WO2022092119A1 - 巻鉄心、巻鉄心の製造方法及び巻鉄心製造装置 - Google Patents

巻鉄心、巻鉄心の製造方法及び巻鉄心製造装置 Download PDF

Info

Publication number
WO2022092119A1
WO2022092119A1 PCT/JP2021/039557 JP2021039557W WO2022092119A1 WO 2022092119 A1 WO2022092119 A1 WO 2022092119A1 JP 2021039557 W JP2021039557 W JP 2021039557W WO 2022092119 A1 WO2022092119 A1 WO 2022092119A1
Authority
WO
WIPO (PCT)
Prior art keywords
grain
oriented electrical
electrical steel
steel sheet
core
Prior art date
Application number
PCT/JP2021/039557
Other languages
English (en)
French (fr)
Inventor
崇人 水村
尚 茂木
雅人 溝上
克 高橋
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to AU2021369233A priority Critical patent/AU2021369233A1/en
Priority to KR1020237012407A priority patent/KR20230066442A/ko
Priority to EP21886237.3A priority patent/EP4235717A4/en
Priority to CA3195976A priority patent/CA3195976A1/en
Priority to CN202180071711.6A priority patent/CN116490943A/zh
Priority to US18/032,887 priority patent/US20230290569A1/en
Priority to JP2022525223A priority patent/JP7103554B1/ja
Publication of WO2022092119A1 publication Critical patent/WO2022092119A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • H01F41/024Manufacturing of magnetic circuits made from deformed sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • H01F27/2455Magnetic cores made from sheets, e.g. grain-oriented using bent laminations

Definitions

  • the present invention relates to a wound core, a method for manufacturing a wound core, and a wound core manufacturing apparatus.
  • This application claims priority based on Japanese Patent Application No. 2020-178562 filed in Japan on October 26, 2020, the contents of which are incorporated herein by reference.
  • the wound steel core is generally manufactured by stacking grain-oriented electrical steel sheets in layers, winding them in a donut shape (winding shape), and then pressurizing the wound body to form a substantially square shape.
  • the wound steel core manufactured in this way may be referred to as a trancocoa).
  • This forming process causes mechanical processing strain (plastic deformation strain) to be applied to the entire grain-oriented electrical steel sheet, and the processing strain causes the iron loss of the grain-oriented electrical steel sheet to be significantly deteriorated. Therefore, it is necessary to perform strain relief annealing. be.
  • the steel plate portion that becomes the corner portion of the wound iron core is bent in advance so that a relatively small bent region having a radius of curvature of 3 mm or less is formed, and the bent steel plate is formed.
  • Techniques such as those in Patent Documents 1 to 3 are disclosed in which the wound steel cores are laminated with each other (in the present specification, the wound steel cores manufactured in this manner may be referred to as Unicore (registered trademark). ).
  • Unicore registered trademark
  • the manufacturing method a large-scale forming process as in the conventional case is not required, the steel sheet is precisely bent to maintain the iron core shape, and the processing strain is concentrated only on the bent portion (corner portion). It is also possible to omit distortion removal, and the industrial merit is greatly being applied.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a wound core with low iron loss, a method for manufacturing the wound core, and a wound core manufacturing apparatus regardless of the presence or absence of annealing.
  • the present invention has a portion having a rectangular hollow portion in the center, and a portion in which grain-oriented electrical steel sheets having a flat portion and a bent portion alternately continuous in the longitudinal direction are stacked in the plate thickness direction.
  • It is a wound-shaped core including, which is formed by stacking individually bent grain-oriented electrical steel sheets in layers and assembling them into a wound shape, and is formed through at least one joint for each winding.
  • any one or more of the laminated grain-oriented electrical steel sheets is such a bent portion in the thickness direction of the grain-oriented electrical steel sheet. It is characterized in that the average Vickers hardness in the L cross section along the longitudinal direction, which is a cross section along the same, is 190-250 HV.
  • the present inventors introduce a strain into the bent portion, and the strain causes the core iron.
  • the amount of plastic strain introduced into the bent portion is controlled within a predetermined range to achieve low iron loss winding. Focusing on the fact that an iron core can be obtained, if the average Vickers hardness in the L cross section of the bent portion after bending is within the range of 190-250 HV, the amount of plastic strain introduced into the bent portion is within the predetermined range. It was suppressed, and it was found that a low iron loss winding core can be realized regardless of the presence or absence of annealing.
  • the tensile stress during steel sheet processing and the steel sheet bending jig are used. It is effective to control the two parameters of the dynamic friction coefficient of. Specifically, for example, regarding the bent portion of the grain-oriented electrical steel sheet to be laminated.
  • any 10 points may be selected as the position of the bent portion where the Vickers hardness should be measured in the L cross section.
  • the position of the bent portion where the Vickers hardness should be measured in the L cross section is preferably separated from the surface of the steel sheet by a predetermined distance in the thickness direction of the steel sheet. It is more preferable that the position of the bent portion where the Vickers hardness is to be measured in the L cross section is substantially the central portion in the thickness direction of the steel sheet. Further, it is preferable that the measurement points are also separated from each other by a predetermined distance in the longitudinal direction of the steel sheet.
  • the present invention also provides a method and an apparatus for manufacturing a wound iron core having the above-mentioned characteristics.
  • the average Vickers hardness in the L cross section of the bent portion after bending is in the range of 190-250 HV, the amount of plastic strain introduced into the bent portion is suppressed within a predetermined range. Therefore, it is possible to realize a wound core with low iron loss, a method for manufacturing the wound core, and a wound core manufacturing apparatus regardless of the presence or absence of annealing.
  • FIG. 1 It is a perspective view which shows typically the winding iron core which concerns on one Embodiment of this invention. It is a side view of the winding iron core shown in the embodiment of FIG. It is a side view which shows typically the winding core which concerns on other embodiment of this invention. It is a side view schematically showing an example of the one-layer grain-oriented electrical steel sheet constituting the winding iron core. It is a side view schematically showing another example of the one-layer grain-oriented electrical steel sheet constituting the wound steel core. It is a side view schematically showing an example of the bent part of the grain-oriented electrical steel sheet constituting the winding iron core of this invention.
  • the wound core according to the embodiment of the present invention will be described in detail in order.
  • the numerical limit range described below includes the lower limit value and the upper limit value. Numerical values indicating “greater than” or “less than” do not fall within the numerical range. Further, “%” regarding the chemical composition means “mass%” unless otherwise specified.
  • the “oriented electrical steel sheet” may be simply referred to as “steel sheet” or “electrical steel sheet”, and the “rolled iron core” may be simply referred to as “iron core”.
  • the wound steel core according to an embodiment of the present invention is a wound steel core having a substantially rectangular wound core body in a side view, and the wound core body has flat surfaces and bent portions alternately continuous in the longitudinal direction.
  • the grain-oriented electrical steel sheets include portions stacked in the plate thickness direction, and have a substantially polygonal laminated structure in a side view.
  • the flat surface portion refers to a straight line portion other than the bent portion.
  • the radius of curvature r on the inner surface side in the side view of the bent portion is, for example, 1.0 mm or more and 5.0 mm or less.
  • the grain-oriented electrical steel sheet contains Si: 2.0 to 7.0% in mass%, has a chemical composition in which the balance is composed of Fe and impurities, and has an aggregate structure oriented in the Goss direction. Have.
  • the grain-oriented electrical steel sheet for example, the grain-oriented electrical steel strip described in JIS C 2553: 2019 can be adopted.
  • FIG. 1 is a perspective view schematically showing an embodiment of a wound iron core.
  • FIG. 2 is a side view of the wound iron core shown in the embodiment of FIG.
  • FIG. 3 is a side view schematically showing another embodiment of the wound iron core.
  • the side view means to view in the width direction (Y-axis direction in FIG. 1) of the elongated grain-oriented electrical steel sheet constituting the wound steel core.
  • the side view is a view showing a shape visually recognizable by side view (a view in the Y-axis direction of FIG. 1).
  • the wound core 10 includes a wound core body having a substantially polygonal shape in a side view.
  • the rolled iron core main body 10 has a laminated structure in which grain-oriented electrical steel sheets 1 are stacked in the plate thickness direction and have a substantially rectangular shape in a side view.
  • the wound core body 10 may be used as it is as a wound core, or a known fastener such as a binding band or the like for integrally fixing a plurality of stacked grain-oriented electrical steel sheets as needed. May be provided.
  • the length of the core of the wound core body 10 there is no particular limitation on the length of the core of the wound core body 10. If the number of bent portions 5 is the same, even if the iron core length changes in the wound iron core 10, the volume of the bent portions 5 is constant, so that the iron loss generated in the bent portions 5 is constant. The longer the iron core length, the smaller the volume fraction of the bent portion 5 with respect to the wound iron core main body 10, and therefore the influence on the deterioration of iron loss is small. Therefore, it is preferable that the core length of the wound core body 10 is long.
  • the core length of the wound core body 10 is preferably 1.5 m or more, and more preferably 1.7 m or more.
  • the core length of the wound core body 10 means the peripheral length at the center point in the stacking direction of the wound core body 10 from the side view.
  • Such a wound iron core can be suitably used for any conventionally known application.
  • the iron core according to the present embodiment is characterized in that it has a substantially polygonal shape in a side view.
  • a substantially rectangular (quadrangular) iron core which is also a general shape, will be described, but the angle and number of the bent portions 5 and the length of the flat portion 5 will be described.
  • iron cores of various shapes can be manufactured. For example, if the angles of all the bent portions 5 are 45 ° and the lengths of the flat portions 4 are equal, the side view becomes octagonal. Further, if the angle is 60 ° and the six bent portions 5 are provided, and the lengths of the flat surface portions 4 are equal, the side view becomes hexagonal. As shown in FIGS.
  • the wound steel core main body 10 is a portion in which the grain-oriented electrical steel sheets 1 in which the flat surface portions 4 and 4a and the bent portions 5 are alternately continuous in the longitudinal direction are stacked in the plate thickness direction. It has a substantially rectangular laminated structure 2 having a hollow portion 15 in a side view.
  • the corner portion 3 including the bent portion 5 has two or more bent portions 5 having a curved shape in a side view, and is the total of the bending angles of the bent portions 5 existing in one corner portion 3. Is, for example, 90 °.
  • the corner portion 3 has a flat surface portion 4a shorter than the flat surface portion 4 between the adjacent bent portions 5 and 5. Therefore, the corner portion 3 has a form having two or more bent portions 5 and one or more flat portions 4a.
  • one bent portion 5 is 45 °.
  • one bent portion 5 is 30 °.
  • the wound core of the present embodiment can be composed of bent portions having various angles, but from the viewpoint of suppressing the occurrence of strain due to deformation during machining and suppressing iron loss, bending is performed.
  • the bending angle ⁇ ( ⁇ 1, ⁇ 2, ⁇ 3) of the portion 5 is preferably 60 ° or less, and more preferably 45 ° or less.
  • FIG. 6 is a diagram schematically showing an example of a bent portion (curved portion) 5 of the grain-oriented electrical steel sheet 1.
  • the bending angle of the bent portion 5 means an angle difference between the straight portion on the rear side and the straight portion on the front side in the bending direction in the bent portion of the directional electromagnetic steel plate, and means the outer surface of the directional electromagnetic steel plate 1.
  • it is expressed as the angle ⁇ of the complementary angle of the angle formed by the two virtual lines Lb-elongation 1 and Lb-elongation 2 obtained by extending the straight line portion which is the surface of the flat surface portions 4 and 4a on both sides of the bent portion 5.
  • the point where the extending straight line separates from the surface of the steel sheet is the boundary between the flat surface portion 4 and the bent portion 5 on the surface on the outer surface side of the steel sheet, and is the point F and the point G in FIG.
  • a straight line perpendicular to the outer surface of the steel sheet is extended from each of the points F and G, and the intersections with the surface on the inner surface side of the steel sheet are designated as points E and D, respectively.
  • the points E and D are the boundaries between the flat surface portion 4 and the bent portion 5 on the inner surface side of the steel sheet.
  • the bent portion 5 is a portion of the grain-oriented electrical steel sheet 1 surrounded by the points D, E, F, and G in the side view of the grain-oriented electrical steel sheet 1.
  • the surface of the steel plate between the points D and E, that is, the inner surface of the bent portion 5 is La
  • the surface of the steel plate between the points F and G, that is, the outer surface of the bent portion 5 is Lb. It is shown as.
  • the radius of curvature r on the inner surface side in the side view of the bent portion 5 is shown.
  • the radius of curvature r of the bent portion 5 is obtained.
  • the radius of curvature r at each bent portion 5 of each grain-oriented electrical steel sheet 1 laminated in the plate thickness direction may have some variation.
  • This fluctuation may be due to the molding accuracy, and it is possible that an unintended fluctuation may occur due to handling during laminating. Such an unintended error can be suppressed to about 0.2 mm or less in the current ordinary industrial manufacturing.
  • a typical value can be obtained by measuring the radius of curvature of a sufficiently large number of steel plates and averaging them. It is also possible to change it intentionally for some reason, but the present invention does not exclude such a form.
  • the radius of curvature of the bent portion 5 (the radius of curvature on the inner surface side in the side view of the bent portion 5) r is preferably 1 mm or more and 5 mm or less. By setting the radius of curvature r to 1 mm or more and 5 mm or less, the building factor (BF) can be further suppressed.
  • the method for measuring the radius of curvature r of the bent portion 5 is not particularly limited, but it can be measured by observing at 200 times using, for example, a commercially available microscope (Nikon ECLIPSE LV150). Specifically, the point A at the center of curvature is obtained from the observation results. For example, the intersection of the line segment EF and the line segment DG extended inward on the opposite side of the point B is defined as A. For example, the magnitude of the radius of curvature r corresponds to the length of the line segment AC.
  • C be the intersection on the arc DE inside the bent portion of the steel plate when the points A and B are connected by a straight line.
  • FIGS. 4 and 5 are diagrams schematically showing an example of one layer of grain-oriented electrical steel sheet 1 in a wound steel core main body.
  • the grain-oriented electrical steel sheet 1 used in the examples of FIGS. 4 and 5 is bent in order to realize a wound core in a unicore form, and has two or more bent portions 5 and a flat surface portion 4. It has a substantially polygonal ring in a side view through a joint portion 6 (gap) which is an end face in the longitudinal direction of one or more grain-oriented electrical steel sheets 1.
  • the wound iron core main body 10 may have a laminated structure having a substantially polygonal side view as a whole. As shown in the example of FIG.
  • one grain-oriented electrical steel sheet constitutes one layer of the winding core body through one joint portion 6 (via one joint portion 6 for each roll). It may be one in which one grain-oriented electrical steel sheet is connected), and as shown in the example of FIG. 5, one grain-oriented electrical steel sheet 1 constitutes about half of the winding core and two joints are joined. Two grain-oriented electrical steel sheets 1 form one layer of the wound steel core body via the portion 6 (two grain-oriented electrical steel sheets 1 are connected to each other via two joints 6 for each roll). It may be something to do.
  • the plate thickness of the grain-oriented electrical steel sheet 1 used in the present embodiment is not particularly limited and may be appropriately selected depending on the intended use and the like, but is usually in the range of 0.15 mm to 0.35 mm. , Preferably in the range of 0.18 mm to 0.27 mm.
  • the method for manufacturing the grain-oriented electrical steel sheet is not particularly limited, and a conventionally known method for manufacturing grain-oriented electrical steel sheet can be appropriately selected.
  • C is 0.04 to 0.1% by mass
  • the slab having the chemical composition of the above-mentioned directional electromagnetic steel sheet is heated to 1000 ° C. or higher for hot rolling.
  • hot-rolled sheet is annealed as necessary, and then it is made into a cold-rolled steel sheet by cold-rolling once or two or more times with intermediate annealing in between, and the cold-rolled steel sheet is, for example, in a wet hydrogen-inert gas atmosphere.
  • a method of decarburizing and annealing by heating to 700 to 900 ° C., further annealing and annealing as necessary, applying an annealing separator, finishing annealing at about 1000 ° C., and forming an insulating film at about 900 ° C. can be mentioned. Further, after that, painting or the like for adjusting the dynamic friction coefficient may be carried out. Further, the effect of the present invention can be enjoyed even if the steel sheet is subjected to a process generally called "magnetic domain control" using strains and grooves by a method known in the steel sheet manufacturing process.
  • the wound iron core composed of the directional electromagnetic steel plate 1 having the above-described form is formed by stacking the individually bent directional electromagnetic steel plates 1 in layers and assembling them into a wound shape.
  • a plurality of directional electromagnetic steel plates 1 are connected to each other via at least one joint portion 6 for each roll, and the bent portion 5 of the laminated directional electromagnetic steel plates 1 is a directional electromagnetic plate.
  • the average Vickers hardness in (a cross section cut by a plane parallel to the plane of FIG. 6) is 190-250 HV.
  • the variation in Vickers hardness of the bent portion 5 is small between the grain-oriented electrical steel sheets 1. Therefore, when measuring the average Vickers hardness, any one of the grain-oriented electrical steel sheets may be selected and measured. For example, three of the grain-oriented electrical steel sheets are selected and measured, and those are measured. The average of the measured values may be taken. Further, since the variation of the bent portion 5 of the grain-oriented electrical steel sheet is small, an arbitrary bent portion 5 may be selected and the average value in the bent portion 5 may be used as the average Vickers hardness, but may be used as the average value of a plurality of bent portions 5. ..
  • the Vickers hardness is measured in accordance with JIS Z 2244 (2009). The measured load is 25 gf.
  • the average Vickers hardness of the flat surface portion 4 and the average Vickers hardness of the bent portion 5 are preferably 200 HV to 225 HV.
  • the average Vickers hardness of the flat surface portion 4 is assumed to replace the "bent portion" with the "flat surface portion” in the above-mentioned Vickers hardness measurement of the bent portion 5.
  • the absolute value of the difference between the average Vickers hardness of the flat surface portion 4 and the average Vickers hardness of the bent portion 5 is preferably 50 HV or less.
  • the absolute value of the difference between the more preferable average Vickers hardness of the flat surface portion 4 and the average Vickers hardness of the bent portion 5 is 40 HV or less. If the absolute value of the difference between the average Vickers hardness of the flat surface portion 4 and the average Vickers hardness of the bent portion 5 is 50 HV or less, the building factor (BF) can be further suppressed.
  • the tensile stress during the steel sheet processing is performed.
  • both of the two parameters (control factors) of the dynamic friction coefficient between the steel plate 1 and the bending jig are controlled within a predetermined range.
  • the tensile stress during steel sheet processing is 0.8 MPa with respect to the bending of the steel sheet forming any one or more of the laminated grain-oriented electrical steel sheets 1.
  • the bending process is controlled so that the range is 6.8 MPa or less and the coefficient of dynamic friction between the grain-oriented electrical steel sheet 1 and the bending jig is 0.10 or more and 0.74 or less.
  • a more preferable tensile stress is 2.2 MPa or more and 4.3 MPa or less.
  • a more preferable coefficient of dynamic friction is 0.3 to 0.44.
  • the dynamic friction coefficient has the same roughness as the surface of the punch, and the two samples of the plate material and the steel plate of the material are brought into contact with each other and allowed to stand, a weight that serves as a test load is placed, and a pull string is attached to the upper sample and the sample is slid. The resistance force (friction force) generated at that time is measured by the load cell.
  • FIG. 7 shows a bending process performed while applying a tensile stress in the range of 0.8 MPa or more and 6.8 MPa or less in the longitudinal direction L to the entire end face (C cross section) perpendicular to the longitudinal direction of the steel sheet to be bent.
  • a bending unit 71 provided with such a device (bending jig) 50.
  • the device 50 shown in FIG. 7 holds a steel plate holding portion 52 for holding and fixing one side portion 1a of the grain-oriented electrical steel sheet 1 in a sandwiched state, and a other-side end portion 1b of the grain-oriented electrical steel sheet 1 to be bent.
  • the bending mechanism 54 While applying tensile stress to the end surface of the other side end portion 1b in the longitudinal direction L, the bending mechanism 54 for bending in the direction Z orthogonal to the longitudinal direction L and the width direction C is provided. Specifically, the bending mechanism 54 holds the other side end portion 1b of the grain-oriented electrical steel sheet 1 in the longitudinal direction L and, for example, the holding portion 62 that holds the other end portion 1b while sandwiching it from the direction Z orthogonal to the longitudinal direction L and the width direction C. A tensile stress in the range of 0.8 MPa or more and 6.8 MPa or less in the longitudinal direction L is applied to the other side end portion 1b of the grain-oriented electrical steel sheet 1 provided on one side of the portion 62 and held by the holding portion 62.
  • the tensile stress applying portion 63 and the other end portion 1b of the grain-oriented electrical steel sheet 1 held by the holding portion 62 by pushing down the holding portion 62 in the Z direction are bent at a machining speed of, for example, 20 mm / sec or more and 80 mm / sec or less. It has a bent portion forming portion 59 for forming the bent portion 5.
  • the absolute value of the difference between the Vickers hardness of the flat surface portion 4 and the Vickers hardness of the bent portion 5 is set to 50 HV or less. be able to.
  • the tensile stress application unit 63 can control the tensile stress by the load meter 56 using the spring 55, and can set the load by the handle 57.
  • the bent portion forming portion 59 has a servomotor 58, a pump 60 driven by the servomotor 58, and an elevating portion 61 coupled to the upper end of the holding portion 62, and the elevating portion is generated by the pressure generated by the pump 60. By moving the 61 up and down, the holding portion 62 can be moved in the Z direction.
  • the coefficient of dynamic friction between the steel plate 1 and the device 50 in order to make the coefficient of dynamic friction between the steel plate 1 and the device 50 (bending jig) in the range of 0.10 or more and 0.74 or less, for example, a steel plate.
  • the roughness of the surfaces of the upper die 52a and the lower die 52b that form the holding portion 52 and sandwich one side portion 1a of the directional electromagnetic steel plate 1 from above and below is in the range of 0.10 or more and 0.74 or less in the dynamic friction coefficient.
  • the coefficient of dynamic friction is in the range of 0.10 or more and 0.74 or less (by changing the thickness of the oil film) by adhering a layer made of oil or the like to the surfaces of the upper die 52a and the lower die 52b.
  • the coefficient of dynamic friction between the grain-oriented electrical steel sheet 1 and the bending jig is 0.03 or less.
  • the illustrated L along the longitudinal direction L which is a cross section along the thickness direction of the grain-oriented electrical steel sheet 1.
  • the Vickers hardness is measured at any 10 points on the cross section. Specifically, at the time of measurement, a substantially square indentation (hardness evaluation point; arbitrary point) 90 obtained by pushing an indenter which is a rigid body with respect to the cross section of the directional electromagnetic steel plate 1 is along the longitudinal direction of the bent portion 5.
  • the Vickers hardness in the indentation 90 is calculated by a well-known method based on the length D of the diagonal line.
  • the Vickers hardness is measured using HM-221 manufactured by Mitutoyo as a hardness evaluation device.
  • the test force which is the load for pressing the indenter
  • the position of the indentation 90 which is the hardness evaluation point
  • the steel plate thickness direction by a predetermined distance from the steel plate surface (at least 2.5D from the steel plate surface). It is preferable to be separated (only inward). Further, it is more preferable that the position of the indentation 90 is the central portion in the thickness direction of the steel sheet. Further, it is preferable that the indentations 90 are also separated from each other by a predetermined distance (at least 2.5D) (preferably at equal intervals) along the longitudinal direction of the steel sheet. In the present embodiment, the average value of Vickers hardness in these 10 indentations 90 needs to be 190-250 HV.
  • the evaluation line is shown in FIG. 8 (c).
  • the indentation 90 is in contact with the inside of the 92. That is, so that a part of the indentation 90 does not protrude outside the evaluation line 92 as shown in FIG. 8 (d), or from the evaluation line 92 as shown in FIG. 8 (e). Prevent the indentation 90 from being too far inside.
  • the sample for measuring the cross section of the bent portion 5 is taken from the vicinity of the corner portion 3 (region A shown in FIG. 2) of the grain-oriented electrical steel sheet 1 constituting the wound steel core 10. From this region A, a sample including the bent portion 5 is collected using a shearing machine. At this time, the clearance from the shirring blade is set to about 0.1 to 2 mm, and shearing is performed so that the sheared surface does not cross the bent portion 5. Further, since it is difficult to shear the grain-oriented electrical steel sheets 1 which are the stacked bent bodies at one time, they are sheared one by one.
  • one side of the plate width is embedded with epoxy resin, and the embedded surface is polished.
  • polishing after changing the SiC polishing paper from the polishing paper # 80 of the grain size in JIS R 6010 to # 220, # 600, # 1000, # 1500, diamond polishing of 6 ⁇ m, 3 ⁇ m, and 1 ⁇ m is performed to make a mirror surface. Finish to.
  • a sample for measuring the cross section of the bent portion 5 was obtained by immersing the tissue in a solution containing 2 to 3 drops of picric acid and hydrochloric acid each for 3% nital for a little less than 20 seconds to corrode the tissue. do.
  • FIG. 9 schematically shows a winding iron core manufacturing apparatus 70 in the form of a unicore, which manufacturing apparatus 70 includes a bending portion 71 for individually bending a grain-oriented electrical steel sheet 1.
  • the assembly portion 72 may be provided to form a wound core having a wound shape including the formed portion.
  • the grain-oriented electrical steel sheet 1 is supplied to the bending section 71 by feeding the grain-oriented electrical steel sheet 1 at a predetermined transport speed from the steel sheet supply section 75 that holds the hoop material formed by winding the grain-oriented electrical steel sheet 1 in a roll shape. ..
  • the grain-oriented electrical steel sheet 1 supplied in this way is subjected to a bending process in which the grain-oriented electrical steel sheet 1 is appropriately cut into an appropriate size in the bending section 71 and is individually bent in small numbers, such as one sheet at a time. ..
  • the radius of curvature of the bent portion 5 generated by the bending process is extremely small, so that the processing strain applied to the grain-oriented electrical steel sheet 1 by the bending process is extremely small.
  • the annealing step can be omitted.
  • the bending section 71 includes the above-mentioned device 50, so that the tensile stress during steel sheet machining is in the range of 0.8 MPa or more and 6.8 MPa or less, and the coefficient of dynamic friction of the steel sheet 1 with the bending jig is high.
  • the bending process so as to be in the range of 0.10 or more and 0.74 or less, any one or more of the laminated grain-oriented electrical steel sheets 1 is formed.
  • the present inventors manufactured iron cores a to f having the shapes shown in Table 1 and FIG. 10 using each steel plate as a material. It should be noted that L1 is the distance between the grain-oriented electrical steel sheets 1 parallel to each other on the innermost circumference of the wound steel core in the plan cross section including the central CL (distance between the planes on the inner surface side), which is parallel to the X-axis direction.
  • L2 is the distance between the grain-oriented electrical steel sheets 1 parallel to the Z-axis direction and parallel to each other on the innermost circumference of the wound steel core in the vertical cross section including the central CL (distance between plane portions on the inner surface side).
  • L3 is parallel to the X-axis direction and is the laminated thickness (thickness in the laminated direction) of the wound iron core in the flat cross section including the central CL.
  • L4 is parallel to the X-axis direction and is the width of the laminated steel plate of the wound steel core in the flat cross section including the center CL.
  • L5 is the distance between the plane portions (distance between the bent portions) arranged adjacent to each other in the innermost part of the wound iron core and at right angles to each other.
  • L5 is the longitudinal length of the shortest flat surface portion 4a among the flat surface portions 4, 4a of the innermost directional electromagnetic steel sheet).
  • r is the radius of curvature of the bent portion 5 on the innermost peripheral side of the wound iron core.
  • is the bending angle of the bent portion 5 of the wound iron core.
  • Table 1 substantially rectangular iron core core No. In a to f, the plane portion having the inner surface side plane portion distance L1 is divided at substantially the center of the distance L1, and has a structure in which two iron cores having a "substantially U-shaped" shape are connected. The radius of curvature of the core core e becomes larger toward the outside. Other than that, the inner and outer radii of curvature of the core are the same. The bending angle of the iron core core e is 90 degrees.
  • the core No. The iron core of e is manufactured by a method that has been conventionally used as a general wound iron core, in which a steel plate is sheared, wound into a cylindrical shape, and then pressed as a cylindrical laminated body to form a substantially rectangular shape.
  • a so-called trancocore type winding iron core A so-called trancocore type winding iron core. Therefore, the core No.
  • the radius of curvature of the bent portion 5 of the wound iron core of e varies greatly depending on the laminated position of the steel plates.
  • the radius of curvature r is the core No. It is a uncore-type wound core that is larger (curvature radius r exceeds 5 mm) than the cores of a, b, d, and f (uni-core type wound core), and the core No.
  • the iron core of d is a wound core in the form of a unicore having three bent portions 5 in one corner portion 3.
  • Tables 2 to 10 show the target bending angle ⁇ (°), the steel plate thickness (mm), the tensile stress (MPa) applied in the longitudinal direction L of the steel plate 1, and the steel plate 1 based on the various core shapes as described above.
  • the 10-point average Vickers hardness (HV) at the above-mentioned bent portion 5 obtained by measuring the materials of 204 examples in which the dynamic friction coefficient between the bending jig (dies 52a and 52b of the device 50) was set, respectively. Shows.
  • the building factor (BF) was also measured and evaluated based on the iron loss (W / kg) of the iron core and the iron loss (W / kg) of the steel plate.
  • the Vickers hardness was measured at the central portion in the plate thickness direction so that the indentations were separated from each other by a predetermined distance (2.5D described above) at equal intervals along the longitudinal direction of the steel sheet.
  • the load was 25 gf.
  • the Vickers hardness of the iron core core e is the iron core core No.
  • the Vickers hardness of each of the bent portions 5 collected from the outermost circumference and the innermost circumference of e was measured and used as the average value.
  • the Vickers hardness of the flat surface portion of the iron core e the Vickers hardness was measured at the flat surface portions collected from the outermost peripheral and innermost peripheral portions in the same manner as the bent portion, and used as the average value.
  • the absolute value of the difference between the Vickers hardness of the bent portion and the flat portion was obtained from the difference between the measured average value of the Vickers hardness of the bent portion and the average value of the Vickers hardness of the flat portion.
  • the core No. in Table 1 was used. From a to No. With respect to the wound core of f, the measurement using the excitation current method described in JIS C 2550-1 was performed under the conditions of a frequency of 50 Hz and a magnetic flux density of 1.7 T, and the iron loss value (iron core iron loss) WA of the wound core was determined. It was measured. Further, a sample having a width of 100 mm and a length of 500 mm was taken from the hoop (plate width 152.4 mm) of the grain-oriented electrical steel sheet used for the iron core, and the H coil method described in JIS C 2556 was used for this sample.
  • the measurement by the magnetic characteristic test of the single sheet of the magnetic steel sheet was carried out under the conditions of a frequency of 50 Hz and a magnetic flux density of 1.7 T, and the iron loss value (iron loss of the steel sheet) WB of the material steel sheet single plate was measured. Then, the building factor (BF) was obtained by dividing the iron loss value WA by the iron loss value WB .
  • the case where the BF was 1.15 or more was regarded as the evaluation D.
  • the case where the BF was 1.13 or more and less than 1.15 was evaluated as C.
  • the case where the BF was 1.05 or more and less than 1.13 was evaluated as evaluation B.
  • the case where the BF was less than 1.05 was regarded as the evaluation A.
  • the case of evaluation A or evaluation B was regarded as acceptable.
  • the iron cores a, b, d, and f regardless of the plate thickness, if the average Vickers hardness at any 10 points in the L cross section of the steel plate 1 is 190-250 HV, that is, it is added to the steel plate during steel plate processing. Building factor (BF) by setting the tensile stress to 0.8 MPa or more and 6.8 MPa or less and the dynamic friction coefficient between the steel plate and the dies 52a and 52b (bending jig) to 0.10 or more and 0.74 or less.
  • the core No. which forms a unicore form in which the radius of curvature of the bent portion is 6 mm.
  • the tensile stress applied to the steel sheet during steel sheet processing is set to 0.8 MPa or more and 6.8 MPa or less, and the dynamic friction coefficient between the steel sheet and the dies 52a and 52b (bending jig) is 0.10 or more and 0. Even if it was set to .74 or less, the average Vickers hardness in the L cross section of the steel sheet 1 did not fall within the range of 190-250 HV, and the building factor (BF) could not be sufficiently suppressed.
  • the wound steel core of the present invention including the present embodiment has a unicore form, and the average Vickers hardness at any 10 points in the L cross section of the grain-oriented electrical steel sheet 1 is 190-250 HV. , It became clear that the deterioration of iron loss is small.
  • wound core The wound core, the method for manufacturing the wound core, and the wound core manufacturing apparatus of the above-described embodiment can be grasped as follows.
  • the wound steel core of the present disclosure has a rectangular hollow portion in the center, and has a wound shape including a portion in which grain-oriented electrical steel sheets in which flat portions and bent portions are alternately continuous in the longitudinal direction are stacked in the plate thickness direction. It is a wound steel core, which is formed by stacking individually bent electrical steel sheets in layers and assembling them into a wound shape, and a plurality of directional electromagnetic steel sheets are formed through at least one joint for each winding.
  • Any one or more of the laminated electrical steel sheets may have any 10 points in the L cross section along the longitudinal direction, which is a cross section along the thickness direction of the grain grain. It is characterized in that the average Vickers hardness in is 190-250 HV.
  • the winding iron core manufacturing method of the present disclosure includes a winding having a rectangular hollow portion in the center and a portion in which grain-oriented electrical steel sheets in which flat portions and bent portions are alternately continuous in the longitudinal direction are stacked in the plate thickness direction. It is a wound steel core with a circular shape, and is formed by stacking individually bent electrical steel sheets in layers and assembling them into a wound shape.
  • Directional direction In the method of manufacturing a wound steel core in which electrical steel sheets are connected to each other, By bending the grain-oriented electrical steel sheet while applying a tensile stress in the range of 0.8 MPa or more and 6.8 MPa or less to the grain-oriented electrical steel sheet in the longitudinal direction, and / or the grain-oriented electrical steel sheet.
  • a bending portion for individually bending a grain-oriented electrical steel sheet and each grain-oriented electrical steel sheet individually bent by the bending section are stacked in layers and assembled into a wound shape.
  • a plurality of grain-oriented electrical steel sheets are connected to each other via at least one joint for each roll, and the grain-oriented electrical steel sheets in which the flat surface portion and the bent portion are alternately continuous in the longitudinal direction are formed in the plate thickness direction.
  • an assembling portion which forms a wound core having a rectangular hollow portion in the center including the portions stacked in the grained steel, and the bending portion is 0.
  • a bending jig for bending the grain-oriented electrical steel sheet and the grain-oriented electrical steel sheet. Any one or more of the grain-oriented electrical steel sheets laminated by bending the grain-oriented electrical steel sheets by setting the friction coefficient with the steel sheets to 0.10 or more and 0.74 or less. It is characterized by forming a bent portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

この巻鉄心(10)は、中心に矩形の中空部(15)を有し、長手方向に平面部(4)と屈曲部(5)とが交互に連続する方向性電磁鋼板(1)が板厚方向に積み重ねられた部分を含む巻回形状の巻鉄心(10)であって、個別に折り曲げ加工された方向性電磁鋼板(1)を層状に積み重ねて巻回形状に組み付けることにより形成され、一巻ごとに少なくとも1箇所の接合部(6)を介して複数枚の方向性電磁鋼板が互いに接続される巻鉄心において、積層される前記方向性電磁鋼板(1)の屈曲部(5)は、方向性電磁鋼板(1)の厚さ方向に沿う断面である前記長手方向に沿うL断面における平均ビッカース硬度が190-250HVであることを特徴とする。

Description

巻鉄心、巻鉄心の製造方法及び巻鉄心製造装置
 本発明は巻鉄心、巻鉄心の製造方法及び巻鉄心製造装置に関する。本願は、2020年10月26日に、日本に出願された特願2020-178562号に基づき優先権を主張し、その内容をここに援用する。
 トランスの鉄心には積鉄心と巻鉄心とがある。そのうち、巻鉄心は、一般に、方向性電磁鋼板を層状に積み重ねて、ドーナツ状(巻回形状)に巻回し、その後、その巻回体を加圧してほぼ角型に成形することにより製造される(本明細書中では、このようにして製造される巻鉄心をトランココアと称する場合がある)。この成形工程によって方向性電磁鋼板全体に機械的な加工歪(塑性変形歪)が入り、その加工歪が方向性電磁鋼板の鉄損を大きく劣化させる要因となるため、歪取り焼鈍を行なう必要がある。
 一方、巻鉄心の別の製造方法として、巻鉄心のコーナー部となる鋼板の部分を曲率半径が3mm以下の比較的小さな屈曲領域が形成されるように予め曲げ加工し、当該曲げ加工された鋼板を積層して巻鉄心とする、特許文献1乃至3のような技術が開示されている(本明細書中では、このようにして製造される巻鉄心をユニコア(登録商標)と称する場合がある)。当該製造方法によれば、従来のような大掛かりな成形工程が不要で、鋼板は精緻に折り曲げられて鉄心形状が保持され、加工歪も曲げ部(角部)のみに集中するため上記焼鈍工程による歪除去の省略も可能となり、工業的なメリットは大きく適用が進んでいる。
日本国特開2005-286169号公報 日本国特許第6224468号公報 日本国特開2018-148036号公報
 ところで、ユニコアのコーナー部となる鋼板の部分を鋼板折り曲げ加工により曲げ成形する際には、折り曲げ部に歪が導入される。この歪により、コアを未焼鈍で使用する際にはコア鉄損が劣位になる問題があった。また、コアを焼鈍して使用する場合であっても、焼鈍条件によっては導入される歪が完全に解放されないことがあり、やはりコア鉄損が劣位になる虞がある。例えば、特許文献3では、塑性歪の導入量を十分に制御していなかった。そのため、特許文献3に記載の方法では、鉄損が劣化する虞があった。
 本発明は前記事情に鑑みてなされたもので、焼鈍の有無にかかわらず低鉄損な巻鉄心、巻鉄心の製造方法及び巻鉄心製造装置を提供することを目的とする。
 前記目的を達成するために、本発明は、中心に矩形の中空部を有し、長手方向に平面部と屈曲部とが交互に連続する方向性電磁鋼板が板厚方向に積み重ねられた部分を含む巻回形状の巻鉄心であって、個別に折り曲げ加工された前記方向性電磁鋼板を層状に積み重ねて巻回形状に組み付けることにより形成され、一巻ごとに少なくとも1箇所の接合部を介して複数枚の方向性電磁鋼板が互いに接続される巻鉄心において、積層される前記方向性電磁鋼板のうちのいずれか1枚以上の任意の前記屈曲部は、前記方向性電磁鋼板の厚さ方向に沿う断面である前記長手方向に沿うL断面における平均ビッカース硬度が190-250HVであることを特徴とする。
 本発明者らは、ユニコアの形態を成す巻鉄心において、ユニコアのコーナー部となる鋼板の部分を鋼板折り曲げ加工により曲げ成形する際には、折り曲げ部に歪が導入されて、この歪によりコア鉄損が劣位になるという実情を踏まえ、鋼板を折り曲げ加工して屈曲部を形成する際に、屈曲部に導入される塑性歪の導入量を所定の範囲内に制御することにより低鉄損な巻鉄心が得られることに着目し、折り曲げ加工後の屈曲部のL断面における平均ビッカース硬度が190-250HVの範囲内であれば、屈曲部に導入される塑性歪の導入量が所定の範囲内に抑えられていることとなり、焼鈍の有無にかかわらず低鉄損な巻鉄心を実現できるという知見を得た。
 折り曲げ加工後において190-250HVの範囲内の平均ビッカース硬度を屈曲部で実現するためには、曲げ治具を用いた鋼板折り曲げ加工において、鋼板加工時の引張応力、及び、鋼板の曲げ治具との動摩擦係数の2つのパラメータを制御することが効果的である。具体的には、例えば、積層される方向性電磁鋼板の屈曲部に関し、
(1)鋼板加工時に鋼板の長手方向(L方向)に加える引張応力を0.8MPa以上6.8MPa以下に設定する(例えば、方向性電磁鋼板に対して0.8MPa以上6.8MPa以下の範囲の引張応力を長手方向で付与しつつ方向性電磁鋼板を折り曲げ加工する)、
(2)鋼板と曲げ治具との動摩擦係数を0.10以上0.74以下に設定する、
 ことのうち両方を同時に組み合わせて行なうと、190-250HVの範囲内の平均ビッカース硬度を効果的に且つ容易に確実に実現でき、これにより、コアを未焼鈍で使用する場合であっても鉄損劣化の小さいコアを得ることができ、また、コアを焼鈍した際には、残留歪が少ないコアを得ることができる。
 上記構成において、ビッカース硬度が測定されるべき屈曲部のL断面における位置は、例えば任意の10点を選択してもよい。ビッカース硬度が測定されるべき屈曲部のL断面における位置は、鋼板表面から所定距離だけ鋼板厚さ方向で離れていることが好ましい。ビッカース硬度が測定されるべき屈曲部のL断面における位置は、鋼板厚さ方向のほぼ中央部であることが更に好ましい。また、各測定点同士も互いに所定距離だけ鋼板長手方向で離れていることが好ましい。
 また、本発明は、前述した特徴を有する巻鉄心の製造方法及び製造装置も提供する。
 本発明によれば、折り曲げ加工後の屈曲部のL断面における平均ビッカース硬度が190-250HVの範囲内であるため、屈曲部に導入される塑性歪の導入量が所定の範囲内に抑えられていることとなり、焼鈍の有無にかかわらず低鉄損な巻鉄心、巻鉄心の製造方法及び巻鉄心製造装置を実現できる。
本発明の一実施の形態に係る巻鉄心を模式的に示す斜視図である。 図1の実施形態に示される巻鉄心の側面図である。 本発明の他の実施の形態に係る巻鉄心を模式的に示す側面図である。 巻鉄心を構成する1層の方向性電磁鋼板の一例を模式的に示す側面図である。 巻鉄心を構成する1層の方向性電磁鋼板の他の一例を模式的に示す側面図である。 本発明の巻鉄心を構成する方向性電磁鋼板の屈曲部の一例を模式的に示す側面図である。 折り曲げられるべき鋼板の端面全体に長手方向で引張応力を付与しつつ鋼板を折り曲げる折り曲げ加工を実現するための装置の一例を示す概略斜視図である。 屈曲部のL断面における任意の10点でのビッカース硬度の測定手法の一例を示す図である。 ユニコアの形態を成す巻鉄心製造装置の構成を概略的に示すブロック図である。 特性評価の際に製造した巻鉄心の寸法を示す模式図である。
 以下、本発明の一実施の形態に係る巻鉄心について順に詳細に説明する。ただし、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。なお、下記する数値限定範囲には、下限値及び上限値がその範囲に含まれる。「超」又は「未満」と示す数値は、その値が数値範囲に含まれない。また、化学組成に関する「%」は、特に断りがない限り「質量%」を意味する。
 また、本明細書において用いる、形状や幾何学的条件並びにそれらの程度を特定する、例えば、「平行」、「垂直」、「同一」、「直角」等の用語や長さや角度の値等については、厳密な意味に縛られることなく、同様の機能を期待し得る程度の範囲を含めて解釈することとする。
 また、本明細書において「方向性電磁鋼板」のことを単に「鋼板」又は「電磁鋼板」と記載し、「巻鉄心」のことを単に「鉄心」と記載する場合もある。
 本発明の一実施の形態に係る巻鉄心は、側面視において略矩形状の巻鉄心本体を備える巻鉄心であって、該巻鉄心本体は、長手方向に平面部と屈曲部とが交互に連続した方向性電磁鋼板が、板厚方向に積み重ねられた部分を含み、側面視において略多角形状の積層構造を有する。ここで、平面部は屈曲部以外の直線の部分をいう。前記屈曲部の側面視における内面側曲率半径rは、例えば、1.0mm以上5.0mm以下である。前記方向性電磁鋼板は、一例として、質量%で、Si:2.0~7.0%、を含有し、残部がFe及び不純物からなる化学組成を有し、Goss方位に配向する集合組織を有する。方向性電磁鋼板としては、例えば、JIS C 2553:2019に記載の方向性電磁鋼帯を採用することができる。
 次に、本発明の一実施の形態に係る巻鉄心及び方向性電磁鋼板の形状について具体的に説明する。ここで説明する巻鉄心及び方向性電磁鋼板の形状自体は、特に目新しいものではなく、公知の巻鉄心及び方向性電磁鋼板の形状に準じたものに過ぎない。
 図1は、巻鉄心の一実施形態を模式的に示す斜視図である。図2は、図1の実施形態に示される巻鉄心の側面図である。また、図3は、巻鉄心の別の一実施形態を模式的に示す側面図である。
 なお、本発明において側面視とは、巻鉄心を構成する長尺状の方向性電磁鋼板の幅方向(図1におけるY軸方向)に視ることをいう。側面図とは側面視により視認される形状を表わした図(図1のY軸方向の図)である。
 本発明の一実施の形態に係る巻鉄心10は、側面視において略多角形状の巻鉄心本体を備える。当該巻鉄心本体10は、方向性電磁鋼板1が、板厚方向に積み重ねられ、側面視において略矩形状の積層構造を有する。当該巻鉄心本体10を、そのまま巻鉄心として使用してもよいし、必要に応じて積み重ねられた複数の方向性電磁鋼板を一体的に固定するために、結束バンド等、公知の締付具等を備えていてもよい。
 本実施の形態において、巻鉄心本体10の鉄心長に特に制限はない。屈曲部5の数が同じであれば、巻鉄心10において鉄心長が変化しても、屈曲部5の体積は一定であるため屈曲部5で発生する鉄損は一定である。鉄心長が長いほうが巻鉄心本体10に対する屈曲部5の体積率が小さくなるため、鉄損劣化への影響も小さい。よって、巻鉄心本体10の鉄心長は長いほうが好ましい。巻鉄心本体10の鉄心長は、1.5m以上であることが好ましく、1.7m以上であるとより好ましい。なお、本発明において、巻鉄心本体10の鉄心長とは、側面視による巻鉄心本体10の積層方向の中心点における周長をいう。
 このような巻鉄心は、従来公知のいずれの用途にも好適に用いることができる。
 本実施の形態に係る鉄心は、側面視において略多角形状であることを特徴とする。以下の図を用いた説明においては、図示及び説明を単純にするため、一般的な形状でもある略矩形状(四角形)の鉄心で説明するが、屈曲部5の角度や数、平面部の長さによって、様々な形状の鉄心が製造可能である。例えば、全ての屈曲部5の角度が45°で平面部4の長さが等しければ、側面視は八角形になる。また、角度が60°で6個の屈曲部5を有し、平面部4の長さが等しければ側面視は六角形となる。
 図1及び図2に示されるように、巻鉄心本体10は、長手方向に平面部4,4aと屈曲部5とが交互に連続する方向性電磁鋼板1が、板厚方向に積み重ねられた部分を含み、側面視において中空部15を有する略矩形状の積層構造2を有する。屈曲部5を含むコーナー部3は、側面視において、曲線状の形状を有する屈曲部5を2つ以上有しており、1つのコーナー部3に存在する屈曲部5のそれぞれの曲げ角度の合計が例えば90°となっている。コーナー部3は、隣り合う屈曲部5,5間に、平面部4よりも短い平面部4aを有している。したがって、コーナー部3は、2以上の屈曲部5と、1つ以上の平面部4aとを有する形態となっている。なお、図2の実施形態は1つの屈曲部5が45°である。図3の実施形態は1つの屈曲部5が30°である。
 これらの例に示されるように、本実施の形態の巻鉄心は、様々な角度を有する屈曲部により構成できるが、加工時の変形による歪み発生を抑制して鉄損を抑える点からは、屈曲部5の曲げ角度φ(φ1、φ2、φ3)は60°以下であることが好ましく、45°以下であることがより好ましい。1つの鉄心が有する屈曲部の曲げ角度φは任意に構成することが可能である。例えば、φ1=60°且つφ2=30°とすることができる。生産効率の点からは折り曲げ角度(曲げ角度)が等しいことが好まく、ある一定以上の変形箇所を少なくすれば用いる鋼板の鉄損により作成する鉄心の鉄損を小さくできる場合は、異なる角度の組み合わせの加工としてもよい。設計は鉄心加工にて重視するポイントから任意に選択することができる。
 図6を参照しながら、屈曲部5について更に詳細に説明する。図6は、方向性電磁鋼板1の屈曲部(曲線部分)5の一例を模式的に示す図である。屈曲部5の曲げ角度とは、方向性電磁鋼板屈曲部において、折り曲げ方向の後方側の直線部と前方側の直線部との間に生じた角度差を意味し、方向性電磁鋼板1の外面において、屈曲部5を挟む両側の平面部4,4aの表面である直線部分を延長して得られる2つの仮想線Lb-elongation1、Lb-elongation2がなす角の補角の角度φとして表わされる。この際、延長する直線が鋼板表面から離脱する点が、鋼板外面側の表面における平面部4と屈曲部5の境界であり、図6においては、点F及び点Gである。
 さらに、点F及び点Gのそれぞれから鋼板外表面に垂直な直線を延長し、鋼板内面側の表面との交点をそれぞれ点E及び点Dとする。この点E及び点Dが鋼板内面側の表面における平面部4と屈曲部5との境界である。
 そして、本発明において屈曲部5とは、方向性電磁鋼板1の側面視において、上記点D、点E、点F、点Gにより囲まれる方向性電磁鋼板1の部位である。図6においては、点Dと点Eとの間の鋼板表面、すなわち、屈曲部5の内側表面をLa、点Fと点Gとの間の鋼板表面、すなわち、屈曲部5の外側表面をLbとして示している。
 また、この図には、屈曲部5の側面視における内面側曲率半径rが表わされている。上記Laを点E及び点Dを通過する円弧で近似することで、屈曲部5の曲率半径rを得る。曲率半径rが小さいほど屈曲部5の曲線部分の曲がりは急であり、曲率半径rが大きいほど屈曲部5の曲線部分の曲がりは緩やかになる。
 本発明の巻鉄心では、板厚方向に積層された各方向性電磁鋼板1の各屈曲部5における曲率半径rは、ある程度の変動を有するものであってもよい。この変動は、成形精度に起因する変動であることもあり、積層時の取り扱いなどで意図せぬ変動が発生することも考えられる。このような意図せぬ誤差は、現在の通常の工業的な製造であれば0.2mm程度以下に抑制することが可能である。このような変動が大きい場合は、十分に多数の鋼板について曲率半径を測定し、平均することで代表的な値を得ることができる。また、何らかの理由で意図的に変化させることも考えられるが、本発明はそのような形態を除外するものではない。屈曲部5の曲率半径(屈曲部5の側面視における内面側曲率半径)rは1mm以上5mm以下とすることが好ましい。曲率半径rを1mm以上5mm以下とすることで、ビルディングファクタ(BF)をさらに抑制することができる。
 なお、屈曲部5の曲率半径rの測定方法にも特に制限はないが、例えば、市販の顕微鏡(Nikon ECLIPSE LV150)を用いて200倍で観察することにより測定することができる。具体的には、観察結果から、曲率中心A点を求めるが、この求め方として、例えば、線分EFと線分DGを点Bとは反対側の内側に延長させた交点をAと規定すれば、曲率半径rの大きさは、線分ACの長さに該当する。ここで、点Aと点Bを直線で結んだ際に鋼板屈曲部の内側の円弧DE上の交点をCとする。
 図4及び図5は巻鉄心本体における1層分の方向性電磁鋼板1の一例を模式的に示す図である。図4及び図5の例で用いられる方向性電磁鋼板1は、ユニコア形態の巻鉄心を実現するべく、折り曲げ加工されたものであって、2つ以上の屈曲部5と、平面部4とを有し、1つ以上の方向性電磁鋼板1の長手方向の端面である接合部6(隙間)を介して側面視において略多角形の環を形成する。
 本実施の形態においては、巻鉄心本体10が、全体として側面視が略多角形状の積層構造を有していればよい。図4の例に示されるように、1つの接合部6を介して1枚の方向性電磁鋼板が巻鉄心本体の1層分を構成する(一巻ごとに1箇所の接合部6を介して1枚の方向性電磁鋼板が接続される)ものであってもよく、図5の例に示されるように1枚の方向性電磁鋼板1が巻鉄心の約半周分を構成し、2つの接合部6を介して2枚の方向性電磁鋼板1が巻鉄心本体の1層分を構成する(一巻ごとに2箇所の接合部6を介して2枚の方向性電磁鋼板1が互いに接続される)ものするものであってもよい。
 本実施の形態において用いられる方向性電磁鋼板1の板厚は、特に限定されず、用途等に応じて適宜選択すればよいものであるが、通常0.15mm~0.35mmの範囲内であり、好ましくは0.18mm~0.27mmの範囲である。
 また、方向性電磁鋼板を製造する方法は、特に限定されず、従来公知の方向性電磁鋼板の製造方法を適宜選択することができる。製造方法の好ましい具体例としては、例えば、Cを0.04~0.1質量%とし、その他は上記方向性電磁鋼板の化学組成を有するスラブを1000℃以上に加熱して熱間圧延を行った後、必要に応じて熱延板焼鈍を行ない、次いで、1回又は中間焼鈍を挟む2回以上の冷延により冷延鋼板とし、当該冷延鋼板を、例えば湿水素-不活性ガス雰囲気中で700~900℃に加熱して脱炭焼鈍し、必要に応じて更に窒化焼鈍し、焼鈍分離剤を塗布した上で、1000℃程度で仕上げ焼鈍し、900℃程度で絶縁被膜を形成する方法が挙げられる。さらに、その後、動摩擦係数を調整するための塗装などを実施しても良い。
 また、一般的に歪や溝等を用いた「磁区制御」と呼ばれる処理を鋼板の製造工程において公知の方法で施した鋼板であっても本発明効果を享受できる。
 また、本実施の形態において、以上のような形態を備える方向性電磁鋼板1から構成される巻鉄心は、個別に折り曲げ加工された方向性電磁鋼板1を層状に積み重ねて巻回形状に組み付けることにより形成され、一巻ごとに少なくとも1箇所の接合部6を介して複数枚の方向性電磁鋼板1が互いに接続されるとともに、積層される方向性電磁鋼板1の屈曲部5は、方向性電磁鋼板1の厚さ方向(図中のZ軸方向)に沿う断面である長手方向に沿うL断面(図6における点D、点E、点F、点Gにより囲まれる方向性電磁鋼板1の部位を図6の平面と平行な平面で切った断面)における平均ビッカース硬度が190-250HVとなっている。方向性電磁鋼板1間におけて、屈曲部5のビッカース硬度のばらつきは小さい。そのため、平均ビッカース硬度を測定する場合、方向性電磁鋼板の任意の1枚を選択して測定してもよいが、例えば、方向性電磁鋼鋼板のうち3枚を選択して測定し、それらの測定値の平均をとってもよい。また、方向性電磁鋼板の屈曲部5のばらつきも小さいため、任意の屈曲部5を選択し、その中の平均値を平均ビッカース硬度としてもよいが、複数の屈曲部5の平均値としてもよい。なお、ビッカース硬度は、JIS Z 2244(2009)に準拠して測定する。測定荷重は25gfである。
 また、平面部4の平均ビッカース硬度と屈曲部5の平均ビッカース硬度は200HV~225HVであることが好ましい。平面部4の平均ビッカース硬度は、上記の屈曲部5のビッカース硬度測定において、「屈曲部」を「平面部」として置き換えるものとする。
 平面部4の平均ビッカース硬度と屈曲部5の平均ビッカース硬度との差の絶対値は、50HV以下であることが好ましい。より好ましい平面部4の平均ビッカース硬度と屈曲部5の平均ビッカース硬度との差の絶対値は、40HV以下である。平面部4の平均ビッカース硬度と屈曲部5の平均ビッカース硬度との差の絶対値が50HV以下であれば、ビルディングファクタ(BF)をさらに抑制することができる。
 折り曲げ加工後において190-250HVの範囲内の平均ビッカース硬度を屈曲部5で実現するために、本実施の形態では、曲げ治具(パンチ)を用いた鋼板折り曲げ加工において、鋼板加工時の引張応力、及び、鋼板1と曲げ治具との動摩擦係数の2つのパラメータ(制御因子)の両方を所定の範囲内に制御するようになっている。具体的には、本実施の形態では、積層される方向性電磁鋼板1のうちのいずれか1枚以上の任意の屈曲部5を形成する鋼板折り曲げに関し、鋼板加工時の引張応力が0.8MPa以上6.8MPa以下の範囲となるように、かつ、方向性電磁鋼板1と曲げ治具との動摩擦係数が0.10以上0.74以下の範囲となるように、折り曲げ加工工程を制御する。より好ましい引張応力は2.2MPa以上4.3MPa以下である。より好ましい動摩擦係数は0.3~0.44となる。以下、このような折り曲げ加工を実現する装置について簡単に説明する。なお、動摩擦係数は、パンチの表面と同じ粗さ、材料の板材と鋼板の二つの試料を接触させて静置し、試験荷重となる重りを載せ、上部試料に引き紐をつけ滑らせ、その際に発生する抵抗力(摩擦力)をロードセルにて測定する。
 折り曲げられるべき鋼板の長手方向に垂直な端面(C断面)全体に長手方向Lで0.8MPa以上6.8MPa以下の範囲の引張応力をかけつつ成される曲げ加工は、例えば、図7に示されるような装置(曲げ治具)50を備える折り曲げ加工部71によって行なわれる。図7に示される装置50は、方向性電磁鋼板1の一方側部位1aを例えば挟持状態で押さえて固定する鋼板押さえ部52と、折り曲げられるべき方向性電磁鋼板1の他方側端部1bを保持しながら長手方向Lで引張応力を他方側端部1bの端面に付与しつつ長手方向L及び幅方向Cと直交する方向Zに屈曲させる折り曲げ機構54とを備える。具体的に、折り曲げ機構54は、方向性電磁鋼板1の他方側端部1bを例えば長手方向L及び幅方向Cと直交する方向Zから挟持しつつ保持する保持部62と、長手方向Lで保持部62の一方側に設けられるとともに保持部62に保持される方向性電磁鋼板1の他方側端部1bに対して長手方向Lで0.8MPa以上6.8MPa以下の範囲の引張応力を印加する引張応力印加部63と、保持部62をZ方向に押し下げることにより保持部62に保持される方向性電磁鋼板1の他方側端部1bを例えば20mm/sec以上80mm/sec以下の加工速度で折り曲げて屈曲部5を形成する屈曲部形成部59と、を有する。動摩擦係数および引張応力を適切に制御し、加工速度20mm/sec以上80mm/sec以下とすることで、平面部4のビッカース硬度と屈曲部5のビッカース硬度との差の絶対値を50HV以下にすることができる。引張応力印加部63は、スプリング55を使用した荷重計56によって引張応力を制御できるとともに、ハンドル57により荷重を設定できる。また、屈曲部形成部59は、サーボモータ58と、サーボモータ58により駆動するポンプ60と、保持部62の上端に結合する昇降部61とを有し、ポンプ60により生起される圧力により昇降部61が昇降することによって保持部62をZ方向で移動させることができる。
 また、このような装置50を用いた折り曲げ加工において、鋼板1と装置50(曲げ治具)との動摩擦係数が0.10以上0.74以下の範囲となるようにするには、例えば、鋼板押さえ部52を構成して方向性電磁鋼板1の一方側部位1aを上下から挟持する上側ダイス52a及び下側ダイス52bの表面の粗度を動摩擦係数が0.10以上0.74以下の範囲となるように設定する、あるいは、油等からなる層を上側ダイス52a及び下側ダイス52bの表面に付着させて(油膜の厚さを変えて)動摩擦係数が0.10以上0.74以下の範囲となるようにする。なお、通常、方向性電磁鋼板1と曲げ治具との動摩擦係数は0.03以下となる。
 次に、以上のような装置50を用いて得られる方向性電磁鋼板1の屈曲部5のL断面におけるビッカース硬度を測定する場合の一例について図8を参照しながら説明する。
 方向性電磁鋼板1の屈曲部5におけるビッカース硬度の測定では、図8の(a)に示されるように、方向性電磁鋼板1の厚さ方向に沿う断面である長手方向Lに沿う図示のL断面において、任意の10点でビッカース硬度が測定される。具体的には、測定に際して、剛体である圧子を方向性電磁鋼板1の断面に対して押し込んで得られる略正方形の圧痕(硬度評価ポイント;任意の点)90が屈曲部5の長手方向に沿って10個形成されることになり、図8の(b)に示される圧痕90の略正方形の2つの対角線の長さD1,D2を測定してその平均値を圧痕90の対角線の長さDと規定し、この対角線の長さDに基づいてその圧痕90におけるビッカース硬度が周知の方法で算出される。例えば、本実施の形態では、硬度評価装置としてMitutoyo(ミツトヨ)製のHM-221を用いてビッカース硬度を計測する。ここで、圧子を押し付ける荷重である試験力は25gfに設定され、また、硬度評価ポイントである圧痕90の位置は、鋼板表面から所定距離だけ鋼板厚さ方向で(最低でも鋼板表面から2.5Dだけ内側に)離れていることが好ましい。また、圧痕90の位置は鋼板厚さ方向の中央部であることが更に好ましい。また、各圧痕90同士も互いに所定距離(最低でも2.5D)だけ(好ましくは等間隔で)鋼板長手方向に沿って離れていることが好ましい。そして、本実施の形態では、これらの10個の圧痕90におけるビッカース硬度の平均値が190-250HVとなっている必要がある。
 なお、10個の圧痕90をプロットした後におけるMitutoyo(ミツトヨ)製HM-221を用いた解析での対角線長さD1,D2の評価では、図8の(c)に示されるように評価用ライン92の内側に圧痕90が接するようにする。すなわち、図8の(d)に示されるように評価用ライン92の外側に圧痕90の一部がはみ出したりしないように、あるいは、図8の(e)に示されるように評価用ライン92から内側に圧痕90が離れすぎたりしないようにする。
 ここで、屈曲部5の断面測定用の試料の作成方法について、本実施の形態に係る巻鉄心10を例に挙げて説明する。
 屈曲部5の断面測定用の試料は、巻鉄心10を構成する方向性電磁鋼板1のコーナー部3付近(図2に示される領域A)から採取する。この領域Aから、せん断機を用いて、屈曲部5を包含する試料を採取する。このとき、シャーリング刃からのクリアランスは0.1~2mm程度にセットし、屈曲部5にせん断面が横断しないようにせん断する。また、重ねられた曲げ加工体である方向性電磁鋼板1を一度にせん断することは困難であるため、一枚ずつせん断する。次に、一枚ずつせん断された部材を重ね合わせた状態で、板幅の片側をエポキシ樹脂で埋め込みを行い、埋め込んだ面を研磨する。研磨においては、SiC研磨紙をJIS R 6010の中にある粒度の研磨紙#80から#220、#600、#1000、#1500へと変えた後、6μm、3μm、1μmのダイヤモンド研磨を行い鏡面に仕上げる。最後に組織を腐食させるため、3%ナイタールに対しピクリン酸と塩酸をそれぞれ2~3滴加えた溶液に20秒弱浸して、組織を腐食させることにより、屈曲部5の断面測定用の試料とする。
 また、以上のような鋼板折り曲げを伴う巻鉄心の製造を可能にする装置が図9にブロック図で概略的に示されている。図9は、ユニコアの形態を成す巻鉄心の製造装置70を概略的に示しており、この製造装置70は、方向性電磁鋼板1を個別に折り曲げ加工する折り曲げ加工部71を備えており、また、折り曲げ加工された方向性電磁鋼板1を層状に積み重ねて巻回形状に組み付けることにより、長手方向に平面部4と屈曲部5とが交互に連続する方向性電磁鋼板1が板厚方向に積み重ねられた部分を含む巻回形状の巻鉄心を形成する、組み付け部72を備えてもよい。
 折り曲げ加工部71には、方向性電磁鋼板1をロール状に巻き回して形成されたフープ材を保持する鋼板供給部75から方向性電磁鋼板1が所定の搬送速度で繰り出されることによって供給される。このようにして供給された方向性電磁鋼板1は、折り曲げ加工部71において、適宜適当なサイズに切断されるとともに、1枚ずつといったように、少数枚毎に個別に折り曲げられる、折り曲げ加工を受ける。こうして得られた方向性電磁鋼板1では、折り曲げ加工で生じる屈曲部5の曲率半径が極めて小さくなるため、折り曲げ加工によって方向性電磁鋼板1に付与される加工歪は極めて小さいものとなる。このように、加工歪の密度が大きくなると想定される一方で、加工歪の影響がある体積を小さくすることができれば、焼鈍工程を省くことができる。
 また、折り曲げ加工部71は、前述した装置50を含み、鋼板加工時の引張応力が0.8MPa以上6.8MPa以下の範囲となるように、かつ、鋼板1の曲げ治具との動摩擦係数が0.10以上0.74以下の範囲となるように折り曲げ加工を制御することによって、積層される方向性電磁鋼板1のうちのいずれか1枚以上の任意の屈曲部5を形成する。
 次に、以上のような構成を成す本実施の形態に係る巻鉄心10によって鉄損が抑制されることを実証するデータを以下に示す。
 実証データの取得に際し、本発明者らは、各鋼板を素材として、表1及び図10に示す形状を有する鉄心a~fを製造した。
 なお、L1はX軸方向に平行で、中心CLを含む平断面での巻鉄心の最内周にある互いに平行な方向性電磁鋼板1間の距離(内面側平面部間距離)である。L2はZ軸方向に平行で、中心CLを含む縦断面での巻鉄心の最内周にある互いに平行な方向性電磁鋼板1間の距離(内面側平面部間距離)である。L3はX軸方向に平行で、中心CLを含む平断面での巻鉄心の積層厚さ(積層方向の厚さ)である。L4はX軸方向に平行で、中心CLを含む平断面での巻鉄心の積層鋼板幅である。L5は巻鉄心の最内部の互いに隣り合って、かつ、合わせて直角をなすように配置された平面部間距離(屈曲部間の距離)である。言い換えるとL5は最内周の方向性電磁鋼板の平面部4,4aのうち、最も長さが短い平面部4aの長手方向の長さ)である。rは巻鉄心の最内周側の屈曲部5の曲率半径である。φは巻鉄心の屈曲部5の曲げ角度である。表1の略矩形状の鉄心コアNo.a~fは、内面側平面部距離がL1である平面部が距離L1のほぼ中央で分割されており、「略コの字」の形状を有する2つの鉄心を結合した構造となっている。鉄心コアeの曲率半径は外側になるほど大きくなる。それ以外のコアの内側と外側の曲率半径は同じである。また、鉄心コアeの曲げ角度は90度である。
 ここで、コアNo.eの鉄心は、従来から一般的な巻鉄心として利用されている、鋼板をせん断し、筒状に巻き取った後、筒状積層体のままプレスし、略矩形に形成する方法により製造された、いわゆるトランココア形態の巻鉄心である。このため、コアNo.eの巻鉄心の屈曲部5の曲率半径は鋼板の積層位置により大きく変動する。このコアNo.eの鉄心に関し、表1中、※は、rが外側に従って増加し、最内周部で、r=5mm、最外周部でr=60mmであることを示す。また、コアNo.cの鉄心は、曲率半径rがコアNo.a,b,d,fの鉄心(ユニコア形態の巻鉄心)と比べて大きな(曲率半径rが5mmを超える)ユニコア形態の巻鉄心であり、コアNo.dの鉄心は、1つのコーナー部3に3つの屈曲部5を有するユニコア形態の巻鉄心である。
Figure JPOXMLDOC01-appb-T000001
 表2~表10は、以上のような様々なコア形状に基づき、狙い曲げ角度φ(°)、鋼板板厚(mm)、鋼板1の長手方向Lで印加する引張応力(MPa)、鋼板1と曲げ治具(装置50のダイス52a,52b)との動摩擦係数をそれぞれ設定した204例の素材に関して、測定して得られた、前述した屈曲部5における10点平均のビッカース硬度(HV)を示している。また、鉄心の鉄損(W/kg)及び鋼板の鉄損(W/kg)に基づきビルディングファクタ(BF)も測定して評価した。なお、ビッカース硬度は板厚方向の中央部で、各圧痕同士を互いに所定距離(上述の2.5D)だけ等間隔で鋼板長手方向に沿って離れるように測定した。荷重は25gfとした。鉄心コアeのビッカース硬度は、鉄心コアNo.eの最外周と最内周とから採取した屈曲部5のそれぞれのビッカース硬度を測定し、その平均値とした。同様に鉄心コアeの平面部のビッカース硬度についても屈曲部と同様に最外周と最内周とから採取した平面部でビッカース硬度を測定し、その平均値とした。屈曲部と平面部のビッカース硬度の差の絶対値は、測定した屈曲部のビッカース硬度の平均値と平面部のビッカース硬度の平均値との差から求めた。
 ビルディングファクタの測定では、表1のコアNo.aからNo.fの巻鉄心に関し、JIS C 2550-1に記載の励磁電流法を用いた測定を、周波数50Hz、磁束密度1.7Tの条件で行ない、巻鉄心の鉄損値(鉄心鉄損)Wを測定した。また、鉄心に使用した方向性電磁鋼板のフープ(板幅152.4mm)から、幅100mm×長さ500mmの試料を採取し、この試料に対して、JIS C 2556に記載のHコイル法を用いた電磁鋼板単板磁気特性試験による測定を、周波数50Hz、磁束密度1.7Tの条件で行ない、素材鋼板単板の鉄損値(鋼板の鉄損)Wを測定した。そして、鉄損値Wを鉄損値Wで除することによりビルディングファクタ(BF)を求めた。BFが1.15以上の場合を評価Dとした。BFが1.13以上1.15未満の場合を評価Cとした。BFが1.05以上1.13未満の場合を評価Bとした。BFが1.05未満の場合を評価Aとした。評価Aまたは評価Bの場合を合格とした。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表2~表10から分かるように、屈曲部5の曲率半径rが小さい(5mm以下)ユニコア形態を成すコアNo.a,b,d,fの鉄心に関しては、その板厚にかかわらず、鋼板1のL断面における任意の10点での平均ビッカース硬度が190-250HVであれば、すなわち、鋼板加工時に鋼板に加える引張応力を0.8MPa以上6.8MPa以下に設定するとともに鋼板とダイス52a,52b(曲げ治具)との動摩擦係数を0.10以上0.74以下に設定することにより、ビルディングファクタ(BF)が1.13未満に抑えられている(巻鉄心の鉄損が抑制されている)。一方、屈曲部の曲率半径が6mmのユニコア形態を成すコアNo.cの鉄心、及び、トランココアの形態を成すコアNo.eの鉄心の場合には、鋼板加工時に鋼板に加える引張応力を0.8MPa以上6.8MPa以下に設定するとともに鋼板とダイス52a,52b(曲げ治具)との動摩擦係数を0.10以上0.74以下に設定しても、鋼板1のL断面における平均ビッカース硬度が190-250HVの範囲内におさまらず、ビルディングファクタ(BF)を十分に抑制できなかった。
 以上の結果により、本実施の形態を含む本発明の巻鉄心は、ユニコア形態を成すとともに、方向性電磁鋼板1のL断面における任意の10点での平均ビッカース硬度が190-250HVであることで、鉄損劣化が小さくなることが明らかになった。
(付記)
 上記の実施形態の巻鉄心、巻鉄心の製造方法、および巻鉄心製造装置は、以下のように把握され得る。
 本開示の巻鉄心は、中心に矩形の中空部を有し、長手方向に平面部と屈曲部とが交互に連続する方向性電磁鋼板が板厚方向に積み重ねられた部分を含む巻回形状の巻鉄心であって、個別に折り曲げ加工された前記方向性電磁鋼板を層状に積み重ねて巻回形状に組み付けることにより形成され、一巻ごとに少なくとも1箇所の接合部を介して複数枚の方向性電磁鋼板が互いに接続される巻鉄心において、
 積層される前記方向性電磁鋼板のうちのいずれか1枚以上の任意の前記屈曲部は、前記方向性電磁鋼板の厚さ方向に沿う断面である前記長手方向に沿うL断面における任意の10点での平均ビッカース硬度が190-250HVであることを特徴とする。
 本開示の巻鉄心の製造方法は、中心に矩形の中空部を有し、長手方向に平面部と屈曲部とが交互に連続する方向性電磁鋼板が板厚方向に積み重ねられた部分を含む巻回形状の巻鉄心であって、個別に折り曲げ加工された前記方向性電磁鋼板を層状に積み重ねて巻回形状に組み付けることにより形成され、一巻ごとに少なくとも1箇所の接合部を介して複数枚の方向性電磁鋼板が互いに接続される巻鉄心の製造方法において、
 前記方向性電磁鋼板に対して0.8MPa以上6.8MPa以下の範囲の引張応力を前記長手方向で付与しつつ前記方向性電磁鋼板を折り曲げ加工することにより、及び/又は、前記方向性電磁鋼板を折り曲げる曲げ治具と前記方向性電磁鋼板との摩擦係数を0.10以上0.74以下に設定して前記方向性電磁鋼板を折り曲げ加工することにより、積層される前記方向性電磁鋼板のうちのいずれか1枚以上の任意の前記屈曲部を形成することを特徴とする。
 本開示の巻鉄心製造装置は、方向性電磁鋼板を個別に折り曲げ加工する折り曲げ加工部と、前記折り曲げ加工部により個別に折り曲げ加工された各方向性電磁鋼板を層状に積み重ねて巻回形状に組み付けることにより、一巻ごとに少なくとも1箇所の接合部を介して複数枚の方向性電磁鋼板が互いに接続され且つ長手方向に平面部と屈曲部とが交互に連続する方向性電磁鋼板が板厚方向に積み重ねられた部分を含んで成る中心に矩形の中空部を有する巻回形状の巻鉄心を形成する、組み付け部と、を備え、前記折り曲げ加工部は、前記方向性電磁鋼板に対して0.8MPa以上6.8MPa以下の範囲の引張応力を前記長手方向で付与しつつ前記方向性電磁鋼板を折り曲げ加工することにより、及び/又は、前記方向性電磁鋼板を折り曲げる曲げ治具と前記方向性電磁鋼板との摩擦係数を0.10以上0.74以下に設定して前記方向性電磁鋼板を折り曲げ加工することにより、積層される前記方向性電磁鋼板のうちのいずれか1枚以上の任意の前記屈曲部を形成することを特徴とする。
 1 方向性電磁鋼板
 4 平面部
 5 屈曲部
 6 接合部
 10 巻鉄心(巻鉄心本体)

Claims (3)

  1.  中心に矩形の中空部を有し、長手方向に平面部と屈曲部とが交互に連続する方向性電磁鋼板が板厚方向に積み重ねられた部分を含む巻回形状の巻鉄心であって、個別に折り曲げ加工された前記方向性電磁鋼板を層状に積み重ねて巻回形状に組み付けることにより形成され、一巻ごとに少なくとも1箇所の接合部を介して複数枚の方向性電磁鋼板が互いに接続される巻鉄心において、
     積層される前記方向性電磁鋼板の前記屈曲部は、前記方向性電磁鋼板の厚さ方向に沿う断面である前記長手方向に沿うL断面における平均ビッカース硬度が190-250HVであることを特徴とする巻鉄心。
  2.  中心に矩形の中空部を有し、長手方向に平面部と屈曲部とが交互に連続する方向性電磁鋼板が板厚方向に積み重ねられた部分を含む巻回形状の巻鉄心であって、個別に折り曲げ加工された前記方向性電磁鋼板を層状に積み重ねて巻回形状に組み付けることにより形成され、一巻ごとに少なくとも1箇所の接合部を介して複数枚の方向性電磁鋼板が互いに接続される巻鉄心の製造方法において、
     前記方向性電磁鋼板に対して0.8MPa以上6.8MPa以下の範囲の引張応力を前記長手方向で付与しつつ前記方向性電磁鋼板を折り曲げ加工することにより、かつ、
     前記方向性電磁鋼板を折り曲げる曲げ治具と前記方向性電磁鋼板との動摩擦係数を0.10以上0.74以下に設定して前記方向性電磁鋼板を折り曲げ加工することにより、
     積層される前記方向性電磁鋼板の前記屈曲部を形成することを特徴とする巻鉄心の製造方法。
  3.  方向性電磁鋼板を個別に折り曲げ加工する折り曲げ加工部と、
     前記折り曲げ加工部により個別に折り曲げ加工された各方向性電磁鋼板を層状に積み重ねて巻回形状に組み付けることにより、一巻ごとに少なくとも1箇所の接合部を介して複数枚の方向性電磁鋼板が互いに接続され且つ長手方向に平面部と屈曲部とが交互に連続する方向性電磁鋼板が板厚方向に積み重ねられた部分を含んで成る中心に矩形の中空部を有する巻回形状の巻鉄心を形成する、組み付け部と、
     を備え、
     前記折り曲げ加工部は、前記方向性電磁鋼板に対して0.8MPa以上6.8MPa以下の範囲の引張応力を前記長手方向で付与しつつ前記方向性電磁鋼板を折り曲げ加工することにより、かつ、前記方向性電磁鋼板を折り曲げる曲げ治具と前記方向性電磁鋼板との動摩擦係数を0.10以上0.74以下に設定して前記方向性電磁鋼板を折り曲げ加工することにより、積層される前記方向性電磁鋼板の前記屈曲部を形成することを特徴とする巻鉄心製造装置。
PCT/JP2021/039557 2020-10-26 2021-10-26 巻鉄心、巻鉄心の製造方法及び巻鉄心製造装置 WO2022092119A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2021369233A AU2021369233A1 (en) 2020-10-26 2021-10-26 Wound iron core, manufacturing method for wound iron core, and wound iron core manufacturing device
KR1020237012407A KR20230066442A (ko) 2020-10-26 2021-10-26 권철심, 권철심의 제조 방법 및 권철심 제조 장치
EP21886237.3A EP4235717A4 (en) 2020-10-26 2021-10-26 WOUND IRON CORE, MANUFACTURING METHOD FOR WOUND IRON CORE AND DEVICE FOR MANUFACTURING A WOUND IRON CORE
CA3195976A CA3195976A1 (en) 2020-10-26 2021-10-26 Wound core, method of producing wound core and wound core production device
CN202180071711.6A CN116490943A (zh) 2020-10-26 2021-10-26 卷绕铁芯、卷绕铁芯的制造方法以及卷绕铁芯制造装置
US18/032,887 US20230290569A1 (en) 2020-10-26 2021-10-26 Wound core, method of producing wound core and wound core production device
JP2022525223A JP7103554B1 (ja) 2020-10-26 2021-10-26 巻鉄心、巻鉄心の製造方法及び巻鉄心製造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020178562 2020-10-26
JP2020-178562 2020-10-26

Publications (1)

Publication Number Publication Date
WO2022092119A1 true WO2022092119A1 (ja) 2022-05-05

Family

ID=81383975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039557 WO2022092119A1 (ja) 2020-10-26 2021-10-26 巻鉄心、巻鉄心の製造方法及び巻鉄心製造装置

Country Status (9)

Country Link
US (1) US20230290569A1 (ja)
EP (1) EP4235717A4 (ja)
JP (1) JP7103554B1 (ja)
KR (1) KR20230066442A (ja)
CN (1) CN116490943A (ja)
AU (1) AU2021369233A1 (ja)
CA (1) CA3195976A1 (ja)
TW (1) TWI778844B (ja)
WO (1) WO2022092119A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7485954B2 (ja) 2020-10-26 2024-05-17 日本製鉄株式会社 巻鉄心
WO2022092096A1 (ja) * 2020-10-26 2022-05-05 日本製鉄株式会社 巻鉄心、巻鉄心の製造方法及び巻鉄心製造装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148561A (en) * 1981-03-09 1982-09-13 Matsushita Electric Ind Co Ltd Manufacture of wound core
JPS6243114A (ja) * 1985-08-20 1987-02-25 Toshiba Corp 巻鉄心の製造方法
JP2005286169A (ja) 2004-03-30 2005-10-13 Toshiba Corp 変圧器の巻鉄心の製造方法及びその製造装置
WO2014142204A1 (ja) * 2013-03-13 2014-09-18 日立金属株式会社 巻磁心及びその製造方法
JP6224468B2 (ja) 2014-01-27 2017-11-01 東芝産業機器システム株式会社 巻鉄心および巻鉄心の製造方法
JP2018148036A (ja) 2017-03-06 2018-09-20 新日鐵住金株式会社 巻鉄心
JP2020178562A (ja) 2019-04-23 2020-11-05 ジェネシスヘルスケア株式会社 心房細動及び/又は心室細動のリスクを判定する方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197233A (en) 1978-03-15 1980-04-08 Kennecott Copper Corporation Anti-fouling and anti-sliming coating material
JP6243114B2 (ja) 2012-12-03 2017-12-06 日野自動車株式会社 インタークーラー

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148561A (en) * 1981-03-09 1982-09-13 Matsushita Electric Ind Co Ltd Manufacture of wound core
JPS6243114A (ja) * 1985-08-20 1987-02-25 Toshiba Corp 巻鉄心の製造方法
JP2005286169A (ja) 2004-03-30 2005-10-13 Toshiba Corp 変圧器の巻鉄心の製造方法及びその製造装置
WO2014142204A1 (ja) * 2013-03-13 2014-09-18 日立金属株式会社 巻磁心及びその製造方法
JP6224468B2 (ja) 2014-01-27 2017-11-01 東芝産業機器システム株式会社 巻鉄心および巻鉄心の製造方法
JP2018148036A (ja) 2017-03-06 2018-09-20 新日鐵住金株式会社 巻鉄心
JP2020178562A (ja) 2019-04-23 2020-11-05 ジェネシスヘルスケア株式会社 心房細動及び/又は心室細動のリスクを判定する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4235717A4

Also Published As

Publication number Publication date
TWI778844B (zh) 2022-09-21
AU2021369233A1 (en) 2023-06-01
JP7103554B1 (ja) 2022-07-20
EP4235717A4 (en) 2024-04-17
KR20230066442A (ko) 2023-05-15
CA3195976A1 (en) 2022-05-05
JPWO2022092119A1 (ja) 2022-05-05
CN116490943A (zh) 2023-07-25
US20230290569A1 (en) 2023-09-14
TW202226286A (zh) 2022-07-01
EP4235717A1 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
WO2022092119A1 (ja) 巻鉄心、巻鉄心の製造方法及び巻鉄心製造装置
WO2022092117A1 (ja) 巻鉄心、巻鉄心の製造方法及び巻鉄心製造装置
WO2022092096A1 (ja) 巻鉄心、巻鉄心の製造方法及び巻鉄心製造装置
RU2805262C1 (ru) Ленточный сердечник, способ изготовления ленточного сердечника и устройство изготовления ленточных сердечников
WO2022092121A1 (ja) 巻鉄心の製造方法及び製造装置
CN116348620A (zh) 卷绕铁芯
WO2022092101A1 (ja) 巻鉄心、巻鉄心の製造方法及び巻鉄心製造装置
TWI822375B (zh) 捲鐵心
JP2022070250A (ja) 巻鉄心、巻鉄心の製造方法及び巻鉄心製造装置
JP2022070242A (ja) 巻鉄心の製造方法及び製造装置
JP7239089B1 (ja) 巻鉄心

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022525223

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886237

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237012407

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3195976

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202180071711.6

Country of ref document: CN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023007605

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021886237

Country of ref document: EP

Effective date: 20230526

ENP Entry into the national phase

Ref document number: 2021369233

Country of ref document: AU

Date of ref document: 20211026

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112023007605

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230420