征在于,所述处理器在根据所述作业区域的边界以及所述无人机的喷幅生成所述第二航线时用于,根据所述无人机的喷幅对所述作业区域的边界进行统一内缩,并基于内缩后的所述作业区域的边界生成所述第二航线。
  105. 根据权利要求104所述的控制终端,其特征在于,所述统一内缩的距离包括所述无人机的喷幅的一半。
  106. 根据权利要求102所述的控制终端,其特征在于,所述处理器在控制所述无人机在所述作业区域根据第一航线与第二航线进行飞行作业时用于,控制所述无人机在所述第一航线的指定航线段停止喷洒。
  107. 根据权利要求106所述的控制终端,其特征在于,所述处理器在确定所述指定航线段时用于,根据所述无人机的喷幅与所述作业区域的边界,确定所述无人机通过扫边作业所能覆盖的喷洒区域,并将所述第一航线位于所述喷洒区域内的航线段确定为所述指定航线段。
  108. 根据权利要求106所述的控制终端,其特征在于,所述第一航线至少包括第一子航线、第二子航线与过渡线,所述第一子航线与所述第二子航线通过所述过渡线 进行连接。
  109. 根据权利要求108所述的控制终端,其特征在于,所述指定航线段包括所述过渡线。
  110. 根据权利要求106所述的控制终端,其特征在于,所述处理器还用于,在所述地图模型中标识所述第一航线。
  111. 根据权利要求110所述的控制终端,其特征在于,所述处理器在所述地图模型中标识所述第一航线时用于,在所述地图模型中对所述第一航线中的所述指定航线段、进行喷洒的航线段以及已完成喷洒的航线段分别以不同的颜色进行标识。
  112. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-16任一项所述的方法。
  113. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求17-37任一项所述的方法。
PCT/CN2020/127567 2020-11-09 2020-11-09 无人机控制方法、装置与控制终端 WO2022095038A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/127567 WO2022095038A1 (zh) 2020-11-09 2020-11-09 无人机控制方法、装置与控制终端
CN202080081370.6A CN114787740A (zh) 2020-11-09 2020-11-09 无人机控制方法、装置与控制终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/127567 WO2022095038A1 (zh) 2020-11-09 2020-11-09 无人机控制方法、装置与控制终端

Publications (1)

Publication Number Publication Date
WO2022095038A1 true WO2022095038A1 (zh) 2022-05-12

Family

ID=81458535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127567 WO2022095038A1 (zh) 2020-11-09 2020-11-09 无人机控制方法、装置与控制终端

Country Status (2)

Country Link
CN (1) CN114787740A (zh)
WO (1) WO2022095038A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106716288A (zh) * 2016-11-24 2017-05-24 深圳市大疆创新科技有限公司 农业无人飞行器的控制方法、地面控制端及存储介质
CN106980323A (zh) * 2016-10-28 2017-07-25 易瓦特科技股份公司 一种控制无人机的系统
CN109343567A (zh) * 2018-11-06 2019-02-15 深圳市翔农创新科技有限公司 植保无人机精准作业系统及方法
CN110471442A (zh) * 2018-09-24 2019-11-19 深圳市道通智能航空技术有限公司 一种目标观察方法、相关设备及系统
CN110832494A (zh) * 2018-11-22 2020-02-21 深圳市大疆创新科技有限公司 一种语义生成方法、设备、飞行器及存储介质
US20200317339A1 (en) * 2017-12-19 2020-10-08 Hanwha Defense Co., Ltd. Wireless communication relay system using unmanned device and method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106980323A (zh) * 2016-10-28 2017-07-25 易瓦特科技股份公司 一种控制无人机的系统
CN106716288A (zh) * 2016-11-24 2017-05-24 深圳市大疆创新科技有限公司 农业无人飞行器的控制方法、地面控制端及存储介质
US20200317339A1 (en) * 2017-12-19 2020-10-08 Hanwha Defense Co., Ltd. Wireless communication relay system using unmanned device and method therefor
CN110471442A (zh) * 2018-09-24 2019-11-19 深圳市道通智能航空技术有限公司 一种目标观察方法、相关设备及系统
CN109343567A (zh) * 2018-11-06 2019-02-15 深圳市翔农创新科技有限公司 植保无人机精准作业系统及方法
CN110832494A (zh) * 2018-11-22 2020-02-21 深圳市大疆创新科技有限公司 一种语义生成方法、设备、飞行器及存储介质

Also Published As

Publication number Publication date
CN114787740A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
US20220381561A1 (en) Ground control point assignment and determination system
US20200302804A1 (en) Method and device for setting a flight route
US20200255143A1 (en) Three-dimensional reconstruction method, system and apparatus based on aerial photography by unmanned aerial vehicle
US20240160209A1 (en) Aerial operation support and real-time management
US10724505B2 (en) Aerial inspection in a movable object environment
US11467179B2 (en) Wind estimation system, wind estimation method, and program
Scherer et al. Flying fast and low among obstacles
WO2018094670A1 (zh) 农业无人飞行器的控制方法、地面控制端及存储介质
WO2021008264A1 (zh) 一种无人机的植保喷洒方法、无人机及存储介质
WO2018090208A1 (zh) 基于三维地图的导航方法和设备
US20190094861A1 (en) Unmanned aerial vehicle and method for operating an unmanned aerial vehicle
WO2022104848A1 (zh) 快速测绘方法和装置
KR102096262B1 (ko) 무인 항공기의 비행 시뮬레이션 장치 및 이를 이용한 무인 항공기 비행 시뮬레이션 시스템
CN109154499A (zh) 用于增强立体显示的系统和方法
US10717528B1 (en) Automatic flying delivery drone in precalculated flight routes and method for delivering merchandises
US20220260998A1 (en) Navigating a Mobile Robot
CN106462161A (zh) 自主型移动机器人
CN108594843A (zh) 无人机自主飞行方法、装置及无人机
WO2020220195A1 (zh) 无人机的控制方法、设备、喷洒系统、无人机及存储介质
KR20210104684A (ko) 측량 및 매핑 시스템, 측량 및 매핑 방법, 장치 및 기기
JP6829513B1 (ja) 位置算出方法及び情報処理システム
CN110209202A (zh) 一种可行空间生成方法、装置、飞行器及飞行器系统
CN111386508A (zh) 喷洒无人机的避障控制方法、装置、设备及存储介质
CN109407706A (zh) 无人机控制方法和装置
CN207020537U (zh) 一种无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960495

Country of ref document: EP

Kind code of ref document: A1