WO2022092502A1 - Exhaust gas treatment equipment for semiconductor manufacturing facility - Google Patents

Exhaust gas treatment equipment for semiconductor manufacturing facility Download PDF

Info

Publication number
WO2022092502A1
WO2022092502A1 PCT/KR2021/010374 KR2021010374W WO2022092502A1 WO 2022092502 A1 WO2022092502 A1 WO 2022092502A1 KR 2021010374 W KR2021010374 W KR 2021010374W WO 2022092502 A1 WO2022092502 A1 WO 2022092502A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
plasma reaction
injection port
gas inlet
gas injection
Prior art date
Application number
PCT/KR2021/010374
Other languages
French (fr)
Korean (ko)
Inventor
배진호
유태욱
이종택
나정균
Original Assignee
(주)엘오티씨이에스
(주)엘오티베큠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘오티씨이에스, (주)엘오티베큠 filed Critical (주)엘오티씨이에스
Publication of WO2022092502A1 publication Critical patent/WO2022092502A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0216Other waste gases from CVD treatment or semi-conductor manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma

Definitions

  • the present invention relates to semiconductor manufacturing equipment technology, and more particularly, to equipment for treating exhaust gas discharged from a process chamber using plasma.
  • a semiconductor device is manufactured by repeatedly performing processes such as photolithography, etching, diffusion, and metal deposition on a wafer in a process chamber.
  • various process gases are used, and after the process is completed, residual gas is present in the process chamber. Since the residual gas in the process chamber contains toxic components, it is discharged by a vacuum pump and It is purified by an exhaust gas treatment device. Since the exhaust gases are compressed at a high temperature of 100° C. or higher inside the vacuum pump, a phase change of the exhaust gases easily occurs, so that solid by-products are easily formed and accumulated inside the vacuum pump, which causes malfunction of the vacuum pump.
  • An object of the present invention is to solve a problem in which a solid material is generated and grown on a pipe wall by oxygen gas injection in an upstream pipe of a plasma reactor that decomposes gas using inductively coupled plasma.
  • a reaction chamber for treating exhaust gas using an inductively coupled plasma reaction comprising: a reaction chamber for treating exhaust gas using an inductively coupled plasma reaction; and reactive gas ejection means for ejecting reactive gas, wherein the reaction chamber provides a plasma reaction space in which the inductively coupled plasma reaction occurs, and a gas inlet and a gas outlet communicating with the plasma reaction space are formed.
  • a body wherein the exhaust gas is introduced into the plasma reaction space through the gas inlet, and the exhaust gas is discharged from the plasma reaction space through the gas outlet, and the reactive gas spraying means is a part of the plasma reaction space.
  • an exhaust gas treatment equipment for a semiconductor manufacturing facility that injects the reactive gas toward the plasma reaction space through the gas inlet from the outside on an upstream side.
  • a reaction chamber for treating exhaust gas using an inductively coupled plasma reaction and a pair of gas injection nozzles including a first gas injection nozzle and a second gas injection nozzle for injecting a reactive gas
  • the reaction chamber includes a chamber body providing a plasma reaction space in which the inductively coupled plasma reaction occurs; , a gas inlet pipe portion providing a gas inlet passage through which the exhaust gas flows into the reaction space, wherein the first gas spray nozzle and the second gas spray nozzle are installed in the gas inlet tube portion to provide the gas inlet passage
  • the first gas jet nozzle jets the reactive gas toward the second gas jet nozzle, and the second gas jet nozzle jets the reactive gas toward the first gas jet nozzle.
  • FIG. 1 is a block diagram illustrating a schematic configuration of a semiconductor manufacturing facility in which exhaust gas treatment equipment is installed according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a plasma reactor provided in the exhaust gas treatment equipment shown in FIG. 1 .
  • FIG. 3 is a longitudinal cross-sectional view showing the plasma reactor shown in FIG. 2 taken along line A-A'.
  • FIG. 4 is a plan view of the plasma reactor shown in FIG. 2 .
  • FIG. 5 is a photograph showing that when oxygen gas is simply injected into the pipe, solids are generated and grown on the inner wall surface of the pipe opposite to the injection port.
  • 6 to 8 are views illustrating flow analysis of oxygen gas for explaining the growth of the solid shown in FIG. 5 .
  • 9 and 10 are a longitudinal cross-sectional view and a plan view of a plasma reactor according to another embodiment of the present invention, respectively.
  • FIG. 11 is a plan view of a plasma reactor according to another embodiment of the present invention.
  • a semiconductor manufacturing facility 100 includes a semiconductor manufacturing equipment 110 in which a semiconductor manufacturing process is performed, an exhaust equipment 120 for discharging gas from the semiconductor manufacturing equipment 110 , and an exhaust equipment 120 . and an exhaust gas treatment equipment 130 for processing the gas discharged from the semiconductor manufacturing equipment 110 by the
  • the semiconductor manufacturing equipment 110 includes a process chamber 112 in which a semiconductor manufacturing process using various process gases is performed.
  • the process chamber 112 includes all types of process chambers commonly used for semiconductor manufacturing in the field of semiconductor manufacturing equipment.
  • the residual gas generated in the process chamber 112 is purified by the exhaust gas treatment equipment 130 while being discharged to the outside by the exhaust equipment 130 .
  • the exhaust device 120 discharges the residual gas generated in the process chamber 112 .
  • the exhaust equipment 120 includes a vacuum pump 122 , a chamber exhaust pipe 124 connecting the process chamber 112 and the vacuum pump 122 , and a pump exhaust pipe 126 extending downstream from the vacuum pump 122 .
  • the vacuum pump 122 forms a negative pressure on the side of the process chamber 112 through the chamber exhaust pipe 124 connecting the process chamber 112 and the vacuum pump 122 to discharge the residual gas of the process chamber 112 . , since it includes the configuration of a vacuum pump commonly used in the field of semiconductor manufacturing equipment, a detailed description thereof will be omitted.
  • the chamber exhaust pipe 124 connects the exhaust port of the process chamber 112 and the suction port of the vacuum pump 122 between the process chamber 112 and the vacuum pump 122 .
  • the residual gas of the process chamber 112 is discharged as exhaust gas through the chamber exhaust pipe 124 by the negative pressure generated by the vacuum pump 122 .
  • a pump exhaust pipe 126 extends downstream from the vacuum pump 122 .
  • the pump exhaust pipe 126 is connected to the outlet of the vacuum pump 122 so that the exhaust gas discharged from the vacuum pump 122 flows.
  • the exhaust gas treatment equipment 130 processes and purifies the gas discharged from the semiconductor manufacturing equipment 110 by the exhaust equipment 120 .
  • the exhaust gas treatment equipment 130 includes a scrubber 140 for treating the exhaust gas discharged from the vacuum pump 122 , and a plasma reactor 150 for treating the exhaust gas discharged from the process chamber 112 using plasma, and , a gas supply 180 for supplying a reactive gas to the plasma reactor 150 , and a trap 190 for collecting powder contained in the exhaust gas discharged from the plasma reactor 150 .
  • the scrubber 140 is connected to the downstream end of the pump exhaust pipe 126 to treat the exhaust gas discharged from the vacuum pump 122 .
  • the scrubber 140 includes all types of scrubbers commonly used to treat exhaust gas in the field of semiconductor manufacturing equipment technology.
  • the plasma reactor 150 is installed on the chamber exhaust pipe 124 to decompose and process the exhaust gas discharged from the process chamber 112 using plasma. 2-4 the plasma reactor 150 is shown in perspective, longitudinal, and plan views. 2 to 4 , the plasma reactor 150 includes a reaction chamber 160 , a ferrite core 170 disposed to surround the reaction chamber 160 , and a reactive gas into the reaction chamber 160 . A first gas injection nozzle 180b and a second gas injection nozzle 180a for spraying are provided.
  • the plasma reactor 150 is an inductively coupled plasma reactor that processes exhaust gas flowing along the chamber exhaust pipe ( 124 in FIG. 1 ) using inductively coupled plasma.
  • the plasma reactor 150 operates by supplying AC power appropriate to the antenna coil wound around the ferrite core 170 by a power source (not shown).
  • the reaction chamber 160 is a chamber having a generally toroidal shape, and the reaction chamber 160 has a plasma reaction space 163 in which a plasma reaction occurs with respect to a gas to be processed, and the plasma reaction space 163 communicates with the plasma.
  • a gas inlet passage 164a through which exhaust gas introduced into the reaction space 163 flows, and a gas discharge passage 164b in communication with the plasma reaction space 163 and through which exhaust gas discharged from the plasma reaction space 163 flows. is formed
  • the reaction chamber 160 includes a chamber body 161 forming a plasma reaction space 163 therein, a gas inlet pipe 162a extending from the chamber body 161 and forming a gas inlet passage 164a therein, and , and extending from the chamber body 161 and having a gas discharge pipe portion 162b forming a gas discharge passage 164b therein.
  • the chamber body 161 forms a plasma reaction space 163 in which a plasma reaction with respect to the gas to be processed occurs.
  • an igniter for initial plasma ignition is installed in the chamber body 161 .
  • the chamber body 161 includes a first base part 161a, a second base part 161b positioned to be spaced apart from the first base part 161a, and a first base part 161a and a second base part 161b. ) is provided with first and second connecting pipe portions (166, 169) for connecting.
  • the first base part 161a provides a first internal space 1611a therein, and the first base part 161a has a gas inlet 1612a that communicates the first internal space 1611a with the gas inlet passage 164a. ) is formed.
  • the first base part 161a is positioned above the second base part 161b, and the gas inlet pipe part 162a is connected to the upper part of the first base part 161a.
  • the first connector part 166 and the second connector part 169 are connected to both lower sides of the first base part 161a.
  • the second base portion 161b provides a second inner space 1611b therein, and the second base portion 161b has a gas outlet 1612b that communicates the second inner space 1611b with the gas discharge passage 164b. ) is formed.
  • the second base part 161b is located below the first base part 161a, and the gas discharge pipe part 162b is connected to the lower part of the second base part 161b.
  • the first connector part 166 and the second connector part 169 are connected to both upper sides of the second base part 161b.
  • the first connector part 166 and the second connector part 169 are arranged in parallel to connect the first base part 161a positioned above and the second base part 161b positioned below.
  • the first connector part 166 extends vertically between the first base part 161a and the second base part 161b.
  • a first connection passage 165 is formed inside the first connection pipe part 166 .
  • the first internal space 1611a formed inside the first base part 161a and the second internal space 1611b formed inside the second base part 161b communicate through the first connection passage 165 .
  • the second connecting pipe part 169 extends in the vertical direction between the first base part 161a and the second base part 161b.
  • a second connection passage 167 is formed inside the second connection pipe part 169 .
  • the first connector part 166 and the second connector part 169 are disposed to be spaced apart, so that a slot 169a is formed between the first connector part 166 and the second connector part 169 .
  • a first internal space 1611a, a second internal space 1611b, a first connection passage 165 and a second connection passage 167 connected to each other in the chamber body 161 form a plasma reaction space 163 .
  • the plasma reaction space 163 includes a first connection passage 165 and a second connection passage 167 between the gas inlet passage 164a and the gas exhaust passage 164b respectively arranged vertically. are separated and arranged side by side, the upstream end of the first connection passage 165 and the upstream end of the second connection passage 167 are communicated by the first internal space 1611a, and the first connection passage 165 ) and the downstream end of the second connection passage 167 are formed to communicate with each other by the second inner space 1611b.
  • Plasma is generated along an annular discharge loop R as shown by a broken line in FIG. 3 in the plasma reaction space 163 .
  • the present invention is not limited to the structure of the chamber body 161 as shown in the drawings.
  • the chamber body 161 may be any structure capable of forming a ring-shaped plasma reaction space 163 therein, and this is also within the scope of the present invention. It is preferable that the chamber body 161 be disposed so that the ring-shaped plasma reaction space 163 formed inside the chamber body 161 has an erect shape.
  • the exhaust gas introduced into the plasma reaction space 163 through the gas inlet 1612a is branched into the first connection passage 165 and the second connection passage 167 and flows into the plasma reaction space through the gas outlet 1612b. (163).
  • the gas inlet pipe part 162a is formed to extend upwardly from the upper part of the first base part 161a.
  • a gas inlet passage 164a extending in the vertical direction is formed in the gas inlet pipe portion 162a.
  • the gas inlet passage 164a communicates with the first internal space 1611a through the gas inlet 1612a.
  • the central axis X of the gas inlet passage 164a passes between the first connecting passage 165 and the second connecting passage 167 as the central axis of the gas inlet pipe portion 162a.
  • a first gas injection nozzle 180b and a second gas injection nozzle 180a are installed in the gas inlet pipe part 162a. Exhaust gas and oxygen gas injected from the first and second gas injection nozzles 180b and 180a are introduced into the plasma reaction space 163 through the gas inlet passage 164a.
  • the gas discharge pipe portion 162b is formed to extend downward from the lower portion of the second base portion 161b.
  • a gas discharge passage 164b extending in the vertical direction is formed in the gas discharge pipe portion 162b.
  • the gas discharge passage 164b communicates with the second internal space 1611b through the gas discharge port 1612b.
  • the gas of the plasma reaction space 163 is discharged to the outside through the gas discharge passage 164b.
  • the gas discharge pipe part 162b is disposed coaxially with the gas inlet pipe part 162a. The exhaust gas discharged from the plasma reactor 150 through the gas discharge passage 164b is introduced into the trap 190 .
  • a ferrite core 170 is disposed to surround the reaction chamber 160 .
  • the ferrite core 170 includes an edge wall 171 and a partition wall 175 positioned inside the edge wall 171 .
  • the ferrite core 170 is disposed to surround a part of the plasma reaction space 163 formed in the reaction chamber 160 .
  • the edge wall 171 extends along the circumferential direction to form a substantially rectangular shape.
  • the first connecting pipe part 166 and the second connecting pipe part 169 pass through the inner region of the edge wall 171 .
  • the partition wall 175 extends in a straight line from the inner region of the edge wall 171 to connect two opposing wall portions.
  • the edge wall 171 passes through the slot 169a formed between the two connecting pipe portions 166 and 169 .
  • each of the first connector part 166 and the second connector part 169 is surrounded by the ferrite core 170 along the circumferential direction.
  • an antenna coil is wound around the ferrite core 170 , and an appropriate AC power is supplied to the antenna coil.
  • the first gas injection nozzle 180b and the second gas injection nozzle 180a are installed in the gas inlet pipe part 162a and receive oxygen gas (O 2 ), which is a reactive gas supplied from the gas supply unit 180, into the reaction chamber 160 . It is sprayed toward the plasma reaction space 163 formed in the inside. To this end, a gas injection hole through which gas is injected is formed in each of the first gas injection nozzle 180b and the second gas injection nozzle 180a. The decomposition performance of the exhaust gas in the plasma reaction space 163 is improved by the oxygen gas injected through the first gas injection nozzle 180b and the second gas injection nozzle 180a.
  • the first gas injection nozzle 180b and the second gas injection nozzle 180a form the reactive gas injection means of the present invention.
  • the first gas injection nozzle 180b is installed to be positioned on the side of the second connection pipe 169 on the circumferential direction of the gas inlet pipe part 162a, and the oxygen gas supplied from the gas supply unit 180 is supplied to the reaction chamber 160 of the reaction chamber 160 . It sprays toward the first connection passage 165 formed therein. Accordingly, the oxygen gas injected from the first gas injection nozzle 180b is the first connection passage 165 from the upper portion of the second connection passage 167 in the gas inlet passage 164a, as indicated by the dashed-dotted arrow. ) and flows in an inclined downward direction, passes through the gas inlet 1612a, and then flows into the first connection passage 165 .
  • the second gas injection nozzle 180a is installed to be positioned on the side of the first connection pipe 166 in the circumferential direction of the gas inlet pipe part 162a, and oxygen gas supplied from the gas supply unit 180 is supplied to the reaction chamber 160 in the circumferential direction. It sprays toward the second connection passage 167 formed therein. Accordingly, the oxygen gas injected from the second gas injection nozzle 180a is the second connection passage 167 from the upper portion of the first connection passage 165 in the gas inlet passage 164a as indicated by the dashed-dotted arrow. ) and flows in an inclined downward direction, passes through the gas inlet 1612a, and then flows into the second connection passage 167 .
  • the gas supply 180 stores oxygen gas as a reactive gas injected through the first gas injection nozzle 180b and the second gas injection nozzle 180a, and the first gas injection nozzle 180b through the gas supply pipe 185. and the second gas injection nozzle 180a.
  • the trap 190 collects powder contained in the exhaust gas discharged from the plasma reactor 150 .
  • the trap 190 includes all types of traps commonly used in the field of semiconductor manufacturing equipment to collect powder contained in exhaust gas.
  • the trap 190 is disposed below the plasma reactor 150 on the chamber exhaust pipe 124 to collect powder contained in the exhaust gas discharged through the gas discharge pipe part 162b of the reaction chamber 160 .
  • a characteristic configuration of the present invention is that the first gas injection nozzle 180b and the second gas injection nozzle 180a spray oxygen gas, which is a reactive gas, toward the plasma reaction space 163 formed in the reaction chamber 160 .
  • oxygen gas which is a reactive gas
  • the inventor of the present invention when oxygen gas is simply injected into the pipe, the solid material that is generated and grown on the inner wall surface of the pipe opposite the injection port is CpZr (NMe 2 ) used as a precursor for forming a zirconium oxide thin film in the semiconductor manufacturing process.
  • CpZr NMe 2
  • oxygen gas is injected into the plasma reaction space 163 , and the zirconium source gas component and oxygen react in the high-temperature plasma reaction space 163 to generate zirconium oxide. Since the zirconium source gas component is thermally decomposed in the high-temperature plasma reaction space 163 , the reactivity with oxygen gas is improved, so that the problem of solid material growth due to incomplete reaction is solved.
  • the following reaction formula shows the decomposition and substitution reaction of the zirconium source gas component in the plasma reaction space 163 .
  • Zirconium oxide (ZrO 2 ) generated in the plasma reaction space 163 is in the form of a high-purity and stable fine powder, and is collected in the trap 190 disposed below the plasma reactor 150 .
  • the plasma reactor 250 includes a reaction chamber 160 , a ferrite core 170 disposed to surround the reaction chamber 160 , and a reactive gas into the reaction chamber 160 .
  • a first gas injection nozzle 280b and a second gas injection nozzle 280a for spraying are provided.
  • the remaining configurations are the same as those of the plasma reactor 150 illustrated in FIGS. 2 to 4 , so a detailed description thereof is omitted, and only the configuration and operation of the first gas injection nozzle 280b and the second gas injection nozzle 280a will be described in detail.
  • the first gas injection nozzle 280b and the second gas injection nozzle 280a are installed in the gas inlet pipe part 162a so that a reactive gas such as oxygen gas (O 2 ) is formed inside the gas inlet pipe part 162a. It is injected into the inlet passage (164a).
  • the reactive gas injected through the first gas injection nozzle 280b and the second gas injection nozzle 280a is introduced into the plasma reaction space 163 together with the exhaust gas to be treated through the gas inlet passage 164a, so that the plasma reaction space (163) to improve the decomposition performance of the exhaust gas.
  • the first gas injection nozzle 280b and the second gas injection nozzle 280a form a gas injection nozzle pair according to the present invention.
  • the first gas injection hole formed in the first gas injection nozzle 280b and the second gas injection hole formed in the second gas injection nozzle 280a form a pair of gas injection holes according to the present invention.
  • the first gas injection nozzle 280b and the second gas injection nozzle 280a are positioned at a point symmetrical to each other with respect to the central axis X of the gas inlet passage 164a, and the gas inlet pipe part 162a. It is described as being located opposite to each other on the outer periphery of.
  • the first gas injection nozzle 280b is installed in the gas inlet pipe part 162a to inject a reactive gas such as oxygen gas toward the center of the gas inlet passage 164a as indicated by an arrow.
  • the gas injection direction of the first gas injection nozzle 280b is toward the second gas injection nozzle 280a located opposite to the first gas injection nozzle 280b.
  • the second gas injection nozzle 280a is installed in the gas inlet pipe part 162a to inject a reactive gas such as oxygen gas toward the center of the gas inlet passage 164a as indicated by an arrow.
  • the gas injection direction of the second gas injection nozzle 280a is toward the first gas injection nozzle 280b located opposite to the second gas injection nozzle 280a.
  • the oxygen gas injected from the first gas injection nozzle 280b and the oxygen gas injected from the second gas injection nozzle 280a collide at the center of the gas inlet passage 164a. Accordingly, the oxygen gas in direct contact with the inner wall surface of the gas inlet pipe portion 162a is minimized to prevent the generation of solids.
  • the first gas injection nozzle 280b injects oxygen gas toward the second injection nozzle 280a and the second injection nozzle 280a injects the oxygen gas toward the first injection nozzle 280b
  • the same effect can be obtained by disposing the two gas injection nozzles 280b and 280a in various shapes so that the gas injection direction of the first gas injection nozzle 280b and the gas injection direction of the second gas injection nozzle 280a intersect. and this is also within the scope of the present invention.
  • one gas injection nozzle pair is described as an example, but otherwise, there may be two or more gas injection nozzle pairs arranged in this way, and this also falls within the scope of the present invention.
  • the plasma reactor 350 includes a reaction chamber 160 , a ferrite core 170 disposed to surround the reaction chamber 160 , and the inside of the reaction chamber 160 . and gas injection means for injecting a reactive gas into the furnace.
  • the rest of the configuration is the same as the plasma reactor 250 shown in FIGS. 9 and 10 , so a detailed description thereof will be omitted, and only the configuration and action of the gas injection means will be described in detail. do.
  • the gas injection means includes a ring-shaped gas flow pipe 390 surrounding the gas inlet pipe part 162a from the outside, and a plurality of gas injection holes 380a and 380b formed in the gas inlet pipe part 162a. , 381a, 381b, 382a, 382b).
  • the gas flow pipe 390 is a pipe that surrounds the gas inlet pipe part 162a from the outside in a ring shape, and a passage through which the reactive gas flows along the circumferential direction of the gas inlet pipe part 162a is formed in the gas flow pipe 390 . do.
  • a gas supply pipe 395 is connected to the gas flow pipe 390 .
  • a reactive gas is supplied into the gas flow pipe 390 from the outside through the gas supply pipe 395 .
  • the reactive gas flowing in the gas flow tube 390 is injected into the gas inlet passage 164a through the plurality of gas injection holes 380a, 380b, 381a, 381b, 382a, 382b formed in the gas inlet tube portion 162a.
  • the plurality of gas injection holes 380a, 380b, 381a, 381b, 382a, and 382b are formed in the gas inlet pipe part 162 .
  • Each of the plurality of gas injection ports 380a, 380b, 381a, 381b, 382a, and 382b communicates with the gas flow pipe 390 .
  • the plurality of gas injection holes 380a, 380b, 381a, 381b, 382a, 382b are arranged at equal intervals along the circumferential direction of the gas inlet pipe part 162a.
  • the reactive gas flowing in the gas flow pipe 390 through each of the plurality of gas injection holes 380a, 380b, 381a, 381b, 382a, and 382b is injected into the gas inlet passage 164a.
  • two gas injection holes 380a and 380b located opposite to each other form a first gas injection hole pair
  • the other two gases located opposite to each other The injection holes 381a and 381b form a second pair of gas injection holes
  • two other gas injection holes 382a and 382b positioned opposite to each other form a third pair of gas injection holes.
  • the direction in which each gas injection port pair injects gas is the same as that by the gas injection nozzle pair shown in FIGS. 9 and 10 .
  • the number of pairs of gas injection holes may be two or less or four or more, and this also falls within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Glass Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Plasma Technology (AREA)

Abstract

Provided is exhaust gas treatment equipment for a semiconductor manufacturing facility, comprising: a reaction chamber for treating exhaust gas by using an inductively coupled plasma reaction; and a reactive gas ejection means for ejecting reactive gas, wherein: the reaction chamber provides a plasma reaction space in which the inductively coupled plasma reaction occurs, and includes a chamber body in which a gas inlet and a gas outlet that communicate with the plasma reaction space, are formed, the gas inlet allowing the exhaust gas to be introduced into the plasma reaction space, and the gas outlet allowing the exhaust gas to be discharged from the plasma reaction space; and the reactive gas ejection means ejects the reactive gas toward the plasma reaction space through the gas inlet from the outside of the upstream side of the plasma reaction space.

Description

반도체 제조설비용 배기가스 처리 장비Exhaust gas treatment equipment for semiconductor manufacturing facilities
본 발명은 반도체 제조설비 기술에 관한 것으로서, 더욱 상세하게는 공정챔버로부터 배출되는 배기가스를 플라즈마를 이용하여 처리하는 장비에 관한 것이다.The present invention relates to semiconductor manufacturing equipment technology, and more particularly, to equipment for treating exhaust gas discharged from a process chamber using plasma.
반도체 소자는 공정챔버에서 웨이퍼 상에 포토리소그래피, 식각, 확산 및 금속증착 등의 공정들이 반복적으로 수행됨으로써 제조되고 있다. 이러한 반도체 제조 공정 중에는 다양한 공정 가스가 사용되며, 공정이 완료된 후에는 공정챔버에 잔류가스가 존재하게 되는데, 공정챔버 내 잔류가스는 유독성분을 포함하고 있기 때문에, 진공펌프에 의해 배출되어서 스크러버와 같은 배기가스 처리장치에 의해 정화된다. 진공펌프의 내부에서는 100℃ 이상의 고온 상태에서 배기가스들의 압축이 일어나므로, 배기가스들의 상변이가 쉽게 발생하여 진공펌프 내부에 고체성 부산물이 쉽게 형성되고 축적되어서 진공펌프의 고장 원인이 된다.A semiconductor device is manufactured by repeatedly performing processes such as photolithography, etching, diffusion, and metal deposition on a wafer in a process chamber. During the semiconductor manufacturing process, various process gases are used, and after the process is completed, residual gas is present in the process chamber. Since the residual gas in the process chamber contains toxic components, it is discharged by a vacuum pump and It is purified by an exhaust gas treatment device. Since the exhaust gases are compressed at a high temperature of 100° C. or higher inside the vacuum pump, a phase change of the exhaust gases easily occurs, so that solid by-products are easily formed and accumulated inside the vacuum pump, which causes malfunction of the vacuum pump.
배기가스에 의한 진공펌프 고장을 방지하기 위하여 최근에는 유도결합플라즈마(ICP: Inductively Coupled Plasma)를 이용하여 가스를 분해하는 플라즈마 반응기를 공정챔버와 진공펌프의 사이를 연결하는 배관에 설치하는 기술이 개발되어서 사용되고 있다(등록특허 제10-1448449호에 기재된 구성). 플라즈마 반응기에서 배기가스의 분해 성능이 향상되도록 플라즈마 반응기의 상류측 배관으로 산소 가스와 같은 반응성 가스가 분사되는데, 산소 가스가 분사되는 포트의 반대편 벽면에서 고형물이 생성되어서 성장하는 문제가 발생하고 있다.In order to prevent the failure of the vacuum pump due to exhaust gas, recently, a technology for installing a plasma reactor that decomposes gas using inductively coupled plasma (ICP) in the pipe connecting the process chamber and the vacuum pump has been developed. It has been and is being used (configuration described in Patent Registration No. 10-1448449). A reactive gas such as oxygen gas is injected into the upstream pipe of the plasma reactor to improve the decomposition performance of the exhaust gas in the plasma reactor, but there is a problem in that solids are generated and grown on the wall opposite to the port where the oxygen gas is injected.
본 발명의 목적은 유도결합플라즈마를 이용하여 가스를 분해하는 플라즈마 반응기의 상류측 배관에서 산소 가스 분사에 의해 배관 벽면에서 고형물이 생성되어서 성장하는 문제를 해결하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to solve a problem in which a solid material is generated and grown on a pipe wall by oxygen gas injection in an upstream pipe of a plasma reactor that decomposes gas using inductively coupled plasma.
상기한 본 발명의 목적을 달성하기 위하여, 본 발명의 일 측면에 따르면, 유도결합 플라즈마 반응을 이용하여 배기가스를 처리하는 반응 챔버; 및 반응성 가스를 분사하는 반응성 가스 분사 수단을 포함하며, 상기 반응 챔버는 내부에 상기 유도결합 플라즈마 반응이 일어나는 플라즈마 반응 공간을 제공하고, 상기 플라즈마 반응 공간과 연통되는 가스 유입구와 가스 배출구가 형성되는 챔버 몸체를 구비하며, 상기 가스 유입구를 통해 상기 배기가스가 상기 플라즈마 반응 공간으로 유입되고, 상기 가스 배출구를 통해 상기 플라즈마 반응 공간으로부터 상기 배기가스가 배출되며, 상기 반응성 가스 분사 수단은 상기 플라즈마 반응 공간의 상류 측 외부에서 상기 가스 유입구를 통해 상기 플라즈마 반응 공간을 향해 상기 반응성 가스를 분사하는, 반도체 제조설비용 배기가스 처리 장비가 제공된다.In order to achieve the above object of the present invention, according to one aspect of the present invention, a reaction chamber for treating exhaust gas using an inductively coupled plasma reaction; and reactive gas ejection means for ejecting reactive gas, wherein the reaction chamber provides a plasma reaction space in which the inductively coupled plasma reaction occurs, and a gas inlet and a gas outlet communicating with the plasma reaction space are formed. a body, wherein the exhaust gas is introduced into the plasma reaction space through the gas inlet, and the exhaust gas is discharged from the plasma reaction space through the gas outlet, and the reactive gas spraying means is a part of the plasma reaction space. There is provided an exhaust gas treatment equipment for a semiconductor manufacturing facility that injects the reactive gas toward the plasma reaction space through the gas inlet from the outside on an upstream side.
상기한 본 발명의 목적을 달성하기 위하여, 본 발명의 다른 측면에 따르면, 유도결합 플라즈마 반응을 이용하여 배기가스를 처리하는 반응 챔버; 및 반응성 가스를 분사하는 제1 가스 분사 노즐과 제2 가스 분사 노즐을 구비하는 가스 분사 노즐 쌍을 포함하며, 상기 반응 챔버는 내부에 상기 유도결합 플라즈마 반응이 일어나는 플라즈마 반응 공간을 제공하는 챔버 몸체와, 상기 배기가스가 상기 반응 공간으로 유입되는 가스 유입 통로를 제공하는 가스 유입관부를 구비하며, 상기 제1 가스 분사 노즐과 상기 제2 가스 분사 노즐은 상기 상기 가스 유입관부에 설치되어서 상기 가스 유입 통로로 분사하며, 상기 제1 가스 분사 노즐은 상기 제2 가스 분사 노즐을 향해 상기 반응성 가스를 분사하며, 상기 제2 가스 분사 노즐은 상기 제1 가스 분사 노즐을 향해 상기 반응성 가스를 분사하는, 반도체 제조설비용 배기가스 처리 장비가 제공된다.In order to achieve the above object of the present invention, according to another aspect of the present invention, a reaction chamber for treating exhaust gas using an inductively coupled plasma reaction; and a pair of gas injection nozzles including a first gas injection nozzle and a second gas injection nozzle for injecting a reactive gas, wherein the reaction chamber includes a chamber body providing a plasma reaction space in which the inductively coupled plasma reaction occurs; , a gas inlet pipe portion providing a gas inlet passage through which the exhaust gas flows into the reaction space, wherein the first gas spray nozzle and the second gas spray nozzle are installed in the gas inlet tube portion to provide the gas inlet passage The first gas jet nozzle jets the reactive gas toward the second gas jet nozzle, and the second gas jet nozzle jets the reactive gas toward the first gas jet nozzle. Exhaust gas treatment equipment for facilities is provided.
본 발명에 의하면 앞서서 기재한 본 발명의 목적을 모두 달성할 수 있다. 구체적으로는, 산소 가스가 플라즈마 반응기의 플라즈마 반응 공간으로 분사되어서 고온의 플라즈마 반응 공간에서 지르코늄 소스 가스 성분이 열분해되므로, 산소 가스와의 반응성이 향상됨으로써, 불완전 반응에 따른 고형물 성장의 문제가 해결된다. According to the present invention, all of the objects of the present invention described above can be achieved. Specifically, since oxygen gas is injected into the plasma reaction space of the plasma reactor and the zirconium source gas component is thermally decomposed in the high-temperature plasma reaction space, the reactivity with oxygen gas is improved, thereby solving the problem of solid growth due to incomplete reaction. .
도 1은 본 발명의 일 실시예에 따른 배기가스 처리 장비가 설치된 반도체 제조설비의 개략적인 구성을 도시한 블록도이다.1 is a block diagram illustrating a schematic configuration of a semiconductor manufacturing facility in which exhaust gas treatment equipment is installed according to an embodiment of the present invention.
도 2는 도 1에 도시된 배기가스 처리 장비에 구비되는 플라즈마 반응기의 사시도이다.FIG. 2 is a perspective view of a plasma reactor provided in the exhaust gas treatment equipment shown in FIG. 1 .
도 3은 도 2에 도시된 플라즈마 반응기를 A-A'선을 따라 절단하여 도시한 종단면도이다.3 is a longitudinal cross-sectional view showing the plasma reactor shown in FIG. 2 taken along line A-A'.
도 4는 도 2에 도시된 플라즈마 반응기의 평면도이다.FIG. 4 is a plan view of the plasma reactor shown in FIG. 2 .
도 5는 산소 가스가 배관 내부로 단순 주입되는 경우에 주입 포트의 반대편 배관 내벽면에서 고형물이 생성되어서 성장한 것을 보여주는 사진이다.5 is a photograph showing that when oxygen gas is simply injected into the pipe, solids are generated and grown on the inner wall surface of the pipe opposite to the injection port.
도 6 내지 도 8은 도 5에 도시된 고형물의 성장을 설명하는 산소 가스의 유동 해석을 보여주는 도면이다.6 to 8 are views illustrating flow analysis of oxygen gas for explaining the growth of the solid shown in FIG. 5 .
도 9 및 도 10은 각각 본 발명의 다른 실시예에 따른 플라즈마 반응기의 종단면도 및 평면도이다.9 and 10 are a longitudinal cross-sectional view and a plan view of a plasma reactor according to another embodiment of the present invention, respectively.
도 11은 본 발명의 또 다른 실시예에 따른 플라즈마 반응기의 평면도이다.11 is a plan view of a plasma reactor according to another embodiment of the present invention.
이하, 도면을 참조하여 본 발명의 실시예의 구성 및 작용을 상세하게 설명한다.Hereinafter, the configuration and operation of the embodiment of the present invention will be described in detail with reference to the drawings.
도 1에는 본 발명의 일 실시예에 따른 배기가스 처리 장비가 설치된 반도체 제조설비의 개략적인 구성이 블록도로서 도시되어 있다. 도 1을 참조하면, 반도체 제조설비(100)는 반도체 제조공정이 진행되는 반도체 제조 장비(110)와, 반도체 제조 장비(110)로부터 가스를 배출시키는 배기 장비(120)와, 배기 장비(120)에 의해 반도체 제조 장비(110)로부터 배출되는 가스를 처리하는 배기가스 처리 장비(130)를 포함한다.1 is a block diagram showing a schematic configuration of a semiconductor manufacturing facility installed with exhaust gas treatment equipment according to an embodiment of the present invention. Referring to FIG. 1 , a semiconductor manufacturing facility 100 includes a semiconductor manufacturing equipment 110 in which a semiconductor manufacturing process is performed, an exhaust equipment 120 for discharging gas from the semiconductor manufacturing equipment 110 , and an exhaust equipment 120 . and an exhaust gas treatment equipment 130 for processing the gas discharged from the semiconductor manufacturing equipment 110 by the
반도체 제조 장비(110)는 다양한 공정가스를 이용한 반도체 제조공정이 진행되는 공정 챔버(112)를 구비한다. 공정 챔버(112)는 반도체 제조 설비 기술 분야에서 반도체 제조를 위해 통상적으로 사용되는 모든 형태의 공정 챔버를 포함한다. 공정 챔버(112)에서 발생한 잔류 가스는 배기 장비(130)에 의해 외부로 배출되는 과정에서 배기가스 처리 장비(130)에 의해 정화된다.The semiconductor manufacturing equipment 110 includes a process chamber 112 in which a semiconductor manufacturing process using various process gases is performed. The process chamber 112 includes all types of process chambers commonly used for semiconductor manufacturing in the field of semiconductor manufacturing equipment. The residual gas generated in the process chamber 112 is purified by the exhaust gas treatment equipment 130 while being discharged to the outside by the exhaust equipment 130 .
배기 장비(120)는 공정 챔버(112)에서 발생한 잔류 가스를 배출시킨다. 배기 장비(120)는 진공 펌프(122)와, 공정 챔버(112)와 진공 펌프(122)를 연결하는 챔버 배기관(124)과, 진공 펌프(122)로부터 하류 쪽으로 연장되는 펌프 배기관(126)을 구비한다.The exhaust device 120 discharges the residual gas generated in the process chamber 112 . The exhaust equipment 120 includes a vacuum pump 122 , a chamber exhaust pipe 124 connecting the process chamber 112 and the vacuum pump 122 , and a pump exhaust pipe 126 extending downstream from the vacuum pump 122 . be prepared
진공 펌프(122)는 공정 챔버(112)의 잔류가스를 배출하기 위하여 공정 챔버(112)와 진공 펌프(122)를 연결하는 챔버 배기관(124)을 통해 공정 챔버(112) 측에 음압을 형성하는데, 반도체 제조 설비 기술 분야에서 통상적으로 사용되는 진공 펌프의 구성을 포함하므로 이에 대한 상세한 설명은 생략한다.The vacuum pump 122 forms a negative pressure on the side of the process chamber 112 through the chamber exhaust pipe 124 connecting the process chamber 112 and the vacuum pump 122 to discharge the residual gas of the process chamber 112 . , since it includes the configuration of a vacuum pump commonly used in the field of semiconductor manufacturing equipment, a detailed description thereof will be omitted.
챔버 배기관(124)은 공정 챔버(112)와 진공 펌프(122)의 사이에서 공정 챔버(112)의 배기구와 진공 펌프(122)의 흡입구를 연결한다. 진공 펌프(122)에 의해 형성되는 음압에 의해 공정 챔버(112)의 잔류가스가 챔버 배기관(124)을 통해 배기가스로서 배출된다.The chamber exhaust pipe 124 connects the exhaust port of the process chamber 112 and the suction port of the vacuum pump 122 between the process chamber 112 and the vacuum pump 122 . The residual gas of the process chamber 112 is discharged as exhaust gas through the chamber exhaust pipe 124 by the negative pressure generated by the vacuum pump 122 .
펌프 배기관(126)은 진공 펌프(122)로부터 하류 쪽으로 연장된다. 펌프 배기관(126)은 진공 펌프(122)의 토출구와 연결되어서 진공 펌프(122)로부터 배출되는 배기가스가 유동한다.A pump exhaust pipe 126 extends downstream from the vacuum pump 122 . The pump exhaust pipe 126 is connected to the outlet of the vacuum pump 122 so that the exhaust gas discharged from the vacuum pump 122 flows.
배기가스 처리 장비(130)는 배기 장비(120)에 의해 반도체 제조 장비(110)로부터 배출되는 가스를 처리하여 정화한다. 배기가스 처리 장비(130)는 진공 펌프(122)로부터 배출되는 배기가스를 처리하는 스크러버(140)와, 공정 챔버(112)로부터 배출되는 배기가스를 플라즈마를 이용하여 처리하는 플라즈마 반응기(150)와, 플라즈마 반응기(150)로 반응성 가스를 공급하는 가스 공급기(180)와, 플라즈마 반응기(150)로부터 배출되는 배기가스에 포함된 파우더가 포집되는 트랩(190)을 구비한다.The exhaust gas treatment equipment 130 processes and purifies the gas discharged from the semiconductor manufacturing equipment 110 by the exhaust equipment 120 . The exhaust gas treatment equipment 130 includes a scrubber 140 for treating the exhaust gas discharged from the vacuum pump 122 , and a plasma reactor 150 for treating the exhaust gas discharged from the process chamber 112 using plasma, and , a gas supply 180 for supplying a reactive gas to the plasma reactor 150 , and a trap 190 for collecting powder contained in the exhaust gas discharged from the plasma reactor 150 .
스크러버(140)는 펌프 배기관(126)의 하류측 끝단에 연결되어서 진공 펌프(122)로부터 배출되는 배기가스를 처리한다. 스크러버(140)는 반도체 제조 설비 기술 분야에서 배기가스를 처리하기 위해 통상적으로 사용되는 모든 형태의 스크러버를 포함한다.The scrubber 140 is connected to the downstream end of the pump exhaust pipe 126 to treat the exhaust gas discharged from the vacuum pump 122 . The scrubber 140 includes all types of scrubbers commonly used to treat exhaust gas in the field of semiconductor manufacturing equipment technology.
플라즈마 반응기(150)는 챔버 배기관(124) 상에 설치되어서 공정 챔버(112)로부터 배출되는 배기가스를 플라즈마를 이용해 분해하여 처리한다. 도 2 내지 도 4에는 플라즈마 반응기(150)가 사시도, 종단면도 및 평면도로서 도시되어 있다. 도 2 내지 도 4를 참조하면, 플라즈마 반응기(150)는 반응 챔버(160)와, 반응 챔버(160)를 감싸도록 배치되는 페라이트 코어(170)와, 반응 챔버(160)의 내부로 반응성 가스를 분사하는 제1 가스 분사 노즐(180b) 및 제2 가스 분사 노즐(180a)을 구비한다. 본 실시예에서 플라즈마 반응기(150)는 챔버 배기관(도 1의 124)을 따라 유동하는 배기가스를 유도결합 플라즈마를 이용하여 처리하는 유도결합 플라즈마 반응기이다. 도시되지는 않았으나, 플라즈마 반응기(150)는 페라이트 코어(170)에 권취되는 안테나 코일에 적절한 교류 전력이 전원(미도시)에 의해 공급되어서 작동하게 된다.The plasma reactor 150 is installed on the chamber exhaust pipe 124 to decompose and process the exhaust gas discharged from the process chamber 112 using plasma. 2-4 the plasma reactor 150 is shown in perspective, longitudinal, and plan views. 2 to 4 , the plasma reactor 150 includes a reaction chamber 160 , a ferrite core 170 disposed to surround the reaction chamber 160 , and a reactive gas into the reaction chamber 160 . A first gas injection nozzle 180b and a second gas injection nozzle 180a for spraying are provided. In the present embodiment, the plasma reactor 150 is an inductively coupled plasma reactor that processes exhaust gas flowing along the chamber exhaust pipe ( 124 in FIG. 1 ) using inductively coupled plasma. Although not shown, the plasma reactor 150 operates by supplying AC power appropriate to the antenna coil wound around the ferrite core 170 by a power source (not shown).
반응 챔버(160)는 대체로 토로이달(toroidal) 형상의 챔버로서, 반응 챔버(160)에는 처리대상 가스에 대한 플라즈마 반응이 일어나는 플라즈마 반응 공간(163)과, 플라즈마 반응 공간(163)과 연통되고 플라즈마 반응 공간(163)으로 유입되는 배기가스가 유동하는 가스 유입 통로(164a)와, 플라즈마 반응 공간(163)과 연통되고 플라즈마 반응 공간(163)으로부터 배출되는 배기가스가 유동하는 가스 배출 통로(164b)가 형성된다.The reaction chamber 160 is a chamber having a generally toroidal shape, and the reaction chamber 160 has a plasma reaction space 163 in which a plasma reaction occurs with respect to a gas to be processed, and the plasma reaction space 163 communicates with the plasma. A gas inlet passage 164a through which exhaust gas introduced into the reaction space 163 flows, and a gas discharge passage 164b in communication with the plasma reaction space 163 and through which exhaust gas discharged from the plasma reaction space 163 flows. is formed
반응 챔버(160)는 내부에 플라즈마 반응 공간(163)을 형성하는 챔버 몸체(161)와, 챔버 몸체(161)로부터 연장되고 내부에 가스 유입 통로(164a)를 형성하는 가스 유입관부(162a)와, 챔버 몸체(161)로부터 연장되고 내부에 가스 배출 통로(164b)를 형성하는 가스 배출관부(162b)를 구비한다.The reaction chamber 160 includes a chamber body 161 forming a plasma reaction space 163 therein, a gas inlet pipe 162a extending from the chamber body 161 and forming a gas inlet passage 164a therein, and , and extending from the chamber body 161 and having a gas discharge pipe portion 162b forming a gas discharge passage 164b therein.
챔버 몸체(161)는 내부에 처리대상 가스에 대한 플라즈마 반응이 일어나는 플라즈마 반응 공간(163)을 형성한다. 도시되지는 않았으나, 챔버 몸체(161)에는 초기 플라즈마 점화를 위한 점화기가 설치된다. 챔버 몸체(161)는 제1 기초부(161a)와, 제1 기초부(161a)와 이격되어서 위치하는 제2 기초부(161b)와, 제1 기초부(161a)와 제2 기초부(161b)를 연결하는 제1, 제2 연결관부(166, 169)를 구비한다.The chamber body 161 forms a plasma reaction space 163 in which a plasma reaction with respect to the gas to be processed occurs. Although not shown, an igniter for initial plasma ignition is installed in the chamber body 161 . The chamber body 161 includes a first base part 161a, a second base part 161b positioned to be spaced apart from the first base part 161a, and a first base part 161a and a second base part 161b. ) is provided with first and second connecting pipe portions (166, 169) for connecting.
제1 기초부(161a)는 내부에 제1 내부 공간(1611a)을 제공하고, 제1 기초부(161a)에는 제1 내부 공간(1611a)을 가스 유입 통로(164a)와 연통시키는 가스 유입구(1612a)가 형성된다. 제1 기초부(161a)는 제2 기초부(161b)보다 위에 위치하며, 제1 기초부(161a)의 상부에 가스 유입관부(162a)가 연결된다. 제1 기초부(161a)의 하부 양측에 제1 연결관부(166)와 제2 연결관부(169)가 연결된다.The first base part 161a provides a first internal space 1611a therein, and the first base part 161a has a gas inlet 1612a that communicates the first internal space 1611a with the gas inlet passage 164a. ) is formed. The first base part 161a is positioned above the second base part 161b, and the gas inlet pipe part 162a is connected to the upper part of the first base part 161a. The first connector part 166 and the second connector part 169 are connected to both lower sides of the first base part 161a.
제2 기초부(161b)는 내부에 제2 내부 공간(1611b)을 제공하고, 제2 기초부(161b)에는 제2 내부 공간(1611b)을 가스 배출 통로(164b)와 연통시키는 가스 배출구(1612b)가 형성된다. 제2 기초부(161b)는 제1 기초부(161a)보다 아래에 위치하며, 제2 기초부(161b)의 하부에 가스 배출관부(162b)가 연결된다. 제2 기초부(161b)의 상부 양측에 제1 연결관부(166)와 제2 연결관부(169)가 연결된다.The second base portion 161b provides a second inner space 1611b therein, and the second base portion 161b has a gas outlet 1612b that communicates the second inner space 1611b with the gas discharge passage 164b. ) is formed. The second base part 161b is located below the first base part 161a, and the gas discharge pipe part 162b is connected to the lower part of the second base part 161b. The first connector part 166 and the second connector part 169 are connected to both upper sides of the second base part 161b.
제1 연결관부(166)와 제2 연결관부(169)는 나란하게 배치되어서 위에 위치하는 제1 기초부(161a)와 아래에 위치하는 제2 기초부(161b)를 연결한다. 제1 연결관부(166)은 제1 기초부(161a)와 제2 기초부(161b)의 사이에서 상하방향으로 연장된다. 제1 연결관부(166)의 내부에는 제1 연결 통로(165)가 형성된다. 제1 연결 통로(165)를 통해 제1 기초부(161a)의 내부에 형성된 제1 내부 공간(1611a)과 제2 기초부(161b)의 내부에 형성된 제2 내부 공간(1611b)이 연통된다. 제2 연결관부(169)는 제1 기초부(161a)와 제2 기초부(161b)의 사이에서 상하방향으로 연장된다. 제2 연결관부(169)의 내부에는 제2 연결 통로(167)가 형성된다. 제2 연결 통로(167)를 통해 제1 기초부(161a)의 내부에 형성된 제1 내부 공간(1611a)과 제2 기초부(161b)의 내부에 형성된 제2 내부 공간(1611b)이 연통된다. 제1 연결관부(166)와 제2 연결관부(169)는 이격되도록 배치되어서 제1 연결관부(166)와 제2 연결관부(169)의 사이에는 슬롯(169a)이 형성된다.The first connector part 166 and the second connector part 169 are arranged in parallel to connect the first base part 161a positioned above and the second base part 161b positioned below. The first connector part 166 extends vertically between the first base part 161a and the second base part 161b. A first connection passage 165 is formed inside the first connection pipe part 166 . The first internal space 1611a formed inside the first base part 161a and the second internal space 1611b formed inside the second base part 161b communicate through the first connection passage 165 . The second connecting pipe part 169 extends in the vertical direction between the first base part 161a and the second base part 161b. A second connection passage 167 is formed inside the second connection pipe part 169 . The first internal space 1611a formed inside the first base part 161a and the second internal space 1611b formed inside the second base part 161b communicate through the second connection passage 167 . The first connector part 166 and the second connector part 169 are disposed to be spaced apart, so that a slot 169a is formed between the first connector part 166 and the second connector part 169 .
챔버 몸체(161)의 내부에서 서로 연결된 제1 내부 공간(1611a), 제2 내부 공간(1611b), 제1 연결 통로(165) 및 제2 연결 통로(167)가 플라즈마 반응 공간(163)을 형성한다. 즉, 본 실시예에서 플라즈마 반응 공간(163)은 상하로 각각 배치되는 가스 유입 통로(164a)와 가스 배출 통로(164b)의 사이에서, 제1 연결 통로(165)와 제2 연결 통로(167)가 분리되어서 나란하게 배치되고, 제1 연결 통로(165)의 상류측 끝단과 제2 연결 통로(167)의 상류측 끝단이 제1 내부 공간(1611a)에 의해 연통되며, 제1 연결 통로(165)의 하류측 끝단과 제2 연결 통로(167)의 하류측 끝단이 제2 내부 공간(1611b)에 의해 연통되도록 형성된다. 플라즈마 반응 공간(163)에서 도 3에 파선으로 도시된 바와 같은 고리형 방전 루프(R)를 따라서 플라즈마가 발생한다. 본 발명은 챔버 몸체(161)를 도면에 도시된 바와 같은 구조로 제한하지 않는다. 챔버 몸체(161)는 내부에 고리 형태의 플라즈마 반응 공간(163)을 형성할 수 있는 구조라면 모두 가능하며, 이 또한 본 발명의 범위에 속하는 것이다. 챔버 몸체(161)의 내부에 형성되는 고리 형태의 플라즈마 반응 공간(163)은 세워진 형태가 되도록 챔버 몸체(161)가 배치되는 것이 바람직하다. 가스 유입구(1612a)를 통해 플라즈마 반응 공간(163)으로 유입된 배기가스는 제1 연결 통로(165)와 제2 연결 통로(167)로 분기되어서 유동한 후 가스 배출구(1612b)를 통해 플라즈마 반응 공간(163)으로부터 배출된다.A first internal space 1611a, a second internal space 1611b, a first connection passage 165 and a second connection passage 167 connected to each other in the chamber body 161 form a plasma reaction space 163 . do. That is, in the present embodiment, the plasma reaction space 163 includes a first connection passage 165 and a second connection passage 167 between the gas inlet passage 164a and the gas exhaust passage 164b respectively arranged vertically. are separated and arranged side by side, the upstream end of the first connection passage 165 and the upstream end of the second connection passage 167 are communicated by the first internal space 1611a, and the first connection passage 165 ) and the downstream end of the second connection passage 167 are formed to communicate with each other by the second inner space 1611b. Plasma is generated along an annular discharge loop R as shown by a broken line in FIG. 3 in the plasma reaction space 163 . The present invention is not limited to the structure of the chamber body 161 as shown in the drawings. The chamber body 161 may be any structure capable of forming a ring-shaped plasma reaction space 163 therein, and this is also within the scope of the present invention. It is preferable that the chamber body 161 be disposed so that the ring-shaped plasma reaction space 163 formed inside the chamber body 161 has an erect shape. The exhaust gas introduced into the plasma reaction space 163 through the gas inlet 1612a is branched into the first connection passage 165 and the second connection passage 167 and flows into the plasma reaction space through the gas outlet 1612b. (163).
가스 유입관부(162a)는 제1 기초부(161a)의 상부로부터 위로 연장되어서 형성된다. 가스 유입관부(162a)의 내부에 상하방향을 따라서 연장되는 가스 유입 통로(164a)가 형성된다. 가스 유입 통로(164a)는 가스 유입구(1612a)를 통해 제1 내부 공간(1611a)과 연통된다. 가스 유입 통로(164a)의 중심축선(X)은 가스 유입관부(162a)의 중심축선으로서 제1 연결 통로(165)와 제2 연결 통로(167)의 사이를 지나간다. 가스 유입관부(162a)에는 제1 가스 분사 노즐(180b)과 제2 가스 분사 노즐(180a)이 설치된다. 가스 유입 통로(164a)를 통해 배기가스와 제1, 제2 가스 분사 노즐(180b, 180a)로부터 분사되는 산소 가스가 플라즈마 반응 공간(163)으로 유입된다.The gas inlet pipe part 162a is formed to extend upwardly from the upper part of the first base part 161a. A gas inlet passage 164a extending in the vertical direction is formed in the gas inlet pipe portion 162a. The gas inlet passage 164a communicates with the first internal space 1611a through the gas inlet 1612a. The central axis X of the gas inlet passage 164a passes between the first connecting passage 165 and the second connecting passage 167 as the central axis of the gas inlet pipe portion 162a. A first gas injection nozzle 180b and a second gas injection nozzle 180a are installed in the gas inlet pipe part 162a. Exhaust gas and oxygen gas injected from the first and second gas injection nozzles 180b and 180a are introduced into the plasma reaction space 163 through the gas inlet passage 164a.
가스 배출관부(162b)는 제2 기초부(161b)의 하부로부터 아래로 연장되어서 형성된다. 가스 배출관부(162b)의 내부에 상하방향을 따라서 연장되는 가스 배출 통로(164b)가 형성된다. 가스 배출 통로(164b)는 가스 배출구(1612b)를 통해 제2 내부 공간(1611b)과 연통된다. 가스 배출 통로(164b)를 통해 플라즈마 반응 공간(163)의 가스가 외부로 배출된다. 가스 배출관부(162b)는 가스 유입관부(162a)와 동축선 상에 배치된다. 가스 배출 통로(164b)를 통해 플라즈마 반응기(150)로부터 배출되는 배기가스는 트랩(190)으로 유입된다.The gas discharge pipe portion 162b is formed to extend downward from the lower portion of the second base portion 161b. A gas discharge passage 164b extending in the vertical direction is formed in the gas discharge pipe portion 162b. The gas discharge passage 164b communicates with the second internal space 1611b through the gas discharge port 1612b. The gas of the plasma reaction space 163 is discharged to the outside through the gas discharge passage 164b. The gas discharge pipe part 162b is disposed coaxially with the gas inlet pipe part 162a. The exhaust gas discharged from the plasma reactor 150 through the gas discharge passage 164b is introduced into the trap 190 .
페라이트(Ferrite Core) 코어(170)는 반응 챔버(160)를 감싸도록 배치된다. 페라이트 코어(170)는 테두리벽(171)와, 테두리벽(171)의 내부에 위치하는 구획벽(175)을 구비한다. 페라이트 코어(170)는 반응 챔버(160)에 형성된 플라즈마 반응 공간(163)의 일부를 감싸도록 배치된다. 테두리벽(171)은 둘레방향을 따라서 대체로 직사각형을 이루도록 연장된다. 테두리벽(171)의 내부 영역을 제1 연결관부(166)와 제2 연결관부(169)가 통과한다. 구획벽(175)은 테두리벽(171)의 내부 영역에서 직선으로 연장되어서 대향하는 두 벽부를 연결한다. 테두리벽(171)은 두 연결관부(166, 169)의 사이에 형성된 슬롯(169a)을 통과한다. 그에 따라, 제1 연결관부(166)와 제2 연결관부(169) 각각은 페라이트 코어(170)에 의해 둘레방향을 따라서 에워싸이는 형태가 된다. 도시되지는 않았으나, 페라이트 코어(170)에는 안테나 코일이 권취되고, 안테나 코일에 적절한 교류 전력이 공급된다.A ferrite core 170 is disposed to surround the reaction chamber 160 . The ferrite core 170 includes an edge wall 171 and a partition wall 175 positioned inside the edge wall 171 . The ferrite core 170 is disposed to surround a part of the plasma reaction space 163 formed in the reaction chamber 160 . The edge wall 171 extends along the circumferential direction to form a substantially rectangular shape. The first connecting pipe part 166 and the second connecting pipe part 169 pass through the inner region of the edge wall 171 . The partition wall 175 extends in a straight line from the inner region of the edge wall 171 to connect two opposing wall portions. The edge wall 171 passes through the slot 169a formed between the two connecting pipe portions 166 and 169 . Accordingly, each of the first connector part 166 and the second connector part 169 is surrounded by the ferrite core 170 along the circumferential direction. Although not shown, an antenna coil is wound around the ferrite core 170 , and an appropriate AC power is supplied to the antenna coil.
제1 가스 분사 노즐(180b)과 제2 가스 분사 노즐(180a)은 가스 유입관부(162a)에 설치되고 가스 공급기(180)로부터 공급되는 반응성 가스인 산소 가스(O2)를 반응 챔버(160)의 내부에 형성되는 플라즈마 반응 공간(163)을 향해 분사한다. 이를 위하여 제1 가스 분사 노즐(180b)과 제2 가스 분사 노즐(180a) 각각에는 가스가 분사되는 가스 분사구가 형성된다. 제1 가스 분사 노즐(180b)과 제2 가스 분사 노즐(180a)을 통해 분사되는 산소 가스에 의해 플라즈마 반응 공간(163)에서의 배기가스의 분해 성능이 향상된다. 제1 가스 분사 노즐(180b)과 제2 가스 분사 노즐(180a)은 본 발명의 반응성 가스 분사 수단을 형성한다.The first gas injection nozzle 180b and the second gas injection nozzle 180a are installed in the gas inlet pipe part 162a and receive oxygen gas (O 2 ), which is a reactive gas supplied from the gas supply unit 180, into the reaction chamber 160 . It is sprayed toward the plasma reaction space 163 formed in the inside. To this end, a gas injection hole through which gas is injected is formed in each of the first gas injection nozzle 180b and the second gas injection nozzle 180a. The decomposition performance of the exhaust gas in the plasma reaction space 163 is improved by the oxygen gas injected through the first gas injection nozzle 180b and the second gas injection nozzle 180a. The first gas injection nozzle 180b and the second gas injection nozzle 180a form the reactive gas injection means of the present invention.
제1 가스 분사 노즐(180b)은 가스 유입관부(162a)의 둘레방향 상에서 제2 연결관부(169) 측에 위치하도록 설치되고, 가스 공급기(180)로부터 공급되는 산소 가스를 반응 챔버(160)의 내부에 형성되는 제1 연결 통로(165)를 향해 분사한다. 그에 따라, 제1 가스 분사 노즐(180b)에서 분사되는 산소 가스는 일점쇄선의 화살표로 도시된 바와 같이, 가스 유입 통로(164a)에서 제2 연결 통로(167)의 상부로부터 제1 연결 통로(165) 쪽으로 가면서 아래를 향하도록 경사지게 유동하여 가스 유입구(1612a)를 통과한 후 제1 연결 통로(165)로 유입된다.The first gas injection nozzle 180b is installed to be positioned on the side of the second connection pipe 169 on the circumferential direction of the gas inlet pipe part 162a, and the oxygen gas supplied from the gas supply unit 180 is supplied to the reaction chamber 160 of the reaction chamber 160 . It sprays toward the first connection passage 165 formed therein. Accordingly, the oxygen gas injected from the first gas injection nozzle 180b is the first connection passage 165 from the upper portion of the second connection passage 167 in the gas inlet passage 164a, as indicated by the dashed-dotted arrow. ) and flows in an inclined downward direction, passes through the gas inlet 1612a, and then flows into the first connection passage 165 .
제2 가스 분사 노즐(180a)은 가스 유입관부(162a)의 둘레방향 상에서 제1 연결관부(166) 측에 위치하도록 설치되고, 가스 공급기(180)로부터 공급되는 산소 가스를 반응 챔버(160)의 내부에 형성되는 제2 연결 통로(167)를 향해 분사한다. 그에 따라, 제2 가스 분사 노즐(180a)에서 분사되는 산소 가스는 일점쇄선의 화살표로 도시된 바와 같이, 가스 유입 통로(164a)에서 제1 연결 통로(165)의 상부로부터 제2 연결 통로(167) 쪽으로 가면서 아래를 향하도록 경사지게 유동하여 가스 유입구(1612a)를 통과한 후 제2 연결 통로(167)로 유입된다.The second gas injection nozzle 180a is installed to be positioned on the side of the first connection pipe 166 in the circumferential direction of the gas inlet pipe part 162a, and oxygen gas supplied from the gas supply unit 180 is supplied to the reaction chamber 160 in the circumferential direction. It sprays toward the second connection passage 167 formed therein. Accordingly, the oxygen gas injected from the second gas injection nozzle 180a is the second connection passage 167 from the upper portion of the first connection passage 165 in the gas inlet passage 164a as indicated by the dashed-dotted arrow. ) and flows in an inclined downward direction, passes through the gas inlet 1612a, and then flows into the second connection passage 167 .
가스 공급기(180)는 제1 가스 분사 노즐(180b)과 제2 가스 분사 노즐(180a)을 통해 분사되는 반응성 가스인 산소 가스를 저장하고 가스 공급관(185)을 통해 제1 가스 분사 노즐(180b)과 제2 가스 분사 노즐(180a)로 공급한다.The gas supply 180 stores oxygen gas as a reactive gas injected through the first gas injection nozzle 180b and the second gas injection nozzle 180a, and the first gas injection nozzle 180b through the gas supply pipe 185. and the second gas injection nozzle 180a.
트랩(190)은 플라즈마 반응기(150)로부터 배출되는 배기가스에 포함된 파우더를 포집한다. 트랩(190)는 반도체 제조 설비 기술 분야에서 배기가스에 포함된 파우더를 포집하기 위해 통상적으로 사용되는 모든 형태의 트랩을 포함한다. 트랩(190)은 챔버 배기관(124) 상에서 플라즈마 반응기(150)의 아래에 배치되어서 반응 챔버(160) 가스 배출관부(162b)를 통해 배출되는 배기가스에 포함된 파우더를 포집한다.The trap 190 collects powder contained in the exhaust gas discharged from the plasma reactor 150 . The trap 190 includes all types of traps commonly used in the field of semiconductor manufacturing equipment to collect powder contained in exhaust gas. The trap 190 is disposed below the plasma reactor 150 on the chamber exhaust pipe 124 to collect powder contained in the exhaust gas discharged through the gas discharge pipe part 162b of the reaction chamber 160 .
본 발명의 특징적 구성은 제1 가스 분사 노즐(180b)과 제2 가스 분사 노즐(180a)이 반응성 가스인 산소 가스를 반응 챔버(160)의 내부에 형성되는 플라즈마 반응 공간(163)을 향해 분사한다는 것이다. 이하, 이러한 본 발명의 특징적 구성에 따른 작용을 설명하고자 한다.A characteristic configuration of the present invention is that the first gas injection nozzle 180b and the second gas injection nozzle 180a spray oxygen gas, which is a reactive gas, toward the plasma reaction space 163 formed in the reaction chamber 160 . will be. Hereinafter, the operation according to the characteristic configuration of the present invention will be described.
산소 가스가 배관 내부로 단순 주입되는 경우에 도 5의 사진에서 확인되는 바와 같이 주입 포트의 반대편 배관 내벽면에서 생성되어서 성장하는 고형물이 발생한다. 본 발명의 발명자는 이러한 고형물 발생의 원인을 파악하고자 배관 내부로 주입되는 산소 가스의 유동 해석을 실시하였으며, 그 결과로 도 6 내지 도 8에 도시된 바와 같이 산소 가스 주입 포트의 반대편 배관 내벽면에서 산소가 풍부한 영역이 발생하여 국부적으로 파우더가 생성되기 쉬운 환경이 조성된다는 것을 파악하였다. 또한, 본 발명의 발명자는 산소 가스가 배관 내부로 단순 주입되는 경우에 주입 포트의 반대편 배관 내벽면에서 생성되어서 성장하는 고형물은, 반도체 제조 공정에서 지르코늄 산화물 박막 형성용 전구체로 사용되는 CpZr(NMe2)3와 같은 지르코늄 소스 가스 성분이 산소 가스와 반응하여 지르코늄산화물(ZrO2)이 생성될 때 불완전 반응에 의해 형성되는 질소 함유량이 높은 불완전 반응 생성물이라는 것을 발견하고, 불완전 반응의 원인이 지르코늄 소스 가스 성분의 열분해 온도(200 ~ 250℃)보다 낮은 온도에서 반응함으로써 완전 산화가 일어나지 않는다는 것임을 발견하였다. 본 발명은 산소 가스가 플라즈마 반응 공간(163)으로 분사되어서, 고온의 플라즈마 반응 공간(163)에서 지르코늄 소스 가스 성분과 산소가 반응하여 지르코늄산화물이 생성된다. 고온의 플라즈마 반응 공간(163)에서 지르코늄 소스 가스 성분이 열분해되므로, 산소 가스와의 반응성이 향상되어서, 불완전 반응에 따른 고형물 성장의 문제가 해결된다. 아래 반응식은 플라즈마 반응 공간(163)에서의 지르코늄 소스 가스 성분의 분해 및 치환 반응을 보여주는 것이다.When oxygen gas is simply injected into the pipe, as shown in the photo of FIG. 5 , solids that are generated and grow on the inner wall surface of the pipe opposite the injection port are generated. The inventor of the present invention analyzed the flow of oxygen gas injected into the pipe to determine the cause of the generation of such solids, and as a result, as shown in FIGS. 6 to 8 , on the inner wall surface of the pipe opposite to the oxygen gas injection port It was found that an oxygen-rich region was generated to create an environment in which powder was easily generated locally. In addition, the inventor of the present invention, when oxygen gas is simply injected into the pipe, the solid material that is generated and grown on the inner wall surface of the pipe opposite the injection port is CpZr (NMe 2 ) used as a precursor for forming a zirconium oxide thin film in the semiconductor manufacturing process. ) 3 found that when a zirconium source gas component reacts with oxygen gas to produce zirconium oxide (ZrO 2 ), it is an incomplete reaction product with a high nitrogen content formed by an incomplete reaction, and the cause of the incomplete reaction is zirconium source gas It was found that complete oxidation does not occur by reacting at a temperature lower than the thermal decomposition temperature (200-250° C.) of the component. In the present invention, oxygen gas is injected into the plasma reaction space 163 , and the zirconium source gas component and oxygen react in the high-temperature plasma reaction space 163 to generate zirconium oxide. Since the zirconium source gas component is thermally decomposed in the high-temperature plasma reaction space 163 , the reactivity with oxygen gas is improved, so that the problem of solid material growth due to incomplete reaction is solved. The following reaction formula shows the decomposition and substitution reaction of the zirconium source gas component in the plasma reaction space 163 .
[반응식][reaction formula]
Zr Source(CpZr(NMe2)3) + Plasma + O2 → ZrO2(S) + NO(g)/NO2(g) + CO(g)/CO2(g) + H2O(g) + CxHy(g)Zr Source(CpZr(NMe 2 ) 3 ) + Plasma + O 2 → ZrO 2 (S) + NO(g)/NO 2 (g) + CO(g)/CO 2 (g) + H 2 O(g) + C x H y (g)
플라즈마 반응 공간(163)에서 생성되는 지르코늄산화물(ZrO2)은 순도가 높고 안정적인 고운 분말 형태로서, 플라즈마 반응기(150)의 하부에 배치되는 트랩(190)에서 포집된다.Zirconium oxide (ZrO 2 ) generated in the plasma reaction space 163 is in the form of a high-purity and stable fine powder, and is collected in the trap 190 disposed below the plasma reactor 150 .
도 9 및 도 10에는 본 발명의 다른 실시예에 따른 플라즈마 반응기가 종단면도 및 평면도로서 도시되어 있다. 도 9 및 도 10을 참조하면, 플라즈마 반응기(250)는 반응 챔버(160)와, 반응 챔버(160)를 감싸도록 배치되는 페라이트 코어(170)와, 반응 챔버(160)의 내부로 반응성 가스를 분사하는 제1 가스 분사 노즐(280b) 및 제2 가스 분사 노즐(280a)을 구비한다. 플라즈마 반응기(250)에서 제1 가스 분사 노즐(280b)과 제2 가스 분사 노즐(280a)의 구성을 제외한 나머지 구성은 도 2 내지 도 4에 도시된 플라즈마 반응기(150)와 동일하므로 이에 대한 상세한 설명은 생략하고, 여기서는 제1 가스 분사 노즐(280b)과 제2 가스 분사 노즐(280a)의 구성 및 작용에 대해서만 상세하게 설명한다.9 and 10 show a plasma reactor according to another embodiment of the present invention as a longitudinal cross-sectional view and a plan view. 9 and 10 , the plasma reactor 250 includes a reaction chamber 160 , a ferrite core 170 disposed to surround the reaction chamber 160 , and a reactive gas into the reaction chamber 160 . A first gas injection nozzle 280b and a second gas injection nozzle 280a for spraying are provided. In the plasma reactor 250 , except for the configuration of the first gas injection nozzle 280b and the second gas injection nozzle 280a , the remaining configurations are the same as those of the plasma reactor 150 illustrated in FIGS. 2 to 4 , so a detailed description thereof is omitted, and only the configuration and operation of the first gas injection nozzle 280b and the second gas injection nozzle 280a will be described in detail.
제1 가스 분사 노즐(280b)과 제2 가스 분사 노즐(280a)은 가스 유입관부(162a)에 설치되어서 산소 가스(O2)와 같은 반응성 가스를 가스 유입관부(162a)의 내부에 형성되는 가스 유입 통로(164a)로 분사한다. 제1 가스 분사 노즐(280b)과 제2 가스 분사 노즐(280a)을 통해 분사되는 반응성 가스는 가스 유입 통로(164a)를 통해 처리대상 배기가스와 함께 플라즈마 반응 공간(163)으로 유입되어서 플라즈마 반응 공간(163)에서의 배기가스의 분해 성능을 향상시킨다. 제1 가스 분사 노즐(280b)과 제2 가스 분사 노즐(280a)은 본 발명에 따른 가스 분사 노즐 쌍을 형성한다. 그에 따라, 제1 가스 분사 노즐(280b)에 형성되는 제1 가스 분사구와 제2 가스 분사 노즐(280a)에 형성되는 제2 가스 분사구는 본 발명에 따른 가스 분사구 쌍을 형성하게 된다. 본 실시예에서 제1 가스 분사 노즐(280b)과 제2 가스 분사 노즐(280a)은 가스 유입 통로(164a)의 중심축선(X)에 대해 서로 대칭을 이루는 지점에 위치하여 가스 유입관부(162a)의 외주 상에 서로 반대편에 위치하는 것으로 설명한다.The first gas injection nozzle 280b and the second gas injection nozzle 280a are installed in the gas inlet pipe part 162a so that a reactive gas such as oxygen gas (O 2 ) is formed inside the gas inlet pipe part 162a. It is injected into the inlet passage (164a). The reactive gas injected through the first gas injection nozzle 280b and the second gas injection nozzle 280a is introduced into the plasma reaction space 163 together with the exhaust gas to be treated through the gas inlet passage 164a, so that the plasma reaction space (163) to improve the decomposition performance of the exhaust gas. The first gas injection nozzle 280b and the second gas injection nozzle 280a form a gas injection nozzle pair according to the present invention. Accordingly, the first gas injection hole formed in the first gas injection nozzle 280b and the second gas injection hole formed in the second gas injection nozzle 280a form a pair of gas injection holes according to the present invention. In the present embodiment, the first gas injection nozzle 280b and the second gas injection nozzle 280a are positioned at a point symmetrical to each other with respect to the central axis X of the gas inlet passage 164a, and the gas inlet pipe part 162a. It is described as being located opposite to each other on the outer periphery of.
제1 가스 분사 노즐(280b)은 가스 유입관부(162a)에 설치되어서 산소 가스와 같은 반응성 가스를 화살표로 도시된 바와 같이 가스 유입 통로(164a)의 중심을 향해 분사한다. 제1 가스 분사 노즐(280b)의 가스 분사 방향은 제1 가스 분사 노즐(280b)의 반대편에 위치하는 제2 가스 분사 노즐(280a)을 향한다.The first gas injection nozzle 280b is installed in the gas inlet pipe part 162a to inject a reactive gas such as oxygen gas toward the center of the gas inlet passage 164a as indicated by an arrow. The gas injection direction of the first gas injection nozzle 280b is toward the second gas injection nozzle 280a located opposite to the first gas injection nozzle 280b.
제2 가스 분사 노즐(280a)은 가스 유입관부(162a)에 설치되어서 산소 가스와 같은 반응성 가스를 화살표로 도시된 바와 같이 가스 유입 통로(164a)의 중심을 향해 분사한다. 제2 가스 분사 노즐(280a)의 가스 분사 방향은 제2 가스 분사 노즐(280a)의 반대편에 위치하는 제1 가스 분사 노즐(280b)을 향한다.The second gas injection nozzle 280a is installed in the gas inlet pipe part 162a to inject a reactive gas such as oxygen gas toward the center of the gas inlet passage 164a as indicated by an arrow. The gas injection direction of the second gas injection nozzle 280a is toward the first gas injection nozzle 280b located opposite to the second gas injection nozzle 280a.
제1 가스 분사 노즐(280b)에서 분사되는 산소 가스와 제2 가스 분사 노즐(280a)에서 분사되는 산소 가스는 가스 유입 통로(164a)의 중심부에서 충돌하게 된다. 그에 따라, 가스 유입관부(162a)의 내벽면에 직접 접촉하는 산소 가스가 최소화되어서 고형물의 발생을 방지할 수 있다.The oxygen gas injected from the first gas injection nozzle 280b and the oxygen gas injected from the second gas injection nozzle 280a collide at the center of the gas inlet passage 164a. Accordingly, the oxygen gas in direct contact with the inner wall surface of the gas inlet pipe portion 162a is minimized to prevent the generation of solids.
본 실시예에서는 제1 가스 분사 노즐(280b)이 산소 가스를 제2 분사 노즐(280a)을 향해 분사하고 제2 분사 노즐(280a)이 제1 분사 노즐(280b)을 향해 분사하는 것으로 설명하지만, 이와는 달리 제1 가스 분사 노즐(280b)의 가스 분사 방향과 제2 가스 분사 노즐(280a)의 가스 분사 방향이 교차하도록 두 가스 분사 노즐(280b, 280a)을 다양한 형태로 배치하여 동일한 효과를 얻을 수 있으며, 이 또한 본 발명의 범위에 속하는 것이다.In this embodiment, it is described that the first gas injection nozzle 280b injects oxygen gas toward the second injection nozzle 280a and the second injection nozzle 280a injects the oxygen gas toward the first injection nozzle 280b, On the contrary, the same effect can be obtained by disposing the two gas injection nozzles 280b and 280a in various shapes so that the gas injection direction of the first gas injection nozzle 280b and the gas injection direction of the second gas injection nozzle 280a intersect. and this is also within the scope of the present invention.
본 실시예에서는 가스 분사 노즐 쌍이 하나인 것으로 예를 들어서 설명하지만, 이와는 달리 이와 같은 방식으로 배치되는 가스 분사 노즐 쌍이 둘 이상일 수 있으며 이 또한 본 발명의 범위에 속하는 것이다.In this embodiment, one gas injection nozzle pair is described as an example, but otherwise, there may be two or more gas injection nozzle pairs arranged in this way, and this also falls within the scope of the present invention.
도 11에는 본 발명의 또 다른 실시예에 따른 플라즈마 반응기가 평면도로서 도시되어 있다. 도 11을 참조하면, 플라즈마 반응기(350)는, 플라즈마 반응기(250)는 반응 챔버(160)와, 반응 챔버(160)를 감싸도록 배치되는 페라이트 코어(170)와, 반응 챔버(160)의 내부로 반응성 가스를 분사하는 가스 분사 수단을 구비한다. 플라즈마 반응기(350)에서 가스 분사 수단을 제외한 나머지 구성은 도 9 및 도 10에 도시된 플라즈마 반응기(250)와 동일하므로 이에 대한 상세한 설명은 생략하고, 가스 분사 수단의 구성 및 작용에 대해서만 상세하게 설명한다.11 is a plan view of a plasma reactor according to another embodiment of the present invention. Referring to FIG. 11 , the plasma reactor 350 includes a reaction chamber 160 , a ferrite core 170 disposed to surround the reaction chamber 160 , and the inside of the reaction chamber 160 . and gas injection means for injecting a reactive gas into the furnace. In the plasma reactor 350 except for the gas injection means, the rest of the configuration is the same as the plasma reactor 250 shown in FIGS. 9 and 10 , so a detailed description thereof will be omitted, and only the configuration and action of the gas injection means will be described in detail. do.
도 11에 도시된 실시예에서 가스 분사 수단은 가스 유입관부(162a)를 외부에서 둘러싸는 링 형상의 가스 유동관(390)과, 가스 유입관부(162a)에 형성되는 복수개의 가스 분사구(380a, 380b, 381a, 381b, 382a, 382b)들을 구비한다.In the embodiment shown in FIG. 11 , the gas injection means includes a ring-shaped gas flow pipe 390 surrounding the gas inlet pipe part 162a from the outside, and a plurality of gas injection holes 380a and 380b formed in the gas inlet pipe part 162a. , 381a, 381b, 382a, 382b).
가스 유동관(390)은 가스 유입관부(162a)를 외부에서 링 형태로 둘러싸는 관으로서, 가스 유동관(390)의 내부에는 반응성 가스가 가스 유입관부(162a)의 둘레방향을 따라서 유동하는 통로가 형성된다. 가스 유동관(390)에는 가스 공급관(395)이 연결된다. 가스 공급관(395)을 통해 외부에서 반응성 가스가 가스 유동관(390)의 내부로 공급된다. 가스 유동관(390)의 내부에서 유동하는 반응성 가스는 가스 유입관부(162a)에 형성된 복수개의 가스 분사구(380a, 380b, 381a, 381b, 382a, 382b)들을 통해 가스 유입 통로(164a)로 분사된다.The gas flow pipe 390 is a pipe that surrounds the gas inlet pipe part 162a from the outside in a ring shape, and a passage through which the reactive gas flows along the circumferential direction of the gas inlet pipe part 162a is formed in the gas flow pipe 390 . do. A gas supply pipe 395 is connected to the gas flow pipe 390 . A reactive gas is supplied into the gas flow pipe 390 from the outside through the gas supply pipe 395 . The reactive gas flowing in the gas flow tube 390 is injected into the gas inlet passage 164a through the plurality of gas injection holes 380a, 380b, 381a, 381b, 382a, 382b formed in the gas inlet tube portion 162a.
복수개의 가스 분사구(380a, 380b, 381a, 381b, 382a, 382b)들은 가스 유입관부(162)에 형성된다. 복수개의 가스 분사구(380a, 380b, 381a, 381b, 382a, 382b)들 각각은 가스 유동관(390)과 연통된다. 본 실시예에서 복수개의 가스 분사구(380a, 380b, 381a, 381b, 382a, 382b)들은 가스 유입관부(162a)의 원주방향을 따라서 등간격으로 배치되는 것으로 설명한다. 복수개의 가스 분사구(380a, 380b, 381a, 381b, 382a, 382b)들 각각을 통해 가스 유동관(390)의 내부에서 유동하는 반응성 가스가 가스 유입 통로(164a)로 분사된다. 복수개의 가스 분사구(380a, 380b, 381a, 381b, 382a, 382b)들 중 서로 대향하여 위치하는 두 가스 분사구(380a, 380b)는 제1 가스 분사구 쌍을 형성하며, 서로 대향하여 위치하는 다른 두 가스 분사구(381a, 381b)는 제2 가스 분사구 쌍을 형성하고, 서로 대향하여 위치하는 또 다른 두 가스 분사구(382a, 382b)는 제3 가스 분사구 쌍을 형성한다. 각 가스 분사구 쌍이 가스를 분사하는 방향은 도 9 및 도 10에 도시된 가스 분사 노즐 쌍에 의한 것과 동일하다.The plurality of gas injection holes 380a, 380b, 381a, 381b, 382a, and 382b are formed in the gas inlet pipe part 162 . Each of the plurality of gas injection ports 380a, 380b, 381a, 381b, 382a, and 382b communicates with the gas flow pipe 390 . In this embodiment, it will be described that the plurality of gas injection holes 380a, 380b, 381a, 381b, 382a, 382b are arranged at equal intervals along the circumferential direction of the gas inlet pipe part 162a. The reactive gas flowing in the gas flow pipe 390 through each of the plurality of gas injection holes 380a, 380b, 381a, 381b, 382a, and 382b is injected into the gas inlet passage 164a. Among the plurality of gas injection holes 380a, 380b, 381a, 381b, 382a, and 382b, two gas injection holes 380a and 380b located opposite to each other form a first gas injection hole pair, and the other two gases located opposite to each other The injection holes 381a and 381b form a second pair of gas injection holes, and two other gas injection holes 382a and 382b positioned opposite to each other form a third pair of gas injection holes. The direction in which each gas injection port pair injects gas is the same as that by the gas injection nozzle pair shown in FIGS. 9 and 10 .
본 실시예에서는 가스 분사구 쌍이 3개인 것으로 설명하지만, 이와는 달리 가스 분사구 쌍은 2개 이하 또는 4개 이상일 수 있으며, 이 또한 본 발명의 범위에 속하는 것이다.In this embodiment, it is described that there are three pairs of gas injection holes, but unlike this, the number of pairs of gas injection holes may be two or less or four or more, and this also falls within the scope of the present invention.
이상 실시예를 통해 본 발명을 설명하였으나, 본 발명은 이에 제한되는 것은 아니다. 상기 실시예는 본 발명의 취지 및 범위를 벗어나지 않고 수정되거나 변경될 수 있으며, 본 기술분야의 통상의 기술자는 이러한 수정과 변경도 본 발명에 속하는 것임을 알 수 있을 것이다.Although the present invention has been described through the above examples, the present invention is not limited thereto. The above embodiments may be modified or changed without departing from the spirit and scope of the present invention, and those skilled in the art will recognize that such modifications and changes also belong to the present invention.

Claims (15)

  1. 유도결합 플라즈마 반응을 이용하여 배기가스를 처리하는 반응 챔버; 및a reaction chamber for treating exhaust gas using an inductively coupled plasma reaction; and
    반응성 가스를 분사하는 반응성 가스 분사 수단을 포함하며,Reactive gas injection means for injecting the reactive gas,
    상기 반응 챔버는 내부에 상기 유도결합 플라즈마 반응이 일어나는 플라즈마 반응 공간을 제공하고, 상기 플라즈마 반응 공간과 연통되는 가스 유입구와 가스 배출구가 형성되는 챔버 몸체를 구비하며,The reaction chamber provides a plasma reaction space in which the inductively coupled plasma reaction occurs, and includes a chamber body in which a gas inlet and a gas outlet communicating with the plasma reaction space are formed,
    상기 가스 유입구를 통해 상기 배기가스가 상기 플라즈마 반응 공간으로 유입되고, 상기 가스 배출구를 통해 상기 플라즈마 반응 공간으로부터 상기 배기가스가 배출되며,The exhaust gas is introduced into the plasma reaction space through the gas inlet, and the exhaust gas is discharged from the plasma reaction space through the gas outlet,
    상기 반응성 가스 분사 수단은 상기 플라즈마 반응 공간의 상류 측 외부에서 상기 가스 유입구를 통해 상기 플라즈마 반응 공간을 향해 상기 반응성 가스를 분사하는,wherein the reactive gas injection means injects the reactive gas toward the plasma reaction space through the gas inlet outside the upstream side of the plasma reaction space,
    반도체 제조설비용 배기가스 처리 장비.Exhaust gas treatment equipment for semiconductor manufacturing facilities.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 플라즈마 반응 공간에는 상기 가스 유입구와 연통되는 제1 연결 통로와 제2 연결 통로가 형성되며,A first connection passage and a second connection passage communicating with the gas inlet are formed in the plasma reaction space,
    상기 가스 유입구를 통해 상기 플라즈마 반응 공간으로 유입된 상기 배기가스는 분기되어서 상기 제1 연결 통로와 상기 제2 연결 통로를 통해 각각 유동하며,The exhaust gas introduced into the plasma reaction space through the gas inlet is branched and flows through the first connection passage and the second connection passage, respectively,
    상기 반응성 가스 분사 수단은 상기 반응성 가스를 상기 제1 연결 통로를 향해 분사하는 제1 가스 분사구와 상기 반응성 가스를 상기 제2 연결 통로를 향해 분사하는 제2 가스 분사구를 구비하는,The reactive gas injection means includes a first gas injection port for injecting the reactive gas toward the first connection passage and a second gas injection port for injecting the reactive gas toward the second connection passage,
    반도체 제조설비용 배기가스 처리 장비.Exhaust gas treatment equipment for semiconductor manufacturing facilities.
  3. 청구항 2에 있어서,3. The method according to claim 2,
    상기 제1 가스 분사구와 상기 제2 가스 분사구는 상기 챔버 몸체로부터 외부로 연장되는 가스 유입관부에 위치하며,The first gas injection port and the second gas injection port are located in a gas inlet pipe extending from the chamber body to the outside,
    상기 가스 유입관부의 내부에는 상기 가스 유입구를 통해 상기 플라즈마 반응 공간과 연통되는 가스 유입 통로가 형성되는,A gas inlet passage communicating with the plasma reaction space through the gas inlet is formed in the gas inlet pipe part,
    반도체 제조설비용 배기가스 처리 장비.Exhaust gas treatment equipment for semiconductor manufacturing facilities.
  4. 청구항 3에 있어서,4. The method according to claim 3,
    상기 제1 연결 통로와 상기 제2 연결 통로는 상기 가스 유입구를 사이에 두고 양측에 위치하도록 배치되며,The first connection passage and the second connection passage are disposed on both sides with the gas inlet therebetween,
    상기 제1 가스 분사구를 통해 상기 반응성 가스가 상기 제2 연결 통로 측에서 상기 제1 연결 통로 측으로 유동하도록 상기 가스 유입 통로의 중심축선에 경사지게 분사되며,The reactive gas is injected obliquely to the central axis of the gas inlet passage so that the reactive gas flows from the second connection passage side to the first connection passage side through the first gas injection port,
    상기 제2 가스 분사구를 통해 상기 반응성 가스가 상기 제1 연결 통로 측에서 상기 제2 연결 통로 측으로 유동하도록 상기 중심축선에 경사지게 분사되는,Through the second gas injection port, the reactive gas is injected obliquely to the central axis so that the reactive gas flows from the first connection passage side to the second connection passage side.
    반도체 제조설비용 배기가스 처리 장비.Exhaust gas treatment equipment for semiconductor manufacturing facilities.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 반응 챔버는 상기 가스 유입구가 상기 플라즈마 반응 공간의 위에 위치하도록 배치되며,The reaction chamber is arranged such that the gas inlet is located above the plasma reaction space,
    상기 반응성 가스는 상기 가스 유입구의 상부로부터 상기 플라즈마 반응 공간을 향해 하방으로 분사되는,The reactive gas is sprayed downward from the upper portion of the gas inlet toward the plasma reaction space,
    반도체 제조설비용 배기가스 처리 장비.Exhaust gas treatment equipment for semiconductor manufacturing facilities.
  6. 유도결합 플라즈마 반응을 이용하여 배기가스를 처리하는 반응 챔버; 및a reaction chamber for treating exhaust gas using an inductively coupled plasma reaction; and
    반응성 가스가 분사되는 제1 가스 분사구와 제2 가스 분사구를 구비하는 가스 분사구 쌍을 포함하며,It includes a gas injection port pair having a first gas injection port and a second gas injection port through which the reactive gas is injected,
    상기 반응 챔버는 내부에 상기 유도결합 플라즈마 반응이 일어나는 플라즈마 반응 공간을 제공하는 챔버 몸체와, 상기 배기가스가 상기 반응 공간으로 유입되는 가스 유입 통로를 제공하는 가스 유입관부를 구비하며,The reaction chamber includes a chamber body providing a plasma reaction space in which the inductively coupled plasma reaction occurs, and a gas inlet pipe portion providing a gas inlet passage through which the exhaust gas flows into the reaction space,
    상기 반응성 가스는 상기 제1 가스 분사구와 상기 제2 가스 분사구를 통해 상기 가스 유입관부에 위치하여 상기 가스 유입 통로로 분사되며,The reactive gas is located in the gas inlet pipe portion through the first gas injection port and the second gas injection port and is injected into the gas inlet passage,
    상기 제1 가스 분사구를 통한 가스의 분사 방향과 상기 제2 가스 분사구를 통한 가스의 방향이 상기 가스 유입 통로에서 교차하도록 상기 가스 분사구 쌍이 배치되는,The gas injection port pair is arranged such that the gas injection direction through the first gas injection hole and the gas direction through the second gas injection hole cross in the gas inlet passage,
    반도체 제조설비용 배기가스 처리 장비.Exhaust gas treatment equipment for semiconductor manufacturing facilities.
  7. 청구항 6에 있어서,7. The method of claim 6,
    상기 제1 가스 분사구를 통해 분사되는 가스는 상기 제2 가스 분사구를 향하며,The gas injected through the first gas injection port is directed toward the second gas injection port,
    상기 제2 가스 분사구를 통해 분사되는 가스는 상기 제1 가스 분사구를 향하는,The gas injected through the second gas injection port is directed toward the first gas injection port,
    반도체 제조설비용 배기가스 처리 장비.Exhaust gas treatment equipment for semiconductor manufacturing facilities.
  8. 청구항 6에 있어서,7. The method of claim 6,
    상기 가스 분사구 쌍은 복수개인,The gas injection port pair is a plurality,
    반도체 제조설비용 배기가스 처리 장비.Exhaust gas treatment equipment for semiconductor manufacturing facilities.
  9. 청구항 6에 있어서,7. The method of claim 6,
    상기 제1 가스 분사구와 상기 제2 가스 분사구는 상기 가스 유입관부의 외주 상에서 서로 반대편에 위치하여 상기 반응성 가스가 상기 가스 유입 통로의 중심부를 향해 분사되는,The first gas injection hole and the second gas injection hole are located opposite to each other on the outer periphery of the gas inlet pipe portion, so that the reactive gas is injected toward the center of the gas inlet passage,
    반도체 제조설비용 배기가스 처리 장비.Exhaust gas treatment equipment for semiconductor manufacturing facilities.
  10. 청구항 1 또는 청구항 6에 있어서,7. The method according to claim 1 or 6,
    상기 반응성 가스는 산소 가스인,The reactive gas is oxygen gas,
    반도체 제조설비용 배기가스 처리 장비.Exhaust gas treatment equipment for semiconductor manufacturing facilities.
  11. 청구항 10에 있어서,11. The method of claim 10,
    상기 플라즈마 반응 공간에서 지르코늄과 상기 산소 가스가 반응하여 지르코늄산화물이 생성되며,In the plasma reaction space, zirconium and the oxygen gas react to generate zirconium oxide,
    상기 지르코늄은 상기 배기가스에 포함된 지르코늄 소스 가스가 상기 플라즈마 반응 공간에서 열분해되어서 형성된 것인,The zirconium is formed by thermal decomposition of the zirconium source gas contained in the exhaust gas in the plasma reaction space,
    반도체 제조설비용 배기가스 처리 장비.Exhaust gas treatment equipment for semiconductor manufacturing facilities.
  12. 청구항 11에 있어서,12. The method of claim 11,
    상기 지르코늄 소스 가스는 지르코늄 산화물 박막 형성용 전구체로 사용되는 CpZr(NMe2)3인,The zirconium source gas is CpZr(NMe 2 ) 3 which is used as a precursor for forming a zirconium oxide thin film,
    반도체 제조설비용 배기가스 처리 장비.Exhaust gas treatment equipment for semiconductor manufacturing facilities.
  13. 청구항 1 또는 청구항 6에 있어서,7. The method according to claim 1 or 6,
    상기 반응 챔버로부터 배출되는 배기가스에 포함된 파우더를 포집하는 트랩을 더 포함하는,Further comprising a trap for collecting powder contained in the exhaust gas discharged from the reaction chamber,
    반도체 제조설비용 배기가스 처리 장비.Exhaust gas treatment equipment for semiconductor manufacturing facilities.
  14. 유도결합 플라즈마 반응을 이용하여 배기가스를 처리하는 플라즈마 반응기; 및a plasma reactor for treating exhaust gas using an inductively coupled plasma reaction; and
    상기 플라즈마 반응기로 반응성 가스를 공급하는 가스 공급기를 포함하며,It includes a gas supplier for supplying a reactive gas to the plasma reactor,
    상기 플라즈마 반응기는, 내부에 상기 유도결합 플라즈마 반응이 일어나는 플라즈마 반응 공간을 제공하는 챔버 몸체와, 상기 챔버 몸체로부터 연장되고 내부에 가스 유입 통로가 형성되는 가스 유입관부와, 상기 플라즈마 반응 공간을 감싸도록 상기 챔버 몸체의 외부에 배치되는 페라이트 코어와, 상기 페라이트 코어에 권취되고 교류전력이 인가되는 안테나 코일과, 상기 반응성 가스를 분사하는 반응성 가스 분사 수단을 구비하며,The plasma reactor includes a chamber body providing a plasma reaction space in which the inductively coupled plasma reaction occurs, a gas inlet pipe extending from the chamber body and having a gas inlet passage formed therein, and surrounding the plasma reaction space. A ferrite core disposed outside the chamber body, an antenna coil wound around the ferrite core and to which AC power is applied, and reactive gas injection means for spraying the reactive gas,
    상기 챔버 몸체에는 상기 플라즈마 반응 공간과 연통되는 가스 유입구와 가스 배출구가 형성되며,A gas inlet and a gas outlet communicating with the plasma reaction space are formed in the chamber body,
    상기 가스 유입 통로는 상기 가스 유입구로부터 연장되어서 상기 플라즈마 반응 공간과 연통되며,The gas inlet passage extends from the gas inlet and communicates with the plasma reaction space,
    상기 플라즈마 반응 공간에는 상기 가스 유입구와 연통되는 제1 내부 공간과, 상기 가스 배출구와 연통되고 상기 제1 내부 공간과 이격되어서 위치하는 제2 내부 공간과, 상기 제1 내부 공간과 상기 제2 내부 공간을 연통시키는 제1 연결 통로 및 제2 연결 통로가 형성되며,The plasma reaction space includes a first inner space communicating with the gas inlet, a second inner space communicating with the gas outlet and spaced apart from the first inner space, the first inner space and the second inner space A first connection passage and a second connection passage for communicating are formed,
    상기 제1 연결 통로와 상기 제2 연결 통로는 서로 분리된 상태로 상기 가스 유입구를 사이에 두고 나란하게 배치되며,The first connection passage and the second connection passage are arranged side by side with the gas inlet therebetween in a state of being separated from each other,
    상기 배기가스는 상기 가스 유입구를 통해 상기 제1 내부 공간으로 유입된 후 상기 제1 연결 통로와 상기 제2 연결 통로로 분기되어서 유동하여 상기 제2 내부 공간을 거쳐서 상기 가스 배출구를 통해 배출되며,After the exhaust gas flows into the first internal space through the gas inlet, it branches and flows into the first connection passage and the second connection passage, passes through the second interior space, and is discharged through the gas outlet;
    상기 안테나 코일에 인가되는 교류전력에 의해 상기 플라즈마 반응 공간에는 상기 제1 내부 공간, 상기 제2 내부 공간, 상기 제1 연결 통로 및 상기 제2 연결 통로를 연결하는 고리형 방전 루프를 따라서 플라즈마가 발생하며,Plasma is generated in the plasma reaction space by AC power applied to the antenna coil along an annular discharge loop connecting the first inner space, the second inner space, and the first connecting passage and the second connecting passage. and
    상기 반응성 가스 분사 수단은, 상기 가스 유입관부에 위치하고 상기 반응성 가스를 상기 제1 연결 통로를 향해 분사하는 제1 가스 분사구와, 상기 가스 유입관부에 위치하고 상기 반응성 가스를 상기 제2 연결 통로를 향해 분사하는 제2 가스 분사구를 구비하며,The reactive gas injection means includes a first gas injection port located in the gas inlet pipe and injecting the reactive gas toward the first connection passage, and a first gas injection port located in the gas inlet tube and injecting the reactive gas toward the second connection passage. and a second gas injection port to
    상기 제1 가스 분사구는 상기 제1 가스 분사구로부터 분사된 상기 반응성 가스가 상기 가스 유입 통로의 중심축선에 경사지게 분사되어서 상기 제2 연결 통로 측에서 상기 제1 연결 통로 측으로 유동하여 상기 가스 유입 통로를 가로지르도록 위치하며,In the first gas injection hole, the reactive gas injected from the first gas injection hole is injected obliquely to a central axis of the gas inlet passage, and flows from the second connection passage side to the first connection passage side to cross the gas inlet passage. It is positioned so as to
    상기 제2 가스 분사구는 상기 제2 가스 분사구로부터 분사된 상기 반응성 가스가 상기 가스 유입 통로의 중심축선에 경사지게 분사되어서 상기 제1 연결 통로 측에서 상기 제2 연결 통로 측으로 유동하여 상기 가스 유입 통로를 가로지르도록 위치하는,In the second gas injection port, the reactive gas injected from the second gas injection port is injected obliquely to the central axis of the gas inlet passage, and flows from the first connection passage side to the second connection passage side to cross the gas inlet passage. positioned so as to
    반도체 제조설비용 배기가스 처리 장비.Exhaust gas treatment equipment for semiconductor manufacturing facilities.
  15. 유도결합 플라즈마 반응을 이용하여 배기가스를 처리하는 플라즈마 반응기; 및a plasma reactor for treating exhaust gas using an inductively coupled plasma reaction; and
    상기 플라즈마 반응기로 반응성 가스를 공급하는 가스 공급기를 포함하며,It includes a gas supplier for supplying a reactive gas to the plasma reactor,
    상기 플라즈마 반응기는, 내부에 상기 유도결합 플라즈마 반응이 일어나는 플라즈마 반응 공간을 제공하는 챔버 몸체와, 상기 챔버 몸체로부터 연장되고 내부에 가스 유입 통로가 형성되는 가스 유입관부와, 상기 플라즈마 반응 공간을 감싸도록 상기 챔버 몸체의 외부에 배치되는 페라이트 코어와, 상기 페라이트 코어에 권취되고 교류전력이 인가되는 안테나 코일과, 상기 반응성 가스를 분사하는 제1 가스 분사구와 제2 가스 분사구로 이루어진 가스 분사구 쌍을 구비하며,The plasma reactor includes a chamber body providing a plasma reaction space in which the inductively coupled plasma reaction occurs, a gas inlet pipe extending from the chamber body and having a gas inlet passage formed therein, and surrounding the plasma reaction space. A ferrite core disposed outside the chamber body, an antenna coil wound around the ferrite core and to which AC power is applied, and a gas injection port pair comprising a first gas injection port and a second gas injection port for injecting the reactive gas, ,
    상기 챔버 몸체에는 상기 플라즈마 반응 공간과 연통되는 가스 유입구와 가스 배출구가 형성되며,A gas inlet and a gas outlet communicating with the plasma reaction space are formed in the chamber body,
    상기 가스 유입 통로는 상기 가스 유입구로부터 연장되어서 상기 플라즈마 반응 공간과 연통되며,The gas inlet passage extends from the gas inlet and communicates with the plasma reaction space,
    상기 플라즈마 반응 공간에는 상기 가스 유입구와 연통되는 제1 내부 공간과, 상기 가스 배출구와 연통되고 상기 제1 내부 공간과 이격되어서 위치하는 제2 내부 공간과, 상기 제1 내부 공간과 상기 제2 내부 공간을 연통시키는 제1 연결 통로 및 제2 연결 통로가 형성되며,The plasma reaction space includes a first inner space communicating with the gas inlet, a second inner space communicating with the gas outlet and spaced apart from the first inner space, the first inner space and the second inner space A first connection passage and a second connection passage for communicating are formed,
    상기 제1 연결 통로와 상기 제2 연결 통로는 서로 분리된 상태로 상기 가스 유입구를 사이에 두고 나란하게 배치되며,The first connection passage and the second connection passage are arranged side by side with the gas inlet therebetween in a state of being separated from each other,
    상기 배기가스는 상기 가스 유입구를 통해 상기 제1 내부 공간으로 유입된 후 상기 제1 연결 통로와 상기 제2 연결 통로로 분기되어서 유동하여 상기 제2 내부 공간을 거쳐서 상기 가스 배출구를 통해 배출되며,After the exhaust gas flows into the first internal space through the gas inlet, it branches and flows into the first connection passage and the second connection passage, passes through the second interior space, and is discharged through the gas outlet;
    상기 안테나 코일에 인가되는 교류전력에 의해 상기 플라즈마 반응 공간에는 상기 제1 내부 공간, 상기 제2 내부 공간, 상기 제1 연결 통로 및 상기 제2 연결 통로를 연결하는 고리형 방전 루프를 따라서 플라즈마가 발생하며,Plasma is generated in the plasma reaction space by AC power applied to the antenna coil along an annular discharge loop connecting the first inner space, the second inner space, and the first connecting passage and the second connecting passage. and
    상기 제1 가스 분사구와 상기 제2 가스 분사구는 상기 가스 유입관부에 위치하여 상기 반응성 가스를 상기 가스 유입 통로로 분사하며,The first gas injection port and the second gas injection port are located in the gas inlet pipe portion to inject the reactive gas into the gas inlet passage,
    상기 제1 가스 분사구와 상기 제2 가스 분사구는 상기 가스 유입관부의 외주 상에서 서로 반대편에 위치하며,The first gas injection port and the second gas injection port are located opposite to each other on the outer periphery of the gas inlet pipe part,
    상기 제1 가스 분사구를 통해 분사되는 상기 반응성 가스는 상기 제2 가스 분사구를 향하며,The reactive gas injected through the first gas injection port is directed toward the second gas injection port,
    상기 제2 가스 분사구를 통해 분사되는 상기 반응성 가스는 상기 제1 가스 분사구를 향하는,The reactive gas injected through the second gas injection port is directed toward the first gas injection port,
    반도체 제조설비용 배기가스 처리 장비.Exhaust gas treatment equipment for semiconductor manufacturing facilities.
PCT/KR2021/010374 2020-11-02 2021-08-06 Exhaust gas treatment equipment for semiconductor manufacturing facility WO2022092502A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0144150 2020-11-02
KR1020200144150A KR102265878B1 (en) 2020-11-02 2020-11-02 Exhaust gas processing equipment for semiconductor production facility

Publications (1)

Publication Number Publication Date
WO2022092502A1 true WO2022092502A1 (en) 2022-05-05

Family

ID=76602768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/010374 WO2022092502A1 (en) 2020-11-02 2021-08-06 Exhaust gas treatment equipment for semiconductor manufacturing facility

Country Status (3)

Country Link
KR (1) KR102265878B1 (en)
TW (1) TWI798907B (en)
WO (1) WO2022092502A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102265878B1 (en) * 2020-11-02 2021-06-16 (주)엘오티씨이에스 Exhaust gas processing equipment for semiconductor production facility
KR20240029900A (en) 2022-08-29 2024-03-07 (주)엘오티씨이에스 Plasma equipment for processing exhaust gas of semiconductor process chamber and plasma blocking apparatus therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284052B2 (en) * 1998-08-19 2001-09-04 Sharp Laboratories Of America, Inc. In-situ method of cleaning a metal-organic chemical vapor deposition chamber
KR20060013046A (en) * 2004-08-05 2006-02-09 대한민국(전남대학교총장) Manufacturing method of titanium oxide using chemical vapour deposition
KR101352164B1 (en) * 2012-10-17 2014-01-27 (주)클린팩터스 Method and vacuum system for removing metallic by-products
KR20150124293A (en) * 2014-04-28 2015-11-05 (주)클린팩터스 Plasma reactor for purifying exhaust gas of the process facility
KR102265878B1 (en) * 2020-11-02 2021-06-16 (주)엘오티씨이에스 Exhaust gas processing equipment for semiconductor production facility

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448449B1 (en) 2014-01-13 2014-10-13 주식회사 테라텍 Using a high-density plasma source perfluorocarbons redemption and harmful gas cracker
KR102077759B1 (en) * 2019-05-22 2020-02-14 (주)엘오티씨이에스 Gas exhausting equipment and method for inhibiting deposition of powder in exhaust pipe for semiconductor production facility

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284052B2 (en) * 1998-08-19 2001-09-04 Sharp Laboratories Of America, Inc. In-situ method of cleaning a metal-organic chemical vapor deposition chamber
KR20060013046A (en) * 2004-08-05 2006-02-09 대한민국(전남대학교총장) Manufacturing method of titanium oxide using chemical vapour deposition
KR101352164B1 (en) * 2012-10-17 2014-01-27 (주)클린팩터스 Method and vacuum system for removing metallic by-products
KR20150124293A (en) * 2014-04-28 2015-11-05 (주)클린팩터스 Plasma reactor for purifying exhaust gas of the process facility
KR102265878B1 (en) * 2020-11-02 2021-06-16 (주)엘오티씨이에스 Exhaust gas processing equipment for semiconductor production facility

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEPPÄLÄ SANNI: "Atomic Layer Deposition of Zirconium Oxide and Rare Earth Oxides from Heteroleptic Precursors", DOCTORAL DISSERTATION, UNIVERSITY OF HELSINKI, 25 October 2019 (2019-10-25), XP055926286, Retrieved from the Internet <URL:https://helda.helsinki.fi/bitstream/handle/10138/305745/AtomicLa.pdf?sequence=1&isAllowed=y> *

Also Published As

Publication number Publication date
KR102265878B1 (en) 2021-06-16
TWI798907B (en) 2023-04-11
TW202224066A (en) 2022-06-16

Similar Documents

Publication Publication Date Title
WO2022092502A1 (en) Exhaust gas treatment equipment for semiconductor manufacturing facility
US7758731B2 (en) Method of operating a falling film plasma reactor
TWI434729B (en) Method and apparatus for the removal of fluorine from a gas stream
CN100540734C (en) Chemical vapor depsotition equipment
WO2010101369A2 (en) Gas distribution apparatus, and substrate-processing apparatus comprising same
US20010055555A1 (en) Advanced apparatus and method for abatement of gaseous pollutants
WO2011019157A2 (en) Nitrogen gas injection apparatus
CN103930189B (en) For processing the equipment of air-flow
WO2020235873A1 (en) Apparatus for preventing powder deposition in exhaust pipe for semiconductor manufacturing facility, exhaust equipment comprising same, and method for preventing powder deposition in exhaust pipe by using same
KR20210041340A (en) Exhausting System of Apparatus for fabricating Semiconductor And Method of Exhausting Using the Same
JPH01241826A (en) Thin film forming device
KR101006384B1 (en) Waste Gas Purification Apparatus
JPH0763583B2 (en) Method and apparatus for removing semiconductor exhaust gas
WO2019212270A1 (en) Substrate processing apparatus
WO2018190696A1 (en) Gas supply module for atomic layer deposition
US20200033000A1 (en) Method and apparatus for exhaust gas abatement under reduced pressure
JP2001355820A (en) Method and device for treating exhaust gas
CN103080372B (en) Nozzle head
JPH03158615A (en) Method and apparatus for removing dusts of combustion exhaust gas in toxic exhaust gas combustion processing device
WO2014109535A1 (en) High-speed remote plasma atomic layer deposition apparatus
KR100407507B1 (en) Gas injector for ALD device
WO2022215948A1 (en) Semiconductor manufacturing facility and operating method thereof
KR20050029020A (en) Waste gas scrubber integral with vaccum pump
KR20090132145A (en) Processing apparatus for waste gas
KR20210009870A (en) NOx REMOVAL SCRUBBER AND SCRUBBER SYSTEM FOR SEMICONDUCTOR PROCESS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886501

Country of ref document: EP

Kind code of ref document: A1