WO2022089651A1 - 一种球囊扩张支架系统用长球囊及其制备方法 - Google Patents

一种球囊扩张支架系统用长球囊及其制备方法 Download PDF

Info

Publication number
WO2022089651A1
WO2022089651A1 PCT/CN2021/128090 CN2021128090W WO2022089651A1 WO 2022089651 A1 WO2022089651 A1 WO 2022089651A1 CN 2021128090 W CN2021128090 W CN 2021128090W WO 2022089651 A1 WO2022089651 A1 WO 2022089651A1
Authority
WO
WIPO (PCT)
Prior art keywords
balloon
winding
flaps
distal
proximal
Prior art date
Application number
PCT/CN2021/128090
Other languages
English (en)
French (fr)
Inventor
张万谦
吴波
李海锋
Original Assignee
元心科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 元心科技(深圳)有限公司 filed Critical 元心科技(深圳)有限公司
Priority to CN202180012385.1A priority Critical patent/CN115103703A/zh
Publication of WO2022089651A1 publication Critical patent/WO2022089651A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/958Inflatable balloons for placing stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters

Definitions

  • the invention belongs to the technical field of medical devices, in particular to a long balloon and a preparation method thereof, and more particularly to a long balloon for a balloon expansion stent system and a preparation method thereof.
  • Balloon-expandable stent system is an effective way to treat peripheral vascular diseases such as atherosclerotic narrowing or blockage of lower extremity vessels.
  • the balloon stent system expands the stent through balloon expansion when implanting the diseased blood vessel, and the expanded stent makes the diseased blood vessel unobstructed, and the balloon shrinks quickly and withdraws from the body after being decompressed.
  • the balloon flap has a good effect. After the pressure is removed, the balloon still maintains the original flap effect, which reduces the diameter significantly, reduces the resistance of the balloon to withdraw from the blood vessel, and can effectively improve the success rate of the operation.
  • the balloon Before the balloon and the stent are crimped, the balloon needs to be folded to make the diameter of the balloon reach a smaller value so that it can be assembled with the stent.
  • the flaps of the long balloon often have uneven shrinkage effects: due to the low pressure generated, the balloon can only be partially folded, so that both ends of the balloon remain in a flapped state, while the middle part of the flap has a flapping effect. disappear, which results in a flat, straight, C-shaped, or S-shaped shape in the middle of the balloon, which greatly increases the inner diameter and resistance of the balloon when it is withdrawn, so that the balloon has more resistance when removed from the body than when entered Large diameters, which can make retraction difficult, stent displacement, or cause complications. Therefore, effectively solving the problem of long balloon crease failure has very important application value in the clinical operation.
  • the current general production method of the balloon on the market is to first fold the wings of the balloon so that the balloon has a certain number of wings, and then roll it so that the wings are tightly rolled together. Since the balloon does not impose constraints on the flaps after the flaps are folded and wound, the flaps will spread out after being placed for a period of time, resulting in an increase in the outer diameter of the balloon. The balloon is protected to prevent damage to the balloon surface during transport.
  • patent application CN 110743089 A discloses a balloon protection sleeve, the balloon protection sleeve includes an inner sleeve and an outer sleeve, and the inner sleeve is provided with two symmetrical
  • the first incision or the inner sleeve is formed by a belt-like structure wrapped around the outside of the balloon.
  • the balloon flaps can be protected from falling off, and the balloon surface can also be protected from damage.
  • the balloon still cannot fundamentally solve the problem of uneven contraction of the balloon flaps at the moment of pumping.
  • the present invention provides a long balloon for a balloon-expandable stent system and a preparation method thereof.
  • the flaps will not fail, the flaps will shrink evenly, and the balloon flaps will not be scattered and the outer diameter will not increase during transportation, so that the surface of the balloon will not be damaged.
  • One aspect of the present invention provides a long balloon for a balloon-expandable stent system, the balloon has a proximal end, a distal end opposite to the proximal end, and a middle portion between the proximal end and the distal end, wherein the middle portion of the balloon has a stable n flaps, where n is an integer greater than or equal to 3.
  • n is an integer greater than or equal to 3.
  • the number of flaps in the middle of the balloon is 3-12, and further preferably, the number of flaps in the middle of the balloon is 3-8.
  • the number n of flaps is 4, in other embodiments, the number n of flaps is 5, and in some other embodiments, n is 10, In some other embodiments, the number of flaps is seven.
  • stable means that no matter in long-term placement, in bumpy transportation, or in the process of repeated expansion and re-contraction, various parameters of the shape of the middle part of the balloon are the same. It is stable, including the depth and width of the flaps, the angle between adjacent flaps, etc. are basically stable, and the fluctuation range is within 20%, that is, the n flaps are kept unchanged, and the depth and width of each flap are The fluctuation of the angle between adjacent flaps is very small, not more than 20%, and further within 15%, or even within 10%.
  • the balloon provided by the present invention is a long balloon with a length of more than 38mm; further, the length of the balloon provided by the present invention is 38mm-300mm; further, the length of the balloon provided by the present invention can be The value of the interval formed by any two values in the above interval, for example, the length of the long balloon provided by the present invention may be 50mm-117mm, 118mm-300mm, 73mm-289mm, and so on.
  • the length of the balloon is 38mm, while in other embodiments, the length of the balloon is 50mm, 60mm, 70mm, 80mm, 90mm, 100mm, 118mm, 130mm, 140mm, 150mm, 170mm, 190mm, 210mm, 230mm, 250mm, 270mm, 285mm, 300mm, etc. Any value within the range of 38mm-300mm.
  • the present invention provides the diameter of the proximal end of the long balloon, the distal end opposite the proximal end, and the middle portion between the proximal end and the distal end And the fluctuation range of the diameter of the balloon in the three parts is within 15%; the fluctuation range of the balloon diameter between the three parts of the proximal end, the distal end and the middle part of the balloon in the present invention can be any value within the above-mentioned value range, or Can be variable.
  • the diameter fluctuation range of the three-site balloon is within 10%; while in other embodiments, the diameter fluctuation range of the three-site balloon may be within 7.5%; in still other embodiments , the diameter fluctuation range of the three parts of the balloon can be within 5%.
  • the diameter fluctuation range between the middle part and the proximal part of the balloon, and between the middle part and the distal part of the balloon can be different.
  • the fluctuation of the diameter is 2.3%, and so on.
  • the proximal end, the distal end and the middle portion of the balloon provided by the present invention have the same number of flaps. In some embodiments, there are 3 flaps at the proximal end, the distal end and the middle portion of the balloon, in other embodiments, the number of the balloon flaps is 6, and in some other embodiments, The number of balloon flaps is 8.
  • the uniformity and uniformity of the balloon flap provided by the present invention can reach more than 80% after multiple expansion and contraction, and further, can reach more than 85%; further, after the balloon flap is expanded and contracted multiple times, the The uniformity and uniformity can reach more than 90%.
  • multiple expansions refer to 2-10 expansions, further refers to 2-8 expansions, and further refers to 2-6 expansions.
  • the uniformity in the present invention means that the shape and diameter of the middle, proximal and distal ends of the balloon are uniform after multiple expansions and contractions; the uniformity in the present invention means that after each expansion and contraction and the next expansion
  • the size of the included angle formed between each two adjacent flaps may be equal or unequal, when the included angle formed between the two adjacent flaps
  • the fluctuation range of the size of the adjacent two included angles is within 20%, and further, the fluctuation range of the adjacent two included angles can be within 13%, and further, the fluctuation range of the adjacent two included angles is within 8%. That is, when a certain included angle is 60°, the size of its adjacent included angle can fluctuate between 48-72°, 52.2°-67.8°, or 55.2°-64.8° fluctuated, but the shape of the middle, proximal and distal ends of the balloon was uniform.
  • the material of the balloon provided in the present invention is mainly selected from some flexible or soft materials, including but not limited to nylon, polyetheramide (Pebax) and the like.
  • the above-mentioned technical solutions provided by the present invention are mainly aimed at the balloon length greater than or equal to 38mm.
  • the balloon length is 38mm or more, the phenomenon that the flaps disappear in the middle of the balloon during placement or use is very likely to occur. Therefore, this The invention provides a method of ensuring long-term stability of the middle of a long balloon with flaps that are substantially identical (uniformity and uniformity ⁇ 80%) to both ends of the balloon. That is, another aspect of the present invention also provides a method for preparing the above-mentioned balloon, comprising the following steps:
  • n is an integer greater than or equal to 3;
  • the balloon winding conditions are as follows: the winding temperature T is 25 to 90° C., the winding pressure P is 10 psi to 200 psi, and the winding time t is 10 s to 90 s; Further, the coiling temperature T is 25-90°C, the coiling pressure P is 51psi-200psi, and the coiling time t is 10s-90s; further, the coiling temperature T is 25-90°C, the coiling The pressure P is 51psi to 200psi, and the winding time t is 10s to 90s.
  • the above three parameters can be arbitrarily matched, and are not limited to one or several values.
  • the conditions of the balloon winding are that the temperature T of winding is 75°C, the pressure P of winding is 100 psi, and the winding time t is 30 s; while in other embodiments, the balloon is wound
  • the temperature T is 45°C
  • the winding pressure P is 150psi
  • the winding time t is 30s and so on.
  • the winding can cover more than 80% of the entire balloon area, the covered area or the uncovered area is arbitrary, and the uncovered area can be continuous
  • One segment can also be divided into multiple segments, including 2 segments, 3 segments, 4 segments, 5 segments, etc., and each segment can be uniform, equal in length, or unequal in length. For example, in some embodiments, 10% of the areas at the edges of both ends of the balloon are not rolled; in other embodiments, 10% of the areas at the two ends near the middle are not performed. Coiled; in some other embodiments, the balloon is 15% uncoiled at the proximal end, 5% uncoiled at the distal end, and the proximal uncoiled region is divided into 3 segments.
  • the sum of the products of the winding parameters wound in the middle of the balloon is greater than the sum of the products of the winding parameters at both ends, wherein the winding parameters mainly include the winding pressure P , the winding temperature T, the number of windings N, and the winding time t. That is, ⁇ N middle *P middle *T middle *t middle > ⁇ N proximal *P proximal *T T proximal *t proximal , and/or ⁇ N middle *P middle *T middle *t middle > ⁇ N far end * Premote * Tremote * tremote , where:
  • the middle part of N is the number of windings at the middle of the balloon, the proximal end of N is the number of times the proximal end of the balloon is wound, and the distal end of N is the number of times the distal end of the balloon is wound .
  • the above formula can also be equivalent to ⁇ N middle * P middle * t middle > ⁇ N proximal end *P proximal end *t proximal end , and/or ⁇ N middle *P middle *t middle > ⁇ N distal end *P distal end *t distal end .
  • winding of the present invention can be wound multiple times, and the number of windings is at least twice, and can be 2-10 times, and further can be 2-5 times, and each winding is set
  • the winding pressure, winding time and winding temperature can be different.
  • the above formula may not have the appearance of the summation symbol " ⁇ ", that is, it can be directly expressed as the middle part of N*P Middle * Tmiddle * tmiddle > Nproximal * Pproximal * Tproximal * tproximal , and/or Nmiddle * Pmiddle * Tmiddle * tmiddle > Ndistal * Pdistal * Tdistal *t far end ; when there are two or more values for any of the three parameters of winding pressure, winding time and winding temperature during multiple winding processes, the above formula should be the summation form, such as ⁇ N middle *P middle *T middle *t middle > ⁇ N proximal *P proximal *T proximal *t proximal , and/or ⁇ N middle *P middle *T middle *t middle > ⁇ N far end *P far end *T far end *t far end
  • At least part of the middle part of the balloon is wound more times than the distal and proximal end regions, that is, N middle part >N proximal end >N distal end .
  • the total pressure on the middle part of the balloon during winding is greater than the total winding pressure on the proximal end and the distal end, that is, the total pressure in the middle of the balloon is greater than the total pressure at the proximal end and the total pressure at the distal end .
  • the pressure on the middle part is greater than the pressure on the proximal end and the distal end in a single time, and it can also be that the sum of the pressure on the middle part is greater than the sum of the pressure on the proximal end and the distal end for multiple times.
  • the total pressure in the middle part of the balloon is greater than or equal to 51 psi
  • the total pressure in the middle part of P is greater than or equal to 51 Psi
  • the total pressure in the middle part of P is greater than or equal to 60 Psi
  • the total pressure in the middle part of P is greater than or equal to 70 Psi; in other cases
  • the total pressure on each part of the balloon is respectively greater than 51Psi, that is, P total ⁇ 51Psi, that is, the total pressure on the middle of the balloon, the proximal end of the balloon and the distal end of the balloon is greater than 51 Psi. 51 Psi; while in some other embodiments, P total > 60 Psi.
  • the P total in the present invention is the general term of the central total of P, the total of the proximal end of P and the total of the distal end of P, and the total of t represents the total of the middle of t, the total of t of the near end and the total of t of the distal end , such as the total of P ⁇ 51Psi means that the total of P in the middle, the total of P near the end and the total of P at the far end are all greater than or equal to 51 Psi.
  • the total coiling time of the middle part is greater than the total coiling time of the proximal end and the distal end, that is, t center total > t proximal total ⁇ t distal total , winding
  • the total time can be the time of a single winding, or the sum of multiple winding times, that is, the total time of multiple windings.
  • the entire area of any area in the proximal, distal or middle area of the balloon is wound, then the number of times the area is wound is 1. If only a partial/partial area is wound, Then the number of windings is the proportion of the whole area occupied by the area to be wound. For example, in the middle of the balloon only The area of is wound, then the middle part of the number of windings N is Second, if the balloon proximal The area of is coiled, then the number of coils N near the end is times, if the entire area of the distal end of the balloon is coiled once, along with the region is wrapped a second time, then the distal region is wrapped times, and so on.
  • the wrapping when the wrapping is performed multiple times, can be from the proximal end to the distal end of the balloon, or from the distal end to the proximal end, and the multiple wrapping can be performed from different ends
  • the multiple wrapping can also be wound from the same end.
  • multiple windings must satisfy that the area in the middle of the balloon greater than 1/4 has been wound more than or equal to 2 times.
  • the end of the balloon starts to be wound at least one winding is to the entire balloon or more than 80% of the entire balloon area, while the middle part of the balloon is wound. The above area was wound at least twice.
  • the pressure and winding time are greater than the pressure or winding time on the proximal or distal end.
  • the middle part of the long balloon can maintain a long-term stable flap shape.
  • Coating damage on the other hand, it can reduce the number of flaps at both ends of the balloon/pressure/time of flapping, and avoid damage to both ends of the balloon.
  • the middle area of the balloon is wound for the same number of times as the proximal and distal ends of the balloon, the temperature and time during winding are the same, and only the pressure applied to the middle
  • the coiling pressure, the number of times of coiling and the coiling temperature are the same in the middle part of the balloon, and only the time used for coiling in the middle part is longer than that at the proximal end of the balloon and the far end of the balloon.
  • N middle part >N near end ⁇ N far end it is not It must be satisfied that the winding temperature, winding pressure and winding time used in the middle, proximal and distal ends of the balloon are the same, as long as other parameters can ensure the final ⁇ N middle * P middle * T middle * t middle > ⁇ N near end *P near end *T near end *t near end , and/or ⁇ N middle *P middle *T middle *t middle > ⁇ N far end *P far end *T far end *t far end , better, other parameters can ensure the final and/or That's it.
  • Preheat at 25°C ⁇ 90°C for 15min ⁇ 30min the function of preheating is to make the balloon folded evenly after heating, so as to ensure the uniformity of the flaps of various parts of the balloon. It can ensure better effect of folding wings.
  • the balloons in the present invention are all prepared from polymer materials, and before preheating the balloons, plasma treatment is also included on the surface of the balloons.
  • plasma treatment when plasma treatment is performed on the surface of the balloon, the surface of the balloon polymer will undergo changes in physical and chemical properties, such as the intensification of molecular motion, the adjustment of the position of molecular chains, the breaking of chemical bonds, and the increase in the temperature of the material surface.
  • the roughness of the balloon surface increases and the surface properties change. Therefore, by performing plasma treatment on the balloon after the flaps, the friction and adhesion between the flaps formed after the flaps of the balloon can be increased, so that the interaction force between flaps can be enhanced, and the balloon can be further improved.
  • the effect of folded wings are all prepared from polymer materials, and before preheating the balloons, plasma treatment is also included on the surface of the balloons.
  • the balloon folding includes the following steps:
  • proximal end and distal end are used in this application, where “proximal end” refers to the end close to the operator and “distal end” refers to the end away from the operator.
  • the value of the interval range involved in the present invention is not limited to the provided interval range, but should be the value of a new interval formed by any two values in the interval, as described in the present invention.
  • the coiling pressure of the balloon is 10psi ⁇ 200psi, wherein the coiling pressure of the balloon is not limited to the range of 10psi ⁇ 200psi, and can be 191 integers between 10-200.
  • the balloon prepared by the present invention can be well contracted after use, ensuring that the length of the cylindrical object formed after the contraction in any certain diameter direction is far smaller than the diameter of the stent and the blood vessel.
  • the balloon will not touch the stent. In the process of dragging the balloon, the stent will not be displaced, and the drugs and polymers outside the stent will not be scraped off, which will cause problems such as hyperplasia of peripheral blood vessels.
  • the flaps on the surface of the balloon prepared by the present invention will not spread out after being placed for a long time, and still maintain the original shape;
  • the balloon can be restored well after multiple openings, and the flap depth change or spreading rate will not be greater than 20%.
  • the balloons made of soft or flexible materials have good resilience. After the balloon is prepared for a period of time, different positions of the balloon will have different degrees of rebound. to at least partially restore the previously prepared balloon with multiple flaps to a flapless state, thereby causing the portion of the balloon that is restored to the flapless state to have a significantly larger diameter, resulting in a stent during retraction Displacement and other adverse effects, especially the longer the balloon length, the greater the degree of disappearance of the flaps in the middle of the balloon, and the greater the probability of ultimately causing adverse consequences during the operation.
  • the thermoplastic semi-crystalline material Pebax its performance is between thermoplastic elastomer and rubber body, with good resilience and elastic recovery.
  • the conventional method of flapping the balloon is placed in the air, and the middle of the balloon will slowly rebound to recover some of the deformation.
  • the middle flap After being prepared by the method of the present invention, no matter whether the balloon made of Pebax is placed or transported for a long time or in the process of multiple expansion and contraction, the middle flap will not disappear, and the middle flap can still be Keep more than 80% of the original shape.
  • Example 1 is a comparison diagram of the balloon prepared in Example 1 and the balloon prepared in Comparative Example 1;
  • Figure 2 is a comparison diagram of the balloon prepared in Example 1 and the balloon prepared in Comparative Example 2;
  • FIG. 3 is a cross-sectional comparison diagram of the balloon prepared in Example 1 and the balloon prepared in Comparative Example 2.
  • FIG. 3 is a cross-sectional comparison diagram of the balloon prepared in Example 1 and the balloon prepared in Comparative Example 2.
  • the measurement of the balloon conformity rate is mainly through the non-contact Micro VU measuring instrument to measure the newly prepared balloon in the contracted state, the balloon after expansion, and the contraction state after repeated expansion and contraction or after long-term placement
  • the diameters of the proximal, middle and distal ends of the balloon are obtained after a series of data processing and calculations.
  • the specific operation steps are as follows:
  • the plasma process parameters described in the present invention are the process parameters described in the above table.
  • the preparation method of the balloon of the present embodiment the balloon adopts the long balloon of Pebax of 5.0mm ⁇ 150mm, and the preparation method comprises the following steps:
  • the distal, middle, and proximal ends of the balloon are sent into the winding die in turn to start winding, and the winding pressures are set as follows: 60psi, 120psi, 60psi, set the winding time to 15s, and complete the flap.
  • the distal, middle, and proximal ends of the deflated balloon maintain three flaps, and the angle between adjacent flaps is about 120°; The end maintains the effect of 3 flaps; the test result of the shape retention rate after 6 times of expansion and contraction reaches 82.7%, and the test result of the shape retention rate of the balloon after 5 times of expansion and contraction after placement for 18 months reaches 82.1%.
  • the preparation method of the balloon of the present embodiment the balloon adopts the long balloon of Pebax material of 4.0mm x 150mm, and the preparation method comprises the following steps:
  • the distal, middle, and proximal ends of the deflated balloon maintain three flaps, and the angle between adjacent flaps is about 120°;
  • the end maintains the effect of 3 flaps, and the angle between adjacent fins is about 120°;
  • the test result of the shape retention rate after 4 expansions and contractions reaches 81.5%, and the test results of the shape retention rate after 4 expansions and contractions for 6 months reach 81.0 %.
  • the balloon of the balloon adopts a long balloon made of Pebax material of 8.0mm x 118mm, and the preparation method includes the following steps: opening the balloon flap machine, preheating for 15min ⁇ 30min , heated to 25°C;
  • Roll the balloon twice set the winding temperature to 25°C, the winding pressure to 200 psi, and the curling aperture to be 0.033 inch.
  • the second winding is completed after setting the winding time 90 s, and the balloon is obtained after taking it out.
  • the balloon is folded with 3 flaps, and the angle between adjacent flaps is about 120°; the 3 flaps effect is maintained after the number of contractions reaches 6 times; the test result of the shape retention rate after 6 expansions and contractions reaches 90%;
  • the distal, middle, and proximal ends of the deflated balloon maintain three flaps, and the angle between adjacent flaps is about 120°; The end maintains the effect of 3 flaps; the test result reaches 97.1% after 10 times of expansion and contraction, and the test result of the shape retention rate of the balloon after 10 times of expansion and contraction after placement for 8 months reaches 96.3%.
  • the preparation method of the balloon of the present embodiment the balloon adopts a long balloon of nylon material of 8.0mm x 118mm, and the preparation method comprises the following steps:
  • Roll the balloon twice set the winding temperature to 90 °C, the winding pressure to 80 psi, and the crimping aperture to be 0.033 inch, and send two-thirds of the length near the proximal end of the balloon into the winding die to start winding.
  • the winding time After setting the winding time of 15s, the first winding is completed, and then two-thirds of the length near the distal end of the balloon is sent into the winding die to start winding. After the winding time is set to 15s, the second winding is completed. After removal, the balloon is obtained.
  • the distal, middle, and proximal ends of the deflated balloon maintain three flaps, and the angle between adjacent flaps is about 120°; The end maintains the effect of 3 flaps; the test result of the shape retention rate after 8 times of expansion and contraction reaches 86.2%, and the test result of the shape retention rate of the balloon after 8 times of expansion and contraction after placement for 8 months reaches 85.7%.
  • the preparation method of the balloon of the present embodiment the balloon adopts the long balloon of Pebax material of 4.0mm x 118mm, and the preparation method comprises the following steps:
  • Roll the balloon twice set the winding temperature to 65 °C, the winding pressure to 60 psi, and the crimping aperture to be 0.033 inch, and send two-thirds of the length near the proximal end of the balloon into the winding die to start winding.
  • the first winding is completed, and then two-thirds of the length near the distal end of the balloon is sent into the winding die to start winding, and the second winding is completed after the winding time is set to 30s. After removal, the balloon is obtained.
  • the distal, middle, and proximal ends of the deflated balloon all maintained three flaps, and the angle between adjacent flaps was tested to be 120°;
  • the 3 flaps maintain the effect of 3 flaps, and the angle between the adjacent flaps is 120°;
  • the test result of the shape retention rate after 6 expansions and contractions reaches 91.6%; after 3 months of placement, the test results of the shape retention rate after 6 expansions and contractions reached 92.3%.
  • the preparation method of the balloon of the present embodiment the balloon adopts the long balloon of Pebax of 7.0mm x 118mm, and the preparation method comprises the following steps:
  • the distal end, middle and proximal end of the balloon are sent into the winding die in turn to start winding, and the winding pressure is set as follows: 100psi, 100psi, 100psi, set the winding time of the distal end, middle end, and proximal end to 15s, 30s, and 15s in turn to complete the flap.
  • the distal, middle, and proximal ends of the deflated balloon maintain three flaps, and the angle between adjacent flaps is about 120°; The three-lobe effect is maintained at both ends; the test result of the shape retention rate after 7 expansions and contractions reaches 91.2%, and the shape retention rate of the balloon after long-distance transportation of up to 1200 kilometers is 90.8%.
  • the preparation method of the balloon of the present embodiment the balloon adopts the long balloon of Pebax of 4.0mm x 300mm, and the preparation method comprises the following steps:
  • the distal, middle, and proximal ends of the balloon are sent into the winding die in turn to start winding, and the winding pressures are set as follows: 50psi, 100psi, 50psi, set the distal, middle, and proximal winding times to 30s, 30s, and 30s in turn to complete the flap
  • the distal, middle, and proximal ends of the deflated balloon maintain three flaps, and the angle between adjacent flaps is about 120°; The three-valve effect was maintained at both ends; the test result of the shape retention rate reached 90.8% after 10 times of expansion and contraction, and the test result of the shape retention rate of the balloon after 10 times of expansion and contraction after placement for 8 months reached 90.0%.
  • the preparation method of the balloon of the present embodiment the balloon adopts the long balloon of Pebax of 4.0mm x 300mm, and the preparation method comprises the following steps:
  • Roll the balloon four times set the winding temperature to 65 °C, the winding pressure to 80 psi, and the crimping aperture to be 0.033 inch, and send two-thirds of the length near the proximal end of the balloon into the winding die to start winding.
  • set the winding time to 15s, complete the winding twice, and then send two-thirds of the length near the distal end of the balloon into the winding die to start winding, set the winding time to 15s, and wind it twice.
  • the balloon is rolled 4 times.
  • the distal, middle, and proximal ends of the deflated balloon maintain three flaps, and the angle between adjacent flaps is about 120°; The 3-valve effect was maintained at both ends; the test result of the shape retention rate after 8 times of expansion and contraction reached 93.9%, and the test result of the shape retention rate of the balloon after 8 times of expansion and contraction after placement for 8 months reached 93.4%.
  • the preparation method of the balloon of the present embodiment the balloon adopts the long balloon of nylon material of 8.0mm ⁇ 118mm, and the preparation method comprises the following steps:
  • the distal, middle, and proximal ends of the deflated balloon maintain three flaps, and the angle between adjacent flaps is about 120°; The end maintains the effect of 3 flaps; the test result of the shape retention rate after 8 times of expansion and contraction reaches 91.8%, and the test result of the shape retention rate of the balloon after 8 times of expansion and contraction after placement for 8 months reaches 92.0%.
  • the preparation method of the balloon of the present embodiment the balloon adopts the long balloon of Pebax of 5.0mm ⁇ 150mm, and the preparation method comprises the following steps:
  • the distal, middle, and proximal ends of the balloon are sent into the winding die in turn to start winding, and the winding pressures are set as follows: 80psi, 140psi, 80psi, set the winding time to 15s, and complete the flap.
  • the distal, middle, and proximal ends of the deflated balloon maintain three flaps, and the angle between adjacent flaps is about 120°; The end maintains the effect of 3 flaps; the test result of the shape retention rate after 6 times of expansion and contraction reaches 83.5%, and the test result of the shape retention rate of the balloon after 5 times of expansion and contraction after placement for 18 months reaches 83.1%.
  • the preparation method of the balloon of the present embodiment the balloon adopts the long balloon of nylon material of 8.0mm ⁇ 118mm, and the preparation method comprises the following steps:
  • Roll the balloon twice set the winding temperature to 83 °C, the winding pressure to 95 psi, and the crimping aperture to be 0.033 inch, and send two-thirds of the length near the proximal end of the balloon into the winding die to start winding.
  • the winding time After setting the winding time of 15s, the first winding is completed, and then two-thirds of the length near the distal end of the balloon is sent into the winding die to start winding. After the winding time is set to 15s, the second winding is completed. After removal, the balloon is obtained.
  • the distal, middle, and proximal ends of the deflated balloon maintain three flaps, and the angle between adjacent flaps is about 120°; The effect of 3 flaps at the end is maintained; the test result of the shape retention rate after 8 expansion and contraction reaches 87.8%, and the test result of the shape retention rate after 8 expansion and contraction of the balloon after placement for 8 months reaches 87.1%.
  • the preparation method of the balloon of the present embodiment the balloon adopts the long balloon of Pebax of 4.0mm x 300mm, and the preparation method comprises the following steps:
  • the distal, middle, and proximal ends of the deflated balloon maintain three flaps, and the angle between adjacent flaps is about 120°; The 3-valve effect was maintained at both ends; the test result of the shape retention rate after 8 times of expansion and contraction reached 93.3%, and the test result of the shape retention rate of the balloon after 8 times of expansion and contraction after placement for 8 months reached 93.0%.
  • the preparation method of the balloon of this comparative example what this balloon adopts is the long balloon of Pebax material of 4.0mm ⁇ 118mm, this preparation method comprises the following steps:
  • the balloon is folded with 3 flaps, and the angle between adjacent flaps is about 120°; when the balloon is deflated for the second time, the middle of the balloon shows a C effect, and the effect of 3 flaps cannot be maintained.
  • the balloon is expanded after 3 months of placement. Re-shrinking takes on a C-shaped structure.
  • the preparation method of the balloon of this comparative example what this balloon adopts is the long balloon of Pebax material of 4.0mm x 118mm, this preparation method comprises the following steps:
  • the balloon surface is pre-plasma
  • Roll the balloon twice set the winding temperature to 50 °C, the winding pressure to 9 psi, and the crimping aperture to be 0.033 inch, and send two-thirds of the length near the proximal end of the balloon into the winding die to start winding.
  • the first winding is completed, and then two-thirds of the length near the distal end of the balloon is sent into the winding die to start winding, and the second winding is completed after the winding time is set to 9s.
  • the balloon is obtained.
  • the angle between adjacent flaps is about 120°; when the balloon is deflated for the second time, there is an S effect in the middle, and the 3 flap flap effect cannot be maintained.
  • FIG. 1 is a comparison diagram of the pressure release of the balloon prepared by the preparation method of Comparative Example 1 and the balloon prepared by the preparation method of Example 1, respectively, wherein, in Comparative Example 1, a single winding is used.
  • this winding method is likely to cause a flat shape in the middle part of the balloon, such as a C-shape or an S-shape (it should be noted that the C-shape or the S-shape here does not appear at the same time, but multiple comparative experiments are carried out, The two situations that appear); while the embodiment 1-8 adopts the winding time or winding pressure in the middle of multiple windings or single windings is greater than the winding time or winding pressure at both ends, and the multiple windings There is an overlapping area around the circle, and the overlapping area is an area between 1/4 and 3/4 of the length of the balloon, so that the middle part of the balloon is fully stressed to prevent the balloon from shrinking after the middle part of the balloon is decompressed. It has a
  • the balloons prepared by the preparation methods of Examples 1-12 have smaller shrinkage dimensions of the decompressed flaps after inflation, and the balloons shrink more tightly.
  • the winding time and the winding pressure are also increased.
  • the winding time is in the range of 10s to 90s
  • the winding pressure is in the range of 10psi to 200psi.
  • the winding pressure and winding time are set in the embodiment of the present invention, which can improve the effect of balloon crease and the heat setting effect of the flap position, eliminate the stress of the folded part of the balloon, and make the balloon expand after
  • shrinking the shrinking size of the flaps is smaller, and the balloon shrinks more tightly; in Example 1, after expanding and shrinking, the 3-wing shape is still maintained, and the shape retention rate reaches more than 80%.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Biophysics (AREA)
  • Child & Adolescent Psychology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Vascular Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一种球囊扩张支架系统用长球囊,长球囊的中部具有和球囊两端相同数目的折翼,球囊的长度大于或等于38mm。一种长球囊的制备方法,将球囊折叠成n个折翼,将折成折翼后的球囊进行卷绕,制备方法简单、方便,同时能确保所制备的长球囊无论是在较长时间的保存后,还是在长途运输过程中,抑或是在多次扩张收缩后均能保持稳定的折翼形态,其直径仍维持在一个较小的范围内。

Description

一种球囊扩张支架系统用长球囊及其制备方法 技术领域
本发明属于医疗器械技术领域,具体涉及一种长球囊及其制备方法,更具体地涉及一种球囊扩张支架系统用长球囊及其制备方法。
背景技术
球囊扩张支架系统是治疗下肢血管粥样硬化性变窄或堵塞等外周血管疾病的有效途径。球囊支架系统在植入病变血管时通过球囊扩张使支架扩张,扩张后的支架使病变血管畅通,球囊抽压后迅速收缩撤出体外。球囊折翼效果好,撤压后球囊仍维持最初折翼的效果,使直径显著缩小,减小球囊从血管内撤出的阻力,能有效的提升手术的成功率。
球囊与支架压握前需对球囊进行折叠处理,使球囊直径达到一个较小的值以便与支架进行装配。然而在现实生产中长球囊折翼往往会出现不均匀的收缩效果:由于所产生的低压使球囊只能部分收拢,从而导致球囊两端仍保持折翼状态,而中间部分折翼效果消失,这样会在球囊的中间部分出现扁平的直线形、C形或S形,从而大大增加球囊撤出时的内径及阻力,使球囊在从身体移除时具有比进入身体时更大的直径,从而导致回撤困难、支架移位或引起并发症。因此,有效解决长球囊折痕失效的问题在临床手术过程中具有十分重要的应用价值。
受材料和技术的限制,目前有关球囊扩张支架系统用长球囊(长度在38mm以上的球囊)的报道并不多,一些改善短球囊收缩性能的方法应用于长球囊也有诸多限制。如专利申请CN101808599A中,采用弹性的扩张保护件,在膨胀时与球囊共同扩大,收缩时产生弹性回复力将球囊尽可能回复至扩张之前球囊的直径,但是这种方法应用于球囊扩张支架系统会影响球囊和支架的压握效果。此外,目前市面上球囊一般的生产方法是先对球囊折翼,使球囊带有特定数目翼片,然后进行卷绕,让翼片紧紧卷握在一起。由于球囊在折翼、卷绕后若不对翼片施加约束,放置一段时间后翼片会散开,导致球囊外径增大,为了避免这种情况发生,一般做法利用保护套管对球囊进行保护,防止运输过程中球囊表面受到损伤。如专利申请CN 110743089 A中公开了一种球囊保护套管,该球囊保护套管包括内层套管和外层套管,所述内层套管沿其轴向设置有两个对称的第一切口或者所述内层套管由缠绕于球囊外部的带状结构形成,使用这种方法可以保护球囊折翼不散落,也可以保护球囊表面不受损伤,但是对于长球囊,仍然无法从根本上解决抽压瞬间球囊折翼收缩不均匀的问题。
发明内容
为了克服上述现有技术中存在的缺陷,本发明提供了一种球囊扩张支架系统用长球囊及其制备方法,该球囊扩张支架系统用长球囊在长期放置或者抽压 瞬间球囊的折翼均不会失效,折翼收缩均匀,同时在运输等过程中球囊折翼不散落,外径不增大,从而使得球囊的表面也不会受损伤。
本发明一方面提出了球囊扩张支架系统用长球囊,该球囊具有近端、与近端相对的远端,以及位于近端与远端之间的中部,其中球囊中部具有稳定的n个折翼,其中n为大于或等于3的整数。优选的,球囊中部的折翼个数为3-12个,进一步优选的,球囊中部折翼个数为3-8个。在一些实施例中,折翼的个数n取值为4,在另一些实施例中,折翼的个数n取值为5,而在其他一些实施例中,n的取值为10,还有一些实施例中,折翼的个数为7。
本发明中所述的“稳定的”是指不论是在长期放置中,还是在颠簸的运输中,抑或是在反复的扩张再收缩的过程中,该球囊的中部的形状的各项参数均为稳定的,包括折翼的深度、宽度、相邻折翼间的夹角等基本都稳定,波动范围在20%以内,即均保持n个折翼不变,同时各个折翼的深度、宽度、相邻折翼间的夹角等波动变化很小,不超过20%,更进一步的在15%以内,甚至在10%以内。
本发明所提供的球囊为长球囊,长度在38mm以上;进一步的,本发明所提供的球囊的长度为38mm-300mm;更近一步的,本发明所提供的球囊的长度可以是上述区间内任意两个值所组成的区间的取值,比如本发明所提供的长球囊的长度可以为50mm-117mm,也可以是118mm-300mm,还可以是73mm-289mm,以此类推。而在本发明的一些实施例中,球囊的长度取值为38mm,而在另一些实施例中,球囊的长度为50mm、60mm、70mm、80mm、90mm、100mm、118mm、130mm、140mm、150mm、170mm、190mm、210mm、230mm、250mm、270mm、285mm、300mm等38mm-300mm区间内的任意值。
本发明所提供长球囊近端、与近端相对的远端和位于近端与远端之间的中部的直径
Figure PCTCN2021128090-appb-000001
且三个部位球囊的直径波动范围在15%以内;本发明中球囊近端、远端和中部三个部位间球囊直径的波动范围可以是在上述取值范围内的任意值,也可以是变化的。如在一些实施例中,三个部位球囊的直径波动范围在10%以内;而在另一些实施例中,三个部位球囊的直径波动范围可以在7.5%以内;还有一些实施例中,三个部位球囊的直径波动范围可以在5%以内。同时球囊中部与近端,以及球囊中部与远端两两之间的直径波动范围可以不一样,如球囊中部与近端的直径的波动为3.5%,而球囊中部与远端之间直径的波动为2.3%,以此类推。
本发明所提供的球囊的近端、远端和中部具有相同的折翼数目。在一些实施例中球囊的近端、远端和中部的折翼均为3个,在另一些实施例中,球囊折翼的个数均为6个,而在其他一些实施例中,球囊折翼的个数为8个。
本发明所提供的球囊折翼多次扩张收缩后其均匀度和均一度均可达到80%以上,进一步的,可以达到85%以上;更进一步的,球囊折翼多次扩张收缩后其均匀度和均一度可以达到90%以上。其中多次扩张是指2-10次扩张,进一步 的指2-8次扩张,更进一步的指2-6次扩张。本发明中的均匀度是指多次扩张、收缩后,球囊中部、近端和远端的形状和直径等是均匀的;本发明中的均一度是指每一次扩张收缩后和下一次扩张收缩后的形状和直径是均一的,基本没有太大的变化,变化的幅度最大不会超过20%,即扩张前与多次扩张收缩后两个收缩状态球囊的直径(R 扩张后-R 扩张前)/R 扩张前≤20%,此处的变化的幅度也指散开率,即散开率=(R 扩张后-R 扩张前)/R 扩张前≤20%。
本发明中所提供的球囊,每两个相邻折翼之间所形成的夹角大小可以是相等的,也可以是不相等的,当相邻两个折翼之间所形成的夹角大小不相等时,相邻两个夹角大小的波动范围在20%以内,进一步地,相邻两夹角的波动范围可在13%以内,更进一步的,相邻两夹角的波动范围在8%以内。即当某一个夹角为60°时,其相邻的夹角的大小可以是在48-72°间波动,也可以是在52.2°-67.8°间波动,还可以在55.2°-64.8°间波动,但是球囊的中部、近端和远端的形状还是均匀的。
本发明中所提供球囊的材质主要选自一些柔性或软性的材料,包括但不限于尼龙、聚醚酰胺(Pebax)等。
本发明所提供的上述技术方案主要是针对球囊长度大于或等于38mm,当球囊长度在38mm及其以上时,在放置或者使用过程中球囊中部非常容易出现折翼消失的现象,因此本发明提供了一种确保长球囊中部长期稳定的具有与球囊两端基本一致(均匀度和均一度≥80%)的折翼的方法。即本发明另一方面还提供了上述球囊的制备方法,包括以下步骤:
将所述球囊折叠成n个折翼,其中n为大于或等于3的整数;
将折成折翼后的球囊进行卷绕。
本发明所提供的球囊的制备方法中,球囊的卷绕条件为:卷绕的温度T为25~90℃,卷绕的压力P为10psi~200psi,卷绕时间t为10s~90s;进一步的,卷绕的温度T为25~90℃,卷绕的压力P为51psi~200psi,卷绕时间t为10s~90s;更进一步的,卷绕的温度T为25~90℃,卷绕的压力P为51psi~200psi,卷绕时间t为10s~90s上述三个参数可以随意搭配,并不局限于某一个或几个取值。如在一些实施例中,球囊卷绕的条件为卷绕的温度T为75℃,卷绕的压力P为100psi,卷绕时间t为30s;而在其他一些实施例中,球囊卷绕的温度T为45℃,卷绕的压力P为150psi,卷绕时间t为30s等等。本发明中通过控制卷绕的次数、卷绕的温度、卷绕压力和卷绕时间,同时使4个参数有效的搭配,能够提高球囊折痕效果及折翼位置热定型效果,消除球囊褶皱部位应力,并使球囊扩张后再收缩时折翼收缩尺寸更小,球囊收缩更为紧密。
本发明所提供的球囊的制备方法中,卷绕可以覆盖到整个球囊的80%以上的区域,所覆盖的区域或者未覆盖的区域具有一定的任意性,未覆盖的区域可以是连续的一段,也可以是分开的多段,包括2段、3段、4段、5段等,各段可以是均匀的、长度相等的,也可以是长度不相等的。如在一些实施例中,在球囊的两端边缘各有10%的区域未进行卷绕;在另一些实施例中在接近中部的 左右紧挨着的两端各有10%的区域未进行卷绕;在其他一些实施例中,球囊近端15%未卷绕,远端5%未卷绕,且近端未卷绕区域分为3段。
本发明所提供的球囊的制备方法,其中球囊中部卷绕的各卷绕参数的乘积之和大于两端各卷绕参数的乘积之和,其中卷绕的参数主要包括卷绕的压力P、卷绕的温度T、卷绕的次数N、卷绕的时间t。即∑N 中部*P 中部*T 中部*t 中部>∑N *P 近端*T 近端*t 近端,且/或∑N 中部*P 中部*T 中部*t 中部>∑N 远端*P 远端*T 远端*t 远端,其中:
N 中部为球囊中部卷绕的次数,N 近端为球囊近端所卷绕的次数,N 远端为球囊远端卷绕的次数,其他参数也可以进行类推,如P 中部代表单次卷绕球囊中部所承受/施加的卷绕压力,T 近端代表单次卷绕球囊近端所承受/施加的卷绕温度;N 中部≥1,N 近端≥1,N 远端≥1。本发明中球囊在卷绕过程中,在一些实施例中,当球囊中部、近端和远端所采用的温度相等时,上述公式也可以等价于∑N 中部*P 中部*t 中部>∑N 近端*P 近端*t 近端,且/或∑N 中部*P 中部*t 中部>∑N 远端*P 远端*t 远端
需要说明的是,本发明的卷绕可以是多次卷绕的,卷绕的次数至少为两次,可以在2-10次,进一步的可以在2-5次,且每次卷绕所设置的卷绕压力、卷绕时间和卷绕温度可以是不同的。当多次卷绕过程中,每次卷绕的卷绕压力、卷绕时间和卷绕温度是相同时,上述公式中可以没有求和符号“∑”的出现,即可以直接为N 中部*P 中部*T 中部*t 中部>N 近端*P 近端*T 近端*t 近端,且/或N 中部*P 中部*T 中部*t 中部>N 远端*P 远端*T 远端*t 远端;当多次卷绕过程中,卷绕压力、卷绕时间和卷绕温度三个参数任意一个存在两个及两个以上的取值时,此时上述公式就应为求和的形式,如∑N 中部*P 中部*T 中部*t 中部>∑N 近端*P 近端*T 近端*t 近端,且/或∑N 中部*P 中部*T *t 中部>∑N 远端*P 远端*T 远端*t 远端
在本发明的上述技术方案中,球囊中部至少部分区域比远端和近端区域卷绕次数多,即N 中部>N 近端≥N 远端
在本发明的一些技术方案中,球囊在卷绕时中部所受总压力大于近端和远端所受卷绕总压力,即P 中部总>P 近端总≥P 远端总,可以是单次中部所受到的压力大于近端和远端所受到的压力,也可以是多次中部所受到的压力之和大于近端和远端所受到的压力之和,如第一次球囊三个部分所受的压力分别为P 中部1=25psi,P 近端1=17psi,P 远端1=26psi,第二次球囊三个部分所受的压力分别为P 中部2=45psi,P 近端2=36psi,P 远端2=32psi,那么P 中部总=70psi,P 近端总=53psi,P 远端总=58psi。在本发明的一些实施例中,球囊中部所受的总压力P 中部总大于等于51psi,P 中部总≥51Psi,更进一步的,P 中部总≥60Psi,或P 中部总≥70Psi;在另一些实施例中,球囊各个部分所受的总压力分别均大于51Psi,即P ≥51Psi,也即球囊中部、球囊近端和球囊远端单次或者多次总的受到的压力大于51Psi;而在其他一些实施例中,P ≥60Psi。
需要说明的是,本发明中的P 为P 中部总、P 近端总和P 远端总的总称,t 代表t 部总、t 近端总和t 远端总,如P ≥51Psi,是指P 中部总、P 近端总和P 远端总均大于或等于51Psi。
本发明的上述技术方案中,球囊在卷绕时,中部卷绕的总时间大于近端和远端的卷绕总时间,即t 中部总>t 近端总≥t 远端总,卷绕的总时间可以是单次卷绕的时 间,也可以是多次卷绕时间加和,即多次卷绕的总时间。
另需要说明的是,本发明中球囊近端、远端或中部区域中任意区域的整个区域被卷绕,那么该区域卷绕的次数为1,若仅有局部/部分区域被卷绕,那么卷绕的次数为该被卷绕区域所占整个区域的比例。如,球囊中部仅有
Figure PCTCN2021128090-appb-000002
的区域被卷绕,那么卷绕的次数N 中部
Figure PCTCN2021128090-appb-000003
次,若球囊近端
Figure PCTCN2021128090-appb-000004
的区域被卷绕,那么卷绕的次数N 近端
Figure PCTCN2021128090-appb-000005
次,若球囊远端整个区域被卷绕一次,同时还有
Figure PCTCN2021128090-appb-000006
的区域被卷绕了第二次,那么远端区域被卷绕了
Figure PCTCN2021128090-appb-000007
次,以此类推。
本发明的上述技术方案中,球囊在卷绕时,本发明中所有的X 1>X 2≥X 3类型的不等式,既可以是X>X 2=X 3,同时还可以是X 1>X 2>X 3
本发明的一些实施例中,当卷绕是多次进行时,卷绕可以从球囊的近端卷至远端,也可以从远端卷至近端,多次卷绕可以是从不同端进行卷绕,也可从同一端进行卷绕,当从不同端进行卷绕时,多次卷绕必须满足球囊中部大于1/4的区域进行了大于等于2次的卷绕,当从同一端开始卷绕时,至少有一次卷绕是对整个球囊或者整个球囊80%以上的区域进行卷绕,同时球囊的中部
Figure PCTCN2021128090-appb-000008
以上的区域至少进行了两次卷绕。在本发明的一些实施例中,球囊中部区域的卷绕次数比两端的卷绕次数多,其他参数均一致,即在P 中部=P 近端=P 远端,t 中部=t 近端=t ,T 中部=T 近端=T 远端时,N 中部>N 近端,且/或N 中部>N 远端,优选的,中部卷绕的次
Figure PCTCN2021128090-appb-000009
于两端,或中部所承受压力、卷绕的时间大于近端或远端所承受压力或卷绕时间,通过控制前述3个参数来实现长球囊中部保持长久稳定的折翼形态,一方面避免球囊的中部在泄压后收缩不均匀,出现扁平的形状,从而大大减小球囊在手术过程中撤出时的内径及阻力,避免球囊回撤时导致支架出现移位或者支架内壁涂层损伤;另一方面,能够减少球囊两端折翼的次数/承受压力/折翼的时间,避免球囊两端受损。
在本发明的另一些实施例中,球囊中部区域在卷绕时与球囊近端及远端卷绕的次数相同,卷绕时的温度以及卷绕时间均相同,仅对中部所施加的压力大于对近端和远端两端的任意一端所施加的压力,即t 中部=t 近端=t 远端,T 中部=T 近端=T 远端,N 中部=N 近端=N 远端,但P 中部>P 近端,且/或P 中部>P 远端,优选地,
Figure PCTCN2021128090-appb-000010
Figure PCTCN2021128090-appb-000011
更优的,
Figure PCTCN2021128090-appb-000012
Figure PCTCN2021128090-appb-000013
在本发明的其他一些实施例中,球囊中部所承受的卷绕压力、卷绕的次数以及卷绕的温度均相同,仅仅是中部卷绕时所用的时间大于球囊近端和球囊远端两端中任意一端卷绕时所用的时间,即T 中部=T 近端=T 远端,N 中部=N 近端=N 远端,P 中部=P 近端=P 远端,但t 中部>t 近端,且/或t 中部>t 远端;优选地,
Figure PCTCN2021128090-appb-000014
Figure PCTCN2021128090-appb-000015
更优选的,
Figure PCTCN2021128090-appb-000016
Figure PCTCN2021128090-appb-000017
需要说明的是,本发明中只要满足∑N 中部*P 中部*T 中部*t 中部>∑N 近端*P 近端*T *t 近端,且/或∑N 中部*P 中部*T 中部*t 中部>∑N 远端*P 远端*T 远端*t 远端即可,并不仅仅局限于上述几种情况,比如当N 中部>N 近端≥N 远端时,并非就一定满足球囊中部、近 端和远端所采用的卷绕温度、卷绕的压力和卷绕时间均相同,只要其他各个参数能确保最终的∑N 中部*P 中部*T 中部*t 中部>∑N 近端*P 近端*T 近端*t 近端,且/或∑N 中部*P *T 中部*t 中部>∑N 远端*P 远端*T 远端*t 远端即可,更优的,其他各个参数能确保最终的
Figure PCTCN2021128090-appb-000018
且/或
Figure PCTCN2021128090-appb-000019
Figure PCTCN2021128090-appb-000020
即可。
在其他一些实施例中,球囊中部与球囊近端、球囊远端所施加的卷绕温度、
Figure PCTCN2021128090-appb-000021
件都必须满足,而在另外一些实施例中,取“或”之含义,只要满足其中一个条
Figure PCTCN2021128090-appb-000022
25℃~90℃下预热15min~30min。预热的作用一方面是使球囊在受热均匀后再进行折叠,从而可以确保球囊各个部位折翼的均匀性,另一方面也是为了确保球囊在升到一定温度后再进行折翼,可以确保折翼的效果更好。
本发明所提供的上述技术方案中,本发明中的球囊均由聚合物材料制备而成,在对球囊进行预加热处理之前,还包括将所述球囊表面进行等离子处理。本发明在对球囊的表面进行等离子处理时,球囊聚合物表面会发生物理化学性质的改变,如分子运动的加剧及分子链位置的调整、化学键的断裂、材料表面的温度升高等,通过等离子处理后球囊表面的粗糙度增加,表面性能发生改变。因此通过对折翼之后的球囊进行等离子处理,可以增加球囊折翼后所形成的翼片之间的摩擦力和粘附能力,从而通过翼片之间相互作用力增强,可进一步提高球囊折翼卷绕的效果。
本发明所提供的上述技术方案中,球囊折叠包括以下步骤:
1)在25℃~90℃下,向所述球囊内施加10psi~100psi的压力使所述球囊充盈;
2)将充盈后的球囊折叠成折翼,折叠时间为10s~90s;
对折叠后的球囊施加负压,施加负压的时间为10s~90s。为了便于描述,本申请中所使用术语“近端”和“远端”,其中“近端”是指离操作者近的一端,“远端”是指远离操作者的一端。
本发明中所涉及的区间范围的取值,并不仅仅局限于所提供的区间范围,而应该是所述区间中任意两个取值所组成的新区间的值均可以,如本发明中所述的球囊的卷绕的压力为10psi~200psi,其中球囊的卷绕压力并不仅仅局限于10psi~200psi这一个区间范围取值,可以是10-200之间的191个整数取值间的任意两个取值所组成的新的区间,也可以是10-200之间无数个非整数中任意两 个取值所组成的新的区间,如可以是120psi-180psi,也可以是135.2psi-193.75psi等等。
应理解的是,文中使用的术语仅出于描述特定示例实施方式的目的,而无意于进行限制。除非上下文另外明确地指出,否则如文中使用的单数形式“一”、“一个”以及“所述”也可以表示包括复数形式。术语“包括”、“包含”、“含有”以及“具有”是包含性的,并且因此指明所陈述的特征、步骤、操作、元件和/或部件的存在,但并不排除存在或者添加一个或多个其它特征、步骤、操作、元件、部件、和/或它们的组合。文中描述的方法步骤、过程、以及操作不解释为必须要求它们以所描述或说明的特定顺序执行,除非明确指出执行顺序。还应当理解,可以使用另外或者替代的步骤。
本发明所制备的球囊在使用后能很好的收缩,确保其收缩后所形成的柱状物体在任意某直径方向的长度远远小于支架以及血管的直径,一方面球囊不会碰到支架的内壁或外沿,在拖拉球囊的过程中,不会导致支架移位,同时也不会将支架外部的药物、聚合物等刮落,从而导致周边血管造成增生等问题,此外;球囊也不会碰到血管壁,从而刮伤血管从而造成损伤;本发明所制备的球囊在放置很长时间后其表面的折翼不会散开,仍然保持原来的形状;本发明所制备的球囊在多次打开后还能很好的还原,翼片深度变化或散开率不会大于20%。
目前大部分软性或者柔性材质所制备的球囊,由于这些柔性材料或软性材质具有较好的回弹力,在球囊制备后放置一段时间,球囊的不同位置均会有不同程度的回弹,从而使之前制备好的具有多个折翼的球囊至少部分恢复至无折翼状态,从而使恢复无折翼状态部分的球囊的直径显著增大,从而在回撤过程中导致支架移位等不良影响,尤其是球囊的长度越大,球囊中部折翼消失的程度越大,最终在手术过程中导致不良后果的概率越大。如热塑性半结晶材料Pebax,其性能介于热塑性弹性体和橡胶体之间,具有良好的回弹和弹性恢复能力,常规方法折翼的球囊置于空气中,球囊中部会缓慢的回弹以恢复部分形变。而采用本发明的方法进行制备后,Pebax材质的球囊无论是长期放置或运输过程中还是在多次扩张、收缩过程中均不会出现中部折翼消失的情况,且中部的折翼还能保持80%以上的原形状。
附图说明
通过阅读下文优选实施方式的详细描述,各种其它的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的附图标记表示相同的部件。其中:
图1为实施例1制备的球囊和对比例1制备的球囊的对比图;
图2为实施例1制备的球囊和对比例2制备的球囊的对比图;
图3为实施例1制备的球囊和对比例2制备的球囊的截面对比图。
具体实施方式
下面将参照附图更详细地描述本发明的示例性实施方式。虽然附图中显示了本发明的示例性实施方式,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。
保形率测试方法:
本发明中针对球囊保形率的测量主要是通过非接触式Micro VU测量仪测量刚制备好处于收缩状态的球囊、扩张后的球囊、以及多次扩张收缩后或长期放置后收缩状态的球囊的近端、中部和远端的直径,经过一系列的数据处理和计算后得到。具体操作步骤如下:
先测出刚制备好的处于收缩状态的球囊中部、近端和远端的直径R 1中部、R 1 近端、R 1远端和第一次扩张后球囊中部、近端和远端的直径R 中部、R 近端、R 远端,分别用前者除以后者的值,计算出球囊对应的收缩率Y 中部、Y 近端、Y 远端的值,再分别测出球囊多次扩张并收缩后或者是长期放置后处于收缩状态的球囊的直径R’ 1中部、R’ 1近端、R’ 1远端,再除以第一次扩张后相应的球囊中部、近端和远端的直径R 中部、R 近端、R 远端,计算出对应的收缩率Y’ 中部、Y’ 近端、Y’ 远端的值,根据前后
Figure PCTCN2021128090-appb-000023
Figure PCTCN2021128090-appb-000024
本发明所述等离子工艺参数除非特别说明,均采用上表所述工艺参数。
实施例1
本实施例的球囊的制备方法,该球囊采用的是5.0mm x150mm的Pebax的长球囊,该制备方法包括以下步骤:
对球囊的表面进行等离子处理(上限参数);
打开球囊折翼机,预热15min~30min,升温至40℃;
向球囊内施加15psi的压力使球囊充盈,然后将球囊折叠成折翼,折叠时间为50s,再对球囊施加负压,施加负压的时间为10s;
将球囊进行一次卷绕,设置卷绕温度为65℃,卷曲孔径为0.033inch,将球囊远端、中间、近端依次送入卷绕模具中开始卷绕,卷绕压力依次设为:60psi、120psi、60psi,设置卷绕时间15s,完成折翼。
样品第一次扩张后收缩球囊远端、中部、近端均维持3瓣折翼,相邻翼片 夹角测试约为120°;在收缩次数达到6次后球囊远端、中部、近端维持3瓣效果;经历6次扩张收缩后保形率测试结果达到82.7%,放置18个月后球囊经历5次扩张收缩后保形率测试结果达到82.1%。
实施例2
本实施例的球囊的制备方法,该球囊采用的是4.0mm x 150mm的Pebax材质的长球囊,该制备方法包括以下步骤:
对球囊的表面进行等离子处理;
打开球囊折翼机,预热15min~30min,升温至90℃;
向球囊内施加10psi的压力使球囊充盈,然后将球囊折叠成折翼,折叠时间为10s,再对球囊施加负压,施加负压的时间为10s;
将球囊进行两次卷绕,设置卷绕温度为90℃,卷绕压力为10psi,卷曲孔径为0.033inch,将球囊三分之二长度送入卷绕模具中开始卷绕,设置卷绕时间10s后第一次卷绕完成,再将球囊的整体送入卷绕模具中开始卷绕,设置卷绕时间10s后第二次卷绕完成,取出后,得到球囊。
根据本实施例制作样品测试如下性能:
样品第一次扩张后收缩球囊远端、中部、近端均维持3瓣折翼,相邻翼片夹角测试约为120°;在收缩次数达到4次后球囊远端、中部、近端维持3瓣效果,相邻翼片夹角测试约为120°;经历4次扩张收缩后保形率测试结果达到81.5%,放置6个月后4次扩张收缩后保形率测试结果达到81.0%。
实施例3
本实施例的球囊的制备方法,该球囊的球囊采用的是8.0mm x 118mm的Pebax材质的长球囊,该制备方法包括以下步骤:打开球囊折翼机,预热15min~30min,升温至25℃;
对球囊的表面进行等离子处理;
向球囊内施加90psi的压力使球囊充盈,然后将球囊折叠成折翼,折叠时间为90s,再对球囊施加负压,施加负压的时间为10s;
将球囊进行两次卷绕,设置卷绕温度为25℃,卷绕压力为200psi,卷曲孔径为0.033inch,将球囊三分之二长度送入卷绕模具中开始卷绕,设置卷绕时间90s后第一次卷绕完成,再将球囊的整体送入卷绕模具中开始卷绕,设置卷绕时间90s后第二次卷绕完成,取出后,得到球囊。
球囊3瓣折翼,相邻翼片夹角测试约为120°;在收缩次数达到6次后维持3瓣效果;经历6次扩张收缩后保形率测试结果达到90%;
样品第一次扩张后收缩球囊远端、中部、近端均维持3瓣折翼,相邻翼片夹角测试约为120°;再收缩次数达到10次后球囊远端、中部、近端维持3瓣效果;经历10次扩张收缩后测试结果达到97.1%,放置8个月后球囊经历10次扩张收缩后保形率测试结果达到96.3%。
实施例4
本实施例的球囊的制备方法,该球囊采用的是8.0mm x 118mm的尼龙材质的长球囊,该制备方法包括以下步骤:
对球囊的表面进行等离子处理;
打开球囊折翼机,预热15min~30min,升温至40℃;
向球囊内施加15psi的压力使球囊充盈,然后将球囊折叠成折翼,折叠时间为25s,再对球囊施加负压,施加负压的时间为10s;
将球囊进行两次卷绕,设置卷绕温度为90℃,卷绕压力为80psi,卷曲孔径为0.033inch,将靠近球囊近端的三分之二长度送入卷绕模具中开始卷绕,设置卷绕时间15s后第一次卷绕完成,再将靠近球囊远端的三分之二长度送入卷绕模具中开始卷绕,设置卷绕时间15s后第二次卷绕完成,取出后,得到球囊。
样品第一次扩张后收缩球囊远端、中部、近端均维持3瓣折翼,相邻翼片夹角测试约为120°;在收缩次数达到8次后球囊远端、中部、近端维持3瓣效果;经历8次扩张收缩后保形率测试结果达到86.2%,放置放置8个月后球囊经历8次扩张收缩后保形率测试结果达到85.7%。
实施例5
本实施例的球囊的制备方法,该球囊采用的是4.0mm x 118mm的Pebax材质的长球囊,该制备方法包括以下步骤:
对球囊的表面进行等离子处理;
打开球囊折翼机,预热15min~30min,升温至40℃;
向球囊内施加15psi的压力使球囊充盈,然后将球囊折叠成折翼,折叠时间为25s,再对球囊施加负压,施加负压的时间为10s;
将球囊进行两次卷绕,设置卷绕温度为65℃,卷绕压力为60psi,卷曲孔径为0.033inch,将靠近球囊近端的三分之二长度送入卷绕模具中开始卷绕,设置卷绕时间30s后第一次卷绕完成,再将靠近球囊远端的三分之二长度送入卷绕模具中开始卷绕,设置卷绕时间30s后第二次卷绕完成,取出后,得到球囊。
根据本实施例制作样品测试如下性能:
样品第一次扩张后收缩球囊远端、中部、近端均维持3瓣折翼,相邻翼片夹角测试为120°;再收缩次数达到6次后远端、中部、近端均维持3瓣折翼维持3瓣效果,相邻翼片夹角测试为120°;经历6次扩张收缩后保形率测试结果达到91.6%;放置3个月后6次扩张收缩后保形率测试结果达到92.3%。
实施例6
本实施例的球囊的制备方法,该球囊采用的是7.0mm x 118mm的Pebax的长球囊,该制备方法包括以下步骤:
对球囊的表面进行等离子处理(下限参数);
打开球囊折翼机,预热15min~30min,升温至40℃;
向球囊内施加15psi的压力使球囊充盈,然后将球囊折叠成折翼,折叠时间为50s,再对球囊施加负压,施加负压的时间为10s;
将球囊进行一次卷绕,设置卷绕温度为70℃,卷曲孔径为0.033inch,将球囊远端、中间、近端依次送入卷绕模具中开始卷绕,卷绕压力依次设为:100psi、100psi、100psi,设置远端、中间、近端卷绕时间依次为15s、30s、15s,完成折翼。
样品第一次扩张后收缩球囊远端、中部、近端均维持3瓣折翼,相邻翼片夹角测试约为120°;在收缩次数达到7次后球囊远端、中部、近端均维持3瓣效果;经历7次扩张收缩后保形率测试结果达到91.2%,经过长达1200公里的长途运输后球囊的保形率为90.8%。
实施例7
本实施例的球囊的制备方法,该球囊采用的是4.0mm x 300mm的Pebax的长球囊,该制备方法包括以下步骤:
对球囊的表面进行等离子处理;
打开球囊折翼机,预热15min~30min,升温至40℃;
向球囊内施加15psi的压力使球囊充盈,然后将球囊折叠成折翼,折叠时间为50s,再对球囊施加负压,施加负压的时间为10s;
将球囊进行一次卷绕,设置卷绕温度为65℃,卷曲孔径为0.033inch,将球囊远端、中间、近端依次送入卷绕模具中开始卷绕,卷绕压力依次设为:50psi、100psi、50psi,设置远端、中间、近端卷绕时间依次为30s、30s、30s,完成折翼
样品第一次扩张后收缩球囊远端、中部、近端均维持3瓣折翼,相邻翼片夹角测试约为120°;在收缩次数达到10次后球囊远端、中部、近端均维持3瓣效果;经历10次扩张收缩后保形率测试结果达到90.8%,放置8个月后球囊经历10次扩张收缩后保形率测试结果达到90.0%。
实施例8
本实施例的球囊的制备方法,该球囊采用的是4.0mm x 300mm的Pebax的长球囊,该制备方法包括以下步骤:
对球囊的表面进行等离子处理;
打开球囊折翼机,预热15min~30min,升温至40℃;
向球囊内施加15psi的压力使球囊充盈,然后将球囊折叠成折翼,折叠时间为50s,再对球囊施加负压,施加负压的时间为10s;
将球囊进行四次卷绕,设置卷绕温度为65℃,卷绕压力为80psi,卷曲孔径为0.033inch,将靠近球囊近端的三分之二长度送入卷绕模具中开始卷绕,设置卷绕时间15s,卷绕2次完成,再将靠近球囊远端的三分之二长度送入卷绕模具中开始卷绕,设置卷绕时间15s,卷绕2次,取出后得到4次卷绕球囊。
样品第一次扩张后收缩球囊远端、中部、近端均维持3瓣折翼,相邻翼片夹角测试约为120°;在收缩次数达到10次后球囊远端、中部、近端均维持3瓣效果;经历8次撑开收缩后保形率测试结果达到93.9%,放置8个月后球囊经历8次扩张收缩后保形率测试结果达到93.4%。
实施例9
本实施例的球囊的制备方法,该球囊采用的是8.0mm x118mm的尼龙材质的长球囊,该制备方法包括以下步骤:
对球囊的表面进行等离子处理;
打开球囊折翼机,升温至40℃;
向球囊内施加15psi的压力使球囊充盈,然后将球囊折叠成折翼,折叠时间为25s,再对球囊施加负压,施加负压的时间为10s;
将球囊进行两次卷绕,设置卷绕温度为90℃,卷绕压力为116psi,卷曲孔径为0.033inch,将靠近球囊近端的三分之二长度送入卷绕模具中开始卷绕,设置卷绕时间15s后第一次卷绕完成,再将靠近球囊远端的三分之二长度送入卷绕模具中开始卷绕,设置卷绕时间15s后第二次卷绕完成,取出后,得到球囊。
样品第一次扩张后收缩球囊远端、中部、近端均维持3瓣折翼,相邻翼片夹角测试约为120°;在收缩次数达到8次后球囊远端、中部、近端维持3瓣效果;经历8次扩张收缩后保形率测试结果达到91.8%,放置放置8个月后球囊经历8次扩张收缩后保形率测试结果达到92.0%。
实施例10
本实施例的球囊的制备方法,该球囊采用的是5.0mm x150mm的Pebax的长球囊,该制备方法包括以下步骤:
打开球囊折翼机,预热15min~30min,升温至40℃;
向球囊内施加15psi的压力使球囊充盈,然后将球囊折叠成折翼,折叠时间为50s,再对球囊施加负压,施加负压的时间为10s;
将球囊进行一次卷绕,设置卷绕温度为65℃,卷曲孔径为0.033inch,将球囊远端、中间、近端依次送入卷绕模具中开始卷绕,卷绕压力依次设为:80psi、140psi、80psi,设置卷绕时间15s,完成折翼。
样品第一次扩张后收缩球囊远端、中部、近端均维持3瓣折翼,相邻翼片夹角测试约为120°;在收缩次数达到6次后球囊远端、中部、近端维持3瓣效果;经历6次扩张收缩后保形率测试结果达到83.5%,放置18个月后球囊经历5次扩张收缩后保形率测试结果达到83.1%。
实施例11
本实施例的球囊的制备方法,该球囊采用的是8.0mm x118mm的尼龙材质的长球囊,该制备方法包括以下步骤:
打开球囊折翼机,升温至40℃;
向球囊内施加15psi的压力使球囊充盈,然后将球囊折叠成折翼,折叠时间为25s,再对球囊施加负压,施加负压的时间为10s;
将球囊进行两次卷绕,设置卷绕温度为83℃,卷绕压力为95psi,卷曲孔径为0.033inch,将靠近球囊近端的三分之二长度送入卷绕模具中开始卷绕,设置卷绕时间15s后第一次卷绕完成,再将靠近球囊远端的三分之二长度送入卷绕模具中开始卷绕,设置卷绕时间15s后第二次卷绕完成,取出后,得到球囊。
样品第一次扩张后收缩球囊远端、中部、近端均维持3瓣折翼,相邻翼片夹角测试约为120°;在收缩次数达到8次后球囊远端、中部、近端维持3瓣效果;经历8次扩张收缩后保形率测试结果达到87.8%,放置放置8个月后球囊经历8次扩张收缩后保形率测试结果达到87.1%。
实施例12
本实施例的球囊的制备方法,该球囊采用的是4.0mm x 300mm的Pebax的长球囊,该制备方法包括以下步骤:
对球囊的表面进行等离子处理;
打开球囊折翼机,预热15min~30min,升温至40℃;
向球囊内施加15psi的压力使球囊充盈,然后将球囊折叠成折翼,折叠时间为50s,再对球囊施加负压,施加负压的时间为10s;
将球囊进行一次卷绕,设置卷绕温度为75℃,卷曲孔径为0.033inch,将球囊远端、中间、近端依次送入卷绕模具中开始卷绕,卷绕压力均为150psi,设置卷绕时间30s,完成折翼。
样品第一次扩张后收缩球囊远端、中部、近端均维持3瓣折翼,相邻翼片夹角测试约为120°;在收缩次数达到10次后球囊远端、中部、近端均维持3瓣效果;经历8次撑开收缩后保形率测试结果达到93.3%,放置8个月后球囊经历8次扩张收缩后保形率测试结果达到93.0%。
对比例1
本对比例的球囊的制备方法,该球囊采用的是4.0mm x118mm的Pebax材质的长球囊,该制备方法包括以下步骤:
对球囊的表面进行等离子处理;
打开球囊折翼机,预热15min~30min,升温至40℃;
向球囊内施加15psi的压力使球囊充盈,然后将球囊折叠成折翼,折叠时间为25s,再对球囊施加负压,施加负压的时间为10s;
将球囊进行一次卷绕,设置卷绕温度为50℃,卷绕压力为10psi,卷曲孔径为0.033inch,将球囊的整体送入卷绕模具中开始卷绕,设置卷绕时间10s后卷绕完成,取出后得到球囊。
球囊3瓣折翼,相邻翼片夹角测试约为120°;第2次扩张后再收缩时球囊 中间呈现C效果,无法维持3瓣折翼效果,放置3个月后球囊扩张后再收缩呈现C型结构。
对比例2
本对比例的球囊的制备方法,该球囊采用的是4.0mm x 118mm的Pebax材质的长球囊,该制备方法包括以下步骤:
球囊表面预先等离子;
打开球囊折翼机,预热15min~30min,升温至40℃;
向球囊内施加15psi的压力使球囊充盈,然后将球囊折叠成折翼,折叠时间为25s,再对球囊施加负压,施加负压的时间为10s;
将球囊进行两次卷绕,设置卷绕温度为50℃,卷绕压力为9psi,卷曲孔径为0.033inch,将靠近球囊近端的三分之二长度送入卷绕模具中开始卷绕,设置卷绕时间9s后第一次卷绕完成,再将靠近球囊远端的三分之二长度送入卷绕模具中开始卷绕,设置卷绕时间9s后第二次卷绕完成,取出后,得到球囊。
球囊3瓣折翼,相邻翼片夹角测试约为120°;第2次扩张后再收缩时球囊中间呈现S效果,无法维持3瓣折翼效果。
参看图1,图1为对比例1的制备方法制备的球囊与实施例1的制备方法制备的球囊分别充压后泄压的对比图,其中,对比例1中采用的是一次卷绕,该卷绕方法容易造成球囊的中间部分会出现扁平的形状,例如C形或S形(需要说明的是这里C形或S形不是同时出现的,而是多次进行对比例的实验,出现的两种情况);而实施例1-8采用的是多次卷绕或单次卷绕的中部卷绕的时间或者卷绕的压力大于两端的卷绕时间或卷绕压力,多次卷绕具有重叠区域,该重叠区域为球囊的长度的1/4~3/4之间的区域内,使球囊的中间部分充分受力,避免球囊的中间部分泄压后球囊收缩不均,而出现扁平的形状,从而大大减小球囊撤出时的内径及阻力,避免球囊回撤时导致支架出现移位或者支架内壁涂层损伤。
参看图2和图3中,相比对比例2,实施例1-12的制备方法制备的球囊,充压后泄压的折翼的收缩尺寸更小,球囊收缩的更为紧密。除了采用的是多次卷绕,卷绕时间和卷绕压力也增加了,在本发明实施例中,在卷绕时间为10s~90s的范围内,在卷绕压力为10psi~200psi的范围内,随着卷绕时间和卷绕压力的增加,球囊收缩的更紧密。在一定的加热温度下,本发明实施例中设置卷绕压力和卷绕时间,能够提高球囊折痕效果及折翼位置热定型效果,消除球囊褶皱部位应力,并使球囊扩张后再收缩时折翼收缩尺寸更小,球囊收缩更为紧密;实施例1扩开后再收缩,依然维持3翼形状,其保形率达到80%以上。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种球囊扩张支架系统用长球囊,具有近端、与近端相对的远端,以及位于所述近端与所述远端之间的中部,其特征在于,所述球囊中部具有稳定的n个折翼,其中n为大于或等于3的整数;所述球囊的长度大于或等于38mm。
  2. 根据权利要求1所述的长球囊,其特征在于,所述球囊近端、与近端相对的远端和位于近端与远端之间的中部的直径
    Figure PCTCN2021128090-appb-100001
    且三个部位球囊的直径波动范围在15%以内。
  3. 根据权利要求1所述的长球囊,其特征在于,所述球囊近端、与近端相对的远端,以及位于近端与远端之间的中部具有相同数目的折翼。
  4. 根据权利要求1所述的长球囊,其特征在于,所述球囊折翼多次扩张收缩后的均匀度和均一度均可达80%以上,其中多次为2-10次。
  5. 根据权利要求1所述的球囊,其特征在于,每两个相邻折翼间所形成的夹角大小相等。
  6. 根据权利要求1所述的长球囊,其特征在于,每两个相邻折翼间具有不同的夹角,相邻两个夹角大小波动范围在20%以内。
  7. 根据权利要求1所述的长球囊,其特征在于,所述球囊为柔性或软性材料;所述柔性或软性材料选自尼龙、Pebax。
  8. 一种权利要求1-7所述球囊的制备方法,其特征在于,包括以下步骤:
    1)将所述球囊折叠成n个折翼,其中n为大于或等于3的整数;
    2)将折成折翼后的球囊进行卷绕。
  9. 根据权利要求8所述球囊的制备方法,其特征在于,所述球囊进行卷绕的温度T为5~125℃,卷绕的压力P为10psi~200psi,卷绕时间t为10s~90s。
  10. 根据权利要求8所述球囊的制备方法,其特征在于,所述卷绕至少覆盖到整个球囊的80%的区域。
  11. 根据权利要求8所述球囊的制备方法,其特征在于,所述球囊中部卷绕的卷绕次数N、单次卷绕压力P、单次卷绕温度T和单次卷绕时间t的乘积之和大于两端相应卷绕各项参数的乘积之和,即∑N 中部*P 中部*T 中部*t 中部>∑N *P 近端*T 近端*t 近端,且/或∑N 中部*P 中部*T 中部*t 中部>∑N 远端*P 远端*T 远端*t 远端,其中:N 中部≥1,N 近端≥1,N 远端≥1。
  12. 根据权利要求8或11所述的球囊的制备方法,其特征在于,所述球囊中部
    Figure PCTCN2021128090-appb-100002
    分区域比远端和近端区域卷绕次数多,即N 中部>N 近端≥N 远端;或所述球囊在卷绕时中部所受总压力大于近端和远端所受卷绕总压力,即P 中部总>P 近端总≥P 远端总;或所述球囊在卷绕时,中部卷绕的总时间大于近端和远端的卷绕总时间,即t 中部总>t 近端总≥t 远端总
  13. 根据权利要求8所述球囊的制备方法,其特征在于,将所述球囊进行折叠之前,还包括将球囊在25~90℃下加热1min~30min的预加热处理。
  14. 根据权利要求14所述的球囊的制备方法,其特征在于,在所述预加热处理之前,还包括将所述球囊的表面进行等离子处理。
  15. 根据权利要求8所述球囊的制备方法,其特征在于,所述球囊折叠包括以下步骤:
    1)在25~90℃下,向所述球囊内施加10~100psi的压力使所述球囊充盈;
    2)将充盈后的球囊折叠成折翼,折叠时间为10~90s。
PCT/CN2021/128090 2020-11-02 2021-11-02 一种球囊扩张支架系统用长球囊及其制备方法 WO2022089651A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180012385.1A CN115103703A (zh) 2020-11-02 2021-11-02 一种球囊扩张支架系统用长球囊及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011204989 2020-11-02
CN202011204989.X 2020-11-02

Publications (1)

Publication Number Publication Date
WO2022089651A1 true WO2022089651A1 (zh) 2022-05-05

Family

ID=81381952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128090 WO2022089651A1 (zh) 2020-11-02 2021-11-02 一种球囊扩张支架系统用长球囊及其制备方法

Country Status (2)

Country Link
CN (1) CN115103703A (zh)
WO (1) WO2022089651A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117272839A (zh) * 2023-11-20 2023-12-22 北京阿迈特医疗器械有限公司 基于神经网络的支架压握性能预测方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118022144B (zh) * 2024-04-11 2024-06-21 湖南圣安杰医疗科技有限公司 一种球囊扩张压力泵压力监测及处理系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050216047A1 (en) * 2004-03-26 2005-09-29 Terumo Kabushiki Kaisha Catheter with expandable body and method of dilating a blood vessel with such catheter
CN103316382A (zh) * 2013-05-10 2013-09-25 张金萍 携带保护套管的紫杉醇药物球囊及其制备方法
CN104056341A (zh) * 2014-06-24 2014-09-24 深圳市金瑞凯利生物科技有限公司 药物球囊及其制备方法
US20150272732A1 (en) * 2012-10-18 2015-10-01 Loma Vista Medical, Inc. Reinforced inflatable medical devices
CN106075703A (zh) * 2016-07-27 2016-11-09 杭州唯强医疗科技有限公司 载药球囊及其载药球囊的制造方法
CN107998458A (zh) * 2017-12-22 2018-05-08 鼎科医疗技术(苏州)有限公司 球囊药物涂层及药物球囊
CN109954199A (zh) * 2019-05-08 2019-07-02 山东百多安医疗器械有限公司 一种超声控释的前列腺扩张载药球囊系统及其制备方法
CN110753521A (zh) * 2017-09-01 2020-02-04 美它克医药公司 包括可分离球囊的医疗装置以及制造和使用方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3560031B2 (ja) * 1989-07-24 2004-09-02 コーディス・コーポレイション 医療器具用バルーンおよびその成形
US9283100B2 (en) * 2012-05-16 2016-03-15 Abbott Cardiovascular Systems Inc. Polymer scaffold with multi-pleated balloon
MX2016004418A (es) * 2014-07-07 2016-08-19 Meril Life Sciences Pvt Ltd Stent de puntal delgado de polimero bioabsorbible con una alta resistencia radial y a la fatiga y metodo para la fabricacion del mismo.
CN111718090B (zh) * 2020-06-02 2022-12-13 江苏拓丰环保科技有限公司 一种小流域水下污泥自动浮起式修复球

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050216047A1 (en) * 2004-03-26 2005-09-29 Terumo Kabushiki Kaisha Catheter with expandable body and method of dilating a blood vessel with such catheter
US20150272732A1 (en) * 2012-10-18 2015-10-01 Loma Vista Medical, Inc. Reinforced inflatable medical devices
CN103316382A (zh) * 2013-05-10 2013-09-25 张金萍 携带保护套管的紫杉醇药物球囊及其制备方法
CN104056341A (zh) * 2014-06-24 2014-09-24 深圳市金瑞凯利生物科技有限公司 药物球囊及其制备方法
CN106075703A (zh) * 2016-07-27 2016-11-09 杭州唯强医疗科技有限公司 载药球囊及其载药球囊的制造方法
CN110753521A (zh) * 2017-09-01 2020-02-04 美它克医药公司 包括可分离球囊的医疗装置以及制造和使用方法
CN107998458A (zh) * 2017-12-22 2018-05-08 鼎科医疗技术(苏州)有限公司 球囊药物涂层及药物球囊
CN109954199A (zh) * 2019-05-08 2019-07-02 山东百多安医疗器械有限公司 一种超声控释的前列腺扩张载药球囊系统及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117272839A (zh) * 2023-11-20 2023-12-22 北京阿迈特医疗器械有限公司 基于神经网络的支架压握性能预测方法及装置
CN117272839B (zh) * 2023-11-20 2024-02-06 北京阿迈特医疗器械有限公司 基于神经网络的支架压握性能预测方法及装置

Also Published As

Publication number Publication date
CN115103703A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
WO2022089651A1 (zh) 一种球囊扩张支架系统用长球囊及其制备方法
JP7078556B2 (ja) 形状適合性バルーンデバイス及び方法
JP4509230B2 (ja) カテーテルバルーンの作製方法およびカテーテル
US7972351B2 (en) Balloon folding design and method and apparatus for making balloons
US5350361A (en) Tri-fold balloon for dilatation catheter and related method
US6432080B2 (en) Stent securement by balloon modification
EP2049185B1 (en) Non-shortening high angle wrapped balloons
US9901715B2 (en) Retractable sheath devices, systems, and methods
JP4566752B2 (ja) 医療器具
JP4361217B2 (ja) バルーンカテーテルおよびステント配備カテーテルシステム
JP4017869B2 (ja) バルーン・カテーテルのバルーンの折り畳み装置およびその製造方法
US10617849B2 (en) Balloon with variable pitch reinforcing fibers
US20030236563A1 (en) Stent delivery catheter with retention bands
AU698025B2 (en) Method for manufacturing a high strength angioplasty balloon
US20020026210A1 (en) Endovascular aneurysm treatment device and method
JPH0572820B2 (zh)
JP2001504359A (ja) バルーンカテーテル
JPH09509856A (ja) 非対称膨張バルーン
JP2000507119A (ja) 外科アクセス装置及び外科アクセス装置を構成する方法
JP2010500107A (ja) バルーンカテーテルデバイス
JP2002512862A (ja) 偏向した複数の羽根を備えるカテーテルのバルーン
US20030187492A1 (en) Curved wing balloon and manufacture thereof
JP2008500142A (ja) カテーテル用の折畳みバルーン
WO2020259711A1 (zh) 球囊导管及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/08/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21885377

Country of ref document: EP

Kind code of ref document: A1