WO2022092200A1 - 浮体 - Google Patents

浮体 Download PDF

Info

Publication number
WO2022092200A1
WO2022092200A1 PCT/JP2021/039820 JP2021039820W WO2022092200A1 WO 2022092200 A1 WO2022092200 A1 WO 2022092200A1 JP 2021039820 W JP2021039820 W JP 2021039820W WO 2022092200 A1 WO2022092200 A1 WO 2022092200A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
carbon dioxide
heat exchanger
gas
floating body
Prior art date
Application number
PCT/JP2021/039820
Other languages
English (en)
French (fr)
Inventor
晋介 森本
和也 安部
健司 津村
Original Assignee
三菱造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱造船株式会社 filed Critical 三菱造船株式会社
Priority to KR1020237035752A priority Critical patent/KR102651668B1/ko
Priority to EP21886317.3A priority patent/EP4108562A4/en
Priority to KR1020227031550A priority patent/KR20220132647A/ko
Priority to CN202180021674.8A priority patent/CN115279655A/zh
Priority to AU2021370613A priority patent/AU2021370613B2/en
Publication of WO2022092200A1 publication Critical patent/WO2022092200A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B11/00Interior subdivision of hulls
    • B63B11/04Constructional features of bunkers, e.g. structural fuel tanks, or ballast tanks, e.g. with elastic walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/12Heating; Cooling
    • B63J2/14Heating; Cooling of liquid-freight-carrying tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0027Oxides of carbon, e.g. CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0222Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an intermediate heat exchange fluid between the cryogenic component and the fluid to be liquefied
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0268Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using a dedicated refrigeration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/80Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/90Boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • Y02T70/5218Less carbon-intensive fuels, e.g. natural gas, biofuels

Definitions

  • This disclosure relates to a floating body.
  • This application claims priority based on Japanese Patent Application No. 2020-18207 filed in Japan on October 30, 2020, and Japanese Patent Application No. 2021-01657 filed in Japan on March 31, 2021. And the contents are used here.
  • the present disclosure has been made to solve the above problems, and to provide a floating body capable of efficiently cooling and reliquefying liquefied carbon dioxide vaporized in a tank while effectively utilizing energy. With the goal.
  • the floating body includes a floating body main body, a first tank, a second tank, a first heat exchanger, a feed line, a return line, and a second heat exchanger. And a combustor.
  • the first tank is arranged in the floating body body.
  • the first tank can store carbon dioxide having a gas phase and a liquid phase.
  • the second tank is arranged in the floating body body.
  • the second tank can store a liquefiable flammable gas whose temperature in a liquid state is lower than that of the liquid phase of carbon dioxide as a fuel for a floating body.
  • the first heat exchanger exchanges heat between the carbon dioxide and the liquefiable flammable gas.
  • the feed line guides the carbon dioxide from the first tank to the first heat exchanger.
  • the return line guides the carbon dioxide from the first heat exchanger to the first tank.
  • the second heat exchanger vaporizes the liquefied combustible gas by exchanging heat with the heat medium for the liquefied combustible gas that has passed through the first heat exchanger.
  • the combustor burns the liquefied combustible gas vaporized by the second heat exchanger.
  • the liquefied carbon dioxide vaporized in the tank can be efficiently cooled and reliquefied while effectively utilizing the energy.
  • FIG. 1 It is a top view which shows the schematic structure of the ship as a floating body which concerns on embodiment of this disclosure. It is a figure which shows the schematic structure of the reliquefaction / fuel supply system provided in the ship which concerns on 1st Embodiment of this disclosure. It is a figure which shows the schematic structure of the reliquefaction / fuel supply system provided in the ship which concerns on the 2nd Embodiment of this disclosure. It is a figure which shows the schematic structure of the reliquefaction / fuel supply system provided in the ship which concerns on the 3rd Embodiment of this disclosure. It is a figure which shows the schematic structure of the reliquefaction / fuel supply system provided in the ship which concerns on the modification of the 3rd Embodiment of this disclosure.
  • the ship 1A as a floating body includes a hull 2 as a floating body, a combustor 9, a first tank 11, a second tank 21, and a reliquefaction / fuel supply system. It has at least 30A (see FIG. 2).
  • the hull 2 has a pair of side sides 3A and 3B forming its outer shell, a ship bottom (not shown), and an upper deck 5.
  • the side 3A and 3B have a pair of side outer plates forming the left and right side respectively.
  • the bottom of the ship (not shown) has a bottom outer plate connecting these side 3A and 3B. Due to the pair of sideways 3A and 3B and the bottom of the ship (not shown), the outer shell of the hull 2 has a U-shape in a cross section orthogonal to Da in the stern direction.
  • the upper deck 5 exemplified in this embodiment is a whole deck exposed to the outside.
  • an upper structure 7 having a living area is formed on the upper deck 5 on the stern 2b side.
  • the position of the upper structure 7 is only an example, and may be arranged on the bow 2a side of the hull 2, for example.
  • a cargo loading section (hold) 8 for storing the first tank 11 is formed in the hull 2.
  • the combustor 9 is arranged inside the hull 2.
  • the combustor 9 exerts a required function by burning the liquefiable combustible gas F stored in the second tank 21.
  • Examples of the combustor 9 include a main engine, a generator, and a boiler.
  • the main engine is an engine (internal combustion engine) that uses liquefied flammable gas F as fuel, and exerts propulsive force for propelling the hull 2.
  • the generator includes an engine (internal combustion engine) that uses liquefied combustible gas F as fuel, and the driving force of the engine generates electric power used in the hull 2.
  • the boiler burns the liquefied combustible gas F to generate steam used in the hull 2.
  • the first tank 11 is arranged on the hull 2.
  • the first tank 11 is arranged in the cargo loading section 8.
  • two first tanks 11 are arranged at intervals in the stern-tail direction Da.
  • the first tank 11 has, for example, a cylindrical shape extending in the horizontal direction.
  • the first tank 11 is not limited to a cylindrical shape, and the first tank 11 may be spherical, square, or the like.
  • the first tank 11 can store carbon dioxide C having a gas phase and a liquid phase.
  • the carbon dioxide C stored in the first tank 11 is the cargo (cargo) of the ship 1A.
  • the carbon dioxide C stored in the first tank 11 is separated into a liquid phase and a gas phase in the first tank 11.
  • the liquid phase that is, carbon dioxide C in a liquid state (hereinafter, this is referred to as carbon dioxide liquid C1) is stored in the lower portion in the first tank 11.
  • the gas phase that is, carbon dioxide C in a gaseous state (hereinafter, this is referred to as carbon dioxide gas C2) is stored in the upper part in the first tank 11.
  • the carbon dioxide gas C2 is a boil-off gas generated by naturally vaporizing the carbon dioxide liquid C1 in the first tank 11 by heat input from the outside.
  • the first tank 11 includes a loading pipe 13 and a unloading pipe 14.
  • the loading pipe 13 loads carbon dioxide C (carbon dioxide liquid C1) supplied from onshore equipment or the like into the first tank 11.
  • the loading pipe 13 penetrates the top of the first tank 11 from the outside of the first tank 11 and extends to the inside of the first tank 11.
  • the tip of the loading pipe 13 is open in the first tank 11. In FIG. 2, the case where the tip of the loading pipe 13 is located at the lower part of the first tank 11 is illustrated, but the arrangement of the tip of the loading pipe 13 is not limited to this (the second described later). The same applies to the loading piping of the embodiment).
  • the unloading pipe 14 sends carbon dioxide C (carbon dioxide liquid C1) in the first tank 11 outboard.
  • the unloading pipe 14 penetrates the top of the first tank 11 from the outside of the first tank 11 and extends to the inside of the first tank 11.
  • a unloading pump 15 is provided at the tip of the unloading pipe 14.
  • the unloading pump 15 sucks carbon dioxide C (carbon dioxide liquid C1) in the first tank 11.
  • the unloading pipe 14 guides the carbon dioxide C (carbon dioxide liquid C1) sent out from the unloading pump 15 to the outside of the first tank 11 (outboard).
  • the second tank 21 is arranged on the hull 2.
  • the liquefiable flammable gas F is stored in the second tank 21.
  • This liquefiable combustible gas F is a fuel in the ship 1A and is burned in the combustor 9. That is, the second tank 21 is a so-called fuel tank for storing fuel.
  • the temperature of the liquefiable flammable gas F stored in the second tank 21 in a liquid state is lower than that of the liquid phase of carbon dioxide C stored in the first tank 11.
  • the liquefied combustible gas F include liquefied natural gas (LNG), methane, ethane, and hydrogen.
  • LNG liquefied natural gas
  • methane methane
  • ethane hydrogen
  • hydrogen hydrogen
  • the reliquefaction / fuel supply system 30A reliquefies the carbon dioxide gas C2 stored in the first tank 11. Further, the reliquefaction / fuel supply system 30A vaporizes the liquid liquefied combustible gas F in the second tank 21 and supplies it to the combustor 9.
  • the reliquefaction / fuel supply system 30A includes at least a first heat exchanger 31A and a second heat exchanger 32.
  • the first heat exchanger 31A exchanges heat between the carbon dioxide gas C2 and the liquefiable flammable gas F.
  • a feed line 33A, a return line 34A, a first fuel line 35, and a second fuel line 36 are connected to the first heat exchanger 31A, respectively.
  • the feed line 33A guides the carbon dioxide gas C2 from the first tank 11 to the first heat exchanger 31A.
  • one end of the feed line 33A is connected to the top of the first tank 11.
  • the feed line 33A guides the carbon dioxide gas C2 from the upper part in the first tank 11 to the first heat exchanger 31A.
  • a compressor 37 for compressing the carbon dioxide gas C2 is arranged on the feed line 33A.
  • the return line 34A guides the carbon dioxide liquid C1 liquefied by the first heat exchanger 31A from the first heat exchanger 31A to the first tank 11.
  • the first fuel line 35 supplies the liquefied combustible gas F from the second tank 21 to the first heat exchanger 31A by the fuel pump 25.
  • the second fuel line 36 guides the liquefied combustible gas F from the first heat exchanger 31A to the second heat exchanger 32.
  • the second heat exchanger 32 vaporizes the liquefied combustible gas F by exchanging heat with the heat medium H for the liquefied combustible gas F that has passed through the first heat exchanger 31A.
  • the liquefied natural gas is vaporized to become natural gas.
  • Examples of the heat medium H used in the second heat exchanger 32 include steam used in the hull 2, exhaust gas from the combustor 9, and the like.
  • a third fuel line 38 is connected to the second heat exchanger 32. The third fuel line 38 guides the vaporized liquefied combustible gas F from the second heat exchanger 32 to the combustor 9.
  • carbon dioxide gas C2 is taken out from the upper part in the first tank 11 by operating the compressor 37.
  • the carbon dioxide gas C2 taken out is compressed by the compressor 37 and then sent to the first heat exchanger 31A through the feeding line 33A.
  • the liquefiable flammable gas F in the second tank 21 is sent to the first heat exchanger 31A through the first fuel line 35 by the fuel pump 25. Then, in the first heat exchanger 31A, heat exchange between the carbon dioxide gas C2 and the liquefiable combustible gas F is performed.
  • the temperature of the liquefied flammable gas F in the liquid state is lower than that of carbon dioxide C. Therefore, the compressed carbon dioxide gas C2 is cooled and reliquefied by the heat exchange in the first heat exchanger 31A. The cooled and reliquefied carbon dioxide liquid C1 is returned to the first tank 11 through the return line 34A.
  • the liquefiable flammable gas F is heated by exchanging heat with the carbon dioxide gas C2 having a higher temperature than the liquefied combustible gas F in the first heat exchanger 31A, and the temperature rises.
  • the liquefied combustible gas F whose temperature has risen is sent to the second heat exchanger 32 through the second fuel line 36.
  • the liquefiable flammable gas F is further heated and vaporized by heat exchange with the heat medium H in the second heat exchanger 32.
  • the vaporized liquefied combustible gas F is supplied to the combustor 9 through the third fuel line 38.
  • the carbon dioxide gas C2 supplied from the first tank 11 to the first heat exchanger 31A through the feeding line 33A is heated by the liquefied combustible gas F in the first heat exchanger 31A. It is cooled and reliquefied by exchange.
  • the reliquefied carbon dioxide liquid C1 is returned to the first tank 11 through the return line 34A.
  • the temperature of the reliquefied carbon dioxide liquid C1 is lower than the temperature of the carbon dioxide C stored in the first tank 11. Therefore, the cooled carbon dioxide liquid C1 is returned to the first tank 11, and the temperature of the carbon dioxide C in the first tank 11 is lowered.
  • the temperature rise in the first tank 11 can be suppressed, and the new vaporization of the carbon dioxide liquid C1 in the first tank 11 can be suppressed.
  • the liquefiable combustible gas F stored in the second tank 21 rises in temperature by exchanging heat with the carbon dioxide gas C2 in the first heat exchanger 31A, and then is sent to the second heat exchanger 32. Therefore, in the second heat exchanger 32, the liquefiable combustible gas F in a state preheated in advance by the first heat exchanger 31A is heat-exchanged with the heat medium H to be vaporized.
  • the heat energy required to vaporize the liquefiable flammable gas F in the second heat exchanger 32 is smaller than that in the case where the first heat exchanger 31A is not provided. In this way, the carbon dioxide gas C2 generated in the first tank 11 can be efficiently reliquefied while effectively utilizing the energy.
  • the carbon dioxide gas C2 has a higher temperature than the carbon dioxide liquid C1 which is cooled by the latent heat of vaporization when the boil-off gas is generated. Therefore, in the first heat exchanger 31A, the temperature of the liquefiable flammable gas F can be raised to a higher temperature as compared with the case of heat exchange with the carbon dioxide liquid C1. In this respect, less heat energy is required to vaporize the liquefied flammable gas F in the second heat exchanger 32.
  • the reliquefaction / fuel supply system 30B of the ship 1B as a floating body in the present embodiment includes a first heat exchanger 31B and a second heat exchanger 32.
  • the first heat exchanger 31B exchanges heat between carbon dioxide C (carbon dioxide liquid C1) and liquefied combustible gas F.
  • a feed line 33B, a return line 34B, a first fuel line 35, and a second fuel line 36 are connected to the first heat exchanger 31B.
  • the feed line 33B guides carbon dioxide C from the first tank 11 to the first heat exchanger 31B. More specifically, the feeding line 33B guides the carbon dioxide liquid C1 from the lower part in the first tank 11 to the first heat exchanger 31B. The feed line 33B guides the carbon dioxide liquid C1 delivered from the unloading pump 15 to the first heat exchanger 31B.
  • the feed line 33B branches from the unloading pipe 14.
  • On-off valves 39A and 39B are arranged at the portion where the feeding line 33B and the unloading pipe 14 are branched.
  • the on-off valve 39A opens and closes the flow path in the unloading pipe 14.
  • the on-off valve 39B opens and closes the flow path in the feed line 33B.
  • the on-off valve 39A is in the closed state and the on-off valve 39B is in the open state.
  • a small capacity pump is equipped separately from the unloading pump 15 and carbon dioxide is used by using this small capacity pump.
  • the liquid C1 may be sent to the feeding line 33B.
  • the return line 34B guides the carbon dioxide liquid C1 from the first heat exchanger 31B to the first tank 11.
  • the return line 34B is connected to the top of the first tank 11.
  • An injection unit 40 is arranged at the top of the first tank 11. The injection unit 40 injects the carbon dioxide liquid C1 returned from the first heat exchanger 31B to the first tank 11 through the return line 34B to the upper gas phase in the first tank 11. Examples of this injection form include a shower-like shape and a mist-like shape.
  • the injected carbon dioxide liquid C1 falls downward while being in wide contact with the carbon dioxide gas C2 stored in the first tank 11.
  • the carbon dioxide liquid C1 is sent out from the lower part in the first tank 11 by operating the unloading pump 15.
  • the delivered carbon dioxide liquid C1 is sent to the first heat exchanger 31B through the feeding line 33B.
  • heat exchange between the carbon dioxide liquid C1 and the liquefied combustible gas F is performed. Due to the heat exchange in the first heat exchanger 31B, the carbon dioxide liquid C1 is cooled more than the carbon dioxide liquid C1 in the first tank 11 and becomes a supercooled state.
  • the supercooled carbon dioxide liquid C1 is returned to the first tank 11 through the return line 34B.
  • the supercooled carbon dioxide liquid C1 is injected into the carbon dioxide gas C2 in the first tank 11 by the injection unit 40.
  • the carbon dioxide gas C2 stored in the upper part of the first tank 11 is cooled by the injected carbon dioxide liquid C1.
  • at least a part of the carbon dioxide gas C2 is reliquefied.
  • the liquefiable flammable gas F is heated by exchanging heat with the carbon dioxide liquid C1 having a higher temperature than the liquefied flammable gas F in the first heat exchanger 31B, and its temperature rises.
  • the liquefied combustible gas F whose temperature has risen is sent to the second heat exchanger 32 through the second fuel line 36.
  • the liquefiable flammable gas F is further heated and vaporized by heat exchange with the heat medium H in the second heat exchanger 32.
  • the vaporized liquefied combustible gas F is supplied to the combustor 9 through the third fuel line 38.
  • the carbon dioxide liquid C1 supplied from the first tank 11 through the supply line 33B is cooled by exchanging heat with the liquefiable combustible gas F in the first heat exchanger 31B.
  • the cooled carbon dioxide liquid C1 is returned to the first tank 11 through the return line 34B.
  • the temperature of the carbon dioxide C in the first tank 11 is lowered.
  • the temperature rise in the first tank 11 is suppressed, and the new vaporization of the carbon dioxide liquid C1 is also suppressed.
  • the liquefiable flammable gas F stored in the second tank 21 rises in temperature by exchanging heat with carbon dioxide C having a higher temperature than the liquefied combustible gas F in the first heat exchanger 31B, and then the second. It is sent to the heat exchanger 32. Therefore, in the second heat exchanger 32, the liquefiable combustible gas F in a state preheated in advance by the first heat exchanger 31B is heat-exchanged with the heat medium H to be vaporized. Therefore, the heat energy required to vaporize the liquefiable flammable gas F in the second heat exchanger 32 is smaller than that in the case where the first heat exchanger 31B is not provided. In this way, the carbon dioxide gas C2 generated in the first tank 11 can be efficiently reliquefied while effectively utilizing the energy.
  • the carbon dioxide liquid C1 taken out from the inside of the first tank 11 and the liquefiable combustible gas F are heat exchanged.
  • the carbon dioxide liquid C1 in the supercooled state is sent into the first tank 11, so that the carbon dioxide gas C2 in the first tank 11 can be cooled and reliquefied.
  • the carbon dioxide liquid C1 is supplied from the first tank 11 to the first heat exchanger 31B by the unloading pump 15.
  • the unloading pump 15 is provided to send the carbon dioxide liquid C1 in the first tank 11 to the outside of the floating body main body 2 through the unloading pipe 14.
  • the unloading pump 15 can also be used to reliquefy the carbon dioxide gas C2, it is possible to suppress an increase in the number of parts and suppress an increase in cost.
  • the carbon dioxide liquid C1 which has been supercooled by the heat exchange in the first heat exchanger 31B is injected into the upper part of the first tank 11 by the injection unit 40. .. Therefore, the supercooled carbon dioxide liquid C1 can be brought into contact with the carbon dioxide gas C2 in the first tank 11 more widely. Therefore, it becomes possible to reliquefy more carbon dioxide gas C2.
  • the reliquefaction / fuel supply system 30C of the ship 1C as a floating body in the present embodiment includes a first heat exchanger 31C, a second heat exchanger 32, a circulation line 33C, and a circulation pump 41. And, at least.
  • the first heat exchanger 31C exchanges heat between the refrigerant R and the liquefiable flammable gas F.
  • the first fuel line 35, the second fuel line 36, and the circulation line 33C are connected to the first heat exchanger 31C.
  • the circulation line 33C forms a flow path for circulating the refrigerant R between the inside of the first tank 11 and the first heat exchanger 31C.
  • One end of the circulation line 33C is connected to the refrigerant outlet 31Co of the first heat exchanger 31C, and the other end of the circulation line 33C is connected to the refrigerant inlet 31Ci of the first heat exchanger 31C.
  • the circulation line 33C passes through the inside of the first tank 11 on the way.
  • the circulation line 33C in the third embodiment passes through the gas phase in the first tank 11.
  • the portion of the circulation line 33C that passes through at least the first tank 11 is a material having high thermal conductivity such as metal, a fin tube, or the like. It can be formed of a material having a large heat transfer area and a combination thereof. Further, in the circulation line 33C, the portion arranged outside the first tank 11 (particularly between the refrigerant outlet 31Co and the first tank 11) is formed of a material having high heat insulating performance or covered with a heat insulating material. You may do it. As the above-mentioned refrigerant R, a refrigerant having a boiling point of about ⁇ 40 ° C. can be used.
  • the passing portion in the first tank 11 passes only the gas phase
  • the passing portion in the first tank 11 is not limited to the one passing only the gas phase.
  • a part of the passage portion in the first tank 11 may be in contact with the liquid phase.
  • the portion passing through the first tank 11 is not limited to the configuration in which it is in constant contact with the gas phase, and may be submerged in the liquid phase, for example, when the liquid level in the first tank 11 rises.
  • the circulation pump 41 is installed in the middle of the circulation line 33C.
  • the circulation pump 41 of the present embodiment is arranged between the outlet 31Co of the first heat exchanger 31C and the first tank 11 in the circulation line 33C.
  • the circulation pump 41 sends out the refrigerant R in the circulation line 33C from one end to the other end of the circulation line 33C.
  • the refrigerant R discharged from the outlet 31Co of the first heat exchanger 31C passes through the flow path in the circulation line 33C to the first tank 11 Flow toward. Then, the refrigerant R flows through the flow path of the circulation line 33C arranged in the first tank 11. At this time, the refrigerant R exchanges heat with carbon dioxide C (at least one of the carbon dioxide gas C2 and the carbon dioxide liquid C1) in the first tank 11 and the temperature rises.
  • the refrigerant R flows through the flow path of the circulation line 33C arranged outside the first tank 11 and then reaches the refrigerant inlet 31Ci of the first heat exchanger 31C. Then, the refrigerant R is heat-exchanged with the liquefiable flammable gas F in the first heat exchanger 31C to lower the temperature, and is discharged from the refrigerant outlet 31Co again. In this way, the refrigerant R circulates in the circulation line 33C.
  • the timing for operating the circulation pump 41 in the third embodiment it may be operated only when the pressure in the first tank 11 rises above the threshold value, but when the combustor 9 is operating, it may be operated. It may be operated at all times.
  • the liquefiable combustible gas F which is heated by heat exchange with the refrigerant R having a temperature higher than that of the liquefiable combustible gas F in the first heat exchanger 31B and whose temperature has risen, is the second fuel line 36 as in the first embodiment. It is sent to the second heat exchanger 32 through. This liquefiable flammable gas F is further heated and vaporized by heat exchange with the heat medium H in the second heat exchanger 32. The vaporized liquefied combustible gas F is supplied to the combustor 9 through the third fuel line 38. Further, the temperature of carbon dioxide C in the first tank 11 that has exchanged heat with the refrigerant R drops.
  • the temperature of the carbon dioxide gas C2 drops due to direct heat exchange with the refrigerant R or contact between the refrigerant R and the heat-exchanged carbon dioxide liquid C1.
  • the carbon dioxide gas C2 is reduced in volume or liquefied in the gaseous state.
  • the pressure rise in the first tank 11 is suppressed.
  • the ship 1C of the third embodiment is arranged in the hull 2 and the first tank 11 which is arranged in the hull 2 and stores carbon dioxide C having a gas phase and a liquid phase, and is arranged in the hull 2 in a liquid state.
  • a second tank 21 capable of storing a liquefiable flammable gas F whose temperature is lower than that of the liquid phase of carbon dioxide C, a first heat exchanger 31C for heat exchange between the liquefied combustible gas F and the refrigerant R, and a first tank.
  • a circulation line 33C that circulates the refrigerant R between the inside of the 11 and the first heat exchanger 31C, a circulation pump 41 that is provided in the middle of the circulation line 33C and circulates the refrigerant R, and the first heat exchanger 31C.
  • the second heat exchanger 32 that vaporizes the liquefied combustible gas F by exchanging heat with the heat medium H and the liquefied combustible gas F vaporized by the second heat exchanger 32 are burned. It is equipped with a combustor 9.
  • carbon dioxide C in the first tank 11 and the liquefiable flammable gas F can be heat-exchanged via the refrigerant R, so that carbon dioxide is emitted. It is not necessary to flow the carbon gas C2 or the carbon dioxide liquid C1 into the pipe outside the first tank 11. Therefore, it is possible to suppress the heat input to the carbon dioxide C and efficiently reduce the pressure in the first tank 11.
  • the circulation line 33C passes through at least the liquid phase of the first tank 11.
  • the configuration includes two first tanks 11, but the present invention is not limited to this. It may be provided with one or more first tanks 11. Further, in the above embodiment, the case where a plurality of first tanks 11 are arranged side by side in the stern direction Da is illustrated, but the first tank 11s are arranged side by side in the ship width direction (in other words, the port side direction). May be good. Further, in the above embodiment, ships 1A and 1B are exemplified as floating bodies, but the present invention is not limited to this. The floating body may be an offshore floating body facility without a propulsion mechanism.
  • the case of heat exchange between the refrigerant R and the carbon dioxide C by utilizing the heat conduction of the piping of the circulation line 33C has been described.
  • another heat exchanger may be provided in the middle of the circulation line 33C in the first tank 11 to exchange heat between the refrigerant R and the carbon dioxide C.
  • the flow path of the refrigerant R may be meandered in the portion arranged in the first tank 11.
  • an expansion valve 42 and a compressor 43 may be provided in the middle of the circulation line 33C to construct a refrigeration cycle.
  • an expansion valve 42 is provided between the refrigerant outlet 31Co of the first heat exchanger 31C and the first tank 11, and the compressor 43 is provided between the first tank 11 and the refrigerant inlet 31Ci of the first heat exchanger 31C.
  • the ability to cool the carbon dioxide gas C2 can be improved. Therefore, for example, even if the pressure in the first tank 11 changes in a short time, it can be quickly dealt with. can.
  • the floating bodies 1A and 1B according to the first aspect are the floating body main body 2, the first tank 11 arranged in the floating body main body 2 and capable of storing carbon dioxide C having a gas phase and a liquid phase, and the above.
  • a second tank 21 arranged in the floating body main body 2 and capable of storing a liquefiable flammable gas F whose temperature in a liquid state is lower than that of the liquid phase of the carbon dioxide C, and the carbon dioxide C and the liquefied combustible gas F.
  • the first heat exchangers 31A and 31B for heat exchange, the feeding lines 33A and 33B for guiding the carbon dioxide C from the first tank 11 to the first heat exchangers 31A and 31B, and the first heat exchanger.
  • the return lines 34A and 34B for guiding the carbon dioxide liquid C1 from 31A and 31B to the first tank 11 and the liquefiable flammable gas F passing through the first heat exchangers 31A and 31B are heat exchanged with the heat medium H.
  • floating bodies 1A and 1B include ships and offshore floating body equipment.
  • Examples of the floating body 2 include a hull and a floating body of offshore floating equipment.
  • Examples of carbon dioxide C include carbon dioxide liquid C1 and carbon dioxide gas C2.
  • Examples of the liquefied flammable gas F include liquefied natural gas, methane, ethane, and hydrogen.
  • Examples of the heat medium H include steam, exhaust gas from the combustor 9, fresh water stored in a fresh water tank (not shown), seawater pumped from an outboard, and the like.
  • Examples of the combustor 9 include an engine (internal combustion engine) for a main engine and a generator, and a boiler.
  • the carbon dioxide liquid C1 fed from the first tank 11 through the feeding lines 33A and 33B is heat exchanged with the liquefied combustible gas F in the first heat exchangers 31A and 31B.
  • the temperature of the liquefied flammable gas F in the liquid state is lower than that of the liquid phase of carbon dioxide C. Therefore, the carbon dioxide C is cooled by the heat exchange in the first heat exchangers 31A and 31B.
  • the cooled carbon dioxide C is returned to the first tank 11 through the return lines 34A and 34B. By supplying the cooled carbon dioxide C into the first tank 11, the temperature of the carbon dioxide C in the first tank 11 is lowered.
  • the liquefiable combustible gas F stored in the second tank 21 is supplied to the combustor 9 via the first heat exchangers 31A and 31B and the second heat exchanger 32.
  • the liquefiable combustible gas F is the first.
  • the heat exchangers 31A and 31B raise the temperature by exchanging heat with carbon dioxide C, which has a higher temperature than the liquefiable flammable gas F, and then are sent to the second heat exchanger 32.
  • the liquefiable combustible gas F in a state preheated by the first heat exchangers 31A and 31B is exchanged with the heat medium H for vaporization. Therefore, the heat energy required for vaporizing the liquefiable flammable gas F in the second heat exchanger 32 is smaller than that in the case where the first heat exchangers 31A and 31B are not provided. In this way, the gaseous carbon dioxide C (C2) generated in the first tank 11 can be efficiently re-liquefied while effectively utilizing the energy.
  • the floating body 1A according to the second aspect is the floating body 1A of (1), and the feeding line 33A receives the gas C2 of carbon dioxide C from the upper gas phase in the first tank 11. It leads to the first heat exchanger 31A.
  • the gas C2 of carbon dioxide C taken out from the inside of the first tank 11 and the liquefiable combustible gas F can be heat-exchanged. Therefore, the gas C2 of carbon dioxide C vaporized in the first tank 11 can be cooled by exchanging heat with the liquefiable flammable gas F, so that the gas C2 of carbon dioxide C can be reliquefied. Further, the gas C2 of carbon dioxide C has a higher temperature than the liquid C1 of carbon dioxide C cooled by the latent heat of vaporization.
  • the temperature of the liquefiable flammable gas F can be raised to a higher temperature as compared with the case of heat exchange with the liquid C1 of carbon dioxide C. In this respect, less heat energy is required to vaporize the liquefied flammable gas F in the second heat exchanger 32.
  • the floating body 1B according to the third aspect is the floating body 1B of (1), and the feeding line 33B receives the liquid C1 of carbon dioxide C from the lower liquid phase in the first tank 11. It leads to the first heat exchanger 31B.
  • the liquid C1 of the carbon dioxide C taken out from the inside of the first tank 11 and the liquefiable combustible gas F can be heat-exchanged.
  • the liquid C1 of carbon dioxide C can be supercooled and returned to the first tank 11.
  • the liquid C1 of carbon dioxide C in the supercooled state is sent into the first tank 11, so that the gas C2 of carbon dioxide C in the first tank 11 can be reliquefied.
  • the floating body 1B according to the fourth aspect is the floating body 1B of (3), and is connected to a unloading pipe 14 that sends the liquid C1 of carbon dioxide C in the first tank 11 to the outside of the floating body main body 2. Further including a provided unloading pump 15, the feeding line 33B connects the unloading pump 15 and the first heat exchanger 31B, and the liquid C1 of the carbon dioxide C is contained in the first tank 11. Leads to the first heat exchanger 31B.
  • the liquid C1 of carbon dioxide C can be fed from the first tank 11 to the first heat exchanger 31B through the feeding line 33B by the unloading pump 15.
  • the unloading pump 15 is provided to send the liquid C1 of carbon dioxide C in the first tank 11 to the outside of the floating body main body 2 through the unloading pipe 14. Since such a unloading pump 15 can also be used to reliquefy the gas C2 of carbon dioxide C, it is possible to suppress an increase in the number of parts and suppress an increase in cost.
  • the floating body 1B according to the fifth aspect is the floating body 1B of (3) or (4), and is returned from the first heat exchanger 31B to the first tank 11 through the return line 34B. Further, an injection unit 40 for injecting the liquid C1 of carbon dioxide C into the upper part of the first tank 11 is provided.
  • the liquid C1 of carbon dioxide C which has been supercooled by heat exchange in the first heat exchanger 31B, is injected into the upper part of the first tank 11 by the injection unit 40, and the carbon dioxide in the supercooled state is injected.
  • the liquid C1 of the above can be brought into contact with the gas C2 of the carbon dioxide C in the first tank 11 more widely. Therefore, it becomes possible to reliquefy the gas C2 of carbon dioxide C in a larger amount.
  • the floating body 1C according to the sixth aspect is arranged in the floating body main body 2, the first tank 11 which is arranged in the floating body main body 2 and stores carbon dioxide C having a gas phase and a liquid phase, and the floating body main body 2.
  • a second tank 21 capable of storing a liquefiable flammable gas F whose temperature in a liquid state is lower than that of the liquid phase of carbon dioxide C, and a first heat exchanger for heat exchange between the liquefied combustible gas F and the refrigerant R.
  • the carbon dioxide C in the first tank 11 and the liquefied combustible gas F can exchange heat via the refrigerant R, so that the carbon dioxide gas C2 and the carbon dioxide liquid C1 can be exchanged outside the first tank 11. There is no need to flow into the pipe. Therefore, it is possible to suppress the heat input to the carbon dioxide C and efficiently reduce the pressure in the first tank 11. Further, the liquefiable combustible gas F stored in the second tank 21 is supplied to the combustor 9 via the first heat exchanger 31C and the second heat exchanger 32, and the liquefiable combustible gas F is the first.
  • C2 gaseous carbon dioxide
  • the floating body 1C according to the seventh aspect is the floating body 1C of (6), and the circulation line 33C passes through at least the gas phase of the first tank 11.
  • the temperature of the carbon dioxide gas C2 in the first tank 11 that has exchanged heat with the refrigerant R can be lowered to reduce the volume or liquefy the carbon dioxide gas C2 in a gaseous state. Therefore, the pressure rise in the first tank 11 can be efficiently suppressed.
  • the liquefied carbon dioxide vaporized in the tank can be efficiently cooled and reliquefied while effectively utilizing the energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Artificial Filaments (AREA)

Abstract

浮体本体と、浮体本体に配置され、気相及び液相を有した二酸化炭素を貯留可能な第一タンクと、浮体本体に配置され、液体状態での温度が二酸化炭素の液相よりも低い液化可燃性ガスを貯留可能な第二タンクと、二酸化炭素と液化可燃性ガスとを熱交換する第一熱交換器と、第一タンクから第一熱交換器に二酸化炭素を導く送給ラインと、第一熱交換器から第一タンクに二酸化炭素を導く返送ラインと、第一熱交換器を経た液化可燃性ガスを熱媒と熱交換することで液化可燃性ガスを気化させる第二熱交換器と、第二熱交換器で気化された液化可燃性ガスを燃焼させる燃焼器と、を備える。

Description

浮体
 本開示は、浮体に関する。
 本願は、2020年10月30日に、日本に出願された特願2020-182076号、及び2021年3月31日に、日本に出願された特願2021-061657号、に基づき優先権を主張し、その内容をここに援用する。
 液化ガスを貯留するタンクを備えた船舶等の浮体においては、外部からの入熱により、タンク内に貯留した液化ガスが気化して、いわゆるボイルオフガスが生成される。ボイルオフガスが生成されると、タンク内の圧力が上昇する。そのため、例えば特許文献1には、燃料タンクに貯留された液化ガス燃料から発生する燃料ボイルオフガスを再液化するため、燃料ボイルオフガスを、カーゴタンクで発生する液化ガスのボイルオフガスの冷熱により冷却する構成が開示されている。
特開2018-127137号公報
 ところで、タンクに液化二酸化炭素を貯留する場合、液化二酸化炭素は、そもそも大気中に放出される二酸化炭素を回収するために液化されたものである。そのためタンク内で液化酸化炭素が気化することで生成された二酸化炭素ガスを、再液化するために要するエネルギーは、なるべく抑えることが望まれている。再液化するためのエネルギーを抑えるという観点からすれば、二酸化炭素ガスを大気中に放出してしまうことも考えられるが、当然のことながら、回収した二酸化炭素を大気中へ放出することは好ましくない。
 本開示は、上記課題を解決するためになされたものであって、タンク内で気化した液化二酸化炭素を、エネルギーを有効利用しつつ効率的に冷やして再液化することができる浮体を提供することを目的とする。
 上記課題を解決するために、本開示に係る浮体は、浮体本体と、第一タンクと、第二タンクと、第一熱交換器と、送給ラインと、返送ラインと、第二熱交換器と、燃焼器と、を備える。前記第一タンクは、前記浮体本体に配置されている。前記第一タンクは、気相及び液相を有した二酸化炭素を貯留可能である。前記第二タンクは、前記浮体本体に配置されている。前記第二タンクは、液体状態での温度が前記二酸化炭素の液相よりも低い液化可燃性ガスを浮体の燃料として貯留可能である。前記第一熱交換器は、前記二酸化炭素と前記液化可燃性ガスとを熱交換する。前記送給ラインは、前記第一タンクから前記第一熱交換器に前記二酸化炭素を導く。前記返送ラインは、前記第一熱交換器から前記第一タンクに前記二酸化炭素を導く。前記第二熱交換器は、前記第一熱交換器を経た前記液化可燃性ガスを熱媒と熱交換することで前記液化可燃性ガスを気化させる。前記燃焼器は、前記第二熱交換器で気化された前記液化可燃性ガスを燃焼させる。
 本開示の浮体によれば、タンク内で気化した液化二酸化炭素を、エネルギーを有効利用しつつ効率的に冷やして再液化することができる。
本開示の実施形態に係る浮体としての船舶の概略構成を示す平面図である。 本開示の第一実施形態に係る船舶に設けられた再液化・燃料供給システムの概略構成を示す図である。 本開示の第二実施形態に係る船舶に設けられた再液化・燃料供給システムの概略構成を示す図である。 本開示の第三実施形態に係る船舶に設けられた再液化・燃料供給システムの概略構成を示す図である。 本開示の第三実施形態の変形例に係る船舶に設けられた再液化・燃料供給システムの概略構成を示す図である。
 以下、本開示の実施形態に係る浮体について、図1~図3を参照して説明する。
<第一実施形態>
(船舶の構成)
 図1に示すように、この実施形態において、浮体としての船舶1Aは、浮体本体としての船体2と、燃焼器9と、第一タンク11と、第二タンク21と、再液化・燃料供給システム30A(図2参照)と、を少なくとも備えている。
(船体の構成)
 船体2は、その外殻をなす、一対の舷側3A,3Bと、船底(図示無し)と、上甲板5と、を有している。舷側3A,3Bは、左右舷側をそれぞれ形成する一対の舷側外板を有する。船底(図示無し)は、これら舷側3A,3Bを接続する船底外板を有する。これら一対の舷側3A,3B及び船底(図示無し)により、船体2の外殻は、船首尾方向Daに直交する断面において、U字状を成している。この実施形態で例示する上甲板5は、外部に露出する全通甲板である。船体2には、船尾2b側の上甲板5上に、居住区を有する上部構造7が形成されている。なお、上部構造7の位置は一例に過ぎず、例えば船体2の船首2a側に配置してもよい。
 船体2内には、第一タンク11を格納するための貨物搭載区画(ホールド)8が形成されている。
 燃焼器9は、船体2内に配置されている。燃焼器9は、第二タンク21に貯留された液化可燃性ガスFを燃焼させることで所要の機能を発揮する。燃焼器9としては、例えば、主機、発電機、ボイラーが挙げられる。主機は、液化可燃性ガスFを燃料とするエンジン(内燃機関)であり、船体2を推進させるための推進力を発揮する。発電機は、液化可燃性ガスFを燃料とするエンジン(内燃機関)を備え、エンジンの駆動力によって、船体2内で使用される電力を発生させる。ボイラーは、液化可燃性ガスFを燃焼させることで、船体2内で使用される蒸気を発生させる。
(第一タンクの構成)
 第一タンク11は、船体2に配置されている。第一タンク11は、貨物搭載区画8内に配置されている。この実施形態において、第一タンク11は、船首尾方向Daに間隔を空けて二個配置されている。本実施形態において、第一タンク11は、例えば、水平方向に延びる円筒状をなす。なお、第一タンク11は、円筒状に限られるものではなく、第一タンク11は球形、方形等であってもよい。
 第一タンク11は、気相及び液相を有した二酸化炭素Cを貯留可能である。この第一タンク11に貯留される二酸化炭素Cは、船舶1Aの積荷(貨物)である。
 図2に示すように、第一タンク11内に貯留された二酸化炭素Cは、第一タンク11内で液相と、気相とに分離している。液相、すなわち液体状態の二酸化炭素C(以下、これを二酸化炭素液C1と称する)は、第一タンク11内の下部に貯留されている。気相、すなわち気体状態の二酸化炭素C(以下、これを二酸化炭素ガスC2と称する)は、第一タンク11内の上部に貯留されている。二酸化炭素ガスC2は、外部からの入熱によって、二酸化炭素液C1が第一タンク11内で自然に気化して生成されたボイルオフガスである。
 第一タンク11は、積込配管13と、揚荷配管14と、を備えている。
 積込配管13は、陸上の設備等から供給される二酸化炭素C(二酸化炭素液C1)を第一タンク11内に積み込む。積込配管13は、第一タンク11の外部から第一タンク11の頂部を貫通し、第一タンク11の内部に延びている。積込配管13の先端部は、第一タンク11内に開口している。図2中、積込配管13の先端部が第一タンク11の下部に位置する場合を例示しているが、積込配管13の先端部の配置は、これに限られない(後述する第二実施形態の積込配管も同様)。
 揚荷配管14は、第一タンク11内の二酸化炭素C(二酸化炭素液C1)を、船外に送出する。揚荷配管14は、第一タンク11の外部から第一タンク11の頂部を貫通し、第一タンク11の内部に延びている。揚荷配管14の先端部には、揚荷ポンプ15が備えられている。揚荷ポンプ15は、第一タンク11内の二酸化炭素C(二酸化炭素液C1)を吸い込む。揚荷配管14は、揚荷ポンプ15から送り出された二酸化炭素C(二酸化炭素液C1)を、第一タンク11外(船外)に導く。
 第二タンク21は、船体2に配置されている。この第二タンク21には、液化可燃性ガスFが貯留される。この液化可燃性ガスFは、船舶1Aにおける燃料であり、燃焼器9で燃焼される。つまり、第二タンク21は、燃料を貯留するための、いわゆる燃料タンクである。
 第二タンク21に貯留される液化可燃性ガスFは、第一タンク11に貯留される二酸化炭素Cの液相よりも液体状態での温度が低い。液化可燃性ガスFとしては、液化天然ガス(LNG)、メタン、エタン、水素が挙げられる。本実施形態では、液化可燃性ガスFとして、液化天然ガスを用いる場合を一例に説明する。
(再液化・燃料供給システムの構成)
 再液化・燃料供給システム30Aは、第一タンク11内に貯留された二酸化炭素ガスC2を再液化する。さらに、再液化・燃料供給システム30Aは、第二タンク21内の液体状態の液化可燃性ガスFを気化させて燃焼器9に供給する。この再液化・燃料供給システム30Aは、第一熱交換器31Aと、第二熱交換器32と、を少なくとも備えている。
 第一熱交換器31Aは、二酸化炭素ガスC2と液化可燃性ガスFとを熱交換する。第一熱交換器31Aには、送給ライン33Aと、返送ライン34Aと、第一燃料ライン35と、第二燃料ライン36とがそれぞれ接続されている。
 送給ライン33Aは、第一タンク11から第一熱交換器31Aに二酸化炭素ガスC2を導く。本実施形態において、送給ライン33Aの一端は、第一タンク11の頂部に接続されている。送給ライン33Aは、第一タンク11内の上部から二酸化炭素ガスC2を第一熱交換器31Aに導く。送給ライン33Aには、二酸化炭素ガスC2を圧縮する圧縮機37が配置されている。
 返送ライン34Aは、第一熱交換器31Aで液化された二酸化炭素液C1を第一熱交換器31Aから第一タンク11に導く。
 第一燃料ライン35は、燃料ポンプ25により、第二タンク21から第一熱交換器31Aに液化可燃性ガスFを送給する。第二燃料ライン36は、第一熱交換器31Aから第二熱交換器32に液化可燃性ガスFを導く。
 第二熱交換器32は、第一熱交換器31Aを経た液化可燃性ガスFを熱媒Hと熱交換することで、液化可燃性ガスFを気化させる。この実施形態における第二熱交換器32では、液化天然ガスが気化されて天然ガスとなる。第二熱交換器32で用いられる熱媒Hとしては、船体2内で用いられる蒸気、燃焼器9からの排気等が挙げられる。第二熱交換器32には、第三燃料ライン38が接続されている。第三燃料ライン38は、第二熱交換器32から燃焼器9に、液化可燃性ガスFを気化させた気体を導く。
 このような再液化・燃料供給システム30Aでは、圧縮機37を作動させることで、第一タンク11内の上部から二酸化炭素ガスC2を取り出す。取り出された二酸化炭素ガスC2は、圧縮機37で圧縮された後、送給ライン33Aを通して第一熱交換器31Aに送られる。一方で、第二タンク21内の液化可燃性ガスFは、燃料ポンプ25によって第一燃料ライン35を通して第一熱交換器31Aに送られる。そして、第一熱交換器31Aにおいて、二酸化炭素ガスC2と液化可燃性ガスFとの熱交換が行われる。
 液化可燃性ガスFは、液体状態での温度が二酸化炭素Cよりも低い。したがって、第一熱交換器31Aにおける熱交換により、圧縮された二酸化炭素ガスC2は冷却されて再液化する。冷却されて再液化した二酸化炭素液C1は、返送ライン34Aを通して第一タンク11に返送される。
 また、液化可燃性ガスFは、第一熱交換器31Aで、液化可燃性ガスFよりも高温の二酸化炭素ガスC2と熱交換することで加熱され、その温度が上昇する。温度上昇した液化可燃性ガスFは、第二燃料ライン36を通して第二熱交換器32に送られる。液化可燃性ガスFは、第二熱交換器32で熱媒Hとの熱交換によって更に加熱されて気化する。気化された液化可燃性ガスFは、第三燃料ライン38を通して燃焼器9に供給される。
(作用効果)
 上記実施形態の船舶1Aでは、送給ライン33Aを通して第一タンク11から第一熱交換器31Aへ送給された二酸化炭素ガスC2は、第一熱交換器31Aで液化可燃性ガスFとの熱交換により冷却されて再液化される。この再液化された二酸化炭素液C1は、返送ライン34Aを通して第一タンク11に返送される。そして、この再液化された二酸化炭素液C1の温度は、第一タンク11内に貯留された二酸化炭素Cの温度よりも低くなっている。そのため、冷却された二酸化炭素液C1が第一タンク11内に返送されることで、第一タンク11内の二酸化炭素Cの温度が低下する。これにより、第一タンク11内の温度上昇が抑えられ、第一タンク11内における二酸化炭素液C1の新たな気化を抑えることができる。
 一方で、第二タンク21に貯留された液化可燃性ガスFは、第一熱交換器31Aで二酸化炭素ガスC2と熱交換することで温度上昇した後、第二熱交換器32に送られる。そのため、第二熱交換器32では、予め第一熱交換器31Aで予熱された状態の液化可燃性ガスFを熱媒Hと熱交換して気化させることになる。したがって、第二熱交換器32で液化可燃性ガスFを気化させるのに必要な熱エネルギーが、第一熱交換器31Aを備えない場合に比較して少なくて済む。
 このようにして、第一タンク11内で生成された二酸化炭素ガスC2を、エネルギーを有効利用しつつ効率的に再液化することが可能となる。
 また、二酸化炭素ガスC2は、ボイルオフガス発生時の蒸発潜熱により冷やされる二酸化炭素液C1よりも温度が高い。したがって、第一熱交換器31Aでは、二酸化炭素液C1と熱交換する場合に比較し、液化可燃性ガスFを、より高い温度まで温度上昇させることができる。この点において、第二熱交換器32で液化可燃性ガスFを気化させるのに必要な熱エネルギーが、より少なくて済む。
<第二実施形態>
 次に、この発明に係る浮体の第二実施形態について説明する。以下に説明する第二実施形態においては、第一実施形態と第一熱交換器31Bの構成のみが異なるので、第一実施形態と同一部分に同一符号を付して説明するとともに、重複説明を省略する。
 図3に示すように、本実施形態における浮体としての船舶1Bの再液化・燃料供給システム30Bは、第一熱交換器31Bと、第二熱交換器32と、を備えている。
 第一熱交換器31Bは、二酸化炭素C(二酸化炭素液C1)と液化可燃性ガスFとを熱交換する。第一熱交換器31Bには、送給ライン33Bと、返送ライン34Bと、第一燃料ライン35と、第二燃料ライン36とが接続されている。
 送給ライン33Bは、第一タンク11から第一熱交換器31Bに二酸化炭素Cを導く。より具体的には、送給ライン33Bは、第一タンク11内の下部から二酸化炭素液C1を前記第一熱交換器31Bに導く。送給ライン33Bは、揚荷ポンプ15から送り出された二酸化炭素液C1を第一熱交換器31Bに導く。送給ライン33Bは、揚荷配管14から分岐している。送給ライン33Bと揚荷配管14とが分岐した部分には、開閉弁39A,39Bが配置されている。開閉弁39Aは、揚荷配管14内の流路を開閉する。開閉弁39Bは、送給ライン33B内の流路を開閉する。例えば、第一タンク11内の二酸化炭素液C1を、揚荷ポンプ15で第一熱交換器31Bに送給する場合は、開閉弁39Aを閉状態、開閉弁39Bを開状態とする。なお、揚荷ポンプ15によって二酸化炭素液C1を送給ライン33Bに送り出す場合について説明したが、揚荷ポンプ15とは別に小容量のポンプを装備して、この小容量のポンプを用いて二酸化炭素液C1を送給ライン33Bに送り出すようにしてもよい。
 返送ライン34Bは、第一熱交換器31Bから第一タンク11に二酸化炭素液C1を導く。本実施形態において、返送ライン34Bは、第一タンク11の頂部に接続されている。第一タンク11の頂部には、噴射部40が配置されている。噴射部40は、第一熱交換器31Bから返送ライン34Bを通して第一タンク11に返送された二酸化炭素液C1を、第一タンク11内の上部の気相に噴射する。この噴射形態としては、シャワー状や霧状などを挙げることができる。噴射された二酸化炭素液C1は、第一タンク11内に貯留された二酸化炭素ガスC2と広く接触しつつ下方へ落ちていく。
 このような再液化・燃料供給システム30Bでは、揚荷ポンプ15を作動させることで、第一タンク11内の下部から二酸化炭素液C1を送り出す。送り出された二酸化炭素液C1は、送給ライン33Bを通して第一熱交換器31Bに送られる。第一熱交換器31Bにおいて、二酸化炭素液C1と液化可燃性ガスFとの熱交換が行われる。第一熱交換器31Bにおける熱交換により、二酸化炭素液C1は第一タンク11内の二酸化炭素液C1よりも冷却されて過冷却状態となる。過冷却状態の二酸化炭素液C1は、返送ライン34Bを通して第一タンク11に返送される。
 過冷却状態の二酸化炭素液C1は、噴射部40により、第一タンク11内の二酸化炭素ガスC2内に噴射される。これにより、第一タンク11内の上部に貯留された二酸化炭素ガスC2は、噴射された二酸化炭素液C1によって冷却される。これにより、二酸化炭素ガスC2の少なくとも一部が再液化される。
 一方で、液化可燃性ガスFは、第一熱交換器31Bで、液化可燃性ガスFよりも高温の二酸化炭素液C1と熱交換することで加熱され、その温度が上昇する。温度が上昇した液化可燃性ガスFは、第二燃料ライン36を通して第二熱交換器32に送られる。液化可燃性ガスFは、第二熱交換器32における熱媒Hとの熱交換によって更に加熱されて気化する。気化された液化可燃性ガスFは、第三燃料ライン38を通して燃焼器9に供給される。
(作用効果)
 上記第二実施形態の船舶1Bでは、送給ライン33Bを通して第一タンク11から送給された二酸化炭素液C1は、第一熱交換器31Bで液化可燃性ガスFと熱交換することで冷却される。冷却された二酸化炭素液C1は、返送ライン34Bを通して第一タンク11に返送される。冷却された二酸化炭素液C1が第一タンク11内に供給されることで、第一タンク11内の二酸化炭素Cの温度が低下する。これにより、第一タンク11内における温度上昇が抑えられ、二酸化炭素液C1の新たな気化も抑えられる。
 さらに、第二タンク21に貯留された液化可燃性ガスFは、第一熱交換器31Bで、液化可燃性ガスFよりも高温の二酸化炭素Cと熱交換することで温度上昇した後、第二熱交換器32に送られる。そのため、第二熱交換器32では、予め第一熱交換器31Bで予熱された状態の液化可燃性ガスFを熱媒Hと熱交換して気化させることになる。したがって、第二熱交換器32で液化可燃性ガスFを気化させるのに必要な熱エネルギーが、第一熱交換器31Bを備えない場合に比較して少なくて済む。
 このようにして、第一タンク11内で生成された二酸化炭素ガスC2を、エネルギーを有効利用しつつ効率的に再液化することが可能となる。
 また、第二実施形態の第一熱交換器31Bでは、第一タンク11内から取り出した二酸化炭素液C1と、液化可燃性ガスFとを熱交換する。これにより、過冷却状態の二酸化炭素液C1が第一タンク11内に送り込まれるため、第一タンク11内の二酸化炭素ガスC2を冷却して再液化させることができる。
 また、第二実施形態の船舶1Bでは、揚荷ポンプ15により、第一タンク11から第一熱交換器31Bに二酸化炭素液C1を送給している。この揚荷ポンプ15は、第一タンク11内の二酸化炭素液C1を、揚荷配管14を通して浮体本体2の外部に送り出すために備えられたものである。このように、揚荷ポンプ15を、二酸化炭素ガスC2を再液化させるために兼用することができるため、部品点数の増加を抑え、コスト上昇を抑えることが可能となる。
 また、第二実施形態の船舶1Bでは、第一熱交換器31Bでの熱交換により過冷却状態とされた二酸化炭素液C1を、噴射部40で第一タンク11内の上部に噴射している。そのため、過冷却状態の二酸化炭素液C1を、第一タンク11内の二酸化炭素ガスC2とより広く接触させることができる。したがって、より多くの二酸化炭素ガスC2を再液化させることが可能となる。
<第三実施形態>
 次に、この発明に係る浮体の第三実施形態について説明する。以下に説明する第三実施形態においては、液化可燃性ガスFと熱交換する対象が冷媒になる点で第一実施形態と異なるので、図1を援用するとともに、第一実施形態と同一部分に同一符号を付して説明する。さらに、第一実施形態と同一部分については詳細説明を省略する。
 図4に示すように、本実施形態における浮体としての船舶1Cの再液化・燃料供給システム30Cは、第一熱交換器31Cと、第二熱交換器32と、循環ライン33Cと、循環ポンプ41と、を少なくとも備えている。
 第一熱交換器31Cは、冷媒Rと液化可燃性ガスFとを熱交換する。第一熱交換器31Cには、第一燃料ライン35と、第二燃料ライン36と、循環ライン33Cと、が接続されている。
 循環ライン33Cは、冷媒Rを第一タンク11の内部と第一熱交換器31Cとの間で循環させる流路を形成している。循環ライン33Cの一端は、第一熱交換器31Cの冷媒出口31Coに接続されており、循環ライン33Cの他端は、第一熱交換器31Cの冷媒入口31Ciに接続されている。そして、この循環ライン33Cは、その途中で第一タンク11の内部を通過している。第三実施形態における循環ライン33Cは、第一タンク11内の気相を通過している。本第三実施形態においては、循環ライン33Cのうち少なくとも第一タンク11内を通過する部分(以下、第一タンク11内通過部分という)は、金属等の熱伝導率の高い材料、フィンチューブ等の伝熱面積の広い材料、及び、これらを組み合わせたもの等で形成することができる。また、循環ライン33Cのうち、第一タンク11の外部に配置される部分(特に、冷媒出口31Coと第一タンク11との間)は、断熱性能の高い材料で形成したり、断熱材で覆ったりしてもよい。上述した冷媒Rとしては、沸点が-40℃程度の冷媒を用いることができる。なお、第一タンク11内通過部分が気相のみを通過する場合について説明したが、第一タンク11内通過部分は気相のみを通過するものに限られない。例えば、第一タンク11内通過部分のうちの一部が液相に接触していてもよい。また、第一タンク11内通過部分は、常時気相に接触している構成に限られず、例えば、第一タンク11内の液位の上昇時等に液相に没してもよい。
 循環ポンプ41は、循環ライン33Cの途中に設置されている。本実施形態の循環ポンプ41は、循環ライン33Cのうち、第一熱交換器31Cの出口31Coと第一タンク11との間に配置されている。循環ポンプ41は、循環ライン33C内の冷媒Rを循環ライン33Cの一端から他端に向かって送出している。
 このような再液化・燃料供給システム30Cでは、循環ポンプ41を作動させることで、第一熱交換器31Cの出口31Coから排出された冷媒Rは、循環ライン33C内の流路を第一タンク11に向かって流れる。そして、冷媒Rは、第一タンク11内に配置された循環ライン33Cの流路を流れる。このとき冷媒Rは、第一タンク11内において二酸化炭素C(二酸化炭素ガスC2と二酸化炭素液C1との少なくとも一方)と熱交換されて温度上昇する。
 その後、冷媒Rは、第一タンク11外に配置された循環ライン33Cの流路を流れた後、第一熱交換器31Cの冷媒入口31Ciに至る。そして、冷媒Rは、第一熱交換器31Cにおいて、液化可燃性ガスFと熱交換されて温度低下して、再度、冷媒出口31Coから排出される。このようにして冷媒Rは、循環ライン33C内を循環している。本第三実施形態における循環ポンプ41を動作させるタイミングとしては、第一タンク11内の圧力が閾値以上に上昇した場合にのみ動作させてもよいが、燃焼器9が動作しているときに、常時動作させるようにしてもよい。
 第一熱交換器31Bで液化可燃性ガスFよりも高温の冷媒Rと熱交換することで加熱されて温度上昇した液化可燃性ガスFは、第一実施形態と同様に、第二燃料ライン36を通して第二熱交換器32に送られる。この液化可燃性ガスFは、第二熱交換器32における熱媒Hとの熱交換によって更に加熱されて気化する。気化された液化可燃性ガスFは、第三燃料ライン38を通して燃焼器9に供給される。
 また、冷媒Rと熱交換した第一タンク11内の二酸化炭素Cが温度低下する。この際、二酸化炭素ガスC2は、冷媒Rとの直接的な熱交換又は、冷媒Rと熱交換した二酸化炭素液C1との接触により温度低下する。これにより二酸化炭素ガスC2は、気体の状態で体積が減少するか、又は液化する。これにより、第一タンク11内の圧力上昇が抑制される。
(作用効果)
 上記第三実施形態の船舶1Cでは、船体2と、船体2に配置され、気相及び液相を有した二酸化炭素Cを貯留する第一タンク11と、船体2に配置され、液体状態での温度が二酸化炭素Cの液相よりも低い液化可燃性ガスFを貯留可能な第二タンク21と、液化可燃性ガスFと冷媒Rとを熱交換させる第一熱交換器31Cと、第一タンク11内と、第一熱交換器31Cとの間で冷媒Rを循環させる循環ライン33Cと、循環ライン33Cの途中に設けられて冷媒Rを循環させる循環ポンプ41と、第一熱交換器31Cを経た液化可燃性ガスFを熱媒Hと熱交換することで液化可燃性ガスFを気化させる第二熱交換器32と、第二熱交換器32で気化された液化可燃性ガスFを燃焼させる燃焼器9と、を備えている。
 この第三実施形態によれば、第一実施形態の作用効果に加え、第一タンク11内の二酸化炭素Cと液化可燃性ガスFとを、冷媒R介して熱交換することができるため、二酸化炭素ガスC2や二酸化炭素液C1を第一タンク11の外部の配管内に流す必要が無い。そのため、二酸化炭素Cへの入熱を抑制して効率よく第一タンク11内の圧力を低減させることができる。
 また、上記第三実施形態の船舶1Cでは、循環ライン33Cが少なくとも第一タンク11の液相を通過している。
 このように構成することで、冷媒Rと熱交換した第一タンク11内の二酸化炭素ガスC2を温度低下させて、気体の状態で体積を減少させるか、又は液化させることができる。したがって、第一タンク11内の圧力上昇を効率よく抑制することができる。
(その他の実施形態)
 以上、本開示の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。
 なお、上記実施形態では、二つの第一タンク11を備える構成としたが、これに限られない。一つ、あるいは三つ以上の第一タンク11を備えていてもよい。また、上記実施形態では、複数の第一タンク11を船首尾方向Daに並べて配置する場合を例示したが、第一タンク11は、船幅方向(言い換えれば、左右舷方向)に並べて配置してもよい。
 また、上記実施形態では、浮体として船舶1A、1Bを例示したが、これに限られない。浮体は、推進機構を備えない洋上浮体設備であってもよい。
 さらに、上記第三実施形態においては、循環ライン33Cの配管の熱伝導を利用して冷媒Rと二酸化炭素Cとを熱交換する場合について説明した。しかし、第一タンク11内における循環ライン33Cの途中に、冷媒Rと二酸化炭素Cとを熱交換する別の熱交換器を設けてもよい。
 また、上記第三実施形態における循環ライン33Cのうち、第一タンク11内に配置される部分において、冷媒Rの流路を蛇行させるようにしてもよい。
 さらに、上記第三実施形態においては、冷媒Rを液体の状態で循環させる場合について説明した。しかし、例えば、図5に示すように、上述した循環ポンプ41に代えて、循環ライン33Cの途中に、膨張弁42および圧縮機43を設けて冷凍サイクルを構築するようにしてもよい。この場合、第一熱交換器31Cの冷媒出口31Coと第一タンク11との間に膨張弁42を設け、第一タンク11と第一熱交換器31Cの冷媒入口31Ciとの間に圧縮機43を設ければよい。このような冷媒サイクルを構築した場合、二酸化炭素ガスC2を冷却する能力を向上できるため、例えば、第一タンク11内の圧力が短時間で変化した場合であっても、迅速に対応することができる。
<付記>
 各実施形態に記載の浮体1A、1Bは、例えば以下のように把握される。
(1)第1の態様に係る浮体1A、1Bは、浮体本体2と、前記浮体本体2に配置され、気相及び液相を有した二酸化炭素Cを貯留可能な第一タンク11と、前記浮体本体2に配置され、液体状態での温度が前記二酸化炭素Cの液相よりも低い液化可燃性ガスFを貯留可能な第二タンク21と、前記二酸化炭素Cと前記液化可燃性ガスFとを熱交換する第一熱交換器31A,31Bと、前記第一タンク11から前記第一熱交換器31A,31Bに前記二酸化炭素Cを導く送給ライン33A,33Bと、前記第一熱交換器31A,31Bから前記第一タンク11に前記二酸化炭素の液体C1を導く返送ライン34A,34Bと、前記第一熱交換器31A,31Bを経た前記液化可燃性ガスFを熱媒Hと熱交換することで前記液化可燃性ガスFを気化させる第二熱交換器32と、前記第二熱交換器32で気化された前記液化可燃性ガスFを燃焼させる燃焼器9と、を備える。
 浮体1A、1Bの例としては、船舶や洋上浮体設備が挙げられる。浮体本体2の例としては、船体や洋上浮体設備の浮体本体が挙げられる。
 二酸化炭素Cの例としては、二酸化炭素液C1、二酸化炭素ガスC2が挙げられる。
 液化可燃性ガスFの例としては、液化天然ガス、メタン、エタン、水素が挙げられる。
 熱媒Hの例としては、蒸気、燃焼器9からの排気、清水タンク(図示せず)に貯留された清水、船外から汲み上げた海水等が挙げられる。
 燃焼器9の例としては、主機や発電機用のエンジン(内燃機関)、ボイラーが挙げられる。
 この浮体1A,1Bによれば、送給ライン33A,33Bを通して第一タンク11から送給された二酸化炭素の液体C1は、第一熱交換器31A,31Bで液化可燃性ガスFと熱交換される。液化可燃性ガスFは、液体状態での温度が二酸化炭素Cの液相よりも低い。したがって、第一熱交換器31A,31Bにおける熱交換により、二酸化炭素Cは冷却される。冷却された二酸化炭素Cは、返送ライン34A,34Bを通して第一タンク11に返送される。冷却された二酸化炭素Cが第一タンク11内に供給されることで、第一タンク11内の二酸化炭素Cの温度が低下する。これにより、第一タンク11内における温度上昇が抑えられ、二酸化炭素Cの新たな気化も抑えられる。
 第二タンク21に貯留された液化可燃性ガスFは、第一熱交換器31A,31B、第二熱交換器32を経て燃焼器9へと供給される、液化可燃性ガスFは、第一熱交換器31A,31Bで、液化可燃性ガスFよりも高温の二酸化炭素Cと熱交換することで温度上昇した後、第二熱交換器32に送られる。そのため、第二熱交換器32では、予め第一熱交換器31A,31Bで予熱された状態の液化可燃性ガスFを熱媒Hと熱交換して気化させることになる。したがって、第二熱交換器32で、液化可燃性ガスFを気化させるのに必要な熱エネルギーが、第一熱交換器31A,31Bを備えない場合に比較して少なくて済む。
 このようにして、第一タンク11内で生成された気体状態の二酸化炭素C(C2)を、エネルギーを有効利用しつつ効率的に再液化することが可能となる。
(2)第2の態様に係る浮体1Aは、(1)の浮体1Aであって、前記送給ライン33Aは、前記第一タンク11内の上部の気相から前記二酸化炭素Cの気体C2を前記第一熱交換器31Aに導く。
 これにより、第一熱交換器31Aでは、第一タンク11内から取り出した二酸化炭素Cの気体C2と、液化可燃性ガスFとを熱交換することができる。そのため、第一タンク11内で気化した二酸化炭素Cの気体C2を、液化可燃性ガスFと熱交換して冷却できるため、二酸化炭素Cの気体C2を再液化させることができる。
 また、二酸化炭素Cの気体C2は、蒸発潜熱により冷やされる二酸化炭素Cの液体C1よりも温度が高い。したがって、第一熱交換器31Aでは、二酸化炭素Cの液体C1と熱交換する場合に比較し、液化可燃性ガスFを、より高い温度まで温度上昇させることができる。この点において、第二熱交換器32で液化可燃性ガスFを気化させるのに必要な熱エネルギーが、より少なくて済む。
(3)第3の態様に係る浮体1Bは、(1)の浮体1Bであって、前記送給ライン33Bは、前記第一タンク11内の下部の液相から前記二酸化炭素Cの液体C1を前記第一熱交換器31Bに導く。
 これにより、第一熱交換器31Bでは、第一タンク11内から取り出した二酸化炭素Cの液体C1と、液化可燃性ガスFとを熱交換することができる。これにより、二酸化炭素Cの液体C1を過冷却状態にして、第一タンク11に返送することができる。そして、過冷却状態の二酸化炭素Cの液体C1が第一タンク11内に送り込むことで、第一タンク11内の二酸化炭素Cの気体C2を再液化させることができる。
(4)第4の態様に係る浮体1Bは、(3)の浮体1Bであって、前記第一タンク11内の二酸化炭素Cの液体C1を前記浮体本体2の外部に送り出す揚荷配管14に備えられた揚荷ポンプ15をさらに含み、前記送給ライン33Bは、前記揚荷ポンプ15と前記第一熱交換器31Bとを接続し、前記二酸化炭素Cの液体C1を前記第一タンク11内から前記第一熱交換器31Bに導く。
 これにより、揚荷ポンプ15により、送給ライン33Bを通して第一タンク11から第一熱交換器31Bに二酸化炭素Cの液体C1を送給することができる。揚荷ポンプ15は、第一タンク11内の二酸化炭素Cの液体C1を、揚荷配管14を通して浮体本体2の外部に送り出すために備えられたものである。このような揚荷ポンプ15を、二酸化炭素Cの気体C2を再液化させるために兼用することができるため、部品点数の増加を抑え、コスト上昇を抑えることが可能となる。
(5)第5の態様に係る浮体1Bは、(3)又は(4)の浮体1Bであって、前記第一熱交換器31Bから前記返送ライン34Bを通して前記第一タンク11に返送された前記二酸化炭素Cの液体C1を、前記第一タンク11内の上部に噴射する噴射部40を更に備える。
 これにより、第一熱交換器31Bでの熱交換により過冷却状態とされた二酸化炭素Cの液体C1を、噴射部40で第一タンク11内の上部に噴射して、過冷却状態の二酸化炭素の液体C1を、第一タンク11内の二酸化炭素Cの気体C2とより広く接触させることができる。したがって、より多くの二酸化炭素Cの気体C2を再液化させることが可能となる。
(6)第6の態様に係る浮体1Cは、浮体本体2と、浮体本体2に配置され、気相及び液相を有した二酸化炭素Cを貯留する第一タンク11と、浮体本体2に配置され、液体状態での温度が二酸化炭素Cの液相よりも低い液化可燃性ガスFを貯留可能な第二タンク21と、液化可燃性ガスFと冷媒Rとを熱交換させる第一熱交換器31Cと、第一タンク11内と、第一熱交換器31Cとの間で冷媒Rを循環させる循環ライン33Cと、循環ライン33Cの途中に設けられて冷媒Rを循環させる循環ポンプ41と、第一熱交換器31Cを経た液化可燃性ガスFを熱媒と熱交換することで液化可燃性ガスFを気化させる第二熱交換器32と、第二熱交換器32で気化された液化可燃性ガスFを燃焼させる燃焼器9と、を備えている。
 これにより、第一タンク11内の二酸化炭素Cと液化可燃性ガスFとを、冷媒R介して熱交換することができるため、二酸化炭素ガスC2や二酸化炭素液C1を第一タンク11の外部の配管内に流す必要が無い。そのため、二酸化炭素Cへの入熱を抑制して効率よく第一タンク11内の圧力を低減させることができる。
 また、第二タンク21に貯留された液化可燃性ガスFは、第一熱交換器31C、第二熱交換器32を経て燃焼器9へと供給される、液化可燃性ガスFは、第一熱交換器31Cで、液化可燃性ガスFよりも高温の冷媒Rと熱交換することで温度上昇した後、第二熱交換器32に送られる。そのため、第二熱交換器32では、予め第一熱交換器31Cで予熱された状態の液化可燃性ガスFを熱媒Hと熱交換して気化させることになる。したがって、第二熱交換器32で、液化可燃性ガスFを気化させるのに必要な熱エネルギーが、第一熱交換器31Cを備えない場合に比較して少なくて済む。
 このようにして、第一タンク11内で生成された気体状態の二酸化炭素C(C2)を、エネルギーを有効利用しつつ効率的に再液化することが可能となる。
(7)第7の態様に係る浮体1Cは、(6)の浮体1Cであって、前記循環ライン33Cは、少なくとも前記第一タンク11の気相を通過する。
 これにより、冷媒Rと熱交換した第一タンク11内の二酸化炭素ガスC2を温度低下させて、気体の状態で体積を減少させるか、又は液化させることができる。したがって、第一タンク11内の圧力上昇を効率よく抑制することができる。
 本開示の浮体によれば、タンク内で気化した液化二酸化炭素を、エネルギーを有効利用しつつ効率的に冷やして再液化することができる。
1A,1B,1C…船舶(浮体) 2…船体(浮体本体) 2a…船首 2b…船尾 3A、3B…舷側 5…上甲板 7…上部構造 8…貨物搭載区画 9…燃焼器 11…第一タンク 13…積込配管 14…揚荷配管 15…揚荷ポンプ 21…第二タンク 25…燃料ポンプ 30A,30B,30C…再液化・燃料供給システム 31A,31B,31C…第一熱交換器 31Ci…冷媒入口 31Co…冷媒出口 32…第二熱交換器 33A,33B…送給ライン 34A,34B…返送ライン 33C…循環ライン 35…第一燃料ライン 36…第二燃料ライン 37…圧縮機 38…第三燃料ライン 39A,39B…開閉弁 40…噴射部 41…循環ポンプ 42…膨張弁 43…圧縮機 C…二酸化炭素 C1…二酸化炭素液(二酸化炭素の液体) C2…二酸化炭素ガス(二酸化炭素の気体) F…液化可燃性ガス H…熱媒 R…冷媒

Claims (7)

  1.  浮体本体と、
     前記浮体本体に配置され、気相及び液相を有した二酸化炭素を貯留する第一タンクと、
     前記浮体本体に配置され、液体状態での温度が前記二酸化炭素の液相よりも低い液化可燃性ガスを貯留可能な第二タンクと、
     前記二酸化炭素と前記液化可燃性ガスとを熱交換する第一熱交換器と、
     前記第一タンクから前記第一熱交換器に前記二酸化炭素を導く送給ラインと、
     前記第一熱交換器から前記第一タンクに前記二酸化炭素の液体を導く返送ラインと、
     前記第一熱交換器を経た前記液化可燃性ガスを熱媒と熱交換することで前記液化可燃性ガスを気化させる第二熱交換器と、
     前記第二熱交換器で気化された前記液化可燃性ガスを燃焼させる燃焼器と、を備える
     浮体。
  2.  前記送給ラインは、前記第一タンク内の上部の前記気相から前記二酸化炭素の気体を前記第一熱交換器に導く
     請求項1に記載の浮体。
  3.  前記送給ラインは、前記第一タンク内の下部の前記液相から前記二酸化炭素の液体を前記第一熱交換器に導く
     請求項1に記載の浮体。
  4.  前記第一タンク内の前記二酸化炭素の液体を前記浮体本体の外部に送り出す揚荷配管に備えられた揚荷ポンプをさらに含み、
     前記送給ラインは、前記揚荷ポンプと前記第一熱交換器とを接続し、前記二酸化炭素の液体を前記第一タンク内から前記第一熱交換器に導く
     請求項3に記載の浮体。
  5.  前記第一熱交換器から前記返送ラインを通して前記第一タンクに返送された前記二酸化炭素の液体を、前記第一タンク内の上部に噴射する噴射部を更に備える
     請求項3又は4に記載の浮体。
  6.  浮体本体と、
     前記浮体本体に配置され、気相及び液相を有した二酸化炭素を貯留する第一タンクと、
     前記浮体本体に配置され、液体状態での温度が前記二酸化炭素の液相よりも低い液化可燃性ガスを貯留可能な第二タンクと、
     前記液化可燃性ガスと冷媒とを熱交換させる第一熱交換器と、
     前記第一タンク内と、前記第一熱交換器との間で冷媒を循環させる循環ラインと、
     前記循環ラインの途中に設けられて前記冷媒を循環させる循環ポンプと、
     前記第一熱交換器を経た前記液化可燃性ガスを熱媒と熱交換することで前記液化可燃性ガスを気化させる第二熱交換器と、
     前記第二熱交換器で気化された前記液化可燃性ガスを燃焼させる燃焼器と、を備える
     浮体。
  7.  前記循環ラインは、少なくとも前記第一タンクの気相を通過する
     請求項6に記載の浮体。
PCT/JP2021/039820 2020-10-30 2021-10-28 浮体 WO2022092200A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237035752A KR102651668B1 (ko) 2020-10-30 2021-10-28 부체
EP21886317.3A EP4108562A4 (en) 2020-10-30 2021-10-28 FLOATING BODY
KR1020227031550A KR20220132647A (ko) 2020-10-30 2021-10-28 부체
CN202180021674.8A CN115279655A (zh) 2020-10-30 2021-10-28 浮体
AU2021370613A AU2021370613B2 (en) 2020-10-30 2021-10-28 Floating body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-182076 2020-10-30
JP2020182076 2020-10-30
JP2021-061657 2021-03-31
JP2021061657A JP7050987B1 (ja) 2020-10-30 2021-03-31 浮体

Publications (1)

Publication Number Publication Date
WO2022092200A1 true WO2022092200A1 (ja) 2022-05-05

Family

ID=81259428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039820 WO2022092200A1 (ja) 2020-10-30 2021-10-28 浮体

Country Status (6)

Country Link
EP (1) EP4108562A4 (ja)
JP (1) JP7050987B1 (ja)
KR (2) KR102651668B1 (ja)
CN (1) CN115279655A (ja)
AU (1) AU2021370613B2 (ja)
WO (1) WO2022092200A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4354923A1 (en) 2021-06-09 2024-04-17 Canon Kabushiki Kaisha Communication device, communication method, and program
KR102657766B1 (ko) * 2022-06-27 2024-04-17 한화오션 주식회사 이산화탄소운반선의 증발가스처리시스템
JP2024007094A (ja) * 2022-07-05 2024-01-18 三菱造船株式会社 浮体、ガス圧力制御方法
WO2024017986A1 (en) * 2022-07-22 2024-01-25 Horisont Energi As Liquefied co2 terminal arrangement and liquefied co2 terminal comprising such arrangement as well as method of treating impurities contained in liquefied co2 in a liquefied co2 terminal comprising the arrangement

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018127137A (ja) 2017-02-09 2018-08-16 三菱重工業株式会社 液化ガス運搬用液化ガス燃料船
KR20190041859A (ko) * 2017-10-13 2019-04-23 유병용 Lng연료를 이용한 액화가스 재액화장치 및 이를 가지는 액화가스운반선
JP2019518909A (ja) * 2016-05-04 2019-07-04 イノベイティブ クライオジェニック システムズ, インコーポレイテッド ガス消費部材に可燃性ガスを給送し、該可燃性ガスを液化するための設備
JP2019522758A (ja) * 2016-05-04 2019-08-15 イノベイティブ クライオジェニック システムズ, インコーポレイテッド ガス消費部材に可燃性ガスを給送するため、およびこの可燃性ガスを液化するための設備
JP2020182076A (ja) 2019-04-24 2020-11-05 キヤノン株式会社 情報処理装置および送信制御方法とプログラム
JP2021061657A (ja) 2019-10-03 2021-04-15 日本電産テクノモータ株式会社 モータ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962881A (en) * 1974-02-19 1976-06-15 Airco, Inc. Liquefaction of a vapor utilizing refrigeration of LNG
KR101319364B1 (ko) * 2011-05-31 2013-10-16 대우조선해양 주식회사 연료용 lng를 이용한 액화가스탱크 압력 조절장치 및 이를 가지는 액화가스운반선
DK177713B1 (en) * 2013-05-16 2014-03-31 Man Diesel & Turbo Deutschland Combustion engine, and a method for supplying such a gas-fueled engine
KR101609624B1 (ko) * 2014-03-14 2016-04-07 삼성중공업 주식회사 액화천연가스 저장 탱크
KR101904416B1 (ko) * 2014-04-02 2018-10-08 현대중공업 주식회사 액화가스 처리 시스템
FR3043165B1 (fr) * 2015-10-29 2018-04-13 CRYODIRECT Limited Dispositif de transport d'un gaz liquefie et procede de transfert de ce gaz a partir de ce dispositif
DE102016002316A1 (de) * 2016-02-29 2017-08-31 Tge Marine Gas Engineering Gmbh Verfahren zum Betrieb eines Flüssiggastanks und Flüssiggastank zur Aufnahme von LNG und Boil-off-Gas
KR20170120862A (ko) * 2016-04-22 2017-11-01 대우조선해양 주식회사 선박의 액화가스 공급 시스템 및 방법
KR102619112B1 (ko) * 2017-01-06 2023-12-29 한화파워시스템 주식회사 액화천연가스 운반선의 연료공급장치
KR102296312B1 (ko) * 2017-10-16 2021-08-30 한국조선해양 주식회사 가스 처리 시스템, 가스 처리 시스템을 포함하는 선박 및 가스 처리 시스템을 포함하는 해상 부유식 구조물

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019518909A (ja) * 2016-05-04 2019-07-04 イノベイティブ クライオジェニック システムズ, インコーポレイテッド ガス消費部材に可燃性ガスを給送し、該可燃性ガスを液化するための設備
JP2019522758A (ja) * 2016-05-04 2019-08-15 イノベイティブ クライオジェニック システムズ, インコーポレイテッド ガス消費部材に可燃性ガスを給送するため、およびこの可燃性ガスを液化するための設備
JP2018127137A (ja) 2017-02-09 2018-08-16 三菱重工業株式会社 液化ガス運搬用液化ガス燃料船
KR20190041859A (ko) * 2017-10-13 2019-04-23 유병용 Lng연료를 이용한 액화가스 재액화장치 및 이를 가지는 액화가스운반선
JP2020182076A (ja) 2019-04-24 2020-11-05 キヤノン株式会社 情報処理装置および送信制御方法とプログラム
JP2021061657A (ja) 2019-10-03 2021-04-15 日本電産テクノモータ株式会社 モータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4108562A4

Also Published As

Publication number Publication date
JP7050987B1 (ja) 2022-04-08
EP4108562A4 (en) 2023-08-23
KR20220132647A (ko) 2022-09-30
AU2021370613B2 (en) 2022-12-22
KR102651668B1 (ko) 2024-03-27
AU2021370613A1 (en) 2022-10-06
JP2022073892A (ja) 2022-05-17
KR20230154330A (ko) 2023-11-07
CN115279655A (zh) 2022-11-01
EP4108562A1 (en) 2022-12-28

Similar Documents

Publication Publication Date Title
WO2022092200A1 (ja) 浮体
KR101750592B1 (ko) 선박에 lng 연료를 제공하기 위한 장치 및 방법
KR101567856B1 (ko) 냉동 컨테이너가 적재되는 컨테이너 운반선
KR101258934B1 (ko) 선박
KR102189715B1 (ko) 연료공급시스템
KR20110021529A (ko) 액화천연가스 운반선의 증발가스 억제장치
KR101686505B1 (ko) 선박의 엔진 냉각수의 폐열을 이용한 연료가스 공급시스템 및 방법
KR20120048598A (ko) 가스 연소 초전도 전기 추진선
KR20190090675A (ko) 휘발성 유기화합물 처리 시스템 및 선박
KR102338967B1 (ko) 부체
KR101739458B1 (ko) 냉매 순환 시스템
KR101751858B1 (ko) 선박용 증발가스 처리 방법
KR101751857B1 (ko) 선박용 증발가스 처리 방법
KR102040003B1 (ko) 선박의 연료가스 관리시스템
KR20210090842A (ko) 에너지 절약형 연료가스 가열 시스템 및 방법
KR20210008254A (ko) 선박용 연료 공급 시스템
KR20200011307A (ko) 액화가스 처리 시스템 및 이를 구비하는 액화가스 운반선
KR102647308B1 (ko) 재기화 선박의 재기화 시스템 및 방법
KR102562100B1 (ko) 선박의 연료가스 관리시스템 및 이의 초기 작동방법
KR102589463B1 (ko) 선박용 화물탱크 압력 제어 시스템 및 방법
KR102283344B1 (ko) 액화가스 재기화 시스템 및 이를 구비하는 선박
KR20150069150A (ko) 선박의 연료가스 공급시스템
KR20230000267A (ko) 액화수소 운반선
KR102183944B1 (ko) 증발가스 처리 시스템 및 방법
KR20210120191A (ko) 컨테이너 선박

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227031550

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021886317

Country of ref document: EP

Effective date: 20220920

ENP Entry into the national phase

Ref document number: 2021370613

Country of ref document: AU

Date of ref document: 20211028

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020237035752

Country of ref document: KR