WO2022091394A1 - 光通信装置、光通信システム及び光通信方法 - Google Patents
光通信装置、光通信システム及び光通信方法 Download PDFInfo
- Publication number
- WO2022091394A1 WO2022091394A1 PCT/JP2020/040991 JP2020040991W WO2022091394A1 WO 2022091394 A1 WO2022091394 A1 WO 2022091394A1 JP 2020040991 W JP2020040991 W JP 2020040991W WO 2022091394 A1 WO2022091394 A1 WO 2022091394A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- wavelength
- optical signal
- signal
- transmission line
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 2548
- 230000006854 communication Effects 0.000 title claims abstract description 260
- 238000004891 communication Methods 0.000 title claims abstract description 260
- 238000000034 method Methods 0.000 title claims description 81
- 230000005540 biological transmission Effects 0.000 claims abstract description 752
- 238000012544 monitoring process Methods 0.000 claims abstract description 316
- 230000010287 polarization Effects 0.000 claims abstract description 18
- 238000012545 processing Methods 0.000 description 178
- 238000011144 upstream manufacturing Methods 0.000 description 121
- 238000010586 diagram Methods 0.000 description 59
- 238000006243 chemical reaction Methods 0.000 description 41
- 230000006870 function Effects 0.000 description 41
- 238000012546 transfer Methods 0.000 description 41
- 230000000694 effects Effects 0.000 description 20
- 230000000903 blocking effect Effects 0.000 description 18
- 230000005856 abnormality Effects 0.000 description 17
- 238000012986 modification Methods 0.000 description 13
- 230000004048 modification Effects 0.000 description 13
- 238000012937 correction Methods 0.000 description 10
- 230000002441 reversible effect Effects 0.000 description 10
- 239000013307 optical fiber Substances 0.000 description 9
- 230000002457 bidirectional effect Effects 0.000 description 8
- 238000012508 change request Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 8
- 230000005611 electricity Effects 0.000 description 7
- 239000000835 fiber Substances 0.000 description 7
- 238000000926 separation method Methods 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 4
- 238000012790 confirmation Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 3
- 230000009021 linear effect Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000007175 bidirectional communication Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 230000009022 nonlinear effect Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 1
- 101000638194 Homo sapiens Transmembrane emp24 domain-containing protein 4 Proteins 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 102100031986 Transmembrane emp24 domain-containing protein 4 Human genes 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000004038 photonic crystal Substances 0.000 description 1
- WYOHGPUPVHHUGO-UHFFFAOYSA-K potassium;oxygen(2-);titanium(4+);phosphate Chemical compound [O-2].[K+].[Ti+4].[O-]P([O-])([O-])=O WYOHGPUPVHHUGO-UHFFFAOYSA-K 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/27—Arrangements for networking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/03—WDM arrangements
- H04J14/0307—Multiplexers; Demultiplexers
Definitions
- the present invention relates to an optical communication device, an optical communication system, and an optical communication method.
- Non-Patent Document 1 An optical access system that accommodates a plurality of services in one device has been proposed (see, for example, Non-Patent Document 1). Furthermore, in order to realize an optical access system capable of accommodating multi-services, PON (Passive Optical Network) and WDM (Wavelength Division Multiplexing) -PON using multiple wavelengths are ITU-T (International Telecommunication). It is standardized by the Union Telecommunication Standardization Sector (see, for example, Non-Patent Document 2).
- ITU-T International Telecommunication
- the existing optical access system is equipped with a device on the subscriber side and a terminal device on the station building side, and communication between them is connected to a higher network such as a core network via the terminal device.
- the device on the subscriber side is, for example, an ONU (Optical Network Unit).
- the connection to the core network is made via the termination device in the device on the station building side.
- the terminal device is, for example, an OLT (Optical Line Terminal).
- OLT Optical Line Terminal
- Delay can be greatly reduced by using an optical switch or the like that can perform processing such as routing without converting an optical signal into an electric signal.
- the optical signal path according to the transfer destination on the path to the communication destination of the subscriber side device is set, and further, the transmitter / receiver setting (wavelength) of the subscriber side device is set. Etc.) need to be done.
- multicast or broadcast or return communication routing using an optical switch it is desired to reduce the number of ports used for routing in order to connect many devices. Further, it is desired to relay the optical signal to the destination when setting the wavelength of the optical signal transmitted from the subscriber device.
- an object of the present invention is to provide a technique capable of relaying an optical signal to a destination when the wavelength of the optical signal transmitted from the subscriber device is set.
- One aspect of the present invention is an optical switch that outputs an optical signal input from one of a plurality of transmission lines to another transmission line among the plurality of transmission lines, and the optical signal is described above.
- a monitoring unit that relays an optical signal in the transmission path on the side input to the optical switch, and the optical signal of the subscriber device via the monitoring unit, wavelength, time, polarization, mode, code, frequency, core,
- the optical signal input to the optical switch via the transmission path on the input side after the wavelength control unit for allocating the core wire or a combination thereof, such as wavelength, and the wavelength, etc., is assigned.
- It is an optical communication device including an optical switch control unit that controls the optical switch so that it is output to another transmission path.
- One aspect of the present invention includes a first optical switch that outputs an optical signal input from one of a plurality of transmission lines to another transmission line among the plurality of transmission lines, and the above-mentioned optical switch.
- a second optical switch cascaded to the first optical switch, a monitoring unit that relays the optical signal in the transmission path on the side where the optical signal is input to the first optical switch, and the monitoring unit.
- the wavelength control unit assigns the wavelength, time, polarization, mode, code, frequency, core, core wire, or a combination thereof, and the like.
- the first optical switch and the second optical switch so that the optical signal input to the first optical switch via the transmission path on the input side is output to the other transmission path.
- It is an optical communication device including an optical switch control unit for controlling the above.
- One aspect of the present invention is an optical communication system having a plurality of subscriber devices and the above-mentioned optical communication device.
- One aspect of the present invention is an optical communication method executed by an optical communication device, in which an optical signal input from any one of a plurality of transmission lines is input to another of the plurality of transmission lines.
- a monitoring step that relays the optical signal in the transmission line on the side where the optical signal transmitted from the subscriber device is input to the optical switch, and a monitoring unit that relays the optical signal.
- a wavelength control step for assigning a wavelength, a time, a polarization, a mode, a code, a frequency, a core, a core wire, or a combination thereof, and the like to an optical signal of the subscriber device, and after the wavelength and the like are assigned.
- optical communication including an optical switch control step for controlling the optical switch so that an optical signal input to the optical switch via the transmission path on the input side is output to the other transmission path. The method.
- One aspect of the present invention is an optical communication method executed by an optical communication device, in which an optical signal input from any one of a plurality of transmission lines is input to another of the plurality of transmission lines.
- the optical of the subscriber device via the first optical switch step to output to the transmission line, the monitoring step to relay the optical signal in the transmission line on the side where the optical signal is input to the first optical switch, and the monitoring unit.
- a wavelength control step for assigning a wavelength, time, polarization, mode, sign, frequency, core, core wire, or a combination thereof, and the like to the signal, and the input after the wavelength and the like are assigned.
- the second optical switch cascaded to the first optical switch and the said so that the optical signal input to the first optical switch via the side transmission line is output to the other transmission line.
- It is an optical communication method including an optical switch control step for controlling a first optical switch.
- the optical signal can be relayed to the destination when the wavelength of the optical signal transmitted from the subscriber device is set.
- FIG. 1 is a diagram showing a basic configuration example of the optical communication system 1 of the present embodiment.
- the optical communication system 1 has one or a plurality of optical SWs (switches) 10. Although two optical SW10s are shown in the figure, the number of optical SW10s is arbitrary.
- the optical SW 10 is connected to the control unit 20.
- the optical SW10 includes at least an optical receiver that receives the optical signal, but the description thereof will be omitted in the following description.
- the optical SW10 communicates with another optical SW10 via the optical communication network 30.
- a WDM network including various topologies can be used.
- One or more subscriber devices 40 are connected to the optical SW10.
- the subscriber device 40 is connected to the optical SW10 by, for example, an optical access network such as PON.
- the subscriber device 40 has an optical transceiver 41.
- the optical transceiver 41 is an example of the configuration of an optical transmitter unit and an optical receiver unit in a subscriber device.
- the optical transceiver 41 has an optical transmitter (Tx) 42 and an optical receiver (Rx) 43.
- the optical transceiver 41 is a tunable optical transceiver.
- a conventional optical transceiver with an AMCC (Auxiliary Management and Control Channel) function can be used.
- AMCC Advanced Management and Control Channel
- the control unit 20 (which may include an operation system (OpS) or the like, or the OpS may include a control unit 20; the same shall apply hereinafter) is connected to any port of the optical SW10, for example, port 2. May be good.
- the control unit 20 may be installed in a building different from the optical SW10 and may be connected to the optical SW10 and the optical SW control unit (not shown in FIG. 1) via a network.
- the control unit 20 may be connected to a port of the optical SW10 that is not connected to the subscriber device 40, another optical SW10, a higher-level network, another transmission line to the ground, or the like.
- the control unit 20 may be installed for each optical SW10 or for each plurality of optical SW10s.
- the control unit 20 controls the optical SW 10 with an optical signal
- the control unit 20 has one or a plurality of optical transceivers 21.
- the optical transceiver 21 is an example of the configuration of the optical transmission unit and the optical reception unit in the control unit 20.
- the optical transceiver 21 has an optical transmitter (Tx) 22 and an optical receiver (Rx) 23.
- the optical transceiver 21 is a tunable wavelength optical transceiver.
- the ports that can be connected are different for each port of the optical SW10, the ports that control the subscriber device 40 and the optical SW10 are different, or the control target is the plurality of optical SW10s or the plurality of optical SW10s.
- the subscriber devices 40 it is suitable for at least one of the subscriber devices 40 to be connected to, and when the connectable ports are different from each other. If there are a plurality of optical SW10s, they may be connected by a transmission line, and if the ports are different, they may be connected by a return connection using a return transmission line or the like described later, so that a single optical transmitter / receiver may be used.
- the control unit When the control unit is equipped with a transmitter and the subscriber device is equipped with a receiver, the transmitting side of the control unit 20 is provided on the receiving side of the subscriber device 40, the control unit 20 is provided with a receiver, and the subscriber device 40 is provided with a transmitter. At this time, the receiving side of the control unit 20 is connected to the transmitting side of the subscriber device 40.
- the optical transmitter / receiver may not be provided.
- the control unit 20 controls the subscriber device 40 with an optical signal, and when the control unit 20 performs wavelength allocation processing to the subscriber device 40 by an optical signal via the optical SW 10, the subscriber device 40 and the control unit 20
- the optical SW10 is controlled so as to transmit and receive an optical signal between the subscribers, and after the wavelength allocation process, the optical signal input from the transmission path is input to the subscriber, the subscriber device 40, the port of the optical SW10, the wavelength of the optical signal, and the subscriber device 40.
- the optical SW10 is controlled so as to output to a port corresponding to the transfer destination specified by the combination of the light and the wavelength of the optical signal, the combination of the port and the wavelength of the optical signal, and the like.
- wavelength allocation processing is performed via the monitoring unit in the previous stage of the optical SW10, optical signals are transmitted and received between the monitoring unit and the subscriber device 40, and after the allocation processing, they are output to the port corresponding to the specified transfer destination.
- the optical SW10 is controlled so as to do so.
- wavelength allocation processing or the like is performed via the monitoring unit in the subsequent stage of the optical SW10, the optical SW10 is controlled so that the optical signal is output to the port corresponding to the specified transfer destination, and the output from the port is blocked by the blocking unit.
- the control unit 20 has or connects to a management database (DB) such as a SW connection table and a wavelength table.
- DB management database
- the management database stores the wavelength used by each user, destination information, and transfer destination information.
- the destination or transfer destination is, for example, in the case of ground A or the like, the ground A or ground B, in the case of the subscriber device 40, the identifier of the subscriber device 40, or the identifier of the transmission line or the port to which the device is connected. , It is represented by the identifier of the device, component or function that goes through on the way, or the identifier of the port to which they are connected.
- the management DB manages the information of the user connected to the optical access system.
- the SW connection table shows the connection destination of each port of the optical SW10. That is, the port to which the optical signal is input / output can be used as information for identifying the subscriber device, control unit, monitoring unit, ground, etc. of the source or destination of the optical signal.
- the wavelength table is data indicating the wavelength assigned to each subscriber device 40 or the like.
- the wavelength table may be divided into a user wavelength table and an inter-station wavelength table.
- the user wavelength table shows, for example, a wavelength used for transmission by a user, a wavelength used for reception, a usable wavelength not used for transmission / reception, and a wavelength that cannot be used due to a failure.
- the inter-station wavelength table can be, for example, a wavelength used by one ground for communication with each other ground, a usable wavelength not used for communication with each other ground, and a wavelength table with each other ground. Indicates a wavelength that cannot be used due to a communication failure.
- the control unit 20 refers to the wavelength table and selects the wavelength to be assigned to the subscriber device 40 or the like according to the transfer destination on the route to the communication destination.
- the wavelength control unit of the control unit 20 allocates the wavelength used by the user with reference to the information indicating the wavelength used by the user or the service. By sharing each connection information, the wavelength control unit manages and controls information on which user is connected to which port of the optical SW10 and which wavelength is used.
- selecting a wavelength if the wavelength is multiplexed in the section constituting the path in the middle and it is identified by the wavelength, an empty wavelength is a usable wavelength in the section constituting the path, and the available wavelength is used. select.
- wavelengths other than the above are also usable wavelengths and may be selected.
- wavelength division multiplexing is not performed in the empty wavelength of the section constituting the path up to wavelength conversion or in the section constituting the path in the middle of wavelength conversion, or identification is performed only by wavelength. If it is not branched, it is not necessary to select an empty wavelength.
- the wavelength table shows not only the free wavelength but also the usable wavelength in consideration of the combination with other multiplexes. Is desirable. Further, since the usable wavelength depends on the usage status and the multiplex status of the section constituting the route in the middle, the control unit identifies the usable wavelength AND (or other elements other than the wavelength) for each section constituting the path. , OR of wavelengths that cannot be separated) is the wavelength that can be used.
- the ports constituting the optical SW10 are divided into two groups, for example, port 1 and port 2, and the groups are connected and not connected within the group.
- the wavelengths that can be used may be different between the direction from port 1 which is one group to port 2 which is the other group and the direction from port 2 which is the other group to port 1 which is one group.
- the wavelength allocation process is closed when all the sections constituting the route are controlled or managed by the same control unit, but when multiple control units or external devices control or manage, they operate in cooperation. Or, it may be controlled by receiving the authority to use the wavelength table itself, which shows the wavelengths that can be used, or its value.
- the control unit 20 sets the wavelength selected for the subscriber device 40 by the control signal. After that, the control unit 20 sets the optical SW 10 so as to output the optical signal transmitted from the subscriber device 40 according to the destination or the transfer destination.
- the optical SW 10 may be connected to the subscriber device 40, a device, a component, a functional unit, or an opposite subscriber device 40 via the subscriber device 40 as it is, or may be connected at the same wavelength after performing photoelectric conversion or other processing, or may remain as light. Alternatively, after performing photoelectric conversion or other processing, they may be connected at different wavelengths by at least a part of the paths.
- the routing is routed from the subscriber device to the next device, component, or function. From the device / part / function to be routed to the device / part / function to be routed next, to the device / part / function to be routed last, to the subscriber device to be opposed.
- the routing from the subscriber device that is the communication source to the opposite subscriber device that is the communication partner is a setting when the device, parts, or functions to be routed are not routed.
- the identification of multiple conveniences such as wavelength may be added to the parameter.
- the control unit 20 allocates a wavelength used for communication by the subscriber device 40, for example, by using an AMCC function that uses a control signal that is slower than the main signal that is an optical signal between the subscriber devices 40 and can be superimposed on the main signal. ..
- AMCC an optical signal between the subscriber devices 40 and can be superimposed on the main signal.
- the present invention is not limited thereto.
- the control signal may be exchanged as the main signal without using AMCC or the like different from the main signal. .. Any modulation method may be used as long as it can be realized by the functions of the subscriber device 40 and the control unit 20.
- the optical transceiver 41 of the subscriber device 40 and the optical transceiver 21 of the control unit 20 communicate with each other using AMCC. I do.
- the control unit 20 refers to the wavelength table and selects the wavelength to be assigned to the subscriber device 40 according to the transfer destination on the route to the communication destination. As an example, the control unit 20 selects a wavelength from free wavelengths that are not used in other paths in a link that multiplexes wavelengths on the path.
- the control unit 20 may assign individual wavelengths to the subscriber devices 40.
- the control unit 20 sets the selected wavelength in the subscriber device 40 by the control signal using the AMCC. After that, the control unit 20 switches the optical SW 10 so as to output the optical signal transmitted from the subscriber device 40 to the transmission path corresponding to the transfer destination on the path to the communication destination.
- the control unit 20 may control the optical switch so as to perform routing according to the destination information.
- a set such as a subscriber device, a wavelength, an input port, an output port, a subscriber device or an input port, or a pair of an output port and a wavelength may be used.
- the subscriber device and the wavelength set are mainly used as the destination information will be described. As a result, the subscriber devices 40 facing each other are connected.
- the control unit 20 may perform a wavelength change process instructing the subscriber device 40 to which the wavelength is assigned to change the wavelength.
- the target subscriber device 40 is specified based on the monitoring information output from the monitoring unit described later, and the wavelength change processing is performed on the specified subscriber device 40.
- the instruction from the control unit 20 to the subscriber device 40 may be given by the route at the time of initial setting, or may be given from the monitoring unit or the like.
- the control unit 20 controls the optical SW 10 or the blocking unit, if any, so as not to transmit the optical signal of the target subscriber device 40 during the wavelength change.
- the control unit 20 directly controls the subscriber device 40 with an optical signal, the optical SW 10 is controlled so that the optical signal is transmitted and received between the subscriber device 40 and the wavelength control unit.
- the output port is switched after the wavelength change, and if there is no other influence on the output side after the wavelength change, the output port is switched before the wavelength change.
- the transmission may be stopped by a device other than the optical SW10.
- the transmission line with the subscriber device 40 or the subscriber device 40 is removed from the optical SW10, and the connection is reconnected after the setting.
- a transmission line, an optical SW10, a turnout or a demultiplexer, or a connection point thereof is provided with a cutoff portion, and the cutoff portion is cut off before the wavelength is changed, and the output port is switched before or switched as necessary. After that, set it to cancel the blocking.
- the optical SW control unit controls the optical SW 10 so that after the wavelength change processing, the subscriber device 40 outputs the optical signal of the changed wavelength from the port 2 according to the communication destination or the transfer destination.
- the wavelength switching affects other, for example, another subscriber device 40, the optical output in that direction is cut off.
- the transmission of the optical signal itself is stopped, the connection to the optical SW10 is disconnected, the connection from the input side to the output side of the optical SW10 is released, and the optical signal is cut off by a blocking unit included in, for example, a monitoring unit or the like. ..
- the optical SW control unit controls the path in the optical SW 10 so that the optical SW 10 does not transmit the optical signal of the subscriber device 40 subject to wavelength allocation. That is, the optical SW control unit does not output the optical signal transmitted from the subscriber device 40 to a port (other port) other than the port connected to the monitoring unit of the subscriber device 40 to be wavelength-assigned.
- the path in the optical SW10 is controlled.
- the optical SW control unit may switch the output destination of the optical SW10 before changing the wavelength.
- a functional unit other than the optical SW 10 may stop the transmission of the optical signal transmitted from the subscriber device 40.
- the wavelength allocation process (wavelength setting) and the route setting process are executed in this order.
- the optical SW control unit switches the output destination (path) of the optical SW 10 after changing the wavelength so that there is no particular effect even if the output destination of the optical SW 10 is switched. For example, when the first port and the first wavelength " ⁇ 1" are used before the switching and the second port and the second wavelength " ⁇ 2" are used after the switching, the following may be used.
- the wavelength control unit executes the wavelength allocation process for the subscriber device 40 to be wavelength-allocated via the monitoring unit.
- the wavelength control unit executes, for example, a new wavelength allocation process having the same wavelength as or different from the wavelength used when the abnormality is detected for the subscriber device 40 to be wavelength-allocated.
- the optical switch control unit connects the subscriber device 40 to be wavelength-assigned to a port (other port) other than the port connected to the monitoring unit of the subscriber device 40 to be wavelength-assigned.
- the path in the optical SW10 is controlled.
- the optical switch control unit sets the optical SW10 so as to output the optical signal input from the transmission path of the subscriber device 40 to be wavelength-assigned to the port (other port) specified according to the transfer destination.
- the transfer destination is the subscriber, the subscriber device 40, the port of the optical SW10, the wavelength of the optical signal, the combination of the subscriber device 40 and the wavelength of the optical signal, the combination of the wavelength of the port 1 optical signal, and the like. Specified according to.
- the optical SW10 is provided in, for example, an optical gateway (GW).
- GW optical gateway
- An example of the optical SW10 provided in the optical GW will be described with reference to FIGS. 2 to 15.
- FIG. 2 is a diagram showing a configuration example of the optical SW10a.
- the optical SW10a is connected to a plurality of transmission lines 50, and outputs an optical signal input from one of the transmission lines 50 to another transmission line 50.
- the transmission line 50 is, for example, an optical fiber.
- the optical SW10a includes ports 11-1-1 to 11-1-P (P is an integer of 1 or more) and ports 11-2-1 to 11-2-Q (Q is an integer of 1 or more, P and Q). At least one of them has 2 or more).
- P is an integer of 1 or more
- Q is an integer of 1 or more, P and Q
- At least one of them has 2 or more).
- any one of ports 11-1-1 to 11-1-P is not specified, or collectively, it is described as port 11-1, and any one of ports 11-2-1 to 11-2-Q is referred to.
- port 11-2 When not specified, or collectively, it is described as port 11-2.
- the transmission line 50 connected to the port 11-1 is referred
- Each port 11-1 is connected to the subscriber device 40 via the transmission line 50-1.
- Each port 11-2 is connected to the subscriber device 40 via the transmission line 50-2.
- the subscriber device 40 is, for example, an ONU.
- the transmission line 50-2 may be connected to the optical communication network 30 which is an upper network. In this case, the direction of the subscriber device 40 connected via the transmission line 50-1 is the downward direction, and the direction of the upper network connected via the transmission line 50-2 is the upward direction.
- the transmission line 50-2 may be provided with another optical communication device such as an optical SW10.
- Ports 11-1-1, 11-1-2, 11-1-3, ... Are 40a-1, 40a-2, 40a-, which are subscriber devices 40 to the ground A, via transmission lines 50-1, respectively. 3, ... is connected.
- One of the ports 11-2 (port 11-2-1 in the figure) is connected to the wavelength control unit 25 described later.
- Some ports 11-2-i, 11-2- (i + 1), 11-2- (i + 2), ... Are 40b-1 which is a subscriber device 40 to ground B via a transmission line 50-2, respectively. , 40b-2, 40b-3, ... (I is an integer of 2 or more).
- the optical SW10a outputs the optical signal input from the port 11-1 to the port 11-2, and outputs the optical signal input from the port 11-2 to the port 11-1.
- another optical communication device such as an optical SW or an optical communication network 30 between the subscriber device 40 of the ground A and the subscriber device 40 of the ground B and the subscriber device 40 of the ground C. May be good.
- the optical SW10a is connected to the control unit 20.
- the control unit 20 includes a wavelength control unit 25 and an optical SW control unit 26.
- the wavelength control unit 25 receives a wavelength allocation request from the subscriber device 40 by an optical signal, and assigns and assigns a wavelength according to the transfer destination on the route to the communication destination to the subscriber device 40 that has transmitted the request.
- a wavelength allocation process for notifying the subscriber device 40 of the wavelength by an optical signal is performed.
- the wavelength control unit 25 may dynamically assign the wavelength according to the transfer destination on the route to the communication destination to the subscriber device 40 that has transmitted the request.
- a control signal superimposition method that does not depend on the communication protocol of the optical signal (main signal) between the subscriber devices 40. ..
- a protocol-free AMCC is used as an optical signal transmitted / received between the wavelength control unit 25 and the subscriber device 40.
- the main signal may be transmitted / received and set without using the control signal superimposed by AMCC or the like.
- the optical SW control unit 26 controls the optical SW 10a so as to transmit and receive an optical signal between the subscriber device 40 and the wavelength control unit 25 while the wavelength allocation process is being executed. After the wavelength allocation process, the optical SW control unit 26 uses the optical signal input from the transmission line 50 as a communication destination specified by a combination of the subscriber device 40 that transmitted the input optical signal and the wavelength of the input optical signal. The optical SW10a is controlled so as to output to the transmission line 50-2 according to the transfer destination on the path to.
- Each transmission line 50-2 is provided with a monitoring unit 60.
- the monitoring unit 60 has a power splitter 61.
- the power splitter 61 branches an optical signal transmitted through the transmission line 50-2.
- the monitoring unit 60 monitors the optical signal branched by the power splitter 61.
- the monitoring unit 60 generates monitoring information based on the monitoring result and outputs the generated monitoring information.
- the monitoring information is information indicating the result of monitoring or information obtained from the result of monitoring. For example, when a change request from the subscriber device 40 using a control signal or an abnormality in the communication status between the subscriber devices 40 is detected by monitoring an optical signal, it is communicated that an abnormality in the communication status has occurred.
- the monitoring information set with the information for identifying the subscriber device 40 in which the abnormal situation has occurred is output.
- Abnormalities in communication status include, for example, wavelength deviation, increase or decrease in output, communication abnormality (error), and the like.
- the control unit 20 controls, for example, the optical SW10 or the monitoring unit or the blocking unit so as not to transmit the optical signal of the target subscriber device 40. Further, when the control unit 20 directly controls the subscriber device 40 with an optical signal, the optical SW 10 is controlled so that the subscriber device 40 is reconnected to the control unit 20.
- control unit 20 performs allocation processing of a new wavelength that is the same as or different from the wavelength at the time of detection of the abnormality, as in the case of newly connecting the subscriber device 40.
- the optical SW 10 connects the optical signal of the wavelength before or after the change from the subscriber device 40 to the port before the change by the subscriber device 40.
- the connection in the optical SW may be opened, the connection may be cut off by the blocking unit, or the setting, connection, or transfer may be stopped.
- the power splitter 61 may branch the control signal transmitted by the subscriber device 40, or superimpose and output the control signal on the subscriber device 40 or the like. can.
- the control unit 20 When the subscriber device 40 is connected to the transmission line 50-2, the control unit 20 may be connected to the port 11-1. Alternatively, when the subscriber device 40 is connected to the transmission line 50-2, the subscriber device 40 connected to the transmission line 50-2 may be connected to the control unit 20 via the folded transmission line 73. good.
- the return transmission line 73 is an optical fiber, an optical switch, or an optical branching device that inputs an optical signal output from port 11-1-p1 to another port 11-1-p2 (p1 and p2 are integers of 1 or more and P or less). And optical demultiplexer. In this case, the optical signal transmitted from the subscriber device 40b or 40c is input to the optical SW10a via the transmission line 50-2.
- the optical SW10a outputs the optical signal input from the transmission line 50-2 to the port 11-1-p1, and inputs the optical signal transmitted through the return transmission line 73 from the port 11-1-p2.
- the optical SW10a outputs an optical signal input from the port 11-1-p2 to the control unit 20 from the port 11-2-1.
- the subscriber device 40b or 40c is connected to the control unit 20.
- the wavelength control unit 25 may perform a wavelength change process for instructing the subscriber device 40 that has performed the wavelength allocation process to change the wavelength or the like.
- the wavelength change process is shown as an example in which the subscriber device 40 communicates with the control unit by using the monitoring information as an opportunity.
- the wavelength control unit 25 identifies the subscriber device 40 to be wavelength-changed based on the monitoring information output from the monitoring unit 60, and performs wavelength change processing on the specified subscriber device 40.
- the optical SW control unit 26 controls the optical SW 10a so that an optical signal is transmitted and received between the subscriber device 40 and the wavelength control unit 25 during the wavelength change processing.
- the optical SW control unit 26 After the wavelength change processing, the optical SW control unit 26 outputs an optical signal transmitted from the subscriber device 40 at the changed wavelength to the transmission line 50-2 according to the transfer destination on the path to the communication destination.
- the light SW10a is controlled.
- the optical SW control unit 26 uses the optical signal of the changed wavelength from the subscriber device 40 after the wavelength change process, which is the communication destination used by the combination of the source subscriber device 40 and the wavelength before the change.
- the optical SW10a is controlled so as to output to the transmission path 50-2 according to the transfer destination on the path to.
- the optical SW10a may be controlled so that the optical signal of the changed wavelength is output to the transmission line 50-2 different from that before the wavelength change.
- the wavelength control unit 25 may receive a wavelength change request from the subscriber device 40 during communication or after communication is completed, and may perform wavelength change processing on the requesting subscriber device 40.
- wavelength change processing both the wavelength used for transmission and the wavelength used for reception by the subscriber device 40 may be changed, or either of them may be changed.
- the monitoring information used in the wavelength change processing includes, for example, a change request from the subscriber device 40 using a control signal, an abnormality in the communication status such as a wavelength shift, an increase or decrease in output, and a communication abnormality (error).
- Designation and setting of the wavelength to be used, modulation method, protocol, etc., deviation from the allowable range, use of unassigned wavelength, etc., and abnormality detection such as signal disconnection may be performed, other than monitoring signals. It may be an opportunity, for example, a request to change the transmission destination via a signal that passes through the main signal or does not pass through the optical SW, and abnormal detection, stoppage, or change from devices inside or outside the network such as the transmission path or the management system. It may be a request of.
- the subscriber device 40 is instructed to restart, etc., and the signal is transmitted while the signal is connected to the control unit.
- the state where the signal is not output to the road or the signal may be blocked by a shutter or the like.
- the communication between the control unit 20 and the subscriber device 40 may be performed by the AMCC or by the main signal. When the subscriber device 40 does not support AMCC, it is preferable to use the main signal.
- the monitoring unit or the like sets the route with the subscriber device 40 facing the control unit 20 without switching the connection. If the wavelength or the like after switching does not adversely affect the device facing the device after switching, the monitoring unit or the like may switch the route with the subscriber device 40 facing the device without switching the connection with the control unit 20. It may be set.
- FIG. 3 is a diagram showing a configuration example of an optical SW10b having a folding circuit for folding communication.
- the same parts as those of the optical SW10a shown in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.
- the description of the control unit 20 is omitted. If it is not particularly necessary in the following description, the description of the control unit 20 will be omitted in the drawings.
- the optical SW10b is connected to the folded transmission line 51.
- the folded transmission line 51 is an optical fiber, an optical switch, an optical branching device, or an optical duplexer that inputs an optical signal output from port 11-2 to another port 11-2. As a result, the optical SW10b enables return communication.
- the port of the optical signal output destination When the port of the optical signal output destination is set by the combination of the subscriber device 40 of the transmission source and the wavelength, the direction of the port 11-2 to which the return transmission line 51 is connected from the port 11-1 and the return transmission.
- the destination may be different depending on the direction from port 11-2 to port 11-1 to which the road 51 is connected.
- FIG. 4 is a diagram showing a configuration example of an optical SW10c that performs uplink multicast using a one-to-one return transmission line and a one-to-other return transmission line that face each other.
- the optical SW10c has a distribution unit 58 that distributes the optical signal output by the port 11-2 to a plurality of components and inputs the distributed optical signals to different ports 11-1.
- the optical SW10c inputs the optical signal output from the port 11-2 to another port 11-2 via the folded transmission line.
- the optical SW10c outputs this input optical signal to the port 11-1 to which the 1 ⁇ N power splitter 71 is connected.
- the optical signal output from port 11-1 is distributed by the power splitter 71 and input to a plurality of other ports 11-1.
- the optical SW10c outputs the optical signals input from the plurality of ports 11-1 to different ports 11-2, respectively. Two-way communication is also possible.
- the optical signal in the downlink direction is routed in the reverse direction to the uplink direction.
- the optical SW10c may input optical signals having a plurality of wavelengths from the port 11-1.
- the optical SW10c distributes the optical signals of a plurality of wavelengths input from the port 11-1 by the distribution unit 58, and distributes the distributed optical signals to each subscriber device 40 or other ground connected to the port 11-2. Output to the transmission line connected to.
- the subscriber device 40 connected to the port 11-2 selects and receives an optical signal having a predetermined wavelength from the optical signals having a plurality of wavelengths.
- the transmission line connected to the other ground may transmit an optical signal having a plurality of wavelengths as it is, or may transmit an optical signal having a wavelength selected by the WDM device shown in FIG. 6 described later.
- FIG. 5 is a diagram showing a configuration example of an optical SW10d that performs downlink multicast.
- the optical SW10d has a distribution unit 59 that distributes the optical signal output by the port 11-1 to a plurality of components and inputs the distributed optical signals to different ports 11-2.
- the optical SW10d inputs the optical signal output from the port 11-1 to the other port 11-1 via the folded transmission line.
- the optical SW10d outputs this input optical signal to the port 11-2 to which the 1 ⁇ N power splitter 72 is connected.
- the optical signal output from port 11-2 is distributed by the power splitter 72 and input to a plurality of other ports 11-2.
- the optical SW10d outputs the optical signals input from the plurality of ports 11-2 to different ports 11-1.
- optical signals having a plurality of wavelengths may be input to the optical SW10d from the port 11-2.
- the optical signals of a plurality of wavelengths input from the port 11-2 are distributed by the distribution unit 59, and the distributed optical signal is output to each subscriber device 40 connected to the port 11-1. Will be done.
- Each subscriber device 40 connected to the port 11-1 selects and receives an optical signal having a predetermined wavelength from the received optical signals having a plurality of wavelengths.
- FIG. 6 is a diagram showing a configuration example of an optical SW10e that performs WDM transmission.
- the optical SW10e is connected to one or more WDM devices 80.
- the WDM device 80 is an example of a demultiplexing device.
- the WDM device 80 combines optical signals of different wavelengths output from each of the plurality of ports 11-2 and outputs them to the multiplexing communication transmission line 90.
- the WDM device 80 demultiplexes the optical signal received via the multiplex communication transmission line 90 according to the wavelength, and inputs the demultiplexed optical signal to each of the plurality of ports 11-2.
- the WDM device 80 has the function of the combiner and the function of the demultiplexer.
- the function of the combiner is to combine optical signals of different wavelengths output from the plurality of ports 11-2 of the optical SW10e and output them to the multiplex communication transmission line 90.
- an optical signal received via the multiplex communication transmission line 90 is demultiplexed by wavelength, and each demultiplexed optical signal is input to a plurality of ports 11-2 having different optical SW10e.
- the optical SW10e that performs WDM transmission may connect the folded transmission line 51 shown in FIG. 3 to the port 11-2 that is not connected to the WDM device 80.
- the multiplex communication transmission line 90 is provided with a monitoring unit 65.
- the monitoring unit 65 includes a power splitter 66 and WDM devices 67 and 68.
- the power splitter 66 branches an optical signal transmitted through the multiplex communication transmission line 90.
- the WDM device 67 demultiplexes the upstream optical signal branched by the power splitter 66.
- the WDM device 68 demultiplexes the downlink optical signal branched by the power splitter 66.
- the monitoring unit 65 monitors the optical signal demultiplexed by the WDM device 67 and the WDM device 68.
- the monitoring unit 65 generates monitoring information based on the monitoring result and outputs the generated monitoring information.
- the monitoring unit 65 may be provided with a power splitter 69 in each transmission line between the port 11-2 and the WDM device 80.
- the power splitter 69 branches an optical signal transmitted through a transmission line between the port 11-2 and the WDM device 80, and outputs the branched optical signal to the control unit 20.
- the wavelength control unit 25 may perform a wavelength change process for instructing the subscriber device 40 that has performed the wavelength allocation process to change the wavelength. For example, the wavelength control unit 25 identifies the subscriber device 40 to be wavelength-changed based on the monitoring information output from the monitoring unit 65, and performs wavelength change processing on the specified subscriber device 40.
- the optical SW control unit 26 controls, for example, reconnects the optical SW10e via, for example, a monitoring unit so that an optical signal is transmitted and received between the subscriber device 40 and the wavelength control unit 25 during the wavelength change processing. ..
- the optical SW control unit 26 When the optical SW control unit 26 inputs an optical signal having the changed wavelength from the subscriber device 40 after the wavelength change processing, the optical SW control unit 26 transfers the input optical signal to the port 11 according to the transfer destination on the path to the communication destination.
- the optical SW10e is controlled so as to output from -2.
- the wavelength control unit 25 may receive a wavelength change request from the subscriber device 40 during communication or after communication is completed, and may perform wavelength change processing on the requesting subscriber device 40.
- FIG. 7 is a diagram showing an example of routing in the optical SW10e before changing the wavelength.
- the optical SW10e is connected to 40a-1, 40a-2, 40a-3, ..., Which is the subscriber device 40 of the ground A.
- the WDM device 80 connected to the ground B is referred to as a WDM device 80b
- the WDM device 80 connected to the ground C is referred to as a WDM device 80c.
- the WDM device 80b transmits and receives optical signals having wavelengths ⁇ 1 to ⁇ 10 to and from the optical SW 10e
- the WDM device 80c transmits and receives optical signals having wavelengths ⁇ 11 to ⁇ 20 to and from the optical SW 10e.
- the optical SW 10e has a port 11 different from the optical signal having the wavelength ⁇ 1 input from the subscriber device 40a-1 and the optical signal having the wavelength ⁇ 2 input from the subscriber device 40a-2. -The output is output from -2 to the WDM device 80b.
- the subscriber device 40a-2 transmits a wavelength change request to the wavelength control unit 25 by a control signal during or after communication.
- the wavelength control unit 25 Upon receiving the wavelength change request from the subscriber device 40a-2, the wavelength control unit 25 performs a wavelength change process instructing the subscriber device 40a-2 to change to the wavelength ⁇ 10 .
- the optical SW control unit 26, the monitoring unit, or the blocking unit prevents the optical signal of wavelength ⁇ 10 received from the subscriber device 40a-2 from being output until the wavelength change is completed, and the optical SW control unit 26 controls the optical SW control unit 26. After the switching is completed, the optical SW10e is controlled so as to output from the port 11-2 corresponding to the wavelength ⁇ 10 to the WDM device 80b.
- the wavelength control unit 25 may further change the wavelength used for reception by the subscriber device 40a-2.
- the optical SW control unit 26 sets the optical SW10e so as to output the optical signal transmitted from the source subscriber device 40 using the changed wavelength to the WDM device 80 different from that before the wavelength change. You may control it.
- FIG. 8 is a diagram showing an example of routing after the wavelength change in the optical SW10e when the output destination WDM device 80 is changed.
- the subscriber device 40a-1 communicates using the wavelength ⁇ 1
- the subscriber device 40a-2 communicates using the wavelength ⁇ 2 or the wavelength ⁇ 10 .
- the subscriber device 40a-2 transmits a wavelength change request to the wavelength control unit 25 by a control signal during or after communication.
- the wavelength control unit 25 When the wavelength control unit 25 receives the wavelength change request from the subscriber device 40a-2, the wavelength control unit 25 instructs the subscriber device 40a-2 to change to the wavelength ⁇ 11 in order to communicate with the subscriber device 40 of the ground C. I do.
- the optical SW control unit 26 or the monitoring unit or the blocking unit does not output the optical signal of wavelength ⁇ 10 input from the subscriber device 40a-2 until the wavelength change is completed, if necessary, and after the switching is completed, the optical SW control unit
- the unit 26 controls the optical SW10e so that the optical signal of the wavelength ⁇ 11 received from the subscriber device 40a-2 is output from the port 11-2 corresponding to the wavelength ⁇ 11 to the WDM device 80c.
- the wavelength control unit 25 may further change the wavelength used for reception by the subscriber device 40a-2.
- the wavelength control unit 25 may operate as follows. If the wavelength is not used as at least a part of the destination information, the following may not be used. (1) The wavelength control unit 25 releases the transmission wavelength used by the subscriber device 40 of the ground B, which is the communication destination before the wavelength switching. By releasing the transmission wavelength, the route from the subscriber device 40a-2 to the subscriber device 40 to the ground B is reset. After that, the wavelength control unit 25 reassigns the wavelength, which has become an empty wavelength due to the release, for receiving a signal from the subscriber device 40 of the ground C, which is the new communication destination, to the subscriber device 40a-2. This is performed when the wavelength used for each subscriber device 40 is unique and no wavelength other than the free wavelength is assigned.
- the wavelength used before the wavelength change is reused as it is. It is available. However, although the wavelength is used as the destination information, for example, when passing through different transmission paths or when the input port or output port of the optical switch is different, the same wavelength is treated as a different path. In order to enable reuse as described above, in this case, for example, an "input transmission line” or “output transmission line” or “path” is configured as an argument as a condition for determining the output destination of the optical signal. "Combination of all transmission lines" is added.
- it is output by a combination of a transmission line or port into which an optical signal is input and a wavelength of an optical signal, or a combination of a transmission line or port in which an optical signal is input and a subscriber device 40 which has transmitted an optical signal and a wavelength of the optical signal.
- the destination is decided.
- the wavelength change process performed when the subscriber device 40 requests the wavelength change has been described, but the same applies to the wavelength change process performed based on the monitoring information.
- FIG. 9 is a diagram showing a configuration example of an optical SW10f that performs WDM transmission and uplink multicast.
- the optical SW10f performs uplink multicast by a single wavelength.
- the optical SW10f has a distribution unit 58 similar to that in FIG. In FIG. 9, multicast is performed to ground B and ground C.
- the optical SW10f outputs an optical signal input from the port 11-1 connected to the subscriber device 40 from the port 11-2 to which the return transmission line is connected, and another optical signal transmitted through the return transmission line. Input from port 11-2.
- the optical SW10f outputs this input optical signal from the port 11-1 to which the 1 ⁇ N power splitter 71 is connected.
- the optical SW10f inputs an optical signal distributed by a 1 ⁇ N power splitter 71 from a plurality of ports 11-1, and one of the input optical signals is sent to the port 11-2 connected to the ground B by another one. Two optical signals are output to port 11-2 connected to ground C.
- the subscriber device 40 may output a WDM signal.
- the subscriber device 40 outputs a WDM signal in which an optical signal having a wavelength ⁇ 1 and an optical signal having a wavelength ⁇ 2 are multiplexed.
- the plurality of transmission lines between the WDM device 80b and the optical SW10f transmit and receive optical signals having wavelengths ⁇ 1 , ⁇ 2 , ... In order from the top.
- optical signals having wavelengths ⁇ 1 , ⁇ 2 , ... Are transmitted and received in order from the top.
- the optical SW10f distributes the WDM signals of the wavelength ⁇ 1 and the wavelength ⁇ 2 input from the port 11-1 connected to the subscriber device 40 by the distribution unit 58.
- the optical SW10f outputs the distributed WDM signal to the port 11-2 corresponding to the wavelength ⁇ 1 among the ports 11-2 connected to the WDM device 80b. Further, the optical SW10f outputs another distributed WDM signal to the port 11-2 corresponding to the wavelength ⁇ 2 among the ports 11-2 connected to the WDM device 80c.
- the WDM device 80b filters the WDM signal input from the port corresponding to the wavelength ⁇ 1 to block the wavelength ⁇ 2 , passes the optical signal of the wavelength ⁇ 1 , and outputs the signal to the multiplexing communication transmission line 90.
- the WDM device 80c filters the WDM signal input from the port corresponding to the wavelength ⁇ 2 to block the wavelength ⁇ 1 , passes the optical signal of the wavelength ⁇ 2 , and outputs the signal to the multiplexing communication transmission line 90.
- FIG. 10 is a diagram showing a case where the optical SW10f performs uplink multicast to a plurality of grounds by a plurality of wavelengths.
- a plurality of subscriber devices 40 can be connected to the transmission line 50-1 connected to one port 11-1. ..
- subscriber devices 40a-1-1, 40a-1-2, ... Are connected to one transmission line 50-1 as a plurality of subscriber devices 40a-1.
- the subscriber devices 40a-1-1, 40a-1-2, ... Use different wavelengths.
- the subscriber device 40a-1-1 transmits an optical signal having a wavelength ⁇ 1
- the subscriber device 40a-1-2 transmits an optical signal having a wavelength ⁇ 2
- the optical SW10f is a port 11 of an optical signal obtained by combining an optical signal having a wavelength ⁇ 1 transmitted by the subscriber device 40a-1-1 and an optical signal having a wavelength ⁇ 2 transmitted by the subscriber device 40a-1-2. Enter from -1.
- the optical SW10f outputs the input optical signal from the port 11-2 to which the return transmission line is connected, and inputs the optical signal transmitted through the return transmission line from the other port 11-2.
- the optical SW10f outputs this input optical signal from the port 11-1 to which the 1 ⁇ N power splitter 71 is connected.
- the optical SW10f inputs an optical signal distributed by the 1 ⁇ N power splitter 71 from a plurality of ports 11-1.
- the optical SW10f transfers the optical signal distributed by the power splitter 71 to the port 11-2 corresponding to the wavelength ⁇ 1 and the port 11-2 corresponding to the wavelength ⁇ 2 among the ports 11-2 connected to the WDM device 80b. Output to. Further, the optical SW10f uses the optical signal distributed by the power splitter 71 as the port 11-2 corresponding to the wavelength ⁇ 1 and the port 11 corresponding to the wavelength ⁇ 2 among the ports 11-2 connected to the WDM device 80c. Output to -2.
- the WDM device 80b filters the optical signal input from the port corresponding to the wavelength ⁇ 1 and passes the optical signal of the wavelength ⁇ 1 to output to the multiplexing communication transmission line 90, and inputs the optical signal from the port corresponding to the wavelength ⁇ 2 .
- the optical signal is filtered to pass an optical signal having a wavelength of ⁇ 2 and output to the multiplexing communication transmission line 90.
- the WDM device 80c filters the optical signal input from the port corresponding to the wavelength ⁇ 1 and passes the optical signal of the wavelength ⁇ 1 to output to the multiplexing communication transmission line 90, and the port corresponding to the wavelength ⁇ 2
- the optical signal input from is filtered, the optical signal having the wavelength ⁇ 2 is passed, and the optical signal is output to the multiplexing communication transmission line 90.
- FIG. 11 is a diagram showing a configuration example of an optical SW 10g that performs WDM transmission and downlink multicast.
- the optical SW 10g has a distribution unit 59 similar to that in FIG.
- the optical SW10f shown in FIGS. 9 and 10 and the optical SW10g shown in FIG. 11 may have the same monitoring unit 65 as in FIG.
- the wavelength control unit 25 can perform wavelength change processing on the subscriber device 40 for which the monitoring unit 65 has detected an abnormality in the communication status in the same manner as described above.
- FIG. 12 is a diagram showing a case where the optical SW 10g performs WDM transmission and downlink multicast.
- the difference between the connection configuration shown in FIG. 12 and the connection configuration shown in FIG. 11 is that they are connected to a plurality of ports 11-1 instead of the WDM device 80 connected to the plurality of ports 11-2 of the optical SW 10g. This is the point where the WDM device 81 is arranged.
- One or more subscriber devices 40 are connected to the WDM device 81 on the opposite side of the port 11-1.
- the optical SW10g inputs an optical signal having a plurality of wavelengths from another ground from the port 11-2, and outputs the optical signal to the port 11-1 to which the folded transmission line of the distribution unit 59 is connected.
- the optical signal having a plurality of wavelengths is branched as it is by the power splitter 72.
- the optical SW10d inputs a branched optical signal having a plurality of wavelengths from a plurality of ports 11-2, and outputs the input optical signal to any port 11-1 connected to the WDM device 81.
- the WDM device 81 filters and passes an optical signal having a wavelength corresponding to the port 11-1 to which the optical signal is input from the input optical signal having a plurality of wavelengths, and the passed optical signal is connected to the subscriber device 40. Output to the transmission line.
- FIG. 13 is a diagram showing a configuration example of an optical SW10h that electrically processes an optical signal.
- the same parts as those of the optical SW10b shown in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted.
- the difference between the optical SW10h and the above-mentioned optical SW10a to 10g is that the optical SW10h is further provided with the port 12-1 and the port 12-2.
- Ports 12-1 and 12-2 are connected to the electric processing unit 84 via the transmission line 52.
- Ports 11-1 and 11-2 may be used as ports connected to the electric processing unit 84 via the transmission line 52.
- the optical signal input from the subscriber device 40 is combined with the subscriber device 40 from which the optical signal is transmitted or the port 11-1 into which the optical signal is input and the wavelength. Output from port 11-2 or port 12-1 accordingly.
- the optical SW10h sets the output destination of the optical signal input from the port 11-2 to the port 11-1 or the output destination of the optical signal depending on the combination of the port 11-2 to which the optical signal is input and the wavelength. Output from port 12-1.
- the optical SW10h drops an optical signal to the electric processing unit 84 by outputting an optical signal from the port 12-1.
- the electric processing unit 84 electrically terminates the dropped optical signal, performs various electric processing such as error correction and line concentrating, converts it into an optical signal, and inputs it to the port 12-2 of the optical SW10h.
- the optical SW10h transmits the optical signal input from the electric processing unit 84 from the port 11-1 or the port 11-2 according to the transfer destination on the path to the communication destination specified by the combination of the port 12-2 and the wavelength. Output.
- the electric processing unit 84 performs OE (addition of electric treatment) -O conversion (O represents light and E represents electricity).
- the electric processing unit 84 may simply perform O-EO conversion without performing electric processing for adding a function.
- the electric processing unit 84 performs 3R reproduction (Re-amplification: amplification, Re-timing: timing reproduction, Re-shaping: waveform shaping) at the time of O-EO conversion or the like, or inverts 0/1 to a threshold value. By using the effect, it is possible to reduce the deterioration of the optical waveform due to transmission.
- the wavelength of the optical signal before being converted into an electric signal and the wavelength of the optical signal after being converted from the electric signal may be the same or different.
- the electric processing unit 84 multiplexes the optical signals transmitted from the plurality of subscriber devices 40 in the electric stage, converts the multiplexed signals into a plurality of optical signals, and separates ports, duplexers, and power splitters. You may branch to.
- the branched optical signal may be further branched and output to the duplexer at a plurality of wavelengths, or may be further branched by a power splitter and multicast.
- the electric processing unit 84 may be multiplexed or only multicast in the electric stage. The processing in the electric stage is suitable when the band is small with respect to the transmission line, for example, when the signals of the transmitter / receiver of the subscriber device 40 are bundled and handled.
- the optical SW10h converts optical signals transmitted from each of the plurality of subscriber devices 40 into electrical signals, multiplexes them, processes the multiplexed electrical signals, and then converts them into optical signals having a plurality of wavelengths. It is connected to the electric processing unit 84 that is converted and input to the optical switch 10h.
- the optical switch control unit 26 receives a plurality of optical signals input from the transmission path 50-1 according to a combination of a plurality of subscriber devices 40 transmitting the input plurality of optical signals and a wavelength of the input optical signal.
- the optical switch 10h is controlled so as to output to the electric processing unit 84 and output the signal input from the electric processing unit 84 to the transmission path 50-2 according to the transfer destination on the path to the communication destination specified by the wavelength. do.
- the port to be the output destination of the optical SW is determined by the combination of the subscriber device for transmitting the optical signal and the wavelength, the direction from the port 11-1 to the port 11-2 in order to pass through the electric processing unit 84. And the direction from port 11-2 to port 11-1, the destination may be different.
- the electric processing unit 84 has an O / E (optical / electric) conversion unit 85, a processing execution unit 86, an E / O (electrical / optical) conversion unit 87, and a storage unit 88.
- the O / E conversion unit 85 converts the optical signal input from the optical SW10h into an electric signal.
- the processing execution unit 86 includes a processor 861 and an accelerator 862.
- the processor 861 is a general-purpose processor such as a CPU (central processing unit).
- the accelerator 862 is, for example, a processor such as a GPU (Graphics Processing Unit).
- the processor 861 and the accelerator 862 read a program from the storage unit 88 and execute it to perform electrical signal processing on the electrical signal converted by the O / E conversion unit 85.
- the processing execution unit 86 may perform electrical signal processing of a plurality of functions. Examples of electrical signal processing include DSP (Digital Signal Processing) for long-distance / high-speed access, mobile fronthaul processing, error correction, and the like.
- the E / O conversion unit 87 converts the electric signal into an optical signal having a wavelength specified by the optical SW control unit 26, and outputs the electric signal to the optical SW 10h.
- the storage unit 88 stores a program for the processor 861 and the accelerator 862 to execute the function of electric signal processing.
- the processing execution unit 86 By making the processing execution unit 86 a device architecture based on a general-purpose processor, it is possible to add and change electrical signal processing, and it is also possible to replace it with various functions other than the transmission function. By performing DSP for long-distance / high-speed access, the processing execution unit 86 eliminates the need for a dedicated LSI (Large-Scale Integration, large-scale integrated circuit) for long-distance / high-speed access, and has flexible functions according to needs. Deployment can be realized.
- LSI Large-Scale Integration, large-scale integrated circuit
- the optical SW10h may be connected to a plurality of electric processing units 84.
- the optical SW10h has ports 12-1 and 12-2 connected to each electric processing unit 84.
- Each of the electric processing units 84 may perform different electric signal processing, or a part or all of them may perform the same electric processing.
- the processing execution unit 86 and the storage unit 88 may be realized by using hardware such as an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), or an FPGA (Field Programmable Gate Array).
- FIG. 14 is a diagram showing an example of connection using the optical SW10h.
- the subscriber devices 40-1, 40-2, 40-3 connected to the optical SW10h are, for example, ONUs.
- the user 46-1 who uses the subscriber device 40-1 is a user who performs long-distance or high-speed communication.
- One or more communication devices of user 46-1 are connected to the subscriber device 40-1.
- the subscriber device 40-1 communicates with the communication destination device by the long-distance line P1.
- the mobile base station 46-2 is connected to the subscriber device 40-2.
- a plurality of subscriber devices 40-2 are connected to one transmission line 50-1 by a power splitter 55.
- the subscriber device 40-2 communicates with the communication destination device by the medium-distance line P2.
- the user 46-3 who uses the subscriber device 40-3 is a user who performs medium-distance or medium-speed communication.
- One or more communication devices of the user 46-3 communicate with the communication destination device by the medium-distance line P3 via the subscriber device 40-3.
- the optical signals of the long-distance line P1, the medium-distance line P2, and the medium-distance line P3 are wavelength-multiplexed and transmitted through the multiplex communication transmission line 90 connected to the core NW (network).
- the electric processing unit 84 has a DSP function for long-distance / high-speed access, a mobile front hole processing function, an error correction function, and the like.
- the optical SW10h outputs an upstream optical signal transmitted by the subscriber device 40-1 to the electric processing unit 84.
- the O / E conversion unit 85 of the electric processing unit 84 converts the input optical signal into an electric signal.
- the processing execution unit 86 performs DSP processing for long-distance / high-speed access on the converted electric signal.
- the E / O conversion unit 87 converts the DSP-processed electrical signal into an optical signal and outputs it to the optical SW10h.
- the wavelength after conversion may be the same as or different from the wavelength at the time of input to the electric processing unit 84.
- the optical SW10h outputs an optical signal input from the electric processing unit 84 to the multiplex communication transmission line 90 from the port 11-2.
- the optical SW10h inputs a downlink optical signal addressed to the subscriber device 40-1 that has transmitted the multiplex communication transmission line 90.
- the optical SW10h outputs the input downlink optical signal from the port 12-1 to the electric processing unit 84 according to the combination of the input port 51-2 and the wavelength.
- the O / E conversion unit 85 of the electric processing unit 84 converts the input optical signal into an electric signal
- the processing execution unit 86 performs DSP processing for long-distance / high-speed access on the converted electric signal. ..
- the E / O conversion unit 87 converts the DSP-processed electrical signal into an optical signal and outputs it to the optical SW10h.
- the wavelength after conversion of the optical signal may be the same as or different from the wavelength when it is input to the electric processing unit 84.
- the optical SW10h outputs an optical signal input from the electric processing unit 84 to the port 11-1 connected to the subscriber device 40-1.
- the electric processing unit 84 shows a configuration in which a multiplexed electric signal is modulated by the same signal and converted into an optical signal having a plurality of wavelengths.
- the electrical processing unit 84 may be configured to convert a multiplexed or multiplexed electrical signal into one or more optical signals having one or more wavelengths (optical signals modulated by the same signal or different signals). ..
- the optical signals transmitted and received by the subscriber device 40-2 are also processed in the same manner as the optical signals transmitted and received by the subscriber device 40-1 described above.
- the processing execution unit 86 performs mobile front-hole processing on the optical signals transmitted and received by the subscriber device 40-2.
- the processing execution unit 86 determines the signal processing to be performed on the electric signal based on arbitrary information contained in the electric signal.
- the optical SW10h outputs the upstream optical signal input from the subscriber device 40-3 from the port 11-2 to the multiplex communication transmission line 90. Further, the optical SW10h inputs a downlink optical signal addressed to the subscriber device 40-3 that has transmitted the multiplex communication transmission line 90, and joins according to the combination of the port 11-2 to which the optical signal is input and the wavelength. Output to port 11-1 connected to the device 40-3.
- FIG. 15 is a diagram showing a configuration example of an optical SW10i that monitors an optical signal before performing WDM transmission.
- the same parts as those of the optical SW10e shown in FIG. 6 are designated by the same reference numerals, and the description thereof will be omitted.
- the difference from FIG. 6 is that a monitoring unit 60 is provided between the port 11-2 and the WDM device 80.
- the transmission line 50-2 connected to the port 11-2 is provided with a monitoring unit 60.
- only three monitoring units 60 are shown.
- the specific configuration of the monitoring unit 60 is as shown in FIG.
- the optical signal output from the port 11-2 is combined and output by the WDM device 80 via the monitoring unit 60.
- the WDM device 80 demultiplexes the optical signal received via the multiplex communication transmission line 90 according to the wavelength, and inputs the demultiplexed optical signals to the monitoring unit 60, respectively.
- the monitoring unit 60 generates monitoring information based on the monitoring result and outputs the generated monitoring information.
- the control unit 20 may be mentioned.
- FIG. 16 is a diagram showing a PDS (Passive Double Star) type access topology using time division multiplexing.
- the optical SW1001 the above-mentioned optical SW10a to 10i can be used.
- the optical SW1001 has ports 11-1-1 to 11-1-P and ports 11-2-1 to 11-2-Q.
- the transmission line 50-1 connected to port 11-1-p (p is an integer of 1 or more and P or less) is also described as transmission line 50-1-p, and port 11-2-q (q is 1 or more and Q).
- the transmission line 50-2 connected to the following integer) is also referred to as a transmission line 50-2-q.
- port 11-2-q is connected to ground # q by a transmission line 50-2-q.
- a power splitter 56 is provided on the transmission line 50-1-p.
- a subscriber device 40-p in the Np range (Np is an integer of 2 or more) is connected to the power splitter 56 in a star shape.
- the Np subscriber device 40-p is described as the subscriber device 40-p-1 to 40-p-Np, and the subscriber device 40-p-np (np is an integer of 1 or more and Np or less).
- the transmission line 50-1-p to and from the power splitter 56 is referred to as 50-1-p-np.
- Subscriber devices 40-p-1 to 40-p-Np utilize the same wavelength by time division multiplexing. The wavelength used for the uplink optical signal and the wavelength used for the downlink optical signal are different.
- the optical SW1001 inputs a downlink optical signal having a wavelength ⁇ 1 addressed to each of the subscriber devices 40-p-1 to 40-p-Np time-division-multiplexed from the port 11-2-q.
- the optical SW1001 outputs the input downlink optical signal from the output destination port 11-1-p according to the combination of the port 11-2 - q and the wavelength ⁇ 1.
- the power splitter 56 inputs a time-division-multiplexed downlink optical signal from the transmission line 50-1-p, branches the input optical signal, and transmits the transmission lines 50-1-p-1 to 50-1-p-. Output to Np.
- the subscriber devices 40-p-1 to 40-p-Np receive the time-division-multiplexed optical signal, and select a downlink optical signal addressed to the own device from the received optical signal.
- the subscriber devices 40-p-1 to 40-p-Np transmit time-division-multiplexed upstream optical signals of the same wavelength ⁇ 2 by TDMA (time-division multiple access).
- the power splitter 56 inputs an upstream optical signal having a wavelength of ⁇ 2 from each of the transmission lines 50-1-p-1 to 50-1-p-Np, and the input optical signal is time-division-multiplexed to perform time-division multiplexing. Output to 1-p.
- the optical SW1001 outputs a time-division-multiplexed upstream optical signal from the port 11-2-q corresponding to the combination of the port 11-1-p and the wavelength ⁇ 2 .
- the PDS type access topology can be applied to any one or more of the transmission lines 50-1-1 to 50-1-P.
- FIG. 17 is a diagram showing a PDS type access topology using wavelength division multiplexing.
- the optical SW1002 the above-mentioned optical SW10a to 10i can be used.
- the optical SW1002 is connected to one or more WDM devices 81.
- the WDM device 81 combines downlink optical signals of different wavelengths output from each of the plurality of ports 11-1 and outputs them to the multiplexing communication transmission line 91.
- the WDM device 81 demultiplexes the upstream wavelength division multiplexing optical signal received via the multiplex communication transmission line 91, and inputs the demultiplexed optical signals to different ports 11-1.
- a power splitter 56 is provided in the multiplex communication transmission line 91.
- N subscriber devices (N is an integer of 2 or more) are connected to the power splitter 56 in a star shape.
- the subscriber device 40 and the power splitter 56 are connected by a transmission line 92.
- the plurality of subscriber devices 40 connected to the power splitter 56 transmit and receive optical signals having different wavelengths.
- ports 11-1-p to 11-1- (p + N) of the optical SW1002 are connected to the WDM device 81 via a transmission line 50-1 (p and N are integers of 1 or more, p + N). Is an integer less than or equal to P). Subscriber devices 40-p to 40- (p + N) are connected to the power splitter 56.
- the optical SW1002 inputs a downlink optical signal from port 11-2- (q + n) to the subscriber device 40- (p + n) having a wavelength of ⁇ 1 (q + n) (q is an integer of 1 or more, n is 0 or more N). The following integers).
- the optical SW1002 is an output destination in which the downlink optical signal of the wavelength ⁇ 1 (1 + n) input from the port 11-2- (q + n) is combined with the port 11-2- (q + n) and the wavelength ⁇ 1 (1 + n) . Route to port 11-1- (p + n) of.
- the optical SW1002 routes the downlink optical signal of wavelength ⁇ 11 input from port 11-2-1 to port 11-1-p, and downlinks the wavelength ⁇ 12 input from port 11-2-2. Route the optical signal to port 11-1- (p + 1).
- the WDM device 81 combines the downlink optical signals of wavelengths ⁇ 11 to ⁇ 1N output from each of the ports 11-1-p to 11-1- (p + N) and outputs them to the multiplexing communication transmission line 91.
- the power splitter 56 inputs a downlink optical signal whose wavelength is multiplexed from the multiplex communication transmission line 91, branches the input downlink optical signal as it is, and is connected to each of the subscriber devices 40-p to 40- (p + N). Is output to the transmission line 92 of.
- the subscriber devices 40-p to 40- (p + N) receive the wavelength-multiplexed downlink optical signal, and select the downlink optical signal having the wavelength used by the own device from the received optical signal.
- the subscriber device 40- (p + n) transmits an upstream optical signal having a wavelength of ⁇ 2 (1 + n) .
- the power splitter 56 inputs an upstream optical signal from each of the subscriber devices 40-p to 40- (p + N) via the transmission line 92, and the input wavelengths ⁇ 21 to ⁇ 2 (1 + N) each upstream optical signal.
- the signal is wavelength-multiplexed and output to the multiplex communication transmission line 91.
- the WDM device 81 inputs an upstream optical signal wavelength-multiplexed from the multiplex communication transmission line 91 and separates the wavelengths.
- the WDM device 81 inputs upstream optical signals having a wavelength of ⁇ 2 (1 + n) to ports 11-1- (p + n), respectively.
- the optical SW1002 outputs an optical signal having an upstream wavelength ⁇ 2 (1 + n) according to the combination of the input port 11-1- (p + n) and the wavelength ⁇ 2 (1 + n) to the output destination port 11-2- ( Output from q + n).
- the upstream optical signal of wavelength ⁇ 21 transmitted by the subscriber device 40-p is input from port 11-1-p and output from port 11-2-1.
- the upstream optical signal of wavelength ⁇ 22 transmitted by the subscriber device 40- (p + 1) is input from port 11-1- (p + 1) and output from port 11-2-2.
- the WDM device may be placed after the optical SW.
- FIG. 18 is a diagram showing a PDS-type access topology using wavelength division multiplexing and placing a WDM device after the optical SW.
- the optical SW1003 the above-mentioned optical SW10a to 10i can be used.
- the port 11-2-q of the optical SW1003 (q is an integer of 1 or more and Q or less) is connected to the WDM device 97 via the transmission line 50-2-q.
- the WDM device 97 is connected to ground #n (n is an integer of 1 or more and N or less) via a transmission line 50-2-q-n.
- a power splitter 56 is provided in the transmission line 50-1-p connected to the port 11-1-p of the optical SW1003.
- N subscriber devices 40-p-1 to 40-p-N are connected to the power splitter 56 in a star shape.
- the WDM device 97 inputs a downlink optical signal transmitted from the ground #n to the subscriber device 40-pn having a wavelength ⁇ 1n from the transmission line 50-2-q-n.
- the WDM device 97 inputs to the optical SW 1003 a wavelength division multiplexing signal that multiplexes the downlink optical signals of ⁇ 11 to ⁇ 1N input from each of the ground # 1 to the ground # N.
- the optical SW1003 outputs the downlink wavelength division multiplexing signal input from the port 11-2-q from the output destination port 11-1-p.
- the power splitter 56 branches the wavelength division multiplexing signal input from the transmission line 50-1-p and outputs it to the transmission lines 50-1-p-1 to 50-1-p-N.
- the subscriber devices 40-p-1 to 40-p-N receive the wavelength division multiplexing signal and select a downlink optical signal addressed to the own device from the received optical signal. As a result, the subscriber device 40-pn receives an optical signal having a wavelength of ⁇ 1n from the ground #n.
- the subscriber device 40-pn transmits an upstream optical signal having a wavelength of ⁇ 2n .
- the power splitter 56 is used to ascend the wavelengths ⁇ 21 to ⁇ 2N from each of the subscriber devices 40-p-1 to 40-p-N via the transmission lines 50-1-p-1 to 50-1-p-N. Input the optical signal of.
- the power splitter 56 outputs a wavelength division multiplexing signal in which the upstream optical signals having wavelengths ⁇ 21 to ⁇ 2N are wavelength-multiplexed to the transmission line 50-1-p.
- the optical SW1003 inputs a wavelength division multiplexing signal in which upstream optical signals having wavelengths ⁇ 21 to ⁇ 2N are wavelength-multiplexed from port 11-1-p.
- the optical SW1003 outputs an upstream wavelength division multiplexing signal from the output destination port 11-2-q to the transmission line 50-2-q.
- the WDM device 97 inputs an upstream optical signal wavelength-multiplexed from the transmission line 50-2-q and separates the wavelengths.
- the WDM device 97 outputs an upstream optical signal having a wavelength of ⁇ 2n to a transmission line 50-2-n connected to ground #n. As a result, the optical signal having the wavelength ⁇ 2n transmitted by the subscriber device 40-pn is transmitted to the ground #n.
- FIG. 19 is a diagram showing a bus-type access topology using time division multiplexing.
- the access topology shown in FIG. 19 differs from the access topology shown in FIG. 16 in that a plurality of subscriber devices 40-p-1 to 40-p-Np are connected to the transmission line 50-1-p in a bus type. It is a point.
- One or more power splitters 55 are provided on the transmission line 50-1-p.
- the power splitter 55 to which the subscriber device 40-pn (n is an integer of 1 or more and Np-1 or less) is connected is referred to as a power splitter 55-n.
- Subscriber devices 40-p-1 to 40-p-Np utilize the same wavelength by time division multiplexing.
- the wavelength used for the uplink optical signal and the wavelength used for the downlink optical signal are different.
- the transmission line 50-2-1 connected to the ground # 1 transmits a time-division-multiplexed downlink optical signal of wavelength ⁇ 1 addressed to each of the subscriber devices 40-p-1 to 40-p-Np.
- the optical SW1004 inputs a downlink optical signal having a wavelength ⁇ 1 that is time-division-multiplexed and transmitted through the transmission line 50-2-1 from the port 11-2-1.
- the optical SW1004 routes the input downlink optical signal to the output destination port 11-1-p according to the combination of the port 11-2-1 (or ground # 1 ) and the wavelength ⁇ 1.
- the optical SW1004 outputs a time-division-multiplexed downlink optical signal having a wavelength ⁇ 1 from the port 11-1-p to the transmission line 50-1-p.
- the power splitter 55-n branches the time-division-multiplexed downlink optical signal from the transmission line 50-1-p, and outputs the branched downlink optical signal to the subscriber device 40-pn.
- the subscriber devices 40-p-1 to 40-p-Np receive the time-division-multiplexed downlink optical signal, and select the downlink optical signal addressed to the own device from the received downlink optical signal.
- the subscriber devices 40-p-1 to 40-p-Np transmit time-division-multiplexed upstream optical signals of the same wavelength ⁇ 2 by TDMA.
- Each power splitter 55-n time-division-multiplexes the upstream optical signal of wavelength ⁇ 2 input from the subscriber device 40-pn with the upstream optical signal transmitted through the transmission line 50-1-p.
- the optical SW1004 inputs a time-division-multiplexed upstream optical signal from port 11-1-p, and outputs the time-division-multiplexed upstream optical signal to port 11-2-1 according to the combination of port 11-1-p and wavelength ⁇ 2 . It is routed and output to the transmission line 50-2-1 connected to the ground # 1.
- bus-type access topology can be applied to any one or more of the transmission lines 50-1-1 to 50-1-P.
- FIG. 20 is a diagram showing a bus-type access topology using wavelength division multiplexing.
- the optical SW1005 the above-mentioned optical SW10a to 10i can be used.
- the access topology shown in FIG. 19 differs from the access topology shown in FIG. 17 in that a plurality of subscriber devices 40-p to 40- (p + N) are connected to the multiplex communication transmission line 91 in a bus type. be.
- the subscriber devices 40-p to 40- (p + N) transmit and receive optical signals having different wavelengths.
- the multiplex communication transmission line 91 is provided with one or more power splitters 55.
- the power splitter 55 to which the subscriber device 40- (p + n) (n is an integer of 0 or more and N-1 or less and N is an integer of 1 or more) is connected is referred to as a power splitter 55- (p + n).
- the optical SW1005 inputs a downlink optical signal from the port 11-2- (q + n) to the subscriber device 40- (p + n) having a wavelength ⁇ 1 (1 + n) (q is).
- the optical SW1005 is an output destination in which the downlink optical signal of the wavelength ⁇ 1 (1 + n) input from the port 11-2- (q + n) is combined with the port 11-2- (q + n) and the wavelength ⁇ 1 (1 + n) . Route to port 11-1- (p + n) of.
- the WDM device 81 combines the downlink optical signals of wavelengths ⁇ 11 to ⁇ 1N output from each of the ports 11-1-p to 11-1- (p + N) and outputs them to the multiplexing communication transmission line 91.
- the power splitter 55- (p + n) branches the wavelength-multiplexed downlink optical signal from the multiplex communication transmission line 91, and outputs the branched downlink optical signal to the subscriber device 40- (p + n).
- the subscriber devices 40-p to 40- (p + N) receive the wavelength-multiplexed downlink optical signal, and select the downlink optical signal addressed to the own device from the received downlink optical signal.
- the subscriber device 40- (p + n) transmits an upstream optical signal with a wavelength of ⁇ 2 (1 + n) .
- Each power splitter 55- (p + n) has a wavelength ⁇ 2 (1 + n) input from the subscriber device 40- (p + n) to an optical signal having an upstream wavelength ⁇ 2 (2 + n) to ⁇ 2N transmitted through the multiplex communication transmission line 91.
- the WDM device 81 inputs an upstream optical signal wavelength-multiplexed from the multiplex communication transmission line 91 and separates it into an upstream optical signal having wavelengths ⁇ 21 to ⁇ 2N .
- the WDM device 81 inputs an upstream optical signal having a wavelength of ⁇ 2 (1 + n) to port 11-1- (p + n). Similar to the optical SW1002 shown in FIG. 16, the optical SW1005 receives an upstream optical signal having a wavelength ⁇ 2 (1 + n) according to the combination of the input port 11-1- (p + n) and the wavelength ⁇ 2 (1 + n) . Output from the output destination port 11-2- (q + n). As a result, the upstream optical signal of wavelength ⁇ 21 transmitted by the subscriber device 40-p is input from port 11-1-p and output from port 11-2-1. The upstream optical signal of wavelength ⁇ 22 transmitted by the subscriber device 40- (p + 1) is input from port 11-1- (p + 1) and output from port 11-2-2. As shown in FIG. 21, the WDM device may be placed after the optical SW.
- FIG. 21 is a diagram showing a bus-type access topology using wavelength division multiplexing and placing a WDM device after the optical SW.
- the optical SW1006 the above-mentioned optical SW10a to 10i can be used.
- the port 11-2-q of the optical SW1006 (q is an integer of 1 or more and Q or less) is connected to the WDM device 97 via the transmission line 50-2-q.
- the WDM device 97 is connected to ground #n (n is an integer of 1 or more and N or less, N is an integer of 2 or more) via a transmission line 50-2-q-n.
- a power splitter 55 of 1 or more is provided in the transmission line 50-1-p connected to the port 11-1-p of the optical SW1006 (p is an integer of 1 or more and P or less).
- the power splitter 55 to which the subscriber device 40-pn is connected is referred to as a power splitter 55-n.
- the WDM device 97 inputs a downlink optical signal transmitted from the ground #n to the subscriber device 40-pn having a wavelength ⁇ 1n from the transmission line 50-2-q-n.
- the WDM device 97 inputs to the optical SW 1006 a wavelength division multiplexing signal multiplexed with downlink optical signals having wavelengths ⁇ 11 to ⁇ 1N input from each of ground # 1 to ground # N.
- the optical SW1006 outputs the downlink wavelength division multiplexing signal input from the port 11-2-q from the output destination port 11-1-p.
- the power splitter 55-n branches the downlink wavelength division multiplexing signal from the transmission line 50-1-p, and outputs the branched downlink wavelength division multiplexing signal to the subscriber device 40-pn.
- the subscriber devices 40-p-1 to 40-p-N select a downlink optical signal addressed to the own device from the received downlink wavelength division multiplexing signal. As a result, the subscriber device 40-pn receives an optical signal having a wavelength of ⁇ 1n from the ground #n.
- the subscriber device 40-pn transmits an upstream optical signal having a wavelength of ⁇ 2n .
- Each power splitter 55-n wavelength-multiplexes the upstream optical signal of the wavelength ⁇ 2n input from the subscriber device 40-pn with the upstream optical signal transmitted through the transmission line 50-1-p.
- the optical SW1006 inputs a wavelength division multiplexing signal in which upstream optical signals having wavelengths ⁇ 21 to ⁇ 2N are wavelength-multiplexed from port 11-1-p.
- the optical SW1006 outputs an upstream wavelength division multiplexing signal from the output destination port 11-2-q to the transmission line 50-2-q.
- the WDM device 97 inputs a wavelength division multiplexing signal from the transmission line 50-2-q and separates the wavelengths.
- the WDM device 97 outputs an upstream optical signal having a wavelength of ⁇ 2n to a transmission line 50-2-q-n connected to ground #n. As a result, the optical signal having the wavelength ⁇ 2n transmitted by the subscriber device 40-pn is transmitted to the ground #n.
- FIG. 22 is a diagram showing a loop type access topology.
- the optical SW1007 the above-mentioned optical SW10a to 10i can be used.
- Some ports 11-1-p1 to 11-1-pN of the optical SW1007 (p1 ⁇ pN, p1 is an integer of 1 or more, pN is an integer of P or less) are WDM access rings that transmit optical signals of multiple wavelengths. Connected to network 31. Optical signals of several wavelengths used in the WDM access ring network 31 are transmitted to the subscriber device 40 of the communication destination or the upper NW via the optical SW1007.
- the WDM duplexer is not used, and the subscriber devices 40 facing each other are connected by two transmission lines for communication.
- the WDM access ring network 31 is a network in which R units of Add / Drop nodes 32 are connected by a transmission line 53.
- R units of Add / Drop node 32 are described as Add / Drop node 32-1 to 32-R, and Add / Drop node 32-r (r is an integer of 1 or more and R or less) and Add / Drop node 32- (r + 1). ) Is referred to as a transmission line 53-r.
- the Add / Drop node 32- (R + 1) is regarded as the Add / Drop node 32-1.
- the Add / Drop node 32-1 is connected to the port 11-1-pn of the optical SW1007 (pn is an integer of p1 or more and pN or less) via the transmission line 50-1-pn.
- the Add / Drop node 32 has a demultiplexing unit 33, an optical SW 34, and a combine unit 35.
- the demultiplexing unit 33 of the Add / Drop node 32-r (r is an integer of 2 or more and R or less) demultiplexes the wavelength division multiplexing optical signal input from the transmission line 53- (r-1), and is obtained by demultiplexing.
- the optical signal is output to the optical SW34.
- the optical SW 34 is connected to one or more subscriber devices 40. The figure shows only one subscriber device 40 connected to the optical SW34.
- the optical SW 34 drops an optical signal having a wavelength corresponding to its own node among the optical signals input from the demultiplexing unit 33.
- the optical receiver 43 of the subscriber device 40 receives the optical signal dropped by the optical SW 34.
- the optical SW 34 inputs an optical signal transmitted by the optical transmitter 42 of the subscriber device 40, and outputs the input optical signal and the optical signal that has not been dropped to the combine unit 35.
- the combine section 35 of the Add / Drop node 32-r combines the optical signal input from the optical SW34 and outputs it to the transmission line 53-r.
- Port 11-1-pn 1 of the optical SW 1007 inputs the optical signal dropped by the Add / Drop node 32-1 from the transmission line 50-1-pn 1 .
- the input optical signal and the optical signal that did not drop are output to the combine section 35.
- ONU # 1 which is a subscriber device 40 connected to the Add / Drop node 32-4 of the WDM access ring network 31, and to ports 11-2-1 and 11-2-2 of the optical SW1007.
- ONU # 2 which is the subscriber device 40, as follows.
- ONU # 1 transmits an optical signal having a wavelength of ⁇ 1 to the Add / Drop node 32-4.
- the combine section 35 of the Add / Drop node 32-4 combines the optical signal of the wavelength ⁇ 1 input by the optical SW34 and the optical signal not dropped by the optical SW 34 into the Add / Drop node 32-1. Output.
- the optical SW 34 of the Add / Drop node 32-1 drops an optical signal having a wavelength ⁇ 1 demultiplexed by the demultiplexing unit 33, and outputs the undropped optical signal to the demultiplexing unit 35.
- Port 11-1-p1 of the optical SW1007 inputs an optical signal having a wavelength ⁇ 1 dropped by the Add / Drop node 32-1 from the transmission line 50-1-p1.
- the optical SW1007 outputs an optical signal having a wavelength ⁇ 1 input from the port 11-1-p1 from the port 11-2-1.
- the optical receiver 43 of ONU # 2 receives an optical signal having a wavelength ⁇ 1 transmitted through the transmission line
- the optical transmitter 42 of ONU # 2 transmits a downlink optical signal having a wavelength of ⁇ 2 .
- Port 11-2-2 of the optical SW1007 inputs the optical signal transmitted by ONU # 2 from the transmission line 50-2-2.
- the optical SW1007 outputs a downlink optical signal of wavelength ⁇ 2 input from port 11-2-2 from port 11-1-p2.
- the optical SW34 of the Add / Drop node 32-1 inputs an optical signal having a wavelength ⁇ 2 output by the optical SW1007 from the transmission line 50-1-p2, and combines the input optical signal and the non-dropped optical signal. Output to unit 35.
- the optical signal having the wavelength ⁇ 2 is input to the Add / Drop node 32-4 via the Add / Drop nodes 32-2 and 32-3.
- the optical SW34 of the Add / Drop node 32-4 drops an optical signal of wavelength ⁇ 2 .
- the optical receiver 43 of the ONU # 1 receives an optical signal having a wavelength ⁇ 2 dropped by the Add / Drop node
- FIG. 23 is a diagram showing a loop-type access topology using a WDM duplexer.
- the optical SW1008 the above-mentioned optical SW10a to 10i can be used.
- the access topology shown in FIG. 23 differs from the access topology shown in FIG. 22 in that the optical SW1008 and the WDM access ring network 31 are connected via the WDM device 81 and the WDM device 89.
- the Add / Drop node 32-1 of the WDM access ring network 31 and the WDM device 89 are connected by transmission lines 93-1 to 93-N (N is an integer of 2 or more).
- the signal is output to the multiplex communication transmission line 91.
- the WDM device 81 demultiplexes the upstream wavelength division multiplexing optical signal received via the multiplex communication transmission line 91, and inputs the demultiplexed upstream optical signals of the wavelength ⁇ n1 to ports 11-1-n1 respectively .
- the WDM device 81 receives the downlink optical signal of the wavelength ⁇ n2 output from each of the ports 11-1-pn 2 , combines the received downlink signal, and outputs the signal to the multiplexing communication transmission line 91.
- ONU # 1 which is a subscriber device 40 connected to the Add / Drop node 32-4 of the WDM access ring network 31, and to ports 11-2-1 and 11-2-2 of the optical SW1008.
- ONU # 2 which is the subscriber device 40, as follows.
- ONU # 1 transmits an upstream optical signal having a wavelength of ⁇ 1 to the Add / Drop node 32-4.
- Another ONU transmits an upstream optical signal having wavelengths ⁇ 3 and ⁇ 5 to the Add / Drop node 32-4.
- the optical SW34 of the Add / Drop node 32-4 inputs an optical signal having wavelengths ⁇ 1 , ⁇ 3 , and ⁇ 5 .
- the combine section 35 of the Add / Drop node 32-4 combines an optical signal having wavelengths ⁇ 1 , ⁇ 3 , and ⁇ 5 input by the optical SW 34 with an optical signal not dropped by the optical SW 34, and Add / Output to Drop node 32-1.
- the optical SW34 of the Add / Drop node 32-1 drops the optical signals having wavelengths ⁇ 1 , ⁇ 3 , ⁇ 5 , ... ⁇ 17 demultiplexed by the demultiplexing unit 33, and the undropped optical signals are combined. Output to 35.
- the WDM device 89 multiplexes the upstream optical signals of wavelengths ⁇ 1 , ⁇ 3 , ⁇ 5 , ... ⁇ 17 input from each of the transmission lines 93-1, 93-3, 93-5, ..., 93-17.
- the multiplex signal is output to the multiplex communication transmission line 91.
- the WDM device 81 inputs an upstream optical signal wavelength-multiplexed from the multiplex communication transmission line 91 and separates the wavelengths.
- the WDM device 81 outputs the upstream optical signals of the wavelengths ⁇ 1 , ⁇ 3 , ⁇ 5 , ... ⁇ 17 to the ports 111-1-p1, 11-1-p3, 11-1-p5, 11-1-p5 of the optical SW1008, respectively. Enter in 11-1-p17.
- the optical SW1008 outputs an upstream optical signal having a wavelength ⁇ 1 from the output destination port 11-2-1.
- the optical receiver 43 of ONU # 2 receives an optical signal having a wavelength ⁇ 1 transmitted through the transmission line 50-2-1.
- the optical transmitter 42 of ONU # 2 transmits a downlink optical signal having a wavelength of ⁇ 2 .
- Port 11-2-2 of the optical SW1008 inputs the optical signal transmitted by ONU # 2 from the transmission line 50-2-2.
- the optical SW1008 outputs a downlink optical signal having a wavelength ⁇ 2 input from the port 11-2-2 from the port 11-1-p2.
- the optical SW1008 inputs a downlink optical signal having wavelengths ⁇ 4 , ⁇ 6 , ..., ⁇ 18 input from each of ports 11-2-4, 11-2-6, ..., 11-2-18. Output from 11-1-p4, 11-2-p6, ..., 11-2-p18.
- the WDM device 81 has wavelengths ⁇ 2 , ⁇ 4 , ⁇ 6 , ..., ⁇ output from each of the ports 11-1-p2, 11-1-p4, 11-1-p6, ..., 11-1-p18.
- a wavelength division multiplexing signal obtained by multiplexing the downlink optical signals of 18 is output to the multiplex communication transmission line 91.
- the WDM device 89 separates the wavelength division multiplexing signal transmitted through the multiplex communication transmission line 91, and transmits the downlink optical signals of the wavelengths ⁇ 2 , ⁇ 4 , ⁇ 6 , ..., ⁇ 18 obtained by the separation, respectively, to the transmission line 93. Output to -2, 93-4, 93-6, ..., 93-18.
- the optical SW34 of the Add / Drop node 32-1 transmits optical signals of wavelengths ⁇ 2 , ⁇ 4 , ⁇ 6 , ..., ⁇ 18 output by the WDM device 89 to transmission paths 93-2, 93-4, 93-6, respectively. , ..., Input from 93-18, and output the input optical signal and the optical signal that did not drop to the combiner 35.
- the combiner 35 combines the optical signal input from the optical SW34 and outputs it to the transmission line 53-1.
- the demultiplexing unit 33 of the Add / Drop node 32-2 demultiplexes the optical signal input from the transmission line 53-1 and outputs it to the optical SW34.
- the optical SW 34 drops optical signals having wavelengths ⁇ 14 , ⁇ 16 , and ⁇ 18 corresponding to its own node.
- the optical signals having wavelengths ⁇ 14 , ⁇ 16 and ⁇ 18 are transmitted to the optical receiver 43 of the subscriber device 40 corresponding to each wavelength.
- the optical SW34 of the Add / Drop node 32-2 input an optical signal having wavelengths ⁇ 13 , ⁇ 15 , and ⁇ 17 transmitted by the optical transmitter 42 of each subscriber device 40, and did not drop the input optical signal.
- the optical signal is output to the combiner 35.
- the combiner 35 combines the optical signal input from the optical SW34 and outputs it to the transmission line 53-2.
- the Add / Drop node 32-3 operates in the same manner as the Add / Drop node 32-2. However, the optical SW34 of the Add / Drop node 32-3 drops the optical signals having wavelengths ⁇ 8 , ⁇ 10 , and ⁇ 12 corresponding to the own node, and inputs the optical signals having wavelengths ⁇ 7 , ⁇ 9 , and ⁇ 11 . ..
- the demultiplexing unit 33 of the Add / Drop node 32-4 demultiplexes the wavelength division multiplexing optical signal input from the transmission line 53-3 and outputs it to the optical SW34.
- the optical SW34 of the Add / Drop node 32-4 drops optical signals having wavelengths ⁇ 2 , ⁇ 4 , and ⁇ 6 corresponding to the own node.
- the optical receiver 43 of the ONU # 1 receives an optical signal having a wavelength ⁇ 2 dropped by the optical SW 34 of the Add / Drop node 32-4.
- FIG. 24 is a diagram showing an access topology that forms one loop on two access planes.
- the optical SW1009a and the optical SW1009b the above-mentioned optical SW10a to 10i can be used.
- the optical SW1009a and the optical SW1009b are collectively referred to as an optical SW1009.
- the two ports 11-1 of the optical SW1009 are connected to both ends of one transmission line 54.
- One or more power splitters 57 are connected to the transmission line 54.
- the power splitter 57 is connected to the optical transmitter 42 of one or more subscriber devices 40 via the combiner 82 and the optical SW 95, and the optical of one or more subscriber devices 40 via the duplexer 83 and the optical SW 96. It is connected to the receiver 43.
- Each subscriber device 40 transmits and receives optical signals having different wavelengths.
- the transmission line 54 connected to the optical SW1009a is described as a transmission line 54a, and the two ports 11-1 connected to the transmission line 54a are described as ports 11a-1-p1 and 11a-1-p2, and are connected to the optical SW1009b.
- the transmission line 54 is referred to as a transmission line 54b, and the two ports 11-1 connected to the transmission line 54b are referred to as ports 11b-1-p1 and 11b-1-p2.
- N power splitters (N is an integer of 1 or more) connected to the transmission line 54a are described as power splitters 57a-1 to 57a-N, and M units (M is 1 or more) connected to the transmission line 54b.
- the power splitter 57 of (integer) is described as power splitters 57b-1 to 57b-M.
- the combiner 82 and the demultiplexer 83 connected to the power splitter 57a-n are described as the combiner 82a-n and the demultiplexer 83a-n, respectively, and the power splitter 57b.
- the combiner 82 and the demultiplexer 83 connected to ⁇ m are referred to as a combiner 82b-m and a demultiplexer 83b-m, respectively.
- optical SW95a-n The optical SW95 connected to the combiner 82a-n is referred to as an optical SW95a-n, and the optical SW96 connected to the duplexer 83a-n is referred to as an optical SW96a-n.
- optical SW95bm The optical SW95 connected to the combiner 82b-m is referred to as an optical SW95bm, and the optical SW96 connected to the duplexer 83bm is referred to as an optical SW96bm.
- the optical SW1009a and the optical SW1009b are connected by a transmission line 54c and a transmission line 54d.
- Port 11-2 of the optical SW1009a connected to the transmission line 54c is referred to as port 11a-2-q1
- port 11a-2-q2 is referred to as port 11a-2-q2
- Port 11-2 of the optical SW1009b connected to the transmission line 54c is referred to as port 11b-2-q1
- port 11-2 of the optical SW1009b connected to the transmission line 54d is referred to as port 11b-2-q2.
- the optical SW95b-m outputs optical signals of different wavelengths transmitted by the optical transmitter 42 of each subscriber device 40 to the ports corresponding to each wavelength of the combiner 82b-m.
- the combiner 82b-m inputs optical signals of different wavelengths transmitted by the optical transmitter 42 of each subscriber device 40 via the optical SW95b-m, and combines the input optical signals to generate a wavelength multiplex optical signal.
- the power splitter 57b-m matches the wavelength division multiplexing optical signal output by the combiner 82bm with the wavelength division multiplexing optical signal transmitted through the transmission line 54b in the direction from the port 11b-1-p2 to the port 11b-1-p1. Wave and output.
- Port 11b-1-p1 of the optical SW1009b inputs a wavelength division multiplexing optical signal from the transmission line 54b and outputs it from the port 11b-2-q1.
- the port 11a-2-q1 of the optical SW1009a inputs the wavelength division multiplexing optical signal output from the port 11b-2-q1 of the optical SW1009b from the transmission line 54c.
- the optical SW1009a outputs a wavelength division multiplexing optical signal input from the port 11a-2-q1 from the port 11a-1-p1 to the transmission line 54a.
- the power splitter 57a-n branches the wavelength division multiplexing optical signal that transmits the transmission path 54a in the direction from the port 11a-1-p1 to the port 11a-1-p2, and the branched wavelength division multiplexing optical signal is the demultiplexer 83a-n. Output to.
- the demultiplexer 83a-n demultiplexes the wavelength division multiplexing optical signal received from the power splitter 57a-n, and outputs the demultiplexed optical signal to the optical SW96a-n from the port corresponding to the wavelength.
- the optical SW96a-n outputs an optical signal of each wavelength input from the demultiplexer 83a-n to the optical receiver 43 of the subscriber device 40 that receives the optical signal of that wavelength.
- the optical SW95a-n outputs an optical signal to a different wavelength transmitted by the optical transmitter 42 of each subscriber device 40 to a port corresponding to each wavelength of the combiner 82a-n.
- the combiner 82a-n inputs optical signals of different wavelengths transmitted by the optical transmitter 42 of each subscriber device 40 via the optical SW95an, and combines the input optical signals to generate a wavelength multiplex optical signal.
- the power splitter 57a-n combines the wavelength division multiplexing optical signal output by the combiner 82a-n with the wavelength division multiplexing optical signal transmitted through the transmission path 54a in the direction from the port 11a-1-p1 to the port 11a-1-p2. Wave and output.
- Port 11a-1-p2 of the optical SW1009a inputs a wavelength division multiplexing optical signal from the transmission line 54a and outputs it from the port 11a-2-q2.
- the port 11b-2-q2 of the optical SW1009b inputs the wavelength division multiplexing optical signal output from the port 11a-2-q2 of the optical SW1009a from the transmission line 54d.
- the optical SW1009b outputs a wavelength division multiplexing optical signal input from the port 11b-2-q2 from the port 11b-1-p2 to the transmission line 54b.
- the power splitter 57b-m branches the wavelength division multiplexing optical signal that transmits the transmission path 54b in the direction from the port 11b-1-p2 to the port 11b-1-p1, and the branched wavelength division multiplexing optical signal is the demultiplexer 83b-m. Output to.
- the demultiplexer 83b-m demultiplexes the wavelength division multiplexing optical signal received from the power splitter 57b-m, and outputs the demultiplexed optical signal to the optical SW 96b-m from the port corresponding to the wavelength.
- the optical SW96b-m outputs an optical signal of each wavelength input from the demultiplexer 83b-m to the optical receiver 43 of the subscriber device 40 that receives the optical signal of that wavelength.
- FIG. 24 shows a case where the optical signal is transmitted counterclockwise, it may be transmitted clockwise, and two left and right cores may be set as a set for redundancy.
- FIG. 25 is a diagram showing a line-type access topology.
- the optical SW1100 the above-mentioned optical SW10a to 10i can be used.
- the access topology shown in FIG. 25 differs from the access topology shown in FIG. 16 in that the monitoring unit 60 is connected between the subscriber device 40-p and the optical SW1100.
- the monitoring unit 60 monitors the optical signal output from the subscriber device 40-p or the optical signal output from the port 11-1-p.
- FIG. 26 is a diagram showing an example in which the scalability of the optical SW is required.
- FIG. 26 shows N units (N is an integer of 1 or more) optical SW1010-1 to 1010-N.
- the optical SW1010-1 to SW1010-N the above-mentioned optical SW10a to 10i can be used.
- ONU # np as the subscriber device 40 is connected to the port 11-1-p of the optical SW1010-n (n is an integer of 1 or more and N or less).
- Port 11-2-q of the optical SW1010-n is connected to the uplink.
- the uplink is a transmission line 50-2 connected to the upper network.
- connection configuration as shown in FIG. 27 or FIG. 28 provides the same functions as when the number of users is small, for example, a connection in which an arbitrary uplink is selected, or an arbitrary subscriber. Achieves optical return to the device.
- FIG. 27 is a diagram showing an example of optical SW scalability due to a mesh configuration. Some ports 11-1 of the optical SW1010 are connected to the ONU by the transmission line 50-1, and some ports 11-2 are connected to the uplink transmission line 50-2. Further, a part of the ports 11-1 of the optical SW1010 and a part of the ports 11-2 of the other optical SW1010 are connected by a transmission line 50-3. In the figure, one optical SW1010 is connected to all the other optical SW1010s.
- the plurality of ports 11-1 of the optical SW1010 are designated as ports 11-1-1, 11-1-2, 11-1-3, ..., 11-1-p1, 11-1-p2, 11-1-p3. Described, the plurality of ports 11-2 of the optical SW1010 are referred to as ports 11-2-1, 11-2-2, 11-2-3, ..., 11-2-q1, 11-2-q2, 11-2. It is described as -q3.
- ports 11-1-1, 11-1-2, 11-1-3, ... Of the optical SW1010-n (n is an integer of 1 or more and N or less) are ONU # n1, ONU # n2, ONU. Connected to # n3, ..., Ports 11-2-1, 11-2-2, 11-2-3, ... are transmission lines 50 of uplink # n1, uplink # n2, uplink # n3, ... Connected to -2. Further, the optical SW1010-n is connected to the port 11-1 of all the other optical SW1010-j (j ⁇ n, j is an integer of 1 or more and N or less) by some ports 11-2.
- the port 11-2-q1 of the optical SW1010-1 is the port 11-1-p1 of the optical SW1010-2
- the port 11-2-q2 of the optical SW1010-1 is the port 11-1-p1 of the optical SW1010-3.
- the port 11-2-q3 of the optical SW1010-1 is connected to the port 11-1-p1 of the optical SW1010-4.
- the port 11-2-q1 of the optical SW1010-2 is connected to the port 11-1-p1 of the optical SW1010-1
- the port 11-2-q2 of the optical SW1010-2 is connected to the port 11-1-p2 of the optical SW1010-3.
- the port 11-2-q3 of the optical SW1010-2 is connected to the port 11-1-p2 of the optical SW1010-4.
- the optical SW1010-n is a port 11 of a part of the optical SW1010-j among all the other optical SW1010-j (j ⁇ n, j is an integer of 1 or more and N or less) due to some ports 11-2. You may connect to -1.
- the optical SW1010-1 transmits an optical signal input from port 11-1-1 from port 11-2-q3.
- Port 11-1-p1 of the optical SW1010-4 inputs an optical signal having a wavelength ⁇ 1 output from the port 11-2-q3 of the optical SW1010-1 and outputs the optical signal from the port 11-2-1.
- the optical SW1010-1 When the ONU # 12 transmits an upstream optical signal having a wavelength ⁇ 2 addressed to the ONU # 31, the optical SW1010-1 outputs the optical signal input from the port 11-1-2 from the port 11-2-q2. Port 11-1-p1 of the optical SW1010-3 inputs an optical signal output from the port 11-2-q2 of the optical SW1010-1.
- the optical SW1010-3 performs the same return communication as the optical SW10b shown in FIG. 3 with respect to the optical signal having the wavelength ⁇ 2 input from the port 11-1-p1, and outputs the optical signal from the port 11-1-1.
- FIG. 27 shows only the upstream optical signal.
- a WDM filter separation unit for separating and transmitting an upstream optical signal and a downstream optical signal is provided on the transmission lines 50-1, 50-2, and 50-3. Then, the downlink optical signal is connected in the opposite direction to the upstream optical signal described above.
- FIG. 28 is a diagram showing another example of optical SW scalability in a cascade configuration.
- the configuration shown in FIG. 28 differs from the configuration shown in FIG. 27 in that the optical SW1010-n (n is an integer of 1 or more and N or less) has some other optical SW1010- (n is an integer of 1 or more and N or less) due to some ports 11-2. It is a point connected to port 11-1 of n + 1). It is assumed that the optical SW1010- (N + 1) is the optical SW1010-1. As a result, a plurality of optical SW1010s are connected in series.
- ports 11-1-1, 11-1-2, 11-1-3, ... Of the optical SW1010-n are ONU # n1, ONU # n2, ONU. Connected to # n3, ..., Ports 11-2-1, 11-2-2, 11-2-3, ... are transmission lines 50 of uplink # n1, uplink # n2, uplink # n3, ... Connected to -2. Further, the port 11-2-q1 of the optical SW1010-n is the port 11-1-p1 of the optical SW1010- (n + 1), and the port 11-2-q2 of the optical SW1010-n is the port 11 of the optical SW1010- (n + 1). At -1-p2, the port 11-2-q3 of the optical SW1010-n is connected to the port 11-1-p3 of the optical SW1010- (n + 1).
- the optical SW1010-1 transmits an optical signal input from port 11-1-1 from port 11-2-q1.
- Port 11-1-p1 of the optical SW1010-2 inputs an optical signal output from the port 11-2-q1 of the optical SW1010-1 and outputs the optical signal from the port 11-2- q1 according to the wavelength ⁇ 1.
- Port 11-1-p1 of the optical SW1010-3 inputs an optical signal output from the port 11-2-q1 of the optical SW1010-2, and outputs the optical signal from the port 11-2- q1 according to the wavelength ⁇ 1.
- Port 11-1-p1 of the optical SW1010-4 inputs an optical signal output from the port 11-2-q1 of the optical SW1010-3 , and outputs the optical signal from the port 11-2-1 according to the wavelength ⁇ 1.
- the optical SW1010-1 When the ONU # 12 transmits an upstream optical signal having a wavelength ⁇ 2 addressed to the ONU # 31, the optical SW1010-1 outputs the optical signal input from the port 11-1-2 from the port 11-2-q2. Port 11-1-p2 of the optical SW1010-2 inputs an optical signal output from the port 11-2-q2 of the optical SW1010-1. The optical SW1010-2 outputs an optical signal input from the port 11-1-p2 from the port 11-2 - q2 according to the wavelength ⁇ 2. Port 11-1-p2 of the optical SW1010-3 inputs an optical signal output from the port 11-2-q2 of the optical SW1010-2. The optical SW1010-3 performs the same return communication as the optical SW10b shown in FIG. 3 with respect to the optical signal input from the port 11-1 - p2 according to the wavelength ⁇ 2, and outputs the optical signal from the port 11-1-1. ..
- FIG. 28 shows only the upstream optical signal.
- WDM filters for separating and transmitting the upstream optical signal and the downstream optical signal are provided on the transmission lines 50-1, 50-2, and 50-3. Then, the downlink optical signal is connected in the opposite direction to the upstream optical signal described above.
- the subscriber device 401 shown in FIG. 29 (A) has an optical transceiver 411.
- the optical transceiver 411 includes a tunable light source 451 and a tunable wavelength receiver 452.
- the tunable light source 451 is an example of an optical transmission unit
- the tunable wavelength receiver 452 is an example of an optical reception unit.
- the tunable light source 451 outputs light of a set wavelength.
- the wavelength set in the tunable light source 451 is variable.
- the tunable light source 451 has, for example, a tunable laser diode (LD).
- the wavelength variable light source 451 is, for example, a combination of a gain medium and a resonator having a variable resonator length, for example, a combination of a gain medium and a wavelength selection medium, for example, a gain medium and a resonator having a variable resonator length, and a wavelength selection medium. Have any of the combinations of.
- the wavelength variable light source 451 has a duplexer or a power splitter and an optical transmitter (Tx) for each wavelength, and transmits an optical signal from an optical transmitter having a set wavelength.
- the duplexer is, for example, an AWG.
- the duplexer or power splitter combines the input light and outputs an optical signal of that wavelength.
- a duplexer or power splitter has a multi-wavelength or broadband light source and a tunable wavelength filter (tf) that selects and outputs a set wavelength.
- the variable wavelength filter passes through an optical signal having a set wavelength (variable) in the input optical signal.
- the tunable light source 451 can output a main signal (or a signal obtained by superimposing a control signal on the main signal) by, for example, a direct modulation method.
- the tunable light source 451 also has an external modulator, and the external modulator can be used to output a main signal (or a signal obtained by superimposing a control signal on the main signal).
- the external modulator MZ (Mach-Zender), EA (Electro-Absorption), SOA (Semiconductor Optical Amplifier), etc. can be used, and the structure can be integrated with the light source.
- the signal and the control signal can be modulated, or the main signal and the control signal can be modulated separately by different modulators.
- the variable wavelength receiver 452 has a variable wavelength filter and an optical receiver.
- the tunable wavelength filter passes light of a set wavelength (variable) in the input optical signal.
- the optical receiver receives an optical signal that has passed through a tunable wavelength filter.
- the selection of a tunable wavelength filter may be performed after receiving the light. For example, a beat signal centered on a frequency corresponding to a wavelength difference from a station emission having a predetermined wavelength may be selected with a frequency width corresponding to the band of the signal.
- a configuration using a transmitter having a non-variable wavelength or a configuration not using a variable wavelength filter or a demultiplexer may be used.
- the subscriber device 401a shown in FIG. 29B has an optical transceiver 411a.
- the optical transceiver 411a includes a tunable light source 451, a tunable filter 453, and an optical receiver 454.
- the tunable light source 451 is an example of an optical transmitter
- the tunable filter 453 and the optical receiver 454 are an example of an optical receiver.
- the wavelength variable filter 453 inputs an optical signal from a transmission line and passes light of a set wavelength through an optical receiver 454.
- the wavelength set in the tunable filter 453 is variable.
- the optical receiver 454 receives the optical signal passed by the tunable filter 453.
- the subscriber device 40 on the receiving side may be configured not to use the tunable filter 453 depending on the configuration of the optical SW, the multiplexing method, and the like.
- the subscriber device 401b shown in FIG. 29 (C) has an optical transceiver 411b.
- the optical transceiver 411b includes a light source 455, a tunable filter 456, and a tunable wavelength receiver 452.
- the light source 455 and the tunable wavelength filter 456 are examples of an optical transmitting unit, and the variable wavelength receiver 452 is an example of an optical receiving unit.
- the light source 455 outputs light of a single wavelength (eg, wavelength ⁇ 1 ). That is, the light source 455 is not tunable.
- the wavelength variable filter 456 inputs the optical signal output from the light source 455 and outputs the optical signal of the set wavelength to the transmission line.
- the wavelength set in the tunable filter 456 is the wavelength of the optical signal output by the light source 455.
- the subscriber device 401c shown in FIG. 30 (A) has an optical transceiver 411c.
- the optical transceiver 411c includes a tunable light source 451, a plurality of optical receivers 454-1 to 454-3, and a demultiplexer 457.
- the tunable light source 451 is an example of an optical transmitter
- the optical receivers 454-1 to 454-3 and the demultiplexer 457 are examples of an optical receiver.
- FIG. 30A shows the case where there are three optical receivers 454-1 to 454-3, the number of optical receivers 454-1 to 454-3 is not limited. Also in the following description, the number of optical receivers 454-1 to 454-3 is not particularly limited.
- the demultiplexer 457 demultiplexes the optical signal input from the transmission line according to the wavelength.
- the optical signal demultiplexed by the demultiplexer 457 is input to the optical receivers 454-1 to 454-3.
- the optical receivers 454-1 to 454-3 receive the optical signal demultiplexed by the demultiplexer 457.
- the subscriber device 401d shown in FIG. 30B has an optical transceiver 411d.
- the optical transceiver 411d includes a plurality of light sources 455-1 to 455-3, a combiner 458, and a tunable wavelength receiver 452.
- the light sources 455-1 to 455-3 and the combiner 458 are examples of an optical transmitter, and the variable wavelength receiver 452 is an example of an optical receiver.
- FIG. 30B shows a case where the number of light sources 455-1 to 455-3 is three, the number of light sources 455-1 to 455-3 is not limited. Also in the following description, the number of light sources 455 is not particularly limited.
- the light sources 455-1 to 455-3 transmit optical signals having different wavelengths.
- the combiner 458 combines a plurality of optical signals output from each of the light sources 455-1 to 455-3 and outputs them to the transmission line.
- the subscriber device 401e shown in FIG. 30C has an optical transceiver 411e.
- the optical transceiver 411e includes a plurality of light sources 455-1 to 455-3, a combiner 458, a plurality of optical receivers 454-1 to 454-3, and a demultiplexer 457.
- the light sources 455-1 to 455-3 and the combiner 458 are examples of the optical transmitter, and the optical receivers 454-1 to 454-3 and the demultiplexer 457 are examples of the optical receiver.
- the optical signals output from the light sources 455-1 to 455-3 are combined by the combiner 458 and output to the transmission line.
- the optical signal input from the transmission line is demultiplexed by the wavelength in the demultiplexer 457, and the demultiplexed optical signal is received by the optical receivers 454-1 to 454-3. It is desirable to combine multiple combine / demultiplexers or combiners if the combined wavelengths of the combined demultiplexers are the same. That is, the demultiplexer 457 and the combiner 458 may be combined.
- the subscriber device 402 shown in FIG. 31 (A) has an optical transceiver 412.
- the optical transceiver 412 includes a tunable light source 451, a tunable wavelength receiver 452, and a WDM filter 459.
- the optical transceiver 412 shown in FIG. 31 (A) differs from the optical transceiver 411 shown in FIG. 29 (A) in that it further includes a WDM filter 459.
- the WDM filter 459 separates the uplink signal and the downlink signal according to the wavelength.
- the WDM filter 459 outputs the optical signal generated by the wavelength variable light source 451 to the transmission line, and outputs the optical signal input from the transmission line to the variable wavelength receiver 452.
- the subscriber device 402 Similar to the subscriber device 401, the subscriber device 402 further has an external modulator, and can output a main signal (or a signal obtained by superimposing a control signal on the main signal) by using the external modulator.
- the WDM filter 459 shown in FIGS. 31 and 32 may be a power splitter.
- the WDM filter 459 is suitable when the insertion loss is sufficiently low with respect to the power splitter and the wavelengths used on the transmitting side and the receiving side do not overlap. It is suitable when the wavelengths used on the transmitting side and the receiving side overlap, for example, in the case of return communication between subscribers of the same type.
- the WDM filter 459 is built into the optical transceiver 412, but may be outside the optical transceiver 412 or outside the subscriber device 40.
- the subscriber device 402a shown in FIG. 31 (B) has an optical transceiver 412a.
- the optical transceiver 412a includes a tunable light source 451, a tunable filter 453, an optical receiver 454, and a WDM filter 459a.
- the optical transceiver 412a shown in FIG. 31B differs from the optical transceiver 411a shown in FIG. 29B in that it further includes a WDM filter 459a.
- the WDM filter 459a separates the uplink signal and the downlink signal according to the wavelength.
- the WDM filter 459a outputs the optical signal generated by the wavelength-variable light source 451 to the transmission line, and outputs the optical signal input from the transmission line to the wavelength-variable filter 453.
- the subscriber device 402 on the receiving side may be configured not to use the tunable filter 453 depending on the configuration of the optical SW, the multiplexing method, and the like.
- the subscriber device 402b shown in FIG. 31 (C) has an optical transceiver 412b.
- the optical transceiver 412b includes a light source 455, a tunable wavelength filter 456, a tunable wavelength receiver 452, and a WDM filter 459b.
- the optical transceiver 412b shown in FIG. 31C differs from the optical transceiver 411b shown in FIG. 29C in that it further includes a WDM filter 459b.
- the WDM filter 459b separates the uplink signal and the downlink signal according to the wavelength.
- the WDM filter 459b outputs an optical signal that has passed through the wavelength variable filter 456 to a transmission line, and outputs an optical signal input from the transmission line to a variable wavelength receiver 452.
- the subscriber device 402c shown in FIG. 32 (A) has an optical transceiver 412c.
- the optical transceiver 412c includes a tunable light source 451, a plurality of optical receivers 454-1 to 454-3, a demultiplexer 457, and a WDM filter 459c.
- the optical transceiver 412c shown in FIG. 32 (A) differs from the optical transceiver 411c shown in FIG. 30 (A) in that it further includes a WDM filter 459c.
- the WDM filter 459c separates the uplink signal and the downlink signal according to the wavelength.
- the WDM filter 459c outputs the optical signal generated by the wavelength-division-variable light source 451 to the transmission line, and outputs the optical signal input from the transmission line to the duplexer 457.
- the subscriber device 402d shown in FIG. 32 (B) has an optical transceiver 412d.
- the optical transceiver 412d includes a plurality of light sources 455-1 to 455-3, a combiner 458, a tunable wavelength receiver 452, and a WDM filter 459d.
- the optical transceiver 412d shown in FIG. 32B differs from the optical transceiver 411d shown in FIG. 30B in that it further includes a WDM filter 459d.
- the WDM filter 459d separates the uplink signal and the downlink signal according to the wavelength.
- the WDM filter 459d outputs the optical signal combined with the combiner 458 to the transmission line, and outputs the optical signal input from the transmission line to the variable wavelength receiver 452.
- the subscriber device 402e shown in FIG. 32 (C) has an optical transceiver 412e.
- the optical transceiver 412e includes a plurality of light sources 455-1 to 455-3, a combiner 458, a plurality of optical receivers 454-1 to 454-3, a demultiplexer 457, and a WDM filter 459e.
- the optical transceiver 412e shown in FIG. 32 (C) differs from the optical transceiver 411e shown in FIG. 30 (C) in that it further includes a WDM filter 459e.
- the WDM filter 459e separates the uplink signal and the downlink signal according to the wavelength.
- the WDM filter 459e outputs the optical signal combined with the combiner 458 to the transmission line, and outputs the optical signal input from the transmission line to the duplexer 457. It is desirable to combine a plurality of combine / demultiplexers or combiners if the combined demultiplexing wavelengths are the same. That is, the demultiplexer 457 and the combiner 458, the demultiplexer 458 and the WDM filter 459e, the demultiplexer 457 and the WDM filter 459e, and the demultiplexer 457 and the combiner 458 and the WDM filter 459e may be combined.
- any of the configurations shown in FIGS. 29 to 32 may be used as the subscriber device 40.
- the signal is branched and monitored using a power splitter, but without branching, gain, applied voltage, and current due to signal conduction at a frequency of at least about the carrier wave of AMCC in the transmission line. It may be configured by incorporating a medium whose resistance changes, for example, a semiconductor amplifier or the like. Wavelength-multiplexed signals do not branch by using a medium that is highly wavelength-dependent for changes in gain, voltage, current, resistance, etc. using superlattice structures such as MQW (Multiple quantum well) and photonic crystal. You may monitor it.
- MQW Multiple quantum well
- FIGS. 33 to 37 a configuration example of the monitoring unit 60 and the monitoring unit 65 will be described with reference to FIGS. 33 to 37 in the case of branching.
- the monitoring unit 60 will be described as an example.
- FIGS. 33 to 37 an example of monitoring in the up direction and the down direction will be described, but the monitoring unit 60 outputs from the subscriber device 40, for example, from the viewpoint of monitoring the subscriber device 40.
- Monitoring may be performed in only one direction. In the case of only one direction, if the transmitter and the receiver are replaced with a combination of a transmitter and a receiver connected to, for example, a transmitter / receiver, a power splitter, or a duplexer, the two directions are obtained.
- the receiver and the transmitter are described in close proximity to the power splitter 61 and the duplexer branching from the transmission line, they may be arranged in a distant place, for example, via one or a plurality of optical SWs.
- the receiver or transmitter of the control unit may also serve as the receiver or transmitter of the monitoring unit 60 and may be connected to them.
- the monitoring unit 60 monitors the optical signal. For monitoring, place the optical receiver or optical transmitter / receiver in the vicinity of the turnout or duplexer, or in a place where optical signals can be connected.
- the monitoring unit 60 branches the optical signal by the combined branching device or the combined / demultiplexing device, monitors the received optical signal, and further receives the control signal superimposed on the received optical signal.
- the monitoring unit 60 includes a switch or a demultiplexer provided at a port or transmission line on the input side, via or output side of the optical SW, or a connection point thereof, and a cutoff unit that cuts off the main signal in some cases.
- a duplexer is arranged at port 11-2 or transmission line 2 on the ground side or its connection point, and the input optical signal is transmitted from the optical SW to the upstream optical signal from the optical SW and from another ground or higher network according to the wavelength.
- the input downlink signal may be separated and output to the optical SW.
- the monitoring unit 60 may be connected via an optical SW different from the optical SW to which the subscriber device 40 to be controlled is connected.
- the optical signal separated from the transmission path in which the junction branching device transmits the optical signal of the subscriber device 40 to be controlled is input to the optical SW connected to the monitoring unit 60 separately from the connection to the subscriber device 40. It is multiplexed as necessary, transmitted to the optical SW to which the monitoring unit 60 is connected, and connected to the monitoring unit 60. Alternatively, it is not input to the optical SW, but is directly input to the optical SW connected to the control unit or the monitoring unit 60.
- the junction branch or duplexer divides the ports constituting the optical SW into a plurality of groups, and divides the ports into a plurality of groups, and connects to the port 11-2 or the transmission line 2 or the port 2 connected to the port 11-2 or the port 2 belonging to one group when not connected within the group. It may be provided in the connected transmission line 2.
- the branching may be performed before the wavelength separation or after the separation. It may be provided on the optical SW side or on the transmission line side of the duplexer for upper / lower multiplexing. If it is provided on the transmission line side, the uplink and downlink optical signals transmitted on the transmission line can be branched by one unit. In that case, the branched up light signal and down light signal are input to the ports of the optical SW, respectively.
- the optical SW outputs the input optical signal from the port connected to the monitoring unit 60. As a result, the monitoring unit 60 receives the branched optical signal.
- the monitoring unit 60a shown in FIG. 33A shows a specific configuration of the monitoring unit 60.
- the monitoring unit 60a has a power splitter 61 and a plurality of receivers 62-1 to 62-2.
- the receivers 62-1 to 62-2 receive the optical signal branched by the power splitter 61.
- the receivers 62-1 to 62-2 may be provided in a number corresponding to the number of branches of the power splitter 61.
- An example is shown in which a total of one is provided.
- the monitoring unit 60a shown in FIG. 33A shows a specific configuration of the monitoring unit 60.
- the monitoring unit 60a has a power splitter 61 and a plurality of receivers 62-1 to 62-2.
- the receivers 62-1 to 62-2 receive the optical signal branched by the power splitter 61.
- the number of receivers 62 is not particularly limited.
- the monitoring unit 60b shown in FIG. 33B shows a specific configuration of the monitoring unit 65.
- the monitoring unit 60b includes a power splitter 61, a plurality of receivers 62-1 to 62-6, and a plurality of WDM devices 63b-1 to 63b-2.
- Receivers 62-1 to 62-3 are connected to the WDM device 63b-1.
- Receivers 62-4 to 62-6 are connected to the WDM device 63b-2.
- the WDM device 63b-1 splits the optical signal branched by the power splitter 61 and outputs it to the receivers 62-1 to 62-3.
- the WDM device 63b-2 splits the optical signal branched by the power splitter 61 and outputs it to the receivers 62-4 to 62-6.
- the number of WDM devices 63b is not particularly limited.
- the monitoring unit 60c shown in FIG. 33C has a power splitter 61, a plurality of receivers 62-1 to 62-2, and a WDM device 63c.
- the WDM device 63c combines a plurality of input optical signals and outputs them to the transmission line 601.
- the WDM device 63c demultiplexes the optical signal input from the transmission line 601 and outputs it to the transmission lines 602-1 and 602-2.
- the monitoring unit 60d shown in FIG. 34 (A) has a plurality of power splitters 61-1 to 61-3, a plurality of receivers 62-1 to 62-6, and a WDM device 63d.
- the transmission line 602-1 is provided with a power splitter 61-1
- the transmission line 602-2 is provided with a power splitter 61-2
- the transmission line 602-3 is provided with a power splitter 61-3.
- Receivers 62-1 to 62-2 are connected to the power splitter 61-1
- receivers 62-3 to 62-4 are connected to the power splitter 61-2
- receiver 62 is connected to the power splitter 61-3.
- -5 to 62-6 are connected.
- the WDM device 63d demultiplexes the optical signal input from the transmission line 601 and outputs the optical signal to the transmission lines 602-1 to 602-3.
- the WDM device 63d combines the optical signals input from the transmission lines 602-1 to 602-3 and outputs them to the transmission line 601.
- FIG. 34 (A) each transmission line 602-1 to 602-after demultiplexing by the WDM device 63d when viewed from the transmission line 601 or before combining by the WDM device 63d when viewed from the transmission line 602.
- the receivers 62-1 to 62-6 are provided in 3
- the receiver 62 may not be provided in the transmission line that does not require reception.
- the monitoring unit 60e shown in FIG. 34B includes a plurality of power splitters 61-1 to 61-2, a plurality of receivers 62-1 to 62-2, and a plurality of WDM devices 63e-1 to 63e-2.
- Transmission lines 602-1 and 602-2 are provided between the WDM device 63e-1 and the WDM device 63e-2.
- a power splitter 61-1 is provided on the transmission line 602-1, and a power splitter 61-2 is provided on the transmission line 602-2.
- a receiver 62-1 is connected to the power splitter 61-1 and a receiver 62-2 is connected to the power splitter 61-2.
- the WDM device 63e-1 demultiplexes the optical signal input from the transmission line 601 and outputs the optical signal to the transmission lines 602-1 to 602-2.
- the WDM device 63e-1 combines the optical signals input from the transmission lines 602-1 to 602-2 and outputs them to the transmission line 601.
- the WDM device 63e-2 demultiplexes the optical signal input from the transmission line 603 and outputs it to the transmission lines 602-1 to 602-2.
- the WDM device 63e-2 combines the optical signals input from the transmission lines 602-1 to 602-2 and outputs them to the transmission line 603.
- receivers 62-1 to 62-2 are provided in the transmission lines 602-1 to 602-2 after demultiplexing and before combining, but the transmission lines do not require reception. Does not have to include the receiver 62.
- the subscriber device 40 may be controlled from the monitoring unit.
- the monitoring unit may set or change the wavelength of the subscriber device 40 in the same manner as the control unit 20.
- the setting especially the wavelength, optical signals other than the wavelength set at the time of change do not reach the unintended destination, so it is desirable to set so that the output from the target device does not reach the destination until the change is completed. ..
- the configuration controlled from the monitoring unit will be described with reference to FIG. 35.
- the monitoring unit 60f shown in FIG. 35 (A) has a power splitter 61, a plurality of receivers 62-1 to 62-2, and a modulator 64.
- the transmission line 601 is provided with a power splitter 61 and a modulator 64.
- the monitoring unit 60f includes a modulator in the middle of the path of the main signal, and the modulator 64 modulates the main signal.
- Modulators include external modulators, amplifiers that modulate the amplification factor according to the control signal, gain saturation according to the optical signal from the monitoring unit 60f, intermodulation, and non-linear effects such as four-light wave mixing and the Raman effect. It may be modulated.
- FIG. 35A shows a configuration in which the monitoring unit 60f includes a power splitter 61, receivers 62-1 to 62-2, and a modulator 64, but the modulator 64 is about the carrier wave of AMCC. It can be replaced by a device that can modulate the input intensity monitor and output by frequency, such as a multi-electrode optical semiconductor amplifier.
- the power splitter 61 When modulating with external light, the power splitter 61 also serves as a modulator without separately providing a modulator 64.
- the power splitter 61 is a semiconductor optical amplifier with a large gain saturation and a non-linear effect, a non-linear fiber (Highly Nonlinear Fiber: HNLF), a non-linear optical crystal, and a periodic polarization inversion optical element (for example, PPKTP) that facilitates pseudo-phase matching for non-linear mutual.
- PPKTP periodic polarization inversion optical element
- the frequency band of the control signal be different from the frequency band that has already been modulated.
- the difference in frequency band is, for example, 2B or more when the modulation band of the signal is B so that the modulation side bands of the existing modulation and the new modulation do not overlap each other, or more from the viewpoint of preventing interference, or vice versa. Assuming that it is cut out with a filter, it may be about 0.5 to 0.8 times that. Further, after the inverse modulation shown in FIG. 35 (B), another modulator 64 may be used for modulation.
- the frequency bands may be overlapped. Further, it may be modulated by a signal corresponding to the product of the reverse modulation of the existing modulation and the new modulation, and the modulation by the plurality of modulators 64 may be combined with the modulation of one modulator 64.
- the monitoring unit 60f may perform the process described with reference to FIG. 35 (B) in order to reduce the influence of the AMCC on the main signal.
- the monitoring unit 60f has the same modulation method as the AMCC received by the receiver 62-2 and the reverse signal (in the case of 1/0 intensity modulation, 0 overlaps with the signal modulated by 1). , 1 may be superimposed on the signal modulated by 0, and the main signal modulated by AMCC may be modulated by the modulation having the opposite phase and the intensity that just cancels out. Thereby, the influence on the main signal of AMCC can be reduced.
- the monitoring unit 60g shown in FIG. 36 includes a plurality of power splitters 61-1 to 61-2, a plurality of receivers 62-1 to 62-2, a plurality of WDM devices 63g-1 to 63g-2, and a plurality of receivers. It has modulators 64g-1 to 64g-2.
- Transmission lines 602-1 and 602-2 are provided between the WDM device 63g-1 and the WDM device 63g-2.
- the transmission line 602-1 is provided with a modulator 64g-1 and a power splitter 61-1, and the transmission line 602-2 is provided with a 64g-2 and a power splitter 61-2.
- a receiver 62-1 is connected to the power splitter 61-1 and a receiver 62-2 is connected to the power splitter 61-2.
- the WDM device 63g-1 demultiplexes the optical signal input from the transmission line 601 and outputs the optical signal to the transmission lines 602-1 to 602-2.
- the WDM device 63g-1 combines the optical signals input from the transmission lines 602-1 to 602-2 and outputs them to the transmission line 601.
- the WDM device 63e-2 demultiplexes the optical signal input from the transmission line 603 and outputs it to the transmission lines 602-1 to 602-2.
- the WDM device 63e-2 combines the optical signals input from the transmission lines 602-1 to 602-2 and outputs them to the transmission line 603.
- the optical signals input from the transmission lines 602-1 to 602-2 to the WDM device 63e-1 and the WDM device 63e-2 are modulated by the modulators 64g-1 and 64g-2.
- the branched optical signal is modulated after being received by the receivers 62-1 to 62-2, but the quality of the received optical signal due to the modulation, for example, the signal-to-noise ratio of the received control signal or SN (signal-to).
- the modulated optical signal may be branched by the power splitters 61-1 to 61-2 and received by the receivers 62-1 to 62-2. ..
- the monitoring unit Like the subscriber device 40 and the control unit 20, the monitoring unit includes an optical transmitter / receiver, an optical transceiver having a variable wavelength or a non-variable wavelength, and is connected to the port of the optical SW. If the transmitter is a variable wavelength transmitter, an optical signal of any wavelength can be transmitted.
- the monitoring unit transmits a control signal to the subscriber device 40 as an optical signal.
- the power splitter of the transmission line that transmits the optical signal of the subscriber device 40 to be controlled merges the control signal with the optical signal transmitted through the transmission line.
- the monitoring unit receives a request for changing the connection destination from the subscriber device 40, etc., and transmits a control signal to the subscriber device 40 even when the subscriber device 40 is performing normal communication. It becomes possible to carry out switching and the like.
- the specific configuration in which the monitoring unit includes the transmitter will be described later.
- the subscriber device 40 When the subscriber device 40 is performing normal communication, it cannot communicate with the control unit 20 when the control unit 20 controls the subscriber device 40 with an optical signal directly or via an optical SW or the like.
- the monitoring unit When the monitoring unit is provided with a transmitter, it is possible to instruct various settings of the subscriber device 40 and the like. That is, the monitoring unit inputs the optical signal inserted and separated into the transmission path for transmitting the optical signal to the subscriber device 40 to be controlled by the power splitter.
- the AMCC modulates the main signal and the AMCC signal with a signal superimposed by an electric stage, or further modulates the main signal with an optical stage.
- the transmitter of the monitoring unit inputs an optical signal corresponding to the control signal separately from the main signal and multiplexes it.
- the wavelength of the optical signal corresponding to the control signal is a wavelength that passes through the same path as the main signal from the transmitter to the point where the control signal corresponding to AMCC is received at least.
- the monitoring unit does not modulate the main signal, but separately modulates the input optical signal intensity with the frequency of the AMCC carrier wave, so that the optical signal that combines the main signal and the control signal equivalent to the AMCC is the carrier wave of the AMCC. It is equivalent to modulation with frequency.
- the intensity modulation of the control signal is received together with the main signal is shown, but in the case of phase modulation or the like, the control signal may be received by using delayed detection or local emission.
- the AMCC is more than double the line width. It can be demodulated as if it was modulated by AMCC as well as the average value of the light intensities of both in 1 bit or 1 baud time.
- the modulation sideband at the carrier frequency in AMCC and the modulation sideband at the bit rate or baud rate of the main signal are superimposed, demodulation becomes difficult by direct detection with the same modulation as usual.
- coherent reception or the like may be performed, and the light may be removed by the electric stage by the most probable determination or the like and received. It may be synchronized with the phase. In the case of phase synchronization, it is possible even if the AMCC is modulated using the phase. In this case, the phase after multiplexing is modulated so as to be the phase after modulation.
- the intensity and wavelength of the signal light and the control light may be measured by different measuring means, for example, and a part of the optical signal of the main signal and the optical signal input to the power splitter from the transmitter of the monitoring unit is the monitoring unit. It may be measured by the same measuring means so that it can be received by the receiver of. The latter has the effect of having few measuring means.
- the effect of beat noise between lights on the main signal may be observed and adjusted.
- the main signal is measured before multiplexing the control lights, and then the signal after multiplexing the control lights is equivalent to applying the desired AMCC, or after multiplexing the main signal due to beat noise between the lights. Measure the effect on the light. Then, the intensity and wavelength of the optical signal of the control signal are adjusted. In the case of phase synchronization, feedback may be given in the measurement after multiplexing.
- the transmitter is used in the monitoring unit.
- the control unit 20 is looped using the folded transmission line (upper middle of the figure) instead of being installed at the port of the optical SW10, the transmission line or their connection point, the electricity described later Similar to the processing unit, the optical SW10 may be used as a sash (lower middle of the figure).
- the monitoring unit 60h terminates the main signal, and the transmitter superimposes AMCC on the photoelectrically converted main signal and modulates it, or transmits an optical signal modulated by the main signal and further modulated by AMCC.
- the monitoring unit 60h does not have a power splitter for joining and branching the main signal, but similarly, the port, transmission line or theirs on the input side, the transit side, or the output side of the optical SW. It may be installed at the connection point. In this configuration, since the signal is terminated once, the wavelength up to the monitoring unit 60h and the wavelength from the monitoring unit may be different as long as they are transmitted along the desired path.
- the monitoring unit 60h does not have an optical receiver or an optical transmitter / receiver, and the branched optical signal may be transmitted and output to the control unit 20 via, for example, the optical SW10.
- the control unit 20 includes an optical receiver and an optical transmitter / receiver, and the monitoring unit 60h is provided at the input side or via or output side port or transmission line of the optical SW or its connection point. It is a function to set the path to the power splitter or the duplexer and the control unit 20, and the power splitter or the duplexer or the path as needed.
- the path may be realized by the optical SW, and the setting may be performed by the control unit.
- the monitoring unit 60h may include an optical receiver and an optical transmitter / receiver, and may further include a blocking unit. At the time of initial setting, setting change, and abnormality detection, the route from the monitoring unit to the output destination may be blocked or blocked by the blocking unit to set, change, or block the subscriber device.
- the monitoring unit 60-60h monitors the optical signal.
- the monitoring units 60 to 60h monitor by an optical signal branched by a power splitter or a WDM device, and further receive a control signal superimposed on the received optical signal.
- FIGS. 33 to 37 show a configuration in which the monitoring units 60 to 60h include the receiver 62, the monitoring units 60 to 60h may include the transmitter.
- the monitoring units 60 to 60h may be connected via an optical SW different from the optical SW to which the subscriber device 40 to be controlled is connected.
- the optical signal separated by the power splitter 61 in the transmission line for transmitting the optical signal of the subscriber device 40 to be controlled is an optical SW different from the optical SW connected to the subscriber device 40, and is a monitoring unit. It is input to the optical SW to which 60 to 60h is connected. At this time, it is multiplexed as necessary, transmitted to the optical SW to which the monitoring units 60 to 60h are connected, and connected to the monitoring units 60 to 60h.
- the monitoring units 60 to 60h are not particularly distinguished, they will be described as the monitoring unit 60.
- FIG. 38 is a diagram showing a configuration example of the optical access system 100.
- the optical access system 100 includes an optical gateway (GW) 200 and an operating system (OPS) 300.
- the OPS 300 may be integrated with the control unit 20, and may be referred to as a control unit or OPS on behalf of both.
- the subscriber device 40 is communicably connected to an upper network such as the optical communication network 30 shown in FIG. 1 by the optical access system 100.
- the subscriber device 40 is a device on the optical subscriber side.
- the subscriber device 40 is connected to the optical GW 200 via the transmission line 501.
- the transmission line 501 is, for example, an optical fiber.
- the optical GW 200 is a device in the communication station building.
- the subscriber device 40 represented by the reference numeral N1 and the optical GW 200 are connected via, for example, a transmission line 501 or a power splitter 502.
- the network configuration for connecting the subscriber device 40 to the optical GW 200 may be various network topologies such as PtoP (point-to-point), PON configuration, bus type, mesh type, ring type, and multi-ring type. ..
- the transmission line 501 may have a power splitter 502 or the like, and a plurality of subscriber devices 40 may be connected to one transmission line 501.
- the optical GW 200 is connected to another station building, a core network, or the like via the transmission line 511 and the transmission line 512.
- the transmission line 511 and the transmission line 512 are, for example, optical fibers.
- the transmission line 511 transmits an uplink signal
- the transmission line 512 transmits a downlink signal.
- the transmission line 511 and the transmission line 512 are examples of multiplex communication transmission lines that transmit wavelength-multiplexed optical signals.
- connection from the optical GW 200 indicated by the reference numeral N2 to another station building or the core network is connected by, for example, an optical fiber transmission line 511 or a transmission line 512, and the connection between the grounds is connected so as to be a full mesh.
- the optical GW 200 is installed in the station building of the ground A, and is installed in the optical communication device set in the station building of the ground B and the station building of the ground C via the optical communication network 30 or the like.
- the case where the optical communication device is connected to the current optical communication device will be described as an example.
- the optical communication device of the ground B and the ground C to which the optical GW 200 is connected may be the optical GW 200.
- the subscriber device 40 is connected to the optical GW 200 via the transmission line 501.
- the subscriber device 40 has an optical transceiver 41.
- the optical transceiver 41 is a tunable optical transceiver.
- the optical transceiver 41 is, for example, an optical transceiver that mutually converts an optical signal and an electric signal.
- the subscriber device 40 can select its own wavelength and set it in the optical transceiver 41 according to the transmission / reception destination.
- the subscriber device 40 sets the wavelength to be used in the optical transceiver 41 according to the instruction received from the optical GW 200.
- the subscriber devices 40 of M units (M is an integer of 1 or more) connected to the optical GW 200 are referred to as subscriber devices 40-1 to 40-M.
- the optical GW 200 includes an optical SW210, a wavelength duplexer 220, a control unit 230, a duplexer 241 and a duplexer 242, a branching unit 250, and a monitoring unit 260.
- the monitoring unit 260 may be replaced with any of the above-mentioned monitoring units 60 to 60h.
- the optical SW210 has a plurality of input / output ports (hereinafter referred to as "ports"), and connects two or more ports.
- the optical SW210 can freely switch the optical path between the ports.
- a port that inputs / outputs an uplink signal is referred to as an uplink port
- a port that inputs / outputs a downlink signal is referred to as a downlink port.
- Each port of the optical SW210 is connected to a transmission line.
- the wavelength combiner / demultiplexer 220 performs upper / lower multiplex separation that separates an uplink signal and a downlink signal according to the wavelength.
- the wavelength combiner / demultiplexer 220 inputs the upstream optical signal transmitted by the subscriber device 40 from the transmission line 501, and outputs the upstream optical signal to the optical SW210 via the transmission line 521.
- the wavelength combiner / demultiplexer 220 inputs the downlink optical signal output by the optical SW 210 from the transmission line 522, and outputs the downlink optical signal to the subscriber device 40 via the transmission line 501.
- the control unit 230 is connected to the uplink port and the downlink port to which the subscriber device 40 is not connected among the ports of the optical SW210.
- the uplink port of the optical SW210 is connected to the transmission side port of the control unit 230 by the transmission line 531.
- the downlink port of the optical SW210 is connected to the transmission side port of the control unit 230 by the transmission line 533.
- the control unit 230 includes a wavelength demultiplexer 231, an optical receiver (Rx) 232 for each wavelength channel, and a tunable transmitter 233.
- the wavelength duplexer 231 is, for example, an AWG.
- the wavelength demultiplexer 231 demultiplexes the light input to the port on the receiving side via the transmission line 540 for each wavelength.
- the wavelength demultiplexer 231 outputs the demultiplexed light to the optical receiver 232 that receives the optical signal of the wavelength of the light.
- the tunable transmitter 233 has a tunable laser diode (LD) that produces light of a variable wavelength.
- the tunable transmitter 233 transmits an optical signal having a variable wavelength by using the light generated by the tunable laser diode.
- the tunable transmitter 233 outputs an optical signal using the generated light from the port on the transmitting side to the transmission line 533.
- the combiner 241 combines the upstream optical signals of different wavelengths output from each of the plurality of transmission lines 541 by the optical SW 210 and outputs them to the transmission line 511 connected to the other ground.
- the demultiplexer 242 inputs an optical signal transmitted from any other ground to the transmission line 512, and demultiplexes the input downlink optical signal according to the wavelength.
- the demultiplexer 242 inputs the demultiplexed downlink optical signal to the optical SW 210 via a plurality of transmission lines 542 connected to the uplink port corresponding to the wavelength of the optical signal.
- the branch portion 250 is provided in the transmission line 511 and the transmission line 512.
- the branch 250 has power splitters 251 and 252.
- the power splitter 251 branches the upstream optical signal transmitted through the transmission line 511 and inputs the upstream optical signal to the optical SW 210 via the transmission line 551.
- the power splitter 252 branches the downlink optical signal transmitted through the transmission line 512 and inputs the downlink optical signal to the optical SW 210 via the transmission line 552.
- the monitoring unit 260 has a wavelength demultiplexer 261 and an optical receiver (Rx) 262 for each wavelength.
- the wavelength duplexer 261 is connected to the optical SW210 via a transmission line 560.
- the optical SW 210 outputs an optical signal input from a port connected to the transmission line 541 or the transmission line 542 to the port connected to the transmission line 560.
- the wavelength duplexer 261 receives the optical signal branched by the branch portion 250.
- the wavelength demultiplexer 261 demultiplexes the input optical signal for each wavelength.
- the wavelength demultiplexer 261 outputs each demultiplexed light to an optical receiver 262 that receives an optical signal of the wavelength of the light.
- the monitoring unit 260 monitors the state of communication transmitted / received by the subscriber device 40 by the optical signal received by the optical receiver 262.
- the monitoring unit 260 may output the monitoring result to the control unit 230 or the control unit 301 included in the OPS 300.
- the control unit 230 and the control unit 301 are used, but they may be the same.
- the monitoring unit 260 may output the monitoring result to the control unit 230, and the control unit 230 may output the output to the control unit 301.
- the control unit 230 and the control unit 301 may be the same. In that case, it is not necessary to output the output from the control unit 230 to the control unit 301 to the outside of the control unit.
- the OPS 300 has a control unit 301 and a management DB 350.
- the control unit 301 is connected to the optical GW 200.
- the control unit 301 has a wavelength control unit 310 and an optical SW control unit 320.
- the wavelength control unit 310 stores information indicating the wavelength of light used by each user (or each service).
- the wavelength control unit 310 dynamically assigns the wavelength used by each user with reference to this information.
- the wavelength control unit 310 may be installed in a building different from the optical GW 200 and may be connected to the optical SW 210 or the optical SW control unit 320 via a network. By sharing each connection information, the wavelength control unit 310 manages and controls information on which user is connected to which port of the optical SW210 and which wavelength is used in real time.
- the control unit 301 may be installed for each optical SW 210, or may be installed for each of a plurality of optical SWs. As described above, the wavelength control unit 310 executes the same processing as the wavelength control unit 25 in FIG.
- the control unit 301 is connected to the management database (DB) 350.
- the control unit 301 mutually exchanges information regarding the user and the wavelength used with the management DB 350.
- the management DB 350 stores the wavelength used by each user and the destination information.
- the destination is represented by, for example, ground A, ground B, or the like.
- the management DB 350 manages information of all users connected to the optical access system 100.
- FIG. 39 is a diagram showing an example of a SW connection table.
- the SW connection table shows the connection destination of each port of the optical SW210. That is, the port to which the optical signal is input / output can be used as information for identifying the subscriber device 40, the control unit 230, the branch unit 250, the monitoring unit 260, the ground, and the like at the source or destination of the optical signal. Is.
- the wavelength table includes a user wavelength table and an inter-station wavelength table.
- FIG. 40 is a diagram showing an example of a user wavelength table.
- the user wavelength table shows the wavelengths used by each user for transmission, the wavelengths used for reception, the empty wavelengths not used for transmission / reception, and the wavelengths that cannot be used due to a failure.
- the management DB 350 may manage the wavelength table for each transmission line connected to the optical SW210.
- FIG. 41 is a diagram showing an example of an inter-station wavelength table.
- the inter-station wavelength table one ground has a wavelength used for communication with each other ground, an empty wavelength not used for communication with each other ground, and a failure in communication with each other ground. Indicates a wavelength that cannot be used because it is inside.
- FIG. 42 is a flowchart showing an initial setting process of the optical access system 100 when a new subscriber device is connected. 38 and 42 will be used to describe the operation of the optical access system 100 when the subscriber device 40-1 is newly connected to the optical GW 200. It is assumed that the control unit 230 has confirmed in advance which port of the optical SW210 each port of the wavelength duplexer 261 (AWG) of the control unit 230 is connected to.
- AVG wavelength duplexer 261
- a user application is made before connecting a new subscriber device 40-1. For example, by applying for a user, it is possible to perform communication between the ground A and the ground B.
- the business operator registers user information, initial destination information, and the like in the management DB 350 of the OPS 300 based on the user application (step S1).
- the user information is information that can obtain, for example, a wavelength that can be used by the optical transceiver 41.
- the OPS300 refers to the SW connection table and assigns the port of the optical SW210 to which the subscriber device 40-1 is connected from the empty ports of the optical SW210 (step S2).
- At least two ports, an uplink port and a downlink port, are assigned in the case of two cores, and at least one port is assigned in the case of both one core.
- the OPS300 registers information indicating that the assigned port is connected to the subscriber device 40-1 in the SW connection table.
- the control unit 20 controls the subscriber device 400 with an optical signal
- the optical SW control unit 320 of the OPS300 is located between the port assigned to the target subscriber device 40-1 and the port to which the control unit 230 is connected.
- the optical SW210 is controlled so as to transmit and receive an optical signal.
- the optical SW210 When the subscriber device 40 is controlled by an optical signal via the optical SW210 and the monitoring unit 260, the optical SW210 is connected so as to pass through the monitoring unit 260, and the monitoring unit 260 or the communication unit is connected without the optical SW210. When it is not controlled by an optical signal or is not controlled by an optical signal, it may be left in that state if the connected port is unconnected by the optical SW210, or it may be left in that state if the connected port is cut off. May be good.
- the subscriber device 40-1 When the new subscriber device 40-1 is connected, the subscriber device 40-1 performs initialization processing and transmits a connection request (register request) by an optical signal (step S3).
- the functional unit that received the request such as the control unit 230, the monitoring unit 260, the communication unit, etc., and the functional unit that uses the measured value, for example, received the request.
- the band allocation unit that notifies transmission permission, the opposite device, etc. use the value, measure it again with the function unit to be used, or measure the measured function unit and the function unit to be used.
- the subscriber device 40-1 automatically performs the initialization process before or immediately after the connection.
- the wavelength combiner / demultiplexer 220 inputs a connection request from the transmission line 501 and outputs the connection request to the optical SW210 via the transmission line 521.
- the control unit 20 controls the subscriber device 400 with an optical signal
- the optical SW 210 outputs a connection request input from the port connected to the subscriber device 40-1 to the output port to which the control unit 230 is connected. do.
- the input to the receiving port of the control unit may be via the monitoring unit 260.
- the control unit 230 receives the connection request from the reception port via the transmission line 531.
- the control unit 230 analyzes the input optical signal and confirms whether there is a problem with the initial set wavelength and the optical power (step S4).
- control unit 230 sends a restart or initialization instruction to the subscriber device 40-1. After restarting or initial setting, the process returns to step S3, and the subscriber device 40-1 transmits the connection request again.
- the control unit 230 analyzes the optical signal received from the subscriber device 40-1 and outputs a connection request to the control unit 301 when it is confirmed that there is no problem.
- the control unit 301 registers the information of the subscriber device 40-1 in the management DB 350.
- the connection request includes information on the connection source, information on the connection destination, the type of signal to be transmitted, and the like.
- As the connection source information for example, address information such as a MAC (Medium Access Control) address is used.
- the address information of the destination is used as the information of the connection destination.
- the type of signal to be transmitted for example, a service, a modulation method, or the like is used.
- the wavelength control unit 310 registers the connection source information in the management DB 350 based on these information.
- the user wavelength table is set to identify the user who uses the subscriber device 40-1 and to indicate that the wavelength that can be used by the subscriber device 40-1 is free.
- the wavelength control unit 310 calculates the optimum route between the subscriber device 40-1 and the communication destination, such as between the ground A and the ground B, by comparing with the connection information stored in the management DB 350.
- the wavelength control unit 310 searches for a vacancy indicated by the wavelength table between stations according to the calculated path.
- the wavelength control unit 310 selects a wavelength to be used by the subscriber device 40-1 from the available wavelengths, and transmits information on the selected wavelength to the control unit 230 (step S5).
- the other subscriber device 40 which is the communication destination of the subscriber device 40-1, is referred to as the communication destination subscriber device 40.
- the wavelength control unit 310 has a transmission wavelength which is a wavelength used by the subscriber device 40-1 to transmit an optical signal to the communication destination subscriber device 40, and the subscriber device 40-1 is a communication destination subscriber.
- a reception wavelength which is a wavelength used for receiving an optical signal from the device 40, is selected.
- the wavelength control unit 310 transmits the selected transmission wavelength and reception wavelength to the control unit 230 as the wavelength used by the subscriber device 40-1.
- the wavelength control unit 310 does not have to select the reception wavelength. Further, when the subscriber device 40-1 only receives from the communication destination subscriber device 40, the wavelength control unit 310 does not have to select the transmission wavelength.
- the control unit 230 transmits wavelength information as follows.
- the wavelength variable transmitter 233 of the control unit 230 transmits a wavelength instruction set with the wavelength information selected by the wavelength control unit 310 by an optical signal having a wavelength indicating to the subscriber device 40-1.
- the optical SW210 is transmitted from a port connected to the wavelength variable transmitter 233 of the control unit 20 or via a monitoring unit or from a port connected to the communication unit when the communication unit is used.
- the input optical signal is output to the transmission line 522 connected to the subscriber device 40-1.
- the wavelength combiner / demultiplexer 220 incidents an optical signal input from the optical SW 210 via the transmission line 522 into the transmission line 501.
- the subscriber device 40-1 receives the optical signal transmitted through the transmission line 501.
- the wavelength may be wavelength-branched in the middle of the path, or may differ from the setting as long as it reaches the subscriber device 40. If there is no duplexer or the like that demultiplexes according to the wavelength between the control unit 20 and the subscriber device 40, it is not necessary to change the wavelength of the signal to be transmitted.
- the subscriber device 40-1 sets the wavelength of the optical transceiver 41 according to the wavelength instruction (step S6). That is, the subscriber device 40-1 sets the wavelength of the optical transceiver 41 (wavelength variable light source 451) so that the optical signal is transmitted by the transmission wavelength set in the wavelength indication.
- the subscriber device 40-1 sets the optical transceiver 41 (tunable wavelength filter 453) to receive the wavelength signal of the reception wavelength.
- the optical transceiver 41 of the subscriber device 40-1 transmits a notification signal notifying that the wavelength has been set by the optical signal of the instructed wavelength.
- the notification signal is transmitted to the control unit 230 via the optical SW210, the monitoring unit 260, or the communication unit, similarly to the request signal.
- the control unit 230 confirms whether the specified wavelength is set correctly, whether the output power is sufficient, and the like (step S7).
- the control unit 230 confirms whether or not the value of the notification signal is the value as instructed. Further, when the control unit 230 receives the optical signal, the control unit 230 may check the measured value of the optical signal.
- control unit 230 transmits a permission notification indicating permission to start communication to the subscriber device 40-1 by an optical signal.
- the permission notification is transmitted to the subscriber device 40-1 as well as the wavelength indication.
- the optical SW control unit 320 transmits the connection information of the optimum port in the optical SW 210 to the optical SW 210 according to the transmission destination of the subscriber device 40-1. Based on the connection information, the optical SW210 sets the uplink port and the downlink port of the subscriber device 40-1 according to the instruction from the optical SW control unit 320 (step S8).
- the optical access system 100 controls the timing so that the route switching in the optical SW210 is performed after the control unit 230 transmits the permission to start communication to the subscriber device 40-1.
- the control unit 230 actually communicates after the subscriber device 40-1 receives the permission to start communication for the time required for the optical SW210 to actually switch the route after receiving the route switching instruction. Wait until the start of communication, and then instruct to start communication.
- the monitoring unit 260 of the GW 200 confirms the confirmation of the communication status between the opposite subscriber devices (step S9). The monitoring unit 260 notifies the OPS300 of the confirmation result. If the confirmation is NG, the control unit 230 or the OPS 300 performs a procedure for isolating the cause.
- connection request transmitted by the subscriber device 40-1 and the control signal transmitted by the control unit 230 to the subscriber device 40-1 are optical signals slower than the main signal.
- the control signal for example, a protocol-free control signal (control method) such as typified by AMCC can be used.
- control unit or the OPS 300 informs the communication destination subscriber device 40 that the transmission wavelength of the subscriber device 40-1 is used as the reception wavelength of the communication destination subscriber device 40, and the reception wavelength of the subscriber device 40-1 is used. It is instructed to use the wavelength as the transmission wavelength of the communication destination subscriber device 40.
- the wavelength control unit 310 transmits a wavelength instruction in which the reception wavelength and the transmission wavelength of the communication destination subscriber device 40 are set. Instruct the control unit 230.
- the communication destination subscriber device 40 receives a wavelength instruction from the control unit 230 by a control signal, and sets a reception wavelength and a transmission wavelength in the optical transceiver 41 according to the received wavelength instruction. That is, when the transmission wavelength is set in the wavelength instruction, the communication destination subscriber device 40 sets the wavelength of the optical transceiver 41 (wavelength variable light source 451) so as to transmit the optical signal by the transmission wavelength. When the reception wavelength is set in the wavelength instruction, the communication destination subscriber device 40 sets the optical transceiver 41 (tunable wavelength filter 453) to receive the wavelength signal of the reception wavelength.
- the optical access system 100 may send and receive information registered in the management DB 350 by the user application between the new subscriber device 40-1 and the control unit 301 without performing the user application in step S1.
- the subscriber device 40-1 can communicate with another subscriber device 40 without making a user application.
- Information is transmitted / received between the subscriber device 40-1 and the control unit 301 via the control unit 230, for example, using an AMCC.
- the upstream optical signal output by the subscriber device 40-2 explaining the upstream communication is sent to the optical GW 200 via the transmission line 501.
- the wavelength combiner / demultiplexer 220 of the optical GW 200 separates the input optical signal into an upstream optical signal and a downstream optical signal according to the wavelength.
- the upstream optical signal demultiplexed by the wavelength combiner / demultiplexer 220 is input to the optical SW 210 via the transmission line 521.
- the optical SW 210 connects the port to which the upstream optical signal is input from the wavelength combiner / demultiplexer 220 to another port corresponding to the route to the transfer destination on the route to the communication destination of the subscriber device 40-2. , Outputs an optical signal.
- the optical SW210 When the wavelength is used as the destination information, the optical SW210 is connected to another port according to the transfer destination on the route to the communication destination specified by the wavelength assigned to the subscriber device 40-2 to transmit the optical signal. Output.
- the uplink signal output from the optical SW210 is combined with an optical signal of a different wavelength transmitted by another subscriber device 40 in the combiner 241 and is combined with another station building via one transmission line 511. It is transmitted to (for example, ground B).
- the combiner 241 combines wavelength channels for each station building such as ground B and ground C, respectively. By separating the transmission line 511 between the ground B and the transmission line 511 between the ground C, it is possible to use the same wavelength between the ground B and the ground C.
- the downlink is communication from the grounds B and C in the direction of the subscriber device 40.
- the downlink optical signal is sent to the optical GW 200 via one transmission line 512.
- the demultiplexer 242 of the optical GW 200 demultiplexes the downlink optical signal transmitted through the transmission line 512 according to the wavelength.
- the demultiplexer 242 inputs the demultiplexed light to the downlink port corresponding to the wavelength of the demultiplexed light via the transmission line 542, respectively.
- the optical SW210 connects the port to which the downlink optical signal is input from the duplexer 242 to another port corresponding to the wavelength, and outputs the optical signal.
- the wavelength combiner / demultiplexer 220 separates an optical signal input from the optical SW 210 via a transmission line 522 into an upstream optical signal and a downlink optical signal according to the wavelength.
- the downlink optical signal demultiplexed by the wavelength combiner / demultiplexer 220 is input to the subscriber device 40-2 via the transmission line 501. It is assumed that the wavelength channels transmitted from the optical GW 200 to each station building (ground B, C, etc.) are in the same wavelength band, but different wavelength bands may be used for each station building.
- the monitoring unit 260 of the optical GW 200 receives the light branched by the branch unit 250.
- the light branched by the branch portion 250 is an optical signal transmitted and received by each subscriber device 40.
- the monitoring unit 260 monitors the signals transmitted and received by each subscriber device 40 by monitoring the received optical signal.
- the monitoring unit 260 detects an abnormality such as a wavelength shift, a decrease in output, or a communication abnormality by monitoring, the monitoring unit 260 transmits an abnormality detection signal to the control unit 301.
- the optical SW control unit 320 of the control unit 301 controls the optical SW 210 so that the target subscriber device 40 is reconnected to the control unit 230.
- control unit 301 performs a new wavelength allocation process different from the wavelength used when the abnormality is detected, as in the case of newly connecting the subscriber device 40.
- the optical SW 210 inputs the optical signal of the changed wavelength from the subscriber device 40, the optical SW 210 connects the input optical signal to the port specified by the subscriber device 40 by the wavelength before the change.
- FIG. 43 is a diagram showing a configuration example of the optical access system 101.
- the optical access system 101 shown in FIG. 43 differs from the optical access system 100 shown in FIG. 38 in that it includes a GW 201 instead of the GW 200.
- the difference between the GW 201 and the GW 200 is that the GW 201 is provided with the wavelength combiner / demultiplexer 243 and the branch portion 250a in place of the combiner 241 and the demultiplexer 242 and the branch portion 250.
- the GW 201 is connected to a communication device of another station building on the ground by a transmission line 503.
- One transmission line 503 transmits an uplink signal and a downlink signal to or from any ground.
- the wavelength combiner / demultiplexer 243 separates the input optical signal into an upstream optical signal and a downstream optical signal according to the wavelength.
- the wavelength combiner / demultiplexer 243 separates the upstream optical signal input from the optical SW210 via the transmission line 543-1 and transmits the upstream optical signal to another ground or higher network via the transmission line 503. Further, the wavelength combiner / demultiplexer 243 separates the downlink optical signal input from the other ground via the transmission line 503 and outputs it to the optical SW210 via the transmission line 543-2.
- the branch portion 250a is provided in the transmission line 503.
- the branch portion 250a has a power splitter 251a.
- the power splitter 251a branches the upstream and downstream optical signals transmitted through the transmission line 503.
- the power splitter 251a inputs the branched upstream optical signal to the port of the optical SW210 via the transmission line 551a, and inputs the branched downstream optical signal to the port of the optical SW210 via the transmission line 551b.
- the optical SW 210 outputs an optical signal input from a port connected to the transmission line 551a and an optical signal input from a port connected to the transmission line 551b from a port connected to the transmission line 560.
- the wavelength duplexer 261 of the monitoring unit 260 receives the optical signal branched by the branching unit 250a.
- FIG. 44 is a diagram showing a configuration example of the optical access system 102.
- the optical access system 102 shown in FIG. 44 differs from the optical access system 101 shown in FIG. 43 in that it includes an optical GW 202 instead of the optical GW 201.
- the difference between the optical GW 202 and the optical GW 201 is that the optical GW 202 is provided with a wavelength combiner / demultiplexer 244, a wavelength combiner / demultiplexer 245, and a branch portion 250b instead of the wavelength combiner / demultiplexer 243 and the branch portion 250a.
- the wavelength combiner / demultiplexer 244 separates an upstream optical signal and a downstream optical signal according to the wavelength.
- the wavelength combiner / demultiplexer 244 inputs the upstream optical signal input from the optical SW 210 via the transmission line 544 to the wavelength combiner / demultiplexer 245 via the transmission line 545.
- the wavelength combiner / demultiplexer 244 inputs the downlink optical signal input from the wavelength combiner / demultiplexer 245 via the transmission line 546 to the optical SW210 via the transmission line 544.
- the wavelength combiner / demultiplexer 245 separates an upstream optical signal and a downstream optical signal according to the wavelength.
- the wavelength combiner / demultiplexer 245 transmits an upstream optical signal input from the wavelength combiner / demultiplexer 245 via the transmission line 545 to another ground or an upper network via the transmission line 503. Further, the wavelength combiner / demultiplexer 245 inputs the downlink optical signal received via the transmission line 503 to the wavelength combiner / demultiplexer 244 via the transmission line 546.
- the branch portion 250b has a power splitter 251b and a power splitter 252b.
- the power splitter 251b branches the upstream optical signal transmitted through the transmission line 545.
- the power splitter 251b inputs the branched upstream optical signal to the port of the optical SW210 via the transmission line 551b.
- the power splitter 252b branches the downlink optical signal transmitted through the transmission line 546.
- the power splitter 252b inputs the branched downlink optical signal to the port of the optical SW210 via the transmission line 552b.
- the optical SW 210 outputs an optical signal input from the port connected to the transmission line 551b and an optical signal input from the port connected to the transmission line 552b from the port connected to the transmission line 560.
- the optical signal branched by the branch portion 250b is input to the wavelength demultiplexer 261 of the monitoring unit 260.
- the monitoring unit 260 described above has a receiver configuration including a wavelength duplexer 261 and an optical receiver 262 for each wavelength.
- the monitoring unit 260 may have a tunable optical receiver instead of this receiver configuration.
- the transmitter / receiver of the control unit may have a transmitter that does not have a tunable wavelength, or may have a receiver configuration that does not have a wavelength demultiplexer. An example of such a configuration will be described with reference to FIG. 45.
- FIG. 45 is a diagram showing a configuration example of the optical access system 103.
- the optical access system 103 shown in FIG. 45 differs from the optical access system 100 shown in FIG. 38 in that it includes an optical GW 203 instead of the optical GW 200.
- the difference between the optical GW 203 and the optical GW 200 is that the optical GW 203 includes a control unit 235 and a monitoring unit 265 instead of the control unit 230 and the monitoring unit 260.
- the control unit 235 has an optical receiver 236 and an optical transmitter 237 that is not tunable.
- the monitoring unit 265 has a tunable optical receiver 266.
- the monitoring unit 265 may be replaced with any of the monitoring units 60 to 60h described above.
- FIG. 46 is a diagram showing a configuration example of the optical access system 104.
- the optical access system 104 shown in FIG. 46 differs from the optical access system 103 shown in FIG. 45 in that it includes an optical GW 204 instead of the optical GW 203.
- the difference between the optical GW 204 and the optical GW 203 is that the optical SW 211 is further provided, and the monitoring unit 265 is connected to the optical SW 211.
- the upstream optical signal separated from the transmission line 511 by the power splitter 251 of the branch portion 250 is input to the optical SW211 via the transmission line 555, and the downstream optical signal separated from the transmission line 512 by the power splitter 252 is the transmission line. It is input to the optical SW211 via 555.
- the optical SW211 is, for example, a small optical SW.
- the number of ports of the optical SW211 is 1 on the monitoring unit 260 side and 2M on the side where the monitored optical signal is input. 2M is twice the number M of the subscriber device 40 connected to the optical GW 204. It should be noted that instead of using the small optical SW, monitoring units may be prepared for the number of connected grounds to monitor signals transmitted to and received from all grounds for each ground.
- FIG. 47 is a diagram showing a configuration example of the optical access system 105.
- the optical access system 105 shown in FIG. 47 differs from the optical access system 103 shown in FIG. 45 in that the optical GW 205 is provided in place of the optical GW 203.
- the difference between the optical GW 205 and the optical GW 203 is that the optical GW 205 is further provided with a combiner 247 and a demultiplexer 248 corresponding to the ground A on which the optical GW 205 is installed.
- the combiner 247 and the duplexer 248 are connected by a transmission line 547.
- the transmission line 547 is a folded transmission line.
- the combiner 247 combines the upstream optical signals of different wavelengths output from each of the plurality of transmission lines 541 by the optical SW 210 and outputs them to the transmission line 547.
- the demultiplexer 248 demultiplexes the downlink optical signal input from the transmission line 547 according to the wavelength.
- the demultiplexer 248 inputs the demultiplexed downlink optical signal to the optical SW 210 via a plurality of transmission lines 542 connected to the downlink port corresponding to the wavelength of the optical signal.
- the transmission line 547 is provided with a branch portion 250.
- the subscriber device connected to the ground A is connected to the port for connecting to the ground B and the ground C via the optical SW.
- another set that is the same as the combination of the combiner 241 and the duplexer 242 connected to the ground B or the ground C is added.
- This added set is a combiner 247 and a demultiplexer 248.
- the output port of the added combiner 247 and the input port of the added demultiplexer 248 are connected by a transmission line 547.
- the signal output by the subscriber device 40 can be input to the optical SW210 again.
- the optical GW 205 folds back the optical signal output by a certain subscriber device 40 and re-enters the optical SW 210 as a downlink signal.
- back communication that is, communication between the subscriber devices 40 connected to the same optical GW 205 becomes possible.
- Each of the K (K is an integer of 2 or more) uplink ports corresponding to the ground A of the optical SW210 is connected to the combiner 247 by a transmission line 541, and each of the K downlink ports corresponding to the ground A of the optical SW210 is connected. It is assumed that the transmission line 542 is connected to the duplexer 248. Then, it is assumed that the kth (k is an integer of 1 or more and K or less) of the K downlink ports and uplink ports corresponding to the ground A corresponds to the wavelength ⁇ k .
- the upstream optical signal of wavelength ⁇ 1 output from the subscriber device 40-2 is connected to the first upstream port corresponding to the ground A.
- the input optical signal is folded back by the transmission line 547 and is input again to the optical SW210 as a downlink optical signal from the first downlink port corresponding to the ground A.
- the optical SW control unit 320 sets a path in the optical SW 210 so that the optical signal is transmitted to the subscriber device 40-M according to the wavelength.
- the upstream optical signal of wavelength ⁇ k output from the subscriber device 40-M is connected to the kth upstream port corresponding to the ground A.
- the input optical signal is folded back by the transmission line 547 and is input again to the optical SW210 as a downlink optical signal from the kth downlink port corresponding to the ground A.
- the optical SW control unit 320 sets a path in the optical SW 210 so that the optical signal is transmitted to the subscriber device 40-2 according to the wavelength. As a result, communication is performed between the subscriber device 40-2 and the subscriber device 40-M.
- FIG. 48 is a diagram showing a configuration example of the optical access system 106.
- the optical access system 106 shown in FIG. 48 differs from the optical access system 105 shown in FIG. 47 in that it includes an optical GW 206 instead of the optical GW 205.
- the difference between the optical GW 206 and the optical GW 205 is that it does not have a combiner 247 and a demultiplexer 248, and directly connects the upstream port and the downstream port of the optical SW210 for ground A without wavelength division multiplexing by a transmission line 548. As a result, the signal is folded back.
- FIG. 49 is a diagram showing a configuration example of the optical access system 107.
- the optical access system 107 shown in FIG. 49 differs from the optical access system 105 shown in FIG. 47 in that the optical GW 207 is provided instead of the optical GW 205.
- the optical GW 207 differs from the optical GW 205 in that it includes a power splitter 270 instead of the duplexer 248.
- the power splitter 270 branches the downlink optical signal input from the combiner 247 via the transmission line 547 into a plurality of branches, and inputs the downlink optical signal to the optical SW210 via the plurality of transmission lines 542.
- a power splitter may be provided after the demultiplexer 248 of the optical GW 205 in FIG. 47.
- the power splitter splits the optical signal demultiplexed by the demultiplexer 248 into a plurality of segments and inputs them to different ports of the optical SW210. By doing so, multicast communication of return communication becomes possible.
- optical access system 100 (Eighth configuration example of the optical access system 100)
- the optical access system of this configuration example performs multicast communication. In this configuration example, the difference will be mainly described.
- FIG. 50 is a diagram showing a configuration example of the optical access system 108.
- the optical access system 108 shown in FIG. 50 differs from the optical access system 107 shown in FIG. 49 in that it includes an optical GW 208 instead of the optical GW 207.
- the optical GW 208 differs from the optical GW 207 in that it further includes a transmission line 549 connecting the return port of the optical SW210.
- the optical SW control unit 320 controls the port for inputting the downlink optical signal from the ground C so as to be connected to the return port to which the transmission line 549 is connected according to the wavelength.
- the downlink optical signal from the ground C is transmitted through the transmission line 549 and is input again to the optical SW210 as an upstream signal of the ground A.
- the optical SW control unit 320 controls to connect the downlink optical signal input from the return port to the uplink signal port of the ground A.
- the optical signal input to the optical SW210 by folding back the transmission line 549 is output to the port connected to the combiner 247.
- the combiner 247 combines the optical signals output from the optical SW210 by each of the plurality of transmission lines 541 and outputs them to the transmission line 547.
- the optical signal output to the transmission line 547 is branched into a plurality of optical signals in the power splitter 270.
- the power splitter 270 inputs a plurality of branched optical signals to the optical SW 210 as a downlink signal of the ground A via the plurality of transmission lines 542.
- the optical SW 210 outputs an optical signal input from each transmission line 542 to a port connected to the subscriber device 40 according to the wavelength. This enables multicasting of downlink signals.
- FIG. 51 is a diagram showing a configuration example of the optical access system 109.
- the optical access system 109 shown in FIG. 51 differs from the optical access system 103 shown in FIG. 45 in that it includes an optical GW 209 instead of the optical GW 203.
- the optical GW 209 differs from the optical GW 203 in that it further includes a transmission line 570 for connecting a return port to the optical SW210 and a power splitter 271 for multicast.
- the power splitter 271 is connected to the optical SW210 via a transmission line 572 and a plurality of transmission lines 573.
- the optical SW control unit 320 controls to connect the port for inputting the upstream optical signal from the ground A to the return port to which the transmission line 570 is connected according to the wavelength. As a result, the upstream optical signal from the ground A is transmitted through the transmission line 570 and is input to the optical SW210 again. Further, the optical SW control unit 320 controls to output the optical signal input from the return port to the port connected to the power splitter 271. As a result, the optical signal input to the optical SW210 by folding back the transmission line 570 is output to the transmission line 572. The optical signal output to the transmission line 572 is branched into a plurality of optical signals in the power splitter 271.
- the power splitter 271 inputs a plurality of branched optical signals to the optical SW210 as an uplink signal via the plurality of transmission lines 573.
- the optical SW210 outputs an optical signal input from each transmission line 573 to a port connected to ground B or ground C, depending on the wavelength. This enables multicasting of uplink signals.
- FIG. 52 is a diagram showing a configuration example of the optical access system 110.
- the optical access system 110 shown in FIG. 52 differs from the optical access system 103 shown in FIG. 45 in that the optical GW 2010 is provided in place of the optical GW 203.
- the optical GW 2010 differs from the optical GW 203 in that it further includes a transmission line 574, 575 for connecting a return port to the optical SW210, and a power splitter 272, 273.
- the power splitter 272 is connected to the optical SW210 via the transmission line 581 and the plurality of transmission lines 582.
- the power splitter 273 is connected to the optical SW210 via a plurality of transmission lines 583 and a transmission line 584.
- the optical SW control unit 320 controls to connect the port for inputting the downlink optical signal from the ground C to the return port to which the transmission line 574 is connected according to the wavelength. As a result, the downlink optical signal from the ground C is transmitted through the transmission line 574 and is input again to the optical SW210 as an upstream signal of the ground A. Further, the optical SW control unit 320 controls to output the downlink optical signal input from the return port to the port to which the power splitter 272 is connected. As a result, the optical signal input to the optical SW210 by folding back the transmission line 574 is output to the transmission line 581.
- the optical signal output to the transmission line 581 is branched into a plurality of optical signals in the power splitter 272.
- the power splitter 272 inputs a plurality of branched optical signals to the optical SW210 as a downlink signal via the plurality of transmission lines 582.
- the optical SW 210 outputs an optical signal input from each transmission line 582 to a port connected to the subscriber device 40 according to the wavelength. This enables multicasting of downlink signals.
- the optical SW control unit 320 controls the port for inputting the upstream optical signal from the ground A so as to be connected to the port to which the power splitter 273 is connected according to the wavelength. As a result, the upstream optical signal from the ground A is output to the transmission line 583.
- the optical signals output to each of the plurality of transmission lines 583 are combined in the power splitter 273.
- the power splitter 273 inputs the combined optical signal to the optical SW210 via the transmission line 584.
- the optical SW 210 controls to connect the optical signal input from the transmission line 584 to the return port to which the transmission line 575 is connected. As a result, the optical signal is transmitted through the transmission line 575 and is input to the optical SW210 again.
- the optical SW 210 outputs an optical signal input from the transmission line 575 to a combiner 241 connected to the ground C according to the wavelength.
- FIG. 53 is a diagram showing a configuration example of the optical access system 111.
- the optical access system 111 shown in FIG. 53 differs from the optical access system 105 shown in FIG. 47 in that the optical GW 2011 is provided in place of the optical GW 205.
- the difference between the optical GW 2011 and the optical GW 205 is that the optical GW 2011 does not have the wavelength combiner / demultiplexer 220, and the wavelength combiner / demultiplexer 249 and the branch portion 253 are replaced with the combiner 241 and the demultiplexer 242 and the branch portion 250.
- a point further provided with a wavelength combiner / demultiplexer 238 is a diagram showing a configuration example of the optical access system 111.
- the optical access system 111 shown in FIG. 53 differs from the optical access system 105 shown in FIG. 47 in that the optical GW 2011 is provided in place of the optical GW 205.
- the difference between the optical GW 2011 and the optical GW 205 is that the optical GW
- the wavelength combiner / demultiplexer 249 is connected to the optical SW210 by a plurality of transmission lines 585.
- the wavelength combiner / demultiplexer 249 combines the upstream optical signals of different wavelengths output from each of the plurality of transmission lines 585 by the optical SW210 and outputs them to the transmission line 504 connected to any other ground. Further, the wavelength combiner / demultiplexer 249 demultiplexes the downlink optical signal input from another ground via the transmission line 504 according to the wavelength.
- the wavelength combiner demultiplexer 249 inputs the demultiplexed downlink optical signal to the optical SW210 via a plurality of transmission lines 585 connected to the uplink port corresponding to the wavelength of the optical signal.
- the branch portion 253 has a power splitter 254.
- the power splitter 254 branches an upstream optical signal and a downlink optical signal transmitted through the transmission line 504.
- the power splitter 254 inputs the branched upstream optical signal to the port of the optical SW210 via the transmission line 586, and inputs the branched downstream optical signal to the port of the optical SW210 via the transmission line 587.
- the optical SW 210 outputs an optical signal input from a port connected to the transmission line 586 or the transmission line 587 to the port connected to the transmission line 560.
- the wavelength combiner / demultiplexer 238 is connected to the optical SW210 by the transmission line 534, and is connected to the control unit 235 by the transmission line 531 and the transmission line 533.
- the wavelength combiner / demultiplexer 238 separates the input optical signal into an upstream optical signal and a downstream optical signal according to the wavelength.
- the wavelength combiner / demultiplexer 238 outputs an upstream optical signal input from the optical SW 210 via the transmission line 534 to the control unit 235 via the transmission line 531.
- the wavelength combiner / demultiplexer 238 outputs a downlink optical signal input from the control unit 235 via the transmission line 533 to the optical SW210 via the transmission line 534.
- the optical GW 2011 does not have a wavelength combiner / demultiplexer between the optical SW210 and the subscriber device 40, and has a configuration that does not separate the uplink signal and the downlink signal. This makes it possible to greatly reduce the number of ports used for the optical SW210 and greatly reduce the amount of information to be managed. Further, as shown in FIG. 54, the portion for separating the optical signal to the monitoring unit 265 may be configured as shown in FIG. 44.
- FIG. 54 is a diagram showing a configuration example of the optical access system 112 of the present embodiment.
- the optical GW 2012 of the optical access system 112 shown in FIG. 54 includes a branch portion 255 in place of the branch portion 253 included in the optical GW 2011 shown in FIG. 53.
- the branch portion 255 includes a wavelength combiner / demultiplexer 256, a wavelength combiner / demultiplexer 257, a power splitter 258, and a power splitter 259.
- the wavelength combiner / demultiplexer 256 separates the input optical signal into an upstream optical signal and a downstream optical signal depending on the wavelength.
- the wavelength combiner / demultiplexer 256 outputs the upstream optical signal input from the wavelength combiner / demultiplexer 249 to the wavelength combiner / demultiplexer 257 via the transmission line 588.
- the wavelength combiner / demultiplexer 256 outputs the downlink optical signal input from the wavelength combiner / demultiplexer 257 via the transmission line 589 to the wavelength combiner / demultiplexer 249.
- the wavelength combiner / demultiplexer 257 separates an upstream optical signal and a downstream optical signal according to the wavelength.
- the wavelength combiner / demultiplexer 257 outputs an upstream optical signal input from the wavelength combiner / demultiplexer 256 via the transmission line 588 to the transmission line 504.
- the wavelength combiner / demultiplexer 257 inputs a downlink optical signal received from another ground via the transmission line 504 to the wavelength combiner / demultiplexer 256 via the transmission line 589.
- the power splitter 258 branches the upstream optical signal transmitted through the transmission line 588 and inputs the upstream optical signal to the port of the optical SW210 via the transmission line 586.
- the power splitter 259 branches the downlink optical signal transmitted through the transmission line 589 and inputs the downlink optical signal to the port of the optical SW210 via the transmission line 587.
- the optical SW 210 outputs an optical signal input from a port connected to the transmission line 586 or the transmission line 587 to the port connected to the transmission line 560.
- the optical GW 2011 shown in FIG. 53 performs wavelength division multiplexing, but as shown in FIG. 55, a configuration in which signals transmitted to each station building (ground B or ground C) are transmitted through individual transmission lines without wavelength division multiplexing. May be.
- FIG. 55 is a diagram showing a configuration example of the optical access system 113.
- the optical access system 113 shown in FIG. 55 differs from the optical access system 101 shown in FIG. 43 in that the optical GW 2013 is provided instead of the optical GW 201.
- the difference between the optical GW 2013 and the optical GW 201 is that it does not have the wavelength combiner / demultiplexer 220 and the wavelength combiner / demultiplexer 243, and instead of the control unit 230 and the monitoring unit 260, the control unit 235 shown in FIG. 53.
- the point is that the wavelength combiner / demultiplexer 238 and the monitoring unit 265 are provided.
- the port of the optical SW 210 connected to the transmission line 503 outputs an upstream optical signal and inputs a downlink optical signal.
- FIG. 56 is a diagram showing a configuration example of the optical access system 114.
- the optical GW 2014 of the optical access system 114 shown in FIG. 56 has the same configuration as the branch portion 255 shown in FIG. 54 in place of the branch portion 250a included in the optical GW 2013 shown in FIG. 55.
- FIG. 57 is a diagram showing a configuration example of the optical access system 115.
- the optical access system 115 shown in FIG. 57 differs from the optical access system 104 shown in FIG. 46 in that the optical GW 2015 is provided in place of the optical GW 204.
- the difference between the optical GW 2015 and the optical GW 204 is that the monitoring unit 267 is connected to the optical SW211 instead of the monitoring unit 265.
- the monitoring unit 267 includes a tunable receiver 268 and a tunable transmitter 269.
- the monitoring unit 267 can receive an optical signal of an arbitrary wavelength by the wavelength variable receiver 268, and can transmit an optical signal of an arbitrary wavelength by the wavelength variable transmitter 269.
- the optical GW 2015 includes a control unit 235. When the subscriber device 40 is connected, the optical GW 2015 uses the control unit 235 to perform connection processing (registration, wavelength allocation, etc.) of the subscriber device 40, and starts normal communication.
- the subscriber device 40-1 cannot communicate with the control unit 235 because it is in a state of performing normal communication. Therefore, by providing a monitoring unit 267 connected to the optical SW211 which is a small optical SW, it is possible not only to monitor the communication status of the subscriber device 40-1 but also to instruct various settings of the subscriber device 40-1. It becomes. That is, the optical signal separated by the power splitter 251 is output to the optical SW211 via the transmission line 555. The optical SW211 outputs the input optical signal to the monitoring unit 267.
- the monitoring unit 267 monitors the optical signal received by the tunable receiver 268 from the optical SW211 and further receives a control signal superimposed on the received optical signal.
- the tunable transmitter 269 of the monitoring unit 267 transmits a control signal to the subscriber device 40 as an optical signal.
- the optical SW211 outputs an optical signal input from the tunable transmitter 269 to a port corresponding to the wavelength.
- the power splitter 251 combines the control signal input from the optical SW 211 via the transmission line 556 with the optical signal transmitted through the transmission line 512. With this configuration, even when the subscriber device 40-1 is performing normal communication, the subscriber device 40-1 receives a request for changing the connection destination, etc., and transmits a control signal to the subscriber device 40-1. It is possible to switch wavelengths and the like.
- a control signal which is slower than the optical main signal between the subscriber devices and can be superimposed on the main signal is used.
- techniques such as AMCC can be used.
- FIG. 58 is a diagram showing a configuration example of the optical access system 116.
- the optical access system 116 shown in FIG. 58 differs from the optical access system 105 shown in FIG. 47 in that the optical GW 2016 is provided in place of the optical GW 202.
- the difference between the optical GW 2016 and the optical GW 202 is that the electric processing unit 600 is connected.
- the electric processing unit 600 converts an optical signal into an electric signal, performs electrical processing, and then converts it into an optical signal again and outputs it.
- the electric processing unit 600 has an O / E conversion unit 610, a processing execution unit 620, and an E / O conversion unit 630.
- the O / E conversion unit 610 corresponds to the O / E conversion unit 85 in FIG.
- the O / E conversion unit 610 converts the optical signal input from the optical SW210 into an electric signal and outputs it to the processing execution unit 620.
- the processing execution unit 620 corresponds to the processing execution unit 86 and the storage unit 88 in FIG.
- the processing execution unit 620 performs electrical processing on the electric signal converted by the O / E conversion unit 610 by reading a program from a storage unit (not shown) such as a CPU or an accelerator and executing the program. In this electric processing, a signal processing function by electricity and a function such as OLT are implemented.
- the signal processing function is, for example, a code error correction such as FEC.
- the E / O conversion unit 630 corresponds to the E / O conversion unit 87 in FIG.
- the E / O conversion unit 87 converts an electric signal into an optical signal and outputs it to the optical SW210.
- the O / E conversion unit 610 and the E / O conversion unit 630 are, for example, tunable wavelength transmitters and receivers.
- the subscriber device 40-M is a PON ONU.
- the subscriber device 40-M is connected to the optical GW 2016 via a transmission line 501 such as an optical fiber and a power splitter 507.
- the processing execution unit 620 of the electric processing unit 600 is equipped with an error correction function, an OLT function, and the like.
- the wavelength control unit 310 notifies the processing execution unit 620 of the determination conditions for determining the signal to be electrically processed and the type of electrical processing to be performed on the signal.
- the processing execution unit 620 stores information on the determination conditions and the type of electrical processing notified from the wavelength control unit 310.
- the wavelength control unit 310 performs communication between the subscriber device 40 of the transmission source of the connection request (hereinafter referred to as the request source subscriber device 40) and the communication destination subscriber device 40. Determine whether to perform electrical processing.
- the wavelength control unit 310 depends on the distance between the opposite requesting subscriber device 40 and the communication destination subscriber device 40, the service provided to the requesting source subscriber device 40 or the communication destination subscriber device 40, and the like. It is determined whether or not to perform electric treatment, and if so, what kind of electric treatment is to be performed.
- the wavelength control unit 310 determines that the signal from the requesting subscriber device 40 to the communication destination subscriber device 40 is subjected to electrical processing (hereinafter referred to as transmission signal electrical processing), the first transmission is performed from among the available wavelengths. Allocate a credit wavelength and a second transmission wavelength. Further, when the wavelength control unit 310 determines that the signal addressed to the requesting subscriber device 40 from the communication destination subscriber device 40 is to be electrically processed (hereinafter, received signal electrical processing), the wavelength control unit 310 is selected from among the available wavelengths. (1) A wavelength for reception and a wavelength for second reception are assigned.
- the first transmission wavelength is a wavelength for routing an optical transmission signal, which is an optical signal from the requesting subscriber device 40 to the communication destination subscriber device 40, to the electric processing unit 600.
- the second transmission wavelength is a wavelength for routing the transmission signal subjected to the transmission signal electrical processing by the electric processing unit 600 to the port corresponding to the communication destination subscriber device 40.
- the first reception wavelength is a wavelength for routing a received signal, which is an optical signal from the communication destination subscriber device 40 to the requesting subscriber device 40, to the electric processing unit 600.
- the second reception wavelength is a wavelength for routing the received signal, which has been electrically processed by the electric processing unit 600, to the port corresponding to the requesting subscriber device 40.
- the first transmission wavelength and the second transmission wavelength may be the same wavelength, or the first reception wavelength and the second reception wavelength may be the same wavelength.
- the wavelength control unit 310 determines that the transmission signal electrical processing is performed, the wavelength control unit 310 sets the information of the first transmission wavelength as the transmission wavelength in the wavelength instruction to be transmitted to the requesting subscriber device 40. Further, when the wavelength control unit 310 determines that the reception signal electrical processing is performed, the wavelength control unit 310 sets the information of the second reception wavelength as the reception wavelength in the wavelength instruction to be transmitted to the requesting subscriber device 40.
- the OPS 300 determines that the transmission signal electrical processing is performed, the OPS 300 instructs the communication destination subscriber device 40 to use the reception wavelength. Further, when the OPS 300 determines that the received signal is electrically processed, the OPS 300 instructs the communication destination subscriber device 40 to use the first transmission wavelength for the transmission wavelength. For example, in the control unit 301 that controls the optical GW 200 in which the communication destination subscriber device 40 is housed, the wavelength control unit 310 transmits a wavelength instruction in which the reception wavelength and the transmission wavelength of the communication destination subscriber device 40 are set. Instruct the control unit 230.
- the wavelength control unit 310 determines that the transmission signal electrical processing is performed, the determination condition for determining that the transmission signal is from the requesting subscriber device 40 to the communication destination subscriber device 40, and the transmission signal. Generates first instruction information in which the type of transmission signal electrical processing applied to the above, the first transmission wavelength, and the second transmission wavelength are associated with each other. Further, when the wavelength control unit 310 determines that the received signal is electrically processed, the determination condition for determining that the signal is received from the communication destination subscriber device 40 to the requesting subscriber device 40, and the received signal. The type of the received signal electrical processing applied to the above, the first reception wavelength, and the second instruction information associated with the second reception wavelength are generated. The wavelength control unit 310 transmits the electric processing execution instruction in which the generated first instruction information and the second instruction information are set to the electric processing unit 600.
- the optical SW control unit 320 When the optical SW control unit 320 performs transmission signal electrical processing, the optical SW control unit 320 inputs the transmission signal of the first transmission wavelength transmitted by the requesting subscriber device 40 to the electrical processing unit 600 for the second transmission.
- the optical SW210 is controlled so that the transmission signal of the wavelength is output to the transmission line 541 corresponding to the communication destination subscriber device 40. Further, when the optical SW control unit 320 performs the received signal electric processing, the optical SW control unit 320 sends the received signal of the first transmission wavelength input from the transmission line 542 corresponding to the communication destination subscriber device 40 to the electric processing unit 600 and the electric processing unit.
- the optical SW210 is controlled so that the reception signal of the second transmission wavelength input from 600 is output to the transmission line 522 corresponding to the requesting subscriber device 40.
- the optical signal between the subscriber device 40-2 and the communication destination subscriber device 40 of the ground C is subjected to transmission signal electrical processing and reception signal electrical processing.
- the transmission signal of the first transmission wavelength transmitted by the subscriber device 40-2 is output to the electric processing unit 600 via the optical SW210.
- the O / E conversion unit 610 converts the transmission signal input from the optical SW210 into an electric signal.
- the processing execution unit 620 refers to the predetermined information included in the transmission signal converted into the electric signal and determines that the determination condition included in the first instruction information is satisfied, the transmission signal is subjected to the determination condition. Performs electrical processing of the transmission signal corresponding to.
- the processing execution unit 620 performs error correction such as FEC (forward error correction).
- the E / O conversion unit 630 converts the transmission signal of the electric signal corrected by the processing execution unit 620 into an optical signal having the second transmission wavelength indicated by the first instruction information, and outputs the optical signal to the optical SW210.
- the optical SW210 outputs a transmission signal having a second transmission wavelength to a transmission line 541 corresponding to the ground C. By performing error correction, the transmission characteristics are improved.
- the optical SW210 outputs the reception signal of the first reception wavelength input from the transmission line 542 corresponding to the communication destination subscriber device 40 of the ground C to the electric processing unit 600.
- the O / E conversion unit 610 converts the received signal input from the optical SW210 into an electric signal.
- the processing execution unit 620 refers to the predetermined information included in the transmission signal converted into the electric signal and determines that the determination condition included in the second instruction information is satisfied, the processing execution unit 620 determines the determination condition in the received signal. Received signal electrical processing corresponding to.
- the E / O conversion unit 630 converts the reception signal of the electric signal subjected to the reception signal electric processing by the processing execution unit 620 into an optical signal having the second reception wavelength indicated by the second instruction information, and outputs the reception signal to the optical SW210.
- the optical SW210 outputs the transmission signal of the second reception wavelength to the transmission line 522 corresponding to the subscriber device 40-2.
- FIG. 59 is a diagram showing a configuration example of the optical access system 116 when the electric processing unit 600 performs signal multiplexing.
- the electric processing unit 600 has O / E conversion units 610-1 and 610-2 as a plurality of O / E conversion units 610.
- the upstream optical signal of the subscriber device 40-3 and the upstream optical signal of the subscriber device 40-M are connected to the electric processing unit 600 via the optical SW210.
- the OLT function is mounted on the electric processing unit 600.
- the processing execution unit 620 of the electric processing unit 600 processes the electric stage of the OLT function.
- a plurality of subscriber devices 40 are connected to the OLT.
- the processing execution unit 620 to which the OLT function is implemented collectively manages the subscriber devices 40.
- the O / E conversion unit 610-1 converts the upstream optical signal of the subscriber device 40-3 input from the optical SW210 into an electric signal and outputs it to the processing execution unit 620.
- the O / E conversion unit 610-2 converts the upstream optical signal of the subscriber device 40-M input from the optical SW210 into an electric signal and outputs it to the processing execution unit 620.
- the processing execution unit 620 collects the upstream electric signals transmitted from the subscriber device 40-3 and the subscriber device 40-M into one, and outputs the signal to the E / O conversion unit 630.
- the E / O conversion unit 630 converts the upstream electric signal output by the processing execution unit 620 into an optical signal according to the wavelength instructed by the control unit 230, and outputs the optical signal to the optical SW210.
- the optical SW210 outputs the upstream optical signal input from the electric processing unit 600 to the transmission line 541 corresponding to the ground C.
- the electric processing unit 600 receives the plurality of optical signals dropped by the optical GW 2016 and converts them into electric signals, multiplexes the signals having the same target ground by the multiplex circuit, and then converts them into optical signals again. Then, it is transmitted to the optical GW2016. As a result, the transmission speed can be increased.
- 58 and 59 are examples in which one electric processing unit is provided, but a configuration having a plurality of electric processing units may be used.
- the power splitter 507 between the subscriber device 40 and the optical GW 2016 may be a wavelength duplexer.
- a wavelength demultiplexer is used between the subscriber device 40 and the optical GW 2016.
- This configuration example is a form in which different optical SWs to the ground are connected by a ring. In the following, the differences from the above-mentioned configuration examples will be mainly described.
- FIG. 60 is a diagram showing a configuration example of the optical access system 117.
- the optical access system 117 is configured by connecting three or more different optical SW212s to the ground in a ring via an optical communication network 30.
- the optical access system 117 is configured by ring-connecting the optical SW212a which is the optical SW212 of the ground A, the optical SW212b which is the optical SW212 of the ground B, and the optical SW212c which is the optical SW212 of the ground C. Is.
- the path between the optical SW212a and the optical SW212b in the optical communication network 30 is described as a path P31
- the path between the optical SW212b and the optical SW212c in the optical communication network 30 is described as a path P32
- the optical in the optical communication network 30 is described as a path P32.
- the path between SW212c and optical SW212a is referred to as path P33.
- one or more subscriber devices 40a are connected to the optical SW212a
- one or more subscriber devices 40b are connected to the optical SW212b
- one or more subscriber devices 40c are connected to the optical SW212c. ..
- the optical SW212 the above-mentioned optical SW or optical GW is used.
- the ground B in FIGS. 6 to 10, 38, and 43 to 59 is defined as the counterclockwise ground in the ring shown in FIG. 60
- the ground C in FIGS. 6 to 10, 38, and 43 to 59 Is a clockwise ground in the ring shown in FIG. 60.
- the light SW212a of the ground A is connected to the light SW212b of the ground B by the path P31
- the light SW212b of the ground B to the light SW212a of the ground A are connected to the light SW212-c of the ground C and the path P33. Connected via.
- the light SW212a of the ground A is connected to the light SW212c of the ground C by the path P33
- the light SW212c of the ground C is connected to the light SW212a of the ground A via the path P32, the light SW212b of the ground B, and the path P31. The light.
- a clockwise path connecting the light SW212a of the ground A to the light SW212b of the ground B via the light SW212c of the ground C with the counterclockwise connection from the light SW212a of the ground A to the light SW212b of the ground B as a preliminary system. It is also possible to connect with, and the reverse rotation is also possible.
- the light SW212-a of the ground A is connected to the light SW212c of the ground C via the light SW212b of the ground B in the counterclockwise direction. It is possible to connect by the route of, and the reverse rotation is also possible.
- a counterclockwise route via the path P31, the optical SW212b to the ground B, the route P32, the optical SW212c to the ground C, and the path P33 is also possible to use a counterclockwise route via the route P33, the light SW212c of the ground C, the route P32, the light SW212b of the ground B, and the route P31.
- the medium-distance line P2 may be a left-handed route of the ring
- the medium-distance line P3 may be a right-handed route of the ring.
- any one of the grounds # 1 to # q in FIGS. 16 and 19 may be used as the left-handed ground of the ring, and the other one may be used as the right-handed ground of the ring.
- FIGS. 27 and 28 are optical SW1010s in one GW
- any one of uplink # 11 to uplink # 43 is used as a counterclockwise path of the ring, and the other one. May be used as a clockwise route for the ring.
- the route not selected as the ring route here may be a ring route similar to the route selected as the ring route, may be an oblique line other than the ring, or may be connected to the subscriber device 40. It may be connected to another optical SW1010 shown in FIGS. 27 and 28.
- multicast in the upstream direction or the downlink direction is realized via the return transmission line.
- an optical signal output from port 11-2 of the optical SW10c is input to another port 11-2 via a return transmission path, and optical is used.
- the SW10c outputs this input optical signal to the port 11-1 to which the 1 ⁇ N power splitter 71 is connected.
- the optical signal output from the port 11-1 is distributed by the power splitter 71 and input to the plurality of other ports 11-1, thereby realizing the uplink multicast.
- the uplink multicast from the subscriber device 40a connected to the port 11-1 to the subscriber device 40b or 40c connected to the port 11-2 or the uplink will be mainly described. If port 11-1 and port 11-2 are exchanged line-symmetrically with the central optical SW210, the subscriber device 40b or 40c connected to the uplink or port 11-2 to the subscriber device 40a connected to port 11-1 or the like. It becomes a multicast to. In broadcasting, the processing flow is the same as in multicast.
- FIG. 61 is a diagram showing a configuration example of the optical GW200a in the optical access system of the first embodiment.
- FIG. 61 describes a case where the uplink optical signals transmitted from the subscriber devices 40a-1 and 40a-2 located at the ground A are multicast.
- the ports connected by the dotted lines are connected inside the optical SW210a.
- the connection between the ports is executed by an optical SW control unit 320 (not shown).
- the optical GW200a turns back the optical signal output from the port 11-2 without going through the optical SW210a-1 and inputs it to the power splitter 71 connected to the port 11-1.
- FIG. 61 shows two configurations, that is, a configuration in which an optical signal is returned without passing through the optical SW210a-1 via another optical switch and a configuration in which the optical signal does not pass through the other optical switch.
- each configuration will be described.
- the optical GW200a has an optical SW210a-1, a transmission line 2101, and a power splitter 71-1.
- the transmission line 2101 connects the output side port (for example, port 11-2-1) of the optical SW210a-1 and the power splitter 71-1 via the outside of the optical SW210a-1. Via the outside of the optical SW210a-1 means not passing through the inside (between ports) of the optical SW210a-1. That is, the transmission line 2101 is a transmission line provided outside the optical SW210a-1 and directly connects the port 11-2-1 and the power splitter 71-1.
- the transmission line 2101 is, for example, an optical fiber.
- the power splitter 71-1 distributes the input optical signal to a plurality of the input optical signals, and inputs the distributed plurality of optical signals to different ports 11-1.
- a new power splitter may be provided between the power splitter 71-1 and the port 11-1.
- the power splitter 71-1 distributes the input optical signal to a plurality of the input optical signals, and a part or all of the distributed optical signals is input to the port 11-1 via the power splitter.
- the optical GW 200a outputs an optical signal transmitted by the subscriber device 40a-1 and input to the port 11-1-1 from the port 11-2-1.
- the optical signal output from port 11-2-1 is input to the power splitter 71-1 connected to a plurality of ports 11-1-n to 11-1- (n + 2) via the transmission line 2101. .
- the power splitter 71-1 is connected to ports 11-1-3 to 11-1-5.
- the power splitter 71 distributes the input optical signal and inputs it to a plurality of ports 11-1-3 to 11-1-5.
- the optical SW210a-1 outputs optical signals input from these plurality of ports 11-1-3 to 11-1-5 to different ports 11-2-3 to 11-2-5, respectively. Two-way communication is also possible.
- the optical signal in the downward direction is routed in the reverse direction to the upward direction.
- the upstream direction is one-to-many communication
- the downstream direction is many-to-one communication.
- the power splitter 71 is used as a turnout.
- the power splitter 71 used here has an H ⁇ I input / output port.
- H and I are integers of 1 or more, and have a relationship of H ⁇ I.
- the power splitter 71 branches the optical signal going up, for example, and multiplexes the optical signal going down.
- the power splitter 71 branches the input optical signal and inputs it to the plurality of ports 11-1-3 to 11-1-5, and the plurality of ports 11-1-3-11-1-1.
- the optical signals output from each of -5 are multiplexed and output to the transmission line 2101.
- the optical SW control unit 320 connects to the port 11-1-1 to which the subscriber device 40a-1 is connected. , Connect to port 11-2-1 to which the power splitter 71-1 for performing multicast is connected. As a result, the optical signal transmitted from the subscriber device 40a-1 is output from the port 11-2-1. Further, the optical SW control unit 320 is connected to the ports 11-1-3 to 11-1-5 to which the power splitter 71-1 is connected, and the port 11-2 according to the transfer destination on the route to the communication destination. In FIG. 61, it is connected to 11-2-3 to 11-2-5). As a result, each of the optical signals branched by the power splitter 71-1 is output from the port 11-2 to which the destination subscriber device 40b is connected. With such a configuration, the optical signal is folded back to enable multicast.
- the optical GW200a has an optical SW210a-1, a transmission line, and a power splitter.
- the transmission line connects the output side port (for example, port 11-1-1) of the optical SW210a-1 and the power splitter via the outside of the optical SW210a-1.
- the transmission line is a transmission line that directly connects the port 11-1-1 and the power splitter.
- the transmission line is, for example, an optical fiber.
- the power splitter distributes the input optical signal to a plurality of the input optical signals, and inputs the distributed optical signals to different ports 11-2.
- the optical SW210a-1 outputs an optical signal input to the port 11-2-1 from the port 11-1-1.
- the optical signal output from port 11-1-1 is input to a power splitter connected to a plurality of ports 11-2-n to 11-2- (n + 2) via a transmission line.
- the power splitter is connected to ports 11-2-3 to 11-2-5.
- the power splitter distributes the input optical signal and inputs it to a plurality of ports 11-2-3 to 11-2-5.
- the optical SW210a-1 outputs optical signals input from these plurality of ports 11-2-3 to 11-2-5 to different ports 11-1-3 to 11-1-5, respectively.
- the optical GW200a has an optical SW210a-1, an optical SW210a-2, a transmission line 2102, and a power splitter 71-2.
- the optical SW210a-2 is connected to a port on the output side of the optical SW210a-1 (for example, port 11-2-q).
- the transmission line 2102 connects the optical SW210a-2 and the power splitter 71-2 via the outside of the optical SW210a-1.
- the optical SW210a-2 outputs an optical signal output from the port 11-2 on the output side of the optical SW210a-1 to the power splitter 71-2 via the transmission line 2102.
- the power splitter 71-2 distributes the input optical signal to a plurality of the input optical signals, and inputs the distributed plurality of optical signals to different ports 11-1.
- a new power splitter may be provided between the power splitter 71-2 and the port 11-1.
- the power splitter 71-1 distributes the input optical signal to a plurality of the input optical signals, and a part or all of the distributed optical signals is input to the port 11-1 via the power splitter.
- the optical GW 200a may have either a configuration that does not pass through another optical switch or a configuration that passes through another optical switch, or may have both.
- the optical GW 200a outputs an optical signal transmitted by the subscriber device 40a-2 and input to the port 11-1-p from the port 11-2-q.
- the optical signal output from port 11-2-1 is input to the optical SW210a-2.
- the optical SW210a-2 is a power for connecting an optical signal output from the port 11-2-q to a plurality of ports 11-1- (P-2) to 11-1-P via a transmission line 2102. Output to splitter 71-2.
- the power splitter 72 distributes the input optical signal and inputs it to a plurality of ports 11-1- (P-2) to 11-1-P.
- the optical SW210a-1 inputs optical signals input from these plurality of ports 11-1- (P-2) to 11-1-P, respectively, from different ports 111-1- (Q-2) to 11-1-Q. Output to.
- Two-way communication is also possible.
- the optical signal in the downlink direction is routed in the reverse direction to the uplink direction. In this case, the upstream direction is one-to-many communication, and the downstream direction is many-to-one communication.
- the power splitter 71 is used as a turnout.
- the power splitter 71 used here has an H ⁇ I input / output port.
- the power splitter 71 branches the optical signal going up, for example, and multiplexes the optical signal going down.
- the power splitter 71 branches the input optical signal and inputs it to a plurality of ports 11-1- (Q-2) to 11-1-Q, and a plurality of ports 11-1-( The optical signals output from each of Q-2) to 11-1-Q are multiplexed and output to the transmission line 2102.
- the optical SW control unit 320 connects to the port 11-1-p to which the subscriber device 40a-2 is connected. , Connect to port 11-2-q to which the power splitter 71-2 for performing multicast is connected. As a result, the optical signal transmitted from the subscriber device 40a-2 is output from the port 11-2-q. Further, the optical SW control unit 320 has ports 11-1- (P-2) to 11-1-P to which the power splitter 71-2 is connected, and ports corresponding to the transfer destination on the path to the communication destination. 11-2 (11-2- (Q-2) to 11-2-Q in FIG. 61) is connected. As a result, each of the optical signals branched by the power splitter 71-2 is output from the port 11-2 to which the destination subscriber device 40c is connected. With such a configuration, the optical signal is folded back to enable multicast to the destination.
- the optical GW200a has an optical SW210a-1, an optical SW210a-2, a transmission line, and a power splitter.
- the optical SW210a-2 is connected to a port on the output side of the optical SW210a-1 (for example, port 11-1-q).
- the transmission line connects the optical SW210a-2 and the power splitter via the outside of the optical SW210a-1.
- the optical SW210a-2 outputs an optical signal output from a port on the output side of the optical SW210a-1 to a power splitter via a transmission line.
- the power splitter distributes the input optical signal to a plurality of the input optical signals, and inputs the divided plurality of optical signals to different ports 11-2.
- the optical GW 200a may have either a configuration that does not pass through another optical switch or a configuration that passes through another optical switch, or may have both.
- the port of the optical SW210a-1 is not used as a return route when performing multicast or broadcast routing. Therefore, even when routing is performed, the number of routes inside the optical SW210a-1 is reduced by one route, that is, one port each of ports 11-1-p and 11-2-q. Therefore, it is possible to transmit the optical signal according to the transfer destination on the route to the communication destination while reducing the number of ports used when performing multicast or broadcast routing in the optical SW210a-1.
- a power splitter is mainly used, but in the case of multicast demultiplexing for each wavelength (effectively, unicast demultiplexed by wavelength), a demultiplexer may be used.
- FIG. 62 is a diagram showing a configuration example of the optical GW200b in the optical access system of the second embodiment.
- FIG. 62 describes a case where the uplink optical signals transmitted from the subscriber devices 40a-1 and 40a-2 located at the ground A are multicast.
- the ports connected by the dotted lines are connected inside the optical SW210b.
- the connection between the ports is executed by an optical SW control unit 320 (not shown).
- the optical GW200b distributes the optical signals output by the subscriber device 40a-1 into a plurality of units, and inputs the distributed plurality of optical signals to different ports 11-1. This reduces the number of ports in a set for folding back optical signals and enables multicast.
- the optical GW 200b has power splitters 71-1 and 71-2.
- the optical GW 200b may have only one of the power splitter 71-1 or the power splitter 71-2, or may have both.
- the power splitter 71-1 distributes the optical signal output by the subscriber device 40a-1 into a plurality of units, and distributes the distributed optical signals to different ports 11-1 (port 11-1 in FIG. 62). Enter in -3 to 11-1-5).
- the power splitter 71-1 is connected to the subscriber device 40a-1 via the transmission line 2103.
- the power splitter 71-2 distributes the optical signals output by the subscriber device 40a-2 into a plurality of units, and distributes the distributed optical signals to different ports 11-1 (11-1- (P-2 in FIG. 62)). ) ⁇ 11-1-P).
- the power splitter 71-2 is connected to the subscriber device 40a-2 via the transmission line 2104.
- a new power splitter may be provided between the power splitter 71-1 and the port 11-1, and between the power splitter 71-2 and the port 11-1.
- the power splitters 71-1 and 71-2 distribute the input optical signal to a plurality of the input optical signals, and input a part or all of the distributed optical signals to the port 11-1 via the power splitter.
- the power splitter 71 and the power splitter 72 are provided in the stage before the optical signal is input to the port 11-1, and the optical signal output from the subscriber device 40a is multicast.
- the optical SW210b outputs the optical signals input from the plurality of ports 11-1 to different ports 11-2, respectively. Two-way communication is also possible.
- the optical signal in the downlink direction is routed in the reverse direction to the uplink direction.
- the power splitter 71 is used as a turnout.
- the power splitter 71 branches the input optical signal and inputs it to the plurality of ports 11-1-3 to 11-1-5, and the plurality of ports 11-1-3-11-1-1. -5
- the optical signals output from each are multiplexed and output to the subscriber device 40a-1.
- the optical SW control unit 320 is connected to the power splitter 71 to which the subscriber device 40a of the transmission request source is connected.
- the port 11-1 is connected to the port 11-2 corresponding to the transfer destination on the route to the communication destination.
- the optical signal transmitted from the subscriber device 40a is branched by the power splitter 71, and the plurality of branched optical signals are output from the transfer destination ports 11-2 on the path to the communication destination, respectively.
- the return route as described in the basic configuration and the first embodiment is not used. Therefore, it is possible to reduce the number of ports used for the return route.
- the number of routes inside the optical SW210b is further reduced by one route, that is, by one port each of ports 11-1-p and 11-2-q, as compared with the first embodiment. .. Therefore, it is possible to transmit an optical signal according to the transfer destination on the path to the communication destination while reducing the number of ports used in the optical SW210b.
- the power splitter is mainly used, but in the case of multicast demultiplexing for each wavelength (effectively, unicast demultiplexed by wavelength), a demultiplexer may be used.
- the number of ports can be reduced, but when connecting the subscriber device 40a, it is necessary to select whether to connect to a power splitter or a port to which the power splitter is not connected.
- the port to be connected is changed.
- the third embodiment a configuration for suppressing the port change will be described. In these configurations, the above-mentioned optical SW is replaced with a set of cascade-connected optical SWs.
- FIG. 63 is a diagram showing a configuration example of the optical GW 200c in the optical access system of the third embodiment.
- the optical SW having the configuration of (11-1-P) ⁇ (11-2-Q) is described as a symmetric SW of S ⁇ S or the like (S is an integer of 1 or more).
- (11-1-P) ⁇ (11-2-Q) can be easily expanded even in the case of an asymmetric optical SW such as a SW.
- the optical GW 200c shown in FIG. 63 has a first optical switch 210c-1, a second optical switch 210c-2, and power splitters 450-1 to 450-M.
- the first optical switch 210c-1 and the second optical switch 210c-2 are cascade-connected.
- the first optical switch 210c-1 of S ⁇ S and the ((ST) + T ⁇ k) ⁇ ((ST) + T ⁇ k) first.
- the optical switch 210c-2 of 2 is used.
- S is the number of subscriber devices 40a
- T is the number of ports to be branched
- k is the number of branches for each port.
- the number of ports to be branched is the number of ports to which the power splitter is connected.
- T ⁇ k is replaced with the total number of branches of the port.
- the output of the branching T port in the S ⁇ S optical SW210c-1 is passed through the power splitters 450-1 to 450-M, and the output of the remaining (ST) ports is used as it is ((ST). ) + T ⁇ k) ⁇ ((ST) + T ⁇ k) Connect to the port of the optical SW210c-2.
- the electrical processing unit when passing through before multicast or without multicast, the electrical processing unit is connected by an optical SW (for example, optical switch 210c-1) near the subscriber device 40a, and when passing through after multicast, respectively.
- the electric processing unit is connected by other optical SW (for example, optical switch 210c-2).
- passing before multicast is suitable for batch processing of FEC (forward error correction), encryption, etc., and passing after multicast changes FEC, encryption, etc. for each destination. Suitable for cases.
- the optical signal in the downlink direction is routed in the reverse direction to the uplink direction.
- the power splitter 450 is used as a turnout.
- the power splitter 450 used here has an H ⁇ I input / output port.
- the power splitter 450 branches the input optical signal and inputs it to a plurality of ports of the optical SW210c-2, and multiplexes the optical signals output from each of the plurality of ports of the optical SW210c-2.
- the light is output to port 11-2 (for example, port 11-2- (Q-1)) of the optical SW210c-1.
- FIG. 64 is a diagram showing a configuration example of the optical GW200d in the optical access system of the third embodiment.
- the optical SW having the configuration of (11-1-P) ⁇ (11-2-Q) is described as a symmetric SW such as S ⁇ S for the sake of simplification of the explanation, but (11-1-P). It can be easily expanded even in the case of an asymmetric optical SW such as a SW having a ⁇ (11-2-Q) configuration.
- the optical GW 200d shown in FIG. 64 has a first optical switch 210c-1, a second optical switch 210d-2, and power splitters 450-1 to 450-M.
- the difference between the optical GW 200d and the optical GW 200c is that a second optical switch 210d-2 is provided in place of the second optical switch 210c-2.
- an S ⁇ S optical SW and a (T ⁇ k) ⁇ (T ⁇ k) optical SW are used.
- T ⁇ k is replaced with the total number of branches of the port.
- the output of the branching T port in the S ⁇ S optical SW210c-1 is connected to the second optical switch 210d-2 via the power splitters 450-1 to 450-M.
- the output of the remaining (ST) ports does not pass through the second optical switch 210d-2.
- an electric processing unit is connected to the optical SW (for example, an optical switch 210c-1) near the subscriber device 40a, and other optical SWs (for example, an optical switch) are used when passing through each after multicast. Connect the electric processing unit at 210d-2).
- passing before multicast is suitable for batch processing of FEC (forward error correction), encryption, etc., and passing after multicast changes FEC, encryption, etc. for each destination. Suitable for cases.
- the optical signal in the downlink direction is routed in the reverse direction to the uplink direction.
- the power splitter 450 is used as a turnout.
- the power splitter 450 used here has an H ⁇ I input / output port.
- the power splitter 450 branches the input optical signal and inputs it to a plurality of ports of the optical SW210d-2, and multiplexes the optical signals output from each of the plurality of ports of the optical SW210d-2.
- the light is output to port 11-2 (for example, port 11-2- (Q-1)) of the optical SW210c-1.
- the folded transmission line may be configured by a network that is folded back via a network such as an optical SW in an intermediate layer such as a Folded Clos network.
- a network such as an optical SW in an intermediate layer such as a Folded Clos network.
- the return transmission line may be configured so that a part of the port or a part of the intermediate layer SW is on the 11-2-Q side. As a result, the optical SW enables return communication.
- FIG. 65 is a diagram showing a configuration example of the optical GW200e in the optical access system of the fifth embodiment.
- three configurations first configuration to third configuration
- the optical GW200e has an optical SW210e-1 and a WDM device 80-1.
- Subscriber devices 40a-1 to 40a-2 are connected to ports 11-1-1 to 11-1-2 of the optical GW 200e by transmission lines 50-1-1 to 50-1-2.
- the WDM device 80-1 is connected to the ports 11-2-1 to 11-2-2 of the optical GW200e.
- the subscriber devices 40a-1 to 40a-2 transmit and receive optical signals having different wavelengths.
- the WDM device 80-1 combines the optical signals output from the ports 11-2-1 and 11-2-2 and outputs them to the folded transmission line 51a-1.
- the return transmission line 51a-1 is connected to the port 11-2-3. With such a configuration, the optical signal can be folded back.
- the optical GW200e has an optical SW210e-1, a plurality of WDM devices 80-2 to 80-3, and a plurality of monitoring units 60-1 and 60-2.
- Subscriber devices 40ap to 40a- (p + 1) are connected to ports 11-1-p to 11-1- (p + 1) of the optical GW200e via transmission lines 50-1-p to 50-1- (p + 1). Has been done.
- the WDM device 80-2 is connected to the ports 11-2-q to 11-2- (q + 1) of the optical GW200e.
- the subscriber devices 40a-p to 40a- (p + 1) transmit and receive optical signals having different wavelengths.
- the WDM device 80-2 combines the optical signals output from the ports 11-2-1 and 11-2-2 and outputs them to the folded transmission line 51a-2.
- the folded transmission line 51a-2 is connected to the WDM device 80-3.
- the WDM device 80-3 demultiplexes the input optical signal and outputs the demultiplexed optical signal to the monitoring units 60-1 and 60-2, respectively.
- the monitoring units 60-1 and 60-2 monitor the optical signal transmitted through the transmission line. With such a configuration, the optical signal can be folded back.
- the optical GW200e has an optical SW210e-1 and an optical SW210e-2.
- the subscriber device 40a-P is connected to the port 11-1- (P-1) of the optical GW 200e by a transmission line 50-1-P.
- the optical SW210e-2 is connected to the port 11-2- (Q-1) of the optical GW200e.
- the subscriber device 40a-P transmits and receives optical signals.
- the optical SW210e-1 outputs an optical signal input from the port 11-1- (P-1) from the port 11-2- (Q-1).
- the optical signal output from port 11-2- (Q-1) is output to the optical SW210e-2.
- the optical SW210e-2 outputs the input optical signal to the port 11-2-Q. With such a configuration, the optical signal can be folded back.
- optical GW200e configured as described above, it is possible to apply a return communication configuration other than the configuration shown in the basic configuration. As a result, the degree of freedom of combination is improved, and it becomes possible to improve the convenience.
- optical SW1010 shown in FIGS. 27 and 28 will be described here as an example, the same can be applied to other optical SWs (for example, optical SW10, optical SW210, etc.) shown in the above description.
- a transmission line for example, when viewed from the subscriber device 40 on the port 11-1 side (ONU in FIGS. 27 and 28), it is clearly connected to the port 11-2. This corresponds to an increase in the number of connections on the output route.
- the optical SW1010 is connected to the subscriber device 40 on the port 11-1 side of another optical SW1010 (for example, the optical SW1010-2 to 1010-4), and the optical SW1010 is a full mesh as shown in FIG. 27.
- port 11-1 of optical SW1010-1 for example, port 11-1-1 (connected to ONU # 11)
- port 11-2 for example, port 11-2-q1 (* a connection)
- Port 11-1 and port 11-2 for example, port 11-1-p1 (* a connection) of the optical SW1010-2 to which the opposing subscriber device 40 is connected on the port 11-1 side.
- Port 11-2-x (connected to the return transmission line), port 11-2 and port 11-2 (for example, port 11-2-y, port 11-2-z) connected to the return transmission line, and the opposite ONU. It occupies 6 ports with the port 11-1 to be connected (for example, port 11-1-1 (connected to ONU # 21)). The same applies when the return transmission line is installed in the optical SW1001.
- port 11-1 and port 11-2 of the optical SW1010-1 (for example, port 11-1-1 (connected to ONU # 11), port 11-2- q1 (connection of * a)), port 11-1 and port 11-2 of optical SW1010-2 via (for example, port 11-1-p1 (connection of * a)), port 11-2-q1 (* d) (Connection), port 11-1 and port 11-2 (for example, port 11-1-p1 (* d connection)) of the optical SW1010-3 to which the opposing subscriber device 40 is connected on the port 11-1 side.
- Port 11-2-x (connected to the return transmission line), port 11-2 and port 11-2 (for example, port 11-2-y, port 11-2-z) connected to the return transmission line, and the opposite ONU. It occupies 8 ports with the port 11-1 to be connected (for example, port 11-1-1 (connected to ONU # 21)). The same applies when the return transmission line is installed in the optical SW1010-1 or the optical SW1010-2. Is.
- FIG. 66 shows four configurations as configurations for reducing the use of the optical SW port.
- the optical SW1010-1 to the optical SW1010-3 and the optical SW1200 are shown.
- the transmission line across the optical SW is set to the optical SW1200 from the viewpoint of improving the degree of freedom of connection for changing the ratio of the ports of the optical SW passed through the transmission line across the optical SW.
- the configuration of the optical SW1200 is basically the same as that of the other optical SW1010. If the transmission line across the optical SW is an optical SW, the use of the optical SW port accommodating the subscriber device 40 can be reduced.
- FIG. 27 the transmission lines connected to the optical SW1010-1 to 1010-4 are shown in one set, but the ONU of the same optical SW occupies the transmission line from a single optical SW1010. Connect with. For example, in the example of FIG. 27, when connecting from ONU # 11, ONU # 12, and ONU # 13 to ONU # 21, ONU # 22, and ONU # 23, for example, 6 ports and 8 ports are connected via another optical SW. , Occupies 22 ports of 8 ports. On the other hand, assuming that the transmission path across the optical SW is the optical SW1200 as shown in FIG.
- Optical SW1010-1 to 1010-4 are one aspect of a plurality of optical switches.
- the optical SW1010-1 will be described as one aspect of the first optical switch among the plurality of optical switches
- the optical SW1010-2 will be described as one aspect of the second optical switch among the plurality of optical switches. do.
- the optical SW1200 is connected to the ports 11-1 and 11-2 of the optical SW1010-1, and further, the ports 11-1 and 11-2 of the optical SW1010-2 and the optical SW1010-3. It is connected to port 11-1 and port 11-2 of.
- the optical SW1200 is the first port (for example, port 11-1) of the plurality of optical switches and the side different from the first port (for example, the side where the port 11-1 is provided in the plurality of optical switches). It is connected to the second port (for example, port 11-2) on the side different from the above.
- the first port and the second port shown here are examples, and port 11-1 may be the second port and port 11-2 may be the first port. The same applies to the following description.
- the optical SW1200 connects the port 11-2 on the output side of the plurality of optical SW1010s and the port 11-1 on the input side of the plurality of optical SW1010s.
- the optical SW1200 connects the port 11-2 on the output side of the optical SW1010-1 and the port 11-1 on the input side of the optical SW1010-2.
- the optical SW control unit 320 controls the optical SW 1200 so that the path inside the optical SW 1200 becomes a path toward the transfer destination on the route to the communication destination. With this configuration, the number of ports that pass through the other optical SW1010-2 and 1010-3 can be reduced as shown in FIG. 27.
- optical SW1010-1 to optical SW1010-3 are shown in the second configuration.
- the folded transmission line is not connected to the same optical SW, but is connected between the optical SWs connected by the respective subscribers facing each other.
- port 11-1-1 connecting optical SW1010-1 and ONU # 11, port 11-2-x of optical SW1010-1, folded transmission line, port 11-2-y of optical SW1010-2, optical SW1010.
- the port 11-2 of the optical SW1010-1 and the port 11-2 of the optical SW1010-2 are connected by a folded transmission line, and the port 11-2 of the optical SW1010-2 and the optical SW1010 are connected.
- the port 11-2 of -3 is connected by a folded transmission line, and the port 11-2 of the optical SW1010-1 and the port 11-2 of the optical SW1010-3 are connected by a folded transmission line. In this case, since 4 ports are used, it can be seen that the use of 2 ports can be reduced as compared with the use of 6 ports.
- the optical SW1010-1 to the optical SW1010-3 and the optical SW1200 are shown.
- the optical SW1200 is used as the return transmission line.
- the optical SW1200 is a SW such as the (11-1-P) ⁇ (11-2-Q) configuration
- light is emitted from a single optical SW (eg, optical SW1010-1) accommodating the subscriber device 40. It is connected to each of port 11-1 and port 11-2 of the optical SW1200 which is a transmission line across the SW, and is connected from port 11-1 to port 11-2 and from port 11-2 to port 11-1.
- the optical SW control unit 320 controls the optical SW1200 so that the path inside the optical SW1200 connects the ports 11-2 on the output side of the optical SW1010-1 to the optical SW1010-3.
- the second or third configuration may be combined with the mesh type or ring type optical SW crossing transmission line of FIG. 27 or the first configuration.
- the fourth configuration As shown in FIG. 66 (D), in the fourth configuration, the optical SW1010-1 to the optical SW1010-3 and the optical SW1200 are shown.
- the fourth configuration is an extension of the third configuration.
- the third configuration at least a part of the uplink is installed not on the port 11-2 side but on the port 11-1 side, and when connecting to the uplink, the uplink is connected via the return transmission line. That is, in the fourth configuration, the ports 11-1 of the optical switches 1010-1 to 1010-3 that are not connected to the optical SW1200 are connected to the uplink. This configuration is suitable when folding is the main case.
- the number of ports 11-1 is smaller than that of the port 11-2.
- the optical SW is a symmetric SW of P ⁇ P
- the port 11-1 side to connect the subscriber is left over, so it is diverted to the uplink side and the port is effectively utilized.
- FIGS. 67 to 69 are block diagrams of another aspect (modification example) of the monitoring unit 60.
- the monitoring unit 60 will be described as an example in FIGS. 67 to 69, the monitoring unit 260 may be used instead of the monitoring unit 60, and the configuration of the monitoring unit 260 may be the configuration shown in FIGS. 67 to 69. .. 67 and 68 show an example in which a transmitter and a receiver are connected to a transmission line on the same side in opposite directions as a configuration in which a signal is transmitted toward an object to be monitored.
- FIG. 69 shows a configuration in which a transmitter and a receiver are connected in the same direction when merging into a transmission line opposite to the input of the main signal in the same direction as the main signal.
- the monitoring unit 75a shown in FIG. 67A has a power splitter 61, a receiver 62, and a transmitter 76.
- the monitoring unit 75a shown in FIG. 67 (A) differs from the monitoring unit 60a shown in FIG. 33 (A) in that it includes one transmitter 76 and one receiver 62.
- the transmitter 76 transmits the optical signal input via the power splitter 61 toward the object to be monitored (for example, the control unit 20 or the OPS300).
- the transmitter 76 and the receiver 62 are connected to the transmission lines on the same side in opposite directions.
- the monitoring unit 75b shown in FIG. 67B includes a power splitter 61, a plurality of receivers 62-1 to 62-3, a plurality of WDM devices 63b-1 to 63b-2, and a plurality of transmitters 76-1. It has ⁇ 76-3.
- the difference between the monitoring unit 75b shown in FIG. 67 (B) and the monitoring unit 60b shown in FIG. 33 (B) is that the three receivers 62- instead of the six receivers 62-1 to 62-6.
- the point is that 1 to 62-3 and three transmitters 76-1 to 76-3 are provided.
- Transmitters 76-1 to 76-3 are connected to the WDM device 63b-1.
- Receivers 62-1 to 62-3 are connected to the WDM device 63b-2.
- the WDM device 63b-1 splits the optical signal branched by the power splitter 61 and outputs the branched optical signals to the transmitters 76-1 to 76-3. As shown in FIG. 67 (B), the transmitters 76-1 to 76-3 and the receivers 62-1 to 62-3 are connected to the transmission lines on the same side in opposite directions.
- the monitoring unit 75c shown in FIG. 67C has a power splitter 61, a receiver 62, a WDM device 63c, and a transmitter 76.
- the difference between the monitoring unit 75c shown in FIG. 67 (C) and the monitoring unit 60c shown in FIG. 33 (C) is that the receiver 62 and the transmitter are replaced with the two receivers 62-1 to 62-2. It is a point to have 76.
- the monitoring unit 75d shown in FIG. 68 (A) includes a plurality of power splitters 61-1 to 61-3, a plurality of receivers 62-1 to 62-3, a WDM device 63d, and a plurality of transmitters 76-1. It has ⁇ 76-3.
- the difference between the monitoring unit 75d shown in FIG. 68 (A) and the monitoring unit 60d shown in FIG. 34 (A) is that the three receivers 62- instead of the six receivers 62-1 to 62-6. The point is that 1 to 62-3 and three transmitters 76-1 to 76-3 are provided.
- a power splitter 61-1 is provided on the transmission line 606-1, and a receiver 62-1 and a transmitter 76-1 are connected to the power splitter 61-1.
- a power splitter 61-2 is provided on the transmission line 606-2, and a receiver 62-2 and a transmitter 76-2 are connected to the power splitter 61-2.
- a power splitter 61-3 is provided on the transmission line 606-3, and a receiver 62-3 and a transmitter 76-3 are connected to the power splitter 61-3.
- the monitoring unit 75e shown in FIG. 68B has a plurality of power splitters 61-1 to 61-2, a receiver 62, a plurality of WDM devices 63e-1 to 63e-2, and a transmitter 76.
- the difference between the monitoring unit 75e shown in FIG. 68 (B) and the monitoring unit 60e shown in FIG. 34 (B) is that the receiver 62 and the transmitter are replaced with the two receivers 62-1 to 62-2. It is a point to have 76.
- a power splitter 61-1 is provided on the transmission line 602-1, and a transmitter 76 is connected to the power splitter 61-1.
- a power splitter 61-2 is provided on the transmission line 602-2, and a receiver 62 is connected to the power splitter 61-2.
- the monitoring unit 77a shown in FIG. 69A has a power splitter 61, a receiver 62, and a transmitter 76.
- the monitoring unit 77a shown in FIG. 69A differs from the monitoring unit 60a shown in FIG. 33A in that the receiver 62 and the transmitter are replaced with the two receivers 62-1 to 62-2. It is a point to have 76.
- the transmitter 76 and the receiver 62 are connected to a transmission line on the same side in the same direction.
- the monitoring unit 77b shown in FIG. 69B includes a power splitter 61, a plurality of receivers 62-1 to 62-4, a plurality of WDM devices 63b-1 to 63b-2, and a plurality of transmitters 76-1. It has ⁇ 76-4 and a plurality of power splitters 78-1 to 78-4.
- the monitoring unit 77b shown in FIG. 69 (B) differs from the monitoring unit 60b shown in FIG. 33 (B) in that the four receivers 62- instead of the six receivers 62-1 to 62-6. It is provided with 1 to 62-4, four transmitters 76-1 to 76-4, and four power splitters 78-1 to 78-4.
- Power splitters 78-1 and 78-2 are connected to the WDM device 63b-1, and power splitters 78-3 and 78-4 are connected to the WDM device 63b-2.
- the transmitter 76-1 and the receiver 62-1 are connected to the power splitter 78-1
- the transmitter 76-2 and the receiver 62-2 are connected to the power splitter 78-2
- the power splitter 78-3 is connected.
- the transmitter 76-4 and the receiver 62-4 are connected to the power splitter 78-4.
- the transmitters 76-1 to 76-4 and the receivers 62-1 to 62-4 are transmission lines on the same side in the same direction in the pair of the transmitter 76 and the receiver 62. Is connected to.
- the transmitters 76-2 and 76-4 are provided outside the monitoring unit 77b, but may be provided inside the monitoring unit 77b.
- the monitoring unit 77c shown in FIG. 69C has a power splitter 61, a plurality of receivers 62-1 to 62-2, a WDM device 63c, and a plurality of transmitters 76-1 to 76-2.
- the monitoring unit 77c shown in FIG. 69C differs from the monitoring unit 60c shown in FIG. 33C in that two transmitters 76-1 to 76-2 are newly provided.
- the monitoring unit 77c shown in FIG. 69 (C) has a different connection relationship from the receivers 62-1 to 62-2 of the monitoring unit 60c shown in FIG. 33 (C).
- the receivers 62-1 to 62-2 and the transmitters 76-1 to 76-2 are connected to the power splitter 61, and the receivers 62-1 and the transmitters 76-1 are connected. Is connected to the transmission line on the same side, and the receiver 62-2 and the transmitter 76-2 are connected to the transmission line on the same side.
- the number of the power splitter 61, the receiver 62, the WDM device 63, and the transmitter 76 shown in FIGS. 67 to 69 is an example and may be changed depending on the situation.
- the superimposition of the AMCC signal on the main signal will be explained. Since they are superimposed, the main signal and the AMCC signal are carried by optical signals of the same wavelength.
- the main signal is a signal such as CPRI (Common Public Radio Interface) such as an OK (On-off keying) signal of 10 Gbit / s (Gigabit per second).
- CPRI Common Public Radio Interface
- OK On-off keying
- the AMCC signal does not overlap with the main signal of electricity, for example, and is superimposed on the main signal with a carrier wave having a carrier frequency such as 1 MHz or 500 kHz.
- the modulation method is intensity modulation, phase modulation, or the like.
- a power combiner synthesizes a main signal of electricity of 10 GHz and an AMCC signal of electricity of 1 MHz, and the combined signal is modulated to generate a main signal on which the AMCC signal is superimposed.
- the superimposed AMCC signal can be separated from the main signal.
- the AMCC signal and the main signal use different frequencies.
- the AMCC signal has a narrower band than the main signal.
- OITDA standard TP20 optical transmission active component-performance standard-GPON optical transceiver Reference 1: http://www.oitda.or.jp/main/st/TP20-1.pdf
- ITU-TG ITU-TG.
- the standard of continuous bearing capacity of the same code is 72 bits
- the lower limit of GE-PON of 1.25 Gbit / s is sufficiently lower than about 20 MHz, for example, half of it or 1.25 GHz.
- the carrier frequency another frequency that does not overlap with the main signal of electricity such as 500 kHz may be used, and another modulation method such as phase modulation may be used as the modulation method.
- the power splitter used in each of the above embodiments goes through the same path of the optical SW210 while remaining in the single-core bidirectional manner. It may be connected by means of two cores, or it may be separated into two cores and connected via each route.
- the subscriber device 40 and the control unit 20 have a two-core bidirectional transmitter / receiver, they may be bundled in a single-core bidirectional manner and then connected via the same path of the optical SW210, or the two-core remains. You may connect via each route.
- the two-core bidirectionality is bundled into one core and connected via the same path of the optical SW210.
- one core bidirectional may be separated into two cores and connected via their respective routes.
- the power splitter used in both the upper and lower directions is suitable when the usable wavelength bands do not overlap in the up direction and the down direction, for example, the 1.3 micron band and the 1.55 micron band.
- a single-core bidirectional optical transmitter / receiver it may be connected by one set of ports of the optical SW, or it may be connected by two sets of ports and a duplexer (for example, a duplexer). It may be multiplexed in the opposite direction with a WDM device or a WDM filter) or a power splitter.
- different sets of ports may be connected to connect one optical transmitter to the other optical receiver and the other optical transmitter to one optical receiver. This is suitable when a two-core optical transmitter / receiver is used. In this case, different routes can be used on the transmitting side and the receiving side.
- the optical SW, the port, the transmission line, or their connection point may be provided with a power splitter or a duplexer between the optical SW and the transmission line connected to another ground, the optical SW, or an upper network.
- the combined duplexer combines optical signals of different wavelengths output from each of different subscriber devices, etc. from multiple ports of the optical SW, and outputs them to another ground, an optical SW, or a transmission line connected to an upper network. ..
- the combined demultiplexer demultiplexes the optical signal transmitted from any other ground, optical SW, or higher network according to the wavelength, and inputs the optical signal to the optical SW from the port corresponding to the wavelength.
- the duplexer and the power splitter have been described, but if the duplexer does not combine and split depending on the wavelength, the duplexer may be a power splitter, and depending on the wavelength, only the combine and the demultiplexer, In the case of only merging multiplex regardless of wavelength and only branching regardless of wavelength, it may be a combiner, a demultiplexer, a merging device, and a branching device, respectively.
- the power splitter is suitable when the uplink and downlink signals are multiplexed by, for example, time division multiplexing other than wavelength division multiplexing, and when the wavelength bands used by the uplink and downlink signals overlap at least partially.
- the filter may be filtered between the optical receiver, the transmission line before it, between the power splitter and the transmission line, etc., and when passing through multiple sections, when multiplexing with other signals, another signal may be used. It is desirable to filter before multiplexing so as not to affect the signal. If the wavelength to be filtered can be changed by the combined duplexer or the combination of the power splitter and the filter, the subscriber device may change the wavelength according to the wavelength transmitted and received, or the control unit may change the wavelength.
- the wavelength change process performed by the subscriber device 40 requesting the wavelength change has been described, but the same applies to the wavelength change process performed by the control unit 20 based on the monitoring information or the like.
- the control signal is exchanged between the control unit 20 and the subscriber device 40.
- the subscriber device 40 transmits a connection request to the control unit 20, and the control unit 20 transmits a control signal to the subscriber device 40.
- the control unit 20 allocates a wavelength used for communication by the subscriber device 40.
- the control signal may be monitored by the monitoring unit 60 and may be exchanged between the monitoring unit 60 and the subscriber device 40, or between the monitoring unit 60 and the control unit 20.
- the wavelength control unit 310 and the optical SW control unit 320 may be mounted using one information processing device, or may be mounted using a plurality of information processing devices communicably connected via a network. good.
- the monitoring unit 260 is mainly provided at the output of the port of the opposite transmission line in which the transmission line connected to the subscriber device 40 is connected to the port connected to the optical SW.
- the monitoring unit 260 is arranged between the transmission line to which the subscriber device 40 is connected or the port to which the transmission line is connected. That is, in FIGS. 1 to 69, the monitoring unit 260 is mainly provided in the opposite transmission line connected by the optical SW to the transmission line connecting the subscriber device 40 and the optical SW. In the modification, the monitoring unit 260 is provided in the transmission line connecting the subscriber device 40 and the optical SW.
- steps S1 and S3 to S6 in the flowchart shown in FIG. 42 may be performed in other embodiments. Note that step S2 in the flowchart shown in FIG. 42 is not executed.
- step S2 in the flowchart shown in FIG. 42 is not executed.
- other embodiments (modifications) of the processes of steps S1 and S3 to S6 will be described.
- the portion described as the control unit 301 may be read as the control unit 230 or the control unit 235.
- the portion described as monitoring unit 260 may be read as monitoring unit 60, monitoring unit 65, monitoring unit 265 or monitoring unit 267.
- FIG. 70 is a diagram showing a configuration example in the first modification of the subscriber device 40 and the control unit.
- the control unit 301 is a functional unit that gives instructions to other control units such as the control unit 230, and the control unit 301 gives instructions to other control units that control the monitoring unit 260. do.
- the optical GW 200 is provided with a monitoring unit 260 for each input path in the transmission path 501 between the optical SW 210 and the subscriber device 40. That is, the monitoring unit 260 is connected to the port 11 on the input side of the optical SW210.
- the control unit 301 is connected to the subscriber device 40 via the monitoring unit 260.
- the control unit 301 may not be connected to each subscriber device 40 as long as it can be connected to each subscriber device 40. For example, even when the control unit 301 is connected to a plurality of subscriber devices 40 at the same time, the optical SW21 or the like may be able to select or connect the subscriber device 40 to be connected as in the initial connection of the PON.
- Optical SW21 or the like may be selectable as the direction. Further, depending on the configuration of the monitoring unit 260, the monitoring unit 260 and the subscriber device 40 do not always have a one-to-one correspondence. For example, a plurality of input routes and one monitoring unit 260 may correspond to each other. In this case, the monitoring unit 260 may monitor the optical signal of the input route according to the setting of switching of the input route. When the switching of the input route is not set, the monitoring unit 260 may collectively monitor the optical signals of the plurality of input routes.
- the control unit 301 is connected to the subscriber device 40 via the monitoring unit 260.
- the output of the device to be assigned the wavelength or the like such as the subscriber device 40 is not connected inside the optical SW210 according to the setting by the control unit 301, so that other ports in the optical SW210 are not connected. Only monitoring is performed by the monitoring unit 260 installed on the input side of the optical SW210 without being connected to.
- the output of the wavelength and the like allocation target device such as the subscriber device 40 and the like is set to a route to another port in the optical SW210 according to the setting by the control unit 301.
- the optical GW 200 may include a monitoring unit 260 instead of the monitoring unit 260. Instead of the monitoring unit 260, the optical GW 200 may include a power splitter 502 (monitoring unit 260) for branching and connecting a part of the optical signal from / to the subscriber device to the control unit 301.
- a power splitter 502 monitoring unit 260
- the monitoring unit 260 modulates the optical signal transmitted and received by the subscriber device 40 with a control signal, receives a part of the optical signal, multiplexes the optical signal with the signal modulated by the control signal, and is one of the optical signals.
- the unit is transferred to the control unit 301, and the control signal transferred from the control unit 301 is multiplexed with the optical signal.
- the monitoring unit 260 receives, the monitoring unit 260 is transferred based on the partially received optical signal, and when the control unit 301 is transferred, the control unit 301 is based on the optical signal transferred from the monitoring unit 260. Monitor the wavelength of the optical signal of.
- the wavelength allocation process (wavelength setting) and the route setting process are executed in this order. More specifically, the control unit 301 communicates with the subscriber device 40 by making the transmission line connected to the subscriber device 40 unconnected in the optical SW. At the initial stage, the transmission line connected to the subscriber device 40 is not connected in the optical SW, so the subscriber device 40 is left as it is. At the time of change, it is basic that the transmission line connected to the subscriber device 40 is temporarily unconnected in the optical SW. Only when there is no influence, the control unit 301 keeps the transmission line connected to the subscriber device 40 connected in the optical SW, or changes the transmission line connected to the subscriber device 40 in the optical SW. You may make a connection and communicate with the subscriber device 40. The optical SW control unit 320 switches the output destination (path) of the optical SW 210 after changing the wavelength so that there is no particular effect even if the output destination of the optical SW 210 is switched.
- the result is as follows. (1) When there is no subscriber device 40 using the first port and the second wavelength " ⁇ 2": There is no effect even if the first wavelength is switched from the first wavelength " ⁇ 1" to the second wavelength " ⁇ 2" at the first port. In this case, it is possible to switch the wavelength before switching the port. (2) When there is a subscriber device 40 using the first port and the second wavelength " ⁇ 2”: Switching from the first wavelength " ⁇ 1" to the second wavelength " ⁇ 2" at the first port has an effect. In this case, it is impossible to switch the wavelength before switching the port.
- the optical SW control unit 320 controls the path in the optical SW 210 so that the optical SW 210 does not transmit the optical signal of the subscriber device 40 subject to wavelength allocation.
- the optical SW control unit 320 may switch the output destination of the optical SW210 before changing the wavelength.
- a functional unit other than the optical SW210 may stop the transmission of the optical signal transmitted from the subscriber device 40.
- the optical SW control unit 320 can basically communicate with the subscriber device 40 if the blocking unit blocks the optical signal.
- the cutoff unit may not be able to selectively cut off the output of the subscriber device 40.
- the subscriber device 40 shares a plurality of wavelengths and the like (wavelength, time, polarizations orthogonal to each other, modes orthogonal to each other, codes to be orthogonal to each other, frequency, core, core wire, or a combination thereof).
- the wavelength output at the time of initial setting is uncertain, and the wavelength of another subscriber device 40, etc. (wavelength, time, polarization orthogonal to each other, orthogonal to each other)
- the codes, frequencies, cores, core wires, or combinations thereof that are orthogonal to each other overlap, the output at the time of changing the wavelength, etc.
- the optical SW control unit 320 communicates with the subscriber device 40 after making an unaffected connection (for example, once reconnecting to a non-operating port).
- the core is a multi-core fiber having a core that propagates a plurality of optical signals on one fiber.
- the core wire is each fiber in a cable containing a plurality of fibers.
- the control unit 301 executes the wavelength allocation process for the subscriber device 40 to be wavelength-allocated via the monitoring unit 260.
- the control unit 301 executes, for example, a new wavelength allocation process having the same wavelength as or different from the wavelength used when the abnormality is detected for the subscriber device 40 to be wavelength-allocated.
- the optical switch control unit 320 outputs an optical signal input from the transmission path 501 of the subscriber device 40 to be wavelength-assigned to the port 11 (other port) specified according to the transfer destination.
- the optical SW210 is controlled.
- the transfer destination is the subscriber, the subscriber device 40, the port 11 of the optical SW210, the wavelength of the optical signal, the combination of the subscriber device 40 and the wavelength of the optical signal, or the port 11 and the wavelength of the optical signal. It is specified according to the combination and the like.
- step S3 when the subscriber device 40 to be wavelength-assigned is connected, the optical SW control unit 320 makes the transmission line connected to the subscriber device 40 unconnected in the optical SW. If a blocking unit is provided instead, the blocking unit may block the optical signal.
- the control unit 301 when the transmission line connected to the port 11-1 connected to the monitoring unit 260 is not connected to another port 11 in the optical SW, the control unit 301 is not connected. Leave the connection as it is.
- the subscriber device 40 to be assigned the wavelength executes the initialization process before connecting to the monitoring unit 260.
- the subscriber device 40 to be assigned the wavelength may execute the initialization process immediately after connecting to the monitoring unit 260.
- the subscriber device 40 to be assigned a wavelength transmits a connection request (register request) using an optical signal.
- the control unit 301 receives a connection request from the subscriber device 40 subject to wavelength allocation via the monitoring unit 260.
- “Via the monitoring unit 260” means that, for example, the monitoring unit 260 transfers the optical signal branched by the turnout to the control unit 301. Further, for example, the state of the electric signal (the monitoring unit 260 may include a receiving unit, the receiving unit may convert the optical signal into an electric signal, and the receiving unit may transfer the optical signal to the connection unit.
- the control unit 301 may use the received light. The signal is analyzed and the initial setting wavelength is determined. The control unit 301 may analyze the received optical signal and confirm whether there is a problem with the optical power or the like.
- the control unit 301 transmits a wavelength instruction representing the wavelength information determined (selected) by the control unit 301 to the subscriber device 40 to be assigned the wavelength.
- the optical signal of the control unit 301 may be merged by the switch of the monitoring unit 260.
- the monitoring unit 260 may include a transmission unit, the transmission unit may convert an electric signal into an optical signal, and the junction / branching unit may merge the optical signals.
- the wavelength instruction is an optical signal having a wavelength addressed to the subscriber device 40. It is used and transmitted to the subscriber device 40.
- the wavelength instruction is transmitted to the subscriber device 40 to be assigned the wavelength via the monitoring unit 260.
- the monitoring unit 260 outputs the optical signal input from the control unit 301 to the subscriber device 40.
- the optical signal representing the wavelength indication may be branched in the middle of the transmission line 501.
- step S7 when the notification signal is transmitted using the optical signal, the subscriber device 40 uses the optical signal of the wavelength specified by the wavelength instruction to notify that the wavelength has been set. Is transmitted to the control unit 301 via the monitoring unit 260. The control unit 301 confirms whether or not the instructed wavelength is correctly set based on the notification signal. The control unit 301 may confirm whether or not the output power of the optical signal is sufficient based on the notification signal.
- step S8 the control unit 301 transmits the optimum connection information (route information) of each port 11 of the optical SW210 to the optical SW210 according to the transmission destination (destination) of the optical signal of the subscriber device 40.
- the optical SW210 sets the uplink port and the downlink port of the subscriber device 40 based on the connection information.
- FIG. 71 is a flowchart showing an initial setting process of an optical access system according to a first modification of the subscriber device 40 and the optical GW control unit 302.
- the reference numerals shown in FIG. 71 are the same as those shown in FIG. 42. Ports are connected between steps S1 and S3 shown in FIG. 71.
- Step S4 is not limited to AMCC.
- the main signal is allowed to flow, and the control unit 301 and the input monitoring unit autonomously confirm the signal.
- the control unit 301, the input monitoring unit, the output monitoring unit, the communication unit, or the subscriber device 40 autonomously confirms.
- the optical SW210 transmits a plurality of optical signals input from any one of the plurality of transmission lines 501. Output to the other transmission line 501 of the path 501.
- the monitoring unit 260 is used between the subscriber device 40 and another control unit that receives an instruction from the control unit 301 in the transmission line 501 on the side where the optical signal transmitted from the subscriber device 40 is input to the optical SW 210. , Relays the optical signal.
- the monitoring unit 260 relays the optical signal between the subscriber device 40 and the optical SW210 in the transmission line 501 on the side where the optical signal is input to the optical SW210.
- the control unit 301 assigns a wavelength to the optical signal of the subscriber device 40 via the monitoring unit 260. After the optical signal of the subscriber device 40 is assigned a wavelength, the control unit 301 outputs the optical signal input to the optical SW 210 to the other transmission line 501 via the transmission line 501 on the input side. As such, the optical SW210 is controlled.
- the optical GW 200 may include a first optical SW210 and a second optical SW210 cascaded to the first optical SW210. Before the optical signal of the subscriber device 40 is assigned a wavelength, the optical SW control unit 320 does not output the optical signal input to the optical SW 210 to the other transmission line 501 via the transmission line 501 on the input side. As such, the optical SW210 may be controlled.
- the wavelength control unit 310 transmits the wavelength, time, polarization, mode, code, frequency, core, core wire, or a combination thereof to the optical signal of the subscriber device 40 via the monitoring unit 260. May be assigned.
- the optical signal can be transmitted according to the destination, but also the light when the wavelength of the optical signal transmitted from the subscriber device is set is set. It is possible to reduce the number of switch changes.
- the optical GW includes an OPS300 or a control unit 20, an optical SW, a monitoring unit, an electric processing unit, a folded transmission line, a power splitter (power splitter), and a demultiplexer (WDM device, WDM filter). It may be configured as a device (optical communication device of the present invention) including any or all of the above.
- the assignment of wavelengths to the subscriber device 40 has been described as an example, but wavelength, time, polarizations orthogonal to each other, modes orthogonal to each other, codes orthogonal to each other, frequencies, cores, core wires or them. Even if the configuration is such that the wavelength, etc., which is a combination of the above, is assigned.
- the duplexer is a combination of a turnout and a delay line, a polarization mode coupler, a mode coupler, a decoding device, and a core. The same applies if the switch is replaced with a turnout, a turnout between core wires, or the like.
- the control units 20, 230, 235, the monitoring unit 260, 265, 267, the wavelength control unit 310, and the optical SW control unit 320 described above include a CPU, a memory, an auxiliary storage device, and the like connected by a bus, and execute a program. By doing so, some or all of the above-mentioned functions may be realized. Note that some or all of the functions of the control units 20, 230, 235, the monitoring unit 260, 265, 267, the wavelength control unit 310, and the optical SW control unit 320 use hardware such as ASIC, PLD, and FPGA. It may be realized.
- the programs of the control units 20, 230, 235, the monitoring unit 260, 265, 267, the wavelength control unit 310, and the optical SW control unit 320 may be recorded on a computer-readable recording medium.
- the computer-readable recording medium is, for example, a portable medium such as a magneto-optical disk, ROM, or CD-ROM, or a storage device such as a hard disk built in a computer system.
- the program may be transmitted over a telecommunication line.
- the present invention can be applied to an optical access system technique using an optical switch.
- Optical communication system 10, 10a, 10b, 10c, 10d, 10e, 10f, 10g, 34, 95a-1, 95a-2, 95b-1, 95b-2, 96a-1, 96a-2, 96b-1, 96b-2, 210, 210a-1 to 210a-2, 210b, 210c-1 to 210c-2, 210d-2, 210e-1 to 210e-2, 211, 212a, 212b, 212c, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009a, 1009b, 1010-1 to 1010-4 ...
- Optical switch 11-1, 11-1-1 to 11-1-P, 11-2, 11-2-1 to 11-2-Q ...
- Combined wave part 40, 40-1 to 40-M, 40a-1 to 40a-3, 40b-1 to 40b-3, 40c-1 to 40c-3, 40a-1-1, 40a-1-2, 40-p- 1-40-p-Np, 40-p-N, 40-p-40- (p + N) ... Subscriber device, 46-1, 46-3 ... User, 46-2 ...
- Mobile base station 50, 50-1, 50-2, 50-1-p to 50-1- (p + N), 50-1-p1 to 50-1-pN, 50-1-p-1 to 50-p-Np, 50-2-1 to 50-2-q, 50-2- (N-1), 50-2-N, 50-2-q-1 to 50-2-q-N, 50-2- (1 + N) ), 53, 54a, 54b, 54c, 54d, 92, 93-1 to 93-N, 501, 503, 504, 511, 512, 521, 522, 513, 533, 534, 540, 541, 542, 543- 1,543-2,544,545,546,547, 548,549,551,551a, 552, 552b, 555, 560, 561, 562, 563, 570, 571, 571, 573, 574, 575, 581, 582, 583, 584, 585, 586, 587, 588, 589 ...
- Demultiplexer 85, 610 ... O / E conversion unit, 86, 620 ... Processing execution unit, 87, 630 ... E / O converter, 88 ... Memory, 90, 91 ... Multiplex communication transmission line, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117 ...
- Optical access system 200, 200a-200e, 201, 202, 203, 204, 205, 206, 207, 208, 209, 2010, 2011, 2012, 2013, 2014, 2015, 2016 ...
- Optical gateway 220, 238, 243, 244, 245, 249, 256, 257 ... Wavelength duplexer, 230, 235 ... Control unit, 231 and 261 ... Wavelength demultiplexer, 233, 269 ... Tunable transmitter, 250, 250a, 250b, 253, 255 ... Branch, 260, 265 ... Monitoring unit, 266 ... Tunable optical receiver, 267 ... Monitoring Department, 268 ... Tunable wavelength receiver, 300 ... Operation system, 301 ... Control unit, 310 ...
- Wavelength control unit 350 ... Management database, 452 ... Tunable wavelength receiver, 453 ... Tunable wavelength filter, 459, 459a-459e ... WDM filter, 84, 600 ... Electrical processing unit, 861 ... Processor, 862 ... Accelerator
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computing Systems (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optical Communication System (AREA)
Abstract
複数の伝送路のうちのいずれかの伝送路から入力された光信号を、複数の伝送路のうちの他の伝送路に出力する光スイッチと、光信号が光スイッチに入力される側の伝送路において光信号を中継する監視部と、監視部を介して、加入者装置の光信号に、波長、時刻、偏波、モード、符号、周波数、コア、芯線、又は、それらの組合せである波長等を割り当てる波長制御部と、波長等が割り当てられた後では、入力される側の伝送路を介して光スイッチに入力された光信号が他の伝送路に出力されるように光スイッチを制御する光スイッチ制御部と、を備える光通信装置。
Description
本発明は、光通信装置、光通信システム及び光通信方法に関する。
FTTH(Fiber To The Home)やモバイルサービスによる高速インターネットを提供するネットワークは、サービス毎にネットワークが独立して構築され、運用面において、非効率である。そこで、1つの装置で複数のサービスを収容する光アクセスシステムが提案されている(例えば、非特許文献1参照)。さらに、マルチサービスの収容が可能な光アクセスシステムを実現するために、PON(Passive Optical Network:受動光ネットワーク)や複数の波長を利用するWDM(Wavelength Division Multiplexing)-PONがITU-T(International Telecommunication Union Telecommunication Standardization Sector)で標準化されている(例えば、非特許文献2参照)。
一方で、現有の光アクセスシステムでは、加入者側の装置と局舎側の終端装置を備え、終端装置を介し、その間の通信は、コアネットワーク等の上位のネットワークに接続されている。加入者側の装置は、例えば、ONU(Optical Network Unit)である。コアネットワークへの接続は、局舎側の装置内にある終端装置を介して行われる。終端装置は、例えば、OLT(Optical Line Terminal)である。パケット交換でコアネットワークに接続する光アクセスでは、信号に対してユーザ情報や、宛先情報を付与又は削除する処理、ルーティング処理などを行っており、ユーザ情報や、宛先情報を付与又は削除する際には、光信号を一度電気信号に変換する場合もある。その場合、通信にある程度の遅延が発生する。さらに、データ量が多くなると、バッファに信号を溜め、優先度制御などを行うこともある。これにより、遅延がさらに大きくなる。遅延が大きくなると、光サービスの品質が大きく下がる。従って、可能な限り遅延を小さくすることが重要である。
光サービスの品質を向上させ、様々なサービスを光アクセスネットワークで提供するためには、発生する遅延を削減する必要がある。光信号を電気信号に変換することなくルーティングなどの処理を行える光スイッチなどを用いることにより、遅延を大きく削減することができる。
"ITU-T G.983.3",International Telecommunication Union,2001年
"ITU-T G.989.1",International Telecommunication Union,2013年
ところで、光スイッチを用いたルーティングに際し、加入者側の装置の通信先への経路上の転送先に応じた光信号の経路を設定し、さらには加入者側の装置の送受信器の設定(波長など)を行う必要がある。そして、光スイッチを用いたマルチキャスト又はブロードキャスト又は折り返し通信のルーティングを光アクセスに適用する場合、多くの装置を接続させるためには、ルーティングで利用されるポート数を削減することが望まれている。また、加入者装置から送信される光信号の波長設定時に光信号を宛先に中継することが望まれている。
上記事情に鑑み、本発明は、加入者装置から送信される光信号の波長設定時に光信号を宛先に中継することができる技術の提供を目的とする。
本発明の一態様は、複数の伝送路のうちのいずれかの伝送路から入力された光信号を、前記複数の伝送路のうちの他の伝送路に出力する光スイッチと、光信号が前記光スイッチに入力される側の伝送路において光信号を中継する監視部と、前記監視部を介して、加入者装置の光信号に、波長、時刻、偏波、モード、符号、周波数、コア、芯線、又は、それらの組合せである波長等を割り当てる波長制御部と、前記波長等が割り当てられた後では、前記入力される側の伝送路を介して前記光スイッチに入力された光信号が前記他の伝送路に出力されるように前記光スイッチを制御する光スイッチ制御部と、を備える光通信装置である。
本発明の一態様は、複数の伝送路のうちのいずれかの伝送路から入力された光信号を、前記複数の伝送路のうちの他の伝送路に出力する第1の光スイッチと、前記第1の光スイッチにカスケード接続される第2の光スイッチと、光信号が前記第1の光スイッチに入力される側の伝送路において光信号を中継する監視部と、前記監視部を介して、加入者装置の光信号に、波長、時刻、偏波、モード、符号、周波数、コア、芯線、又は、それらの組合せである波長等を割り当てる波長制御部と、前記波長等が割り当てられた後では、前記入力される側の伝送路を介して前記第1の光スイッチに入力された光信号が前記他の伝送路に出力されるように前記第1の光スイッチ及び前記第2の光スイッチを制御する光スイッチ制御部と、を備える光通信装置である。
本発明の一態様は、複数の加入者装置と、上記の光通信装置とを有する光通信システムである。
本発明の一態様は、光通信装置が実行する光通信方法であって、複数の伝送路のうちのいずれかの伝送路から入力された光信号を、前記複数の伝送路のうちの他の伝送路に出力する光スイッチステップと、加入者装置から送信された光信号が光スイッチに入力される側の伝送路において光信号を中継する監視ステップと、光信号を中継する監視部を介して、加入者装置の光信号に、波長、時刻、偏波、モード、符号、周波数、コア、芯線、又は、それらの組合せである波長等を割り当てる波長制御ステップと、前記波長等が割り当てられた後では、前記入力される側の伝送路を介して前記光スイッチに入力された光信号が前記他の伝送路に出力されるように前記光スイッチを制御する光スイッチ制御ステップと、を含む光通信方法である。
本発明の一態様は、光通信装置が実行する光通信方法であって、複数の伝送路のうちのいずれかの伝送路から入力された光信号を、前記複数の伝送路のうちの他の伝送路に出力する第1の光スイッチステップと、光信号が第1の光スイッチに入力される側の伝送路において光信号を中継する監視ステップと、監視部を介して、加入者装置の光信号に、波長、時刻、偏波、モード、符号、周波数、コア、芯線、又は、それらの組合せである波長等を割り当てる波長制御ステップと、前記波長等が割り当てられた後では、前記入力される側の伝送路を介して前記第1の光スイッチに入力された光信号が前記他の伝送路に出力されるように、前記第1の光スイッチにカスケード接続された第2の光スイッチと前記第1の光スイッチとを制御する光スイッチ制御ステップと、を含む光通信方法である。
本発明により、加入者装置から送信される光信号の波長設定時に光信号を宛先に中継することが可能となる。
以下、図面を参照しながら本発明の実施形態を詳細に説明する。なお、複数の図面において同一の部分には同一の符号を付し、その説明を省略する。以下の説明では、まず本発明における基本構成を説明した後に、具体的な実施形態について説明する。
(基本構成)
まず図1~図41を用いて、本発明の基本構成について説明する。
図1は、本実施形態の光通信システム1の基本構成例を示す図である。光通信システム1は、1又は複数の光SW(スイッチ)10を有する。同図では光SW10を2台示しているが、光SW10の台数は任意である。光SW10は、制御部20と接続される。
光SW10を光信号で制御する場合、光SW10は少なくとも光信号を受信する光受信器を備えるが、以下の説明では記載を省略する。
まず図1~図41を用いて、本発明の基本構成について説明する。
図1は、本実施形態の光通信システム1の基本構成例を示す図である。光通信システム1は、1又は複数の光SW(スイッチ)10を有する。同図では光SW10を2台示しているが、光SW10の台数は任意である。光SW10は、制御部20と接続される。
光SW10を光信号で制御する場合、光SW10は少なくとも光信号を受信する光受信器を備えるが、以下の説明では記載を省略する。
光SW10は、他の光SW10と、光通信ネットワーク30を介して通信する。光通信ネットワーク30には、例えば、様々なトポロジーを含むWDMネットワーク等を用いることができる。光SW10には、1台以上の加入者装置40が接続される。加入者装置40は、例えば、PONなどの光アクセスネットワークにより光SW10に接続される。加入者装置40は、光トランシーバ41を有する。光トランシーバ41は、加入者装置における光送信部及び光受信部構成の一例である。光トランシーバ41は、光送信器(Tx)42及び光受信器(Rx)43を有する。光トランシーバ41は、波長可変光送受信器である。光トランシーバ41として、例えば、従来のAMCC(Auxiliary Management and Control Channel)機能付き光トランシーバを用いることができる。
制御部20(オペレーションシステム(OpS)等を含んでよいし、OpSが制御部20を含んでいてもよい。以降も同様。)は、光SW10のいずれかのポート、例えばポート2と接続されてもよい。制御部20は、光SW10と異なる建物に設置され、ネットワークを介して光SW10や光SW制御部(図1では不図示)と接続されてもよい。制御部20は、光SW10のポートのうち、加入者装置40や他の光SW10や上位ネットワークや他の対地への伝送路等に接続されていないポートに接続されてもよい。制御部20は、光SW10毎に設置してもよいし、複数光SW10毎に設置してもよい。
制御部20が光SW10を光信号で制御する場合、制御部20は、1又は複数の光トランシーバ21を有する。光トランシーバ21は、制御部20における光送信部及び光受信部構成の一例である。光トランシーバ21は、光送信器(Tx)22及び光受信器(Rx)23を有する。光トランシーバ21は、可変波長光送受信器である。光トランシーバ21が複数の場合は、光SW10のポート毎に接続可能なポートが異なる場合や、加入者装置40と光SW10を制御するポートが異なる場合や、制御対象を複数光SW10又は複数光SW10に接続する加入者装置40の少なくとも一方とし、それぞれ接続可能なポートが異なる場合等に好適である。光SW10が複数の場合は伝送路で接続することで、ポートが異なる場合は後述する折返伝送路等を用いて折返接続することで、1光送受信器でもよい。制御部が送信器を備え加入者装置が受信器を備えるときは制御部20の送信側が加入者装置40の受信側に、制御部20が受信器を備え、加入者装置40が送信器を備えるときは制御部20の受信側が加入者装置40の送信側に接続される。
なお、後述の監視部の光送受信器や変調部のみを用いる場合は、光送受信器を備えずともよい。制御部20が加入者装置40を光信号で制御する場合、光SW10を介す光信号で制御部20が加入者装置40に波長割当処理等する場合、加入者装置40と制御部20との間で光信号を送受信するよう光SW10を制御し、波長割当処理の後、伝送路から入力した光信号を加入者、加入者装置40、光SW10のポート、光信号の波長、加入者装置40と光信号の波長との組合せ、ポートと光信号の波長との組合せ等により特定される転送先に応じたポートに出力するように光SW10を制御する。
光SW10の前段の監視部を介して波長割当処理等する場合、監視部と加入者装置40との間で光信号を送受信し、割当処理の後、特定される転送先に応じたポートに出力するように光SW10を制御する。
光SW10の後段の監視部を介して波長割当処理等する場合、光信号を特定される転送先に応じたポートに出力するように光SW10を制御し、遮断部によりポートからの出力を遮断した状態で、監視部と加入者装置40との間で光信号を送受信し、割当処理の後、遮断を解除する。
光SW10への接続前に波長割当処理等する場合、波長割当処理の後、光信号を特定される転送先に応じたポートに出力するように光SW10を制御する。
制御部20は、SW接続テーブルや波長テーブル等の管理データベース(DB)を有する又は接続する。
光SW10の前段の監視部を介して波長割当処理等する場合、監視部と加入者装置40との間で光信号を送受信し、割当処理の後、特定される転送先に応じたポートに出力するように光SW10を制御する。
光SW10の後段の監視部を介して波長割当処理等する場合、光信号を特定される転送先に応じたポートに出力するように光SW10を制御し、遮断部によりポートからの出力を遮断した状態で、監視部と加入者装置40との間で光信号を送受信し、割当処理の後、遮断を解除する。
光SW10への接続前に波長割当処理等する場合、波長割当処理の後、光信号を特定される転送先に応じたポートに出力するように光SW10を制御する。
制御部20は、SW接続テーブルや波長テーブル等の管理データベース(DB)を有する又は接続する。
制御部20が管理DBと接続する場合、ユーザや使用波長に関する情報を管理DBと相互に交換する。管理DBは、各ユーザの使用波長及び宛先情報や転送先情報を記憶する。宛先や転送先は、例えば、対地A等の場合は、対地A、対地B、加入者装置40等の場合は当該加入者装置40の識別子、またはそれらの伝送路や装置が接続するポートの識別子、途中で経由する装置や部品や機能の識別子やそれらが接続するポートの識別子などで表される。管理DBは、光アクセスシステムに接続されるユーザの情報を管理する。
SW接続テーブルは、光SW10の各ポートの接続先を示す。つまり、光信号が入出力されるポートを、その光信号の送信元又は送信先の加入者装置、制御部、監視部、対地などを識別する情報として用いることが可能である。
波長テーブルは、各加入者装置40等に割当された波長を示すデータである。波長テーブルは、ユーザ波長テーブルと、局舎間波長テーブルとに分けてもよい。
波長テーブルは、各加入者装置40等に割当された波長を示すデータである。波長テーブルは、ユーザ波長テーブルと、局舎間波長テーブルとに分けてもよい。
ユーザ波長テーブルは、例えば、ユーザの送信に使用している波長、受信に使用している波長、送受信に使用していない使用可能な波長、故障中のため使用できない波長を示す。
局舎間波長テーブルは、例えば、ある対地が、他の各対地との通信に使用している波長、他の各対地との通信に使用していない使用可能な波長、他の各対地との通信に故障中のため使用できない波長を示す。
加入者装置40に通信先への経路上の転送先に応じた波長を割当するため、まず、加入者装置40等の光送受信器と制御部20の光送受信器とが通信を行う。制御部20は、波長テーブルを参照して、通信先への経路上の転送先に応じて加入者装置40等に割当する波長を選択する。
局舎間波長テーブルは、例えば、ある対地が、他の各対地との通信に使用している波長、他の各対地との通信に使用していない使用可能な波長、他の各対地との通信に故障中のため使用できない波長を示す。
加入者装置40に通信先への経路上の転送先に応じた波長を割当するため、まず、加入者装置40等の光送受信器と制御部20の光送受信器とが通信を行う。制御部20は、波長テーブルを参照して、通信先への経路上の転送先に応じて加入者装置40等に割当する波長を選択する。
例えば、制御部20の波長制御部は、ユーザ又はサービスが使用している波長を示す情報を参照して、ユーザが使用する波長を割当する。波長制御部は、各接続情報を共有することによって、どのユーザが、光SW10のどのポートに接続され、どの波長を使用しているかの情報を管理及び制御する。
波長を選択する際、途中の経路を構成する区間で、波長多重され、かつ波長により識別される場合はその経路を構成する区間で空きの波長が使用可能な波長であり、使用可能な波長から選択する。
波長を選択する際、途中の経路を構成する区間で、波長多重され、かつ波長により識別される場合はその経路を構成する区間で空きの波長が使用可能な波長であり、使用可能な波長から選択する。
逆に、途中の経路を構成する区間で波長多重されない区間の空きの波長は考慮しなくてよいし、波長のみで識別、分岐されない(例えば時分割多重、符号分割多重、モード分割多重、コア分割多重、芯線多重、空間分割多重、周波数分割多重、偏波分割多重またはそれらの組合せ、またはそれらと波長分割多重との組合せ等)場合は、その区間において識別、分岐可能であればその区間における空きではない波長も使用可能な波長となるので選択してもよい。経路の途中で波長変換する場合は、波長変換するまでの経路を構成する区間の空き波長又は波長変換するまでの途中の経路を構成する区間で波長多重されないか又は波長のみで識別。分岐されない場合は空き波長を選択しなくともよい。
このように、選択する波長は途中の経路を構成する区間の波長の使用状況のみよらないため、波長テーブルは、空き波長のみならず、他の多重との組合せを加味した使用可能な波長を示すことが望ましい。また、使用可能な波長は、途中の経路を構成する区間の使用状況や多重状況によるので、制御部は経路を構成する区間毎の使用可能な波長のAND(または波長以外の他の要素で識別、分離できない波長のOR)が使用可能な波長となる。
送信する加入者装置40と波長で光SW10の宛先ポートを設定し、光SW10を構成するポートを2群、例えばポート1とポート2に分け、群間で接続し、群内で接続しない場合、一方の群であるポート1から他方の群であるポート2の方向と、他方の群であるポート2から一方の群であるポート1方向では、使用可能な波長は別としてもよい。
波長割当の処理は、経路を構成する全ての区間を同一制御部が制御または管理する場合はその中で閉じるが、複数の制御部や外部の装置が制御または管理する場合は、協調して動作するか、使用可能な波長のわかる波長テーブル自体の使用権限又はその値を受けて、制御すればよい。
制御部20は、制御信号により、加入者装置40に選択した波長を設定する。その後、制御部20は、加入者装置40から送信された光信号の宛先または転送先に応じた出力するよう光SW10を設定する。
制御部20は、制御信号により、加入者装置40に選択した波長を設定する。その後、制御部20は、加入者装置40から送信された光信号の宛先または転送先に応じた出力するよう光SW10を設定する。
光SW10を介して加入者装置40が対向する場合は、これにより、対向する加入者装置40間を接続する。加入者装置40同士で接続する経路の途中で装置や部品や機能部を経由する場合は、それらを経由した後に接続する。光SW10は、加入者装置40、経由する装置や部品や機能部や対向する加入者装置40を光のままや光電変換その他の処理をした後に同一波長で接続してもよいし、光のままあるいは光電変換その他の処理をした後で少なくとも一部の経路で異なる波長で接続してもよい。例えば、経路の途中で経由する装置や部品や機能部と両方の加入者装置が同一の光SWに接続する場合は、ルーティングは、加入者装置から次の経由する装置や部品や機能まで、経由する装置や部品や機能からその次に経由する装置や部品や機能や最後の経由する装置や部品や機能から対向する加入者装置までとする。通信元である加入者装置から通信相手である対向する加入者装置とのルーティングは、経由すべき装置や部品や機能を経由しない場合の設定である。なお、ルーティングに際して、送元、経由を含む宛先または転送先に加えて、波長等の多重便理の識別をパラメータに加えてもよい。これは、ルーティング先が同一局社内や別対地の光SW等で異なる波長や光周波数の複数の光信号を集約して送信したり、異なる波長や光周波数の複数の光信号を異なる装置や部品や機能や加入者装置に分波して分配したりする場合に適する。
制御部20は、例えば、加入者装置40間の光信号である主信号より低速且つ主信号に重畳可能な制御信号を用いるAMCC機能を用いて、加入者装置40が通信に用いる波長を割当する。以下、加入者装置40と制御部20との通信を、AMCC機能により例示するが、それに限らない。特に、対向装置と主信号が導通しない状態で波長等の初期設定や設定変更をする場合、制御信号は、主信号と別のAMCC等を用いなくてもよく、主信号としてやり取りしてもよい。加入者装置40と制御部20の機能で実現できる範囲であれば任意の変調方式でやりとりしてもよい。
例えば、加入者装置40に通信先への経路上の転送先に応じた波長を割当するため、まず、加入者装置40の光トランシーバ41と制御部20の光トランシーバ21とがAMCCを用いて通信を行う。制御部20は、波長テーブルを参照して、通信先への経路上の転送先に応じて加入者装置40に割当する波長を選択する。一例として、制御部20は、経路上で波長多重するリンクで他のパスで利用されていない空き波長の中から波長を選択する。制御部20は、加入者装置40にそれぞれ個別の波長が割当されるようにしてもよい。制御部20は、AMCCを用いた制御信号により、加入者装置40に選択した波長を設定する。その後、制御部20は、加入者装置40から送信された光信号を、通信先への経路上の転送先に応じた伝送路に出力するよう光SW10を切替える。
制御部20は、宛先情報に応じて、ルーティングを行うように光スイッチを制御してもよい。宛先情報として、加入者装置、波長、入力ポート、出力ポート、加入者装置又は入力ポート又は出力ポートと波長との組等の組を用いてもよい。
以下の実施形態では主に、加入者装置と波長の組を宛先情報として用いる場合で説明する。
これにより、対向する加入者装置40間を接続する。
以下の実施形態では主に、加入者装置と波長の組を宛先情報として用いる場合で説明する。
これにより、対向する加入者装置40間を接続する。
制御部20は、波長割当した加入者装置40に対して波長の変更を指示する波長変更処理を行ってもよい。例えば、後述の監視部から出力された監視情報に基づいて対象の加入者装置40を特定し、特定した加入者装置40に対して波長変更処理を行う。
制御部20から加入者装置40への指示は、初期設定時の経路で行ってもよいし、監視部等から行ってもよい。
制御部20は、波長変更の間、対象の加入者装置40の光信号を伝送しないように、光SW10又は遮断部があれば遮断部を制御する。制御部20が加入者装置40を光信号で直接制御する場合、加入者装置40と波長制御部との間で光信号が送受信されるように、光SW10を制御する。
制御部20から加入者装置40への指示は、初期設定時の経路で行ってもよいし、監視部等から行ってもよい。
制御部20は、波長変更の間、対象の加入者装置40の光信号を伝送しないように、光SW10又は遮断部があれば遮断部を制御する。制御部20が加入者装置40を光信号で直接制御する場合、加入者装置40と波長制御部との間で光信号が送受信されるように、光SW10を制御する。
例えば、波長変更前の出力側で他に影響がない場合、波長変更後に出力ポートを切替し、波長変更後の出力側で他に影響がない場合、波長変更前に出力ポートを切替する。伝送の停止を光SW10以外で行ってもよい。
例えば、光SW10から加入者装置40又は加入者装置40との伝送路を外し、設定後に再接続する。又は、伝送路、光SW10、合分岐器や合分波器やそれらの接続点に遮断部を備え、遮断部は、波長変更前に遮断し、必要に応じて出力ポートを切替する前又は切替した後に設定して遮断を解除する。
例えば、光SW10から加入者装置40又は加入者装置40との伝送路を外し、設定後に再接続する。又は、伝送路、光SW10、合分岐器や合分波器やそれらの接続点に遮断部を備え、遮断部は、波長変更前に遮断し、必要に応じて出力ポートを切替する前又は切替した後に設定して遮断を解除する。
例えば、光SW制御部は、波長変更処理の後、加入者装置40から変更後の波長の光信号を、通信先や転送先に応じたポート2から出力するよう光SW10を制御する。
波長切替に際し、波長切替が、他に、例えば他の加入者装置40に影響がある場合、その方路における光出力を遮断する。具体的には、光信号自体の送信を停止、光SW10への接続解除、光SW10の入力側から出力側への接続を解除、シャッタ等の例えば、監視部等に含まれる遮断部で遮断する。
波長切替に際し、波長切替が、他に、例えば他の加入者装置40に影響がある場合、その方路における光出力を遮断する。具体的には、光信号自体の送信を停止、光SW10への接続解除、光SW10の入力側から出力側への接続を解除、シャッタ等の例えば、監視部等に含まれる遮断部で遮断する。
波長割当処理では、光SW制御部は、波長割当対象の加入者装置40の光信号を光SW10が伝送しないように、光SW10における経路を制御する。すなわち、光SW制御部は、波長割当対象の加入者装置40の監視部に接続されているポート以外のポート(他のポート)に、その加入者装置40から送信された光信号が出力されないように、光SW10における経路を制御する。
なお、波長設定前(波長割当前)に光SW10の出力先を切り替えても特に影響がない場合には、光SW制御部は、波長変更前に光SW10の出力先を切替えてもよい。波長割当処理時に、光SW10以外の機能部が、加入者装置40から送信された光信号の伝送の停止を実行してもよい。
波長切替と光SW10の切替が伴い、切替前又は後の方路に接続した状態で波長を切替する場合は、影響が無いようにする。
波長割当処理(波長設定)と経路設定処理との順に実行される。光SW制御部は、光SW10の出力先を切り替えても特に影響がないように、波長変更後に光SW10の出力先(経路)を切替する。
例えば、切替前に第1ポート及び第1波長「λ1」が使用されており、切替後に第2ポート及び第2波長「λ2」が使用される場合、以下でもよい。
波長割当処理(波長設定)と経路設定処理との順に実行される。光SW制御部は、光SW10の出力先を切り替えても特に影響がないように、波長変更後に光SW10の出力先(経路)を切替する。
例えば、切替前に第1ポート及び第1波長「λ1」が使用されており、切替後に第2ポート及び第2波長「λ2」が使用される場合、以下でもよい。
(1)第1ポート及び第2波長「λ2」を使用している加入者装置40が無い場合:
第1ポートで第1波長「λ1」から第2波長「λ2」に切り替えられても影響が無い。この場合、ポート切替前に波長切替することは可である。
(2)第1ポート及び第2波長「λ2」を使用している加入者装置40が有る場合:
第1ポートで第1波長「λ1」から第2波長「λ2」に切り替えられると影響が有る。この場合、ポート切替前に波長切替することは不可である。
(3)第2ポート及び第1波長「λ1」を使用している加入者装置40が無い場合:
第2ポートで第1波長「λ1」から第2波長「λ2」に切り替えられても影響が無い。この場合、ポート切替前に波長切替することは可である。
(4)第2ポート及び第1波長「λ1」を使用している加入者装置40が有る場合:
第2ポートで第1波長「λ1」から第2波長「λ2」に切り替えられると影響が有る。この場合、ポート切替前に波長切替することは不可である。
第1ポートで第1波長「λ1」から第2波長「λ2」に切り替えられても影響が無い。この場合、ポート切替前に波長切替することは可である。
(2)第1ポート及び第2波長「λ2」を使用している加入者装置40が有る場合:
第1ポートで第1波長「λ1」から第2波長「λ2」に切り替えられると影響が有る。この場合、ポート切替前に波長切替することは不可である。
(3)第2ポート及び第1波長「λ1」を使用している加入者装置40が無い場合:
第2ポートで第1波長「λ1」から第2波長「λ2」に切り替えられても影響が無い。この場合、ポート切替前に波長切替することは可である。
(4)第2ポート及び第1波長「λ1」を使用している加入者装置40が有る場合:
第2ポートで第1波長「λ1」から第2波長「λ2」に切り替えられると影響が有る。この場合、ポート切替前に波長切替することは不可である。
上記「(1)」且つ「(3)又は(4)」では、ポート切替前に波長切替することは可である。
上記「(1)又は(2)」且つ「(3)」では、ポート切替前に波長切替することは可である。
上記「(2)」且つ「(4)」では、ポート切替前に波長切替することは不可であり、光信号の停止又は遮断が必要である。
上記「(1)又は(2)」且つ「(3)」では、ポート切替前に波長切替することは可である。
上記「(2)」且つ「(4)」では、ポート切替前に波長切替することは不可であり、光信号の停止又は遮断が必要である。
波長割当処理では、波長制御部は、波長割当対象の加入者装置40に対して、監視部を介して、波長割当処理を実行する。波長制御部は、例えば、異常が検出されたときに用いていた波長と同じ波長又は異なる新たな波長の割当処理を、波長割当対象の加入者装置40に対して実行する。
経路設定処理では、光スイッチ制御部は、波長割当対象の加入者装置40の監視部に接続されているポート以外のポート(他のポート)に、波長割当対象の加入者装置40が接続されるように、光SW10における経路を制御する。例えば、光スイッチ制御部は、転送先に応じて特定されたポート(他のポート)に、波長割当対象の加入者装置40の伝送路から入力された光信号を出力するように、光SW10を制御する。ここで、転送先は、加入者、加入者装置40、光SW10のポート、光信号の波長、加入者装置40と光信号の波長との組合せ、又は、ポート1光信号の波長との組合せ等に応じて特定される。
光SW10は、例えば、光ゲートウェイ(GW)に備えられる。図2~図15を用いて、光GWに備えられる光SW10の例を説明する。
図2は、光SW10aの構成例を示す図である。光SW10aは、複数の伝送路50と接続され、いずれかの伝送路50から入力した光信号を他の伝送路50へ出力する。伝送路50は、例えば、光ファイバである。光SW10aは、ポート11-1-1~11-1-P(Pは1以上の整数)と、ポート11-2-1~11-2-Q(Qは1以上の整数、PとQの少なくともいずれかは2以上)とを有する。ポート11-1-1~11-1-Pのいずれかを特定しない場合、又は、総称して、ポート11-1と記載し、ポート11-2-1~11-2-Qのいずれかを特定しない場合、又は、総称して、ポート11-2と記載する。ポート11-1と接続される伝送路50を伝送路50-1と記載し、ポート11-2と接続される伝送路50を伝送路50-2と記載する。
各ポート11-1は、伝送路50-1を介して加入者装置40と接続される。各ポート11-2は、伝送路50-2を介して加入者装置40と接続される。加入者装置40は、例えば、ONUである。伝送路50-2は、上位ネットワークである光通信ネットワーク30に接続されてもよい。この場合、伝送路50-1を介して接続される加入者装置40の方向は下り方向であり、伝送路50-2を介して接続される上位ネットワークの方向は上り方向である。伝送路50-2には、他の光SW10などの光通信装置が備えられることがある。
ポート11-1-1、11-1-2、11-1-3、…はそれぞれ伝送路50-1を介して、対地Aの加入者装置40である40a-1、40a-2、40a-3、…と接続される。いずれかのポート11-2(同図では、ポート11-2-1)は、後述する波長制御部25と接続される。一部のポート11-2-i、11-2-(i+1)、11-2-(i+2)、…はそれぞれ伝送路50-2を介して、対地Bの加入者装置40である40b-1、40b-2、40b-3、…と接続される(iは2以上の整数)。対地Bの加入者装置40と接続されるポート11-2とは異なる一部のポート11-2-j、11-2-(j+1)、11-2-(j+2)、…はそれぞれ伝送路50-2を介して、対地Cの加入者装置40である40c-1、40c-2、40c-3、…と接続される(jは2以上の整数)。光SW10aは、ポート11-1から入力した光信号をポート11-2に出力し、ポート11-2から入力した光信号をポート11-1に出力する。ここで、対地Aの加入者装置40と、対地Bの加入者装置40及び対地Cの加入者装置40との間に、他の光SWなどの光通信装置や光通信ネットワーク30を介する構成としてもよい。
光SW10aは、制御部20と接続される。制御部20は、波長制御部25と、光SW制御部26とを有する。波長制御部25は、光信号により加入者装置40から波長割当の要求を受信し、要求を送信した加入者装置40に通信先への経路上の転送先に応じた波長を割当し、割当した波長を光信号により加入者装置40に通知する波長割当処理を行う。例えば、波長制御部25は、要求を送信した加入者装置40に通信先への経路上の転送先に応じた波長を動的に割当してもよい。波長制御部25と加入者装置40との間で送受信される光信号には、加入者装置40間の光信号(主信号)の通信プロトコルに依存しない制御信号の重畳方式が用いられることが望ましい。波長制御部25と加入者装置40との間で送受信される光信号には、例えば、プロトコルフリーのAMCCが用いられる。AMCC等で重畳した制御信号を用いずに、主信号を送受して設定してもよい。
光SW制御部26は、波長割当処理が実行されている間、加入者装置40と波長制御部25との間で光信号を送受信するよう光SW10aを制御する。光SW制御部26は、波長割当処理の後、伝送路50から入力した光信号を、入力した光信号を送信した加入者装置40と入力した光信号の波長との組み合わせにより特定される通信先への経路上の転送先に応じた伝送路50-2に出力するよう光SW10aを制御する。
各伝送路50-2には、監視部60が備えられる。同図では、監視部60を1つだけ示している。監視部60は、パワースプリッタ61を有する。パワースプリッタ61は、伝送路50-2を伝送する光信号を分岐する。監視部60は、パワースプリッタ61が分岐した光信号を監視する。監視部60は、監視の結果に基づく監視情報を生成し、生成した監視情報を出力する。監視情報は、監視の結果を示す情報、又は、監視の結果から得られた情報である。例えば、例えば制御信号を用いた加入者装置40からの変更要求や、光信号の監視により、加入者装置40間の通信状況の異常等を検出すると、通信状況の異常が生じた旨と、通信状況の異常が生じた加入者装置40を特定する情報とを設定した監視情報を出力する。通信状況の異常は、例えば波長のずれ、出力の増加や低下、通信異常(エラー)等である。監視情報の出力先としては、例えば、制御部20が挙げられる。異常を検出した場合は、制御部20は、例えば、対象の加入者装置40の光信号を伝送しないように、光SW10又は監視部又は遮断部を制御する。更に、制御部20が加入者装置40を光信号で直接制御する場合は、加入者装置40を制御部20に再度接続するように、光SW10を制御する。そして、制御部20は、新たに加入者装置40を接続したときと同様に、異常が検出時の波長と同じ波長又は異なる新たな波長の割当処理を行う。これにより、光SW10は、加入者装置40から従前又は変更後の波長の光信号を、その加入者装置40が変更前のポートに接続する。なお、故障やRogue ONU等で再起動や再割当等の所定の処理を所定の回数実施する等しても異常状態から復旧しない場合や、ブラックリストに登録または過去にも同様の動作をする加入者装置の識別番号や挙動から、光SW内の接続を開放したり、遮断部で遮断したり、設定や接続や転送をやめてもよい。他の加入者装置40との通信中に、パワースプリッタ61により、加入者装置40が送信した制御信号を分岐したり、加入者装置40等に、制御信号を重畳して出力したりすることができる。
なお、伝送路50-2に加入者装置40が接続される場合は、制御部20がポート11-1に接続されてもよい。あるいは、伝送路50-2に加入者装置40が接続される場合は、伝送路50-2に接続される加入者装置40を、折り返し伝送路73を経由して制御部20に接続してもよい。折り返し伝送路73は、ポート11-1-p1が出力した光信号を他のポート11-1-p2(p1、p2は1以上P以下の整数)に入力する光ファイバ又は光スイッチ又は光合分岐器や光合分波器である。この場合、加入者装置40b又は40cから送信された光信号は、伝送路50-2を介して光SW10aに入力される。光SW10aは、伝送路50-2から入力した光信号を、ポート11-1-p1に出力し、折り返し伝送路73を伝送した光信号をポート11-1-p2から入力する。光SW10aは、ポート11-1-p2から入力した光信号を、ポート11-2-1から制御部20に出力する。これにより、加入者装置40b又は40cと、制御部20とが接続される。
波長制御部25は、波長割当処理を行った加入者装置40に対して波長等の変更を指示する波長変更処理を行ってもよい。ここで、波長変更処理は、監視情報を契機とし、加入者装置40は制御部と通信する例で示す。例えば、波長制御部25は、監視部60から出力された監視情報に基づいて波長変更対象の加入者装置40を特定し、特定した加入者装置40に対して波長変更処理を行う。光SW制御部26は、波長変更処理の間、加入者装置40と波長制御部25との間で光信号が送受信されるよう光SW10aを制御する。光SW制御部26は、波長変更処理の後、加入者装置40から変更後の波長で送信される光信号を、通信先への経路上の転送先に応じた伝送路50-2に出力するよう光SW10aを制御する。例えば、光SW制御部26は、波長変更処理の後、加入者装置40から変更後の波長の光信号を、送信元の加入者装置40と変更前の波長との組み合わせが用いていた通信先への経路上の転送先に応じた伝送路50-2に出力するよう光SW10aを制御する。あるいは、変更後の波長の光信号を、波長変更前とは異なる伝送路50-2に出力するよう光SW10aを制御してもよい。この場合、波長変更処理の前後で通信先への経路上の転送先の加入者装置40は異なる。波長制御部25は、通信中又は通信終了後の加入者装置40からの波長変更の要求を受け、要求元の加入者装置40に対して波長変更処理を行ってもよい。波長変更処理によって、加入者装置40が送信に用いる波長と受信に用いる波長の両方を変更してもよく、いずれかを変更してもよい。
なお、波長変更処理で用いる、監視情報は、例えば制御信号を用いた加入者装置40からの変更要求や、波長のずれ、出力の増加や低下、通信異常(エラー)等の通信状況の異常や、使用する波長や変調方式やプロトコル等の指定や設定や許容した範囲からの逸脱や、割当していない波長等の使用や、信号断等の異常検出であってもよく、監視信号の以外の契機、例えば、主信号を経由した或いは光SWを経由しない信号を経由した伝送先等の変更要求であってもよく、伝送路上又は管理システム等のネットワーク内外の装置からの異常検出や停止や変更の要求であってもよい。異常検出や停止や変更の要求且つ指定した又は設定した又は許容できる範囲に波長等が変更されない場合は、加入者装置40に再起動等の指示や信号を制御部と接続したままや信号を伝送路に出力しない状態や信号をシャッター等で遮断してもよい。制御部20と加入者装置40のやりとりはAMCCで行ってもよいし、主信号で行ってもよい。加入者装置40がAMCC非対応の場合は、主信号で行うのが好適である。また、切替前の波長等が切替前に対向する装置に悪影響を与えない場合は、制御部20と接続替せずに対向する加入者装置40との経路を接続したまま監視部等で設定してもよいし、切替後の波長等が切替後に対向する装置に悪影響を与えない場合は、制御部20と接続替せずに対向する加入者装置40との経路を切替した後に監視部等で設定してもよい。
図3は、折り返し通信のための折り返し回路を有する光SW10bの構成例を示す図である。同図において、図2に示す光SW10aと同一の部分には同一の符号を付し、その説明を省略する。図3では、制御部20の記載を省略している。以下の説明においても特に必要のない場合には、図面には制御部20の記載を省略する。光SW10bは、折り返し伝送路51と接続される。折り返し伝送路51は、ポート11-2が出力した光信号を他のポート11-2に入力する光ファイバや光スイッチや光合分岐器や光合分波器である。これにより、光SW10bは、折り返し通信を可能とする。
なお、送信元の加入者装置40と波長との組み合わせにより光信号の出力先のポートを設定する場合、ポート11-1から折り返し伝送路51が接続されるポート11-2の方向と、折り返し伝送路51が接続されるポート11-2からポート11-1の方向の場合とで、宛先を別としてもよい。
図4は、対向する1対1の折り返し伝送路と1対他の折り返し伝送路を用いて、上り方向マルチキャストを行う光SW10cの構成例を示す図である。同図において、図2に示す光SW10aと同一の部分には同一の符号を付し、その説明を省略する。光SW10cは、ポート11-2が出力した光信号を複数に分配し、分配された複数の光信号をそれぞれ異なるポート11-1に入力する分配部58を有する。図4では、光SW10cは、ポート11-2が出力した光信号を、折り返し伝送路を介して他のポート11-2に入力する。光SW10cは、この入力された光信号を、1×Nのパワースプリッタ71が接続されているポート11-1に出力する。ポート11-1から出力された光信号は、パワースプリッタ71により分配されて複数の他のポート11-1に入力される。光SW10cは、これら複数のポート11-1から入力した光信号をそれぞれ、異なるポート11-2に出力する。なお、双方向通信も可能である。下り方向の光信号は、上り方向と逆にルーティングされる。
なお、光SW10cは、ポート11-1から複数波長の光信号を入力してもよい。この場合、光SW10cは、ポート11-1から入力した複数波長の光信号を分配部58により分配し、分配された光信号を、ポート11-2に接続される各加入者装置40又は他対地に接続される伝送路に出力する。ポート11-2に接続される加入者装置40は、複数波長の光信号のうち所定の波長の光信号を選択して受信する。他対地に接続される伝送路は、複数波長の光信号をそのまま伝送してもよいし、後述の図6に示すWDM装置により選択した波長の光信号を伝送してもよい。
図5は、下り方向マルチキャストを行う光SW10dの構成例を示す図である。同図において、図2に示す光SW10aと同一の部分には同一の符号を付し、その説明を省略する。光SW10dは、ポート11-1が出力した光信号を複数に分配し、分配され複数の光信号をそれぞれ異なるポート11-2に入力する分配部59を有する。図5では、光SW10dは、ポート11-1が出力した光信号を、折り返し伝送路を介して他のポート11-1に入力する。光SW10dは、この入力された光信号を、1×Nのパワースプリッタ72が接続されているポート11-2に出力する。ポート11-2から出力された光信号は、パワースプリッタ72により分配されて複数の他のポート11-2に入力される。光SW10dは、これら複数のポート11-2から入力した光信号をそれぞれ、異なるポート11-1に出力する。
なお、光SW10dには、ポート11-2から複数波長の光信号が入力されてもよい。この場合、光SW10dにおいて、ポート11-2から入力された複数波長の光信号が分配部59により分配され、分配された光信号が、ポート11-1に接続される各加入者装置40に出力される。ポート11-1に接続される各加入者装置40は、受信した複数波長の光信号のうち、所定の波長の光信号を選択して受信する。
図6は、WDM伝送を行う光SW10eの構成例を示す図である。同図において、図2に示す光SW10aと同一の部分には同一の符号を付し、その説明を省略する。光SW10eは、1台以上のWDM装置80と接続される。WDM装置80は、合分波装置の一例である。WDM装置80は、複数のポート11-2のそれぞれから出力された異なる波長の光信号を合波して多重通信伝送路90に出力する。WDM装置80は、多重通信伝送路90を介して受信した光信号を波長により分波し、分波した光信号をそれぞれ複数のポート11-2に入力する。このようにWDM装置80は、合波装置の機能と、分波装置との機能を有する。合波装置の機能としては、光SW10eの複数のポート11-2から出力された異なる波長の光信号を合波して多重通信伝送路90に出力する。分波装置の機能としては、多重通信伝送路90を介して受信した光信号を波長により分波し、分波した光信号それぞれを光SW10eの異なる複数のポート11-2に入力する。WDM伝送を行う光SW10eは、WDM装置80と接続されていないポート11-2に、図3に示す折り返し伝送路51を接続してもよい。
多重通信伝送路90には、監視部65が備えられる。監視部65は、パワースプリッタ66及びWDM装置67、68を有する。パワースプリッタ66は、多重通信伝送路90を伝送する光信号を分岐する。WDM装置67は、パワースプリッタ66が分岐した上りの光信号を分波する。WDM装置68は、パワースプリッタ66が分岐した下りの光信号を分波する。監視部65は、WDM装置67及びWDM装置68が分波した光信号を監視する。監視部65は、監視の結果に基づく監視情報を生成し、生成した監視情報を出力する。
なお、監視部65は、ポート11-2とWDM装置80との間の伝送路それぞれにパワースプリッタ69を備えてもよい。パワースプリッタ69は、ポート11-2とWDM装置80との間の伝送路を伝送する光信号を分岐し、分岐した光信号を制御部20に出力する。
波長制御部25は、波長割当処理を行った加入者装置40に対して波長の変更を指示する波長変更処理を行ってもよい。例えば、波長制御部25は、監視部65から出力された監視情報に基づいて波長変更対象の加入者装置40を特定し、特定した加入者装置40に対して波長変更処理を行う。光SW制御部26は、波長変更処理の間、加入者装置40と波長制御部25との間で光信号が送受信されるよう、例えば、監視部を介して光SW10eを制御、例えば再結線する。光SW制御部26は、波長変更処理の後、加入者装置40から変更後の波長の光信号を入力した場合、入力した光信号を、通信先への経路上の転送先に応じたポート11-2から出力するよう光SW10eを制御する。波長制御部25は、通信中又は通信終了後の加入者装置40からの波長変更の要求を受け、要求元の加入者装置40に対して波長変更処理を行ってもよい。
図7及び図8を用いて、光SW10eにおける波長変更の例を説明する。図7は、光SW10eにおける波長変更前のルーティングの例を示す図である。光SW10eは、対地Aの加入者装置40である40a-1、40a-2、40a-3、…と接続される。対地Bと接続されるWDM装置80をWDM装置80bと記載し、対地Cと接続されるWDM装置80をWDM装置80cと記載する。WDM装置80bは、光SW10eとの間で波長λ1~λ10の光信号を送受信し、WDM装置80cは、光SW10eとの間で波長λ11~λ20の光信号を送受信する。
図7において、波長変更前、光SW10eは、加入者装置40a-1から入力した波長λ1の光信号と、加入者装置40a-2から入力した波長λ2の光信号とをそれぞれ異なるポート11-2からWDM装置80bへ出力している。加入者装置40a-2は、通信中又は通信終了後に、波長制御部25に制御信号により波長変更の要求を送信する。波長制御部25は、加入者装置40a-2から波長変更の要求を受信すると、加入者装置40a-2に波長λ10への変更を指示する波長変更処理を行う。光SW制御部26又は監視部又は遮断部は、加入者装置40a-2から受信した波長λ10の光信号を、必要に応じ、波長変更完了まで出力しないようにし、光SW制御部26は、切替完了後、波長λ10に対応したポート11-2からWDM装置80bへ出力するよう光SW10eを制御する。なお、波長制御部25は、加入者装置40a-2が受信に用いる波長をさらに変更してもよい。
光SW制御部26は、波長変更処理後、送信元の加入者装置40から変更後の波長を用いて送信された光信号を、波長変更前とは異なるWDM装置80に出力するよう光SW10eを制御してもよい。図8は、出力先のWDM装置80が変更になる場合の光SW10eにおける波長変更後のルーティングの例を示す図である。波長変更前、図7に示すように、加入者装置40a-1は波長λ1を用いて、加入者装置40a-2は、波長λ2又は波長λ10を用いて通信している。加入者装置40a-2は、通信中又は通信終了後に、波長制御部25に制御信号により波長変更の要求を送信する。波長制御部25は、加入者装置40a-2から波長変更要求を受信すると、加入者装置40a-2に対地Cの加入者装置40と通信するため波長λ11への変更を指示する波長変更処理を行う。光SW制御部26又は監視部又は遮断部は、加入者装置40a-2から入力した波長λ10の光信号を、必要に応じ、波長変更完了まで出力しないようにし、切替完了後、光SW制御部26は、加入者装置40a-2から受信した波長λ11の光信号を、波長λ11に対応したポート11-2からWDM装置80cへ出力するよう光SW10eを制御する。なお、波長制御部25は、加入者装置40a-2が受信に用いる波長をさらに変更してもよい。
なお、加入者装置40a-2が受信に用いる波長を変更しない場合は、波長制御部25は、以下のいずれかのように動作してもよい。なお、宛先情報の少なくとも一部として波長を用いない場合は下記によらなくてもよい。
(1)波長制御部25は、波長切替前の通信先である対地Bの加入者装置40が使用していた送信波長を解放する。送信波長の解放により、加入者装置40a-2から対地Bの加入者装置40に至る経路がリセットされる。その後、波長制御部25は、解放により空波長となった当該波長を、新たな通信先である対地Cの加入者装置40から加入者装置40a-2宛ての信号の受信用に割当し直す。これは、加入者装置40毎に使用する波長が一意であり、空き波長以外は割当しない場合に行われる。
(1)波長制御部25は、波長切替前の通信先である対地Bの加入者装置40が使用していた送信波長を解放する。送信波長の解放により、加入者装置40a-2から対地Bの加入者装置40に至る経路がリセットされる。その後、波長制御部25は、解放により空波長となった当該波長を、新たな通信先である対地Cの加入者装置40から加入者装置40a-2宛ての信号の受信用に割当し直す。これは、加入者装置40毎に使用する波長が一意であり、空き波長以外は割当しない場合に行われる。
(2)加入者装置40a-2の波長変更前後で異なる多重通信伝送路90を介して接続される加入者装置40が通信先となる場合、波長変更前に使用していた波長を、そのまま再利用可である。ただし、波長を宛先情報として用いるが、例えば、異なる伝送路を経由する場合や、光スイッチの入力ポート又は出力ポートが異なる場合は、同じ波長でも異なる経路として扱う。上記のような再利用を可能とするために、この場合、例えば、光信号の出力先を決定するための条件としての引数に「入力伝送路」又は「出力伝送路」又は「経路を構成する全伝送路の組合せ」を追加する。例えば、光信号を入力した伝送路又はポートと光信号の波長との組み合わせや、光信号を入力した伝送路又はポートと光信号を送信した加入者装置40と光信号の波長との組み合わせにより出力先が定められる。
上記では、加入者装置40が波長変更を要求することによって行われる波長変更処理を説明したが、監視情報に基づいて行われる波長変更処理も同様である。
図9~図11を用いて、WDM伝送及びマルチキャストを行う光SWを説明する。図9は、WDM伝送及び上り方向のマルチキャストを行う光SW10fの構成例を示す図である。図9において、光SW10fは、単一波長によって上り方向のマルチキャストを行う。図9に示すように、光SW10fは、図4と同様の分配部58を有する。図9では、対地B及び対地Cにマルチキャストを行っている。光SW10fは、加入者装置40と接続されるポート11-1から入力した光信号を、折り返し伝送路が接続されているポート11-2から出力し、折り返し伝送路を伝送した光信号を他のポート11-2から入力する。光SW10fは、この入力された光信号を、1×Nのパワースプリッタ71が接続されているポート11-1から出力する。光SW10fは、1×Nのパワースプリッタ71が分配した光信号を複数のポート11-1から入力し、入力したうち1つの光信号を対地Bと接続されるポート11-2に、他の1つの光信号を対地Cと接続されるポート11-2に出力する。
なお、加入者装置40がWDM信号を出力してもよい。例えば、加入者装置40は、波長λ1の光信号及び波長λ2の光信号が多重されたWDM信号を出力する。WDM装置80bと光SW10fとの間の複数の伝送路は、上から順に波長λ1、λ2、…の光信号を送受信する。同様に、WDM装置80cと光SW10fとの間の複数の伝送路では、上から順に波長λ1、λ2、…の光信号が送受信される。
光SW10fは、加入者装置40と接続されるポート11-1から入力した波長λ1及び波長λ2のWDM信号を分配部58により分配する。光SW10fは、分配されたWDM信号を、WDM装置80bに接続されるポート11-2のうち、波長λ1に対応するポート11-2に出力する。さらに、光SW10fは、分配された他のWDM信号を、WDM装置80cに接続されるポート11-2のうち、波長λ2に対応するポート11-2に出力する。WDM装置80bは、波長λ1に対応するポートから入力したWDM信号をフィルタリングして波長λ2を遮断し、波長λ1の光信号を通過させて多重通信伝送路90に出力する。WDM装置80cは、波長λ2に対応するポートから入力したWDM信号をフィルタリングして波長λ1を遮断し、波長λ2の光信号を通過させて多重通信伝送路90に出力する。
図10は、複数波長によって光SW10fが複数の対地へ上り方向のマルチキャストを行う場合を示す図である。伝送路50-1に1台以上の1×Mのパワースプリッタ55を備えることにより、一つのポート11-1と接続される伝送路50-1に複数の加入者装置40を接続することができる。図10では、1つの伝送路50-1に、複数の加入者装置40a-1として、加入者装置40a-1-1、40a-1-2、…が接続されている。加入者装置40a-1-1、40a-1-2、…はそれぞれ異なる波長を用いる。ここでは、加入者装置40a-1-1は、波長λ1の光信号を送信し、加入者装置40a-1-2は、波長λ2の光信号を送信する。光SW10fは、加入者装置40a-1-1が送信した波長λ1の光信号と加入者装置40a-1-2が送信した波長λ2の光信号とが合波された光信号をポート11-1から入力する。光SW10fは、この入力した光信号を、折り返し伝送路が接続されているポート11-2から出力し、折り返し伝送路を伝送した光信号を他のポート11-2から入力する。光SW10fは、この入力した光信号を、1×Nのパワースプリッタ71が接続されているポート11-1から出力する。光SW10fは、1×Nのパワースプリッタ71が分配した光信号を複数のポート11-1から入力する。
光SW10fは、パワースプリッタ71により分配された光信号を、WDM装置80bに接続されるポート11-2のうち、波長λ1に対応するポート11-2及び波長λ2に対応するポート11-2に出力する。さらに、光SW10fは、パワースプリッタ71により分配された光信号を、WDM装置80cに接続されるポート11-2のうち、波長λ1に対応するポート11-2及び波長λ2に対応するポート11-2に出力する。WDM装置80bは、波長λ1に対応するポートから入力した光信号をフィルタリングして波長λ1の光信号を通過させて多重通信伝送路90に出力し、波長λ2に対応するポートから入力した光信号をフィルタリングして波長λ2の光信号を通過させて多重通信伝送路90に出力する。同様に、WDM装置80cは、波長λ1に対応するポートから入力した光信号をフィルタリングして波長λ1の光信号を通過させて多重通信伝送路90に出力し、波長λ2に対応するポートから入力した光信号をフィルタリングして波長λ2の光信号を通過させて多重通信伝送路90に出力する。
図11は、WDM伝送及び下り方向マルチキャストを行う光SW10gの構成例を示す図である。光SW10gは、図5と同様の分配部59を有する。図9及び図10に示す光SW10fと、図11に示す光SW10gとは、図6と同様の監視部65を有してもよい。波長制御部25は、監視部65が通信状況の異常を検出した加入者装置40に対して上記と同様に波長変更処理を行うことができる。
図12は、光SW10gがWDM伝送及び下り方向マルチキャストを行う場合を示す図である。図12に示す接続構成と、図11に示す接続構成とが異なる点は、光SW10gの複数のポート11-2と接続されるWDM装置80に代えて、複数のポート11-1と接続されるWDM装置81が配置される点である。WDM装置81には、ポート11-1とは反対側に、1台以上の加入者装置40が接続される。光SW10gは、他対地からの複数波長の光信号をポート11-2から入力し、分配部59の折り返し伝送路が接続されるポート11-1に出力する。複数波長の光信号は、パワースプリッタ72によりそのまま分岐される。光SW10dは、分岐された複数波長の光信号を複数のポート11-2から入力し、入力した光信号をWDM装置81と接続されるいずれかのポート11-1に出力する。WDM装置81は、入力した複数波長の光信号から、光信号を入力したポート11-1に対応した波長の光信号をフィルタリングして通過させ、通過させた光信号を加入者装置40と接続される伝送路に出力する。
図13は、光信号に電気処理を行う光SW10hの構成例を示す図である。図13において、図3に示す光SW10bと同一の部分には同一の符号を付し、その説明を省略する。光SW10hが、上述した光SW10a~10gと異なる点は、ポート12-1及びポート12-2をさらに備える点である。ポート12-1及びポート12-2は、伝送路52を介して電気処理部84と接続される。なお、伝送路52を介して電気処理部84と接続するポートに、ポート11-1及びポート11-2を用いてもよい。
光SW10hは、光SW制御部26の制御に従って、加入者装置40から入力した光信号を、光信号の送信元の加入者装置40又は光信号を入力したポート11-1と波長との組み合わせに応じて、ポート11-2又はポート12-1から出力する。光SW10hは、光SW制御部26の制御に従って、ポート11-2から入力した光信号の出力先を、光信号を入力したポート11-2と波長との組み合わせに応じて、ポート11-1又はポート12-1から出力する。
光SW10hは、ポート12-1から光信号を出力することによって、電気処理部84に光信号をドロップする。電気処理部84は、ドロップされた光信号を電気終端し、誤り訂正や集線などの各種電気処理を加えた後に、光信号に変換して光SW10hのポート12-2に入力する。光SW10hは、電気処理部84から入力した光信号を、ポート12-2と波長との組み合わせにより特定される通信先への経路上の転送先に応じてポート11-1又はポート11-2から出力する。このように、電気処理部84は、O-E(電気処理付加)-O変換(Oは光、Eは電気を表す。)を行う。なお、電気処理部84は、機能付加のための電気処理を行わずに、単純に、O-E-O変換してもよい。電気処理部84が、O-E-O変換等の際に3R再生(Re-amplification:増幅、Re-timing:タイミング再生、Re-shaping:波形整形)を行ったり、0/1反転して閾値効果を用いたりすることにより、伝送に伴う光波形劣化を低減することも可能である。
なお、電気信号に変換する前の光信号の波長と、電気信号から変換された後の光信号の波長とは同じでもよく、異なってもよい。電気処理部84は、複数の加入者装置40から送信された光信号を、電気段で多重し、多重した信号を、複数の光信号として変換し、別々のポートや合分波器やパワースプリッタに分岐してもよい。分岐した光信号をさらに合分波器には、複数波長でさらに分岐に出力してもよいし、パワースプリッタでさらに分岐してマルチキャストしてもよい。なお、電気処理部84は、電気段で多重だけしてもよいし、マルチキャストだけしてもよい。電気段での処理は、伝送路に対して帯域が小さい、例えば加入者装置40の送受信器の信号を束ねて扱う場合に適する。
具体的には、光SW10hは、複数の加入者装置40それぞれから送信された光信号を電気信号に変換して多重化し、多重化した電気信号に処理を行った後に複数の波長の光信号に変換して光スイッチ10hに入力する電気処理部84と接続される。光スイッチ制御部26は、伝送路50-1から入力した複数の光信号を、入力した複数の光信号を送信した複数の加入者装置40と、入力した光信号の波長との組み合わせに応じて電気処理部84に出力し、電気処理部84から入力された信号を波長により特定される通信先への経路上の転送先に応じた伝送路50-2に出力するように光スイッチ10hを制御する。
なお、光信号を送信する加入者装置と波長との組み合わせにより光SWの出力先となるポートを定める場合は、電気処理部84を経由させるためにポート11-1からポート11-2への方向と、ポート11-2からポート11-1への方向とで、宛先を別としてもよい。
電気処理部84は、O/E(光/電気)変換部85と、処理実行部86と、E/O(電気/光)変換部87と、記憶部88とを有する。O/E変換部85は、光SW10hから入力した光信号を、電気信号に変換する。処理実行部86は、プロセッサ861及びアクセラレータ862を備える。プロセッサ861は、例えば、CPU(central processing unit)などの汎用プロセッサである。アクセラレータ862は、例えば、GPU(Graphics Processing Unit)などのプロセッサである。プロセッサ861及びアクセラレータ862は、記憶部88からプログラムを読み出して実行することによって、O/E変換部85により変換された電気信号に対して電気信号処理を行う。処理実行部86は、複数の機能の電気信号処理を行ってもよい。電気信号処理の例は、長距離/高速アクセスのためのDSP(デジタル信号処理、Digital Signal Processing)、モバイルフロントホール処理、誤り訂正などである。E/O変換部87は、電気信号を光SW制御部26から指示された波長の光信号に変換し、光SW10hに出力する。記憶部88は、プロセッサ861及びアクセラレータ862が電気信号処理の機能を実行するためのプログラムを記憶する。
処理実行部86を、汎用プロセッサをベースとした装置アーキテクチャとすることによって、電気信号処理の追加及び変更が可能であるとともに、伝送機能以外の様々な機能とも入れ替えが可能である。処理実行部86が長距離/高速アクセスのためのDSPを行うことによって、長距離/高速アクセスの専用のLSI(Large-Scale Integration、大規模集積回路)を不要とし、ニーズに応じた柔軟な機能配備を実現できる。
光SW10hは、複数の電気処理部84と接続されてもよい。この場合、光SW10hは、各電気処理部84と接続されるポート12-1及び12-2を有する。各電気処理部84のそれぞれが異なる電気信号処理を行ってもよく、一部又は全てが同じ電気処理を行ってもよい。
なお、処理実行部86及び記憶部88が、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されてもよい。
図14は、光SW10hを用いた接続の例を示す図である。光SW10hと接続される加入者装置40-1、40-2、40-3は、例えば、ONUである。加入者装置40-1を利用するユーザ46-1は、長距離又は高速の通信を行うユーザである。ユーザ46-1の1以上の通信装置は、加入者装置40-1と接続される。加入者装置40-1は、長距離回線P1により通信先の装置と通信する。モバイル基地局46-2は、加入者装置40-2と接続される。図14では、パワースプリッタ55により複数の加入者装置40-2が1本の伝送路50-1に接続されている。加入者装置40-2は、中距離回線P2によって通信先の装置と通信する。加入者装置40-3を利用するユーザ46-3は、中距離又は中速の通信を行うユーザである。ユーザ46-3の1以上の通信装置は、加入者装置40-3を介して中距離回線P3により通信先の装置と通信する。長距離回線P1、中距離回線P2、中距離回線P3の光信号は波長多重され、コアNW(ネットワーク)と接続される多重通信伝送路90を伝送する。電気処理部84は、長距離/高速アクセスのためのDSP機能、モバイルフロントホール処理機能、誤り訂正機能などを有する。
図13及び図14を用いて、光SW10hの動作を説明する。光SW10hは、加入者装置40-1が送信した上りの光信号を、電気処理部84へ出力する。電気処理部84のO/E変換部85は、入力した光信号を電気信号に変換する。処理実行部86は、変換された電気信号に対して、長距離/高速アクセスのためのDSP処理を行う。E/O変換部87は、DSP処理が行われた電気信号を光信号に変換し、光SW10hに出力する。変換後の波長は、電気処理部84に入力されたときの波長と同じでもよく、異なってもよい。光SW10hは、電気処理部84から入力した光信号を、ポート11-2から多重通信伝送路90に出力する。
また、光SW10hは、多重通信伝送路90を伝送した加入者装置40-1宛ての下りの光信号を入力する。光SW10hは、入力した下りの光信号を、入力されたポート51-2と波長との組み合わせに応じてポート12-1から電気処理部84へ出力する。電気処理部84のO/E変換部85は、入力した光信号を電気信号に変換し、処理実行部86は、変換された電気信号に対して長距離/高速アクセスのためのDSP処理を行う。E/O変換部87は、DSP処理が行われた電気信号を光信号に変換し、光SW10hに出力する。光信号の変換後の波長は、電気処理部84に入力されたときの波長と同じでもよく異なってもよい。光SW10hは、電気処理部84から入力した光信号を、加入者装置40-1と接続されるポート11-1に出力する。
上記の例では、電気処理部84において、多重化した電気信号を同じ信号で変調して複数の波長の光信号に変換する構成を示した。電気処理部84は、多重化した又は多重分離した電気信号を、1以上の波長の1以上の光信号(同じ信号又はそれぞれ異なる信号で変調した光信号)に変換するように構成されてもよい。
加入者装置40-2が送受信する光信号に対しても、上述した加入者装置40-1が送受信する光信号と同様の処理が行われる。ただし、処理実行部86は、加入者装置40-2が送受信する光信号に対して、モバイルフロントホール処理を行う。処理実行部86は、電気信号に含まれる任意の情報に基づいて、電気信号に行う信号処理を決定する。
一方、光SW10hは、加入者装置40-3から入力した上りの光信号を、ポート11-2から多重通信伝送路90に出力する。また、光SW10hは、多重通信伝送路90を伝送した加入者装置40-3宛ての下りの光信号を入力し、光信号が入力されたポート11-2と波長との組み合わせに応じて、加入者装置40-3と接続されるポート11-1に出力する。
図15は、WDM伝送を行う前に光信号を監視する光SW10iの構成例を示す図である。同図において、図6に示す光SW10eと同一の部分には同一の符号を付し、その説明を省略する。図6と異なる点は、ポート11-2とWDM装置80との間に監視部60が備えられている点である。ポート11-2に接続される伝送路50-2には、監視部60が備えられる。同図では、監視部60を3つだけ示している。監視部60の具体的な構成は、図2に示す通りである。ポート11-2から出力された光信号は、監視部60を介してWDM装置80で合波されて出力される。WDM装置80は、多重通信伝送路90を介して受信した光信号を波長により分波し、分波した光信号をそれぞれ監視部60に入力する。監視部60は、監視の結果に基づく監視情報を生成し、生成した監視情報を出力する。監視情報の出力先としては、例えば、制御部20が挙げられる。
続いて、図16~図25を用いて、光SWへのアクセストポロジーについて説明する。
図16は、時分割多重を用いたPDS(Passive Double Star)型のアクセストポロジーを示す図である。光SW1001として、上述した光SW10a~10iを用いることができる。光SW1001は、ポート11-1-1~11-1-Pとポート11-2-1~11-2-Qとを有する。ポート11-1-p(pは1以上P以下の整数)に接続される伝送路50-1を、伝送路50-1-pとも記載し、ポート11-2-q(qは1以上Q以下の整数)に接続される伝送路50-2を、伝送路50-2-qとも記載する。図16において、ポート11-2-qは、伝送路50-2-qにより対地#qと接続される。
伝送路50-1-pには、パワースプリッタ56が設けられる。パワースプリッタ56には、Np台(Npは2以上の整数)の加入者装置40-pがスター型で接続される。Np台の加入者装置40-pを、加入者装置40-p-1~40-p-Npと記載し、加入者装置40-p-np(npは1以上のNp以下の整数)と、パワースプリッタ56との間の伝送路50-1-pを、50-1-p-npと記載する。加入者装置40-p-1~40-p-Npは、時分割多重により同じ波長を利用する。上りの光信号に用いられる波長と、下りの光信号に用いられる波長は異なる。
光SW1001は、ポート11-2-qから時分割多重された加入者装置40-p-1~40-p-Npそれぞれ宛ての波長λ1の下りの光信号を入力する。光SW1001は、入力した下りの光信号を、ポート11-2-qと波長λ1との組み合わせに応じた出力先のポート11-1-pから出力する。パワースプリッタ56は、伝送路50-1-pから時分割多重された下りの光信号を入力し、入力した光信号を分岐して伝送路50-1-p-1~50-1-p-Npに出力する。加入者装置40-p-1~40-p-Npは、時分割多重された光信号を受信し、受信した光信号から自装置宛ての下りの光信号を選択する。
加入者装置40-p-1~40-p-Npは、TDMA(時分割多重アクセス)によって同じ波長λ2の時分割多重された上りの光信号を送信する。パワースプリッタ56は、伝送路50-1-p-1~50-1-p-Npそれぞれから波長λ2の上りの光信号を入力し、入力した光信号を時分割多重して伝送路50-1-pに出力する。光SW1001は、時分割多重された上りの光信号を、ポート11-1-pと波長λ2との組み合わせに応じたポート11-2-qから出力する。
なお、伝送路50-1-1~50-1-Pのうち任意の1以上に、PDS型のアクセストポロジーを適用可能である。
図17は、波長多重を用いたPDS型のアクセストポロジーを示す図である。光SW1002として、上述した光SW10a~10iを用いることができる。光SW1002は、1台以上のWDM装置81と接続される。WDM装置81は、複数のポート11-1のそれぞれから出力された異なる波長の下りの光信号を合波して多重通信伝送路91に出力する。WDM装置81は、多重通信伝送路91を介して受信した上りの波長多重光信号を分波し、分波した光信号をそれぞれ異なるポート11-1に入力する。多重通信伝送路91には、パワースプリッタ56が設けられる。パワースプリッタ56には、N台(Nは2以上の整数)の加入者装置40がスター型で接続される。加入者装置40とパワースプリッタ56との間は、伝送路92により接続される。パワースプリッタ56と接続される複数の加入者装置40はそれぞれ異なる波長の光信号を送受信する。
図17では、光SW1002のポート11-1-p~11-1-(p+N)が、伝送路50-1を介してWDM装置81と接続されている(p及びNは1以上の整数、p+NはP以下の整数)。パワースプリッタ56には、加入者装置40-p~40-(p+N)が接続されている。
光SW1002は、ポート11-2-(q+n)から波長λ1(q+n)の加入者装置40-(p+n)宛ての下りの光信号を入力する(qは1以上の整数、nは0以上N以下の整数)。図17は、q=1の場合の例である。光SW1002は、ポート11-2-(q+n)から入力した波長λ1(1+n)の下りの光信号を、ポート11-2-(q+n)と波長λ1(1+n)との組み合わせ応じた出力先のポート11-1-(p+n)へルーティングする。これにより、光SW1002は、ポート11-2-1から入力した波長λ11の下りの光信号をポート11-1-pへルーティングし、ポート11-2-2から入力した波長λ12の下りの光信号をポート11-1-(p+1)へルーティングする。
WDM装置81は、ポート11-1-p~11-1-(p+N)のそれぞれから出力された波長λ11~λ1Nの下りの光信号を合波して多重通信伝送路91に出力する。パワースプリッタ56は多重通信伝送路91から波長多重された下りの光信号を入力し、入力した下りの光信号をそのまま分岐して、加入者装置40-p~40-(p+N)それぞれとの間の伝送路92に出力する。加入者装置40-p~40-(p+N)は、波長多重された下りの光信号を受信し、受信した光信号から自装置が用いる波長の下りの光信号を選択する。
加入者装置40-(p+n)は、波長λ2(1+n)の上りの光信号を送信する。パワースプリッタ56は、加入者装置40-p~40-(p+N)のそれぞれから伝送路92を介して上りの光信号を入力し、入力した波長λ21~λ2(1+N)それぞれの上りの光信号を波長多重して多重通信伝送路91に出力する。WDM装置81は、多重通信伝送路91から波長多重された上りの光信号を入力し、波長分離する。WDM装置81は、波長λ2(1+n)の上りの光信号をそれぞれ、ポート11-1-(p+n)に入力する。光SW1002は、波長λ2(1+n)の上りの光信号を、入力されたポート11-1-(p+n)と波長λ2(1+n)との組み合わせに応じた出力先のポート11-2-(q+n)から出力する。これにより、加入者装置40-pが送信した波長λ21の上りの光信号は、ポート11-1-pから入力され、ポート11-2-1から出力される。加入者装置40-(p+1)が送信した波長λ22の上りの光信号は、ポート11-1-(p+1)から入力され、ポート11-2-2から出力される。なお、図18に示すように、光SWの後段にWDM装置を置く構成としてもよい。
図18は、波長多重を用い、かつ、光SWの後段にWDM装置を置いたPDS型のアクセストポロジーを示す図である。光SW1003として、上述した光SW10a~10iを用いることができる。光SW1003のポート11-2-q(qは1以上Q以下の整数)は、伝送路50-2-qを介してWDM装置97と接続される。WDM装置97は、対地#n(nは1以上N以下の整数)と伝送路50-2-q-nを介して接続される。光SW1003のポート11-1-pと接続される伝送路50-1-pには、パワースプリッタ56が設けられる。パワースプリッタ56には、N台の加入者装置40-p-1~40-p-Nがスター型で接続される。
WDM装置97は、対地#nから送信された波長λ1nの加入者装置40-p-n宛ての下りの光信号を、伝送路50-2-q-nから入力する。WDM装置97は、対地#1~対地#Nのそれぞれから入力したλ11~λ1Nの下りの光信号を多重した波長多重信号を光SW1003に入力する。光SW1003は、ポート11-2-qから入力した下りの波長多重信号を、出力先のポート11-1-pから出力する。パワースプリッタ56は、伝送路50-1-pから入力した波長多重信号を分岐して伝送路50-1-p-1~50-1-p-Nに出力する。加入者装置40-p-1~40-p-Nは、波長多重信号を受信し、受信した光信号から自装置宛ての下りの光信号を選択する。これにより、加入者装置40-p-nは、対地#nから波長λ1nの光信号を受信する。
加入者装置40-p-nは、波長λ2nの上りの光信号を送信する。パワースプリッタ56は、加入者装置40-p-1~40-p-Nのそれぞれから伝送路50-1-p-1~50-1-p-Nを介して波長λ21~λ2Nの上りの光信号を入力する。パワースプリッタ56は、波長λ21~λ2Nの上りの光信号を波長多重した波長多重信号を伝送路50-1-pに出力する。光SW1003は、波長λ21~λ2Nの上りの光信号が波長多重された波長多重信号をポート11-1-pから入力する。光SW1003は、上りの波長多重信号を出力先のポート11-2-qから伝送路50-2-qに出力する。WDM装置97は、伝送路50-2-qから波長多重された上りの光信号を入力し、波長分離する。WDM装置97は、波長λ2nの上りの光信号を対地#nと接続される伝送路50-2-nに出力する。これにより、加入者装置40-p-nが送信した波長λ2nの光信号は、対地#nに送信される。
図19は、時分割多重を用いたバス型のアクセストポロジーを示す図である。光SW1004として、上述した光SW10a~10iを用いることができる。図19に示すアクセストポロジーが、図16に示すアクセストポロジーと異なる点は、伝送路50-1-pに、バス型で複数の加入者装置40-p-1~40-p-Npが接続されている点である。伝送路50-1-pには、1以上のパワースプリッタ55が設けられる。加入者装置40-p-n(nは1以上Np-1以下の整数)が接続されているパワースプリッタ55を、パワースプリッタ55-nと記載する。
加入者装置40-p-1~40-p-Npは、時分割多重により同じ波長を利用する。上りの光信号に用いられる波長と、下りの光信号に用いられる波長は異なる。対地#1と接続される伝送路50-2-1は、加入者装置40-p-1~40-p-Npそれぞれ宛ての時分割多重された波長λ1の下りの光信号を伝送する。光SW1004は、ポート11-2-1から、伝送路50-2-1を伝送した時分割多重された波長λ1の下りの光信号を入力する。光SW1004は、入力した下りの光信号を、ポート11-2-1(又は対地#1)と波長λ1との組み合わせに応じた出力先のポート11-1-pへルーティングする。光SW1004は、時分割多重された波長λ1の下りの光信号をポート11-1-pから伝送路50-1-pに出力する。パワースプリッタ55-nは伝送路50-1-pから時分割多重された下りの光信号を分岐し、分岐した下りの光信号を加入者装置40-p-nに出力する。加入者装置40-p-1~40-p-Npは、時分割多重された下りの光信号を受信し、受信した下りの光信号から自装置宛ての下りの光信号を選択する。
加入者装置40-p-1~40-p-Npは、TDMAによって同じ波長λ2の時分割多重された上りの光信号を送信する。各パワースプリッタ55-nは、伝送路50-1-pを伝送する上りの光信号に、加入者装置40-p-nから入力した波長λ2の上りの光信号を時分割多重する。光SW1004は、時分割多重された上りの光信号をポート11-1-pから入力し、ポート11-1-pと波長λ2との組み合わせに応じた出力先のポート11-2-1へルーティングし、対地#1と接続される伝送路50-2-1に出力する。
なお、伝送路50-1-1~50-1-Pのうち任意の1以上に、バス型のアクセストポロジーを適用可能である。
図20は、波長多重を用いたバス型のアクセストポロジーを示す図である。光SW1005として、上述した光SW10a~10iを用いることができる。図19に示すアクセストポロジーが、図17に示すアクセストポロジーと異なる点は、多重通信伝送路91に、バス型で複数の加入者装置40-p~40-(p+N)が接続されている点である。加入者装置40-p~40-(p+N)は、それぞれ異なる波長の光信号を送受信する。多重通信伝送路91には、1以上のパワースプリッタ55が設けられる。加入者装置40-(p+n)(nは0以上N-1以下の整数、Nは1以上の整数)が接続されているパワースプリッタ55を、パワースプリッタ55-(p+n)と記載する。
光SW1005は、図17に示す光SW1002と同様に、ポート11-2-(q+n)から波長λ1(1+n)の加入者装置40-(p+n)宛ての下りの光信号を入力する(qは1以上の整数、nは0以上N以下の整数)。図20は、q=1の場合の例である。光SW1005は、ポート11-2-(q+n)から入力した波長λ1(1+n)の下りの光信号を、ポート11-2-(q+n)と波長λ1(1+n)との組み合わせ応じた出力先のポート11-1-(p+n)へルーティングする。
WDM装置81は、ポート11-1-p~11-1-(p+N)のそれぞれから出力された波長λ11~λ1Nの下りの光信号を合波して多重通信伝送路91に出力する。パワースプリッタ55-(p+n)は、多重通信伝送路91から波長多重された下りの光信号を分岐し、分岐した下りの光信号を加入者装置40-(p+n)に出力する。加入者装置40-p~40-(p+N)は、波長多重された下りの光信号を受信し、受信した下りの光信号から自装置宛ての下りの光信号を選択する。
加入者装置40-(p+n)は波長λ2(1+n)の上りの光信号を送信する。各パワースプリッタ55-(p+n)は、多重通信伝送路91を伝送する上りの波長λ2(2+n)~λ2Nの光信号に、加入者装置40-(p+n)から入力した波長λ2(1+n)の上りの光信号を合波する。WDM装置81は、多重通信伝送路91から波長多重された上りの光信号を入力し、波長λ21~λ2Nの上りの光信号に分離する。WDM装置81は、波長λ2(1+n)の上りの光信号を、ポート11-1-(p+n)に入力する。光SW1005は、図16に示す光SW1002と同様に、波長λ2(1+n)の上りの光信号を、入力されたポート11-1-(p+n)と波長λ2(1+n)との組み合わせに応じた出力先のポート11-2-(q+n)から出力する。これにより、加入者装置40-pが送信した波長λ21の上りの光信号は、ポート11-1-pから入力され、ポート11-2-1から出力される。加入者装置40-(p+1)が送信した波長λ22の上りの光信号は、ポート11-1-(p+1)から入力され、ポート11-2-2から出力される。なお、図21に示すように、光SWの後段にWDM装置を置く構成としてもよい。
図21は、波長多重を用い、かつ、光SWの後段にWDM装置を置いたバス型のアクセストポロジーを示す図である。光SW1006として、上述した光SW10a~10iを用いることができる。図21において、図18と同一の部分には同一の符号を付している。光SW1006のポート11-2-q(qは1以上Q以下の整数)は、伝送路50-2-qを介してWDM装置97と接続される。WDM装置97は、対地#n(nは1以上N以下の整数、Nは2以上の整数)と伝送路50-2-q-nを介して接続される。光SW1006のポート11-1-p(pは1以上P以下の整数)と接続される伝送路50-1-pには、1以上のパワースプリッタ55が設けられる。加入者装置40-p-nが接続されているパワースプリッタ55を、パワースプリッタ55-nと記載する。
WDM装置97は、対地#nから送信された波長λ1nの加入者装置40-p-n宛ての下りの光信号を、伝送路50-2-q-nから入力する。WDM装置97は、対地#1~対地#Nのそれぞれから入力した波長λ11~λ1Nの下りの光信号を多重した波長多重信号を光SW1006に入力する。光SW1006は、ポート11-2-qから入力した下りの波長多重信号を、出力先のポート11-1-pから出力する。パワースプリッタ55-nは、伝送路50-1-pから下りの波長多重信号を分岐し、分岐した下りの波長多重信号を加入者装置40-p-nに出力する。加入者装置40-p-1~40-p-Nは、受信した下りの波長多重信号から自装置宛ての下りの光信号を選択する。これにより、加入者装置40-p-nは、対地#nから波長λ1nの光信号を受信する。
加入者装置40-p-nは、波長λ2nの上りの光信号を送信する。各パワースプリッタ55-nは、伝送路50-1-pを伝送する上りの光信号に、加入者装置40-p-nから入力した波長λ2nの上りの光信号を波長多重する。光SW1006は、波長λ21~λ2Nの上りの光信号が波長多重された波長多重信号をポート11-1-pから入力する。光SW1006は、上りの波長多重信号を出力先のポート11-2-qから伝送路50-2-qに出力する。WDM装置97は、伝送路50-2-qから波長多重信号を入力し、波長分離する。WDM装置97は、波長λ2nの上りの光信号を対地#nと接続される伝送路50-2-q-nに出力する。これにより、加入者装置40-p-nが送信した波長λ2nの光信号は、対地#nに送信される。
図22は、ループ型のアクセストポロジーを示す図である。光SW1007として、上述した光SW10a~10iを用いることができる。光SW1007の一部のポート11-1-p1~11-1-pN(p1<pN,p1は1以上の整数、pNはP以下の整数)は、複数波長の光信号を伝送するWDMアクセスリングネットワーク31に接続される。WDMアクセスリングネットワーク31において使用されるいくつかの波長の光信号が、光SW1007を介して通信先の加入者装置40又は上位NWへ伝送される。図22に示すトポロジーでは、WDM合分波器を使用せず、対向する加入者装置40間を2本の伝送路で接続して通信する。
WDMアクセスリングネットワーク31は、R台のAdd/Dropノード32を伝送路53により接続したネットワークである。図21は、R=4の例である。R台のAdd/Dropノード32をAdd/Dropノード32-1~32-Rと記載し、Add/Dropノード32-r(rは1以上R以下の整数)とAdd/Dropノード32-(r+1)との間の伝送路53を伝送路53-rと記載する。ただし、Add/Dropノード32-(R+1)は、Add/Dropノード32-1とみなす。Add/Dropノード32-1は、光SW1007のポート11-1-pn(pnはp1以上pN以下の整数)と伝送路50-1-pnを介して接続される。
Add/Dropノード32は、分波部33と、光SW34と、合波部35とを有する。Add/Dropノード32-r(rは2以上R以下の整数)の分波部33は、伝送路53-(r-1)から入力した波長多重光信号を分波し、分波により得られた光信号を光SW34に出力する。光SW34は、1以上の加入者装置40と接続される。同図では、光SW34に接続される加入者装置40を1台のみ示している。光SW34は、分波部33から入力した光信号のうち、自ノードに対応した波長の光信号をドロップする。加入者装置40の光受信器43は、光SW34がドロップした光信号を受信する。光SW34は、加入者装置40の光送信器42が送信した光信号を入力し、入力した光信号とドロップしなかった光信号とを合波部35に出力する。Add/Dropノード32-rの合波部35は、光SW34から入力した光信号を合波して、伝送路53-rに出力する。なお、Add/Dropノード32-1の光SW34は、分波部33が分波した光信号のうち自ノードに対応した波長の光信号をドロップし、各波長の光信号を伝送路50-1-pn1(pn1=1、3、5、…、p(N-1))に入力する。光SW1007のポート11-1-pn1は、Add/Dropノード32-1がドロップした光信号を、伝送路50-1-pn1から入力する。Add/Dropノード32-1の光SW34は、光SW1007がポート11-1-pn2(pn2=2、4、6、…、pN)から出力した光信号を伝送路50-1-pn2から入力し、入力した光信号とドロップしなかった光信号とを合波部35に出力する。
これにより、WDMアクセスリングネットワーク31のAdd/Dropノード32-4に接続される加入者装置40であるONU#1と、光SW1007のポート11-2-1及びポート11-2-2に接続される加入者装置40であるONU#2とは、以下のように通信する。
ONU#1は、波長λ1の光信号をAdd/Dropノード32-4に送信する。Add/Dropノード32-4の合波部35は、光SW34が入力した波長λ1の光信号と、光SW34がドロップしなかった光信号とを合波してAdd/Dropノード32-1に出力する。Add/Dropノード32-1の光SW34は、分波部33が分波した波長λ1の光信号をドロップし、ドロップしなかった光信号を合波部35に出力する。光SW1007のポート11-1-p1は、Add/Dropノード32-1がドロップした波長λ1の光信号を伝送路50-1-p1から入力する。光SW1007は、ポート11-1-p1から入力した波長λ1の光信号をポート11-2-1から出力する。ONU#2の光受信器43は、伝送路50-2-1を伝送した波長λ1の光信号を受信する。
ONU#2の光送信器42は、波長λ2の下りの光信号を送信する。光SW1007のポート11-2-2は、ONU#2が送信した光信号を伝送路50-2-2から入力する。光SW1007は、ポート11-2-2から入力した波長λ2の下りの光信号をポート11-1-p2から出力する。Add/Dropノード32-1の光SW34は、光SW1007が出力した波長λ2の光信号を伝送路50-1-p2から入力し、入力した光信号とドロップしなかった光信号とを合波部35に出力する。波長λ2の光信号は、Add/Dropノード32-2、32-3を経由してAdd/Dropノード32-4に入力される。Add/Dropノード32-4の光SW34は、波長λ2の光信号をドロップする。ONU#1の光受信器43は、Add/Dropノード32-4がドロップした波長λ2の光信号を受信する。
図23は、WDM合分波器を用いたループ型のアクセストポロジーを示す図である。光SW1008として、上述した光SW10a~10iを用いることができる。図23に示すアクセストポロジーが、図22に示すアクセストポロジーと異なる点は、光SW1008とWDMアクセスリングネットワーク31とがWDM装置81及びWDM装置89を介して接続される点である。
WDMアクセスリングネットワーク31のAdd/Dropノード32-1とWDM装置89とは、伝送路93-1~93-Nにより接続される(Nは2以上の整数)。WDM装置89は、伝送路93-n1(n1=1、3、5、…、N-1)から波長λn1の上りの光信号を受信し、受信した上りの光信号を多重した多重信号を多重通信伝送路91に出力する。WDM装置89は、多重通信伝送路91を介して受信した下りの波長多重光信号を分波し、分波した波長λn2の下りの光信号を伝送路93-n2に入力する(n2=2、4、6、…、N)。
WDM装置81は、多重通信伝送路91を介して受信した上りの波長多重光信号を分波し、分波した波長λn1の上りの光信号をそれぞれポート11-1-n1に入力する。WDM装置81は、ポート11-1-pn2のそれぞれから出力された波長λn2の下りの光信号を受信し、受信した下り信号を合波して多重通信伝送路91に出力する。
これにより、WDMアクセスリングネットワーク31のAdd/Dropノード32-4に接続される加入者装置40であるONU#1と、光SW1008のポート11-2-1及びポート11-2-2に接続される加入者装置40であるONU#2とは、以下のように通信する。なお、N=18の場合を例に説明する。
ONU#1は、波長λ1の上りの光信号をAdd/Dropノード32-4に送信する。他のONUが、波長λ3、λ5の上りの光信号をAdd/Dropノード32-4に送信する。Add/Dropノード32-4の光SW34は、波長λ1、λ3、λ5の光信号を入力する。Add/Dropノード32-4の合波部35は、光SW34が入力した波長λ1、λ3、λ5の光信号と、光SW34がドロップしなかった光信号とを合波してAdd/Dropノード32-1に出力する。Add/Dropノード32-1の光SW34は、分波部33が分波した波長λ1、λ3、λ5、…λ17の光信号をドロップし、ドロップしなかった光信号を合波部35に出力する。WDM装置89は、伝送路93-1、93-3、93-5、…、93-17のそれぞれから入力した波長λ1、λ3、λ5、…λ17の上りの光信号を多重した多重信号を多重通信伝送路91に出力する。
WDM装置81は、多重通信伝送路91から波長多重された上りの光信号を入力し、波長分離する。WDM装置81は、波長λ1、λ3、λ5、…λ17の上りの光信号をそれぞれ、光SW1008のポート11-1-p1、11-1-p3、11-1-p5、…、11-1-p17に入力する。光SW1008は、波長λ1の上りの光信号を出力先のポート11-2-1から出力する。ONU#2の光受信器43は、伝送路50-2-1を伝送した波長λ1の光信号を受信する。
ONU#2の光送信器42は、波長λ2の下りの光信号を送信する。光SW1008のポート11-2-2は、ONU#2が送信した光信号を伝送路50-2-2から入力する。光SW1008は、ポート11-2-2から入力した波長λ2の下りの光信号をポート11-1-p2から出力する。さらに、光SW1008は、ポート11-2-4、11-2-6、…、11-2-18のそれぞれから入力した波長λ4、λ6、…、λ18の下りの光信号を、ポート11-1-p4、11-2-p6、…、11-2-p18から出力する。
WDM装置81は、ポート11-1-p2、11-1-p4、11-1-p6、…、11-1-p18のそれぞれから出力された波長λ2、λ4、λ6、…、λ18の下りの光信号を多重した波長多重信号を多重通信伝送路91に出力する。WDM装置89は、多重通信伝送路91を伝送した波長多重信号を分離し、分離により得られた波長λ2、λ4、λ6、…、λ18の下りの光信号をそれぞれ、伝送路93-2、93-4、93-6、…、93-18に出力する。Add/Dropノード32-1の光SW34は、WDM装置89が出力した波長λ2、λ4、λ6、…、λ18の光信号をそれぞれ伝送路93-2、93-4、93-6、…、93-18から入力し、入力した光信号とドロップしなかった光信号とを合波部35に出力する。合波部35は、光SW34から入力した光信号を合波して、伝送路53-1に出力する。
Add/Dropノード32-2の分波部33は、伝送路53-1から入力した光信号を分波し、光SW34に出力する。光SW34は、自ノードに対応する波長λ14、λ16、λ18の光信号をドロップする。波長λ14、λ16、λ18の光信号は、それぞれの波長に対応した加入者装置40の光受信器43に伝送される。Add/Dropノード32-2の光SW34は、各加入者装置40の光送信器42が送信した波長λ13、λ15、λ17の光信号を入力し、入力した光信号とドロップしなかった光信号とを合波部35に出力する。合波部35は、光SW34から入力した光信号を合波して、伝送路53-2に出力する。
Add/Dropノード32-3もAdd/Dropノード32-2と同様に動作する。ただし、Add/Dropノード32-3の光SW34は、自ノードに対応する波長λ8、λ10、λ12の光信号をドロップし、波長λ7、λ9、λ11の光信号を入力する。Add/Dropノード32-4の分波部33は、伝送路53-3から入力した波長多重光信号を分波し、光SW34に出力する。Add/Dropノード32-4の光SW34は、自ノードに対応する波長λ2、λ4、λ6の光信号をドロップする。ONU#1の光受信器43は、Add/Dropノード32-4の光SW34がドロップした波長λ2の光信号を受信する。
図24は、2か所のアクセス面でひとつのループを形成するアクセストポロジーを示す図である。光SW1009a及び光SW1009bとして、上述した光SW10a~10iを用いることができる。光SW1009aと光SW1009bとを総称して光SW1009と記載する。光SW1009の2つのポート11-1は、1本の伝送路54の両端と接続される。伝送路54には、1台以上のパワースプリッタ57が接続される。パワースプリッタ57は、合波器82及び光SW95を介して1以上の加入者装置40の光送信器42と接続され、分波器83及び光SW96を介して1以上の加入者装置40の光受信器43と接続される。各加入者装置40は、それぞれ異なる波長の光信号を送受信する。
光SW1009aと接続される伝送路54を伝送路54a、伝送路54aと接続される2つのポート11-1をポート11a-1-p1、11a-1-p2と記載し、光SW1009bと接続される伝送路54を伝送路54b、伝送路54bと接続される2つのポート11-1をポート11b-1-p1、11b-1-p2と記載する。伝送路54aに接続されるN台(Nは1以上の整数)のパワースプリッタ57をパワースプリッタ57a-1~57a-Nと記載し、伝送路54bに接続されるM台(Mは1以上の整数)のパワースプリッタ57をパワースプリッタ57b-1~57b-Mと記載する。パワースプリッタ57a-n(nは1以上N以下の整数)に接続される合波器82、分波器83をそれぞれ合波器82a-n、分波器83a-nと記載し、パワースプリッタ57b-m(mは1以上M以下の整数)に接続される合波器82、分波器83をそれぞれ合波器82b-m、分波器83b-mと記載する。合波器82a-nと接続される光SW95を光SW95a-nと記載し、分波器83a-nと接続される光SW96を光SW96a-nと記載する。合波器82b-mと接続される光SW95を光SW95b-mと記載し、分波器83b-mと接続される光SW96を光SW96b-mと記載する。
光SW1009aと光SW1009bとは、伝送路54c及び伝送路54dにより接続される。伝送路54cと接続される光SW1009aのポート11-2をポート11a-2-q1と記載し、伝送路54dと接続される光SW1009aのポート11-2をポート11a-2-q2と記載する。伝送路54cと接続される光SW1009bのポート11-2をポート11b-2-q1と記載し、伝送路54dと接続される光SW1009bのポート11-2をポート11b-2-q2と記載する。
上記の構成において、光SW95b-mは、各加入者装置40の光送信器42が送信した異なる波長の光信号を、合波器82b-mの各波長に対応したポートに出力する。合波器82b-mは、各加入者装置40の光送信器42が送信した異なる波長の光信号を光SW95b-mを介して入力し、入力した光信号を合波した波長多重光信号を出力する。パワースプリッタ57b-mは、合波器82b-mが出力した波長多重光信号を、ポート11b-1-p2からポート11b-1-p1の方向に伝送路54bを伝送する波長多重光信号に合波して出力する。
光SW1009bのポート11b-1-p1は、伝送路54bから波長多重光信号を入力し、ポート11b-2-q1から出力する。光SW1009aのポート11a-2-q1は、光SW1009bのポート11b-2-q1から出力された波長多重光信号を伝送路54cから入力する。光SW1009aは、ポート11a-2-q1から入力した波長多重光信号をポート11a-1-p1から伝送路54aに出力する。
パワースプリッタ57a-nは、ポート11a-1-p1からポート11a-1-p2の方向に伝送路54aを伝送する波長多重光信号を分岐し、分岐した波長多重光信号を分波器83a-nに出力する。分波器83a-nは、パワースプリッタ57a-nから受信した波長多重光信号を分波し、分波した光信号を波長に対応したポートから光SW96a-nに出力する。光SW96a-nは、分波器83a-nから入力した各波長の光信号を、その波長の光信号を受信する加入者装置40の光受信器43に出力する。
一方で、光SW95a-nは、各加入者装置40の光送信器42が送信した異なる波長に光信号を、合波器82a-nの各波長に対応したポートに出力する。合波器82a-nは、各加入者装置40の光送信器42が送信した異なる波長の光信号を光SW95a-nを介して入力し、入力した光信号を合波した波長多重光信号を出力する。パワースプリッタ57a-nは、合波器82a-nが出力した波長多重光信号を、ポート11a-1-p1からポート11a-1-p2の方向に伝送路54aを伝送する波長多重光信号に合波して出力する。
光SW1009aのポート11a-1-p2は、伝送路54aから波長多重光信号を入力し、ポート11a-2-q2から出力する。光SW1009bのポート11b-2-q2は、光SW1009aのポート11a-2-q2から出力された波長多重光信号を伝送路54dから入力する。光SW1009bは、ポート11b-2-q2から入力した波長多重光信号をポート11b-1-p2から伝送路54bに出力する。
パワースプリッタ57b-mは、ポート11b-1-p2からポート11b-1-p1の方向に伝送路54bを伝送する波長多重光信号を分岐し、分岐した波長多重光信号を分波器83b-mに出力する。分波器83b-mは、パワースプリッタ57b-mから受信した波長多重光信号を分波し、分波した光信号を波長に対応したポートから光SW96b-mに出力する。光SW96b-mは、分波器83b-mから入力した各波長の光信号を、その波長の光信号を受信する加入者装置40の光受信器43に出力する。
なお、図24では、光信号が左回りに伝送される場合を示しているが、右回りに伝送されてもよく、冗長化のため左右2芯を一組としてもよい。
図25は、ライン型のアクセストポロジーを示す図である。光SW1100として、上述した光SW10a~10iを用いることができる。図25に示すアクセストポロジーが、図16に示すアクセストポロジーと異なる点は、加入者装置40-pと光SW1100との間に監視部60が接続されている点である。監視部60は、加入者装置40-pから出力された光信号、又は、ポート11-1-pから出力された光信号を監視する。
次に、ユーザ接続数が増加した場合の接続構成について説明する。図26は、光SWのスケーラビリティが求められる例を示す図である。図26には、N台(Nは1以上の整数)の光SW1010-1~1010-Nを示している。光SW1010-1~SW1010-Nとして、上述した光SW10a~10iを用いることができる。図26では、N=4の例を示している。同図では、光SW1010-n(nは1以上N以下の整数)のポート11-1-pには、加入者装置40としてのONU#npが接続されている。光SW1010-nのポート11-2-qは、アップリンクと接続される。アップリンクは、上位ネットワークと接続される伝送路50-2である。
ユーザ数が膨大になり、ONUの数が増加すると、光SW1010が収容可能な規模を超えてしまう場合がある。本実施形態では、このような場合でも、図27又は図28に示すような接続構成により、ユーザ数が少ない場合と同様の機能、例えば、任意のアップリンクを選択した接続や、任意の加入者装置への光折り返しを実現する。
図27は、メッシュ構成による光SWスケーラビリティの例を示す図である。光SW1010の一部のポート11-1は伝送路50-1によりONUと接続され、一部のポート11-2はアップリンクの伝送路50-2に接続される。さらに、光SW1010の一部のポート11-1と、他の光SW1010の一部のポート11-2とが、伝送路50-3により接続される。同図では、1台の光SW1010が、他の全ての光SW1010と接続されている。
光SW1010の複数のポート11-1を、ポート11-1-1、11-1-2、11-1-3、…、11-1-p1、11-1-p2、11-1-p3と記載し、光SW1010の複数のポート11-2を、ポート11-2-1、11-2-2、11-2-3、…、11-2-q1、11-2-q2、11-2-q3と記載する。
図27において、光SW1010-n(nは1以上N以下の整数)のポート11-1-1、11-1-2、11-1-3、…は、ONU#n1、ONU#n2、ONU#n3、…と接続され、ポート11-2-1、11-2-2、11-2-3、…は、アップリンク#n1、アップリンク#n2、アップリンク#n3、…の伝送路50-2に接続される。さらに、光SW1010-nは一部のポート11-2により、他の全て光SW1010-j(j≠n、jは1以上N以下の整数)のポート11-1に接続される。例えば、光SW1010-1のポート11-2-q1は光SW1010-2のポート11-1-p1に、光SW1010-1のポート11-2-q2は光SW1010-3のポート11-1-p1に、光SW1010-1のポート11-2-q3は光SW1010-4のポート11-1-p1に接続される。光SW1010-2のポート11-2-q1は光SW1010-1のポート11-1-p1に、光SW1010-2のポート11-2-q2は光SW1010-3のポート11-1-p2に、光SW1010-2のポート11-2-q3は光SW1010-4のポート11-1-p2に接続される。なお、光SW1010-nは、一部のポート11-2により、他の全て光SW1010-j(j≠n、jは1以上N以下の整数)のうち一部の光SW1010-jのポート11-1に接続してもよい。
例えば、ONU#11がアップリンク#41宛ての波長λ1の上りの光信号を送信した場合、光SW1010-1は、ポート11-1-1から入力した光信号をポート11-2-q3から出力する。光SW1010-4のポート11-1-p1は、光SW1010-1のポート11-2-q3から出力された波長λ1の光信号を入力し、ポート11-2-1から出力する。
ONU#12がONU#31宛ての波長λ2の上りの光信号を送信した場合、光SW1010-1は、ポート11-1-2から入力した光信号をポート11-2-q2から出力する。光SW1010-3のポート11-1-p1は、光SW1010-1のポート11-2-q2から出力された光信号を入力する。光SW1010-3は、ポート11-1-p1から入力した波長λ2の光信号に対して、図3に示す光SW10bと同様の折り返し通信を行い、ポート11-1-1から出力する。
なお、図27では、上りの光信号のみを記載している。上下双方向の通信を行う場合は、伝送路50-1、50-2、50-3に、上りの光信号と下りの光信号を分離して伝送するWDMフィルタ(分離部)を設ける。そして、下りの光信号については、上述した上りの光信号とは逆向きの接続を行う。
図28は、カスケード構成による光SWスケーラビリティの他の例を示す図である。図28に示す構成が、図27に示す構成と異なる点は、光SW1010-n(nは1以上N以下の整数)は一部のポート11-2により、他のいずれかの光SW1010-(n+1)のポート11-1に接続している点である。なお、光SW1010-(N+1)は、光SW1010-1であるとする。これにより、複数の光SW1010が直列に接続される。
図28において、光SW1010-n(nは1以上N以下の整数)のポート11-1-1、11-1-2、11-1-3、…は、ONU#n1、ONU#n2、ONU#n3、…と接続され、ポート11-2-1、11-2-2、11-2-3、…は、アップリンク#n1、アップリンク#n2、アップリンク#n3、…の伝送路50-2に接続される。さらに、光SW1010-nのポート11-2-q1は光SW1010-(n+1)のポート11-1-p1に、光SW1010-nのポート11-2-q2は光SW1010-(n+1)のポート11-1-p2に、光SW1010-nのポート11-2-q3は光SW1010-(n+1)のポート11-1-p3に接続される。
例えば、ONU#11がアップリンク#41宛ての波長λ1の上りの光信号を送信した場合、光SW1010-1は、ポート11-1-1から入力した光信号をポート11-2-q1から出力する。光SW1010-2のポート11-1-p1は、光SW1010-1のポート11-2-q1から出力された光信号を入力し、波長λ1に応じてポート11-2-q1から出力する。光SW1010-3のポート11-1-p1は、光SW1010-2のポート11-2-q1から出力された光信号を入力し、波長λ1に応じてポート11-2-q1から出力する。光SW1010-4のポート11-1-p1は、光SW1010-3のポート11-2-q1から出力された光信号を入力し、波長λ1に応じてポート11-2-1から出力する。
ONU#12がONU#31宛ての波長λ2の上りの光信号を送信した場合、光SW1010-1は、ポート11-1-2から入力した光信号をポート11-2-q2から出力する。光SW1010-2のポート11-1-p2は、光SW1010-1のポート11-2-q2から出力された光信号を入力する。光SW1010-2は、ポート11-1-p2から入力した光信号を波長λ2に応じてポート11-2-q2から出力する。光SW1010-3のポート11-1-p2は、光SW1010-2のポート11-2-q2から出力された光信号を入力する。光SW1010-3は、ポート11-1-p2から入力した光信号に対して、波長λ2に応じて図3に示す光SW10bと同様の折り返し通信を行い、ポート11-1-1から出力する。
なお、図28では、上りの光信号のみを記載している。上下双方向の通信を行う場合は、伝送路50-1、50-2、50-3に、上りの光信号と下りの光信号を分離して伝送するWDMフィルタを設ける。そして、下りの光信号については、上述した上りの光信号とは逆向きの接続を行う。
続いて、図29~図32を用いて、光トランシーバの構成を説明する。光SWに接続される加入者装置40の構成例の一部として説明するが、制御部や監視部その他で用いてよく、送受信の組として説明するが、その利用形態に応じて、送信のみ受信のみであってもよい。図29及び図30は、二芯型の加入者装置401の構成図である。なお、図29~図32では、複数の構成について説明するため、同じ構成については同様の符号を付して説明を省略する場合がある。
図29(A)に示す加入者装置401は、光トランシーバ411を有する。光トランシーバ411は、波長可変光源451と、可変波長受信器452とを備える。波長可変光源451は、光送信部の一例であり、可変波長受信器452は、光受信部の一例である。
図29(A)に示す加入者装置401は、光トランシーバ411を有する。光トランシーバ411は、波長可変光源451と、可変波長受信器452とを備える。波長可変光源451は、光送信部の一例であり、可変波長受信器452は、光受信部の一例である。
波長可変光源451は、設定された波長の光を出力する。波長可変光源451に設定される波長は可変である。波長可変光源451は、例えば、可変波長レーザダイオード(LD)を有する。波長可変光源451は、例えば、利得媒質と共振器長可変の共振器との組合せ、例えば、利得媒質と波長選択媒質との組合せ、例えば利得媒質と共振器長可変の共振器と波長選択媒質との組合せのいずれかを有する。例えば、波長可変光源451は、合分波器又はパワースプリッタと、波長毎の光送信器(Tx)とを有し、設定された波長の光送信器から光信号を送信する。合分波器は、例えば、AWGある。合分波器又はパワースプリッタは、入力された光を合波し、その波長の光信号を出力する。例えば、合分波器又はパワースプリッタは、多波長光源又は広帯域光源と、設定された波長を選択して出力する可変波長濾過器(tf)を有する。可変波長濾波器は、入力された光信号の内で、設定された波長(可変)の光信号を通過する。波長可変光源451は、例えば、直接変調方式により、主信号(または主信号に制御信号を重畳した信号)を出力することができる。または、波長可変光源451は、さらに、外部変調器を有し、外部変調器を用いて主信号(または主信号に制御信号を重畳した信号)を出力することができる。外部変調器は、MZ(Mach-Zender)、EA(Electro-Absorption)、SOA(Semiconductor Optical Amplifier)等を用いることができ、光源と一体化した構造とすることもでき、同一の変調器で主信号と制御信号で変調することも異なる変調器で主信号と制御信号とで別々に変調することもできる。
可変波長受信器452は、可変波長濾波器と、光受信器とを有する。可変波長濾波器は、入力された光信号の内で、設定された波長(可変)の光を通過する。光受信器は、可変波長濾波器を通過した光信号を受信する。可変波長濾波、即ち所定の波長の信号の選択は、光受信後に行ってもよい。例えば、所定の波長の局発光との波長差に応じた周波数を中心とするビート信号を信号の帯域に応じた周波数幅で選択することで行ってもよい。なお、光SWの構成や多重化方式等によっては、可変波長でない送信器を用いる構成や可変波長濾波器や合分波器を用いない構成としてもよい。
図29(B)に示す加入者装置401aは、光トランシーバ411aを有する。光トランシーバ411aは、波長可変光源451と、波長可変フィルタ453と、光受信器454とを備える。波長可変光源451は、光送信部の一例であり、波長可変フィルタ453及び光受信器454は、光受信部の一例である。波長可変フィルタ453は、伝送路から光信号を入力し、設定された波長の光を光受信器454に通過させる。波長可変フィルタ453に設定される波長は可変である。光受信器454は、波長可変フィルタ453が通過させた光信号を受信する。受信側の加入者装置40は、光SWの構成や多重化方式等によっては、波長可変フィルタ453を用いない構成としてもよい。
図29(C)に示す加入者装置401bは、光トランシーバ411bを有する。光トランシーバ411bは、光源455と、波長可変フィルタ456と、可変波長受信器452とを備える。光源455及び波長可変フィルタ456は、光送信部の一例であり、可変波長受信器452は、光受信部の一例である。光源455は、単一の波長(例えば、波長λ1)の光を出力する。すなわち、光源455は、波長可変ではない。波長可変フィルタ456は、光源455から出力された光信号を入力し、設定された波長の光信号を伝送路に出力する。波長可変フィルタ456に設定される波長は光源455が出力する光信号の波長である。
図30(A)に示す加入者装置401cは、光トランシーバ411cを有する。光トランシーバ411cは、波長可変光源451と、複数の光受信器454-1~454-3と、分波器457とを備える。波長可変光源451は、光送信部の一例であり、光受信器454-1~454-3及び分波器457は、光受信部の一例である。なお、図30(A)では光受信器454-1~454-3が3台の場合を示しているが、光受信器454-1~454-3の数は限られない。以下の説明においても光受信器454-1~454-3の数は特に限定されてない。分波器457は、伝送路から入力された光信号を波長により分波する。分波器457によって分波された光信号は、光受信器454-1~454-3に入力される。光受信器454-1~454-3は、分波器457によって分波された光信号を受信する。
図30(B)に示す加入者装置401dは、光トランシーバ411dを有する。光トランシーバ411dは、複数の光源455-1~455-3と、合波器458と、可変波長受信器452とを備える。光源455-1~455-3及び合波器458は、光送信部の一例であり、可変波長受信器452は、光受信部の一例である。なお、図30(B)では光源455-1~455-3が3台の場合を示しているが、光源455-1~455-3の数は限られない。以下の説明においても光源455の数は特に限定されてない。光源455-1~455-3は、それぞれ異なる波長の光信号を送信する。合波器458は、光源455-1~455-3それぞれから出力された複数の光信号を合波して伝送路に出力する。
図30(C)に示す加入者装置401eは、光トランシーバ411eを有する。光トランシーバ411eは、複数の光源455-1~455-3と、合波器458と、複数の光受信器454-1~454-3と、分波器457とを備える。光源455-1~455-3及び合波器458は、光送信部の一例であり、光受信器454-1~454-3及び分波器457は、光受信部の一例である。加入者装置401eでは、光源455-1~455-3から出力された光信号を合波器458にて合波して伝送路に出力する。加入者装置401eでは、伝送路から入力された光信号を分波器457において波長により分波し、分波された光信号が光受信器454-1~454-3で受信される。
複数の合分波器又は合分岐器は組合せ後の合分波する波長が同等であればまとめたほうが望ましい。即ち、分波器457と合波器458をまとめてもよい。
複数の合分波器又は合分岐器は組合せ後の合分波する波長が同等であればまとめたほうが望ましい。即ち、分波器457と合波器458をまとめてもよい。
図31及び図32は、一芯型の加入者装置402の構成図である。図31(A)に示す加入者装置402は、光トランシーバ412を有する。光トランシーバ412は、波長可変光源451と、可変波長受信器452と、WDMフィルタ459とを備える。図31(A)に示す光トランシーバ412が、図29(A)に示す光トランシーバ411と異なる点は、WDMフィルタ459をさらに備える点である。WDMフィルタ459は、上り信号と下り信号を波長により分離する。WDMフィルタ459は、波長可変光源451が発生した光信号を伝送路に出力し、伝送路から入力した光信号を可変波長受信器452に出力する。加入者装置402は、加入者装置401と同様に、さらに、外部変調器を有し、外部変調器を用いて主信号(または主信号に制御信号を重畳した信号)を出力することができる。
ここで、図31及び図32に示すWDMフィルタ459はパワースプリッタであってもよい。WDMフィルタ459は、その挿入損失がパワースプリッタに対して十分低くかつ送信側と受信側で用いる波長が重ならない場合に好適である。送信側と受信側で用いる波長が重なる場合、例えば、同一種類の加入者創始同士の折り返し通信等の場合に好適である。
図31及び図32では、WDMフィルタ459は光トランシーバ412に内蔵されているが、光トランシーバ412の外部であっても、加入者装置40の外部であってもよい。
図31及び図32では、WDMフィルタ459は光トランシーバ412に内蔵されているが、光トランシーバ412の外部であっても、加入者装置40の外部であってもよい。
図31(B)に示す加入者装置402aは、光トランシーバ412aを有する。光トランシーバ412aは、波長可変光源451と、波長可変フィルタ453と、光受信器454と、WDMフィルタ459aとを備える。図31(B)に示す光トランシーバ412aが、図29(B)に示す光トランシーバ411aと異なる点は、WDMフィルタ459aをさらに備える点である。WDMフィルタ459aは、上り信号と下り信号を波長により分離する。WDMフィルタ459aは、波長可変光源451が発生した光信号を伝送路に出力し、伝送路から入力した光信号を波長可変フィルタ453に出力する。受信側の加入者装置402は、光SWの構成や多重化方式等によっては、波長可変フィルタ453を用いない構成としてもよい。
図31(C)に示す加入者装置402bは、光トランシーバ412bを有する。光トランシーバ412bは、光源455と、波長可変フィルタ456と、可変波長受信器452と、WDMフィルタ459bを備える。図31(C)に示す光トランシーバ412bが、図29(C)に示す光トランシーバ411bと異なる点は、WDMフィルタ459bをさらに備える点である。WDMフィルタ459bは、上り信号と下り信号を波長により分離する。WDMフィルタ459bは、波長可変フィルタ456を通過した光信号を伝送路に出力し、伝送路から入力した光信号を可変波長受信器452に出力する。
図32(A)に示す加入者装置402cは、光トランシーバ412cを有する。光トランシーバ412cは、波長可変光源451と、複数の光受信器454-1~454-3と、分波器457と、WDMフィルタ459cとを備える。図32(A)に示す光トランシーバ412cが、図30(A)に示す光トランシーバ411cと異なる点は、WDMフィルタ459cをさらに備える点である。WDMフィルタ459cは、上り信号と下り信号を波長により分離する。WDMフィルタ459cは、波長可変光源451が発生した光信号を伝送路に出力し、伝送路から入力した光信号を分波器457に出力する。
図32(B)に示す加入者装置402dは、光トランシーバ412dを有する。光トランシーバ412dは、複数の光源455-1~455-3と、合波器458と、可変波長受信器452と、WDMフィルタ459dとを備える。図32(B)に示す光トランシーバ412dが、図30(B)に示す光トランシーバ411dと異なる点は、WDMフィルタ459dをさらに備える点である。WDMフィルタ459dは、上り信号と下り信号を波長により分離する。WDMフィルタ459dは、合波器458で合波された光信号を伝送路に出力し、伝送路から入力した光信号を可変波長受信器452に出力する。
図32(C)に示す加入者装置402eは、光トランシーバ412eを有する。光トランシーバ412eは、複数の光源455-1~455-3と、合波器458と、複数の光受信器454-1~454-3と、分波器457と、WDMフィルタ459eとを備える。図32(C)に示す光トランシーバ412eが、図30(C)に示す光トランシーバ411eと異なる点は、WDMフィルタ459eをさらに備える点である。WDMフィルタ459eは、上り信号と下り信号を波長により分離する。WDMフィルタ459eは、合波器458で合波された光信号を伝送路に出力し、伝送路から入力した光信号を分波器457に出力する。
複数の合分波器又は合分岐器は組合せ後の合分波する波長が同等であればまとめたほうが望ましい。即ち、分波器457と合波器458、合波器458とWDMフィルタ459e、分波器457とWDMフィルタ459e、分波器457と合波器458とWDMフィルタ459eをまとめてもよい。
複数の合分波器又は合分岐器は組合せ後の合分波する波長が同等であればまとめたほうが望ましい。即ち、分波器457と合波器458、合波器458とWDMフィルタ459e、分波器457とWDMフィルタ459e、分波器457と合波器458とWDMフィルタ459eをまとめてもよい。
以上が、一芯型の加入者装置401及び二芯型の加入者装置402の構成である。本発明では、加入者装置40として図29~図32に示したいずれの構成が用いられてもよい。
続いて、監視部60及び監視部65の構成例を説明する。まず、上述では、パワースプリッタを用いて信号を分岐して監視しているが、分岐せずに、伝送路中に、少なくともAMCCの搬送波程度の周波数で信号の導通により利得や印加した電圧や電流や抵抗が変化する媒質、例えば半導体増幅器等を組み込むことにより構成してもよい。波長多重した信号も、MQW(Multiple quantum well)やphotonic crystal等の超格子構造等を利用した利得や電圧や電流や抵抗等の変化に波長依存性の高い媒質を用いることで、分岐することなく監視してもよい。
以下は分岐する場合を、図33~図37を用いて、監視部60及び監視部65の構成例を説明する。図33~図37では、監視部60を例に説明する。図33~図37では、上り方向及び下り方向の方向の監視をする例で説明するが、監視部60はいずれか一方、例えば加入者装置40を監視する観点から、加入者装置40から出力する一方向だけの監視を行ってもよい。なお、片方向のみの例の場合、送信器と受信器をそれぞれ例えば送受信器やパワースプリッタや合分波器と接続された送信器と受信器の組み合わせに置き替えれば両方向となる。
以下は分岐する場合を、図33~図37を用いて、監視部60及び監視部65の構成例を説明する。図33~図37では、監視部60を例に説明する。図33~図37では、上り方向及び下り方向の方向の監視をする例で説明するが、監視部60はいずれか一方、例えば加入者装置40を監視する観点から、加入者装置40から出力する一方向だけの監視を行ってもよい。なお、片方向のみの例の場合、送信器と受信器をそれぞれ例えば送受信器やパワースプリッタや合分波器と接続された送信器と受信器の組み合わせに置き替えれば両方向となる。
また、受信器や送信器は、伝送路から分岐するパワースプリッタ61や合分波器等と近接して記載しているが、遠方、例えば1または複数の光SWを経由して配置してもよく、制御部の受信器や送信器が監視部60の受信器や送信器を兼ねるとして、それらに接続してもよい。
監視部60は、光信号を監視する。監視に際して光受信器又は光送受信器を合分岐器又は合分波器の近傍や、光信号を接続できる個所に配置する。監視部60は、合分岐器又は合分波器が光信号を分岐し、受信した光信号により監視を行い、さらに、受信した光信号に重畳されている制御信号を受信する。
監視部60は、光信号を監視する。監視に際して光受信器又は光送受信器を合分岐器又は合分波器の近傍や、光信号を接続できる個所に配置する。監視部60は、合分岐器又は合分波器が光信号を分岐し、受信した光信号により監視を行い、さらに、受信した光信号に重畳されている制御信号を受信する。
監視部60は、光SWの入力側又は経由する又は出力側のポート又は伝送路又はその接続点に設けられた合分岐器又は合分波器と、場合により主信号を遮断する遮断部とを有する。例えば、対地側のポート11-2又は伝送路2又はその接続点に合分波器を配し、入力した光信号を波長により、光SWからの上り光信号と、他の対地又は上位ネットワークから入力した下り光信号とを分離し、光SWに出力してよい。遮断部を備える場合の遮断部の配置は、例えば上下双方向で設定したり変更する場合は、合波または合流した状態の箇所が好適であり、個別に、例えば上下別々に設定したり変更する場合は、分波または分岐した状態の箇所が好適である。
監視部60は、制御対象の加入者装置40が接続する光SWとは別の光SWを介して接続されてもよい。例えば、合分岐器が制御対象の加入者装置40の光信号を伝送する伝送路から分離した光信号は、加入者装置40が接続するのとは別かつ監視部60の接続する光SWに入力され、必要に応じて多重されて、監視部60の接続する光SWまで伝送され、監視部60に接続する。または、当該光SWに入力されず、直接制御部又は監視部60の接続する光SWに入力される。
合分岐器又は合分波器は、光SWを構成するポートを複数群に分け、群内で接続しない場合の一つの群に属するポート11-2又やそれに接続する伝送路2又はポート2に接続した伝送路2に、備えられてもよい。分岐は波長分離する前に行ってもよい、分離後に行ってもよい。上下多重用の合分波器より光SW側に備えても、伝送路側に備えてもよい。伝送路側に備えると伝送路を伝送する上り及び下り光信号を一台で分岐可能である。その場合、分岐した上り光信号と下り光信号を、それぞれ光SWのポートに入力する。光SWは入力した光信号を、監視部60と接続されるポートから出力する。これにより、監視部60は、分岐した光信号を受信する。
図33(A)に示す監視部60aは、監視部60の具体的な構成を示している。監視部60aは、パワースプリッタ61と、複数の受信器62-1~62-2を有する。受信器62-1~62-2は、パワースプリッタ61が分岐した光信号を受信する。受信器62-1~62-2は、パワースプリッタ61の分岐数に対応する数だけ設けられてもよい。図33(A)では、2×2のパワースプリッタ61を用い、各方向或いは入力側と出力側の主信号の経路以外に分岐した分岐数(2)-主信号の経路(1)=1の計1つずつ備えた例を示している。3×3のパワースプリッタ61であれば、各2つずつ備えることができる。反射等の影響を軽減する観点からは、監視しない分のポートを備えない1×2や1×3等のパワースプリッタ61を用いてもよい。この場合、受信器62-1又は62-2は、分岐数(2)-主信号経路(1)=1と分岐数(1)-主信号経路(1)=0、分岐数(3)-主信号経路(1)=2と分岐数(1)-主信号経路(1)=0としてもよい。
なお、パワースプリッタ61で分岐した主信号以外の経路を図33(B)のWDM装置63bのように分岐し、それぞれ受信しても、主信号経路に複数のパワースプリッタ61を複数設置し、それぞれ分岐して受信してもよい。
なお、パワースプリッタ61で分岐した主信号以外の経路を図33(B)のWDM装置63bのように分岐し、それぞれ受信しても、主信号経路に複数のパワースプリッタ61を複数設置し、それぞれ分岐して受信してもよい。
図33(A)に示す監視部60aは、監視部60の具体的な構成を示している。監視部60aは、パワースプリッタ61と、複数の受信器62-1~62-2を有する。受信器62-1~62-2は、パワースプリッタ61が分岐した光信号を受信する。受信器62の数は、特に限定されない。
図33(B)に示す監視部60bは、監視部65の具体的な構成を示している。監視部60bは、パワースプリッタ61と、複数の受信器62-1~62-6と、複数のWDM装置63b-1~63b-2を有する。WDM装置63b-1には、受信器62-1~62-3が接続される。WDM装置63b-2には、受信器62-4~62-6が接続される。WDM装置63b-1は、パワースプリッタ61が分岐した光信号を分波して受信器62-1~62-3に出力する。WDM装置63b-2は、パワースプリッタ61が分岐した光信号を分波して受信器62-4~62-6に出力する。WDM装置63bの数は、特に限定されない。
図33(C)に示す監視部60cは、パワースプリッタ61と、複数の受信器62-1~62-2と、WDM装置63cを有する。WDM装置63cは、入力された複数の光信号を合波して伝送路601に出力する。WDM装置63cは、伝送路601から入力された光信号を分波して伝送路602-1及び602-2に出力する。
図34(A)に示す監視部60dは、複数のパワースプリッタ61-1~61-3と、複数の受信器62-1~62-6と、WDM装置63dを有する。伝送路602-1にはパワースプリッタ61-1が設けられ、伝送路602-2にはパワースプリッタ61-2が設けられ、伝送路602-3にはパワースプリッタ61-3が設けられる。パワースプリッタ61-1には受信器62-1~62-2が接続され、パワースプリッタ61-2には受信器62-3~62-4が接続され、パワースプリッタ61-3には受信器62-5~62-6が接続される。WDM装置63dは、伝送路601から入力された光信号を分波して伝送路602-1~602-3に出力する。WDM装置63dは、伝送路602-1~602-3から入力された光信号を合波して伝送路601に出力する。
なお、図34(A)では、伝送路601から見た場合にWDM装置63dによる分波後又は伝送路602から見た場合にWDM装置63dによる合波前の各伝送路602-1~602-3に受信器62-1~62-6を備えるとしたが、受信が不要な伝送路には受信器62を備えなくてもよい。
なお、図34(A)では、伝送路601から見た場合にWDM装置63dによる分波後又は伝送路602から見た場合にWDM装置63dによる合波前の各伝送路602-1~602-3に受信器62-1~62-6を備えるとしたが、受信が不要な伝送路には受信器62を備えなくてもよい。
図34(B)に示す監視部60eは、複数のパワースプリッタ61-1~61-2と、複数の受信器62-1~62-2と、複数のWDM装置63e-1~63e-2を有する。WDM装置63e-1とWDM装置63e-2との間には、伝送路602-1及び602-2が設けられる。伝送路602-1にはパワースプリッタ61-1が設けられ、伝送路602-2にはパワースプリッタ61-2が設けられる。パワースプリッタ61-1には受信器62-1が接続され、パワースプリッタ61-2には受信器62-2が接続される。WDM装置63e-1は、伝送路601から入力された光信号を分波して伝送路602-1~602-2に出力する。WDM装置63e-1は、伝送路602-1~602-2から入力された光信号を合波して伝送路601に出力する。WDM装置63e-2は、伝送路603から入力された光信号を分波して伝送路602-1~602-2に出力する。WDM装置63e-2は、伝送路602-1~602-2から入力された光信号を合波して伝送路603に出力する。
なお、図34(B)では、分波後且つ合波前の各伝送路602-1~602-2に受信器62-1~62-2を備えるとしたが、受信が不要な伝送路には受信器62を備えなくてもよい。
なお、図34(B)では、分波後且つ合波前の各伝送路602-1~602-2に受信器62-1~62-2を備えるとしたが、受信が不要な伝送路には受信器62を備えなくてもよい。
監視部から加入者装置40を制御してもよい。制御信号を加入者装置40とやり取りする場合、監視部は、制御部20と同様に加入者装置40の波長設定や変更してもよい。但し、設定、特に波長を変更する場合、変更時に設定された波長以外の光信号が意図しない宛先に到達しないため、変更完了まで対象装置からの出力が宛先に到達しないように設定することが望ましい。
監視部から制御する構成について図35を用いて説明する。
監視部から制御する構成について図35を用いて説明する。
図35(A)に示す監視部60fは、パワースプリッタ61と、複数の受信器62-1~62-2と、変調器64を有する。伝送路601には、パワースプリッタ61及び変調器64が設けられる。このように、監視部60fでは、主信号の経路の途中に変調器を備え、変調器64により主信号を変調する。変調器としては、外部変調器や制御信号に応じて増幅率を変調する増幅器や、監視部60fからの光信号に応じた利得飽和、相互変調、四光波混合やラマン効果等の非線形効果等で変調してもよい。
なお、変調器の消光比が、他の光信号に影響を与えない程度高ければ、変調器で遮断部も兼ねてもよい。
図35(A)では、監視部60fが、パワースプリッタ61と、受信器62-1~62-2と、変調器64とを有する構成を示したが、変調器64は、AMCCの搬送波程度の周波数で、入力の強度モニタと出力を変調が可能な機器、例えば多電極の光の半導体増幅器等により置替が可能である。
なお、変調器の消光比が、他の光信号に影響を与えない程度高ければ、変調器で遮断部も兼ねてもよい。
図35(A)では、監視部60fが、パワースプリッタ61と、受信器62-1~62-2と、変調器64とを有する構成を示したが、変調器64は、AMCCの搬送波程度の周波数で、入力の強度モニタと出力を変調が可能な機器、例えば多電極の光の半導体増幅器等により置替が可能である。
外部光により変調する場合は、変調器64を別途設けずに、パワースプリッタ61が変調器を兼ねる。パワースプリッタ61は、利得飽和や非線形効果の大きい半導体光増幅器や非線形ファイバ(Highly Nonlinear Fiber: HNLF)や非線形光学結晶や非線形相互のための疑似位相整合が容易な周期分極反転光学素子(例えば、PPKTP(周期分極リン酸チタニルカリウム:Periodically Poled Potassium Titanyl Phosphate)、PPLN(周期分極ニオブ酸リチウム:Periodically Poled Lithium Niobate)、PPLT(周期分極タンタル酸リチウム: Periodically Poled Lithium Tantalate))等を備えて、信号と外部光を作用させる。
既に、AMCCで変調されている信号を再変調する場合、既変調の影響が想定される。その様な場合、制御信号の周波数帯を既変調の周波数帯と違えることが望ましい。周波数帯の差は例えば、既変調と新規変調の変調サイドバンド同士が重ならない程度、信号の変調帯域をBとする場合、2B以上とするか、干渉を防ぐ観点からそれ以上とするか、逆にフィルタで切り出すことを想定し、その0.5倍から0.8倍程度としてもよい。また図35(B)に示す逆変調の後に、別の変調器64で変調してもよい。この場合は、既変調の影響が軽減されているので、周波数帯を重ねてもよい。また、既変調の逆変調と新規変調の積に当たる信号で変調し、複数の変調器64での変調を一つの変調器64の変調で兼ねてもよい。
なお、監視部60fは、AMCCの主信号への影響を軽減するために、図35(B)で説明する処理を行ってもよい。
なお、監視部60fは、AMCCの主信号への影響を軽減するために、図35(B)で説明する処理を行ってもよい。
図35(B)に示すように、監視部60fは、受信器62-2で受信したAMCCと同変調方式かつ逆信号(1/0の強度変調であれば1で変調した信号に0が重なり、0で変調した信号に1が重なり、逆位相且つちょうど相殺する強度となる変調)で、AMCCで変調された主信号を変調してもよい。これにより、AMCCの主信号への影響を軽減することができる。
図36に示す監視部60gは、複数のパワースプリッタ61-1~61-2と、複数の受信器62-1~62-2と、複数のWDM装置63g-1~63g-2と、複数の変調器64g-1~64g-2を有する。WDM装置63g-1とWDM装置63g-2との間には、伝送路602-1及び602-2が設けられる。伝送路602-1には変調器64g-1及びパワースプリッタ61-1が設けられ、伝送路602-2には64g-2及びパワースプリッタ61-2が設けられる。パワースプリッタ61-1には受信器62-1が接続され、パワースプリッタ61-2には受信器62-2が接続される。WDM装置63g-1は、伝送路601から入力された光信号を分波して伝送路602-1~602-2に出力する。WDM装置63g-1は、伝送路602-1~602-2から入力された光信号を合波して伝送路601に出力する。WDM装置63e-2は、伝送路603から入力された光信号を分波して伝送路602-1~602-2に出力する。WDM装置63e-2は、伝送路602-1~602-2から入力された光信号を合波して伝送路603に出力する。なお、伝送路602-1~602-2からWDM装置63e-1及びWDM装置63e-2に入力される光信号は、変調器64g-1及び64g-2により変調されている。
図36では、分岐した光信号を受信器62-1~62-2で受信した後に変調しているが、変調による受信した光信号の品質、例えば、受信する制御信号やのSN(signal-to-noise ratio)の劣化を考慮しなくてもよい場合には、変調した光信号をパワースプリッタ61-1~61-2で分岐して受信器62-1~62-2で受信してもよい。
図36では、分岐した光信号を受信器62-1~62-2で受信した後に変調しているが、変調による受信した光信号の品質、例えば、受信する制御信号やのSN(signal-to-noise ratio)の劣化を考慮しなくてもよい場合には、変調した光信号をパワースプリッタ61-1~61-2で分岐して受信器62-1~62-2で受信してもよい。
監視部が送信器を用いる構成について説明する。監視部は、加入者装置40や制御部20と同様に、光送受信器、可変波長や可変波長でない光送受信器を備え、光SWのポートに接続される。送信器が、可変波長送信器であれば任意の波長の光信号を送信可能である。監視部は、加入者装置40に対する制御信号を光信号により送信する。制御対象の加入者装置40の光信号を伝送する伝送路のパワースプリッタは、制御信号を、伝送路を伝送する光信号と合流する。この構成により、監視部は、加入者装置40が通常の通信を行っている状態でも、加入者装置40から接続先の変更要求などを受信し、制御信号を送信して加入者装置40に波長切替などを実施することが可能となる。監視部が送信器を備える具体的な構成については後述する。
加入者装置40が、通常の通信を行っている場合、直接または光SW等を介して制御部20が加入者装置40を光信号で制御する場合の制御部20とは通信できない。監視部が送信器を備えることで、加入者装置40の各種設定の指示などが可能となる。すなわち、パワースプリッタで制御対象の加入者装置40に光信号を伝送する伝送路に挿入分離した光信号を監視部が入力する。
AMCCを用いて一例を挙げて説明する。通常、AMCCは、主信号とAMCC信号を電気段で重畳した信号で変調するか、主信号を光段でさらに変調する。それと異なり、監視部の送信器は、制御信号に相当する光信号を、主信号とは別途入力し、多重する。制御信号に相当する光信号の波長は、送信器から少なくともAMCC相当の制御信号を受信する箇所までは、主信号と同一の経路を経由する波長である。監視部は、主信号を変調せず、別途入力の光信号強度をAMCCの搬送波の周波数で強度変調等することで、主信号とAMCC相当の制御信号とを合わせた光信号がAMCCの搬送波の周波数で変調したのと同等となる。
ここで、制御信号の強度変調を主信号と合わせて受信する例で示したが、位相変調等の場合は、遅延検波や局発光を用いて制御信号を受信してもよい。
ここで、制御信号の強度変調を主信号と合わせて受信する例で示したが、位相変調等の場合は、遅延検波や局発光を用いて制御信号を受信してもよい。
ここで、主信号とAMCC相当の制御信号の波長差がビート雑音が無視できる程度、例えば両者の光の線幅の合計、同等の線幅であれば線幅の倍以上離れていれば、AMCCの1ビット又は1ボーの時間での両者の光強度の平均値と同様にAMCCで変調したのと同等に復調できる。AMCCでの搬送波の周波数での変調サイドバンドと主信号のビットレート又はボーレートでの変調サイドバンドが重畳する場合は、通常と同一の変調では直接検波では復調が困難になる。しかし、例えば、コヒーレント受信等をし、最尤判定等により、電気段で除去して受信してもよいし、AMCC相当の制御信号の光信号の光の位相を主信号の光信号の光の位相に同期してもよい。位相同期した場合は、AMCCが位相を用いた変調の場合でも可能である。この場合多重後の位相が変調後の位相となるように変調する。
信号光と制御光の強度や波長は、例えば、異なる測定手段で測定してもよく、主信号の光信号と、監視部の送信器とからパワースプリッタに入力した光信号の一部が監視部の受信器で受信できるようにして、同じ測定手段で測定してもよい。後者は、測定手段が少ない効果がある。例えば、多重後に光の間のビート雑音による主信号への影響を見て調整してもよい。例えば、制御光を多重する前に主信号を測定し、その後、制御光を多重した後の信号が所望のAMCCをかけたのと同等になるか、多重後に光の間のビート雑音による主信号への影響等を測定する。そして制御信号の光信号の強度や波長を調整する。位相同期する場合は多重後の測定でフィードバックしてもよい。
次に、図37を用いて、監視部で送信器を用いる別の構成の例について説明する。制御部20は、光SW10のポート、伝送路又はそれらの接続点に設置する代わりに、図37に示すように、折り返し伝送路を用いてループしても(図の上中)、後述の電気処理部と同様に光SW10のたすきがけ(図の中下)にしてもよい。
例えば、監視部60hは主信号を終端し、送信器は、光電変換した主信号にAMCCを重畳して変調または主信号で変調した光信号をさらにAMCCで変調した光信号を送信する。この監視部60hは、上記で述べてきた監視部60hと異なり主信号を合分岐するパワースプリッタを備えないが、同様に光SWの入力側又は経由する又は出力側のポート、伝送路又はそれらの接続点に設置してもよい。この構成では、信号は一旦終端するので、監視部60hまでの波長と、監視部からの波長は所望の経路を伝送される波長であれば異なってもよい。
監視部60hで光受信器や光送受信器を備えず、分岐した光信号は、伝送し、例えば光SW10を介して、制御部20に出力してもよい。制御部20に出力する場合、制御部20は光受信器や光送受信器を備え、監視部60hは、光SWの入力側又は経由する又は出力側のポートまたは伝送路又はその接続点に設けられたパワースプリッタ又は合分波器と制御部20までの経路と必要に応じてパワースプリッタ又は合分波器や経路の設定をする機能である。経路は光SWによって実現されてもよいし、設定も制御部によって実施されてもよい。
監視部60hは、光受信器や光送受信器を備えてもよく、さらに遮断部を備えてもよい。初期設定及び設定変更及び異常検出時に、監視部から出力先までの経路を遮断又は遮断部で遮断して、加入者装置の設定、変更、遮断を行ってもよい。
監視部60hは、光受信器や光送受信器を備えてもよく、さらに遮断部を備えてもよい。初期設定及び設定変更及び異常検出時に、監視部から出力先までの経路を遮断又は遮断部で遮断して、加入者装置の設定、変更、遮断を行ってもよい。
上記のように、監視部60~60hは、光信号を監視する。監視部60~60hは、パワースプリッタ又はWDM装置により分岐された光信号により監視を行い、さらに、受信した光信号に重畳されている制御信号を受信する。なお、図33~図37では、監視部60~60hが受信器62を備える構成を示したが、監視部60~60hは送信器を備えてもよい。
監視部60~60hは、制御対象の加入者装置40が接続する光SWとは別の光SWを介して接続されてもよい。この場合、制御対象の加入者装置40の光信号を伝送する伝送路においてパワースプリッタ61が分離した光信号は、加入者装置40が接続する光SWとは別の光SWであって、監視部60~60hが接続する光SWに入力される。この際、必要に応じて多重されて、監視部60~60hの接続する光SWまで伝送され、監視部60~60hに接続する。
以下の説明において、監視部60~60hを特に区別しない場合には、監視部60として説明する。
以下の説明において、監視部60~60hを特に区別しない場合には、監視部60として説明する。
以下、上述した機能を有する光SWを利用した光アクセスシステムの例を説明する。
(光アクセスシステム100の構成例)
図38は、光アクセスシステム100の構成例を示す図である。光アクセスシステム100は、光ゲートウェイ(GW)200と、オペレーションシステム(OPS)300とを有する。OPS300は、制御部20と一体であってもよく、両者を代表して制御部又はOPSと称する場合がある。加入者装置40は、光アクセスシステム100によって、図1に示す光通信ネットワーク30などの上位ネットワークと通信可能に接続する。
図38は、光アクセスシステム100の構成例を示す図である。光アクセスシステム100は、光ゲートウェイ(GW)200と、オペレーションシステム(OPS)300とを有する。OPS300は、制御部20と一体であってもよく、両者を代表して制御部又はOPSと称する場合がある。加入者装置40は、光アクセスシステム100によって、図1に示す光通信ネットワーク30などの上位ネットワークと通信可能に接続する。
加入者装置40は、光加入者側の装置である。加入者装置40は、伝送路501を介して光GW200と接続される。伝送路501は、例えば、光ファイバである。光GW200は、通信局舎内にある装置である。符号N1で示される加入者装置40と光GW200の間は、例えば、伝送路501やパワースプリッタ502を介して接続される。加入者装置40から光GW200へ接続するネットワークの構成は、PtoP(ポイント・ツー・ポイント)、PON構成、バス型、メッシュ型、リング型、マルチリング型など、様々なネットワークトポロジーであってもよい。例えば、伝送路501にパワースプリッタ502などを有し、1本の伝送路501に複数の加入者装置40が接続される構成とすることができる。光GW200は、伝送路511及び伝送路512を介して、他の局舎又はコアネットワークなどに接続されている。伝送路511及び伝送路512は、例えば、光ファイバである。伝送路511は上り信号を伝送し、伝送路512は下り信号を伝送する。伝送路511及び伝送路512は、波長多重された光信号を伝送する多重通信伝送路の一例である。符号N2に示される光GW200から他の局舎又はコアネットワーク方面への接続は、例えば、光ファイバの伝送路511や伝送路512により接続され、対地間の接続がフルメッシュとなるように接続されている。本構成では、光GW200が対地Aの局舎に設置されており、かつ、光通信ネットワーク30等を介して対地Bの局舎に設定されている光通信装置及び対地Cの局舎に設置されている光通信装置と接続されている場合を例に説明する。光GW200が接続される対地B及び対地Cの光通信装置は、光GW200であってもよい。
加入者装置40は、伝送路501を介して光GW200と接続される。加入者装置40は、光トランシーバ41を有している。光トランシーバ41は、波長可変光送受信器である。光トランシーバ41は、例えば、光信号と電気信号を相互に変換する光トランシーバである。加入者装置40は、送受信先に応じて、それぞれ独自の波長を選択して光トランシーバ41に設定できる。加入者装置40は、光GW200から受信した指示に従って、使用する波長を光トランシーバ41に設定する。光GW200に接続されるM台(Mは1以上の整数)の加入者装置40を、加入者装置40-1~40-Mと記載する。
光GW200は、光SW210と、波長合分波器220と、制御部230と、合波器241と、分波器242と、分岐部250と、監視部260とを備える。監視部260は、上述した監視部60~60hのいずれかに置き換えられてもよい。
光SW210は、複数の入出力ポート(以下、「ポート」と記載する。)を有しており、2以上のポート間を接続する。光SW210は、自由にポート間の光経路を切り変え可能である。上り信号を入出力するポートを上りポート、下り信号を入出力するポートを下りポートと記載する。光SW210の各ポートは、伝送路に接続される。
波長合分波器220は、上り信号と下り信号を波長により分離する上下多重分離を行う。波長合分波器220は、加入者装置40が送信した上りの光信号を伝送路501から入力し、伝送路521を介して光SW210に出力する。波長合分波器220は、光SW210が出力した下りの光信号を伝送路522から入力し、伝送路501を介して加入者装置40に出力する。
制御部230は、光SW210のポートのうち、加入者装置40が接続されていない上りポート及び下りポートに接続されている。光SW210の上りポートは伝送路531により、制御部230の送信側のポートに接続される。光SW210の下りポートは伝送路533により、制御部230の送信側のポートに接続される。制御部230は、波長分波器231と、波長チャネル毎の光受信器(Rx)232と、波長可変送信器233とを有する。波長分波器231は、例えば、AWGである。波長分波器231は、伝送路540を介して受信側のポートに入力された光を波長毎に分波する。波長分波器231は、分波した光をそれぞれ、その光の波長の光信号を受信する光受信器232に出力する。波長可変送信器233は、可変の波長の光を発生する波長可変レーザダイオード(LD)を有している。波長可変送信器233は、波長可変レーザダイオードが発生する光を用いて、可変の波長の光信号を送信する。波長可変送信器233は、発生した光を用いた光信号を、送信側のポートから伝送路533に出力する。
合波器241は、光SW210が複数の伝送路541のそれぞれから出力した異なる波長の上りの光信号を合波して、他の対地と接続される伝送路511に出力する。分波器242は、いずれかの他の対地から送信された光信号を伝送路512から入力し、入力した下りの光信号を波長により分波する。分波器242は、分波された下りの光信号をそれぞれ、その光信号の波長に応じた上りポートと接続される複数の伝送路542を介して光SW210に入力する。
分岐部250は、伝送路511及び伝送路512に備えられる。分岐部250は、パワースプリッタ251及び252を有する。パワースプリッタ251は、伝送路511を伝送する上りの光信号を分岐し、伝送路551を介して光SW210に入力する。パワースプリッタ252は、伝送路512を伝送する下りの光信号を分岐し、伝送路552を介して光SW210に入力する。
監視部260は、波長分波器261と、波長毎の光受信器(Rx)262とを有する。波長分波器261は、光SW210と、伝送路560を介して接続される。光SW210は、伝送路541又は伝送路542と接続されるポートから入力した光信号を、伝送路560と接続されるポートに出力する。これにより、波長分波器261は、分岐部250が分岐した光信号を受信する。波長分波器261は、入力した光信号を波長毎に分波する。波長分波器261は、分波した光をそれぞれ、その光の波長の光信号を受信する光受信器262に出力する。監視部260は、光受信器262が受信した光信号により、加入者装置40が送受信する通信の状態を監視する。監視部260は、監視結果を制御部230やOPS300が備える制御部301に出力してもよい。ここでは、制御部230や制御部301としたが、同一であってもよい。監視部260は、監視結果を制御部230に出力し、制御部230がその出力を制御部301に出力してもよい。制御部230と制御部301は同一であってもよい。その場合、制御部230から制御部301への出力を制御部外に出力しなくてもよい。
OPS300は、制御部301と、管理DB350とを有する。制御部301は、光GW200と接続される。制御部301は、波長制御部310と、光SW制御部320を有する。波長制御部310は、各ユーザ(又は、各サービス)が使用している光の波長を示す情報を記憶している。波長制御部310は、この情報を参照して、各ユーザが使用する波長を動的に割り当てる。波長制御部310は、光GW200と異なる建物に設置され、ネットワークを介して光SW210や光SW制御部320と接続されてもよい。波長制御部310は、各接続情報を共有することによって、どのユーザが、光SW210のどのポートに接続され、どの波長を使用しているかの情報をリアルタイムで管理及び制御する。制御部301は、光SW210毎に設置されてもよいし、複数光SW毎に設置されてもよい。以上のように、波長制御部310は、図2における波長制御部25と同様の処理を実行する。
制御部301は、管理データベース(DB)350と接続されている。制御部301は、ユーザや使用波長に関する情報を管理DB350と相互に交換している。管理DB350は、各ユーザの使用波長及び宛先情報を記憶している。宛先は、例えば、対地A、対地Bなどで表される。管理DB350は、光アクセスシステム100に接続されている全ユーザの情報を管理している。
図39は、SW接続テーブルの例を示す図である。SW接続テーブルは、光SW210の各ポートの接続先を示している。つまり、光信号が入出力されるポートを、その光信号の送信元又は送信先の加入者装置40、制御部230、分岐部250、監視部260、対地などを識別する情報として用いることが可能である。
波長テーブルには、ユーザ波長テーブルと、局舎間波長テーブルとがある。
図40は、ユーザ波長テーブルの例を示す図である。ユーザ波長テーブルは、各ユーザが送信に使用している波長、受信に使用している波長、送受信に使用していない空きの波長、故障中のため使用できない波長を示している。なお、管理DB350は、光SW210と接続される伝送路毎に波長テーブルを管理してもよい。
図40は、ユーザ波長テーブルの例を示す図である。ユーザ波長テーブルは、各ユーザが送信に使用している波長、受信に使用している波長、送受信に使用していない空きの波長、故障中のため使用できない波長を示している。なお、管理DB350は、光SW210と接続される伝送路毎に波長テーブルを管理してもよい。
図41は、局舎間波長テーブルの例を示す図である。局舎間波長テーブルは、ある対地が、他の各対地との通信に使用している波長、他の各対地との通信に使用していない空きの波長、他の各対地との通信に故障中のため使用できない波長を示している。
ここで、新たに加入者装置40を接続した際の動作について説明する。図42は、新規加入者装置接続時の光アクセスシステム100の初期設定処理を示すフローチャートである。図38及び図42を用いて、新たに加入者装置40-1を光GW200に接続する際の光アクセスシステム100の動作について説明する。なお、制御部230の波長分波器261(AWG)の各ポートが光SW210のいずれのポートに接続されているかは、事前に制御部230により確認されているものとする。
まず、新たな加入者装置40-1を接続する前に、ユーザ申請が行われる。例えば、ユーザ申請により、対地Aと対地Bとの間の通信を行うことが得られる。事業者は、ユーザ申請に基づいて、ユーザ情報や、初期の宛先の情報などをOPS300の管理DB350に登録する(ステップS1)。ユーザ情報は、例えば、光トランシーバ41が使用可能な波長などを得ることができる情報である。OPS300は、SW接続テーブルを参照し、光SW210の空きのポートの中から加入者装置40-1を接続する光SW210のポートを割り当てる(ステップS2)。ここでは、二芯の場合は少なくとも上りポート及び下りポートの2ポートが、一芯双方の場合は少なくとも1ポートが割り当てられる。OPS300は、割り当てたポートが加入者装置40-1に接続されていることを示す情報をSW接続テーブルに登録する。OPS300の光SW制御部320は、制御部20が加入者装置400を光信号で制御する場合、対象の加入者装置40-1に割り当てたポートと、制御部230が接続されるポートとの間で、光信号を送受信するよう光SW210を制御する。なお、加入者装置40を光SW210と監視部260を介して光信号で制御する場合は監視部260を介すように光SW210を接続し、光SW210を介さず且つ監視部260又は通信部を介して光信号で制御しない場合又は光信号で制御しない場合、接続するポートが光SW210で未結線であればその状態のままとしてもよいし、接続するポートが遮断であればその状態のままとしてもよい。
新たな加入者装置40-1が接続されると、加入者装置40-1は、初期化処理を行い、光信号により接続要求(レジスタリクエスト)を送信する(ステップS3)。
なお、レジスタリクエストで、伝搬遅延や伝送距離を測定する場合で、リクエストを受けた機能部、例えば制御部230や監視部260や通信部等と、測定した値を用いる機能部、例えば受けたのと異なる制御部や監視部や通信部等や送信許可通知する帯域割当部や対向装置等がその値を用いる場合は、利用する機能部で再度測定するか、測定した機能部と利用する機能部との伝搬遅延や伝送距離を波長分散や偏波分散やモード分散を加味して加減して用いる。
加入者装置40-1は、初期化処理を、接続前、又は、接続直後に、自動で実施する。波長合分波器220は、伝送路501から接続要求を入力し、伝送路521を介して光SW210に出力する。光SW210は、加入者装置40-1と接続されるポートから入力した接続要求を、制御部20が加入者装置400を光信号で制御する場合、制御部230が接続されている出力ポートに出力する。制御部の受信ポートへの入力は監視部260を介してもよい。制御部230は、伝送路531を介して受信用ポートから接続要求を受信する。制御部230は、入力した光信号を解析し、初期設定波長や、光パワーに問題がないかなど確認する(ステップS4)。
なお、レジスタリクエストで、伝搬遅延や伝送距離を測定する場合で、リクエストを受けた機能部、例えば制御部230や監視部260や通信部等と、測定した値を用いる機能部、例えば受けたのと異なる制御部や監視部や通信部等や送信許可通知する帯域割当部や対向装置等がその値を用いる場合は、利用する機能部で再度測定するか、測定した機能部と利用する機能部との伝搬遅延や伝送距離を波長分散や偏波分散やモード分散を加味して加減して用いる。
加入者装置40-1は、初期化処理を、接続前、又は、接続直後に、自動で実施する。波長合分波器220は、伝送路501から接続要求を入力し、伝送路521を介して光SW210に出力する。光SW210は、加入者装置40-1と接続されるポートから入力した接続要求を、制御部20が加入者装置400を光信号で制御する場合、制御部230が接続されている出力ポートに出力する。制御部の受信ポートへの入力は監視部260を介してもよい。制御部230は、伝送路531を介して受信用ポートから接続要求を受信する。制御部230は、入力した光信号を解析し、初期設定波長や、光パワーに問題がないかなど確認する(ステップS4)。
制御部230は、波長や光パワーに問題があった場合、再起動又は初期化の指示を加入者装置40-1に送信する。再起動又は初期設定後、ステップS3に戻り、加入者装置40-1は、再び、接続要求を送信する。
制御部230は、加入者装置40-1から受信した光信号を解析し、問題がないことを確認した場合、接続要求を制御部301に出力する。制御部301は、管理DB350に加入者装置40-1の情報を登録する。接続要求には、接続元の情報、接続先の情報、送信する信号の種類などが含まれている。接続元の情報は、例えば、MAC(Medium Access Control)アドレスなどのアドレス情報などが用いられる。接続先の情報には、例えば、宛先のアドレス情報などが用いられる。送信する信号の種類は、例えば、サービスや、変調方式などが用いられる。波長制御部310は、これらの情報に基づいて、管理DB350に接続元の情報を登録する。これにより、ユーザ波長テーブルに、加入者装置40-1を利用するユーザの識別と、加入者装置40-1が使用可能な波長が空きである旨が設定される。さらに、波長制御部310は、管理DB350に記憶される接続情報と照らし合わせて、対地Aと対地B間など加入者装置40-1と通信先との最適な経路を算出する。波長制御部310は、算出した経路に応じて、局舎間波長テーブルが示す空きを探索する。波長制御部310は、空きの波長の中から、加入者装置40-1が使用する波長を選択し、選択した波長の情報を制御部230に送信する(ステップS5)。
加入者装置40-1の通信先である他の加入者装置40を通信先加入者装置40とする。この場合、波長制御部310は、加入者装置40-1が通信先加入者装置40への光信号の送信に使用する波長である送信用波長と、加入者装置40-1が通信先加入者装置40からの光信号の受信に使用する波長である受信用波長とを選択する。波長制御部310は、選択した送信用波長及び受信用波長を、加入者装置40-1が使用する波長として制御部230に送信する。なお、加入者装置40-1が通信先加入者装置40へ送信のみを行う場合、波長制御部310は、受信用波長を選択しなくてもよい。また、加入者装置40-1が通信先加入者装置40からの受信のみを行う場合、波長制御部310は、送信用波長を選択しなくてもよい。
制御部230は、波長の情報を以下のように送信する。制御部230の波長可変送信器233は、波長制御部310が選択した波長の情報を設定した波長指示を、加入者装置40-1宛てを表す波長の光信号により送信する。波長指示を光信号で送信する場合、光SW210は、制御部20の波長可変送信器233と接続されるポートから又は監視部を介して又は通信部を用いる場合は通信部と接続されるポートから入力した光信号を、加入者装置40-1と接続されている伝送路522に出力する。波長合分波器220は、伝送路522を介して光SW210から入力した光信号を、伝送路501に入射する。加入者装置40-1は、伝送路501を伝送した光信号を受信する。波長は経路の途中で波長分岐されたりしてもよいし、加入者装置40に届く限りにおいて設定と異なってもよい。制御部20と加入者装置40の間に波長に応じて分波する合分波器等がなければ、送信する信号の波長を変更しなくてもよい。加入者装置40-1は、受信した光信号による指示に送信用波長が設定されている場合、波長指示に従って、光トランシーバ41の波長を設定する(ステップS6)。すなわち、加入者装置40-1は、波長指示に設定されている送信用波長により光信号を送信するように、光トランシーバ41(波長可変光源451)の波長を設定する。波長指示に受信用波長が設定されている場合、加入者装置40-1は、受信用波長の波長信号を受信するように光トランシーバ41(波長可変フィルタ453)を設定する。
加入者装置40-1の光トランシーバ41は、光信号で送信する場合、指示された波長の光信号により、波長を設定した旨を通知する通知信号を送信する。通知信号は、要求信号と同様に、光SW210又は監視部260又は通信部を介して制御部230に送信される。制御部230は、受信した通知信号に基づいて、指定した波長が正しく設定されているか、出力パワーは十分であるかなどを確認する(ステップS7)。制御部230は、通知信号の値が指示通りの値であるか否かを確認する。さらに、制御部230は、光信号を受信している場合には、その光信号の測定値で確認してもよい。制御部230は、確認の結果、問題がないと判定した場合、加入者装置40-1に通信開始の許可を示す許可通知を光信号により送信する。許可通知は、波長指示と同様に、加入者装置40-1に送信される。
なお、光SW制御部320は、光SW210に、加入者装置40-1の送信先に合わせて光SW210内の最適なポートの接続情報を送信する。光SW210は、その接続情報をもとに、加入者装置40-1の上りポート及び下りポートを、光SW制御部320からの指示に従って設定する(ステップS8)。
また、光アクセスシステム100は、光SW210内の経路切り替えを、制御部230から加入者装置40-1に通信開始の許可を送信した後に行うようにタイミングを制御する。例えば、光SW210の経路切り替えに要する時間が予め分かっているとする。この場合、制御部230は、光SW210が経路切り替えの指示を受信してから実際に経路を切り替えるのに要する時間だけ、加入者装置40-1が通信開始の許可を受信してから実際に通信を開始するまで待ち、その後に通信の開始を指示する。通信の開始後、GW200の監視部260は、対向の加入者装置間の通信状況確認を確認する(ステップS9)。監視部260は、確認結果をOPS300へ通知する。確認がNGである場合、制御部230又はOPS300は、原因の切り分け手順を行う。
また、加入者装置40-1が送信する接続要求、制御部230が加入者装置40-1に送信する制御信号は、主信号よりも低速の光信号である。制御信号には、例えば、AMCCに代表されるようなプロトコルフリーの制御信号(制御手法)用いることができる。
また、制御部又はOPS300は、通信先加入者装置40に、加入者装置40-1の送信用波長を通信先加入者装置40の受信用波長として、また、加入者装置40-1の受信用波長を通信先加入者装置40の送信用波長として用いるように指示する。例えば、通信先加入者装置40が収容される光GW200を制御する制御部301において、波長制御部310は、通信先加入者装置40の受信用波長及び送信用波長を設定した波長指示の送信を制御部230に指示する。通信先加入者装置40は、制御部230から制御信号により波長指示を受信し、受信した波長指示に従って光トランシーバ41に受信用波長及び送信用波長を設定する。すなわち、波長指示に送信用波長が設定されている場合、通信先加入者装置40は、送信用波長により光信号を送信するように、光トランシーバ41(波長可変光源451)の波長を設定する。波長指示に受信用波長が設定されている場合、通信先加入者装置40は、受信用波長の波長信号を受信するように光トランシーバ41(波長可変フィルタ453)を設定する。
なお、光アクセスシステム100は、ステップS1のユーザ申請を行わず、ユーザ申請により管理DB350に登録する情報を、新たな加入者装置40-1と制御部301との間で送受信してもよい。これにより、加入者装置40-1は、ユーザ申請を行うことなく、他の加入者装置40との通信が可能となる。加入者装置40-1と制御部301との間の情報の送受信は、制御部230を介して、例えば、AMCCを用いて行う。
上記では、新規加入者装置が接続された際の動作について説明した。次に、新規加入者装置が接続された後の通常の通信動作を、図38の加入者装置40-2が通信を行う場合を例に説明する。
まず、上り方向通信について説明する加入者装置40-2が出力した上りの光信号は、伝送路501を介して光GW200に送られる。光GW200の波長合分波器220は、入力した光信号を波長により、上りの光信号と下りの光信号に分離する。波長合分波器220が分波した上りの光信号は、伝送路521を介して光SW210に入力される。光SW210は、波長合分波器220から上りの光信号を入力したポートを、加入者装置40-2の通信先への経路上の転送先までの経路に応じた別のポートに接続して、光信号を出力する。波長を宛先情報として用いる場合は、光SW210は、加入者装置40-2に割当てられた波長により特定される通信先への経路上の転送先に応じた別のポートに接続して光信号を出力する。光SW210から出力された上り信号は、合波器241にておいて他の加入者装置40が送信した異なる波長の光信号と合波され、一本の伝送路511を介して別の局舎(例えば、対地B)へ伝送される。合波器241はそれぞれ、対地B、対地Cなど局舎毎に波長チャネルを合波する。なお、対地Bとの間の伝送路511と、対地Cとの間の伝送路511を分けることによって、対地Bと対地Cとで同じ波長を使うことも可能である。
次に下り方向通信について説明する。下りは、対地B、Cから加入者装置40の方向への通信である。下りの光信号は、一本の伝送路512を介して光GW200に送られる。光GW200の分波器242は、伝送路512を伝送した下りの光信号を波長により分波する。分波器242は、分波された光をそれぞれ、伝送路542を介して、分波された光の波長に応じた下りポートに入力する。光SW210は、分波器242から下りの光信号を入力したポートを、波長に応じた別のポートに接続して、光信号を出力する。波長合分波器220は、伝送路522を介して光SW210から入力した光信号を波長により、上りの光信号と下りの光信号に分離する。波長合分波器220が分波した下りの光信号は、伝送路501を介して加入者装置40-2に入力される。なお、光GW200から各局舎(対地B、Cなど)に送信される波長チャネルは、同じ波長帯であることが想定されるが、局舎毎に異なる波長帯を用いてもよい。
光GW200の監視部260は、分岐部250が分岐した光を受信する。分岐部250が分岐した光は、各加入者装置40が送受信している光信号である。監視部260は、この受信した光信号を監視することにより、各加入者装置40が送受信している信号を監視する。監視部260は、監視により、波長のずれ、出力の低下、通信異常などの異常を検出した場合は、制御部301に異常検出の信号を送信する。制御部301の光SW制御部320は、対象の加入者装置40を制御部230に再度接続するように、光SW210を制御する。そして、制御部301は、新たに加入者装置40を接続したときと同様に、異常が検出されたときに用いていた波長とは異なる新たな波長の割当処理を行う。これにより、光SW210は、加入者装置40から変更後の波長の光信号を入力した場合、入力した光信号を、その加入者装置40が変更前の波長により特定されていたポートに接続する。
(光アクセスシステム100の第1の構成例)
図38に示す光GW200は、波長多重を行っているが、図43及び図44に示すように、波長多重を行わなくてもよい。図43は、光アクセスシステム101の構成例を示す図である。図43に示す光アクセスシステム101が、図38に示す光アクセスシステム100と異なる点は、GW200に代えて、GW201を備える点である。GW201が、GW200と異なる点は、合波器241、分波器242及び分岐部250に代えて、波長合分波器243及び分岐部250aを備える点である。GW201は、伝送路503により他の対地の局舎の通信装置と接続される。一本の伝送路503は、いずれかの対地との間で上り信号及び下り信号を伝送する。
図38に示す光GW200は、波長多重を行っているが、図43及び図44に示すように、波長多重を行わなくてもよい。図43は、光アクセスシステム101の構成例を示す図である。図43に示す光アクセスシステム101が、図38に示す光アクセスシステム100と異なる点は、GW200に代えて、GW201を備える点である。GW201が、GW200と異なる点は、合波器241、分波器242及び分岐部250に代えて、波長合分波器243及び分岐部250aを備える点である。GW201は、伝送路503により他の対地の局舎の通信装置と接続される。一本の伝送路503は、いずれかの対地との間で上り信号及び下り信号を伝送する。
波長合分波器243は、入力した光信号を波長により、上りの光信号と下りの光信号に分離する。波長合分波器243は、伝送路543-1を介して光SW210から入力した上りの光信号を分離し、伝送路503を介して他の対地又は上位ネットワークに送信する。また、波長合分波器243は、伝送路503を介して他の対地から入力した下りの光信号を分離し、伝送路543-2を介して光SW210に出力する。
分岐部250aは、伝送路503に備えられる。分岐部250aは、パワースプリッタ251aを有する。パワースプリッタ251aは、伝送路503を伝送する上り及び下りの光信号を分岐する。パワースプリッタ251aは、分岐した上りの光信号を、伝送路551aを介して光SW210のポートに入力し、分岐した下りの光信号を、伝送路551bを介して光SW210のポートに入力する。光SW210は、伝送路551aと接続されるポートから入力した光信号及び伝送路551bと接続されるポートから入力した光信号を、伝送路560と接続されるポートから出力する。これにより、監視部260の波長分波器261は、分岐部250aが分岐した光信号を受信する。
(光アクセスシステム100の第2の構成例)
図44は、光アクセスシステム102の構成例を示す図である。図44に示す光アクセスシステム102が、図43に示す光アクセスシステム101と異なる点は、光GW201に代えて、光GW202を備える点である。光GW202が、光GW201と異なる点は、波長合分波器243及び分岐部250aに代えて、波長合分波器244、波長合分波器245及び分岐部250bを備える点である。
図44は、光アクセスシステム102の構成例を示す図である。図44に示す光アクセスシステム102が、図43に示す光アクセスシステム101と異なる点は、光GW201に代えて、光GW202を備える点である。光GW202が、光GW201と異なる点は、波長合分波器243及び分岐部250aに代えて、波長合分波器244、波長合分波器245及び分岐部250bを備える点である。
波長合分波器244は、波長により、上りの光信号と下りの光信号に分離する。波長合分波器244は、伝送路544を介して光SW210から入力した上りの光信号を、伝送路545を介して波長合分波器245に入力する。波長合分波器244は、伝送路546を介して波長合分波器245から入力した下りの光信号を、伝送路544を介して光SW210に入力する。
波長合分波器245は、波長により、上りの光信号と下りの光信号に分離する。波長合分波器245は、伝送路545を介して波長合分波器245から入力した上りの光信号を、伝送路503を介して他の対地又は上位ネットワークに送信する。また、波長合分波器245は、伝送路503を介して受信した下りの光信号を、伝送路546を介して波長合分波器244に入力する。
分岐部250bは、パワースプリッタ251b及びパワースプリッタ252bを有する。パワースプリッタ251bは、伝送路545を伝送する上りの光信号を分岐する。パワースプリッタ251bは、分岐した上りの光信号を、伝送路551bを介して光SW210のポートに入力する。パワースプリッタ252bは、伝送路546を伝送する下りの光信号を分岐する。パワースプリッタ252bは、分岐した下りの光信号を、伝送路552bを介して光SW210のポートに入力する。光SW210は、伝送路551bと接続されるポートから入力した光信号及び伝送路552bと接続されるポートから入力した光信号を、伝送路560と接続されるポートから出力する。これにより、監視部260の波長分波器261には、分岐部250bが分岐した光信号が入力される。
上述した監視部260は、波長分波器261と波長毎の光受信器262とを有する受信器構成を有する。監視部260は、この受信器構成に代えて、波長可変光受信器を有してもよい。制御部の送受信器が、波長可変ではない送信器を有してもよく、波長分波器を有さない受信器構成であってもよい。図45を用いて、このような構成の例を説明する。
(光アクセスシステム100の第3の構成例)
図45は、光アクセスシステム103の構成例を示す図である。図45に示す光アクセスシステム103が、図38に示す光アクセスシステム100と異なる点は、光GW200に代えて、光GW203を備える点である。光GW203が、光GW200と異なる点は、制御部230及び監視部260に代えて、制御部235及び監視部265を備える点である。制御部235は、光受信器236と、波長可変ではない光送信器237とを有する。監視部265は、波長可変光受信器266を有する。監視部265は、上述した監視部60~60hのいずれかに置き換えられてもよい。
図45は、光アクセスシステム103の構成例を示す図である。図45に示す光アクセスシステム103が、図38に示す光アクセスシステム100と異なる点は、光GW200に代えて、光GW203を備える点である。光GW203が、光GW200と異なる点は、制御部230及び監視部260に代えて、制御部235及び監視部265を備える点である。制御部235は、光受信器236と、波長可変ではない光送信器237とを有する。監視部265は、波長可変光受信器266を有する。監視部265は、上述した監視部60~60hのいずれかに置き換えられてもよい。
(光アクセスシステム100の第4の構成例)
また、監視部は上記の光SWとは別の光SWを介して接続されていてもよい。図46を用いて、このような構成の例を説明する。図46は、光アクセスシステム104の構成例を示す図である。図46に示す光アクセスシステム104が、図45に示す光アクセスシステム103と異なる点は、光GW203に代えて光GW204を備える点である。光GW204が光GW203と異なる点は、光SW211をさらに備える点、監視部265が光SW211に接続されている点である。
また、監視部は上記の光SWとは別の光SWを介して接続されていてもよい。図46を用いて、このような構成の例を説明する。図46は、光アクセスシステム104の構成例を示す図である。図46に示す光アクセスシステム104が、図45に示す光アクセスシステム103と異なる点は、光GW203に代えて光GW204を備える点である。光GW204が光GW203と異なる点は、光SW211をさらに備える点、監視部265が光SW211に接続されている点である。
分岐部250のパワースプリッタ251が伝送路511から分離した上りの光信号は、伝送路555を介して光SW211に入力され、パワースプリッタ252が伝送路512から分離した下りの光信号は、伝送路555を介いて光SW211に入力される。光SW211は、例えば、小型光SWなどである。光SW211のポート数は、監視部260側に1ポート、被監視光信号が入力される側に2Mポートである。2Mは、光GW204に接続されている加入者装置40の数Mの2倍である。なお、小型光SWを使用せず、接続されている対地の数だけ監視部を用意して、全ての対地と送受信している信号を対地毎に監視してもよい。
本構成例は、折り返し伝送路を用いて、同一の光GWに接続されている複数の加入者装置間で通信を行う。以下では、上記の構成例との差分を中心に説明する。
(光アクセスシステム100の第5の構成例)
図47は、光アクセスシステム105の構成例を示す図である。図47に示す光アクセスシステム105が、図45に示す光アクセスシステム103と異なる点は、光GW203に代えて、光GW205を備える点である。光GW205が、光GW203と異なる点は、光GW205が設置されている対地Aに対応した合波器247及び分波器248をさらに備える点である。合波器247と分波器248とは、伝送路547により接続される。伝送路547は、折り返し伝送路である。
図47は、光アクセスシステム105の構成例を示す図である。図47に示す光アクセスシステム105が、図45に示す光アクセスシステム103と異なる点は、光GW203に代えて、光GW205を備える点である。光GW205が、光GW203と異なる点は、光GW205が設置されている対地Aに対応した合波器247及び分波器248をさらに備える点である。合波器247と分波器248とは、伝送路547により接続される。伝送路547は、折り返し伝送路である。
合波器247は、合波器241と同様に、光SW210が複数の伝送路541のそれぞれから出力した異なる波長の上りの光信号を合波して、伝送路547に出力する。分波器248は、分波器242と同様に、伝送路547から入力した下りの光信号を波長により分波する。分波器248は、分波された下りの光信号をそれぞれ、その光信号の波長に応じた下りポートと接続される複数の伝送路542を介して光SW210に入力する。また、伝送路547には、分岐部250が備えられる。
上記の構成例においては、対地Aに接続されている加入者装置は光SWを経由して、対地Bや対地Cと接続するためのポートに接続されている。本構成例では、対地B又は対地Cへ接続されている合波器241及び分波器242の組み合わせと同じものをもう一組追加する。この追加した組は、合波器247及び分波器248である。そして、追加した合波器247の出力ポートと、追加した分波器248の入力ポートとを伝送路547により接続する。この構成により、加入者装置40が出力した信号を、光SW210に再度入力することが可能となる。これにより、光GW205は、ある加入者装置40が出力した光信号を折り返し、下り信号として、光SW210に再び入射する。この折り返された信号を光SW210内で他の加入者装置40と接続することで、折り返し通信、つまり同一の光GW205に接続されている加入者装置40間の通信が可能となる。
例えば、加入者装置40-2と加入者装置40-Mが通信している状態を説明する。光SW210の対地Aに対応したK個(Kは2以上の整数)の上りポートそれぞれが伝送路541により合波器247と接続され、光SW210の対地Aに対応したK個の下りポートそれぞれが伝送路542により分波器248と接続されているとする。そして、対地Aに対応したK個の下りポート及び上りポートのうちk番目(kは1以上K以下の整数)の上りポート及び下りポートが波長λkに対応するものとする。加入者装置40-2から出力された波長λ1の上りの光信号は、対地Aに対応した1番目の上りポートに接続される。入力された光信号は、伝送路547により折り返されて対地Aに対応した1番目の下りポートから下りの光信号として、光SW210に再び入力される。光SW制御部320は、その光信号を、波長に応じて加入者装置40-Mに送信されるように光SW210内の経路を設定する。同様に、加入者装置40-Mから出力された波長λkの上りの光信号は、対地Aに対応したk番目の上りポートに接続される。入力された光信号は、伝送路547により折り返されて対地Aに対応したk番目の下りポートから下りの光信号として、光SW210に再び入力される。光SW制御部320は、その光信号を、波長に応じて加入者装置40-2に送信されるように光SW210内の経路を設定する。これにより、加入者装置40-2と加入者装置40-Mとの間で通信が行われる。
(光アクセスシステム100の第6の構成例)
本構成例の他の構成について、図48及び図49を用いて説明する。図48は、光アクセスシステム106の構成例を示す図である。図48に示す光アクセスシステム106が、図47に示す光アクセスシステム105と異なる点は、光GW205に代えて、光GW206を備える点である。光GW206が、光GW205と異なる点は、合波器247及び分波器248を備えず、波長多重せずに光SW210の対地A用の上りポート及び下りポート間を伝送路548により直接接続することにより、信号を折り返す構成としている点である。
本構成例の他の構成について、図48及び図49を用いて説明する。図48は、光アクセスシステム106の構成例を示す図である。図48に示す光アクセスシステム106が、図47に示す光アクセスシステム105と異なる点は、光GW205に代えて、光GW206を備える点である。光GW206が、光GW205と異なる点は、合波器247及び分波器248を備えず、波長多重せずに光SW210の対地A用の上りポート及び下りポート間を伝送路548により直接接続することにより、信号を折り返す構成としている点である。
(光アクセスシステム100の第7の構成例)
図49は、光アクセスシステム107の構成例を示す図である。図49に示す光アクセスシステム107が、図47に示す光アクセスシステム105と異なる点は、光GW205に代えて、光GW207を備える点である。光GW207が、光GW205と異なる点は、分波器248に代えてパワースプリッタ270を備える点である。パワースプリッタ270は、伝送路547を介して合波器247から入力した下りの光信号を複数に分岐し、複数の伝送路542を介して、光SW210に入力する。
図49は、光アクセスシステム107の構成例を示す図である。図49に示す光アクセスシステム107が、図47に示す光アクセスシステム105と異なる点は、光GW205に代えて、光GW207を備える点である。光GW207が、光GW205と異なる点は、分波器248に代えてパワースプリッタ270を備える点である。パワースプリッタ270は、伝送路547を介して合波器247から入力した下りの光信号を複数に分岐し、複数の伝送路542を介して、光SW210に入力する。
なお、図47の光GW205の分波器248の後段にパワースプリッタを設けてもよい。パワースプリッタは、分波器248が分波した光信号を複数に分岐し、光SW210の異なるポートに入力する。このようにすることで、折り返し通信のマルチキャスト通信が可能となる。
上記では、光アクセスシステム103との差分を説明したが、光アクセスシステム100、101、102にその差分を適用することも可能である。
(光アクセスシステム100の第8の構成例)
本構成例の光アクセスシステムは、マルチキャスト通信を行う。本構成例では、差分を中心に説明する。
本構成例の光アクセスシステムは、マルチキャスト通信を行う。本構成例では、差分を中心に説明する。
まず、図50を用いて下り通信のマルチキャストについて説明する。図50は、光アクセスシステム108の構成例を示す図である。図50に示す光アクセスシステム108が、図49に示す光アクセスシステム107と異なる点は、光GW207に代えて、光GW208を備える点である。光GW208が、光GW207と異なる点は、光SW210の折り返しポートを接続する伝送路549をさらに備える点である。
対地Cから送信された下りの光信号をマルチキャストする場合について説明する。光SW制御部320は、対地Cからの下りの光信号を入力するポートを、波長に応じて、伝送路549が接続されている折り返し用のポートに接続するよう制御する。これにより、対地Cからの下りの光信号は、伝送路549を伝送し、対地Aの上り信号として光SW210に再度入力される。また、光SW制御部320は、折り返し用ポートから入力した下りの光信号を、対地Aの上り信号用のポートに接続するよう制御する。これにより、伝送路549を折り返して光SW210に入力された光信号は、合波器247と接続されるポートに出力される。合波器247は、複数の伝送路541のそれぞれにより光SW210から出力された光信号を合波して伝送路547に出力する。伝送路547に出力された光信号は、パワースプリッタ270において複数の光信号に分岐される。パワースプリッタ270は、分岐した複数の光信号を、複数の伝送路542を介して、対地Aの下り信号として光SW210に入力する。光SW210は、各伝送路542から入力した光信号を、波長に応じて、加入者装置40と接続されるポートに出力する。これにより、下り信号のマルチキャストが可能となる。
(光アクセスシステム100の第9の構成例)
続いて、図51を用いて上り通信のマルチキャストについて説明する。図51は、光アクセスシステム109の構成例を示す図である。図51に示す光アクセスシステム109が、図45に示す光アクセスシステム103と異なる点は、光GW203に代えて、光GW209を備える点である。光GW209が、光GW203と異なる点は、光SW210に折り返しポートを接続する伝送路570と、マルチキャスト用のパワースプリッタ271とをさらに備える点である。パワースプリッタ271は、伝送路572と、複数の伝送路573とを介して光SW210と接続される。
続いて、図51を用いて上り通信のマルチキャストについて説明する。図51は、光アクセスシステム109の構成例を示す図である。図51に示す光アクセスシステム109が、図45に示す光アクセスシステム103と異なる点は、光GW203に代えて、光GW209を備える点である。光GW209が、光GW203と異なる点は、光SW210に折り返しポートを接続する伝送路570と、マルチキャスト用のパワースプリッタ271とをさらに備える点である。パワースプリッタ271は、伝送路572と、複数の伝送路573とを介して光SW210と接続される。
対地Aから送信された上りの光信号をマルチキャストする場合について説明する。光SW制御部320は、対地Aからの上りの光信号を入力するポートを、波長に応じて、伝送路570が接続されている折り返し用のポートに接続するよう制御する。これにより、対地Aからの上りの光信号は、伝送路570を伝送し、光SW210に再度入力される。また、光SW制御部320は、折り返し用ポートから入力した光信号を、パワースプリッタ271と接続されているポートに出力するよう制御する。これにより、伝送路570を折り返して光SW210に入力された光信号は、伝送路572に出力される。伝送路572に出力された光信号は、パワースプリッタ271において複数の光信号に分岐される。パワースプリッタ271は、分岐した複数の光信号を、複数の伝送路573を介して、上り信号として光SW210に入力する。光SW210は、各伝送路573から入力した光信号を、波長に応じて、対地B又は対地Cと接続されるポートに出力する。これにより、上り信号のマルチキャストが可能となる。
(光アクセスシステム100の第10の構成例)
続いて、図52を用いて、下り通信のマルチキャストを行いながら、上り通信を含めてpoint to multipoint通信を行う構成について説明する。図52は、光アクセスシステム110の構成例を示す図である。図52に示す光アクセスシステム110が、図45に示す光アクセスシステム103と異なる点は、光GW203に代えて、光GW2010を備える点である。光GW2010が、光GW203と異なる点は、光SW210に折り返しポートを接続する伝送路574、575と、パワースプリッタ272、273とをさらに備える点である。パワースプリッタ272は、伝送路581と、複数の伝送路582とを介して光SW210と接続される。パワースプリッタ273は、複数の伝送路583と、伝送路584とを介して光SW210と接続される。
続いて、図52を用いて、下り通信のマルチキャストを行いながら、上り通信を含めてpoint to multipoint通信を行う構成について説明する。図52は、光アクセスシステム110の構成例を示す図である。図52に示す光アクセスシステム110が、図45に示す光アクセスシステム103と異なる点は、光GW203に代えて、光GW2010を備える点である。光GW2010が、光GW203と異なる点は、光SW210に折り返しポートを接続する伝送路574、575と、パワースプリッタ272、273とをさらに備える点である。パワースプリッタ272は、伝送路581と、複数の伝送路582とを介して光SW210と接続される。パワースプリッタ273は、複数の伝送路583と、伝送路584とを介して光SW210と接続される。
対地Cから送信された下りの光信号をマルチキャストする場合について説明する。光SW制御部320は、対地Cからの下りの光信号を入力するポートを、波長に応じて、伝送路574が接続されている折り返し用のポートに接続するよう制御する。これにより、対地Cからの下りの光信号は、伝送路574を伝送し、対地Aの上り信号として光SW210に再度入力される。また、光SW制御部320は、折り返し用ポートから入力した下りの光信号を、パワースプリッタ272が接続されているポートに出力するよう制御する。これにより、伝送路574を折り返して光SW210に入力された光信号は、伝送路581に出力される。伝送路581に出力された光信号は、パワースプリッタ272において複数の光信号に分岐される。パワースプリッタ272は、分岐した複数の光信号を、複数の伝送路582を介して、下り信号として光SW210に入力する。光SW210は、各伝送路582から入力した光信号を、波長に応じて加入者装置40と接続されるポートに出力する。これにより、下り信号のマルチキャストが可能となる。
対地Aから送信された上りの光信号を対地Cに送信する場合について説明する。光SW制御部320は、対地Aからの上りの光信号を入力するポートを、波長に応じて、パワースプリッタ273が接続されているポートに接続するよう制御する。これにより、対地Aからの上りの光信号は、伝送路583に出力される。複数の伝送路583それぞれに出力された光信号は、パワースプリッタ273において合波される。パワースプリッタ273は、合波した光信号を、伝送路584を介して光SW210に入力する。光SW210は、伝送路584から入力した光信号を、伝送路575が接続されている折り返し用のポートに接続するよう制御する。これにより、光信号は、伝送路575を伝送し、光SW210に再度入力される。光SW210は、伝送路575から入力した光信号を、波長に応じて、対地Cと接続される合波器241に出力する。
上記のように、マルチキャスト用のパワースプリッタを用いた構成を2組備えることにより、下りのマルチキャスト通信だけでなく、上り通信も含めたpoint to multipoint通信が可能となる。
(光アクセスシステム100の第11の構成例)
本構成例では、上り信号と下り信号を分離せずに通信を行う。以下では、上述した各構成例との差分を中心に説明する。
本構成例では、上り信号と下り信号を分離せずに通信を行う。以下では、上述した各構成例との差分を中心に説明する。
図53は、光アクセスシステム111の構成例を示す図である。図53に示す光アクセスシステム111が、図47に示す光アクセスシステム105と異なる点は、光GW205に代えて、光GW2011を備える点である。光GW2011が、光GW205と異なる点は、波長合分波器220を有していない点、合波器241、分波器242及び分岐部250に代えて波長合分波器249及び分岐部253を備える点、及び、波長合分波器238をさらに備える点である。
波長合分波器249は、複数の伝送路585により光SW210と接続される。波長合分波器249は、光SW210が複数の伝送路585それぞれから出力した異なる波長の上りの光信号を合波して、いずれかの他の対地と接続される伝送路504に出力する。また、波長合分波器249は、他の対地から伝送路504を介して入力した下りの光信号を波長により分波する。波長合分波器249は、分波された下りの光信号をそれぞれ、その光信号の波長に応じた上りポートと接続される複数の伝送路585を介して、光SW210に入力する。
分岐部253は、パワースプリッタ254を有する。パワースプリッタ254は、伝送路504を伝送する上りの光信号と、下りの光信号を分岐する。パワースプリッタ254は、分岐した上りの光信号を、伝送路586を介して光SW210のポートに入力し、分岐した下りの光信号を、伝送路587を介して光SW210のポートに入力する。光SW210は、伝送路586又は伝送路587と接続されるポートから入力した光信号を、伝送路560と接続されるポートに出力する。
波長合分波器238は、光SW210と伝送路534により接続され、制御部235と伝送路531及び伝送路533により接続される。波長合分波器238は、入力した光信号を波長により上りの光信号と下りの光信号に分離する。波長合分波器238は、光SW210から伝送路534を介して入力した上りの光信号を、伝送路531を介して制御部235に出力する。波長合分波器238は、制御部235から伝送路533を介して入力した下りの光信号を、伝送路534を介して光SW210に出力する。
上記のように、光GW2011は、光SW210と加入者装置40と間の波長合分波器がなく、上り信号と下り信号を分離しない構成である。これにより、光SW210に使用するポート数を大きく削減し、管理する情報量を大きく削減することが可能となる。また、図54に示すように、監視部265への光信号を分離する部分を、図44に示す構成としてもよい。
(光アクセスシステム100の第12の構成例)
図54は、本実施形態の光アクセスシステム112の構成例を示す図である。図54に示す光アクセスシステム112の光GW2012は、図53に示す光GW2011が備える分岐部253に代えて分岐部255を備える。分岐部255は、波長合分波器256、波長合分波器257、パワースプリッタ258及びパワースプリッタ259を備える。
図54は、本実施形態の光アクセスシステム112の構成例を示す図である。図54に示す光アクセスシステム112の光GW2012は、図53に示す光GW2011が備える分岐部253に代えて分岐部255を備える。分岐部255は、波長合分波器256、波長合分波器257、パワースプリッタ258及びパワースプリッタ259を備える。
波長合分波器256は、入力した光信号を、波長により上りの光信号と下りの光信号に分離する。波長合分波器256は、波長合分波器249から入力した上りの光信号を、伝送路588を介して波長合分波器257に出力する。波長合分波器256は、伝送路589を介して波長合分波器257から入力した下りの光信号を、波長合分波器249に出力する。
波長合分波器257は、波長により、上りの光信号と下りの光信号に分離する。波長合分波器257は、波長合分波器256から伝送路588を介して入力した上りの光信号を、伝送路504に出力する。波長合分波器257は、伝送路504を介して他の対地から受信した下りの光信号を、伝送路589を介して波長合分波器256に入力する。
パワースプリッタ258は、伝送路588を伝送する上りの光信号を分岐し、伝送路586を介して光SW210のポートに入力する。パワースプリッタ259は、伝送路589を伝送する下りの光信号を分岐し、伝送路587を介して光SW210のポートに入力する。光SW210は、伝送路586又は伝送路587と接続されるポートから入力した光信号を、伝送路560と接続されるポートに出力する。
図53に示す光GW2011は波長多重を行っているが、図55に示すように、各局舎(対地Bや対地C)へ送信する信号を波長多重せずに、個別の伝送路を伝送させる構成としてもよい。
(光アクセスシステム100の第13の構成例)
図55は、光アクセスシステム113の構成例を示す図である。図55に示す光アクセスシステム113が、図43に示す光アクセスシステム101と異なる点は、光GW201に代えて、光GW2013を備える点である。光GW2013が、光GW201と異なる点は、波長合分波器220及び波長合分波器243を有していない点と、制御部230及び監視部260に代えて、図53に示す制御部235、波長合分波器238及び監視部265を備える点である。伝送路503と接続される光SW210のポートは、上りの光信号を出力し、下りの光信号を入力する。
図55は、光アクセスシステム113の構成例を示す図である。図55に示す光アクセスシステム113が、図43に示す光アクセスシステム101と異なる点は、光GW201に代えて、光GW2013を備える点である。光GW2013が、光GW201と異なる点は、波長合分波器220及び波長合分波器243を有していない点と、制御部230及び監視部260に代えて、図53に示す制御部235、波長合分波器238及び監視部265を備える点である。伝送路503と接続される光SW210のポートは、上りの光信号を出力し、下りの光信号を入力する。
(光アクセスシステム100の第14の構成例)
また、光GW2013において分岐部250aを、図56に示す構成としてもよい。図56は、光アクセスシステム114の構成例を示す図である。図56に示す光アクセスシステム114の光GW2014は、図55に示す光GW2013が備える分岐部250aに代えて、図54に示す分岐部255と同様の構成を備える。
また、光GW2013において分岐部250aを、図56に示す構成としてもよい。図56は、光アクセスシステム114の構成例を示す図である。図56に示す光アクセスシステム114の光GW2014は、図55に示す光GW2013が備える分岐部250aに代えて、図54に示す分岐部255と同様の構成を備える。
(光アクセスシステム100の第15の構成例)
本構成例は、通信中の加入者装置に対する制御を可能とする。以下では、上述した各構成例との差分を中心に説明する。
本構成例は、通信中の加入者装置に対する制御を可能とする。以下では、上述した各構成例との差分を中心に説明する。
図57は、光アクセスシステム115の構成例を示す図である。図57に示す光アクセスシステム115が、図46に示す光アクセスシステム104と異なる点は、光GW204に代えて光GW2015を備える点である。光GW2015が光GW204と異なる点は、監視部265に代えて、監視部267が光SW211に接続されている点である。
監視部267は、波長可変受信器268及び波長可変送信器269を備える。監視部267は、波長可変受信器268により任意の波長の光信号を受信可能であり、波長可変送信器269により任意の波長の光信号を送信可能である。また、光GW2015は、制御部235を備えている。光GW2015は、加入者装置40を接続した際には、制御部235を用いて、加入者装置40の接続処理(登録や波長割当など)を行い、通常の通信を開始する。
ここで、加入者装置40-1が対地Bと接続されている状態を考える。加入者装置40-1は、通常の通信を行っている状態のため、制御部235とは通信できない。そこで、小型光SWである光SW211に接続された監視部267を設けることで、加入者装置40-1の通信状態の監視だけでなく、加入者装置40-1の各種設定の指示などが可能となる。すなわち、パワースプリッタ251が分離した光信号は、伝送路555を介して光SW211に出力される。光SW211は、入力した光信号を監視部267に出力する。監視部267は、波長可変受信器268が光SW211から受信した光信号により監視を行い、さらに、受信した光信号に重畳されている制御信号を受信する。監視部267の波長可変送信器269は、加入者装置40に対する制御信号を光信号により送信する。光SW211は、波長可変送信器269から入力された光信号を、波長に応じたポートに出力する。パワースプリッタ251は、光SW211から伝送路556を介して入力された制御信号を、伝送路512を伝送する光信号と合波する。この構成により、加入者装置40-1が通常の通信を行っている状態でも、加入者装置40-1から接続先の変更要求などを受信し、制御信号を送信して加入者装置40-1に波長切り替えなどを実施することが可能となる。
なお、監視部267と各加入者装置40との間の制御信号の通信には、加入者装置間の光主信号よりも低速であり、主信号に重畳可能な制御信号を用いる。例えば、AMCCのような技術を用いることができる。
(光アクセスシステム100の第16の構成例)
本構成例は、光SWから抜き出した光信号に対して、電気処理を行う。以下では、上述した各構成例との差分を中心に説明する。
本構成例は、光SWから抜き出した光信号に対して、電気処理を行う。以下では、上述した各構成例との差分を中心に説明する。
図58は、光アクセスシステム116の構成例を示す図である。図58に示す光アクセスシステム116が、図47に示す光アクセスシステム105と異なる点は、光GW202に代えて光GW2016を備える点である。光GW2016が光GW202と異なる点は、電気処理部600が接続されている点である。
電気処理部600は、光信号を電気信号に変換して電気処理を行った後、再び光信号に変換して出力する。電気処理部600は、O/E変換部610と、処理実行部620と、E/O変換部630とを有する。O/E変換部610は、図13のO/E変換部85に対応する。O/E変換部610は、光SW210から入力した光信号を電気信号に変換し、処理実行部620に出力する。処理実行部620は、図13の処理実行部86及び記憶部88に対応する。処理実行部620は、CPUやアクセラレータなどのプロセッサが図示しない記憶部からプログラムを読み出して実行することにより、O/E変換部610により変換された電気信号に対して電気処理を行う。この電気処理には、電気による信号処理機能や、OLTなどの機能が実装される。信号処理機能は、例えば、FECなどの符号誤り訂正である。E/O変換部630は、図13のE/O変換部87に対応する。E/O変換部87は、電気信号を光信号に変換し、光SW210に出力する。O/E変換部610及びE/O変換部630は、例えば、波長可変送受信器である。
図58において、加入者装置40-Mは、PONのONUである。加入者装置40-Mは、光ファイバなどの伝送路501及びパワースプリッタ507を介して光GW2016と接続される。電気処理部600の処理実行部620には、誤り訂正機能や、OLT機能などが実装されている。
波長制御部310は、電気処理を行う対象の信号を判定するための判定条件と、その信号に対して行う電気処理の種類とを処理実行部620に通知しておく。処理実行部620は、波長制御部310から通知された判定条件及び電気処理の種類の情報を記憶する。
例えば、波長制御部310は、図42のステップS5において、接続要求の送信元の加入者装置40(以下、要求元加入者装置40と記載)と、通信先加入者装置40との通信に、電気処理を行うか否かを判定する。波長制御部310は、対向する要求元加入者装置40と通信先加入者装置40との間の距離や、要求元加入者装置40又は通信先加入者装置40へ提供するサービス等に応じて、電気処理を行うか否か、行う場合にはどのような電気処理を行うかを判定する。波長制御部310は、要求元加入者装置40から通信先加入者装置40宛ての信号に電気処理(以下、送信信号電気処理)を行うと判定した場合、空きの波長の中から、第一送信用波長及び第二送信用波長を割り当てる。また、波長制御部310は、通信先加入者装置40から要求元加入者装置40宛ての信号に電気処理(以下、受信信号電気処理)を行うと判定した場合、空きの波長の中から、第一受信用波長及び第二受信用波長とを割り当てる。
第一送信用波長は、要求元加入者装置40から通信先加入者装置40宛ての光信号である光送信信号を電気処理部600にルーティングするための波長である。第二送信用波長は、電気処理部600により送信信号電気処理が施された送信信号を、通信先加入者装置40に応じたポートにルーティングするための波長である。第一受信用波長は、通信先加入者装置40から要求元加入者装置40宛ての光信号である受信信号を電気処理部600にルーティングするための波長である。第二受信用波長は、電気処理部600により受信信号電気処理が施された受信信号を、要求元加入者装置40に応じたポートにルーティングするための波長である。第一送信用波長と第二送信用波長とが同じ波長でもよく、第一受信用波長と第二受信用波長とが同じ波長でもよい。
波長制御部310は、送信信号電気処理を行うと判定した場合、要求元加入者装置40に送信する波長指示に、送信用波長として第一送信用波長の情報を設定する。また、波長制御部310は、受信信号電気処理を行うと判定した場合、要求元加入者装置40に送信する波長指示に、受信用波長として第二受信用波長の情報を波長指示に設定する。
OPS300は、送信信号電気処理を行うと判定した場合、第二送信用波長を通信先加入者装置40の受信用波長に用いるように指示する。また、OPS300は、受信信号電気処理を行うと判定した場合、第一送信用波長を通信先加入者装置40の送信用波長に用いるように指示する。例えば、通信先加入者装置40が収容される光GW200を制御する制御部301において、波長制御部310は、通信先加入者装置40の受信用波長及び送信用波長を設定した波長指示の送信を制御部230に指示する。
さらに、波長制御部310は、送信信号電気処理を行うと判定した場合、要求元加入者装置40から通信先加入者装置40宛ての送信信号であることを判定するための判定条件と、送信信号に施す送信信号電気処理の種類と、第一送信用波長と、第二送信用波長とを対応付けた第一指示情報を生成する。また、波長制御部310は、受信信号電気処理を行うと判定した場合、通信先加入者装置40から要求元加入者装置40宛ての受信信号であることを判定するための判定条件と、受信信号に施す受信信号電気処理の種類と、第一受信用波長と、第二受信用波長とを対応付けた第二指示情報とを生成する。波長制御部310は、生成した第一指示情報と第二指示情報を設定した電気処理実行指示を電気処理部600に送信する。
光SW制御部320は、送信信号電気処理を行う場合、要求元加入者装置40が送信した第一送信用波長の送信信号を電気処理部600に、電気処理部600から入力した第二送信用波長の送信信号を、通信先加入者装置40に応じた伝送路541へ出力するよう光SW210を制御する。また、光SW制御部320は、受信信号電気処理を行う場合、通信先加入者装置40に対応した伝送路542から入力した第一送信用波長の受信信号を電気処理部600に、電気処理部600から入力した第二送信用波長の受信信号を、要求元加入者装置40に対応した伝送路522へ出力するよう光SW210を制御する。
例えば、加入者装置40-2と対地Cの通信先加入者装置40との間の光信号に、送信信号電気処理及び受信信号電気処理を行うとする。加入者装置40-2が送信した第一送信波長の送信信号は、光SW210を介して、電気処理部600に出力される。O/E変換部610は、光SW210から入力した送信信号を電気信号に変換する。処理実行部620は、電気信号に変換された送信信号に含まれる所定の情報を参照して、第一指示情報に含まれる判定条件を満たしていると判定した場合、送信信号に、その判定条件に対応した送信信号電気処理を行う。例えば、処理実行部620は、FEC(forward error correction:前方誤り訂正)などの誤り訂正を行う。E/O変換部630は、処理実行部620が誤り訂正を行った電気信号の送信信号を、第一指示情報が示す第二送信波長の光信号に変換し、光SW210に出力する。光SW210は、第二送信波長の送信信号を、対地Cに対応した伝送路541に出力する。誤り訂正を行うことで、伝送特性が向上する。
光SW210は、対地Cの通信先加入者装置40に対応した伝送路542から入力した第一受信波長の受信信号を、電気処理部600に出力する。O/E変換部610は、光SW210から入力した受信信号を電気信号に変換する。処理実行部620は、電気信号に変換された送信信号に含まれる所定の情報を参照して、第二指示情報に含まれる判定条件を満たしていると判定した場合、受信信号に、その判定条件に対応した受信信号電気処理を行う。E/O変換部630は、処理実行部620が受信信号電気処理を行った電気信号の受信信号を、第二指示情報が示す第二受信波長の光信号に変換し、光SW210に出力する。光SW210は、第二受信波長の送信信号を、加入者装置40-2に対応した伝送路522に出力する。
図59は、電気処理部600が信号の多重化を行う場合の光アクセスシステム116の構成例を示す図である。電気処理部600は、複数のO/E変換部610として、O/E変換部610-1及び610-2を有する。
加入者装置40-3の上りの光信号及び加入者装置40-Mの上りの光信号は、光SW210を介して、電気処理部600に接続される。電気処理部600には、OLT機能が実装されている。電気処理部600の処理実行部620は、OLT機能の電気段の処理を行う。OLTには、複数台の加入者装置40が接続される。OLT機能が実装された処理実行部620は、それら加入者装置40を一括管理している。
O/E変換部610-1は、光SW210から入力した加入者装置40-3の上りの光信号を電気信号に変換し、処理実行部620に出力する。O/E変換部610-2は、光SW210から入力した加入者装置40-Mの上りの光信号を電気信号に変換し、処理実行部620に出力する。処理実行部620は、加入者装置40-3及び加入者装置40-Mから送信された上りの電気信号を一つにまとめ、E/O変換部630へ出力する。E/O変換部630は、処理実行部620が出力した上りの電気信号を、制御部230から指示された波長に従って光信号に変換し、光SW210に出力する。光SW210は、電気処理部600から入力した上りの光信号を、対地Cに対応した伝送路541に出力する。このように、電気処理部600は、光GW2016がドロップした複数の光信号をそれぞれ受信して電気信号に変換し、目的とする対地が同じ信号を多重回路により多重した後、再び光信号に変換して光GW2016に送信する。これにより、伝送速度を増大させることができる。図58及び図59は、電気処理部を1つ備える例であるが、複数の電気処理部を有する構成としてもよい。
加入者装置40と光GW2016間のパワースプリッタ507は、波長合分波器でもよい。例えば、光アクセスシステム116がWDM-PONの場合に、加入者装置40と光GW2016間に波長分波器を利用する。
(光アクセスシステム100の第17の構成例)
本構成例は、異なる対地の光SWをリング接続した形態である。以下では、上述した各構成例との差分を中心に説明する。
本構成例は、異なる対地の光SWをリング接続した形態である。以下では、上述した各構成例との差分を中心に説明する。
図60は、光アクセスシステム117の構成例を示す図である。光アクセスシステム117は、3台以上の異なる対地の光SW212を、光通信ネットワーク30を介してリング接続した構成である。図60に示す例では、光アクセスシステム117は、対地Aの光SW212である光SW212aと、対地Bの光SW212である光SW212bと、対地Cの光SW212である光SW212cとをリング接続した構成である。光通信ネットワーク30における光SW212aと光SW212bとの間の経路を経路P31と記載し、光通信ネットワーク30における光SW212bと光SW212cとの間の経路を経路P32と記載し、光通信ネットワーク30における光SW212cと光SW212aとの間の経路を経路P33と記載する。また、光SW212aには1台以上の加入者装置40aが接続され、光SW212bには1台以上の加入者装置40bが接続され、光SW212cには1台以上の加入者装置40cが接続される。
光SW212として、上述した光SW、又は、光GWが用いられる。例えば、図6~図10、図38、図43~図59における対地Bを、図60に示すリングにおける左廻りの対地とし、図6~図10、図38、図43~図59における対地Cを、図60に示すリングにおける右廻りの対地とする。この場合、対地Aの光SW212aから対地Bの光SW212bへは経路P31により接続され、対地Bの光SW212bから対地Aの光SW212aへは、経路P32、対地Cの光SW212-c、経路P33を経て接続される。また、対地Aの光SW212aから対地Cの光SW212cへは経路P33により接続され、対地Cの光SW212cから対地Aの光SW212aへは、経路P32、対地Bの光SW212b、経路P31を経て接続される。
このため、対地Aの光SW212aから対地Bの光SW212bへの左回りの接続を予備系として、対地Aの光SW212aから対地Cの光SW212cを経て対地Bの光SW212bへ接続する右廻りの経路による接続も可能となり、その逆回りも可能である。同様に、対地Aの光SW212aから対地Cの光SW212cへの右回りの接続を予備系として、対地Aの光SW212-aから対地Bの光SW212bを経て対地Cの光SW212cへ接続する左廻りの経路による接続も可能となり、その逆回りも可能である。
また、対地Aの光SW212aと接続される加入者装置40a同士の接続の予備系として、経路P31、対地Bの光SW212b、経路P32、対地Cの光SW212c、経路P33を経た左回りの経路で、あるいは、経路P33、対地Cの光SW212c、経路P32、対地Bの光SW212b、経路P31を経た左回りの経路を用いることも可能となる。
例えば、図14において、中距離回線P2をリングの左廻りの経路、中距離回線P3をリングの右廻りの経路としてもよい。また、図16、図19の対地#1~#qの任意の一つをリングの左廻りの対地、他の一つをリングの右廻りの対地としてもよい。また、図27、図28が、1つのGW内の光SW1010である場合に、アップリンク#11~アップリンク#43のうちの任意の一つをリングの左廻りの経路とし、他の一つをリングの右廻りの経路としてもよい。ここでリングの経路として選択しなかった経路を、リングの経路として選択した経路と同様にリングの経路としてもよく、リング以外の斜め回線としてもよく、加入者装置40と接続してもよく、図27、図28に示す他の光SW1010と接続してもよい。
上記では、基本構成として、マルチキャストを行う際に、図4又は図5に示すように折り返し伝送路を介して上り方向又は下り方向のマルチキャストを実現していた。例えば、図4に示す例では、上り方向のマルチキャストを実現するために、光SW10cのポート11-2が出力した光信号を、折り返し伝送路を介して他のポート11-2に入力し、光SW10cがこの入力された光信号を、1×Nのパワースプリッタ71が接続されているポート11-1に出力する。そして、ポート11-1から出力された光信号が、パワースプリッタ71により分配されて複数の他のポート11-1に入力されることで上り方向のマルチキャストを実現している。しかしながら、このような構成では、マルチキャストを行う際に、折り返しのためにポートを利用する必要があるため、使用中のポートが増えてしまう場合があった。このような問題は、マルチキャストのルーティングを行う際に限らず、ブロードキャストのルーティングを行う際にも生じる。そこで、以下の実施形態では、マルチキャスト又はブロードキャストのルーティングを行う際のポート数を削減する構成について説明する。なお、以下の実施形態の説明において図面において制御部20やOPS300の記載を省略する場合があるが、光アクセスシステムでは制御部20やOPS300による波長の設定及び光SWの接続設定は行われる。
(第1の実施形態)
本実施形態を含む以下の実施形態では、ポート11-1に接続した加入者装置40aからポート11-2に接続した加入者装置40b又は40cやアップリンクへの上りマルチキャストを中心に説明するが、中心の光SW210で線対称にポート11-1とポート11-2を入れ替えれば、アップリンクまたはポート11-2に接続した加入者装置40b又は40cからポート11-1に接続した加入者装置40a等へのマルチキャストとなる。ブロードキャストにおいても処理の流れとしてはマルチキャストと同様である。
本実施形態を含む以下の実施形態では、ポート11-1に接続した加入者装置40aからポート11-2に接続した加入者装置40b又は40cやアップリンクへの上りマルチキャストを中心に説明するが、中心の光SW210で線対称にポート11-1とポート11-2を入れ替えれば、アップリンクまたはポート11-2に接続した加入者装置40b又は40cからポート11-1に接続した加入者装置40a等へのマルチキャストとなる。ブロードキャストにおいても処理の流れとしてはマルチキャストと同様である。
図61は、第1の実施形態の光アクセスシステムにおける光GW200aの構成例を示す図である。図61では、対地Aに位置する加入者装置40a-1及び40a-2から送信された上り光信号をマルチキャストする場合について説明する。ここで、説明するにあたり、図61に示すように、光SW210a内部では点線で結ばれているポート間が接続されているものとする。このポート間の接続は、不図示の光SW制御部320により実行される。
光GW200aは、ポート11-2から出力された光信号を、光SW210a-1を介さずに折り返して、ポート11-1に接続されたパワースプリッタ71に入力する。これにより、マルチキャストを可能にする。図61では、光SW210a-1を介さずに光信号を折り返す際に、他の光スイッチを経由する構成と、他の光スイッチを経由しない構成との2つの構成を示している。以下、各構成について説明する。
(他の光スイッチを経由しない構成)
他の光スイッチを経由しない構成では、光GW200aは、光SW210a-1と、伝送路2101と、パワースプリッタ71-1とを有する。伝送路2101は、光SW210a-1の外部を経由して、光SW210a-1の出力側のポート(例えば、ポート11-2-1)と、パワースプリッタ71-1とを接続する。光SW210a-1の外部を経由とは、光SW210a-1の内部(ポート間)を経由しないことを意味する。すなわち、伝送路2101は、光SW210a-1の外部に設けられ、ポート11-2-1と、パワースプリッタ71-1とを直接接続する伝送路である。伝送路2101は、例えば光ファイバである。パワースプリッタ71-1は、入力された光信号を複数に分配し、分配された複数の光信号をそれぞれ異なるポート11-1に入力する。なお、パワースプリッタ71-1と、ポート11-1との間に新たなパワースプリッタが設けられてもよい。この場合、パワースプリッタ71-1は、入力された光信号を複数に分配し、分配した複数の光信号の一部又は全てをパワースプリッタを介してポート11-1に入力する。
他の光スイッチを経由しない構成では、光GW200aは、光SW210a-1と、伝送路2101と、パワースプリッタ71-1とを有する。伝送路2101は、光SW210a-1の外部を経由して、光SW210a-1の出力側のポート(例えば、ポート11-2-1)と、パワースプリッタ71-1とを接続する。光SW210a-1の外部を経由とは、光SW210a-1の内部(ポート間)を経由しないことを意味する。すなわち、伝送路2101は、光SW210a-1の外部に設けられ、ポート11-2-1と、パワースプリッタ71-1とを直接接続する伝送路である。伝送路2101は、例えば光ファイバである。パワースプリッタ71-1は、入力された光信号を複数に分配し、分配された複数の光信号をそれぞれ異なるポート11-1に入力する。なお、パワースプリッタ71-1と、ポート11-1との間に新たなパワースプリッタが設けられてもよい。この場合、パワースプリッタ71-1は、入力された光信号を複数に分配し、分配した複数の光信号の一部又は全てをパワースプリッタを介してポート11-1に入力する。
光GW200aが、他の光スイッチを経由しない構成である場合の処理の流れについて説明する。図61において、光GW200aは、加入者装置40a-1が送信してポート11-1-1に入力された光信号を、ポート11-2-1から出力する。ポート11-2-1から出力された光信号は、伝送路2101を介して、複数のポート11-1-n~11-1-(n+2)に接続されるパワースプリッタ71-1に入力される。例えば、図61では、パワースプリッタ71-1は、ポート11-1-3~11-1-5に接続されている。
パワースプリッタ71は、入力された光信号を分配して複数のポート11-1-3~11-1-5に入力する。光SW210a-1は、これら複数のポート11-1-3~11-1-5から入力した光信号をそれぞれ、異なるポート11-2-3~11-2-5に出力する。なお、双方向通信も可能である。下り方向の光信号は、上り方向と逆にルーティングされる。
なお、この場合、上り方向が1対多の通信であり、下り方向が、多対1の通信となる。この場合、パワースプリッタ71は、合分岐器として用いられる。ここで用いるパワースプリッタ71は、H×Iの入出力用のポートを有する。H及びIは、1以上の整数であり、H≦Iの関係である。H=1、I=2の場合、パワースプリッタ71は、例えば上り方向に向かう光信号を分岐し、下り方向に向かう光信号を多重化する。図61の例では、パワースプリッタ71は、入力された光信号を分岐して複数のポート11-1-3~11-1-5に入力し、複数のポート11-1-3~11-1-5それぞれから出力された光信号を多重化して伝送路2101に出力することになる。
なお、この場合、上り方向が1対多の通信であり、下り方向が、多対1の通信となる。この場合、パワースプリッタ71は、合分岐器として用いられる。ここで用いるパワースプリッタ71は、H×Iの入出力用のポートを有する。H及びIは、1以上の整数であり、H≦Iの関係である。H=1、I=2の場合、パワースプリッタ71は、例えば上り方向に向かう光信号を分岐し、下り方向に向かう光信号を多重化する。図61の例では、パワースプリッタ71は、入力された光信号を分岐して複数のポート11-1-3~11-1-5に入力し、複数のポート11-1-3~11-1-5それぞれから出力された光信号を多重化して伝送路2101に出力することになる。
上記の処理を実現するために、加入者装置40a-1からマルチキャストの送信要求がなされると、光SW制御部320は、加入者装置40a-1が接続されているポート11-1-1と、マルチキャストを行うためのパワースプリッタ71-1が接続されているポート11-2-1とを接続する。これにより、加入者装置40a-1から送信された光信号がポート11-2-1から出力される。さらに、光SW制御部320は、パワースプリッタ71-1が接続されているポート11-1-3~11-1-5と、通信先への経路上の転送先に応じたポート11-2(図61では、11-2-3~11-2-5)とを接続する。これにより、パワースプリッタ71-1によって分岐された光信号それぞれが、宛先の加入者装置40bが接続されているポート11-2から出力される。このような構成により、光信号を折り返してマルチキャストを可能にしている。
下り方向のマルチキャストの場合は以下となる。
光GW200aは、光SW210a-1と、伝送路と、パワースプリッタとを有する。伝送路は、光SW210a-1の外部を経由して、光SW210a-1の出力側のポート(例えば、ポート11-1-1)と、パワースプリッタとを接続する。伝送路は、ポート11-1-1と、パワースプリッタとを直接接続する伝送路である。伝送路は、例えば光ファイバである。パワースプリッタは、入力された光信号を複数に分配し、分配された複数の光信号をそれぞれ異なるポート11-2に入力する。光SW210a-1は、ポート11-2-1に入力された光信号を、ポート11-1-1から出力する。ポート11-1-1から出力された光信号は、伝送路を介して、複数のポート11-2-n~11-2-(n+2)に接続されるパワースプリッタに入力される。例えば、パワースプリッタは、ポート11-2-3~11-2-5に接続されている。
パワースプリッタは、入力された光信号を分配して複数のポート11-2-3~11-2-5に入力する。光SW210a-1は、これら複数のポート11-2-3~11-2-5から入力した光信号をそれぞれ、異なるポート11-1-3~11-1-5に出力する。
光GW200aは、光SW210a-1と、伝送路と、パワースプリッタとを有する。伝送路は、光SW210a-1の外部を経由して、光SW210a-1の出力側のポート(例えば、ポート11-1-1)と、パワースプリッタとを接続する。伝送路は、ポート11-1-1と、パワースプリッタとを直接接続する伝送路である。伝送路は、例えば光ファイバである。パワースプリッタは、入力された光信号を複数に分配し、分配された複数の光信号をそれぞれ異なるポート11-2に入力する。光SW210a-1は、ポート11-2-1に入力された光信号を、ポート11-1-1から出力する。ポート11-1-1から出力された光信号は、伝送路を介して、複数のポート11-2-n~11-2-(n+2)に接続されるパワースプリッタに入力される。例えば、パワースプリッタは、ポート11-2-3~11-2-5に接続されている。
パワースプリッタは、入力された光信号を分配して複数のポート11-2-3~11-2-5に入力する。光SW210a-1は、これら複数のポート11-2-3~11-2-5から入力した光信号をそれぞれ、異なるポート11-1-3~11-1-5に出力する。
(他の光スイッチを経由する構成)
他の光スイッチを経由する構成では、光GW200aは、光SW210a-1と、光SW210a-2と、伝送路2102と、パワースプリッタ71-2とを有する。光SW210a-2は、光SW210a-1の出力側のポート(例えば、ポート11-2-q)に接続される。伝送路2102は、光SW210a-1の外部を経由して、光SW210a-2と、パワースプリッタ71-2とを接続する。光SW210a-2は、光SW210a-1の出力側のポート11-2から出力された光信号を、伝送路2102を介してパワースプリッタ71-2に出力する。パワースプリッタ71-2は、入力された光信号を複数に分配し、分配された複数の光信号をそれぞれ異なるポート11-1に入力する。なお、パワースプリッタ71-2と、ポート11-1との間に新たなパワースプリッタが設けられてもよい。この場合、パワースプリッタ71-1は、入力された光信号を複数に分配し、分配した複数の光信号の一部又は全てをパワースプリッタを介してポート11-1に入力する。なお、光GW200aは、他の光スイッチを経由しない構成又は他の光スイッチを経由する構成のいずれかのみを有していてもよいし、両方を有していてもよい。
他の光スイッチを経由する構成では、光GW200aは、光SW210a-1と、光SW210a-2と、伝送路2102と、パワースプリッタ71-2とを有する。光SW210a-2は、光SW210a-1の出力側のポート(例えば、ポート11-2-q)に接続される。伝送路2102は、光SW210a-1の外部を経由して、光SW210a-2と、パワースプリッタ71-2とを接続する。光SW210a-2は、光SW210a-1の出力側のポート11-2から出力された光信号を、伝送路2102を介してパワースプリッタ71-2に出力する。パワースプリッタ71-2は、入力された光信号を複数に分配し、分配された複数の光信号をそれぞれ異なるポート11-1に入力する。なお、パワースプリッタ71-2と、ポート11-1との間に新たなパワースプリッタが設けられてもよい。この場合、パワースプリッタ71-1は、入力された光信号を複数に分配し、分配した複数の光信号の一部又は全てをパワースプリッタを介してポート11-1に入力する。なお、光GW200aは、他の光スイッチを経由しない構成又は他の光スイッチを経由する構成のいずれかのみを有していてもよいし、両方を有していてもよい。
光GW200aが、他の光スイッチを経由する構成である場合の処理の流れについて説明する。図61において、光GW200aは、加入者装置40a-2が送信してポート11-1-pに入力された光信号を、ポート11-2-qから出力する。ポート11-2-1から出力された光信号は、光SW210a-2に入力される。光SW210a-2は、ポート11-2-qから出力された光信号を、伝送路2102を介して、複数のポート11-1-(P-2)~11-1-Pに接続されるパワースプリッタ71-2に出力する。
パワースプリッタ72は、入力された光信号を分配して複数のポート11-1-(P-2)~11-1-Pに入力する。光SW210a-1は、これら複数のポート11-1-(P-2)~11-1-Pから入力した光信号をそれぞれ、異なるポート11-1-(Q-2)~11-1-Qに出力する。なお、双方向通信も可能である。下り方向の光信号は、上り方向と逆にルーティングされる。この場合、上り方向が1対多の通信であり、下り方向が、多対1の通信となる。この場合、パワースプリッタ71は、合分岐器として用いられる。ここで用いるパワースプリッタ71は、H×Iの入出力用のポートを有する。H=1、I=2の場合、パワースプリッタ71は、例えば上り方向に向かう光信号を分岐し、下り方向に向かう光信号を多重化する。図61の例では、パワースプリッタ71は、入力された光信号を分岐して複数のポート11-1-(Q-2)~11-1-Qに入力し、複数のポート11-1-(Q-2)~11-1-Qそれぞれから出力された光信号を多重化して伝送路2102に出力することになる。
上記の処理を実現するために、加入者装置40a-2からマルチキャストの送信要求がなされると、光SW制御部320は、加入者装置40a-2が接続されているポート11-1-pと、マルチキャストを行うためのパワースプリッタ71-2が接続されているポート11-2-qとを接続する。これにより、加入者装置40a-2から送信された光信号がポート11-2-qから出力される。さらに、光SW制御部320は、パワースプリッタ71-2が接続されているポート11-1-(P-2)~11-1-Pと、通信先への経路上の転送先に応じたポート11-2(図61では、11-2-(Q-2)~11-2-Q)とを接続する。これにより、パワースプリッタ71-2によって分岐された光信号それぞれが、宛先の加入者装置40cが接続されているポート11-2から出力される。このような構成により、光信号を折り返して宛先へのマルチキャストを可能にしている。
下り方向のマルチキャストの場合は以下となる。
光GW200aは、光SW210a-1と、光SW210a-2と、伝送路と、パワースプリッタとを有する。光SW210a-2は、光SW210a-1の出力側のポート(例えば、ポート11-1-q)に接続される。伝送路は、光SW210a-1の外部を経由して、光SW210a-2と、パワースプリッタとを接続する。光SW210a-2は、光SW210a-1の出力側のポートから出力された光信号を、伝送路を介してパワースプリッタに出力する。パワースプリッタは、入力された光信号を複数に分配し、分配された複数の光信号をそれぞれ異なるポート11-2に入力する。なお、光GW200aは、他の光スイッチを経由しない構成又は他の光スイッチを経由する構成のいずれかのみを有していてもよいし、両方を有していてもよい。
光GW200aは、光SW210a-1と、光SW210a-2と、伝送路と、パワースプリッタとを有する。光SW210a-2は、光SW210a-1の出力側のポート(例えば、ポート11-1-q)に接続される。伝送路は、光SW210a-1の外部を経由して、光SW210a-2と、パワースプリッタとを接続する。光SW210a-2は、光SW210a-1の出力側のポートから出力された光信号を、伝送路を介してパワースプリッタに出力する。パワースプリッタは、入力された光信号を複数に分配し、分配された複数の光信号をそれぞれ異なるポート11-2に入力する。なお、光GW200aは、他の光スイッチを経由しない構成又は他の光スイッチを経由する構成のいずれかのみを有していてもよいし、両方を有していてもよい。
上記のように構成された光GW200aによれば、マルチキャスト又はブロードキャストのルーティングを行う際の折り返し経路として光SW210a-1のポートを利用しない。したがって、ルーティングを行う場合においても、光SW210a-1内部の経路が1経路分、すなわちポート11-1-p及び11-2-qの各1ポート削減される。そのため、光SW210a-1においてマルチキャスト又はブロードキャストのルーティングを行う際の利用ポート数を削減しつつ、光信号を通信先への経路上の転送先に応じて伝送することが可能になる。
第1の実施形態では、主にパワースプリッタを用いているが、波長毎に分波したマルチキャスト(実効的は波長で分波したユニキャスト)する場合は、合分波器を用いてもよい。
(第2の実施形態)
第1の実施形態では、一度光SWを介してポート11-2から出力された光信号を光SWの外部を経由して折り返す構成を示した。この場合、光信号を折り返すために、一度光SWのポート間に光信号を伝送する必要があるため、その分のポート数が利用できなくなってしまう。そこで、第2の実施形態では、第1の実施形態よりもマルチキャストを行う際のポート数を削減する構成について説明する。ブロードキャストにおいても処理の流れとしてはマルチキャストと同様である。
第1の実施形態では、一度光SWを介してポート11-2から出力された光信号を光SWの外部を経由して折り返す構成を示した。この場合、光信号を折り返すために、一度光SWのポート間に光信号を伝送する必要があるため、その分のポート数が利用できなくなってしまう。そこで、第2の実施形態では、第1の実施形態よりもマルチキャストを行う際のポート数を削減する構成について説明する。ブロードキャストにおいても処理の流れとしてはマルチキャストと同様である。
図62は、第2の実施形態の光アクセスシステムにおける光GW200bの構成例を示す図である。図62では、対地Aに位置する加入者装置40a-1及び40a-2から送信された上り光信号をマルチキャストする場合について説明する。ここで、説明するにあたり、図62に示すように、光SW210b内部では点線で結ばれているポート間が接続されているものとする。このポート間の接続は、不図示の光SW制御部320により実行される。
光GW200bは、加入者装置40a-1が出力した光信号を複数に分配し、分配した複数の光信号をそれぞれ異なるポート11-1に入力する。これにより、光信号を折り返すための1組のポート数を削減してマルチキャストを可能にする。光GW200bは、パワースプリッタ71-1及び71-2を有する。なお、光GW200bは、パワースプリッタ71-1又はパワースプリッタ71-2のいずれかのみを有していてもよいし、両方を有していてもよい。
図62において、パワースプリッタ71-1は、加入者装置40a-1が出力した光信号を複数に分配し、分配した複数の光信号をそれぞれ異なるポート11-1(図62では、ポート11-1-3~11-1-5)に入力する。パワースプリッタ71-1は、伝送路2103を介して加入者装置40a-1に接続される。パワースプリッタ71-2は、加入者装置40a-2が出力した光信号を複数に分配し、分配した複数の光信号をそれぞれ異なるポート11-1(図62では、11-1-(P-2)~11-1-P)に入力する。パワースプリッタ71-2は、伝送路2104を介して加入者装置40a-2に接続される。なお、パワースプリッタ71-1とポート11-1との間、及び、パワースプリッタ71-2とポート11-1との間に新たなパワースプリッタが設けられてもよい。この場合、パワースプリッタ71-1及び71-2は、入力された光信号を複数に分配し、分配した複数の光信号の一部又は全てをパワースプリッタを介してポート11-1に入力する。
このように、第2の実施形態では、ポート11-1へ光信号を入力する前段にパワースプリッタ71やパワースプリッタ72を設けて、加入者装置40aから出力された光信号をマルチキャストさせる。光SW210bは、これら複数のポート11-1から入力した光信号をそれぞれ、異なるポート11-2に出力する。なお、双方向通信も可能である。下り方向の光信号は、上り方向と逆にルーティングされる。この場合、パワースプリッタ71は、合分岐器として用いられる。ここで用いるパワースプリッタ71は、H×Iの入出力用のポートを有する。H=1、I=2の場合、パワースプリッタ71は、例えば上り方向に向かう光信号を分岐し、下り方向に向かう光信号を多重化する。図62の例では、パワースプリッタ71は、入力された光信号を分岐して複数のポート11-1-3~11-1-5に入力し、複数のポート11-1-3~11-1-5それぞれから出力された光信号を多重化して加入者装置40a-1に出力することになる。
上記の処理を実現するために、加入者装置40aからマルチキャストの送信要求がなされると、光SW制御部320は、送信要求の送信元の加入者装置40aが接続されているパワースプリッタ71が接続されているポート11-1と、通信先への経路上の転送先に応じたポート11-2とを接続する。これにより、加入者装置40aから送信された光信号がパワースプリッタ71により分岐され、分岐された複数の光信号がそれぞれ通信先への経路上の転送先のポート11-2から出力される。このような構成により、ポート数を削減しつつ、宛先へのマルチキャストを可能にしている。
上記のように構成された光GW200bによれば、マルチキャストを行うために、基本構成や第1の実施形態に記載のような折り返し経路を利用しない。したがって、折り返し経路のために利用するポートを削減することができる。例えば、第2の実施形態では、第1の実施形態に比べて、光SW210b内部の経路が1経路分、すなわちポート11-1-p及び11-2-qの各1ポート分さらに削減される。そのため、光SW210bにおける利用ポート数を削減しつつ、光信号を通信先への経路上の転送先に応じて伝送することが可能になる。
第2の実施形態では、主にパワースプリッタを用いているが、波長毎に分波したマルチキャスト(実効的は波長で分波したユニキャスト)する場合は、合分波器を用いてもよい。
(第3の実施形態)
第2の実施形態では、ポート数は削減できるが、加入者装置40aを接続する際に、パワースプリッタに接続するか、パワースプリッタの接続されていないポートに接続するかを選ぶ必要がある。このように、第2の実施形態では、通信元がマルチキャストを始めたり、やめたりする場合に接続するポートの変更が生じてしまう。第3の実施形態では、ポート変更を抑制する構成について説明する。これらの構成では、上述した光SWを一組のカスケード接続した光SWに置替する。
第2の実施形態では、ポート数は削減できるが、加入者装置40aを接続する際に、パワースプリッタに接続するか、パワースプリッタの接続されていないポートに接続するかを選ぶ必要がある。このように、第2の実施形態では、通信元がマルチキャストを始めたり、やめたりする場合に接続するポートの変更が生じてしまう。第3の実施形態では、ポート変更を抑制する構成について説明する。これらの構成では、上述した光SWを一組のカスケード接続した光SWに置替する。
図63は、第3の実施形態の光アクセスシステムにおける光GW200cの構成例を示す図である。図63では、説明の簡単化のために(11-1-P)×(11-2-Q)構成の光SWをS×S等(Sは1以上の整数)の対称SWとして説明するが、(11-1-P)×(11-2-Q)構成のSW等の非対称の光SWの場合も容易に拡張できる。
図63に示す光GW200cは、第1の光スイッチ210c-1と、第2の光スイッチ210c-2と、パワースプリッタ450-1~450-Mとを有する。第1の光スイッチ210c-1と、第2の光スイッチ210c-2とは、カスケード接続される。第3の実施形態における光GW200cのカスケード構成では、S×Sの第1の光スイッチ210c-1と、((S‐T)+T×k)×((S‐T)+T×k)の第2の光スイッチ210c-2とを用いる。ここで、Sは加入者装置40aの台数、Tは分岐対象のポート数、kはポート毎の分岐数である。分岐対象のポート数は、パワースプリッタが接続されるポートの数である。
図63に示す光GW200cは、第1の光スイッチ210c-1と、第2の光スイッチ210c-2と、パワースプリッタ450-1~450-Mとを有する。第1の光スイッチ210c-1と、第2の光スイッチ210c-2とは、カスケード接続される。第3の実施形態における光GW200cのカスケード構成では、S×Sの第1の光スイッチ210c-1と、((S‐T)+T×k)×((S‐T)+T×k)の第2の光スイッチ210c-2とを用いる。ここで、Sは加入者装置40aの台数、Tは分岐対象のポート数、kはポート毎の分岐数である。分岐対象のポート数は、パワースプリッタが接続されるポートの数である。
分岐数kがポート毎に異なる場合は、T×kをポートの分岐数の総和に差替する。S×Sの光SW210c-1内の分岐するTポート分の出力をパワースプリッタ450-1~450-Mを経由して、残りの(S-T)ポート分の出力をそのまま((S‐T)+T×k)×((S‐T)+T×k)の光SW210c-2のポートに接続する。
第3の実施形態で得られる効果について説明する。
図63に示す2つの光SWのSWサイズは、1段目:S2、2段目:((S‐T)+T×k)2=(S+T×(k‐1))2となる。従って、最大サイズ(S+T×k)2から(S+T×(k‐1))2に減少し、SWファブリックの合計数は(S+T×k)2-{(S)2+[(S+T×(k‐1))2]=S(2S‐2k+1)‐S2で減少しない。
図63に示す2つの光SWのSWサイズは、1段目:S2、2段目:((S‐T)+T×k)2=(S+T×(k‐1))2となる。従って、最大サイズ(S+T×k)2から(S+T×(k‐1))2に減少し、SWファブリックの合計数は(S+T×k)2-{(S)2+[(S+T×(k‐1))2]=S(2S‐2k+1)‐S2で減少しない。
なお、全ポートを接続するとしたが、空きポートや電気処理部等に接続するポートがあってもよい。ここで、第3の実施形態において電気処理部等を接続する場合の構成について説明する。光GW200cにおいて、マルチキャスト前又はマルチキャストせずに経由する場合には、加入者装置40a寄りの光SW(例えば、光スイッチ210c-1)で電気処理部を接続し、マルチキャスト後にそれぞれ経由する場合にはそれ以外の光SW(例えば、光スイッチ210c-2)で電気処理部を接続する。なお、マルチキャスト前に経由するのは、FEC(forward error correction:前方誤り訂正)や暗号化等を一括処理する場合に好適であり、マルチキャスト後に経由するのはFECや暗号化等を宛先毎に変える場合に好適である。
第3の実施形態において、双方向通信も可能である。下り方向の光信号は、上り方向と逆にルーティングされる。この場合、パワースプリッタ450は、合分岐器として用いられる。ここで用いるパワースプリッタ450は、H×Iの入出力用のポートを有する。H=1、I=2の場合、パワースプリッタ450は、例えば上り方向に向かう光信号を分岐し、下り方向に向かう光信号を多重化する。図63の例では、パワースプリッタ450は、入力された光信号を分岐して光SW210c-2の複数のポートに入力し、光SW210c-2の複数のポートそれぞれから出力された光信号を多重化して光SW210c-1のポート11-2(例えば、ポート11-2-(Q-1))に出力することになる。
(第4の実施形態)
図64は、第3の実施形態の光アクセスシステムにおける光GW200dの構成例を示す図である。図64では、説明の簡単化のために(11-1-P)×(11-2-Q)構成の光SWをS×S等の対称SWとして説明するが、(11-1-P)×(11-2-Q)構成のSW等の非対称の光SWの場合も容易に拡張できる。
図64は、第3の実施形態の光アクセスシステムにおける光GW200dの構成例を示す図である。図64では、説明の簡単化のために(11-1-P)×(11-2-Q)構成の光SWをS×S等の対称SWとして説明するが、(11-1-P)×(11-2-Q)構成のSW等の非対称の光SWの場合も容易に拡張できる。
図64に示す光GW200dは、第1の光スイッチ210c-1と、第2の光スイッチ210d-2と、パワースプリッタ450-1~450-Mとを有する。光GW200dが、光GW200cと異なる点は、第2の光スイッチ210c-2に代えて第2の光スイッチ210d-2が備えられている点である。第4の実施形態における光GW200dのカスケード構成では、S×Sの光SWと、(T×k)×(T×k)の光SWとを用いる。
分岐数kがポート毎に異なる場合は、T×kをポートの分岐数の総和に差替する。S×Sの光SW210c-1内の分岐するTポート分の出力をパワースプリッタ450-1~450-Mを経由して、第2の光スイッチ210d-2に接続する。残りの(S-T)ポート分の出力は第2の光スイッチ210d-2を経由しない。
第4の実施形態で得られる効果について説明する。
図64に示す2つの光SWのSWサイズは、1段目:S2、2段目:(T×k)2となる。従って、最大サイズ(S+T×k)2からMAX(S2、(T×k)2)に減少し、SWファブリックの合計数は(S+T×k)2-{(S)2+(T×k)2}=2STk減少する。
図64に示す2つの光SWのSWサイズは、1段目:S2、2段目:(T×k)2となる。従って、最大サイズ(S+T×k)2からMAX(S2、(T×k)2)に減少し、SWファブリックの合計数は(S+T×k)2-{(S)2+(T×k)2}=2STk減少する。
なお、全ポートを接続するとしたが、空きポートや電気処理部等に接続するポートがあってもよい。ここで、第4の実施形態において電気処理部等を接続する場合の構成について説明する。光GW200dにおいて、には、加入者装置40a寄りの光SW(例えば、光スイッチ210c-1)で電気処理部を接続し、マルチキャスト後にそれぞれ経由する場合にはそれ以外の光SW(例えば、光スイッチ210d-2)で電気処理部を接続する。なお、マルチキャスト前に経由するのは、FEC(forward error correction:前方誤り訂正)や暗号化等を一括処理する場合に好適であり、マルチキャスト後に経由するのはFECや暗号化等を宛先毎に変える場合に好適である。
第4の実施形態において、双方向通信も可能である。下り方向の光信号は、上り方向と逆にルーティングされる。この場合、パワースプリッタ450は、合分岐器として用いられる。ここで用いるパワースプリッタ450は、H×Iの入出力用のポートを有する。H=1、I=2の場合、パワースプリッタ450は、例えば上り方向に向かう光信号を分岐し、下り方向に向かう光信号を多重化する。図64の例では、パワースプリッタ450は、入力された光信号を分岐して光SW210d-2の複数のポートに入力し、光SW210d-2の複数のポートそれぞれから出力された光信号を多重化して光SW210c-1のポート11-2(例えば、ポート11-2-(Q-1))に出力することになる。
(第5の実施形態)
基本構成では、図3~図5に示すように、折り返し伝送路にパワースプリッタやWDM装置を備えず、ポート間を直接接続して光信号を折り返す構成について説明した。第5の実施形態では、光信号の折り返しの構成のバリエーションについて説明する。例えば、折り返し伝送路は、Folded Clos網等の中間層の光SW等のネットワークを経由して折返する網で構成されてもよい。Folded Clos網の一部の入出力SWの中間層SWへのポートの一部や中間層SWの一部のポートを11-2-Q側に、一部の入出力SWの中間層SWへのポートの一部や中間層SWの一部のポートを11-2-Q側にする形で折返伝送路を構成してもよい。これにより、光SWは、折返通信を可能とする。
基本構成では、図3~図5に示すように、折り返し伝送路にパワースプリッタやWDM装置を備えず、ポート間を直接接続して光信号を折り返す構成について説明した。第5の実施形態では、光信号の折り返しの構成のバリエーションについて説明する。例えば、折り返し伝送路は、Folded Clos網等の中間層の光SW等のネットワークを経由して折返する網で構成されてもよい。Folded Clos網の一部の入出力SWの中間層SWへのポートの一部や中間層SWの一部のポートを11-2-Q側に、一部の入出力SWの中間層SWへのポートの一部や中間層SWの一部のポートを11-2-Q側にする形で折返伝送路を構成してもよい。これにより、光SWは、折返通信を可能とする。
図65は、第5の実施形態の光アクセスシステムにおける光GW200eの構成例を示す図である。図65では、光信号の折り返しの構成のバリエーションとして、3つの構成(第1の構成~第3の構成)について説明する。
(光信号の折り返しの第1の構成)
光信号の折り返しの第1の構成では、光GW200eは、光SW210e-1と、WDM装置80-1とを有する。光GW200eのポート11-1-1~11-1-2には、加入者装置40a-1~40a-2が伝送路50-1-1~50-1-2で接続されている。光GW200eのポート11-2-1~11-2-2には、WDM装置80-1が接続されている。加入者装置40a-1~40a-2は、それぞれ異なる波長の光信号を送受信する。WDM装置80-1は、ポート11-2-1及び11-2-2それぞれから出力された光信号を合波して折り返し伝送路51a-1に出力する。折り返し伝送路51a-1は、ポート11-2-3に接続されている。このような構成により、光信号の折り返しを可能にしている。
光信号の折り返しの第1の構成では、光GW200eは、光SW210e-1と、WDM装置80-1とを有する。光GW200eのポート11-1-1~11-1-2には、加入者装置40a-1~40a-2が伝送路50-1-1~50-1-2で接続されている。光GW200eのポート11-2-1~11-2-2には、WDM装置80-1が接続されている。加入者装置40a-1~40a-2は、それぞれ異なる波長の光信号を送受信する。WDM装置80-1は、ポート11-2-1及び11-2-2それぞれから出力された光信号を合波して折り返し伝送路51a-1に出力する。折り返し伝送路51a-1は、ポート11-2-3に接続されている。このような構成により、光信号の折り返しを可能にしている。
(光信号の折り返しの第2の構成)
光信号の折り返しの第2の構成では、光GW200eは、光SW210e-1と、複数のWDM装置80-2~80-3と、複数の監視部60-1及び60-2を有する。光GW200eのポート11-1-p~11-1-(p+1)には、加入者装置40a-p~40a-(p+1)が伝送路50-1-p~50-1-(p+1)で接続されている。光GW200eのポート11-2-q~11-2-(q+1)には、WDM装置80-2が接続されている。
光信号の折り返しの第2の構成では、光GW200eは、光SW210e-1と、複数のWDM装置80-2~80-3と、複数の監視部60-1及び60-2を有する。光GW200eのポート11-1-p~11-1-(p+1)には、加入者装置40a-p~40a-(p+1)が伝送路50-1-p~50-1-(p+1)で接続されている。光GW200eのポート11-2-q~11-2-(q+1)には、WDM装置80-2が接続されている。
加入者装置40a-p~40a-(p+1)は、それぞれ異なる波長の光信号を送受信する。WDM装置80-2は、ポート11-2-1及び11-2-2それぞれから出力された光信号を合波して折り返し伝送路51a-2に出力する。折り返し伝送路51a-2は、WDM装置80-3に接続されている。WDM装置80-3は、入力された光信号を分波して、分波した光信号をそれぞれ監視部60-1及び60-2に出力する。監視部60-1及び60-2は、伝送路を伝送している光信号を監視する。このような構成により、光信号の折り返しを可能にしている。
(光信号の折り返しの第3の構成)
光信号の折り返しの第3の構成では、光GW200eは、光SW210e-1と、光SW210e-2とを有する。光GW200eのポート11-1-(P-1)には、加入者装置40a-Pが伝送路50-1-Pで接続されている。光GW200eのポート11-2-(Q-1)には、光SW210e-2が接続されている。加入者装置40a-Pは、光信号を送受信する。光SW210e-1は、ポート11-1-(P-1)から入力された光信号をポート11-2-(Q-1)から出力する。ポート11-2-(Q-1)から出力された光信号は、光SW210e-2に出力される。光SW210e-2は、入力された光信号をポート11-2-Qに出力する。このような構成により、光信号の折り返しを可能にしている。
光信号の折り返しの第3の構成では、光GW200eは、光SW210e-1と、光SW210e-2とを有する。光GW200eのポート11-1-(P-1)には、加入者装置40a-Pが伝送路50-1-Pで接続されている。光GW200eのポート11-2-(Q-1)には、光SW210e-2が接続されている。加入者装置40a-Pは、光信号を送受信する。光SW210e-1は、ポート11-1-(P-1)から入力された光信号をポート11-2-(Q-1)から出力する。ポート11-2-(Q-1)から出力された光信号は、光SW210e-2に出力される。光SW210e-2は、入力された光信号をポート11-2-Qに出力する。このような構成により、光信号の折り返しを可能にしている。
上記のように構成された光GW200eによれば、基本構成に示された構成以外の折り返し通信の構成を適用することができる。これにより、組み合わせの自由度が向上し、利便性を向上させることが可能になる。
次に、加入者装置40を収容する光SWのポート利用を軽減する構成を提示する。なお、ここでは、図27及び図28に示す光SW1010を例に説明するが、上記の説明で示した他の光SW(例えば、光SW10や光SW210等)においても同様に適用可能である。
図27及び図28に示す構成では、伝送路として例えば、ポート11-1側の加入者装置40(図27及び図28では、ONU)から見ると、明には、ポート11-2に接続する出力方路の接続数が増えたことに相当する。このため、前述のように他の光SW1010(例えば、光SW1010-2~1010-4)のポート11-1側の加入者装置40と接続する、かつ、光SW1010が図27のようにフルメッシュ型に接続している場合、光SW1010-1のポート11-1(例えばポート11-1-1(ONU#11と接続)とポート11-2(例えばポート11-2-q1(*aの接続))、対向する加入者装置40がポート11-1側で接続している光SW1010-2のポート11-1とポート11-2(例えば、ポート11-1-p1(*aの接続)、ポート11-2-x(折り返し伝送路と接続)と折り返し伝送路と接続するポート11-2とポート11-2(例えば、ポート11-2-y、ポート11-2-z)、対向ONUの接続するポート11-1(例えばポート11-1-1(ONU#21と接続))と6ポート占有することになる。折り返し伝送路を光SW1001に設置した場合も同様である。
図27及び図28に示す構成では、伝送路として例えば、ポート11-1側の加入者装置40(図27及び図28では、ONU)から見ると、明には、ポート11-2に接続する出力方路の接続数が増えたことに相当する。このため、前述のように他の光SW1010(例えば、光SW1010-2~1010-4)のポート11-1側の加入者装置40と接続する、かつ、光SW1010が図27のようにフルメッシュ型に接続している場合、光SW1010-1のポート11-1(例えばポート11-1-1(ONU#11と接続)とポート11-2(例えばポート11-2-q1(*aの接続))、対向する加入者装置40がポート11-1側で接続している光SW1010-2のポート11-1とポート11-2(例えば、ポート11-1-p1(*aの接続)、ポート11-2-x(折り返し伝送路と接続)と折り返し伝送路と接続するポート11-2とポート11-2(例えば、ポート11-2-y、ポート11-2-z)、対向ONUの接続するポート11-1(例えばポート11-1-1(ONU#21と接続))と6ポート占有することになる。折り返し伝送路を光SW1001に設置した場合も同様である。
図28のようにリング型に接続している場合は、光SW1010-1のポート11-1とポート11-2(例えばポート11-1-1(ONU#11と接続)、ポート11-2-q1(*aの接続))、経由する光SW1010-2のポート11-1とポート11-2(例えばポート11-1-p1(*aの接続)、ポート11-2-q1(*dの接続)、対向する加入者装置40がポート11-1側で接続している光SW1010-3のポート11-1とポート11-2(例えば、ポート11-1-p1(*dの接続)、ポート11-2-x(折り返し伝送路と接続)、折り返し伝送路と接続するポート11-2とポート11-2(例えば、ポート11-2-y、ポート11-2-z)、対向ONUの接続するポート11-1(例えばポート11-1-1(ONU#21と接続))と8ポート占有することになる。折り返し伝送路を光SW1010-1や光SW1010-2に設置した場合も同様である。
上記の点を踏まえ、図66を用いて、加入者装置40を収容する光SWのポート利用を軽減する構成について説明する。図66では、光SWのポート利用を軽減する構成として、4つの構成を示している。
(第1の構成)
図66(A)に示すように第1の構成では、光SW1010-1~光SW1010-3と、光SW1200とを示している。第1の構成では、光SW渡りの伝送路で渡す光SWのポートの比率を変更する接続の自由度を向上する観点から、光SW渡りの伝送路を光SW1200とする。光SW1200の構成は、基本的には他の光SW1010と同様である。光SW渡りの伝送路を光SWとすると、加入者装置40を収容する光SWのポート利用を軽減することができる。
図66(A)に示すように第1の構成では、光SW1010-1~光SW1010-3と、光SW1200とを示している。第1の構成では、光SW渡りの伝送路で渡す光SWのポートの比率を変更する接続の自由度を向上する観点から、光SW渡りの伝送路を光SW1200とする。光SW1200の構成は、基本的には他の光SW1010と同様である。光SW渡りの伝送路を光SWとすると、加入者装置40を収容する光SWのポート利用を軽減することができる。
加入者装置40を収容する光SWのポート利用の削減するための手段について説明する。図27であれば各光SW1010-1~1010-4と接続する渡り伝送路は各1組で図示しているが、単一の光SW1010から渡り伝送路を占有して同一の光SWのONUと接続する。例えば、図27の例では、ONU#11、ONU#12、ONU#13からONU#21、ONU#22、ONU#23に接続する場合、他の光SWを経由し、例えば6ポート、8ポート、8ポートの22ポートを占有する。それに対し、図66(A)に示すように光SW渡りの伝送路を光SW1200とすると、加入者装置40を収容する光SW1010-1と光SW1010-2のポートとしては、18ポートで済む。光SW1010-1~1010-4は、複数の光スイッチの一態様である。この説明において、光SW1010-1を複数の光スイッチのうちの第1の光スイッチの一態様として説明し、光SW1010-2を複数の光スイッチのうちの第2の光スイッチの一態様として説明する。
より具体的には、光SW1200は、光SW1010-1のポート11-1とポート11-2に接続され、さらに、光SW1010-2のポート11-1とポート11-2と、光SW1010-3のポート11-1とポート11-2とに接続される。このように、光SW1200は、複数の光スイッチの第1ポート(例えば、ポート11-1)と、第1ポートと異なる側(例えば、複数の光スイッチにおいてポート11-1が設けられている側と異なる側)の第2ポート(例えば、ポート11-2)に接続される。なお、ここで示す第1ポート及び第2ポートは、一例であり、ポート11-1が第2ポート、ポート11-2が第1ポートであってもよい。以下の説明においても同様である。そして、光SW1200は、複数の光SW1010の出力側のポート11-2と、複数の光SW1010の入力側のポート11-1とを接続する。例えば、光SW1200は、光SW1010-1の出力側のポート11-2と、光SW1010-2の入力側のポート11-1とを接続する。光SW制御部320は、光SW1200内部の経路が通信先への経路上の転送先へ向かう経路となるように光SW1200を制御する。このように構成されることによって、図27のように他の光SW1010-2及び1010-3で経由するポート数を削減することができる。
(第2の構成)
図66(B)に示すように第2の構成では、光SW1010-1~光SW1010-3を示している。第2の構成では、折り返し伝送路を、同一の光SWに接続せず、対向する加入者のそれぞれが接続する光SW間を接続する。例えば、光SW1010-1とONU#11を接続するポート11-1-1、光SW1010-1のポート11-2-x、折り返し伝送路、光SW1010-2のポート11-2-y、光SW1010-2とONU#21を接続するポート11-1-1のように接続する。すなわち、第2の実施形態では、異なる光SW1010の同じ側のポート11-2を折り返し伝送路で接続する。図66(B)に示す例では、光SW1010-1のポート11-2と光SW1010-2のポート11-2とが折り返し伝送路で接続され、光SW1010-2のポート11-2と光SW1010-3のポート11-2とが折り返し伝送路で接続され、光SW1010-1のポート11-2と光SW1010-3のポート11-2とが折り返し伝送路で接続されている。この場合、4ポート使用することになるので、6ポート利用に比べると、2ポートの利用に軽減できることがわかる。
図66(B)に示すように第2の構成では、光SW1010-1~光SW1010-3を示している。第2の構成では、折り返し伝送路を、同一の光SWに接続せず、対向する加入者のそれぞれが接続する光SW間を接続する。例えば、光SW1010-1とONU#11を接続するポート11-1-1、光SW1010-1のポート11-2-x、折り返し伝送路、光SW1010-2のポート11-2-y、光SW1010-2とONU#21を接続するポート11-1-1のように接続する。すなわち、第2の実施形態では、異なる光SW1010の同じ側のポート11-2を折り返し伝送路で接続する。図66(B)に示す例では、光SW1010-1のポート11-2と光SW1010-2のポート11-2とが折り返し伝送路で接続され、光SW1010-2のポート11-2と光SW1010-3のポート11-2とが折り返し伝送路で接続され、光SW1010-1のポート11-2と光SW1010-3のポート11-2とが折り返し伝送路で接続されている。この場合、4ポート使用することになるので、6ポート利用に比べると、2ポートの利用に軽減できることがわかる。
(第3の構成)
図66(C)に示すように第3の構成では、光SW1010-1~光SW1010-3と、光SW1200とを示している。第3の構成では、折り返し伝送路として、光SW1200を用いる。光SW1200が(11-1-P)×(11-2-Q)構成のようなSWである場合、加入者装置40を収容する単一の光SW(例えば、光SW1010-1)から、光SW渡りの伝送路である光SW1200のポート11-1とポート11-2それぞれと接続し、ポート11-1からポート11-2に、ポート11-2からポート11-1に接続する。加入者装置40を収容する異なる光SW同士を接続すると光SW渡りの伝送路となり、同一の光SW通しを接続すると同一SW内の折り返し伝送路となる。すなわち、第3の構成では、光SW1010-1~光SW1010-3の出力側のポート11-2の一部が光SW1200のポート11-1に接続され、光SW1010-1~光SW1010-3の出力側のポート11-2の他の一部が光SW1200のポート11-2に接続される。これにより、光SW1200は、光SW1010-1~光SW1010-3の出力側のポート11-2同士を接続する。光SW制御部320は、光SW1200内部の経路が、光SW1010-1~光SW1010-3の出力側のポート11-2同士を接続するように光SW1200を制御する。
第2又は3の構成と、図27のメッシュ型や図28のリング型の光SW渡りの伝送路や、第1の構成と組み合わせてもよい。
図66(C)に示すように第3の構成では、光SW1010-1~光SW1010-3と、光SW1200とを示している。第3の構成では、折り返し伝送路として、光SW1200を用いる。光SW1200が(11-1-P)×(11-2-Q)構成のようなSWである場合、加入者装置40を収容する単一の光SW(例えば、光SW1010-1)から、光SW渡りの伝送路である光SW1200のポート11-1とポート11-2それぞれと接続し、ポート11-1からポート11-2に、ポート11-2からポート11-1に接続する。加入者装置40を収容する異なる光SW同士を接続すると光SW渡りの伝送路となり、同一の光SW通しを接続すると同一SW内の折り返し伝送路となる。すなわち、第3の構成では、光SW1010-1~光SW1010-3の出力側のポート11-2の一部が光SW1200のポート11-1に接続され、光SW1010-1~光SW1010-3の出力側のポート11-2の他の一部が光SW1200のポート11-2に接続される。これにより、光SW1200は、光SW1010-1~光SW1010-3の出力側のポート11-2同士を接続する。光SW制御部320は、光SW1200内部の経路が、光SW1010-1~光SW1010-3の出力側のポート11-2同士を接続するように光SW1200を制御する。
第2又は3の構成と、図27のメッシュ型や図28のリング型の光SW渡りの伝送路や、第1の構成と組み合わせてもよい。
(第4の構成)
図66(D)に示すように第4の構成では、光SW1010-1~光SW1010-3と、光SW1200とを示している。第4の構成は、第3の構成の拡張である。第3の構成において、少なくとも一部のアップリンクをポート11-2側ではなく、ポート11-1側に設置し、当該アップリンクに接続する際は、折り返し伝送路を経由して接続する。すなわち、第4の構成では、光SW1200と接続していない光スイッチ1010-1~1010-3のポート11-1をアップリンクに接続する。この構成では、折り返しが主の場合に好適である。例えば、フルメッシュ又はフルメッシュに近い形で加入者装置40同士を接続する場合、ポート11-2に比してポート11-1が少なくなる。このような場合、光SWがP×Pの対称なSWの場合、加入者を接続するポート11-1側が余るため、アップリンク側に転用すること、ポートを有効活用する。
図66(D)に示すように第4の構成では、光SW1010-1~光SW1010-3と、光SW1200とを示している。第4の構成は、第3の構成の拡張である。第3の構成において、少なくとも一部のアップリンクをポート11-2側ではなく、ポート11-1側に設置し、当該アップリンクに接続する際は、折り返し伝送路を経由して接続する。すなわち、第4の構成では、光SW1200と接続していない光スイッチ1010-1~1010-3のポート11-1をアップリンクに接続する。この構成では、折り返しが主の場合に好適である。例えば、フルメッシュ又はフルメッシュに近い形で加入者装置40同士を接続する場合、ポート11-2に比してポート11-1が少なくなる。このような場合、光SWがP×Pの対称なSWの場合、加入者を接続するポート11-1側が余るため、アップリンク側に転用すること、ポートを有効活用する。
次に、図33~図36に示す監視部60の他の態様(変形例)として、監視部が送信器を備える構成について図67~図69を用いて具体的に説明する。 図67~図69は、監視部60の他の態様(変形例)の構成図である。なお、図67~図69では、監視部60を例に説明するが、監視部60の代わりに、監視部260が用いられ、監視部260の構成を図67~図69に示す構成としてもよい。図67及び図68は、信号を監視する対象に向かって送信する構成として、送信器と受信器が逆向きで同一側の伝送路と接続している例を示している。図69は、主信号と同一の向きで、主信号の入力と反対側の伝送路に合流させる場合は、送信器と受信器が同じ向きで接続している構成を示している。
図67(A)に示す監視部75aは、パワースプリッタ61と、受信器62と、送信器76を有する。図67(A)に示す監視部75aが、図33(A)に示す監視部60aと異なる点は、1つの送信器76と1つの受信器62とを備える点である。送信器76は、パワースプリッタ61を介して入力された光信号を、監視する対象(例えば、制御部20やOPS300)に向かって送信する。図67(A)に示すように、送信器76と受信器62とは、逆向きで同一側の伝送路と接続している。
図67(B)に示す監視部75bは、パワースプリッタ61と、複数の受信器62-1~62-3と、複数のWDM装置63b-1~63b-2と、複数の送信器76-1~76-3を有する。図67(B)に示す監視部75bが、図33(B)に示す監視部60bと異なる点は、6台の受信器62-1~62-6に代えて、3台の受信器62-1~62-3と、3台の送信器76-1~76-3とを備える点である。WDM装置63b-1には、送信器76-1~76-3が接続される。WDM装置63b-2には、受信器62-1~62-3が接続される。WDM装置63b-1は、パワースプリッタ61が分岐した光信号を分波して送信器76-1~76-3に出力する。図67(B)に示すように、送信器76-1~76-3と受信器62-1~62-3とは、逆向きで同一側の伝送路と接続している。
図67(C)に示す監視部75cは、パワースプリッタ61と、受信器62と、WDM装置63cと、送信器76を有する。図67(C)に示す監視部75cが、図33(C)に示す監視部60cと異なる点は、2台の受信器62-1~62-2に代えて、受信器62と、送信器76とを備える点である。
図68(A)に示す監視部75dは、複数のパワースプリッタ61-1~61-3と、複数の受信器62-1~62-3と、WDM装置63dと、複数の送信器76-1~76-3を有する。図68(A)に示す監視部75dが、図34(A)に示す監視部60dと異なる点は、6台の受信器62-1~62-6に代えて、3台の受信器62-1~62-3と、3台の送信器76-1~76-3とを備える点である。伝送路606-1には、パワースプリッタ61-1が設けられ、パワースプリッタ61-1には受信器62-1と送信器76-1とが接続される。伝送路606-2には、パワースプリッタ61-2が設けられ、パワースプリッタ61-2には受信器62-2と送信器76-2とが接続される。伝送路606-3には、パワースプリッタ61-3が設けられ、パワースプリッタ61-3には受信器62-3と送信器76-3とが接続される。
図68(B)に示す監視部75eは、複数のパワースプリッタ61-1~61-2と、受信器62と、複数のWDM装置63e-1~63e-2と、送信器76を有する。図68(B)に示す監視部75eが、図34(B)に示す監視部60eと異なる点は、2台の受信器62-1~62-2に代えて、受信器62と、送信器76とを備える点である。伝送路602-1には、パワースプリッタ61-1が設けられ、パワースプリッタ61-1には送信器76が接続される。伝送路602-2には、パワースプリッタ61-2が設けられ、パワースプリッタ61-2には受信器62が接続される。
図69(A)に示す監視部77aは、パワースプリッタ61と、受信器62と、送信器76を有する。図69(A)に示す監視部77aが、図33(A)に示す監視部60aと異なる点は、2台の受信器62-1~62-2に代えて、受信器62と、送信器76とを備える点である。図69(A)に示すように、送信器76と受信器62とは、同じ向きで同一側の伝送路と接続している。
図69(B)に示す監視部77bは、パワースプリッタ61と、複数の受信器62-1~62-4と、複数のWDM装置63b-1~63b-2と、複数の送信器76-1~76-4と、複数のパワースプリッタ78-1~78-4を有する。図69(B)に示す監視部77bが、図33(B)に示す監視部60bと異なる点は、6台の受信器62-1~62-6に代えて、4台の受信器62-1~62-4と、4台の送信器76-1~76-4と、4台のパワースプリッタ78-1~78-4とを備える点である。WDM装置63b-1にはパワースプリッタ78-1及び78-2が接続され、WDM装置63b-2にはパワースプリッタ78-3及び78-4が接続される。パワースプリッタ78-1には送信器76-1及び受信器62-1が接続され、パワースプリッタ78-2には送信器76-2及び受信器62-2が接続され、パワースプリッタ78-3には送信器76-3及び受信器62-3が接続され、パワースプリッタ78-4には送信器76-4及び受信器62-4が接続される。図67(B)に示すように、送信器76-1~76-4と受信器62-1~62-4とは、送信器76と受信器62の組で同じ向きで同一側の伝送路と接続している。なお、図69(B)では、送信器76-2及び76-4が監視部77bの外部に設けられているが、監視部77bの内部に設けられてもよい。
図69(C)に示す監視部77cは、パワースプリッタ61と、複数の受信器62-1~62-2と、WDM装置63cと、複数の送信器76-1~76-2を有する。図69(C)に示す監視部77cが、図33(C)に示す監視部60cと異なる点は、2台の送信器76-1~76-2を新たに備える点である。図69(C)に示す監視部77cでは、図33(C)に示す監視部60cの受信器62-1~62-2と接続関係が異なる。具体的には、監視部77cでは、パワースプリッタ61に受信器62-1~62-2と送信器76-1~76-2とが接続され、受信器62-1と送信器76-1とが同一側の伝送路に接続され、受信器62-2と送信器76-2とが同一側の伝送路に接続される。
上記の図67~図69に示したパワースプリッタ61、受信器62、WDM装置63及び送信器76の台数は、一例であり状況に応じて変更されてもよい。
上記の図67~図69に示したパワースプリッタ61、受信器62、WDM装置63及び送信器76の台数は、一例であり状況に応じて変更されてもよい。
主信号へのAMCC信号の重畳について説明する。重畳するので主信号とAMCC信号は同一波長の光信号で搬送される。主信号は、例えば、10Gbit/s(ギガビット毎秒)のOOK(On-off keying)信号のような、CPRI(Common Public Radio Interface)などの信号である。AMCC信号は、例えば、電気の主信号と重ならない、例えば、主信号に1MHzや500kHzなどの搬送波周波数の搬送波で主信号に重畳する。変調方式は、強度変調や位相変調などである。重畳は、例えば、パワーコンバイナで10GHzの電気の主信号と1MHzの電気のAMCC信号とを合成し、この合成信号で変調することによって、AMCC信号が重畳された主信号が生成される。重畳されたAMCC信号は主信号から分離可能である。
なお、電気領域においては、AMCC信号と主信号とは、異なる周波数を用いる。AMCC信号は、主信号よりも狭帯域である。例えば、OITDA規格TP20光伝送用能動部品-性能標準-GPON用光トランシーバ(参考文献1:http://www.oitda.or.jp/main/st/TP20-1.pdf)やITU-T G.958 Appendix Iに示されるように、同符号連続耐力の目安を72bitsとすると、1.25Gbit/sのGE‐PONの下限は約20MHzより十分低い、例えばその半分であるか又は1.25GHzより十分高い、例えばその倍であるか、低速信号の51.84Mbit/sのSTM‐0の下限の720kHzより十分低い、例えばその半分であるか又は51.84MHzより十分高い、例えばその倍であればよい。
搬送波周波数は500kHzのように電気の主信号と重ならない他の周波数を用いてもよく、変調方式についても位相変調などの他の変調方式を用いても良い。
搬送波周波数は500kHzのように電気の主信号と重ならない他の周波数を用いてもよく、変調方式についても位相変調などの他の変調方式を用いても良い。
上記の各実施形態において上下双方向に用いられるパワースプリッタは、加入者装置40及び制御部20が一芯双方向の送受信器を有する場合、一芯双方向のまま、光SW210の同一経路を経由して接続してもよいし、二芯に分離し、それぞれの経路を経由して接続してもよい。加入者装置40及び制御部20が二心双方向の送受信器を有する場合、一芯双方向に束ねた後に、光SW210の同一経路を経由して接続してもよいし、二芯のまま、それぞれの経路を経由して接続してもよい。加入者装置40及び制御部20の一方が一芯双方向、他方が二双方向の送受信器を有する場合、二芯双方向を束ねて一芯とし、光SW210の同一経路を経由して接続してもよいし、一芯双方向を二芯に分離し、それぞれの経路を経由して接続してもよい。
上下双方向に用いられるパワースプリッタは、上り方向と下り方向で、例えば1.3ミクロン帯と1.55ミクロン帯のように使用しうる波長帯が重ならない場合に好適である。少なくとも一方が、一芯双方向用の光送受信器で光信号を送受信する場合、光SWの一組のポートで接続してもよいし、二組のポートで接続し合分波器(例えば、WDM装置やWDMフィルタ)又はパワースプリッタで逆方向に多重してもよい。送受信毎に、異なる組のポートで接続し、一方の光送信器と他方の光受信器、他方の光送信器と一方の光受信機をそれぞれ接続してもよい。これは二芯の光送受信器を用いる場合に好適である。この場合、送信側と受信側で別経路を用いることができる。
送信側に複数組、あるいは受信側に複数組で接続してもよい。この場合、複数の装置または機能部と接続や制御ができる。接続や制御の多重分離は、送信元又は宛先ポート、波長や装置や機能部、例えば加入者装置を識別する識別子、例えばMACアドレスを用いることができる。
光SW、ポート、伝送路、またはそれらの接続点は、他の対地や光SWや上位ネットワークと接続される伝送路と光SWとの間にパワースプリッタや合分波器を備えてもよい。合分波器は、光SWの複数ポートから異なる加入者装置等のそれぞれから出力した異なる波長の光信号を合波し、他の対地や光SWや上位ネットワークと接続される伝送路に出力する。合分波器は、いずれかの他の対地や光SWや上位ネットワークから送信された光信号を波長により分波し、波長に応じたポートから光SWに入力する。上記の各実施形態において、合分波器とパワースプリッタを用いて説明したが、波長によって合分波しない場合は、合分波器はパワースプリッタでもよく、波長によって合波のみ、分波のみ、波長によらず合流多重のみ、波長によらず分岐のみの場合は、それぞれ合波器、分波器、合流器、分岐器であってよい。
パワースプリッタは、上り信号と下り信号を、波長分割多重以外の例えば時分割多重で多重する場合、上り信号と下り信号の使用する波長帯が少なくとも一部重なる場合に好適である。後者の場合は、光受信器や、それに至る前の伝送路、パワースプリッタと伝送路の間等で濾波すればよく、複数の区間を経由する場合は、他の信号と多重する際に他の信号に影響を与えないように、多重する前に濾波することが望ましい。合分波器又はパワースプリッタと濾波器の組合せで濾波する波長を変更可能な場合は、加入者装置が、送受信する波長に合わせて変更してもよいし、制御部が変更してもよい。
上記では、加入者装置40が波長変更を要求することによって行われる波長変更処理を説明したが、監視情報等に基づいて制御部20から行われる波長変更処理も同様である。
制御信号は、制御部20と加入者装置40との間で授受される。例えば、加入者装置40は、接続要求を制御部20に送信し、制御部20は制御信号を加入者装置40に送信する。例えば、制御部20は、加入者装置40が通信に用いる波長を割当する。
制御信号は、制御部20と加入者装置40との間で授受される。例えば、加入者装置40は、接続要求を制御部20に送信し、制御部20は制御信号を加入者装置40に送信する。例えば、制御部20は、加入者装置40が通信に用いる波長を割当する。
制御信号は、監視部60により監視され、監視部60と加入者装置40との間、監視部60と制御部20との間で授受されてもよい。
波長制御部310及び光SW制御部320は、1台の情報処理装置を用いて実装されてもよく、ネットワークを介して通信可能に接続された複数台の情報処理装置を用いて実装されてもよい。
波長制御部310及び光SW制御部320は、1台の情報処理装置を用いて実装されてもよく、ネットワークを介して通信可能に接続された複数台の情報処理装置を用いて実装されてもよい。
図1~図69を用いて以上において説明した各構成は、以下のように変形されてもよい。図1~図69では主に、加入者装置40が接続する伝送路が光SWと接続するポートと結線する対向の伝送路のポートの出力に監視部260が備えられているが、以下では、加入者装置40が接続する伝送路又はその伝送路が接続するポートまでの間に監視部260が配置されている。すなわち、図1~図69では、加入者装置40と光SWを接続する伝送路と光SWで結線した対向する伝送路に、監視部260が備えられている構成が主であるが、以下の変形では、加入者装置40と光SWを接続する伝送路に監視部260が備えられている。図42に示されるフローチャートにおけるステップS1、S3~S6の処理は、他の態様で行われてもよい。なお、図42に示されるフローチャートにおけるステップS2は実行されない。以下、ステップS1、S3~S6の処理の他の態様(変形例)について説明する。以下では、制御部301と記載されている箇所は、制御部230又は制御部235に読み替えられてもよい。監視部260と記載されている箇所は、監視部60、監視部65、監視部265又は監視部267に読み替えられてもよい。
図70は、加入者装置40及び制御部の第一の変形例における構成例を示す図である。第一の変形例では、光信号を宛先に応じて伝送することが可能なだけでなく、加入者装置から送信される光信号の波長設定時における光スイッチの切替回数を減らすことが可能である。なお、制御部301は、図38に示すように、制御部230等の他の制御部に指示する機能部であり、制御部301は、監視部260を制御する他の制御部に対して指示する。
光アクセスシステム100(光通信装置)において、光GW200は、光SW210と加入者装置40との間の伝送路501に、監視部260を入力方路毎に備える。すなわち、監視部260は、光SW210の入力側のポート11に接続される。これによって、制御部301は、監視部260を介して、加入者装置40に接続する。なお、制御部301は、それぞれの加入者装置40と接続できるのであれば、加入者装置40ごとに接続されなくてもよい。例えば、同時に複数の加入者装置40に制御部301が接続する場合でも、PONの初期接続のように、接続の対象とする加入者装置40を光SW21等が選択できてもよいし、接続する方路を光SW21等が選択できてもよい。また、監視部260の構成に応じて、監視部260と加入者装置40とが1対1に対応しているとは限らない。例えば、複数の入力方路と1台の監視部260とが対応してもよい。この場合、入力方路の切替の設定に応じて、入力方路の光信号を監視部260が監視してもよい。入力方路の切替が設定されない場合には、監視部260が複数の入力方路の光信号をまとめて監視してもよい。
図70に示されているように、制御部301は、監視部260を介して、加入者装置40に接続する。具体的には、波長等の割当に際し、加入者装置40等の波長等の割当対象装置の出力は、制御部301による設定に応じて、光SW210内部で結線しないため、光SW210における他のポートには接続されない状態で、光SW210の入力側に設置された監視部260によって監視のみが実行される。波長等の割当後に、加入者装置40等の波長等の割当対象装置の出力について、制御部301による設定に応じて、光SW210における他のポートへの経路が設定される。
光GW200は、監視部260の代わりに、監視部260を備えてもよい。光GW200は、監視部260の代わりに、制御部301に加入者装置からの/への光信号の一部を分岐して接続するためのパワースプリッタ502(監視部260)を備えてもよい。
監視部260は、加入者装置40が送受信する光信号を制御信号で変調したり、光信号の一部を受信したり、光信号に制御信号で変調した信号を多重したり、光信号の一部を制御部301に転送したり、制御部301から転送された制御信号を光信号に多重したりする。監視部260が受信する場合、監視部260は、一部受信した光信号に基づいて、転送された場合、制御部301は、監視部260から転送された光信号に基づいて、加入者装置40の光信号の波長等を監視する。
加入者装置40及び制御部301の第一の変形例では、波長割当処理(波長設定)と経路設定処理との順に実行される。より詳細には、制御部301は、加入者装置40と接続する伝送路を光SW内で未結線の状態にして、加入者装置40とやり取りする。初期時には、加入者装置40と接続する伝送路を光SW内では未結線状態なので、加入者装置40をそのままとする。変更時には、一旦、加入者装置40と接続する伝送路を光SW内で未結線状態とするのが基本である。影響がない場合のみ、制御部301は、加入者装置40と接続する伝送路を光SW内で結線させたまま、または加入者装置40と接続する伝送路を光SW内で変更後の経路で結線の状態にして、加入者装置40とやり取りしてもよい。光SW制御部320は、光SW210の出力先を切り替えても特に影響がないように、波長変更後に光SW210の出力先(経路)を切替える。
例えば、切替前に第1ポート及び第1波長「λ1」が使用されており、切替後に第2ポート及び第2波長「λ2」が使用される場合、以下のようになる。
(1)第1ポート及び第2波長「λ2」を使用している加入者装置40が無い場合:
第1ポートで第1波長「λ1」から第2波長「λ2」に切り替えられても影響が無い。この場合、ポート切替前に波長切替することは可である。
(2)第1ポート及び第2波長「λ2」を使用している加入者装置40が有る場合:
第1ポートで第1波長「λ1」から第2波長「λ2」に切り替えられると影響が有る。この場合、ポート切替前に波長切替することは不可である。
(3)第2ポート及び第1波長「λ1」を使用している加入者装置40が無い場合:
第2ポートで第1波長「λ1」から第2波長「λ2」に切り替えられても影響が無い。この場合、ポート切替前に波長切替することは可である。
(4)第2ポート及び第1波長「λ1」を使用している加入者装置40が有る場合:
第2ポートで第1波長「λ1」から第2波長「λ2」に切り替えられると影響が有る。この場合、ポート切替前に波長切替することは不可である。
(1)第1ポート及び第2波長「λ2」を使用している加入者装置40が無い場合:
第1ポートで第1波長「λ1」から第2波長「λ2」に切り替えられても影響が無い。この場合、ポート切替前に波長切替することは可である。
(2)第1ポート及び第2波長「λ2」を使用している加入者装置40が有る場合:
第1ポートで第1波長「λ1」から第2波長「λ2」に切り替えられると影響が有る。この場合、ポート切替前に波長切替することは不可である。
(3)第2ポート及び第1波長「λ1」を使用している加入者装置40が無い場合:
第2ポートで第1波長「λ1」から第2波長「λ2」に切り替えられても影響が無い。この場合、ポート切替前に波長切替することは可である。
(4)第2ポート及び第1波長「λ1」を使用している加入者装置40が有る場合:
第2ポートで第1波長「λ1」から第2波長「λ2」に切り替えられると影響が有る。この場合、ポート切替前に波長切替することは不可である。
上記「(1)」且つ「(3)又は(4)」では、ポート切替前に波長切替することは可である。
上記「(1)又は(2)」且つ「(3)」では、ポート切替前に波長切替することは可である。
上記「(2)」且つ「(4)」では、ポート切替前に波長切替することは不可である。
上記「(1)又は(2)」且つ「(3)」では、ポート切替前に波長切替することは可である。
上記「(2)」且つ「(4)」では、ポート切替前に波長切替することは不可である。
波長割当処理では、光SW制御部320は、波長割当対象の加入者装置40の光信号を光SW210が伝送しないように、光SW210における経路を制御する。
なお、波長設定前(波長割当前)に光SW210の出力先を切り替えても特に影響がない場合には、光SW制御部320は、波長変更前に光SW210の出力先を切替えてもよい。波長割当処理時に、光SW210以外の機能部が、加入者装置40から送信された光信号の伝送の停止を実行してもよい。遮断部を備え、遮断部で遮断する場合、遮断部が光信号を遮断すれば、光SW制御部320は、基本的には加入者装置40とやり取りができる。例外として、当該加入者装置40の出力を遮断部が選択的に遮断できない場合がある。例えば、遮断部が複数の波長等(波長、時刻、互いに直交する偏波、互いに直交するモード、互いに直交する符号、周波数、コア、芯線、又は、それらの組合せ)を加入者装置40が共有していて、加入者装置40の共有相手が運用中の場合、初期設定時に出力される波長が不確定で、他の加入者装置40の波長等(波長、時刻、互いに直交する偏波、互いに直交するモード、互いに直交する符号、周波数、コア、芯線、又は、それらの組合せ)が重複する恐れがある場合、他の運用中の波長等に許容できない時間以上に、波長等の変更時の出力が重複する場合、異常であり、何を出力するかが不明な場合である。このような場合には、影響のない結線にしてから(例えば、非運用のポートに一旦結線し直してから)、光SW制御部320は、加入者装置40とやり取りする。なお、コアは、一つのファイバに複数の光信号を伝搬するコアがあるマルチコアファイバである。芯線は、複数のファイバを含むケーブル中の各ファイバである。
波長割当処理では、制御部301は、波長割当対象の加入者装置40に対して、監視部260を介して、波長割当処理を実行する。制御部301は、例えば、異常が検出されたときに用いていた波長と同じ波長又は異なる新たな波長の割当処理を、波長割当対象の加入者装置40に対して実行する。
経路設定処理では、光スイッチ制御部320は、転送先に応じて特定されたポート11(他のポート)に、波長割当対象の加入者装置40の伝送路501から入力された光信号を出力するように、光SW210を制御する。ここで、転送先は、加入者、加入者装置40、光SW210のポート11、光信号の波長、加入者装置40と光信号の波長との組合せ、又は、ポート11と光信号の波長との組合せ等に応じて特定される。
ステップS3において、光SW制御部320は、波長割当対象の加入者装置40が結線されている場合は、加入者装置40と接続する伝送路を光SW内で未結線とする。代わりに遮断部を備える場合には、遮断部は光信号を遮断してもよい。ここで、光SW210において、監視部260に接続されるポート11-1と接続する伝送路を光SW内で他のポート11に対して未結線である場合には、制御部301は、その未結線の状態のままとする。波長割当対象の加入者装置40は、監視部260への接続前に、初期化処理を実行する。波長割当対象の加入者装置40は、監視部260への接続直後に、初期化処理を実行してもよい。初期化処理時に波長等が設定される場合、又は、下り信号や下り信号での割当要求許可の受信後に割当等の初期化処理の少なくとも一部が実行される場合、初期化処理のうちの少なくとも一部は、接続後に実行される。波長割当対象の加入者装置40は、光信号を用いて、接続要求(レジスタリクエスト)を送信する。
ステップS4において、制御部301は、波長割当対象の加入者装置40から、監視部260を介して、接続要求を受信する。「監視部260を介して」とは、例えば、合分岐器で分岐した光信号を監視部260が制御部301に転送することである。また例えば、電気信号の状態(監視部260が受信部を備え、受信部が光信号を電気信号に変換して、受信部が接続部に転送することでもよい。制御部301は、受信した光信号を解析し、初期設定波長を決定する。制御部301は、受信した光信号を解析し、光パワに問題がないか等を確認してもよい。
ステップS6において、制御部301は、制御部301によって決定(選択)された波長の情報を表す波長指示を、波長割当対象の加入者装置40に送信する。制御部301の光信号を監視部260の合分岐器が合流させてもよい。監視部260が送信部を備え、送信部が電気信号を光信号に変換し、合分岐部が光信号を合流させてもよい。監視部260から加入者装置40までの経路中に、波長選択性素子を介して、光信号を用いて波長指示が送信される場合、波長指示は、加入者装置40宛の波長の光信号を用いて、その加入者装置40に送信される。また、波長指示は、監視部260を介して、波長割当対象の加入者装置40に送信される。監視部260は、制御部301から入力された光信号を、加入者装置40に出力する。波長指示を表す光信号は、伝送路501の途中で分岐されてもよい。送信用波長が波長指示において設定されている場合、波長割当対象の加入者装置40は、波長指示に従って、光送受信器の光信号の送信用波長を設定する。
ステップS7において、加入者装置40は、光信号を用いて通知信号が送信される場合、波長指示によって指示された波長の光信号を用いて、波長が設定された旨を通知するための通知信号を、監視部260を介して、制御部301に送信する。制御部301は、指示された波長が正しく設定されているか否かを、通知信号に基づいて確認する。制御部301は、光信号の出力パワは十分であるか否かを、通知信号に基づいて確認してもよい。
ステップS8において、制御部301は、加入者装置40の光信号の送信先(宛先)に従って、光SW210の各ポート11の最適な接続情報(経路情報)を、光SW210に送信する。光SW210は、その接続情報に基づいて、加入者装置40の上りポート及び下りポートを設定する。
図71は、加入者装置40及び光GW制御部302の第一の変形例による光アクセスシステムの初期設定処理を示すフローチャートである。図71に示された符号は、図42に示された符号と同様である。図71に示されたステップS1からステップS3までの間において、ポートが接続される。ステップS4では、AMCCに限らない。主信号を垂れ流させておいて、制御部301、入力監視部が、自律で確認する。ステップS7では、制御部301、入力監視部、出力監視部、通信部又は加入者装置40が、自律で確認する。
以上のように、加入者装置40及び制御部301の第一の変形例では、光SW210は、複数の伝送路501のうちのいずれかの伝送路501から入力された光信号を、複数の伝送路501のうちの他の伝送路501に出力する。監視部260は、加入者装置40から送信された光信号が光SW210に入力される側の伝送路501において、指示を制御部301から受信する他の制御部と加入者装置40との間で、光信号を中継する。監視部260は、光信号が光SW210に入力される側の伝送路501において、加入者装置40と光SW210との間で、光信号を中継する。制御部301は、監視部260を介して、加入者装置40の光信号に波長を割り当てる。制御部301は、加入者装置40の光信号に波長が割り当てられた後では、入力される側の伝送路501を介して光SW210に入力された光信号が他の伝送路501に出力されるように、光SW210を制御する。光GW200は、第1の光SW210と、第1の光SW210にカスケード接続される第2の光SW210とを備えてもよい。光SW制御部320は、加入者装置40の光信号に波長が割り当てられる前では、入力される側の伝送路501を介して光SW210に入力された光信号が他の伝送路501に出力されないように、光SW210を制御してもよい。波長制御部310は、監視部260を介して、加入者装40置の光信号に、波長、時刻、偏波、モード、符号、周波数、コア、芯線、又は、それらの組合せである波長等を割り当ててもよい。
これによって、加入者装置40制御部301の第一の変形例では、光信号を宛先に応じて伝送することが可能なだけでなく、加入者装置から送信される光信号の波長設定時における光スイッチの切替回数を減らすことが可能である。
光GWは、図72に示すように、OPS300又は制御部20、光SW、監視部、電気処理部、折り返し伝送路、合分岐器(パワースプリッタ)、合分波器(WDM装置、WDMフィルタ)のいずれか又は全てを備える装置(本発明の光通信装置)として構成されてもよい。
上記の各実施形態では、加入者装置40への波長の割当を例に説明したが、波長、時、互いに直交する偏波、互いに直交するモード、互いに直交する符号、周波数、コア、芯線又はそれらの組合せである波長等を割り当てる構成であっても。例えば、割当を、時、偏波、モード、符号、コア、芯線とした場合の合分波器は、合分岐器と遅延線の組合せ、偏波モードカプラ、モードカプラ、復符号器、コア間の合分岐器、芯線間の合分岐器等に置き替えれば同様である。
上述した制御部20、230、235、監視部260、265、267、波長制御部310及び光SW制御部320は、バスで接続されたCPUやメモリや補助記憶装置などを備え、プログラムを実行することによって上述した機能の一部又は全てを実現してもよい。なお、制御部20、230、235、監視部260、265、267、波長制御部310及び光SW制御部320の各機能の一部又は全ては、ASICやPLDやFPGA等のハードウェアを用いて実現されても良い。なお、制御部20、230、235、監視部260、265、267、波長制御部310及び光SW制御部320のプログラムは、コンピュータ読み取り可能な記録媒体に記録されても良い。コンピュータ読み取り可能な記録媒体とは、例えば光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。プログラムは、電気通信回線を介して送信されても良い。
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
本発明は、光スイッチを用いた光アクセスシステム技術に適用できる。
1…光通信システム、
10、10a、10b、10c、10d、10e、10f、10g、34、95a-1、95a-2、95b-1、95b-2、96a-1、96a-2、96b-1、96b-2、210、210a-1~210a-2、210b、210c-1~210c-2、210d-2、210e-1~210e-2、211、212a、212b、212c、1001、1002、1003、1004、1005、1006、1007、1008、1009a、1009b、1010-1~1010-4…光スイッチ、
11-1、11-1-1~11-1-P、11-2、11-2-1~11-2-Q…ポート、
20…制御部、
21、41、411、412…光トランシーバ、
22、42、237…光送信器、
23、43、232、236、262…光受信器、
25…波長制御部、
26、320…光SW制御部、
30…光通信ネットワーク、
31…WDMアクセスリングネットワーク、
32-1~32-r…Add/Dropノード、
33…分波部、
35…合波部、
40、40-1~40-M、40a-1~40a-3、40b-1~40b-3、40c-1~40c-3、40a-1-1、40a-1-2、40-p-1~40-p-Np、40-p-N、40-p~40-(p+N)…加入者装置、
46-1、46-3…ユーザ、
46-2…モバイル基地局、
50、50-1、50-2、50-1-p~50-1-(p+N)、50-1-p1~50-1-pN、50-1-p-1~50-p-Np、50-2-1~50-2-q、50-2-(N-1)、50-2-N、50-2-q-1~50-2-q-N、50-2-(1+N)、53、54a、54b、54c、54d、92、93-1~93-N、501、503、504、511、512、521、522、531、533、534、540、541、542、543-1、543-2、544、545、546、547、548、549、551、551a、552、552b、555、560、561、562、563、570、571、572、573、574、575、581、582、583、584、585、586、587、588、589…伝送路、
51、73…折り返し伝送路、
55、55-1、55-2、55-p、55-(p+1)、56、57a、57b、61、66、69、71、72、251、251a、251b、252、252b、254、258、259、270、271、272、273、502、507…パワースプリッタ、
58、59…分配部、
60、60a~60h、65…監視部、
67、68、80、80a、80b、80c、81、89、97…WDM装置、
82a-1~82a-n、82b-1~82b-m、241、247、458…合波器、
83a-1~83a-n、83b-1~83b-m、242、248、457…分波器、
85、610…O/E変換部、
86、620…処理実行部、
87、630…E/O変換部、
88…記憶部、
90、91…多重通信伝送路、
100、101、102、103、104、105、106、107、108、109、110、111、112、113、114、115、116、117…光アクセスシステム、
200、200a~200e、201、202、203、204、205、206、207、208、209、2010、2011、2012、2013、2014、2015、2016…光ゲートウェイ、
220、238、243、244、245、249、256、257…波長合分波器、
230、235…制御部、
231、261…波長分波器、
233、269…波長可変送信器、
250、250a、250b、253、255…分岐部、
260、265…監視部、
266…波長可変光受信器、
267…監視部、
268…波長可変受信器、
300…オペレーションシステム、
301…制御部、
310…波長制御部、
350…管理データベース、
452…可変波長受信器、
453…波長可変フィルタ、
459、459a~459e…WDMフィルタ、
84、600…電気処理部、
861…プロセッサ、
862…アクセラレータ
10、10a、10b、10c、10d、10e、10f、10g、34、95a-1、95a-2、95b-1、95b-2、96a-1、96a-2、96b-1、96b-2、210、210a-1~210a-2、210b、210c-1~210c-2、210d-2、210e-1~210e-2、211、212a、212b、212c、1001、1002、1003、1004、1005、1006、1007、1008、1009a、1009b、1010-1~1010-4…光スイッチ、
11-1、11-1-1~11-1-P、11-2、11-2-1~11-2-Q…ポート、
20…制御部、
21、41、411、412…光トランシーバ、
22、42、237…光送信器、
23、43、232、236、262…光受信器、
25…波長制御部、
26、320…光SW制御部、
30…光通信ネットワーク、
31…WDMアクセスリングネットワーク、
32-1~32-r…Add/Dropノード、
33…分波部、
35…合波部、
40、40-1~40-M、40a-1~40a-3、40b-1~40b-3、40c-1~40c-3、40a-1-1、40a-1-2、40-p-1~40-p-Np、40-p-N、40-p~40-(p+N)…加入者装置、
46-1、46-3…ユーザ、
46-2…モバイル基地局、
50、50-1、50-2、50-1-p~50-1-(p+N)、50-1-p1~50-1-pN、50-1-p-1~50-p-Np、50-2-1~50-2-q、50-2-(N-1)、50-2-N、50-2-q-1~50-2-q-N、50-2-(1+N)、53、54a、54b、54c、54d、92、93-1~93-N、501、503、504、511、512、521、522、531、533、534、540、541、542、543-1、543-2、544、545、546、547、548、549、551、551a、552、552b、555、560、561、562、563、570、571、572、573、574、575、581、582、583、584、585、586、587、588、589…伝送路、
51、73…折り返し伝送路、
55、55-1、55-2、55-p、55-(p+1)、56、57a、57b、61、66、69、71、72、251、251a、251b、252、252b、254、258、259、270、271、272、273、502、507…パワースプリッタ、
58、59…分配部、
60、60a~60h、65…監視部、
67、68、80、80a、80b、80c、81、89、97…WDM装置、
82a-1~82a-n、82b-1~82b-m、241、247、458…合波器、
83a-1~83a-n、83b-1~83b-m、242、248、457…分波器、
85、610…O/E変換部、
86、620…処理実行部、
87、630…E/O変換部、
88…記憶部、
90、91…多重通信伝送路、
100、101、102、103、104、105、106、107、108、109、110、111、112、113、114、115、116、117…光アクセスシステム、
200、200a~200e、201、202、203、204、205、206、207、208、209、2010、2011、2012、2013、2014、2015、2016…光ゲートウェイ、
220、238、243、244、245、249、256、257…波長合分波器、
230、235…制御部、
231、261…波長分波器、
233、269…波長可変送信器、
250、250a、250b、253、255…分岐部、
260、265…監視部、
266…波長可変光受信器、
267…監視部、
268…波長可変受信器、
300…オペレーションシステム、
301…制御部、
310…波長制御部、
350…管理データベース、
452…可変波長受信器、
453…波長可変フィルタ、
459、459a~459e…WDMフィルタ、
84、600…電気処理部、
861…プロセッサ、
862…アクセラレータ
Claims (7)
- 複数の伝送路のうちのいずれかの伝送路から入力された光信号を、前記複数の伝送路のうちの他の伝送路に出力する光スイッチと、
光信号が前記光スイッチに入力される側の伝送路において光信号を中継する監視部と、
前記監視部を介して、加入者装置の光信号に、波長、時刻、偏波、モード、符号、周波数、コア、芯線、又は、それらの組合せである波長等を割り当てる波長制御部と、
前記波長等が割り当てられた後では、前記入力される側の伝送路を介して前記光スイッチに入力された光信号が前記他の伝送路に出力されるように前記光スイッチを制御する光スイッチ制御部と、
を備える光通信装置。 - 前記光スイッチ制御部は、前記波長等が割り当てられる前では、前記入力される側の伝送路を介して前記光スイッチに入力された光信号が前記他の伝送路に出力されないように前記光スイッチを制御する、
請求項1に記載の光通信装置。 - 複数の伝送路のうちのいずれかの伝送路から入力された光信号を、前記複数の伝送路のうちの他の伝送路に出力する第1の光スイッチと、
前記第1の光スイッチにカスケード接続される第2の光スイッチと、
光信号が前記第1の光スイッチに入力される側の伝送路において光信号を中継する監視部と、
前記監視部を介して、加入者装置の光信号に、波長、時刻、偏波、モード、符号、周波数、コア、芯線、又は、それらの組合せである波長等を割り当てる波長制御部と、
前記波長等が割り当てられた後では、前記入力される側の伝送路を介して前記第1の光スイッチに入力された光信号が前記他の伝送路に出力されるように前記第1の光スイッチ及び前記第2の光スイッチを制御する光スイッチ制御部と、
を備える光通信装置。 - 前記光スイッチ制御部は、前記波長等が割り当てられる前では、前記入力される側の伝送路を介して前記第1の光スイッチに入力された光信号が前記他の伝送路に出力されないように前記第1の光スイッチ及び前記第2の光スイッチを制御する、
請求項3に記載の光通信装置。 - 複数の加入者装置と、請求項1から請求項4のいずれか一項に記載の光通信装置とを備える光通信システム。
- 光通信装置が実行する光通信方法であって、
複数の伝送路のうちのいずれかの伝送路から入力された光信号を、前記複数の伝送路のうちの他の伝送路に出力する光スイッチステップと、
光信号が光スイッチに入力される側の伝送路において光信号を中継する監視ステップと、
光信号を中継する監視部を介して、加入者装置の光信号に、波長、時刻、偏波、モード、符号、周波数、コア、芯線、又は、それらの組合せである波長等を割り当てる波長制御ステップと、
前記波長等が割り当てられた後では、前記入力される側の伝送路を介して前記光スイッチに入力された光信号が前記他の伝送路に出力されるように前記光スイッチを制御する光スイッチ制御ステップと、
を含む光通信方法。 - 光通信装置が実行する光通信方法であって、
複数の伝送路のうちのいずれかの伝送路から入力された光信号を、前記複数の伝送路のうちの他の伝送路に出力する第1の光スイッチステップと、
光信号が第1の光スイッチに入力される側の伝送路において光信号を中継する監視ステップと、
監視部を介して、加入者装置の光信号に、波長、時刻、偏波、モード、符号、周波数、コア、芯線、又は、それらの組合せである波長等を割り当てる波長制御ステップと、
前記波長等が割り当てられた後では、前記入力される側の伝送路を介して前記第1の光スイッチに入力された光信号が前記他の伝送路に出力されるように、前記第1の光スイッチにカスケード接続された第2の光スイッチと前記第1の光スイッチとを制御する光スイッチ制御ステップと、
を含む光通信方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/040991 WO2022091394A1 (ja) | 2020-10-30 | 2020-10-30 | 光通信装置、光通信システム及び光通信方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/040991 WO2022091394A1 (ja) | 2020-10-30 | 2020-10-30 | 光通信装置、光通信システム及び光通信方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022091394A1 true WO2022091394A1 (ja) | 2022-05-05 |
Family
ID=81382142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/040991 WO2022091394A1 (ja) | 2020-10-30 | 2020-10-30 | 光通信装置、光通信システム及び光通信方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022091394A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010098544A (ja) * | 2008-10-16 | 2010-04-30 | Nippon Telegr & Teleph Corp <Ntt> | 光伝送ネットワークシステム、光伝送装置、及びそれらを用いた通過帯域割り当て方法 |
JP2013120996A (ja) * | 2011-12-06 | 2013-06-17 | Nippon Telegr & Teleph Corp <Ntt> | 光伝送システム |
JP2013201517A (ja) * | 2012-03-23 | 2013-10-03 | Fujitsu Ltd | 光伝送システムの制御方法、光伝送装置、制御装置及び光伝送システム |
JP2014508429A (ja) * | 2011-02-28 | 2014-04-03 | 日本電気株式会社 | 波長パス制御システム、波長パス制御方法および波長パス制御用プログラム記憶媒体 |
JP2018117189A (ja) * | 2017-01-16 | 2018-07-26 | 富士通株式会社 | 光伝送装置および伝送方法 |
JP2018133707A (ja) * | 2017-02-15 | 2018-08-23 | 日本電信電話株式会社 | 光伝送システム |
-
2020
- 2020-10-30 WO PCT/JP2020/040991 patent/WO2022091394A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010098544A (ja) * | 2008-10-16 | 2010-04-30 | Nippon Telegr & Teleph Corp <Ntt> | 光伝送ネットワークシステム、光伝送装置、及びそれらを用いた通過帯域割り当て方法 |
JP2014508429A (ja) * | 2011-02-28 | 2014-04-03 | 日本電気株式会社 | 波長パス制御システム、波長パス制御方法および波長パス制御用プログラム記憶媒体 |
JP2013120996A (ja) * | 2011-12-06 | 2013-06-17 | Nippon Telegr & Teleph Corp <Ntt> | 光伝送システム |
JP2013201517A (ja) * | 2012-03-23 | 2013-10-03 | Fujitsu Ltd | 光伝送システムの制御方法、光伝送装置、制御装置及び光伝送システム |
JP2018117189A (ja) * | 2017-01-16 | 2018-07-26 | 富士通株式会社 | 光伝送装置および伝送方法 |
JP2018133707A (ja) * | 2017-02-15 | 2018-08-23 | 日本電信電話株式会社 | 光伝送システム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4676531B2 (ja) | 光アクセスネットワークシステム | |
US6532320B1 (en) | Equipments, transpondor and methods for optical fiber transmission | |
US7369765B2 (en) | Optical network with selective mode switching | |
US7546036B2 (en) | Hybrid passive optical network using shared wavelengths | |
US7684705B2 (en) | Distribution node for a wavelength-sharing network | |
JP7525795B2 (ja) | 光スイッチングシステム、光通信システム及び光通信方法 | |
US20080181605A1 (en) | Multi-degree optical node architectures | |
WO2022091397A1 (ja) | 光通信装置、光通信システム及び光通信方法 | |
US9331807B2 (en) | Service edge hub device and methods in an optical network node | |
US20070092252A1 (en) | Upgradeable passive optical network | |
JP2006020308A (ja) | 光ネットワーク及び光トラフィックを通信する方法 | |
JP4538302B2 (ja) | 光サブネットを有する光リングネットワーク及び方法 | |
WO2021131170A1 (ja) | 光通信装置、光通信システム及び光通信方法 | |
WO2022091396A1 (ja) | 光通信装置、光通信システム及び光通信方法 | |
CN106160840B (zh) | 波分复用无源光网络光纤链路分布式保护装置及其保护方法 | |
JP3574754B2 (ja) | 光パスクロスコネクト装置 | |
WO2022091394A1 (ja) | 光通信装置、光通信システム及び光通信方法 | |
WO2022091392A1 (ja) | 光通信装置、光通信システム及び光通信方法 | |
WO2022091387A1 (ja) | 光通信装置、光通信システム及び光通信方法 | |
WO2022091388A1 (ja) | 光通信装置、光通信システム及び光通信方法 | |
WO2022091385A1 (ja) | 加入者装置、光通信システム及び光信号監視方法 | |
WO2022091393A1 (ja) | 光通信装置、光通信システム及び光通信方法 | |
JP7343821B2 (ja) | 光通信システム及び光信号処理方法 | |
JP2003124911A (ja) | 光通信システム | |
Cheung et al. | Wavelength-selective circuit and packet switching using acousto-optic tunable filters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20959909 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20959909 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |