WO2022094752A1 - 基于异质结分层结构的有机晶体管射线探测器及其制备方法 - Google Patents

基于异质结分层结构的有机晶体管射线探测器及其制备方法 Download PDF

Info

Publication number
WO2022094752A1
WO2022094752A1 PCT/CN2020/126140 CN2020126140W WO2022094752A1 WO 2022094752 A1 WO2022094752 A1 WO 2022094752A1 CN 2020126140 W CN2020126140 W CN 2020126140W WO 2022094752 A1 WO2022094752 A1 WO 2022094752A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
heterojunction
ray
self
assembly
Prior art date
Application number
PCT/CN2020/126140
Other languages
English (en)
French (fr)
Inventor
李佳
高源鸿
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2020/126140 priority Critical patent/WO2022094752A1/zh
Publication of WO2022094752A1 publication Critical patent/WO2022094752A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • H01L31/119Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation characterised by field-effect operation, e.g. MIS type detectors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/36Devices specially adapted for detecting X-ray radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention belongs to the technical field of ray detectors, and relates to an organic transistor ray detector based on a layered structure of a heterojunction and a preparation method thereof.
  • X-rays are widely used in medical tomography, security inspection, industrial non-destructive testing, crystallography and astronomy and many other fields.
  • the importance of X-ray detectors cannot be overstated, as it largely determines how far we can go in the direction of X-rays.
  • X-ray detectors with high sensitivity allow CT systems to image with ultra-low X-ray doses, which can significantly reduce the risk of carcinogenicity to patients from ionizing radiation; in addition, flexible X-ray detectors can match the contours of the object to be detected.
  • a tight fit for more precise X-ray detection and imaging It is clear that an ideal X-ray detector should combine high sensitivity, high spatial resolution and energy resolution, with excellent potential to achieve mechanical flexibility, light weight, and low cost.
  • the strategy widely adopted by researchers in recent years is to select and optimize X-ray absorber materials with higher X-ray absorption coefficients and better optoelectronic properties, thereby obtaining higher charge excitation and higher charge excitation in the detector. transmission efficiency.
  • the detector structure is still limited to the traditional diode structure, in which the conversion efficiency of X-rays into electron-hole pairs is low. . Therefore, in order to obtain higher X-ray-charge conversion efficiency, thicker, high-purity, and highly uniform semiconductor crystals (thin films) still have to be used to reduce the probability of carrier depletion. Obviously, this greatly increases fabrication complexity and cost, makes the detector bulkier, increases power consumption, and hinders the realization of flexible detectors and high imaging resolution systems.
  • the current detection of gamma rays mainly focuses on indirect detection methods. Limited by the optional range of scintillators and material properties, the current detection sensitivity and imaging resolution of gamma rays are relatively low. Therefore, the development of Direct detection methods with high detection sensitivity and high imaging resolution are of particular importance and urgency.
  • the purpose of the present invention is to provide an organic transistor ray detector based on a heterojunction layered structure and a preparation method thereof.
  • the present invention provides an organic transistor ray detector based on a heterojunction layered structure, comprising a substrate on which a monomolecular self-assembly layer is provided, and a portion on the monomolecular self-assembly layer is A source electrode and a drain electrode are respectively arranged in the area, and a radiation absorption layer is arranged on the source electrode, the drain electrode and the remaining area of the single-molecule self-assembly layer, and the radiation absorption layer on the source electrode and the drain electrode is arranged.
  • the ray absorbing layer is provided with a semiconductor channel layer
  • the semiconductor channel layer is provided with a gate insulating layer
  • the gate A gate electrode is provided on the insulating layer.
  • the ray detectors include X-ray detectors and gamma ray detectors.
  • the semiconductor channel layer and the ray absorbing layer form a heterojunction layered structure.
  • the substrate is a rigid substrate or a flexible substrate
  • the rigid substrate comprises one or a combination of at least two of silicon wafer, glass, quartz, and sapphire;
  • the flexible substrate is a substrate material with mechanical flexibility, more preferably, the flexible substrate includes one or at least two of organic plastic, thin glass, thin metal, and paper substrates combination.
  • the single-molecule self-assembled layer is a hydrophilic material or a hydrophobic material
  • the hydrophilic material includes 1H, 1H, 2H, 2H-perfluorooctyltrichlorosilane, 3-aminopropyltriethoxysilane, phenyltrimethoxysilane, 3-bromopropyltriethylsilane One or at least two of oxysilane, 3-chloropropyltrichlorosilane, 3-cyanopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane and 3-iodopropyltrimethoxysilane a combination of species;
  • the hydrophobic material includes one or a combination of at least two of n-octyltrichlorosilane, polymethyltriethoxysilane, and hexamethylsiloxane.
  • the source electrode and the drain electrode are metal conductive materials (those skilled in the art can select according to the matching situation between the HOMO or LUMO energy level of the organic semiconductor and the metal work function);
  • the metal conductive material includes one or a combination of at least two of gold, silver, copper, aluminum, indium, and nickel, preferably gold;
  • the thicknesses of the source electrode and the drain electrode are both 50-100 nm.
  • the ray absorbing layer is a semiconductor material containing heavy elements
  • the heavy element-containing semiconductor material includes one or a combination of at least two of perovskite-type semiconductor material, lead iodide (PbI 2 ), lead sulfide (PbS), and lead selenide (PbSe);
  • PbI 2 lead iodide
  • PbS lead sulfide
  • PbSe lead selenide
  • the perovskite semiconductor material includes perovskite thin film, perovskite single crystal, and perovskite quantum dots;
  • the perovskite thin film, perovskite single crystal, and perovskite quantum dots are a class of semiconductor materials with ABX 3 type molecular formula, wherein A is methylamine (CH 3 NH 3 ), formamidine (CH 4 ). N 2 ) or cesium (Cs), B is lead (Pb), X is a single halogen element or a combination thereof, and the halogen element is Cl, Br, I;
  • the thickness of the ray absorbing layer is 40 nm-200 ⁇ m.
  • the semiconductor channel layer is a p-type organic semiconductor or an n-type organic semiconductor
  • the p-type organic semiconductor includes poly-3-hexylthiophene, pentacene, polydithiophene, diketopyrrolopyrrole-thiophene, polythiophene-based semiconductors, and siloxane-containing polyisoprene derivatives. one or a combination of at least two;
  • the n-type organic semiconductor includes one or a combination of at least two of polythiophene-based semiconductors and fullerene-based semiconductors;
  • the thickness of the semiconductor channel layer is 1-100 nm.
  • the gate insulating layer is an inorganic insulating material or an organic insulating material
  • the inorganic insulating material includes silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), hafnium dioxide (HfO 2 ), zirconium dioxide (ZrO 2 ), boron nitride (BN) , one or a combination of at least two tantalum pentoxide (Ta 2 O 5 );
  • the organic insulating material comprises one or a combination of at least two of polymethyl methacrylate (PMMA), polystyrene (PS), polyvinyl alcohol (PVA), and polyvinylpyrrolidone (PVP);
  • PMMA polymethyl methacrylate
  • PS polystyrene
  • PVA polyvinyl alcohol
  • PVP polyvinylpyrrolidone
  • the thickness of the gate insulating layer is 10 nm-1000 nm.
  • the gate electrode is a metal conductive material
  • the metal conductive material includes one or a combination of at least two of gold, silver, copper, aluminum, indium, and nickel;
  • the thickness of the gate electrode is 10 nm-2000 nm.
  • the present invention provides a method for preparing an organic transistor ray detector based on any of the above-mentioned heterojunction layered structures, comprising the following steps:
  • the pretreatment of the substrate is also included before step 1); more preferably, the pretreatment step of the substrate is: placing the substrate in acetone, an alcohol solvent, and deionized water in sequence for 10-60min, and then drying , and then UV/ozone treatment is performed for 5-60min after drying; more preferably, the alcohol solvent includes isopropanol, ethanol, and methanol;
  • step 1) is specifically as follows: placing the substrate in a 0.05-10M toluene or benzene solution of a hydrophilic material or a hydrophobic material, and treating it at 30-100° C. for 10-80 minutes to perform a monolayer self-assembly treatment, and the monolayer self-assembly process is carried out. After the self-assembly of the molecular layer is completed, the substrate is taken out, placed in toluene or benzene and ultrasonicated for 10-80s, and then dried to obtain a single-molecule self-assembly layer;
  • step 2) is specifically as follows: using a vacuum process, respectively depositing a layer of source electrode and drain electrode on the single-molecule self-assembly layer through a mask;
  • step 3) is specifically as follows: using a liquid phase process or a vacuum process to deposit the material used for the ray absorbing layer on the source electrode, the drain electrode and the remaining area of the monomolecular self-assembly layer to obtain a ray absorbing layer; more preferably, Step 3) is specifically as follows: using a liquid phase process to deposit the material used for the radiation absorption layer on the source electrode, the drain electrode and the remaining area of the monomolecular self-assembly layer, and then heating at 40-120° C. for 2-15 minutes to obtain the radiation absorption layer. layer;
  • step 4) is specifically as follows: using a liquid phase process or a vacuum process, the material used for the semiconductor channel layer is deposited on the ray absorbing layer to obtain a semiconductor channel layer, and the semiconductor channel layer and the ray absorbing layer have different compositions.
  • quality-junction layered structure is specifically as follows: using a liquid phase process, depositing the material used for the semiconductor channel layer on the ray absorbing layer, and then heating at 50-150 ° C for 10-60 min to obtain a semiconductor a channel layer, the semiconductor channel layer and the ray absorbing layer form a heterojunction layered structure;
  • step 5) is specifically: using a liquid phase process or a vacuum process, depositing the material used for the gate insulating layer on the semiconductor channel layer to form a gate insulating layer; more preferably, step 5) is specifically: using In the liquid phase process, the material used for the gate insulating layer is deposited on the semiconductor channel layer, and heated at a temperature of 40-150 ° C for 10-60 min to form a gate insulating layer;
  • step 6) is specifically as follows: using a vacuum process, depositing the material used for the gate electrode on the gate insulating layer to form the gate electrode;
  • the vacuum process includes thermal evaporation, magnetron sputtering, electron beam evaporation, atomic layer deposition;
  • the liquid phase process includes spin coating, screen printing, inkjet printing, blade coating, and extrusion coating.
  • the beneficial effects of the present invention are: 1)
  • the present invention relates to a transistor ray detector comprising a layered structure of a heterojunction.
  • the detection sensitivity of the ray detector is effectively improved, and the greatly improved detection sensitivity makes the device in the device
  • a thinner ray absorbing layer can be used to realize efficient ray detection, which solves the problem of the lack of flexibility of the device due to the use of bulk ray absorbing materials in traditional ray detectors.
  • Transistor radiation detectors are fabricated on various flexible substrates, thereby realizing high-performance radiation detectors with excellent mechanical flexibility.
  • the present invention is an organic transistor radiation detector based on a heterojunction layered structure, and the heterojunction layered structure of the detector includes a semiconductor absorption layer that can absorb radiation and an organic semiconductor channel layer. Based on the above structure, when the radiation is incident on the semiconductor absorption layer of the detector, the generation of electron-hole pairs can be excited in the semiconductor absorption layer. These electrons or holes generated by radiation irradiation accumulate at the potential barrier to change the effective barrier height and flow into the semiconductor channel layer from the semiconductor absorber layer, and flow between the source electrode and the drain electrode to generate a current to realize the ray photon signal Direct conversion to electrical signals.
  • the transistor of the invention combines the advantages of a gain-type device, achieves high ray absorption intensity and efficient charge transfer with the help of the heterojunction structure, and utilizes the efficient transport of carriers in the semiconductor channel to generate huge signal gain.
  • Amplification effect resulting in a high-performance ray detector with ultra-high sensitivity and ultra-low detection limit, which allows us to achieve excellent detection performance using a thinner detector structure, resulting in a substantial reduction in cost and the realization of flexible devices.
  • FIG. 1 is a schematic structural diagram of an organic transistor ray detector based on a heterojunction layered structure of the present invention
  • Figure 2a is the transfer curve of the detector without heterojunction structure of Comparative Example 1 under dark field and X-ray radiation
  • Figure 2b is the heterojunction transistor detector of Example 1 of the present invention under dark field and X-ray radiation The transfer curve of ;
  • Fig. 3a is a physical view of the flexible heterojunction X-ray detector prepared in Example 5 of the present invention
  • Fig. 3b is a bending experiment of the flexible heterojunction X-ray detector prepared in Example 5 of the present invention
  • Substrate 1. Single molecule self-assembly layer, 3. Source electrode, 4. Drain electrode, 5. Ray absorption layer, 6. Semiconductor channel layer, 7. Gate insulating layer, 8. Gate pole electrode.
  • a schematic structural diagram of the organic transistor ray detector based on the heterojunction layered structure of the present invention is shown in the accompanying drawings.
  • the schematic diagrams are not drawn to scale, and the shapes of various regions and layers shown in the figures, as well as their relative sizes and positional relationships are only exemplary and may vary in practice due to manufacturing tolerances or technical limitations , and those in the art can additionally design regions/layers with different shapes, sizes, and relative positions according to actual needs.
  • the term “layer” refers to a material disposed over or under at least a portion of a device in a continuous or discontinuous manner. Furthermore, the term “layer” does not necessarily refer to a provided material having a uniform thickness, the provided material may have a uniform or variable thickness. As used herein, when a layer is described as being “on” or “under” another layer or substrate, it will be understood that the layers are in direct contact with each other, or that there is a (or multiple) layers or features. Furthermore, the term “on” describes the relative position between layers and does not necessarily mean “on top” since the relative position above or below depends on the orientation of the device to the viewer. Furthermore, the use of “top,” “bottom,” “above,” “below,” and variations of these terms is for convenience and does not require any particular orientation of components, unless otherwise specified.
  • This embodiment is used to illustrate the organic transistor X-ray detector based on the layered structure of the heterojunction and the preparation method thereof provided by the present invention.
  • a silicon wafer is used as the substrate, 3-mercaptopropyltrimethoxysilane (SH-TS) is used as the material for the single-molecule self-assembly layer, and the organic polymer polydithiophenepyrrolopyrrole- Thiophene (PDPPBTT) is used as the material for the semiconductor channel layer, perovskite CsPbBrI 2 quantum dots (PNC) is used as the material for the X-ray absorption layer, and the organic polymer polymethyl methacrylate (PMMA) is used as the gate insulating layer. material, metal Al is used as the gate electrode, and metal Au is used as the source electrode and drain electrode.
  • SH-TS 3-mercaptopropyltrimethoxysilane
  • PDPPBTT organic polymer polydithiophenepyrrolopyrrole- Thiophene
  • PNC perovskite CsPbBrI 2 quantum dots
  • PMMA organic polymer polymethyl methacrylate
  • a preparation method of a high-performance organic transistor X-ray detector based on a heterojunction layered structure comprising the following steps:
  • the substrate after the above treatment was placed in a 0.1M SH-TS solution in toluene, and treated at 60 °C for 30 min for monolayer self-assembly treatment. After the monomolecular layer self-assembly treatment was completed, the substrate was taken out and placed in toluene. Medium sonication for 20s, and then blow-dry with N2 gun to obtain a single-molecule self-assembled layer;
  • the substrate after the above treatment was placed in a 0.1M SH-TS toluene solution, and treated at 60 °C for 30 min for monolayer self-assembly treatment. After the monolayer self-assembly treatment was completed, the substrate was taken out and placed in toluene. Sonicate for 20s, and then blow dry with a N2 gun to obtain a single-molecule self-assembled layer;
  • This test example is used to illustrate the performance test of the organic transistor X-ray detectors prepared in Example 1 and Comparative Example 1.
  • the test instrument is a semiconductor analyzer equipped with a standard probe station; the test conditions are as follows: the gate voltage adjustment range is 20V to -60V, the source-drain voltage is fixed at -60V, and an Oxford Ultrabright 9000 is used as the X-ray source. All tests were performed in a metal darkroom with radiation shielding. The results of the transistor transfer curves of Example 1 and Comparative Example 1 of the present invention are shown in Figure 2.
  • This embodiment is used to illustrate the organic transistor X-ray detector based on the layered structure of the heterojunction and the preparation method thereof provided by the present invention.
  • a silicon wafer is used as the substrate, SH-TS is used as the material for the single-molecule self-assembly layer, the organic polymer PDPPBTT is used as the material for the semiconductor channel layer, and the perovskite CsPbBrI 2 film is used as the X-ray absorption layer.
  • the materials used are the organic polymer PMMA as the material used for the gate insulating layer, the metal Al as the gate electrode, and the metal Au as the source electrode and the drain electrode.
  • a preparation method of a high-performance organic transistor X-ray detector based on a heterojunction layered structure comprising the following steps:
  • the substrate after the above treatment was placed in a 0.1M SH-TS toluene solution, and treated at 60 °C for 30 min for monolayer self-assembly treatment. After the monolayer self-assembly treatment was completed, the substrate was taken out and placed in toluene. Sonicate for 20s, and then blow dry with a N2 gun to obtain a single-molecule self-assembled layer;
  • This embodiment is used to illustrate the organic transistor X-ray detector based on the layered structure of the heterojunction and the preparation method thereof provided by the present invention.
  • a silicon wafer is used as the substrate, SH-TS is used as the material for the single-molecule self-assembly layer, the organic polymer poly-3-hexylthiophene (P3HT) is used as the material for the semiconductor channel layer, and the perovskite CsPbBrI is used as the material for the semiconductor channel layer.
  • the film is used as the material for the X-ray absorption layer, the organic polymer PMMA is used as the material for the gate insulating layer, the metal Al is used as the gate electrode, and the metal Au is used as the source electrode and the drain electrode.
  • a preparation method of a high-performance organic transistor X-ray detector based on a heterojunction layered structure comprising the following steps:
  • the substrate after the above treatment was placed in a 0.1M SH-TS toluene solution, and treated at 60 °C for 30 min for monolayer self-assembly treatment. After the monolayer self-assembly treatment was completed, the substrate was taken out and placed in toluene. Sonicate for 20s, and then blow dry with a N2 gun to obtain a single-molecule self-assembled layer;
  • This embodiment is used to illustrate the organic transistor X-ray detector based on the layered structure of the heterojunction and the preparation method thereof provided by the present invention.
  • a silicon wafer is used as the substrate, SH-TS is used as the material for the single-molecule self-assembly layer, the organic polymer poly-3-hexylthiophene (P3HT) is used as the material for the semiconductor channel layer, and the perovskite CsPbBrI is used as the material for the semiconductor channel layer.
  • the thin film is used as the material for the X-ray absorption layer, the inorganic insulating material aluminum oxide (Al 2 O 3 ) is used as the material for the gate insulating layer, the metal Al is used as the gate electrode, and the metal Au is used as the source electrode and the drain electrode.
  • a preparation method of a high-performance organic transistor X-ray detector based on a heterojunction layered structure comprising the following steps:
  • the substrate after the above treatment was placed in a 0.1M SH-TS toluene solution, and treated at 60 °C for 30 min for monolayer self-assembly treatment. After the monolayer self-assembly treatment was completed, the substrate was taken out and placed in toluene. Sonicate for 20s, and then blow dry with a N2 gun to obtain a single-molecule self-assembled layer;
  • This embodiment is used to illustrate the organic transistor X-ray detector based on the layered structure of the heterojunction and the preparation method thereof provided by the present invention.
  • a mechanically flexible polyimide (PI) film is used as the substrate, SH-TS is used as the material for the single-molecule self-assembly layer, and the organic polymer poly-3-hexylthiophene (P3HT) is used as the semiconductor channel.
  • the material used for the channel layer, the perovskite CsPbBrI 2 film is used as the material for the X-ray absorption layer, the organic polymer polymethyl methacrylate (PMMA) is used as the material for the gate insulating layer, the metal Al is used as the gate electrode, and the metal Al is used as the material for the gate electrode.
  • Au serves as source and drain electrodes.
  • a preparation method of a high-performance organic transistor X-ray detector based on a heterojunction layered structure comprising the following steps:
  • the substrate after the above treatment was placed in a 0.1M SH-TS toluene solution, and treated at 60 °C for 30 min for monolayer self-assembly treatment. After the monolayer self-assembly treatment was completed, the substrate was taken out and placed in toluene. Sonicate for 20s, and then blow dry with a N2 gun to obtain a single-molecule self-assembled layer;
  • the flexible heterojunction X-ray detector prepared in Example 5 of the present invention is shown in Figure 3a; the flexible heterojunction X-ray detector prepared in Example 5 of the present invention is subjected to a bending experiment, that is, the detector is bent into a Different diameters, and measure the signal current under dark current and X-ray radiation, the experimental results are shown in Fig. 3b. It can be seen from Figure 3b that the drain current changes little after a certain bending time under different bending diameters. Even when the bending diameter is as low as 2 mm, the electrical properties of the flexible detector remain basically unchanged, confirming its Excellent mechanical flexibility.

Abstract

一种基于异质结分层结构的有机晶体管射线探测器及其制备方法,射线探测器包括衬底(1),所述衬底(1)上设有单分子自组装层(2),所述单分子自组装层(2)上的部分区域分别设有源极电极(3)和漏极电极(4),所述源极电极(3)、漏极电极(4)以及单分子自组装层(2)剩余区域上均设有射线吸收层(5),所述射线吸收层(5)上设有半导体沟道层(6),所述半导体沟道层(6)上设有栅极绝缘层(7),所述栅极绝缘层(7)上设有栅极电极(8)。包含异质结分层结构的射线探测器,借助晶体管的增益放大作用,有效提升其探测灵敏度,大幅提高的探测灵敏度使得在器件中可以使用较薄的射线吸收层(5)实现高效的射线探测,射线探测器制备于柔性衬底上,实现具有优异机械柔性的高性能射线探测器。

Description

基于异质结分层结构的有机晶体管射线探测器及其制备方法 技术领域
本发明属于射线探测器技术领域,涉及一种基于异质结分层结构的有机晶体管射线探测器及其制备方法。
背景技术
X射线被广泛应用于医学断层扫描、安检、工业无损检测、晶体学和天文学等诸多领域。X射线探测器的重要性不言而喻,因为它在很大程度上决定了我们在利用X射线方向可以走多远。例如,具有高灵敏度的X射线探测器允许CT系统以超低的X射线剂量成像,这可以显著降低电离辐射对病患造成的致癌风险;此外,柔性X射线探测器可以与待检测物的轮廓紧密贴合,从而实现更精确的X射线探测和成像。很显然,理想的X射线探测器应兼顾高灵敏度、高空间分辨率和能量分辨率,并具有实现机械柔性、轻量和低成本的优异潜力。
为实现以上目标,近年来研究者们广泛采用的策略是选择和优化具有较高X射线吸收系数和更优光电特性的X射线吸收体材料,藉此在探测器中获得更高的电荷激发和传输效率。尽管通过优化探测器材料特性,在提高X射线探测灵敏度方面取得了较大进步,但是探测器结构仍局限于传统二极管结构,在这类器件中X射线转化为电子-空穴对的效率较低。因此,为了获得较高的X射线-电荷转化效率,仍旧不得不使用较厚、高纯度、且高度均匀的半导体晶体(薄膜)以降低载流子泯灭概率。很显然,这大幅增加了制造复杂性和成本,使探测器体积较大、功耗增加,并妨碍了柔性探测器和高成像分辨率系统的实现。
除X射线探测器以外,目前针对伽马射线的探测还主要集中于间接探测法,受闪烁体可选范围和材料特性的限制,当前伽马射线探测灵敏度和成像分辨率都较为低下,因此开发具有高探测灵敏度和高成像分辨率的直接探测法,具有特别的重要性和紧迫性。
发明内容
为了解决上述背景技术中所提出的问题,本发明的目的在于提供一种基于异质结分层结构的有机晶体管射线探测器及其制备方法。
为了达到上述目的,本发明所采用的技术方案为:
一方面,本发明提供了一种基于异质结分层结构的有机晶体管射线探测器,包括衬底,所述衬底上设置有单分子自组装层,所述单分子自组装层上的部分区域分别设置有源极电极和漏极电极,所述源极电极、漏极电极以及单分子自组装层剩余区域上均设置有射线吸收层, 所述源极电极和漏极电极上的射线吸收层以及单分子自组装层剩余区域上的射线吸收层是一体化的,所述射线吸收层上设置有半导体沟道层,所述半导体沟道层上设置有栅极绝缘层,所述栅极绝缘层上设置有栅极电极。
进一步地,所述射线探测器包括X射线探测器、伽马射线探测器。
进一步地,所述半导体沟道层与射线吸收层组成异质结分层结构。
进一步地,所述衬底为刚性衬底或柔性衬底;
优选地,所述刚性衬底包括硅片、玻璃、石英、蓝宝石中的一种或至少两种的组合;
优选地,所述柔性衬底为具有机械柔韧性的衬底材料,更优选地,所述柔性衬底包括有机塑料、薄玻璃、薄金属、纸质衬底中的一种或至少两种的组合。
进一步地,所述单分子自组装层为亲水材料或疏水材料;
优选地,所述亲水材料包括1H,1H,2H,2H-全氟辛基三氯硅烷、3-氨基丙基三乙氧基硅烷、苯基三甲氧基硅烷、3-溴丙基三乙氧基硅烷、3-氯丙基三氯硅烷、3-氰基丙基三甲氧基硅烷、3-巯基丙基三甲氧基硅烷、3-碘丙基三甲氧基硅烷中的一种或至少两种的组合;
优选地,所述疏水材料包括正辛基三氯硅烷、聚甲基三乙氧基硅烷、六甲基硅氧烷中的一种或至少两种的组合。
进一步地,所述源极电极和漏极电极为金属导电材料(本领域技术人员可以根据有机半导体的HOMO或LUMO能级与金属功函数的匹配情况进行选择);
优选地,所述金属导电材料包括金、银、铜、铝、铟、镍中的一种或至少两种的组合,优选为金;
优选地,所述源极电极和漏极电极的厚度均为50-100nm。
进一步地,所述射线吸收层为含有重元素的半导体材料;
优选地,所述含有重元素的半导体材料包括钙钛矿型半导体材料、碘化铅(PbI 2)、硫化铅(PbS)、硒化铅(PbSe)中的一种或至少两种的组合;
优选地,所述钙钛矿型半导体材料包括钙钛矿薄膜、钙钛矿单晶、钙钛矿量子点;
优选的,所述钙钛矿薄膜、钙钛矿单晶、钙钛矿量子点为具有ABX 3型分子式的一类半导体材料,其中A为甲胺(CH 3NH 3),甲脒(CH 4N 2)或者铯(Cs),B为铅(Pb),X为单一卤素元素或其组合,所述卤素元素为Cl、Br、I;
优选地,所述射线吸收层的厚度为40nm-200μm。
进一步地,所述半导体沟道层为p型有机半导体或n型有机半导体;
优选地,所述p型有机半导体包括聚3-己基噻吩、并五苯、聚并二噻吩吡咯并吡咯二酮- 噻吩、聚噻吩类半导体、含硅氧烷的聚异戊二烯衍生物中的一种或至少两种的组合;
优选地,所述n型有机半导体包括聚噻吩类半导体、富勒烯类半导体中的一种或至少两种的组合;
优选地,所述半导体沟道层的厚度为1-100nm。
进一步地,所述栅极绝缘层为无机绝缘材料或有机绝缘材料;
优选地,所述无机绝缘材料包括二氧化硅(SiO 2)、三氧化二铝(Al 2O 3)、二氧化铪(HfO 2)、二氧化锆(ZrO 2)、氮化硼(BN)、五氧化二钽(Ta 2O 5)中的一种或至少两种的组合;
优选地,所述有机绝缘材料包括聚甲基丙烯酸甲酯(PMMA)、聚苯乙烯(PS)、聚乙烯醇(PVA)、聚乙烯吡咯烷酮(PVP)中的一种或至少两种的组合;
优选地,所述栅极绝缘层的厚度为10nm-1000nm。
进一步地,所述栅极电极为金属导电材料;
优选地,所述金属导电材料包括金、银、铜、铝、铟、镍中的一种或至少两种的组合;
优选地,所述栅极电极厚度为10nm-2000nm。
另一方面,本发明提供了一种上述任一所述的基于异质结分层结构的有机晶体管射线探测器的制备方法,包括以下步骤:
1)在衬底上进行表面单分子层自组装处理,生成单分子自组装层;
2)在单分子自组装层上的部分区域分别沉积源极电极和漏极电极;
3)在源极电极、漏极电极以及单分子自组装层剩余区域上沉积射线吸收层,所述源极电极和漏极电极上的射线吸收层以及单分子自组装层剩余区域上的射线吸收层是一体化的;
4)在射线吸收层上沉积半导体沟道层;
5)在半导体沟道层上沉积栅极绝缘层;
6)在栅极绝缘层上沉积栅极电极;
优选地,步骤1)前还包括衬底的预处理;更优选地,所述衬底的预处理步骤为:将衬底依次置于丙酮、醇溶剂、去离子水中超声10-60min,然后干燥,干燥后再进行UV/臭氧处理5-60min;更优选地,所述醇溶剂包括异丙醇、乙醇、甲醇;
优选地,步骤1)具体为:将衬底置于0.05-10M的亲水材料或疏水材料的甲苯或苯溶液中,在30-100℃下处理10-80min进行单分子层自组装处理,单分子层自组装处理完成后将衬底取出,置于甲苯或苯中超声10-80s,然后干燥,得到单分子自组装层;
优选地,步骤2)具体为:使用真空工艺,通过掩膜板在单分子自组装层上分别沉积一层源极电极和漏极电极;
优选地,步骤3)具体为:在源极电极、漏极电极以及单分子自组装层剩余区域上使用液相工艺或者真空工艺沉积射线吸收层所用的材料,得到射线吸收层;更优选地,步骤3)具体为:在源极电极、漏极电极以及单分子自组装层剩余区域上使用液相工艺沉积射线吸收层所用的材料,然后在40-120℃下加热2-15min,得到射线吸收层;
优选地,步骤4)具体为:使用液相工艺或者真空工艺,将半导体沟道层所用的材料沉积在射线吸收层上,得到半导体沟道层,所述半导体沟道层与射线吸收层组成异质结分层结构;更优选地,步骤4)具体为:使用液相工艺,将半导体沟道层所用的材料沉积在射线吸收层上,然后在50-150℃下加热10-60min,得到半导体沟道层,所述半导体沟道层与射线吸收层组成异质结分层结构;
优选地,步骤5)具体为:使用液相工艺或者真空工艺,将栅极绝缘层所用的材料沉积于半导体沟道层上,形成栅极绝缘层;更优选地,步骤5)具体为:使用液相工艺,将栅极绝缘层所用的材料沉积于半导体沟道层上,并在40-150℃的温度下加热10-60min,形成栅极绝缘层;
优选地,步骤6)具体为:使用真空工艺,将栅极电极所用的材料沉积于栅极绝缘层上,形成栅极电极;
优选的,所述真空工艺包括热蒸镀、磁控溅射、电子束蒸镀、原子层沉积;
优选地,所述液相工艺包括旋涂法、丝网印刷法、喷墨打印法、刮刀涂布法、挤压涂布法。
本发明的有益效果是:1)本发明涉及包含异质结分层结构的晶体管射线探测器,借助晶体管的增益放大作用,有效提升射线探测器的探测灵敏度,大幅提高的探测灵敏度使得在器件中可以使用较薄的射线吸收层实现高效的射线探测,解决了传统射线探测器中由于使用体块射线吸收材料导致器件缺乏柔韧性的问题。晶体管射线探测器制备于各类柔性衬底上,从而实现具有优异机械柔性的高性能射线探测器。
2)本发明基于异质结分层结构的有机晶体管射线探测器,该探测器的异质结分层结构包括可以吸收射线的半导体吸收层和有机半导体沟道层。基于以上结构,当射线入射到探测器的半导体吸收层后,在半导体吸收层中可以激发电子-空穴对的产生。这些由射线照射产生的电子或者空穴积累在势垒处以改变有效势垒高度并由半导体吸收层流入半导体沟道层,在源极电极和漏极电极之间流动从而产生电流,实现射线光子信号向电信号的直接转化。本发明晶体管结合了增益型器件的优势,借助异质结结构既获得较高的射线吸收强度,也实现了高效的电荷转移,并利用半导体沟道中载流子的高效传输,产生巨大的信号增益放大效应,从 而得到超高灵敏度和超低探测极限的高性能射线探测器,使得我们可以使用更薄的探测器结构实现优异的探测性能,导致成本的大幅下降和柔性器件的实现。
附图说明
图1是本发明基于异质结分层结构的有机晶体管射线探测器的结构示意图;
图2a是对比例1的无异质结结构的探测器在暗场和X射线辐射下的转移曲线;图2b是本发明实施例1的异质结晶体管探测器在暗场和X射线辐射下的转移曲线;
图3a是本发明实施例5中制备的柔性异质结型X射线探测器实物图;图3b是本发明实施例5中制备的柔性异质结型X射线探测器的弯曲实验;
其中,1.衬底,2.单分子自组装层,3.源极电极,4.漏极电极,5.射线吸收层,6.半导体沟道层,7.栅极绝缘层,8.栅极电极。
具体实施方式
为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进行详细说明,应当理解的是,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
在附图中展示了本发明基于异质结分层结构的有机晶体管射线探测器的结构示意图。示意图并非是按比例绘制的,图中所示出的各种区域、层的形状以及他们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
本文所使用的,术语“层”指以连续或不连续的方式设置在器件中至少一部分上或者下的材料。此外,术语“层”不一定指具有均匀厚度的所设置的材料,所设置的材料可以具有均匀的或可变的厚度。在本文中,当层被描述为在另一层或衬底“上”或“下”时,可以理解为,层与层之间彼此直接接触,或者,在层与层之间具有一个(或多个)层或特征。此外,术语“在...上”描述层之间的相对位置,并不一定意味着“在...顶部”,因为相对位置上方或下方取决于设备对观察者的取向。此外,除非另有规定,否则使用“顶部”、“底部”、“上方”、“下方”和这些术语的变化是为了方便,并且不要求组件的任何特定取向。
实施例1
本实施例用于说明本发明提供的基于异质结分层结构的有机晶体管X射线探测器及其制备方法。
在本实施例中,采用硅片作为衬底,3-巯基丙基三甲氧基硅烷(SH-TS)作为单分子自组装层所用的材料,有机聚合物聚并二噻吩吡咯并吡咯二酮-噻吩(PDPPBTT)作为半导体沟道层所 用的材料,钙钛矿CsPbBrI 2量子点(PNC)作为X射线吸收层所用的材料,有机聚合物聚甲基丙烯酸甲酯(PMMA)作为栅极绝缘层所用的材料,金属Al作为栅极电极,金属Au作为源极电极和漏极电极。
一种基于异质结分层结构的高性能有机晶体管X射线探测器的制备方法,包括以下步骤:
(1)将硅衬底先后置于丙酮、异丙醇、去离子水中超声10min,然后用N 2枪吹干,吹干后再进行UV/臭氧处理5min;
将上述处理后的衬底置于0.1M的SH-TS的甲苯溶液中,在60℃下处理30min进行单分子层自组装处理,单分子层自组装处理完成后将衬底取出,置于甲苯中超声20s,然后用N 2枪吹干,得到单分子自组装层;
(2)通过掩膜板在单分子自组装层上的部分区域分别真空蒸镀一层60nm的Au作为源极电极和漏极电极;
(3)在源极电极、漏极电极以及单分子自组装层剩余区域上旋涂全无机铯铅卤钙钛矿CsPbBrI 2量子点,然后置于热台上在100℃下加热5min,得到X射线吸收层,所述源极电极和漏极电极上的X射线吸收层以及单分子自组装层剩余区域上的X射线吸收层是一体化的;
(4)将PDPPBTT的氯仿溶液旋涂在X射线吸收层上,然后置于热台上在100℃下加热30min,得到半导体沟道层,PDPPBTT层与钙钛矿吸光层构成异质结;
(5)将PMMA的甲苯溶液以1500rpm的速度旋涂于半导体沟道层上,并在60℃的温度下加热30min,形成250nm厚栅极绝缘层;
(6)最后使用热蒸镀方法将40nm厚金属Al沉积于栅极绝缘层上,形成栅极电极,完成整个器件的制备。
对比例1
该对比例描述的有机晶体管X射线探测器不含有半导体沟道层/X射线吸收层异质结多层结构,以对比说明异质结结构在提升X射线探测器性能方面的作用,其制备方法包括以下步骤:
(1)将硅衬底先后置于丙酮、异丙醇、去离子水中超声10min,然后用N 2枪吹干,吹干后再进行UV/臭氧处理5min;
将上述处理后的衬底置于0.1M的SH-TS甲苯溶液中,在60℃下处理30min进行单分子层自组装处理,单分子层自组装处理完成后将衬底取出,置于甲苯中超声20s,然后用N 2枪吹干,得到单分子自组装层;
(2)通过掩膜板在单分子自组装层上的部分区域分别真空蒸镀一层60nm的Au作为源 极电极和漏极电极;
(3)将PDPPBTT的氯仿溶液旋涂在源极电极、漏极电极以及单分子自组装层剩余区域上,然后置于热台上在100℃下加热30min,形成有机半导体沟道层;
(5)将PMMA的甲苯溶液以1500rpm的速度旋涂于半导体沟道层上,并在60℃的温度下加热30min,形成250nm厚栅极绝缘层;
(6)最后使用热蒸镀方法将40nm厚金属Al沉积于栅极绝缘层上,形成栅极电极,完成整个器件的制备。
测试例1
本测试例用于说明实施例1和对比例1制备的有机晶体管X射线探测器的性能测试。测试仪器为配有标准探针台的半导体分析仪;测试条件如下:栅极电压调节范围为20V到-60V,源漏电压固定为-60V,采用Oxford Ultrabright 9000作为X射线源。所有的测试都是在具有射线屏蔽功能的金属暗室中进行的。本发明实施例1和对比例1的晶体管转移曲线结果如图2所示,从图2可以看到,在X射线照射下,PDPPBTT晶体管和PDPPBTT/PNC异质结晶体管器件,都可以观察到快速上升的X射线辐照导致的光电流上升现象。但是需要特别指出的是,PDPPBTT晶体管器件仅在截止状态下才显示出明显的光电流增量,而当使用PDPPBTT/PNC异质结后,晶体管探测器不仅能在截止状态,而且在导通状态下都能提供相当大的光电流信号。这充分说明了在缺乏异质结结构的器件中,由于无法提供足够的X射线吸收能力,导致低效率的X射线-电信号的转换,这一实验观察证实了异质结结构在实现高效率X射线探测中的关键作用。
实施例2
本实施例用于说明本发明提供的基于异质结分层结构的有机晶体管X射线探测器及其制备方法。
在本实施例中,采用硅片作为衬底,SH-TS作为单分子自组装层所用的材料,有机聚合物PDPPBTT作为半导体沟道层所用的材料,钙钛矿CsPbBrI 2薄膜作为X射线吸收层所用的材料,有机聚合物PMMA作为栅极绝缘层所用的材料,金属Al作为栅极电极,金属Au作为源极电极和漏极电极。
一种基于异质结分层结构的高性能有机晶体管X射线探测器的制备方法,包括以下步骤:
(1)将硅衬底先后置于丙酮、异丙醇、去离子水中超声10min,然后用N 2枪吹干,吹干后再进行UV/臭氧处理5min;
将上述处理后的衬底置于0.1M的SH-TS甲苯溶液中,在60℃下处理30min进行单分子层自组装处理,单分子层自组装处理完成后将衬底取出,置于甲苯中超声20s,然后用N 2枪吹干,得到单分子自组装层;
(2)通过掩膜板在单分子自组装层上的部分区域分别真空蒸镀一层60nm的Au作为源极电极和漏极电极;
(3)在源极电极、漏极电极以及单分子自组装层剩余区域上旋涂CsPbBrI 2溶液,然后置于热台上在100℃下加热5min,得到CsPbBrI 2薄膜,作为X射线吸收层,所述源极电极和漏极电极上的X射线吸收层以及单分子自组装层剩余区域上的X射线吸收层是一体化的;
(4)将PDPPBTT的氯仿溶液旋涂在X射线吸收层上,然后置于热台上在100℃下加热30min,得到半导体沟道层,PDPPBTT层与钙钛矿薄膜构成异质结;
(5)将PMMA的甲苯溶液以1500rpm的速度旋涂于半导体沟道层上,并在60℃的温度下加热30min,形成250nm厚栅极绝缘层;
(6)最后使用热蒸镀方法将40nm厚金属Al沉积于栅极绝缘层上,形成栅极电极,完成整个器件的制备。
实施例3
本实施例用于说明本发明提供的基于异质结分层结构的有机晶体管X射线探测器及其制备方法。
在本实施例中,采用硅片作为衬底,SH-TS作为单分子自组装层所用的材料,有机聚合物聚3-己基噻吩(P3HT)作为半导体沟道层所用的材料,钙钛矿CsPbBrI 2薄膜作为X射线吸收层所用的材料,有机聚合物PMMA作为栅极绝缘层所用的材料,金属Al作为栅极电极,金属Au作为源极电极和漏极电极。
一种基于异质结分层结构的高性能有机晶体管X射线探测器的制备方法,包括以下步骤:
(1)将硅衬底先后置于丙酮、异丙醇、去离子水中超声10min,然后用N 2枪吹干,吹干后再进行UV/臭氧处理5min;
将上述处理后的衬底置于0.1M的SH-TS甲苯溶液中,在60℃下处理30min进行单分子层自组装处理,单分子层自组装处理完成后将衬底取出,置于甲苯中超声20s,然后用N 2枪吹干,得到单分子自组装层;
(2)通过掩膜板在单分子自组装层上的部分区域分别真空蒸镀一层60nm的Au作为源极电极和漏极电极;
(3)在源极电极、漏极电极以及单分子自组装层剩余区域上旋涂CsPbBrI 2溶液,然后 置于热台上在100℃下加热5min,得到CsPbBrI 2薄膜,作为X射线吸收层,所述源极电极和漏极电极上的X射线吸收层以及单分子自组装层剩余区域上的X射线吸收层是一体化的;
(4)将P3HT的氯苯溶液旋涂在X射线吸收层上,然后置于热台上在100℃下加热30min,得到半导体沟道层,P3HT层与钙钛矿薄膜构成异质结;
(5)将PMMA的甲苯溶液以1500rpm的速度旋涂于半导体沟道层上,并在60℃的温度下加热30min,形成250nm厚栅极绝缘层;
(6)最后使用热蒸镀方法将40nm厚金属Al沉积于栅极绝缘层上,形成栅极电极,完成整个器件的制备。
实施例4
本实施例用于说明本发明提供的基于异质结分层结构的有机晶体管X射线探测器及其制备方法。
在本实施例中,采用硅片作为衬底,SH-TS作为单分子自组装层所用的材料,有机聚合物聚3-己基噻吩(P3HT)作为半导体沟道层所用的材料,钙钛矿CsPbBrI 2薄膜作为X射线吸收层所用的材料,无机绝缘材料氧化铝(Al 2O 3)作为栅极绝缘层所用的材料,金属Al作为栅极电极,金属Au作为源极电极和漏极电极。
一种基于异质结分层结构的高性能有机晶体管X射线探测器的制备方法,包括以下步骤:
(1)将硅衬底先后置于丙酮、异丙醇、去离子水中超声10min,然后用N 2枪吹干,吹干后再进行UV/臭氧处理5min;
将上述处理后的衬底置于0.1M的SH-TS甲苯溶液中,在60℃下处理30min进行单分子层自组装处理,单分子层自组装处理完成后将衬底取出,置于甲苯中超声20s,然后用N 2枪吹干,得到单分子自组装层;
(2)通过掩膜板在单分子自组装层上的部分区域分别真空蒸镀一层60nm的Au作为源极电极和漏极电极;
(3)在源极电极、漏极电极以及单分子自组装层剩余区域上旋涂CsPbBrI 2溶液,然后置于热台上在100℃下加热5min,得到CsPbBrI 2薄膜,作为X射线吸收层,所述源极电极和漏极电极上的X射线吸收层以及单分子自组装层剩余区域上的X射线吸收层是一体化的;
(4)将P3HT的氯苯溶液旋涂在X射线吸收层上,然后置于热台上在100℃下加热30min,得到半导体沟道层,P3HT层与钙钛矿薄膜构成异质结;
(5)使用原子层沉积技术在半导体沟道层上沉积厚度为70nm的Al 2O 3薄膜;
(6)最后使用热蒸镀方法将40nm厚金属Al沉积于栅极绝缘层上,形成栅极电极,完 成整个器件的制备。
实施例5
本实施例用于说明本发明提供的基于异质结分层结构的有机晶体管X射线探测器及其制备方法。
在本实施例中,采用具有机械柔性的聚酰亚胺(PI)薄膜作为衬底,SH-TS作为单分子自组装层所用的材料,有机聚合物聚3-己基噻吩(P3HT)作为半导体沟道层所用的材料,钙钛矿CsPbBrI 2薄膜作为X射线吸收层所用的材料,有机聚合物聚甲基丙烯酸甲酯(PMMA)作为栅极绝缘层所用的材料,金属Al作为栅极电极,金属Au作为源极电极和漏极电极。
一种基于异质结分层结构的高性能有机晶体管X射线探测器的制备方法,包括以下步骤:
(1)将PI衬底先后置于丙酮、异丙醇、去离子水中超声10min,然后用N 2枪吹干,吹干后再进行UV/臭氧处理5min;
将上述处理后的衬底置于0.1M的SH-TS甲苯溶液中,在60℃下处理30min进行单分子层自组装处理,单分子层自组装处理完成后将衬底取出,置于甲苯中超声20s,然后用N 2枪吹干,得到单分子自组装层;
(2)通过掩膜板在单分子自组装层上的部分区域分别真空蒸镀一层60nm的Au作为源极电极和漏极电极;
(3)在源极电极、漏极电极以及单分子自组装层剩余区域上旋涂CsPbBrI 2溶液,然后置于热台上在100℃下加热5min,得到CsPbBrI 2薄膜,作为X射线吸收层,所述源极电极和漏极电极上的X射线吸收层以及单分子自组装层剩余区域上的X射线吸收层是一体化的;
(4)将P3HT的氯苯溶液旋涂在X射线吸收层上,然后置于热台上在100℃下加热30min,得到半导体沟道层,P3HT层与钙钛矿薄膜构成异质结;
(5)使用原子层沉积技术在半导体沟道层上沉积厚度为70nm的Al 2O 3薄膜;
(6)最后使用热蒸镀方法将40nm厚金属Al沉积于栅极绝缘层上,形成栅极电极,完成整个器件的制备。
本发明实施例5中制备的柔性异质结型X射线探测器如图3a所示;将本发明实施例5中制备的柔性异质结型X射线探测器进行弯曲实验,即将探测器弯曲成不同的直径,并测量暗电流和X射线辐射下的信号电流,实验结果如图3b所示。从图3b可以看出,在不同弯曲直径下,经历一定弯曲时间后的漏极电流变化不大,即使弯曲直径低至2mm时,柔性探测器的电性能也基本保持不变,从而确认了其出色的机械柔韧性。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,本领域的技术人员在本发明的技术构思范围内进行的多种等同替代或简单变型方式,均属于本发明的保护范围。

Claims (10)

  1. 基于异质结分层结构的有机晶体管射线探测器,其特征在于,包括衬底(1),所述衬底(1)上设置有单分子自组装层(2),所述单分子自组装层(2)上的部分区域分别设置有源极电极(3)和漏极电极(4),所述源极电极(3)、漏极电极(4)以及单分子自组装层(2)剩余区域上均设置有射线吸收层(5),所述源极电极(3)和漏极电极(4)上的射线吸收层(5)以及单分子自组装层(2)剩余区域上的射线吸收层(5)是一体化的,所述射线吸收层(5)上设置有半导体沟道层(6),所述半导体沟道层(6)上设置有栅极绝缘层(7),所述栅极绝缘层(7)上设置有栅极电极(8)。
  2. 根据权利要求1所述的基于异质结分层结构的有机晶体管射线探测器,其特征在于,所述射线探测器包括X射线探测器、伽马射线探测器。
  3. 根据权利要求1或2所述的基于异质结分层结构的有机晶体管射线探测器,其特征在于,所述衬底(1)为刚性衬底或柔性衬底;
    优选地,所述刚性衬底包括硅片、玻璃、石英、蓝宝石中的一种或至少两种的组合;
    优选地,所述柔性衬底为具有机械柔韧性的衬底材料,更优选地,所述柔性衬底包括有机塑料、薄玻璃、薄金属、纸质衬底中的一种或至少两种的组合。
  4. 根据权利要求1或2所述的基于异质结分层结构的有机晶体管射线探测器,其特征在于,所述单分子自组装层(2)为亲水材料或疏水材料;
    优选地,所述亲水材料包括1H,1H,2H,2H-全氟辛基三氯硅烷、3-氨基丙基三乙氧基硅烷、苯基三甲氧基硅烷、3-溴丙基三乙氧基硅烷、3-氯丙基三氯硅烷、3-氰基丙基三甲氧基硅烷、3-巯基丙基三甲氧基硅烷、3-碘丙基三甲氧基硅烷中的一种或至少两种的组合;
    优选地,所述疏水材料包括正辛基三氯硅烷、聚甲基三乙氧基硅烷、六甲基硅氧烷中的一种或至少两种的组合。
  5. 根据权利要求1或2所述的基于异质结分层结构的有机晶体管射线探测器,其特征在于,所述源极电极(3)和漏极电极(4)为金属导电材料;
    优选地,所述金属导电材料包括金、银、铜、铝、铟、镍中的一种或至少两种的组合,优选为金;
    优选地,所述源极电极(3)和漏极电极(4)的厚度均为50-100nm。
  6. 根据权利要求1或2所述的基于异质结分层结构的有机晶体管射线探测器,其特征在于,所述射线吸收层(5)为含有重元素的半导体材料;
    优选地,所述含有重元素的半导体材料包括钙钛矿型半导体材料、碘化铅、硫化铅、硒化铅中的一种或至少两种的组合;
    优选地,所述钙钛矿型半导体材料包括钙钛矿薄膜、钙钛矿单晶、钙钛矿量子点;
    优选的,所述钙钛矿薄膜、钙钛矿单晶、钙钛矿量子点为具有ABX 3型分子式的一类半导体材料,其中A为CH 3NH 3,CH 4N 2或者Cs,B为Pb,X为单一卤素元素或其组合,所述卤素元素为Cl、Br、I;
    优选地,所述射线吸收层(5)的厚度为40nm-200μm。
  7. 根据权利要求1或2所述的基于异质结分层结构的有机晶体管射线探测器,其特征在于,所述半导体沟道层(6)为p型有机半导体或n型有机半导体;
    优选地,所述p型有机半导体包括聚3-己基噻吩、并五苯、聚并二噻吩吡咯并吡咯二酮-噻吩、聚噻吩类半导体、含硅氧烷的聚异戊二烯衍生物中的一种或至少两种的组合;
    优选地,所述n型有机半导体包括聚噻吩类半导体、富勒烯类半导体中的一种或至少两种的组合;
    优选地,所述半导体沟道层(6)的厚度为1-100nm。
  8. 根据权利要求1或2所述的基于异质结分层结构的有机晶体管射线探测器,其特征在于,所述栅极绝缘层(7)为无机绝缘材料或有机绝缘材料;
    优选地,所述无机绝缘材料包括二氧化硅、三氧化二铝、二氧化铪、二氧化锆、氮化硼、五氧化二钽中的一种或至少两种的组合;
    优选地,所述有机绝缘材料包括聚甲基丙烯酸甲酯、聚苯乙烯、聚乙烯醇、聚乙烯吡咯烷酮中的一种或至少两种的组合;
    优选地,所述栅极绝缘层(7)的厚度为10nm-1000nm。
  9. 根据权利要求1或2所述的基于异质结分层结构的有机晶体管射线探测器,其特征在于,所述栅极电极(8)为金属导电材料;
    优选地,所述金属导电材料包括金、银、铜、铝、铟、镍中的一种或至少两种的组合;
    优选地,所述栅极电极厚度为10nm-2000nm。
  10. 权利要求1-9任一项所述的基于异质结分层结构的有机晶体管射线探测器的制备方法,其特征在于,包括以下步骤:
    1)在衬底(1)上进行表面单分子层自组装处理,生成单分子自组装层(2);
    2)在单分子自组装层(2)上的部分区域分别沉积源极电极(3)和漏极电极(4);
    3)在源极电极(3)、漏极电极(4)以及单分子自组装层(2)剩余区域上沉积射线吸收层(5),所述源极电极(3)和漏极电极(4)上的射线吸收层(5)以及单分子自组装层(2)剩余区域上的射线吸收层(5)是一体化的;
    4)在X射线吸收层(5)上沉积半导体沟道层(6);
    5)在半导体沟道层(6)上沉积栅极绝缘层(7);
    6)在栅极绝缘层(7)上沉积栅极电极(8);
    优选地,步骤1)前还包括衬底(1)的预处理;更优选地,所述衬底(1)的预处理步骤为:将衬底(1)依次置于丙酮、醇溶剂、去离子水中超声10-60min,然后干燥,干燥后再进行UV/臭氧处理5-60min;更优选地,所述醇溶剂包括异丙醇、乙醇、甲醇;
    优选地,步骤1)具体为:将衬底(1)置于0.05-10M的亲水材料或疏水材料的甲苯或苯溶液中,在30-100℃下处理10-80min进行单分子层自组装处理,单分子层自组装处理完成后将衬底(1)取出,置于甲苯或苯中超声10-80s,然后干燥,得到单分子自组装层(2);
    优选地,步骤2)具体为:使用真空工艺,通过掩膜板在单分子自组装层(2)上分别沉积一层源极电极(3)和漏极电极(4);
    优选地,步骤3)具体为:在源极电极(3)、漏极电极(4)以及单分子自组装层(2)剩余区域上使用液相工艺或者真空工艺沉积射线吸收层(5)所用的材料,得到射线吸收层(5);更优选地,步骤3)具体为:在源极电极(3)、漏极电极(4)以及单分子自组装层(2)剩余区域上使用液相工艺沉积射线吸收层(5)所用的材料,然后在40-120℃下加热2-15min,得到射线吸收层(5);
    优选地,步骤4)具体为:使用液相工艺或者真空工艺,将半导体沟道层(6)所用的材料沉积在射线吸收层(5)上,得到半导体沟道层(6),所述半导体沟道层(6)与射线吸收层(5)组成异质结分层结构;更优选地,步骤4)具体为:使用液相工艺,将半导体沟道层(6)所用的材料沉积在射线吸收层(5)上,然后在50-150℃下加热10-60min,得到半导体沟道层(6),所述半导体沟道层(6)与射线吸收层(5)组成异质结分层结构;
    优选地,步骤5)具体为:使用液相工艺或者真空工艺,将栅极绝缘层(7)所用的材料沉积于半导体沟道层(6)上,形成栅极绝缘层(7);更优选地,步骤5)具体为:使用液相工艺,将栅极绝缘层(7)所用的材料沉积于半导体沟道层(6)上,并在40-150℃的温度下加热10-60min,形成栅极绝缘层(7);
    优选地,步骤6)具体为:使用真空工艺,将栅极电极(8)所用的材料沉积于栅极绝缘层(7)上,形成栅极电极(8);
    优选的,所述真空工艺包括热蒸镀、磁控溅射、电子束蒸镀、原子层沉积;
    优选地,所述液相工艺包括旋涂法、丝网印刷法、喷墨打印法、刮刀涂布法、挤压涂布法。
PCT/CN2020/126140 2020-11-03 2020-11-03 基于异质结分层结构的有机晶体管射线探测器及其制备方法 WO2022094752A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/126140 WO2022094752A1 (zh) 2020-11-03 2020-11-03 基于异质结分层结构的有机晶体管射线探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/126140 WO2022094752A1 (zh) 2020-11-03 2020-11-03 基于异质结分层结构的有机晶体管射线探测器及其制备方法

Publications (1)

Publication Number Publication Date
WO2022094752A1 true WO2022094752A1 (zh) 2022-05-12

Family

ID=81458475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126140 WO2022094752A1 (zh) 2020-11-03 2020-11-03 基于异质结分层结构的有机晶体管射线探测器及其制备方法

Country Status (1)

Country Link
WO (1) WO2022094752A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116190491A (zh) * 2023-02-24 2023-05-30 浙江大学 一种纯无机铅卤钙钛矿异质结及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120025087A1 (en) * 2010-06-23 2012-02-02 Daghighian Henry M MODFET active pixel X-ray detector
CN107887455A (zh) * 2017-10-17 2018-04-06 中山大学 一种x射线探测器件及其制作方法
CN108258118A (zh) * 2017-12-19 2018-07-06 深圳先进技术研究院 基于体异质结-分层结构的高性能有机晶体管光电探测器
CN108646283A (zh) * 2018-06-04 2018-10-12 中山大学 一种x射线探测器件及其制作方法
CN109273555A (zh) * 2018-09-19 2019-01-25 中山大学 一种光电子注入型x射线探测器件及其制备方法
CN111463350A (zh) * 2020-04-20 2020-07-28 浙江大学 基于钙钛矿量子点的x射线探测器及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120025087A1 (en) * 2010-06-23 2012-02-02 Daghighian Henry M MODFET active pixel X-ray detector
CN107887455A (zh) * 2017-10-17 2018-04-06 中山大学 一种x射线探测器件及其制作方法
CN108258118A (zh) * 2017-12-19 2018-07-06 深圳先进技术研究院 基于体异质结-分层结构的高性能有机晶体管光电探测器
CN108646283A (zh) * 2018-06-04 2018-10-12 中山大学 一种x射线探测器件及其制作方法
CN109273555A (zh) * 2018-09-19 2019-01-25 中山大学 一种光电子注入型x射线探测器件及其制备方法
CN111463350A (zh) * 2020-04-20 2020-07-28 浙江大学 基于钙钛矿量子点的x射线探测器及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116190491A (zh) * 2023-02-24 2023-05-30 浙江大学 一种纯无机铅卤钙钛矿异质结及其制备方法和应用
CN116190491B (zh) * 2023-02-24 2024-01-16 浙江大学 一种纯无机铅卤钙钛矿异质结及其制备方法和应用

Similar Documents

Publication Publication Date Title
Li et al. Recent advances in perovskite photodetectors for image sensing
Hu et al. High‐Performance Flexible Photodetectors based on High‐Quality Perovskite Thin Films by a Vapor–Solution Method
CN108258118B (zh) 基于体异质结-分层结构的高性能有机晶体管光电探测器
Gao et al. Ultrathin and Ultrasensitive Direct X‐ray Detector Based on Heterojunction Phototransistors
US8084743B2 (en) Sensor and image pickup device
US20050110007A1 (en) Multilayer organic photodetectors with improved performance
JP6642769B1 (ja) グラフェンを用いた電子デバイスの製造方法
WO2022094752A1 (zh) 基于异质结分层结构的有机晶体管射线探测器及其制备方法
Li et al. Broadband phototransistors realised by incorporating a bi-layer perovskite/NIR light absorbing polymer channel
Kim et al. A hemispherical image sensor array fabricated with organic photomemory transistors
Chen et al. Monolithic Integration of Perovskite Photoabsorbers with IGZO Thin‐Film Transistor Backplane for Phototransistor‐Based Image Sensor
JP6980662B2 (ja) 有機光電子デバイス、そのようなデバイスのアレイ、およびそのようなアレイを製造するための方法
CN112054088A (zh) 基于场效应晶体管结构的x射线探测器及其制备方法
Tao et al. Photomultiplication-type perovskite photodetectors base on air-processed perovskite films
JP5055421B2 (ja) 放射線画像変換パネル及び放射線画像変換パネルの製造方法、並びに放射線画像検出装置
Nariyuki et al. New development of large-area direct conversion detector for digital radiography using amorphous selenium with a C60-doped polymer layer
KR101192095B1 (ko) 주기적으로 배열된 유기결정의 제조 방법, 및 상기 유기 결정을 포함하는 유기전자 소자를 제조하는 방법
KR20170029363A (ko) 방사선 검출용 유기소자 및 그 제조방법
CN116072749A (zh) 一种紫磷/二硫化钼异质结光电探测器及制备方法
JP2012168059A (ja) 放射線画像検出装置
CN114447226A (zh) 基于异质结分层结构的有机晶体管射线探测器及其制备方法
CN112768609B (zh) 钙钛矿厚膜x射线探测器及其制备方法
Grzibovskis et al. Relation between molecule ionization energy, film thickness and morphology of two indandione derivatives thin films
CN105655413A (zh) 碳纳米材料作为阴极缓冲层在硫化铅量子点太阳能电池中的应用
Sun et al. Nanocrystalline PbI 2 coated on a cellulose fiber frame for paper-based flexible X-ray detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960215

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20960215

Country of ref document: EP

Kind code of ref document: A1