WO2022089172A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2022089172A1
WO2022089172A1 PCT/CN2021/122757 CN2021122757W WO2022089172A1 WO 2022089172 A1 WO2022089172 A1 WO 2022089172A1 CN 2021122757 W CN2021122757 W CN 2021122757W WO 2022089172 A1 WO2022089172 A1 WO 2022089172A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
group
sequences
sequence group
following sequences
Prior art date
Application number
PCT/CN2021/122757
Other languages
English (en)
French (fr)
Inventor
曲秉玉
李博
龚名新
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022089172A1 publication Critical patent/WO2022089172A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0008Wavelet-division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a communication method and apparatus.
  • the terminal device needs to send an uplink reference signal (for example, a sounding reference signal (SRS) or a demodulation reference signal (DMRS)) to the network device, so that the network device can obtain the terminal by using the uplink reference signal sent by the terminal device.
  • an uplink reference signal for example, a sounding reference signal (SRS) or a demodulation reference signal (DMRS)
  • SRS sounding reference signal
  • DMRS demodulation reference signal
  • Device-to-network device uplink channel information.
  • TDD time division duplex
  • the uplink channel and the downlink channel are reciprocal, so the downlink channel information can also be obtained through the uplink reference signal, and the downlink channel state information is used for precoding during downlink data transmission , Modulation and coding mode is determined, etc. In this way, the quality of the channel estimation based on the uplink reference signal will affect the downlink throughput.
  • the sequence used by the existing uplink reference signal is a ZC (Zadoff-Chu) sequence or a truncated or cyclically expanded ZC sequence, and the ZC sequence is a sequence that satisfies constant amplitude zero auto-correlation (CAZAC) A sequence of properties satisfying:
  • x q (m) is the ZC sequence
  • N zc is the length of the ZC sequence, which is an integer greater than 1
  • q is the root index
  • q is a natural number relatively prime to N zc
  • q is greater than 0 and less than N
  • m 0, 1, ..., N zc -1;
  • the orthogonality between uplink reference signals is guaranteed by assigning different cyclic shift values.
  • the number of cyclic shift values is limited, and with the number of users
  • the user's uplink reference signal can also use ZC sequences with different root indicators. Since the ZC sequences using different root indicators are not orthogonal, non-orthogonal uplink reference signals will be introduced, resulting in an increase in inter-user interference, which will cause The quality of channel estimation is seriously degraded.
  • the present application provides a communication method and apparatus for reducing interference between users.
  • an embodiment of the present application provides a communication method, and the method may be executed by a terminal device or a component in the terminal device (such as a processor, a chip, or a chip system, etc.).
  • the terminal device can obtain the first sequence, and the first sequence r(n) satisfies:
  • c(b) is the second sequence in the first sequence group
  • the first sequence group is associated with the group identifier
  • the first sequence group is one of multiple sequence groups
  • the multiple sequence groups further include the second sequence group
  • the first sequence group includes at least two second sequences
  • the second sequence group includes at least two second sequences
  • the second sequences in the first sequence group are orthogonal to each other
  • the second sequences in the second sequence group are orthogonal to each other
  • part of the second sequences in the first sequence group is orthogonal to part of the second sequences in the second sequence group.
  • the terminal device may also transmit the first signal according to the first sequence.
  • the interference between the first signal and other signals can be reduced, and the peak-to-average power ratio (PAPR) comparison of the first signal can be ensured at the same time Low.
  • PAPR peak-to-average power ratio
  • the first sequence is the same as Satisfy:
  • the c(b) is the second sequence in the first sequence group associated with the group identifier
  • the first sequence group is one of multiple sequence groups
  • the multiple sequence groups The sequence group further includes a second sequence group, the first sequence group includes at least two second sequences; the second sequence group includes at least two second sequences; each second sequence in the first sequence group
  • the second sequences in the second sequence group are orthogonal to each other, and part of the second sequences in the first sequence group are orthogonal to part of the second sequences in the second sequence group.
  • the first sequences determined according to different second sequences can be divided into multiple groups (or in other words, the first sequences determined according to each group of second sequences can be divided into one group).
  • the sequences are orthogonal to each other, and the first sequences between the groups are partially orthogonal.
  • part of the first sequence in the first group and part of the first sequence in the second group are orthogonal.
  • Part of the first sequence is orthogonal, so the first signal and other more reference signals can be kept orthogonal to reduce inter-user interference.
  • the terminal device may map the first sequence to L subcarriers, generate a first signal carried on the L subcarriers, and send the first signal.
  • the L subcarriers are distributed continuously; or, the L subcarriers are distributed at equal intervals.
  • sequence of the first sequence group or the sequence of the second sequence group includes the following sequences:
  • sequence of the first sequence group or the sequence of the second sequence group includes the following sequences:
  • sequences between the first sequence group and the second sequence group are partially orthogonal, and the cross-correlation between the non-orthogonal sequences is
  • sequence of the first sequence group or the sequence of the second sequence group includes the following sequences:
  • sequence of the first sequence group or the sequence of the second sequence group includes the following sequences:
  • sequence of the first sequence group or the sequence of the second sequence group includes the following sequences:
  • sequence of the first sequence group or the sequence of the second sequence group includes the following sequences:
  • sequences between the first sequence group and the second sequence group are partially orthogonal, and the cross-correlation between the non-orthogonal sequences is 0.5.
  • sequence of the first sequence group or the sequence of the second sequence group includes the following sequences:
  • the sequence of the first sequence group or the sequence of the second sequence group includes the following sequences: ⁇ 1,1,1,-1,-1,1,-1,-1 ⁇ , ⁇ 1,-1,1,1,-1,-1,-1,1 ⁇ , ⁇ 1,1,-1,1,-1,1,1,1 ⁇ , ⁇ 1,-1,-1 ,-1,-1,1,-1 ⁇ , ⁇ 1,1,1,-1,1,-1,1,1 ⁇ , ⁇ 1,-1,-1 ,-1,-1,1,-1 ⁇ , ⁇ 1,1,1,1,-1,1,1,1,1, 1,-1 ⁇ , ⁇ 1,1,-1,1,1,-1,-1,-1 ⁇ and ⁇ 1,-1,-1,-1,1,1,-1,1 ⁇ ; or,
  • the sequence of the first sequence group or the sequence of the second sequence group includes the following sequences: ⁇ 1,1,-1,-1,1,-1,-1,1 ⁇ , ⁇ 1,-1,-1,1,1,1,-1,-1 ⁇ , ⁇ 1,1,1,1,1,-1,1,-1 ⁇ , ⁇ 1,-1,1, -1,1,1,1,1 ⁇ , ⁇ 1,1,-1,-1,-1,1,1,-1 ⁇ , ⁇ 1,-1,-1,1,1,-1 ⁇ , ⁇ 1,-1,-1,1,-1,-1 ,1,1 ⁇ , ⁇ 1,1,1,1,-1,1,-1,1 ⁇ and ⁇ 1,-1,1,-1,-1,-1,-1 ⁇ ; or,
  • the sequence of the first sequence group or the sequence of the second sequence group includes the following sequences: ⁇ 1,1,-1,1,-1,-1,1,-1 ⁇ , ⁇ 1,-1,-1,-1,1,1,1 ⁇ , ⁇ 1,1,1,-1,-1,-1,1 ⁇ , ⁇ 1,-1, 1,1,-1,1,-1,-1 ⁇ , ⁇ 1,1,-1,1,1,1,-1,1 ⁇ , ⁇ 1,-1,-1,-1,1, -1,-1 ⁇ , ⁇ 1,1,1,-1,1,1,1,-1,1 ⁇ , ⁇ 1,-1,-1,-1,1, -1,-1 ⁇ , ⁇ 1,1,1,-1,1,1,1,-1 ⁇ and ⁇ 1,-1,1,1,1,-1,1,1 ⁇ .
  • sequences between the first sequence group and the second sequence group are partially orthogonal, and the cross-correlation between the non-orthogonal sequences is 0.5.
  • an embodiment of the present application provides a communication method, and the method can be executed by a network device or a component in the network device (such as a processor, a chip, or a chip system, etc.).
  • the network device can acquire the first sequence and receive the first signal according to the first sequence.
  • the first sequence r(n) is based on get, Satisfy:
  • c(b) is the second sequence in the first sequence group
  • the first sequence group is associated with the group identifier
  • the first sequence group is one of multiple sequence groups
  • the multiple sequence groups further include the second sequence group
  • the first sequence group includes at least two second sequences
  • the second sequence group includes at least two second sequences
  • the second sequences in the first sequence group are orthogonal to each other
  • the second sequences in the second sequence group are orthogonal to each other
  • part of the second sequences in the first sequence group is orthogonal to part of the second sequences in the second sequence group.
  • the first sequence is the same as Satisfy:
  • the c(b) is the second sequence in the first sequence group associated with the group identifier
  • the first sequence group is one of multiple sequence groups
  • the multiple sequence groups The sequence group further includes a second sequence group, the first sequence group includes at least two second sequences; the second sequence group includes at least two second sequences; each second sequence in the first sequence group
  • the second sequences in the second sequence group are orthogonal to each other, and part of the second sequences in the first sequence group are orthogonal to part of the second sequences in the second sequence group.
  • the network device may also send signaling to indicate the group identifier.
  • the network device may also receive the first signal carried on the L subcarriers.
  • the L subcarriers are distributed continuously; or, the L subcarriers are distributed at equal intervals.
  • sequence of the first sequence group or the sequence of the second sequence group includes the following sequences:
  • sequence of the first sequence group or the sequence of the second sequence group includes the following sequences:
  • sequence of the first sequence group or the sequence of the second sequence group includes the following sequences:
  • sequence of the first sequence group or the sequence of the second sequence group includes the following sequences:
  • sequence of the first sequence group or the sequence of the second sequence group includes the following sequences:
  • sequence of the first sequence group or the sequence of the second sequence group includes the following sequences:
  • sequence of the first sequence group or the sequence of the second sequence group includes the following sequences:
  • the sequence of the first sequence group or the sequence of the second sequence group includes the following sequences: ⁇ 1,1,1,-1,-1,1,-1,-1 ⁇ , ⁇ 1,-1,1,1,-1,-1,-1,1 ⁇ , ⁇ 1,1,-1,1,-1,1,1,1 ⁇ , ⁇ 1,-1,-1 ,-1,-1,1,-1 ⁇ , ⁇ 1,1,1,-1,1,-1,1,1 ⁇ , ⁇ 1,-1,-1 ,-1,-1,1,-1 ⁇ , ⁇ 1,1,1,1,-1,1,1,1,1, 1,-1 ⁇ , ⁇ 1,1,-1,1,1,-1,-1,-1 ⁇ and ⁇ 1,-1,-1,-1,1,1,-1,1 ⁇ ; or,
  • the sequence of the first sequence group or the sequence of the second sequence group includes the following sequences: ⁇ 1,1,-1,-1,1,-1,-1,1 ⁇ , ⁇ 1,-1,-1,1,1,1,-1,-1 ⁇ , ⁇ 1,1,1,1,1,-1,1,-1 ⁇ , ⁇ 1,-1,1, -1,1,1,1,1 ⁇ , ⁇ 1,1,-1,-1,-1,1,1,-1 ⁇ , ⁇ 1,-1,-1,1,1,-1 ⁇ , ⁇ 1,-1,-1,1,-1,-1 ,1,1 ⁇ , ⁇ 1,1,1,1,-1,1,-1,1 ⁇ and ⁇ 1,-1,1,-1,-1,-1,-1 ⁇ ; or,
  • the sequence of the first sequence group or the sequence of the second sequence group includes the following sequences: ⁇ 1,1,-1,1,-1,-1,1,-1 ⁇ , ⁇ 1,-1,-1,-1,1,1,1 ⁇ , ⁇ 1,1,1,-1,-1,-1,1 ⁇ , ⁇ 1,-1, 1,1,-1,1,-1,-1 ⁇ , ⁇ 1,1,-1,1,1,1,-1,1 ⁇ , ⁇ 1,-1,-1,-1,1, -1,-1 ⁇ , ⁇ 1,1,1,-1,1,1,1,-1,1 ⁇ , ⁇ 1,-1,-1,-1,1, -1,-1 ⁇ , ⁇ 1,1,1,-1,1,1,1,-1 ⁇ and ⁇ 1,-1,1,1,1,-1,1,1 ⁇ .
  • an embodiment of the present application provides a communication apparatus, which can implement the method implemented by a terminal device in the first aspect or any possible design thereof.
  • the apparatus comprises corresponding units or components for carrying out the above-described method.
  • the units included in the apparatus may be implemented by software and/or hardware.
  • the apparatus can be, for example, a terminal device, or a component or a baseband chip, a chip system, or a processor that can support the implementation of the above method in the terminal device.
  • the communication device may include modular components such as a transceiver unit (or a communication module, a transceiver module) and a processing unit (or a processing module), and these modules may implement the first aspect or any possible design thereof.
  • the transceiver unit may be a transmitter and a receiver, or a transceiver obtained by integrating the transmitter and the receiver.
  • the transceiver unit may include an antenna, a radio frequency circuit, and the like, and the processing unit may be a processor, such as a baseband chip.
  • the transceiver unit may be a radio frequency unit, and the processing unit may be a processor.
  • the transceiver unit may be an input/output interface of the chip system, and the processing unit may be a processor of the chip system, such as a central processing unit (central processing unit, CPU).
  • the transceiving unit may be configured to perform the actions of receiving and/or sending performed by the terminal device in the first aspect or any possible design thereof.
  • the processing unit may be configured to perform actions other than the receiving and sending performed by the terminal device in the first aspect or any possible design thereof, such as determining the first parameter according to the first information.
  • an embodiment of the present application provides a communication apparatus, which can implement the method implemented by the first network device in the second aspect or any possible design thereof.
  • the apparatus comprises corresponding units or components for carrying out the above-described method.
  • the units included in the apparatus may be implemented by software and/or hardware.
  • the apparatus may be, for example, a network device, or a component or a baseband chip, a system-on-chip, or a processor that can support the implementation of the above method in the network device.
  • the communication device may include modular components such as a transceiver unit (or a communication module, a transceiver module) and a processing unit (or a processing module), and these modules may implement the second aspect or any possible design thereof.
  • the transceiver unit may be a transmitter and a receiver, or a transceiver obtained by integrating the transmitter and the receiver.
  • the transceiver unit may include an antenna, a radio frequency circuit, and the like, and the processing unit may be a processor, such as a baseband chip.
  • the transceiver unit may be a radio frequency unit, and the processing unit may be a processor.
  • the transceiver unit may be an input/output interface of the chip system, and the processing unit may be a processor of the chip system, such as a central processing unit (central processing unit, CPU).
  • the transceiving unit may be configured to perform the actions of receiving and/or sending performed by the network device in the second aspect or any possible designs thereof.
  • the processing unit may be operable to perform actions other than receiving and sending performed by the network device in the second aspect or any possible designs thereof.
  • a communication system in a fifth aspect, includes the communication apparatus shown in the third aspect and the fourth aspect.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store computer instructions, and when the computer instructions are executed on a computer, the computer is made to execute the above-mentioned first to second aspects or any of them.
  • a seventh aspect provides a computer program product comprising instructions, the computer program product is used to store computer instructions, when the computer instructions are executed on a computer, the computer is made to execute the above-mentioned first to second aspects or any one of them method shown in a possible implementation.
  • a circuit is provided, the circuit is coupled to a memory, the circuit is used to perform the method shown in the above-mentioned first aspect to the second aspect or any one of possible implementations thereof.
  • the circuitry may include chip circuitry.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of sending an uplink reference signal according to a sequence
  • 3A is a schematic diagram of a mapping relationship between uplink reference signal sequences and subcarriers
  • 3B is a schematic diagram of another mapping relationship between uplink reference signal sequences and subcarriers
  • 3C is a schematic diagram of another mapping relationship between uplink reference signal sequences and subcarriers
  • 3D is a schematic diagram of another mapping relationship between uplink reference signal sequences and subcarriers
  • FIG. 4 is a schematic diagram of the architecture of another communication system provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the architecture of another communication system provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a second sequence provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a first sequence provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a partial sequence provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of PAPR distribution of a first sequence according to an embodiment of the present application.
  • the measurement feedback method provided in this embodiment of the present application may be applied to a wireless communication system, and the wireless communication system may include a terminal device 101 and a network device 102 .
  • the above wireless communication system is applicable to both a low frequency scenario (sub 6G) and a high frequency scenario (above 6G).
  • Application scenarios of the wireless communication system include, but are not limited to, fifth-generation systems, new radio (NR) communication systems, or future evolved public land mobile network (PLMN) systems, and the like.
  • NR new radio
  • PLMN public land mobile network
  • the terminal device 101 shown above may be a user equipment (UE), a terminal (terminal), an access terminal, a terminal unit, a terminal station, a mobile station (mobile station, MS), a remote station, a remote terminal, a mobile terminal ( mobile terminal), wireless communication equipment, terminal agent or terminal equipment, etc.
  • the terminal device 101 may have a wireless transceiver function, which can communicate with one or more network devices of one or more communication systems (eg, wireless communication), and accept network services provided by the network devices, where the network devices include but not
  • the network device 102 is limited to the illustration.
  • the terminal device 101 may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA) device, Handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in future 5G networks or terminal devices in future evolved PLMN networks, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal device 101 can be deployed on land, including indoor or outdoor, handheld or vehicle; the terminal device 101 can also be deployed on water (such as ships, etc.); the terminal device 101 can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device 101 may specifically be a mobile phone (mobile phone), a tablet computer (pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal, an augmented reality (augmented reality, AR) terminal, an industrial control (industrial control) wireless terminal in control), wireless terminal in self-driving, wireless terminal in remote medical, wireless terminal in smart grid, wireless terminal in transportation safety Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the terminal device 101 may also be a communication chip with a communication module, a vehicle with a communication function, or an in-vehicle device (such as an in-vehicle communication device, an in-vehicle communication chip) or the like.
  • the network device 102 may be an access network device (or an access network point).
  • the access network device refers to a device that provides a network access function, such as a radio access network (radio access network, RAN) base station, and the like.
  • the network device 102 may specifically include a base station (base station, BS), or include a base station and a radio resource management device for controlling the base station, and the like.
  • the network device 101 may further include a relay station (relay device), an access point, a base station in a future 5G network, a base station in a future evolved PLMN network, or an NR base station, and the like.
  • the network device 102 may be a wearable device or a vehicle-mounted device.
  • the network device 102 may also be a chip with a communication module.
  • the network device 102 includes but is not limited to: a next-generation base station (g nodeB, gNB) in 5G, an evolved node B (evolved node B, eNB) in an LTE system, a radio network controller (radio network controller, RNC) , wireless controller, base station controller (BSC), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseBand unit, BBU), transmission point (transmitting point) under the CRAN system and receiving point, TRP), transmitting point (transmitting point, TP) or mobile switching center, etc.
  • the network equipment 102 may also include base stations in future 6G or newer mobile communication systems.
  • the network device 102 sends the configuration of the uplink reference signal to the terminal device 101, and the terminal device 101 sends the configuration according to the configuration.
  • the uplink reference signal, and the network device 102 measures the uplink reference signal sent by the terminal device 101 to obtain the uplink channel characteristics.
  • the uplink reference signal here includes, but is not limited to, SRS, DMRS, and the like.
  • the sequence used by the current uplink reference signal is, for example, a ZC sequence, or a sequence obtained by truncating or cyclically extending the ZC sequence.
  • the L-long uplink reference signal sequence r(n) can be expressed in the following form:
  • x q ( ⁇ ) is the ZC sequence
  • is the cyclic shift value
  • n 0, 1, ..., L-1
  • A is a complex number, which can be a power control factor
  • N ZC is the length of the ZC sequence.
  • the ZC sequence has the constant modulus and zero-period autocorrelation properties of the CAZAC sequence.
  • different uplink reference signal sequences can be obtained, and the uplink reference signal sequences obtained by different cyclic shift values are mutually orthogonal (or code division orthogonal) of. Therefore, for the same ZC sequence, different cyclic shift values ⁇ 1 ⁇ 2 (mod N zc ) can be assigned to different users, and these users can transmit ZC sequences with different cyclic shifts on the same time-frequency resource, When the user's channel is flat within the ZC sequence length, there is no interference between users.
  • ZC sequences also have relatively uniform cross-correlation properties.
  • the cross-correlation coefficient of two ZC sequences with the same length N zc and different root indices is
  • the root indices of two ZC sequences are q 1 and q 1 respectively, q 1 ⁇ q 1 (mod N zc ), and any two ⁇ are established for these two ZC sequences.
  • the terminal device 101 can map the L-long uplink reference signal sequence to L subcarriers to obtain a frequency domain signal including L frequency points. Afterwards, the frequency-domain signal is converted into a time-domain signal by means of inverse discrete Fourier transform (IDFT), and a cyclic prefix (CP) is added to the time-domain signal to obtain the time-domain signal to be sent.
  • IDFT inverse discrete Fourier transform
  • CP cyclic prefix
  • the terminal device 101 may assign the uplink reference signal sequences r(0), r(1), r(2)... The sequence of large to small) is mapped to the sub-carriers distributed at equal intervals.
  • Figure 3A shows that the L-long sequence is mapped to consecutive L sub-carriers (the L consecutive sub-carrier numbers are denoted as s+0, s+1, ... ...s+L-1, s is an arbitrary integer); alternatively, the L-long sequence can also be mapped to consecutively distributed subcarriers in descending order of subcarrier numbers.
  • the The L-long sequence is mapped onto sub-carriers s+(L-1), s+L-2, ... s+0.
  • the L-long sequences are respectively mapped to sub-carriers with an interval of 2f s , and f s represents the width between the center frequencies of adjacent sub-carriers.
  • the L-long sequences can be mapped to sub-carriers distributed at equal intervals in descending order of sub-carrier numbers.
  • the L-long sequences are mapped to sub-carriers s+2(L-1) , s+2 (L-2), ..., s+0).
  • the terminal device 101 can perform inverse Fourier transform on the above frequency-domain reference signal sequence to obtain a corresponding time-domain sequence. domain signal, and transmit the to-be-sent time domain signal through radio frequency. So far, the terminal device 101 completes the transmission of the uplink reference signal.
  • UEs in UE group 1 and UEs in UE group 3 use the same ZC sequence root index, different UEs use different cyclic shift values ⁇ , and the code divisions between the sequences are orthogonal.
  • the UEs in UE group 2 and UE group 3 and the UEs in UE group 1 use ZC sequences of different root indices. Therefore, the sequences between the UEs in UE group 2 and the UEs in UE group 3 are not orthogonal.
  • the sequences between the UEs and the UEs of UE group 1 are not orthogonal. Transmission reception point (TRP) 1 and TRP2 need to measure the channel of UE group 3 at the same time.
  • TRP Transmission reception point
  • the uplink reference signal of UE group 2 is the uplink reference signal sent by UE group 3 to TRP2.
  • Signals form strong interference, which will lead to serious loss of uplink reference signal channel estimation performance for cooperating UEs (that is, UEs that can access two base stations, such as UEs in UE group 3).
  • an embodiment of the present application provides a communication method.
  • the communication method may be implemented by a terminal device (or a component in the terminal device) and a network device (or a component in the network device).
  • the terminal equipment is, for example, the terminal equipment 101 shown in FIG. 1 , the UE group 3 shown in FIG. 4 , the UEs in the UE group 1 or the UE group 2 , and the like.
  • the network device is, for example, the network device 102 shown in FIG. 1 or the TRP1, TRP2, etc. shown in FIG. 4 .
  • FIG. 5 shows a schematic diagram of a possible structure of a terminal device, and the structure may include a processing module 510 and a transceiver module 520 .
  • the structure shown in FIG. 5 may be a terminal device, a chip applied in the terminal device, or other combined devices, components (or components), etc. having the functions of the terminal device shown in this application.
  • the transceiver module 520 may be a transceiver, and the transceiver may include an antenna and a radio frequency circuit, etc.
  • the processing module 510 may be a processor, such as a baseband processor, and the baseband processor may include one or more central Processing unit (central processing unit, CPU).
  • CPU central processing unit
  • the transceiver module 520 may be a radio frequency unit, and the processing module 510 may be a processor, such as a baseband processor.
  • the transceiver module 520 may be an input/output interface of a chip (eg, a baseband chip), and the processing module 510 may be a processor of the chip system, which may include one or more central processing units.
  • the processing module 510 in this embodiment of the present application may be implemented by a processor or a circuit component related to the processor, and the transceiver module 520 may be implemented by a transceiver or a circuit component related to the transceiver.
  • the processing module 510 may be configured to perform all operations performed by the terminal device in any of the embodiments of the present application except for transceiving operations, such as processing operations, and/or other processes for supporting the techniques described herein, For example, the messages, information and/or signaling sent by the transceiver module 520 are generated, and the messages, information and/or signaling received by the transceiver module 520 are processed.
  • Transceiver module 520 may be configured to perform all reception and transmission operations performed by the terminal device in any of the embodiments of the present application, and/or to support other processes of the techniques described herein, such as transmission of DMRS.
  • the transceiver module 520 can be a functional module that can perform both sending and receiving operations.
  • the transceiver module 520 can be used to perform all sending and receiving operations performed by the terminal device.
  • the transceiver module 520 can be considered as the sending module, and when the receiving operation is performed, the transceiver module 520 can be considered as the receiving module;
  • a general term for each functional module, these two functional modules are respectively a sending module and a receiving module.
  • the sending module is used to complete the sending operation.
  • the sending module can be used to perform all sending operations performed by the terminal device, and the receiving module is used to complete the receiving operation.
  • the receiving module can be used to perform all receiving operations performed by the terminal device.
  • FIG. 6 shows a schematic structural diagram of another terminal device. Easy to understand and easy to illustrate.
  • the terminal device includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control terminal equipment, execute software programs, and process data of software programs.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • only one memory and processor are shown in FIG. 6 . In an actual end device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and the radio frequency circuit with the transceiver function may be regarded as the transceiver unit of the terminal device (the transceiver unit may be a functional unit, and the function unit can realize the sending function and the receiving function; alternatively, the transceiver unit may also be It includes two functional units, namely a receiving unit capable of realizing a receiving function and a transmitting unit capable of realizing a transmitting function), and a processor with a processing function is regarded as a processing unit of the terminal device. As shown in FIG. 6 , the terminal device includes a transceiver unit 610 and a processing unit 620 .
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, or the like.
  • the processing unit may also be referred to as a processor, a processing single board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the transceiver unit 610 may be regarded as a receiving unit, and the device for implementing the transmitting function in the transceiver unit 610 may be regarded as a transmitting unit, that is, the transceiver unit 610 includes a receiving unit and a transmitting unit.
  • the transceiver unit may also sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may also sometimes be referred to as a receiver, receiver, or receiving circuit, or the like.
  • the transmitting unit may also sometimes be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • the transceiver unit 610 may correspond to the transceiver module 520 , or the transceiver module 520 may be implemented by the transceiver unit 610 .
  • the transceiver unit 610 is used to perform the sending operation and the receiving operation of the terminal device in the embodiments shown in this application, and/or used to support other processes of the technology described herein.
  • the processing unit 620 may correspond to the processing module 510 , or in other words, the processing module 510 may be implemented by the processing unit 620 .
  • the processing unit 620 is configured to perform other operations on the terminal device in the embodiment shown in the present application except the transceiving operation, for example, is configured to perform all the receiving and sending operations performed by the terminal device in the embodiment shown in the present application, and/ or other processes used to support the techniques described herein.
  • FIG. 7 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the structure may include a processing module 710 and a transceiver module 720 .
  • the structure may be the network device shown, or may be a chip applied in the network device or other combined devices, components, etc., which have the functions of the network device shown in this application.
  • the transceiver module 720 may be a transceiver, and the transceiver may include an antenna, a radio frequency circuit, etc.
  • the processing module 710 may be a processor, and the processor may include one or more CPUs.
  • the transceiver module 720 may be a radio frequency unit, and the processing module 710 may be a processor, such as a baseband processor.
  • the transceiver module 720 may be an input/output interface of a chip (eg, a baseband chip), and the processing module 710 may be a processor of the chip system, which may include one or more central processing units.
  • the processing module 710 in this embodiment of the present application may be implemented by a processor or a circuit component related to the processor, and the transceiver module 720 may be implemented by a transceiver or a circuit component related to the transceiver.
  • the processing module 710 may be configured to perform all operations performed by the network device in the embodiments of the present application except the transceiving operations, such as generating messages, information and/or signaling sent by the transceiving module 720, and/or Messages, information, and/or signaling received by transceiving module 720 are processed, and/or other processes used to support the techniques described herein.
  • the transceiver module 720 may be configured to perform all transmission and/or reception operations performed by the network device in the embodiments of the present application, and/or to support other processes of the techniques described herein.
  • FIG. 8 shows a schematic structural diagram of another network device.
  • the network device includes structures such as a processor, a memory, a radio frequency unit (or a radio frequency circuit), or an antenna.
  • the processor is mainly used to process communication protocols and communication data, control network devices, execute software programs, and process data of software programs.
  • the memory is mainly used to store software programs and data.
  • the radio frequency unit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the network device may include a transceiver module 810 and a processing module 820, wherein the transceiver module may include a sending module and a receiving module, or the transceiver module 810 may be a module capable of transmitting and receiving functions.
  • the transceiver module 810 may correspond to the transceiver module 720 in FIG. 7 , that is, the transceiver module 810 performs the actions performed by the transceiver module 720 .
  • the transceiver module 810 may also be referred to as a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 811 and a radio frequency unit 812 .
  • the transceiver module 810 is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals to baseband signals.
  • the processing module 810 is mainly used to perform baseband processing, control network devices, and the like.
  • the transceiver module 810 and the processing module 820 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the transceiver module 810 may include one or more radio frequency units, such as a remote radio unit (RRU), and the processing module 820 may include one or more baseband units (baseband units, BBU) (also referred to as is a digital unit, digital unit, DU).
  • RRU remote radio unit
  • BBU baseband units
  • the processing module 820 may be composed of one or more boards, and the multiple boards may jointly support a wireless access network (such as an LTE network) of a single access standard, or may respectively support a wireless access network of different access standards. Radio access network (such as LTE network, 5G network or other network).
  • the processing module 820 also includes a memory 821 and a processor 822 .
  • the memory 821 is used to store necessary instructions and data.
  • the processor 822 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation flow of the network device in the embodiments shown in this application.
  • the memory 821 and processor 822 may serve one or more single boards. That is to say, the memory and processor can be provided separately on each single board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits may also be provided on each single board.
  • the receiving and/or sending action performed by the terminal device in the embodiment of the present application can be performed by the transceiver module 520 shown in FIG. 5 or the transceiver unit 610 shown in FIG. 6 , for example, the sending action of the first signal is performed;
  • the processing module 510 shown in 5 or the processing unit 620 shown in FIG. 6 performs other actions other than the receiving and/or sending performed by the terminal device in the embodiment of the present application, for example, performing the determination action of the first sequence.
  • the receiving and/or sending action performed by the network device in the embodiment of the present application may be performed by the transceiver module 720 shown in FIG. 7 or the transceiver module 810 shown in FIG.
  • the receiving action of the first signal may be performed;
  • the processing module 710 shown or the processing module 820 shown in FIG. 8 performs other actions other than the receiving and/or sending performed by the network device in the embodiment of the present application, for example, performing the determination action of the first sequence.
  • the communication method may include the following steps:
  • S101 The terminal device acquires the first sequence.
  • the first sequence can be represented as r(n), which can be expressed according to get, Satisfy:
  • x b ( ) is related to b, for example, when b takes different values, x b ( ) is different.
  • the same x b ( ⁇ ) can be set for two or more b with different values.
  • c(b) belongs to the first sequence group
  • the first sequence group may include at least two second sequences
  • c(b) is one second sequence in the first sequence group.
  • the first sequence group is one of a plurality of sequence groups.
  • the multiple sequence groups are respectively distinguished by group identifiers associated with the sequence groups, or in other words, the group identifiers associated with each sequence group are different.
  • the network device may indicate the first sequence group to the terminal device by using the group identifier, or the group identifier (or c(b)) may be stored in the terminal device, and thus can be determined by the terminal device from the first sequence group.
  • c(b) It will be appreciated that each of the plurality of sequence groups may include at least two second sequences.
  • the first sequence group and the second sequence group respectively include at least two second sequences, wherein the first sequence group in the first sequence group The two sequences are mutually orthogonal, the second sequences in the second sequence group are mutually orthogonal, and some of the second sequences in the first sequence group are orthogonal to some of the second sequences in the second sequence group.
  • the network device may indicate the group identifier to the terminal device, and the terminal device determines the first sequence group according to the group identifier, and determines c(b) from the first sequence group.
  • the network device may also select c(b) from the first sequence group, and directly or indirectly indicate c(b) to the terminal device, or, c(b) is a set sequence for the terminal device, The terminal device therefore does not have to be aware of the existence of multiple sequence groups.
  • N is the length of the second sequence.
  • L may be a network device configuration or a parameter determined by a terminal device through a network device configuration, or may be a set value.
  • x is a unique value determined from a, b, and N.
  • Equation 4 can also be replaced by the following expression: r(n) according to to obtain, for example, is the sequence of r(n) is obtained after truncation or cyclic expansion, and/or power control according to the power control factor A.
  • A is a nonzero complex number.
  • those skilled in the art can assign the value of A as required.
  • a technician can determine the value of A according to the transmit power of the device that transmits the reference signal, so as to implement transmit power control. That is to say, the value of A may not be limited in this embodiment of the present application.
  • the above first sequence r(n) may be stored by the terminal device, or may be calculated by the terminal device according to a predefined formula (formula 3 and/or formula 4).
  • the network device may determine the first sequence in a similar manner.
  • S102 The terminal device sends the first signal according to the first sequence.
  • the network device receives the first signal according to the first sequence, and the first signal is generated according to the first sequence.
  • the terminal device may map the first sequence to L subcarriers, generate a first signal carried on the L subcarriers, and transmit the first signal through radio frequency, where the first signal is, for example, SRS or other uplink reference signals.
  • the network device receives, according to the first sequence, the first signal sent by the terminal and carried on the L subcarriers. For the manner in which the network device determines the first sequence, reference may be made to the description of the terminal device determining the first sequence.
  • the terminal device may map the first sequence of length L to the subcarriers distributed at equal intervals in the order of the subcarrier index from small to large (or from large to small), for example, as shown in FIG. 3A .
  • the L-long first sequence can be mapped to L consecutive subcarriers (L consecutive subcarriers are represented as s+0, s+1, ... s+L-1, s is the subcarrier number, s is an integer ); alternatively, the L-long first sequence can be mapped to consecutively distributed sub-carriers in descending order of sub-carrier numbers, for example, as shown in FIG.
  • the L-long first sequence is mapped to sub-carrier s +L-1, s+L-2, ... s+0 on.
  • the L-long first sequence can also be mapped to subcarriers distributed at equal intervals (the subcarriers distributed at equal intervals are respectively represented as s+0, s+2, ... s+2(L-1) ), as shown in FIG. 3C , or, the L-long first sequence can be mapped to the sub-carriers distributed at equal intervals in descending order of sub-carrier numbers.
  • the L-long first sequence The first sequence is mapped onto sub-carriers s+2(L-1), s+2(L-2), ... s+0).
  • the L-long sequences are respectively mapped to sub-carriers with an interval of 2f s , where f s represents the width between the center frequencies of adjacent sub-carriers.
  • the network device performs channel estimation according to the first signal.
  • the network device performs data demodulation according to the first signal.
  • the network device may also obtain the first sequence first, and then receive the first signal according to the first sequence.
  • the first sequence here may be called local.
  • first sequence It should be understood that the steps of acquiring the first sequence and receiving the first signal may be interchanged.
  • the network device may not acquire the first sequence, but store, generate or determine a local sequence, and after receiving the first signal, determine that the terminal-side transmission is based on the local sequence and the first signal. the first sequence.
  • the local sequence may be multiple sequences, for example, multiple sequence sets that may be determined by the terminal as the first sequence.
  • the network device compares the received first signal with the multiple sequences, and confirms that the first signal is one of the multiple sequences.
  • the local sequence is not necessarily the first sequence, for example, only the first few items in the first sequence may be stored, as long as the first sequence corresponding to the first signal sent by the terminal device can be determined.
  • the first sequence is obtained according to the second sequence in the first sequence group, wherein the second sequences in the first sequence group are orthogonal to each other, and the sequences in the first sequence group and the second sequence group are Therefore, the different reference signals obtained according to the second sequences in different sequence groups can be orthogonal to more other reference signals than the reference signals obtained by using the ZC sequence, that is to say , sending the first signal according to the first sequence can reduce the interference between the first signal and other signals, while ensuring that the peak-to-average power ratio (PAPR) of the first signal is relatively low.
  • PAPR peak-to-average power ratio
  • the first sequence can be allocated to ensure that the sequences used between UEs in UE group 3 and UE group 1 are orthogonal, and the sequences used between UEs in UE group 3 and UE group 2 are orthogonal.
  • the sequences are also orthogonal, which can effectively ensure the accuracy of the channel estimation of the coordinated UEs (UE group 3).
  • FIG. 11 A schematic diagram of the sequence group is shown in Figure 11.
  • the second sequence can be divided into four groups.
  • the sequences shown in white are orthogonal to each other
  • the sequences shown in black are orthogonal to each other.
  • FIG. 11 In addition, in FIG.
  • the orthogonal way between the sequences in the third group of sequences and the sequences in the fourth group of sequences or between any other two groups of sequences may refer to the sequences in the first group of sequences and the second group of sequences.
  • the orthogonal manner of the sequences in the group sequence, or other orthogonal manners may be adopted, which is not specifically limited in this application.
  • the second sequence in the multiple sequence groups to which the first sequence group belongs is shown in Table 1, for example.
  • tables such as Table 1 in the present application are not necessarily examples of the exhaustive nature of the second sequence, for example, the second sequence may also include other sequences than Table 1.
  • the numbers corresponding to the subscripts i and j in Table 1 may not be used, for example, the subscripts i and j may be replaced with other identifiers, or no identifiers are made.
  • G ij represents the j-th second sequence in the i-th group of second sequences.
  • i may be a group identifier, or may be the serial number (or index) of the sequence group corresponding to the group identifier.
  • the first sequence group and the second sequence group may respectively be the second sequences when i takes different values.
  • the first sequence group includes G 11 , G 12 , ... G 18
  • the second sequence group includes G 21 , G 22 , ... G 28 .
  • sequence of the first sequence group or the sequence of the second sequence group includes the following sequences:
  • the sequence of the first sequence group or the sequence of the second sequence group includes the following sequences: ⁇ 1,1,1,-1,-1,1,-1,-1 ⁇ , ⁇ 1,-1,1,1, -1,-1,-1,1 ⁇ , ⁇ 1,1,-1,1,-1,1,1,1 ⁇ , ⁇ 1,-1,-1,-1,-1, 1,-1 ⁇ , ⁇ 1,1,1,-1,1,-1,1,1 ⁇ , ⁇ 1,-1,-1,-1,-1, 1,-1 ⁇ , ⁇ 1,1,1,-1,1,-1,1,1 ⁇ , ⁇ 1,-1,1,1,1,1,1,-1 ⁇ , ⁇ 1,1 ,-1,1,1,-1,-1,-1 ⁇ , ⁇ 1,-1,-1,-1,1,1,-1,1 ⁇ ; or,
  • the sequence of the first sequence group or the sequence of the second sequence group includes the following sequences: ⁇ 1,1,-1,-1,1,-1,-1,1 ⁇ , ⁇ 1,-1,-1 ,1,1,1,-1,-1 ⁇ , ⁇ 1,1,1,1,1,-1,1,-1 ⁇ , ⁇ 1,-1,1,-1,1,1,1 ,1 ⁇ , ⁇ 1,1,-1,-1,-1,1,1,-1 ⁇ , ⁇ 1,-1,-1,1,1,1 ,1 ⁇ , ⁇ 1,1,-1,-1,1,-1,-1,1,1 ⁇ , ⁇ 1 ,1,1,1,-1,1,-1,1 ⁇ , ⁇ 1,-1,1,-1,-1,-1,-1 ⁇ ; or,
  • the sequence of the first sequence group or the sequence of the second sequence group includes the following sequences: ⁇ 1,1,-1,1,-1,-1,1,-1 ⁇ , ⁇ 1 ,-1,-1,-1,1,1,1 ⁇ , ⁇ 1,1,1,-1,-1,-1,1 ⁇ , ⁇ 1,-1,1, 1,-1,1,-1,-1 ⁇ , ⁇ 1,1,-1,1,1,1,-1,1 ⁇ , ⁇ 1,-1,-1,-1,1,-1 ,-1,-1 ⁇ , ⁇ 1,1,1,-1,1,1,1,-1 ⁇ , ⁇ 1,-1,-1,1,-1,-1,-1 ⁇ , ⁇ 1,1,1,-1,1,1,1,-1 ⁇ , ⁇ 1,-1,1,1,1,-1,1,1 ⁇ .
  • the cross-correlation coefficients between the two second sequences shown in Table 1 are shown in Table 2. It can be seen that the cross-correlation coefficient between the second sequences that are orthogonal to each other is 0, and the cross-correlation coefficient between the second sequences that are not orthogonal to each other is 0.5.
  • the second sequence can be allocated to different terminal devices according to actual scene requirements, and different terminal devices send uplink reference signals according to the first sequence corresponding to the second sequence, which can reduce transmission interference between uplink reference signals of the terminal devices.
  • G 11 is orthogonal to any second sequence from G 12 to G 18 , or, in other words, the two sequences between the second sequence of the first group are orthogonal. The two are orthogonal.
  • G 11 is orthogonal to G 21 , G 22 , G 27 , and G 28 , respectively, that is, G 11 is orthogonal to a part of the second sequence in the second set of second sequences. Sequences in other sequence groups are the same.
  • the first signal when the first signal is determined according to the second sequence in a certain sequence group, it can be guaranteed that the first signal is orthogonal to other signals determined according to any other second sequence in the same sequence group, and the first signal can be guaranteed to be orthogonal Orthogonal to other signals determined from parts of the second sequences within other sequence groups.
  • sequence of the first sequence group or the sequence of the second sequence group includes the following sequences:
  • sequences of the first sequence group or the sequences of the second sequence group include the following sequences:
  • sequence of the first sequence group or the sequence of the second sequence group includes the following sequences:
  • sequences of the first sequence group or the sequences of the second sequence group include the following sequences:
  • sequences of the first sequence group or the sequences of the second sequence group include the following sequences:
  • sequences of the first sequence group or the sequences of the second sequence group include the following sequences:
  • any sequence in the first sequence and any sequence in the second sequence are orthogonal, or the cross-correlation coefficient between any sequence in the first sequence and any sequence in the second sequence is 0.5.
  • FIG. 12 a schematic diagram of a set of first sequences corresponding to the second sequence in FIG. 11 provided by an embodiment of the present application is shown in FIG. 12 , wherein, The first sequence obtained respectively by different terminal devices may be one of the sets of first sequences shown in FIG. 12 .
  • each first sequence is determined according to one second sequence in the plurality of sequence groups; all the first sequences in the set of first sequences include all the second sequences in the plurality of sequence groups. The first sequence determined by the sequence.
  • the first sequences in the set of first sequences can be divided into four groups, the first sequences in each group are mutually orthogonal, and the first sequences among the groups are partially orthogonal, as shown in FIG. 12 .
  • the first sequence shown in white in the first group is orthogonal to the first sequence shown in white in the second group, and at the same time, the first sequence in the first group is The sequence part (part length N) of the first sequence shown in white and the sequence part (part length N) of the first sequence shown in white in the second group are also orthogonal to each other.
  • the sequences shown in black in Fig. 11 are mutually orthogonal and satisfy local orthogonality at the same time.
  • the part of the first sequence refers to the item corresponding to c(b) contained in the first sequence.
  • the first sequence may include a plurality of items corresponding to c(b).
  • a first sequence in the first group is orthogonal to a first sequence in the second group, then it is also satisfied that the subcarrier positions s+0, s of a first sequence in the first group are The local sequence corresponding to +1,...s+7 (that is, a local sequence of the first sequence in the first group) and the subcarrier positions s+0, s+1,... of a first sequence in the second group
  • the local sequence corresponding to s+7 that is, a local sequence of the first sequence of the second group
  • the above method can be extended according to actual scene requirements.
  • K and N can take other values respectively.
  • the extended manner should also be considered as the protection scope of the embodiments of the present application.
  • Fig. 14 is the cumulative distribution function (cumulative distribution function, CDF) of the PAPR of the uplink reference signals corresponding to the 32 192-long first sequences obtained according to different c(b) and different ZC sequences obtained according to different ZC sequences.
  • CDF cumulative distribution function
  • each sequence (or sequence set, sequence group) involved in the above embodiment may be stored, and this storage method may adopt a memory, a storage medium, or other A device implementation with storage capabilities, such as a chip or processor.
  • the specific content of the storage is not limited here.
  • a method of generating formulas can be stored, such as storing formulas, programs, or by generating a solidified circuit of a sequence, and then by obtaining various sequence-related data. parameters to generate the corresponding sequence.
  • the first sequence group and/or the second sequence group may be stored, and then the first sequence may be determined according to formulas or parameters.
  • Embodiments of the present application provide a communication device.
  • the communication apparatus may be used to implement the terminal equipment involved in the foregoing embodiments, and the communication apparatus may include the structures shown in FIG. 5 and/or FIG. 6 .
  • Embodiments of the present application provide a communication device.
  • the communication apparatus may be used to implement the network equipment involved in the foregoing embodiments, and the communication apparatus may include the structures shown in FIG. 7 and/or FIG. 8 .
  • terminal equipment and network equipment can be interchanged, that is, the present invention is applicable to both uplink transmission and downlink transmission.
  • Embodiments of the present application provide a communication system.
  • the communication system may include the terminal device involved in the above embodiments, and the network device involved in the above embodiments.
  • the terminal device and the network device in the communication system can execute the communication method shown in any one of the foregoing method embodiments.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a computer, the computer can implement any of the embodiments shown in the foregoing method embodiments. Processes associated with end devices or network devices.
  • An embodiment of the present application further provides a computer program product, where the computer program product is used to store a computer program, and when the computer program is executed by a computer, the computer can implement any of the embodiments shown in the foregoing method embodiments and the terminal device. or network device related processes.
  • An embodiment of the present application further provides a chip or a chip system, where the chip may include a processor, and the processor may be configured to call a program or an instruction in a memory to execute any of the embodiments shown in the foregoing method embodiments and the terminal device. or network device related processes.
  • the chip system may include the chip and other components such as memory or transceivers.
  • An embodiment of the present application further provides a circuit, which can be coupled with a memory and can be used to execute a process related to a terminal device or a network device in any of the foregoing method embodiments.
  • the chip system may include the chip and other components such as memory or transceivers.
  • processors mentioned in the embodiments of the present application may be a CPU, and may also be other general-purpose processors, digital signal processors (digital signal processors, DSPs), application specific integrated circuits (application specific integrated circuits, ASICs), ready-made Field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGA Field programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SCRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module
  • memory described herein is intended to include, but not be limited to, these and any other suitable types of memory.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed communication method and apparatus may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules or components may be combined or Integration into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical modules, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional module in each embodiment of the present application may be integrated into one processing module, or each module may exist physically alone, or two or more modules may be integrated into one module.
  • the function is implemented in the form of a software function module and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that makes a contribution or a part of the technical solution.
  • the computer software product is stored in a storage medium and includes several instructions for A computer device (which may be a personal computer, a server, or a network device, etc.) is caused to execute all or part of the steps of the method in each embodiment of the present application.
  • the aforementioned computer-readable storage medium can be any available medium that can be accessed by a computer.
  • the computer-readable medium may include random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (electrically erasable programmable read-only memory) read only memory, EEPROM), compact disc read-only memory (CD-ROM), universal serial bus flash disk (universal serial bus flash disk), removable hard disk, or other optical disk storage, disk storage A medium or other magnetic storage device, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • universal serial bus flash disk universal serial bus flash disk
  • removable hard disk or other optical disk storage
  • disk storage A medium or other magnetic storage device, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,使得终端设备根据第一序列发送第一信号。其中,第一序列为满足预设条件的序列,第一序列包括L个项,将L个项分别映射至L个子载波,生成并发送第一信号。本发明确定的第一序列,能够降低第一信号与其他信号之间的干扰,同时保证第一信号的峰均功率比比较低。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2020年10月31日提交中国专利局、申请号为202011199027.X、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种通信方法及装置。
背景技术
终端设备需要向网络设备发送上行参考信号(例如,探测参考信号(sounding reference signal,SRS)或者解调参考信号(demodulation reference signal,DMRS)),以便网络设备利用终端设备发送的上行参考信号获取终端设备到网络设备的上行信道信息。在时分双工(time division duplex,TDD)系统中,上行信道和下行信道是互易的,因此下行信道信息也可以通过上行参考信号获得,该下行信道状态信息用于下行数据传输时的预编码、调制编码方式确定等。这样,基于上行参考信号的信道估计的质量会影响下行的吞吐量。
现有上行参考信号所采用的序列是ZC(Zadoff-Chu)序列或者是ZC序列经过截断或循环扩充后的序列,ZC序列是满足恒幅零自相关(constant amplitude zero auto-correlation,CAZAC)序列性质的序列,满足:
Figure PCTCN2021122757-appb-000001
其中,x q(m)为ZC序列;N zc为ZC序列的长度,是大于1的整数;q为根指标,q为与N zc互质的自然数,且q大于0且小于N;m=0,1,…,N zc-1;
通常,不同用户的上行参考信号使用相同根指标的ZC序列时,通过分配不同的循环移位值保证上行参考信号之间正交,然而,循环移位值个数是有限的,随着用户数量的增加,用户的上行参考信号还可以使用不同根指标的ZC序列,由于使用不同根指标的ZC序列之间不正交,会引入非正交的上行参考信号,导致用户间干扰的增加,会造成信道估计质量严重下降。
发明内容
本申请提供一种通信方法及装置,用以降低用户间干扰。
第一方面,本申请实施例提供一种通信方法,该方法可以由终端设备或终端设备中的部件(比如处理器、芯片或芯片系统等)执行。
根据该方法,终端设备可获取第一序列,所述第一序列r(n)满足:
Figure PCTCN2021122757-appb-000002
其中,a=0,1,2,…,M-1,b=0,1,2,…,N-1,σ(b)的每一项属于{0,1,2,…,N-1},且σ(b)的任意两项不同,j为虚数单位,x b(·)是长度为k的CAZAC序列,
Figure PCTCN2021122757-appb-000003
k为正整数,
Figure PCTCN2021122757-appb-000004
或者
Figure PCTCN2021122757-appb-000005
Figure PCTCN2021122757-appb-000006
表示下取整,
Figure PCTCN2021122757-appb-000007
表示上取整,L是所述第一序列的长度(或者说,第一序列包括L个项)。c(b)为第一序列组中的第二序列,所述第一序列组 与组标识相关联,所述第一序列组为多个序列组中的一个,所述多个序列组还包括第二序列组,所述第一序列组中包括至少两个第二序列;所述第二序列组中包括至少两个第二序列;所述第一序列组中各第二序列之间正交,所述第二序列组中各第二序列之间正交,所述第一序列组中的部分第二序列与所述第二序列组中的部分第二序列正交。
终端设备还可根据第一序列发送第一信号。
采用以上方法,根据该第一序列发送第一信号时,能够降低第一信号与其他信号之间的干扰,同时保证第一信号的峰均功率比(peak-to-average power ratio,PAPR)比较低。
在一种可能的设计中,第一序列与
Figure PCTCN2021122757-appb-000008
满足:
Figure PCTCN2021122757-appb-000009
其中,A为非零复数,n=0,1,2,…,L-1。
采用该设计,可对
Figure PCTCN2021122757-appb-000010
进行截断或循环扩充,并根据A进行功率控制后获得第一序列,以满足实际发送需求。
在一种可能的示例中,所述c(b)为与组标识相关联的第一序列组中的第二序列,所述第一序列组为多个序列组中的一个,所述多个序列组还包括第二序列组,所述第一序列组中包括至少两个第二序列;所述第二序列组中包括至少两个第二序列;所述第一序列组中各第二序列之间正交,所述第二序列组中各第二序列之间正交,所述第一序列组中的部分第二序列与所述第二序列组中的部分第二序列正交。
采用该设计,根据不同的第二序列确定出的第一序列可分为多组(或者说,根据每组第二序列确定出的第一序列可分为一组),各组内的第一序列之间相互正交,各组间的第一序列部分正交,比如,第一组第一序列与第二组第一序列中,第一组中的部分第一序列与第二组中的部分第一序列正交,因此可令第一信号和其他更多参考信号之间保持正交,降低用户间干扰。
在一种可能的示例中,终端设备可将所述第一序列映射到L个子载波上,生成承载于所述L个子载波的第一信号,并发送所述第一信号。
在一种可能的示例中,所述L个子载波连续分布;或者,所述L个子载波等间隔分布。
在一种可能的示例中,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
{1,1,1,1}、{1,-1,1,-1}、{1,1,-1,-1}和{1,-1,-1,1};或者,
当N=4时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
{1,j,1,j}、{1,-j,1,-j}、{1,j,-1,-j}和{1,-j,-1,j}。
采用该设计,第一序列组与第二序列组之间序列部分正交,不正交序列之间互相关为
Figure PCTCN2021122757-appb-000011
在一种可能的示例中,当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
{1,-j,-j,-1,1,-j,-j,-1}、{1,j,-j,1,1,j,-j,1}、{1,-j,j,1,1,-j,j,1}、{1,j,j,-1,1,j,j,-1}、{1,-j,-j,-1,-1,j,j,1}、{1,j,-j,1,-1,-j,j,-1}、{1,-j,j,1,-1,j,-j,-1}和{1,j,j,-1,-1,-j,-j,1};或者,
当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
{1,-1,-j,-j,1,-1,-j,-j}、{1,1,-j,j,1,1,-j,j}、{1,-1,j,j,1,-1,j,j}、{1,1,j,-j,1,1,j,-j}、{1,-1,-j,-j,-1,1,j,j}、{1,1,-j,j,-1,-1,j,-j}、{1,-1,j,j,-1,1,-j,-j}和{1,1,j,-j,-1,-1,-j,j};或者,
当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
{1,1,1,1,1,1,1,1}、{1,-1,1,-1,1,-1,1,-1}、{1,1,-1,-1,1,1,-1,-1}、{1,-1,-1,1,1,-1,-1,1}、 {1,1,1,1,-1,-1,-1,-1}、{1,-1,1,-1,-1,1,-1,1}、{1,1,-1,-1,-1,-1,1,1}和{1,-1,-1,1,-1,1,1,-1};或者,
当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
{1,-j,-1,-j,1,-j,-1,-j}、{1,j,-1,j,1,j,-1,j}、{1,-j,1,j,1,-j,1,j}、{1,j,1,-j,1,j,1,-j}、{1,-j,-1,-j,-1,j,1,j}、{1,j,-1,j,-1,-j,1,-j}、{1,-j,1,j,-1,j,-1,-j}和{1,j,1,-j,-1,-j,-1,j}。
采用该设计,第一序列组与第二序列组之间序列部分正交,不正交序列之间互相关为0.5。
在一种可能的示例中,当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
{1,1,1,1,1,1,1}、{1,-1,1,-1,1,-1,1,-1}、{1,1,-1,-1,1,1,-1,-1}、{1,-1,-1,1,1,-1,-1,1}、{1,11,1,-1,-1,-1,-1}、{1,-1,1,-1,-1,1,-1,1}、{1,1,-1,-1,-1,-1,1,1}和{1,-1,-1,1,-1,1,1,-1};或者,
当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:{1,1,1,-1,-1,1,-1,-1}、{1,-1,1,1,-1,-1,-1,1}、{1,1,-1,1,-1,1,1,1}、{1,-1,-1,-1,-1,-1,1,-1}、{1,1,1,-1,1,-1,1,1}、{1,-1,1,1,1,1,1,-1}、{1,1,-1,1,1,-1,-1,-1}和{1,-1,-1,-1,1,1,-1,1};或者,
当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:{1,1,-1,-1,1,-1,-1,1}、{1,-1,-1,1,1,1,-1,-1}、{1,1,1,1,1,-1,1,-1}、{1,-1,1,-1,1,1,1,1}、{1,1,-1,-1,-1,1,1,-1}、{1,-1,-1,1,-1,-1,1,1}、{1,1,1,1,-1,1,-1,1}和{1,-1,1,-1,-1,-1,-1,-1};或者,
当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:{1,1,-1,1,-1,-1,1,-1}、{1,-1,-1,-1,-1,1,1,1}、{1,1,1,-1,-1,-1,-1,1}、{1,-1,1,1,-1,1,-1,-1}、{1,1,-1,1,1,1,-1,1}、{1,-1,-1,-1,1,-1,-1,-1}、{1,1,1,-1,1,1,1,-1}和{1,-1,1,1,1,-1,1,1}。
采用该设计,第一序列组与第二序列组之间序列部分正交,不正交序列之间互相关为0.5。
第二方面,本申请实施例提供一种通信方法,该方法可以由网络设备或网络设备中的部件(比如处理器、芯片或芯片系统等)执行。
根据该方法,网络设备可获取第一序列,并根据第一序列接收第一信号。
第一序列r(n)根据
Figure PCTCN2021122757-appb-000012
获得,
Figure PCTCN2021122757-appb-000013
满足:
Figure PCTCN2021122757-appb-000014
其中,a=0,1,2,…,M-1,b=0,1,2,…,N-1,σ(b)的每一项属于{0,1,2,…,N-1},且σ(b)的任意两项不同,j为虚数单位,x b(·)是长度为k的CAZAC序列,
Figure PCTCN2021122757-appb-000015
k为正整数,
Figure PCTCN2021122757-appb-000016
或者
Figure PCTCN2021122757-appb-000017
Figure PCTCN2021122757-appb-000018
表示下取整,
Figure PCTCN2021122757-appb-000019
表示上取整,L是所述第一序列的长度。c(b)为第一序列组中的第二序列,所述第一序列组与组标识相关联,所述第一序列组为多个序列组中的一个,所述多个序列组还包括第二序列组,所述第一序列组中包括至少两个第二序列;所述第二序列组中包括至少两个第二序列;所述第一序列组中各第二序列之间正交,所述第二序列组中各第二序列之间正交,所述第一序列组中的部分第二序列与所述第二序列组中的部分第二序列正交。
在一种可能的设计中,第一序列与
Figure PCTCN2021122757-appb-000020
满足:
Figure PCTCN2021122757-appb-000021
其中,A为非零复数,n=0,1,2,…,L-1。
在一种可能的示例中,所述c(b)为与组标识相关联的第一序列组中的第二序列,所述第一序列组为多个序列组中的一个,所述多个序列组还包括第二序列组,所述第一序列组中包括至少两个第二序列;所述第二序列组中包括至少两个第二序列;所述第一序列组中 各第二序列之间正交,所述第二序列组中各第二序列之间正交,所述第一序列组中的部分第二序列与所述第二序列组中的部分第二序列正交。
在一种可能的示例中,网络设备还可发送信令,用于指示所述组标识。
在一种可能的示例中,网络设备还可接收承载于L个子载波的第一信号。
在一种可能的示例中,所述L个子载波连续分布;或者,所述L个子载波等间隔分布。
在一种可能的示例中,当N=4时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
{1,1,1,1}、{1,-1,1,-1}、{1,1,-1,-1}和{1,-1,-1,1};或者,
当N=4时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
{1,j,1,j}、{1,-j,1,-j}、{1,j,-1,-j}和{1,-j,-1,j}。
在一种可能的示例中,当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
{1,-j,-j,-1,1,-j,-j,-1}、{1,j,-j,1,1,j,-j,1}、{1,-j,j,1,1,-j,j,1}、{1,j,j,-1,1,j,j,-1}、{1,-j,-j,-1,-1,j,j,1}、{1,j,-j,1,-1,-j,j,-1}、{1,-j,j,1,-1,j,-j,-1}和{1,j,j,-1,-1,-j,-j,1};或者,
当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
{1,-1,-j,-j,1,-1,-j,-j}、{1,1,-j,j,1,1,-j,j}、{1,-1,j,j,1,-1,j,j}、{1,1,j,-j,1,1,j,-j}、{1,-1,-j,-j,-1,1,j,j}、{1,1,-j,j,-1,-1,j,-j}、{1,-1,j,j,-1,1,-j,-j}和{1,1,j,-j,-1,-1,-j,j};或者,
当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
{1,1,1,1,1,1,1,1}、{1,-1,1,-1,1,-1,1,-1}、{1,1,-1,-1,1,1,-1,-1}、{1,-1,-1,1,1,-1,-1,1}、{1,1,1,1,-1,-1,-1,-1}、{1,-1,1,-1,-1,1,-1,1}、{1,1,-1,-1,-1,-1,1,1}和{1,-1,-1,1,-1,1,1,-1};或者,
当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
{1,-j,-1,-j,1,-j,-1,-j}、{1,j,-1,j,1,j,-1,j}、{1,-j,1,j,1,-j,1,j}、{1,j,1,-j,1,j,1,-j}、{1,-j,-1,-j,-1,j,1,j}、{1,j,-1,j,-1,-j,1,-j}、{1,-j,1,j,-1,j,-1,-j}和{1,j,1,-j,-1,-j,-1,j}。
在一种可能的示例中,当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
{1,1,1,1,1,1,1}、{1,-1,1,-1,1,-1,1,-1}、{1,1,-1,-1,1,1,-1,-1}、{1,-1,-1,1,1,-1,-1,1}、{1,11,1,-1,-1,-1,-1}、{1,-1,1,-1,-1,1,-1,1}、{1,1,-1,-1,-1,-1,1,1}和{1,-1,-1,1,-1,1,1,-1};或者,
当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:{1,1,1,-1,-1,1,-1,-1}、{1,-1,1,1,-1,-1,-1,1}、{1,1,-1,1,-1,1,1,1}、{1,-1,-1,-1,-1,-1,1,-1}、{1,1,1,-1,1,-1,1,1}、{1,-1,1,1,1,1,1,-1}、{1,1,-1,1,1,-1,-1,-1}和{1,-1,-1,-1,1,1,-1,1};或者,
当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:{1,1,-1,-1,1,-1,-1,1}、{1,-1,-1,1,1,1,-1,-1}、{1,1,1,1,1,-1,1,-1}、{1,-1,1,-1,1,1,1,1}、{1,1,-1,-1,-1,1,1,-1}、{1,-1,-1,1,-1,-1,1,1}、{1,1,1,1,-1,1,-1,1}和{1,-1,1,-1,-1,-1,-1,-1};或者,
当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:{1,1,-1,1,-1,-1,1,-1}、{1,-1,-1,-1,-1,1,1,1}、{1,1,1,-1,-1,-1,-1,1}、{1,-1,1,1,-1,1,-1,-1}、{1,1,-1,1,1,1,-1,1}、{1,-1,-1,-1,1,-1,-1,-1}、{1,1,1,-1,1,1,1,-1}和{1,-1,1,1,1,-1,1,1}。
以上第二方面所示有益效果可参见前述第一方面的有益效果。
第三方面,本申请实施例提供一种通信装置,可以实现上述第一方面或其任一可能的设计中由终端设备实现的方法。该装置包括用于执行上述方法的相应的单元或部件。该装置包括的单元可以通过软件和/或硬件方式实现。该装置例如可以为终端设备、或者为可支 持终端设备中实现上述方法的部件或基带芯片、芯片系统、或处理器等。
示例性的,该通信装置可包括收发单元(或称通信模块、收发模块)和处理单元(或称处理模块)等等模块化组件,这些模块可以执行上述第一方面或其任一可能的设计中终端设备的相应功能。当通信装置是终端设备时,收发单元可以是发送器和接收器,或发送器和接收器整合获得的收发器。收发单元可以包括天线和射频电路等,处理单元可以是处理器,例如基带芯片等。当通信装置是具有上述终端设备功能的部件时,收发单元可以是射频单元,处理单元可以是处理器。当通信装置是芯片系统时,收发单元可以是芯片系统的输入输出接口、处理单元可以是芯片系统的处理器,例如:中央处理单元(central processing unit,CPU)。
收发单元可用于执行第一方面或其任一可能的设计中由终端设备执行的接收和/或发送的动作。处理单元可用于执行第一方面或其任一可能的设计中由终端设备执行的接收和发送以外的动作,如根据第一信息确定第一参数等。
第四方面,本申请实施例提供一种通信装置,可以实现上述第二方面或其任一可能的设计中由第一网络设备实现的方法。该装置包括用于执行上述方法的相应的单元或部件。该装置包括的单元可以通过软件和/或硬件方式实现。该装置例如可以为网络设备、或者为可支持网络设备中实现上述方法的部件或基带芯片、芯片系统、或处理器等。
示例性的,该通信装置可包括收发单元(或称通信模块、收发模块)和处理单元(或称处理模块)等等模块化组件,这些模块可以执行上述第二方面或其任一可能的设计中网络设备的相应功能。当通信装置是网络设备时,收发单元可以是发送器和接收器,或发送器和接收器整合获得的收发器。收发单元可以包括天线和射频电路等,处理单元可以是处理器,例如基带芯片等。当通信装置是具有上述网络设备功能的部件时,收发单元可以是射频单元,处理单元可以是处理器。当通信装置是芯片系统时,收发单元可以是芯片系统的输入输出接口、处理单元可以是芯片系统的处理器,例如:中央处理单元(central processing unit,CPU)。
收发单元可用于执行第二方面或其任一可能的设计中由网络设备执行的接收和/或发送的动作。处理单元可用于执行第二方面或其任一可能的设计中由网络设备执行的接收和发送以外的动作。
第五方面,提供一种通信系统,该通信系统包括第三方面以及第四方面所示的通信装置。
第六方面,提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机指令,当该计算机指令在计算机上运行时,使得该计算机执行上述第一方面至第二方面或其任意一种可能的实施方式中所示的方法。
第七方面,提供一种包含指令的计算机程序产品,该计算机程序产品用于存储计算机指令,当该计算机指令在计算机上运行时,使得该计算机执行上述第一方面至第二方面或其任意一种可能的实施方式中所示的方法。
第八方面,提供一种电路,该电路与存储器耦合,该电路被用于执行上述第一方面至第二方面或其任意一种可能的实施方式中所示的方法。该电路可包括芯片电路。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为一种根据序列发送上行参考信号的流程示意图;
图3A为上行参考信号序列与子载波之间的一种映射关系示意图;
图3B为上行参考信号序列与子载波之间的另一种映射关系示意图;
图3C为上行参考信号序列与子载波之间的另一种映射关系示意图;
图3D为上行参考信号序列与子载波之间的另一种映射关系示意图;
图4为本申请实施例提供的另一种通信系统的架构示意图;
图5为本申请实施例提供的一种通信装置的结构示意图;
图6为本申请实施例提供的另一种通信装置的结构示意图;
图7为本申请实施例提供的另一种通信装置的结构示意图;
图8为本申请实施例提供的另一种通信装置的结构示意图;
图9为本申请实施例提供的一种通信方法的流程示意图;
图10为本申请实施例提供的另一种通信系统的架构示意图;
图11为本申请实施例提供的一种第二序列的示意图;
图12为本申请实施例提供的一种第一序列的示意图;
图13为本申请实施例提供的一种局部序列的示意图;
图14为本申请实施例提供的一种第一序列的PAPR分布示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。
如图1所示,本申请实施例提供的测量反馈方法可应用于无线通信系统,该无线通信系统可以包括终端设备101以及网络设备102。
应理解,以上无线通信系统既可适用于低频场景(sub 6G),也可适用于高频场景(above6G)。无线通信系统的应用场景包括但不限于第五代系统、新无线(new radio,NR)通信系统或未来的演进的公共陆地移动网络(public land mobile network,PLMN)系统等。
以上所示终端设备101可以是用户设备(user equipment,UE)、终端(terminal)、接入终端、终端单元、终端站、移动台(mobile station,MS)、远方站、远程终端、移动终端(mobile terminal)、无线通信设备、终端代理或终端设备等。该终端设备101可具备无线收发功能,其能够与一个或多个通信系统的一个或多个网络设备进行通信(如无线通信),并接受网络设备提供的网络服务,这里的网络设备包括但不限于图示网络设备102。
其中,终端设备101可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端装置或者未来演进的PLMN网络中的终端装置等。
另外,终端设备101可以部署在陆地上,包括室内或室外、手持或车载;终端设备101也可以部署在水面上(如轮船等);终端设备101还可以部署在空中(例如飞机、气球和卫星上等)。该终端设备101具体可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、 远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。终端设备101也可以是具有通信模块的通信芯片,也可以是具有通信功能的车辆,或者车载设备(如车载通信装置,车载通信芯片)等。
网络设备102可以是接入网设备(或称接入网站点)。其中,接入网设备是指有提供网络接入功能的设备,如无线接入网(radio access network,RAN)基站等等。网络设备102具体可包括基站(base station,BS),或包括基站以及用于控制基站的无线资源管理设备等。该网络设备101还可包括中继站(中继设备)、接入点以及未来5G网络中的基站、未来演进的PLMN网络中的基站或者NR基站等。网络设备102可以是可穿戴设备或车载设备。网络设备102也可以是具有通信模块的芯片。
比如,网络设备102包括但不限于:5G中的下一代基站(g nodeB,gNB)、LTE系统中的演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、CRAN系统下的无线控制器、基站控制器(base station controller,BSC)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)或移动交换中心等。网络设备102还可包括未来6G或更新的移动通信系统中的基站。
以图1所示终端设备101与网络设备102之间的通信为例,发送上行参考信号的过程中,由网络设备102向终端设备101发送上行参考信号的配置,由终端设备101根据该配置发送上行参考信号,并由网络设备102对终端设备101发送的上行参考信号进行测量,以获得上行信道特征。这里的上行参考信号包括但不限于SRS、DMRS等。
目前的上行参考信号所采用的序列例如ZC序列,或ZC序列经过截断或循环扩充后的序列。L长上行参考信号序列r(n)可表示为以下形式:
r(n)=A e jαnx q(n mod N ZC);    (公式二)
其中,x q(·)是ZC序列,α是循环移位值,n=0,1,…,L-1,A是复数,可以是功率控制因子,N ZC为ZC序列长度。
ZC序列具有CAZAC序列的恒模和零周期自相关特性。对于同一个ZC序列,采用不同的循环移位值α,可以获得不同的上行参考信号序列,且不同循环移位值得到的上行参考信号序列之间是相互正交(或称码分正交)的。因此,对于同一个ZC序列,可以将不同循环移位值α 1≠α 2(mod N zc)分配给不同用户,这些用户可以在相同的时频资源上发射具有不同循环移位的ZC序列,当用户的信道在ZC序列长度内平坦时,用户之间不存在干扰。
ZC序列还具有比较均匀的互相关特性。举例来说,分别具有相同长度N zc、不同根指标的两个ZC序列的互相关系数为
Figure PCTCN2021122757-appb-000022
比如两个ZC序列的根指标分别是q 1和q 1,q 1≠q 1(mod N zc),并且对这两个ZC序列采用任意的两个α均成立。其中,长度为D的序列x 1(n)和x 2(n),n=0,1,…,D-1的互相关系数定义为
Figure PCTCN2021122757-appb-000023
因此,将具有不同根指标的ZC序列分配给不同的用户,这些用户在相同的时频资源上发射具有不同根指标的ZC序列,用户之间存在干扰。
如图2所示,在得到长度为L的上行参考信号序列后,终端设备101可将L长上行参考信号序列映射到L个子载波上,获得包括L个频点的频域信号。之后通过反傅里叶变换(inverse discrete Fourier transform,IDFT)等方式将频域信号转换为时域信号,为该时域 信号添加循环前缀(cyclic prefix,CP)后获得待发送的时域信号。
举例来说,终端设备101可将长度为L的上行参考信号序列r(0)、r(1)、r(2)……r(L-1)分别按照子载波编号从小到大(或者从大到小)的顺序映射到等间隔分布的子载波上,图3A中表示L长序列映射至连续的L个子载波(L个连续的子载波编号分别表示为s+0、s+1、……s+L-1,s为任意整数)上;或者,也可以按照子载波编号由大到小的顺序将L长序列映射到连续分布的子载波上,比如,例如图3B所示,将L长序列映射到子载波s+(L-1)、s+L-2、……s+0上。
可选的,也可以将L长序列r(0)、r(1)、r(2)……r(L)分别映射至等间隔分布的子载波(等间隔分布的子载波分别表示为s+0、s+2、……s+2(L-1))上,如图3C所示。其中,图3C中所示示例中,将L长序列分别映射至以2f s为间隔的子载波,f s表示相邻子载波的中心频率之间的宽度。或者,可以按照子载波编号由大到小的顺序将L长的序列分别映射至等间隔分布的子载波,例如图3D所示,将L长序列映射到子载波s+2(L-1)、s+2(L-2)、……、s+0)上。
此后,终端设备101可将以上频域参考信号序列进行反傅里叶变换,得到对应的时域序列,为了消除符号间干扰,在时域符号起始处加上循环前缀,获得待发送的时域信号,并通过射频发送该待发送的时域信号。至此,终端设备101完成上行参考信号的发送。
如前述,当具有不同根指标的ZC序列被分配给不同的UE,并且这些UE在相同的时频资源发射这些ZC序列时,这些UE之间存在相互干扰。
例如图4所示,UE组(group)1中的UE和UE组3中的UE使用的ZC序列根指标相同,不同UE使用不同循环移位值α,序列之间码分正交。UE组2中的UE和UE组3以及UE组1中的UE使用不同根指标的ZC序列,因此,UE组2的UE和UE组3的UE之间的序列不正交、UE组2的UE和UE组1的UE之间的序列不正交。传输接收点(transmission reception point,TRP)1和TRP2需要同时测量UE组3的UE的信道,按照现有的序列设计,UE组2的上行参考信号对UE组3的UE向TRP2发送的上行参考信号形成强干扰,会导致协同UE(即可接入两个基站的UE,例如UE组3中的UE)的上行参考信号信道估计性能损失严重。
为了降低UE之间上行参考信号之间的干扰,本申请实施例提供一种通信方法。该通信方法可由终端设备(或终端设备中的组件)和网络设备(或网络设备中的组件)实施。其中,终端设备例如图1所示终端设备101、图4所示UE组3、UE组1或UE组2中的UE等。网络设备例如图1所示网络设备102或图4所示TRP1、TRP2等等。
示例性的,图5示出了终端设备的一种可能的结构示意图,该结构可包括处理模块510和收发模块520。示例性地,图5所示结构可以是终端设备,也可以是应用于终端设备中的芯片或者其他具有本申请所示终端设备功能的组合器件、部件(或称组件)等。当该结构是终端设备时,收发模块520可以是收发器,收发器可以包括天线和射频电路等,处理模块510可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个中央处理单元(central processing unit,CPU)。当该结构是具有本申请所示终端设备功能的部件时,收发模块520可以是射频单元,处理模块510可以是处理器,例如基带处理器。当该结构是芯片系统时,收发模块520可以是芯片(例如基带芯片)的输入输出接口、处理模块510可以是芯片系统的处理器,可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理模块510可以由处理器或处理器相关电路组件实现,收发模块520可以由收发器或 收发器相关电路组件实现。
例如,处理模块510可以用于执行本申请任一实施例中由终端设备所执行的除了收发操作之外的全部操作,例如处理操作,和/或用于支持本文所描述的技术的其它过程,比如生成由收发模块520发送的消息、信息和/或信令,和对由收发模块520接收的消息、信息和/或信令进行处理。收发模块520可以用于执行本申请任一实施例中由终端设备所执行的全部接收和发送操作,和/或用于支持本文所描述的技术的其它过程,例如DMRS的发送。
另外,收发模块520可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块520可以用于执行由终端设备所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块520是发送模块,而在执行接收操作时,可以认为收发模块520是接收模块;或者,收发模块520也可以是两个功能模块,收发模块520可以视为这两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于执行由终端设备所执行的全部发送操作,接收模块用于完成接收操作,接收模块可以用于执行由终端设备所执行的全部接收操作。
图6示出了另一种终端设备的结构示意图。便于理解和图示方便。如图6所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图6中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元(收发单元可以是一个功能单元,该功能单元能够实现发送功能和接收功能;或者,收发单元也可以包括两个功能单元,分别为能够实现接收功能的接收单元和能够实现发送功能的发送单元),将具有处理功能的处理器视为终端设备的处理单元。如图6所示,终端设备包括收发单元610和处理单元620。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元610中用于实现接收功能的器件视为接收单元,将收发单元610中用于实现发送功能的器件视为发送单元,即收发单元610包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元610可与收发模块520对应,或者说,收发模块520可由收发单元610实现。收发单元610用于执行本申请所示实施例中终端设备的发送操作和接收操作, 和/或用于支持本文所描述的技术的其它过程。处理单元620可与处理模块510对应,或者说,处理模块510可由处理单元620实现。处理单元620用于执行本申请所示实施例中终端设备上除了收发操作之外的其他操作,例如用于执行本申请所示实施例中由终端设备所执行的全部接收和发送操作,和/或用于支持本文所描述的技术的其它过程。
图7为本申请实施例提供的一种网络设备的结构示意图。该结构可包括处理模块710和收发模块720。示例性地,该结构可以是所示的网络设备,也可以是应用于网络设备中的芯片或者其他具有本申请所示网络设备功能的组合器件、部件等。当该结构是网络设备时,收发模块720可以是收发器,收发器可以包括天线和射频电路等,处理模块710可以是处理器,处理器中可以包括一个或多个CPU。当该结构是具有本申请所示网络设备功能的部件时,收发模块720可以是射频单元,处理模块710可以是处理器,例如基带处理器。当该结构是芯片系统时,收发模块720可以是芯片(例如基带芯片)的输入输出接口、处理模块710可以是芯片系统的处理器,可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理模块710可以由处理器或处理器相关电路组件实现,收发模块720可以由收发器或收发器相关电路组件实现。
例如,处理模块710可以用于执行本申请实施例中由网络设备所执行的除了收发操作之外的全部操作,比如生成由收发模块720发送的消息、信息和/或信令,和/或对由收发模块720接收的消息、信息和/或信令进行处理,和/或用于支持本文所描述的技术的其它过程。收发模块720可以用于执行本申请实施例中由网络设备所执行的全部发送和/或接收操作,和/或用于支持本文所描述的技术的其它过程。
图8示出了另一种网络设备的结构示意图。如图8所示,网络设备包括处理器、存储器、射频单元(或射频电路)或者天线等结构。处理器主要用于对通信协议以及通信数据进行处理,以及对网络设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频单元主要用于基带信号与射频信号的转换以及对射频信号的处理。
如图8所示,网络设备可包括收发模块810和处理模块820,其中,该收发模块可以包括发送模块和接收模块,或者,该收发模块810可以是一个能够实现发送和接收功能的模块。该收发模块810可以与图7中的收发模块720对应,即可由收发模块810执行由收发模块720执行的动作。可选地,该收发模块810还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线811和射频单元812。该收发模块810部分主要用于射频信号的收发以及射频信号与基带信号的转换。该处理模块810部分主要用于进行基带处理,对网络设备进行控制等。该收发模块810与处理模块820可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
示例性的,收发模块810可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU),处理模块820可包括一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)。
在一个示例中,该处理模块820可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网络),也可以分别支持不同接入制式的无线接入网(如LTE网络,5G网络或其他网络)。该处理模块820还包括存储器821和处理器822。该存储器821用以存储必要的指令和数据。该处理器822用于控制基站进行必要的动作,例如用于控制基站执行本申请所示实施例中关于网络设备的操作流程。该存储器821和处 理器822可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,可由图5所示收发模块520或图6所示收发单元610执行本申请实施例中由终端设备执行的接收和/或发送的动作,比如,执行第一信号的发送动作;可由图5所示处理模块510或图6所示处理单元620执行本申请实施例中由终端设备执行的接收和/或发送以外的其他动作,比如,执行第一序列的确定动作。此外,可由图7所示收发模块720或图8所示收发模块810执行本申请实施例中由网络设备执行的接收和/或发送的动作,比如,执行第一信号的接收动作;可由图7所示处理模块710或图8所示处理模块820执行本申请实施例中由网络设备执行的接收和/或发送以外的其他动作,比如,执行第一序列的确定动作。
如图9所示,以终端设备和网络设备执行本申请所示通信方法为例,该通信方法可包括以下步骤:
S101:终端设备获取第一序列。
该第一序列可表示为r(n),r(n)可根据
Figure PCTCN2021122757-appb-000024
获得,
Figure PCTCN2021122757-appb-000025
满足:
Figure PCTCN2021122757-appb-000026
其中,n=0,1,2,…,L-1,a=0,1,2,…,M-1,b=0,1,2,…,N-1,aN+b=0,1,2,…,MN-1,c(b)为第二序列,σ(b)中的每一项属于{0,1,2,…,N-1},且σ(b)中的任意两项不同,j为虚数单位,x b(·)是长度为k的CAZAC序列,
Figure PCTCN2021122757-appb-000027
k为正整数,
Figure PCTCN2021122757-appb-000028
或者
Figure PCTCN2021122757-appb-000029
L是第一序列的长度。
Figure PCTCN2021122757-appb-000030
表示下取整,
Figure PCTCN2021122757-appb-000031
表示上取整。e为常数,或者说,e是自然对数函数的底数。
可选的,x b(·)与b有关,比如,当b取值不同时,x b(·)不同。或者,也可以针对两个或更多的取值不同的b设置相同的x b(·)。
以上公式三中,c(b)属于第一序列组,该第一序列组可包括至少两个第二序列,c(b)为第一序列组中的一个第二序列。该第一序列组为多个序列组中的一个。其中,该多个序列组分别通过与序列组相关联的组标识进行区分,或者说,每个序列组相关联的组标识不同。可选的,网络设备可通过组标识向终端设备指示第一序列组,或者,组标识(或c(b))可以是存储在终端设备中的,因此可由终端设备从第一序列组中确定c(b)。可以理解的是,多个序列组中的每个序列组可包括至少两个第二序列。
以上多个序列组中,任意两个序列组分别的至少一个序列之间正交。以多个序列组包括第一序列组和第二序列组为例,基于前述介绍可知,第一序列组和第二序列组分别包括至少两个第二序列,其中,第一序列组中的第二序列之间相互正交,第二序列组中的第二序列之间相互正交,且第一序列组中的部分第二序列与第二序列组中的部分第二序列正交。
该示例中,网络设备可向终端设备指示组标识,由终端设备根据组标识确定第一序列组,并从第一序列组中确定c(b)。此外,网络设备也可从第一序列组中选择c(b),并直接向终端设备直接或间接指示c(b),或者,c(b)对于终端设备来说是一个设定的序列,因此终端设备不必须获知多个序列组的存在。
可选的,N为第二序列的长度。L可以是网络设备配置或者是终端设备通过网络设备配置的参数确定的,或者可以是设定值。
或者说,
Figure PCTCN2021122757-appb-000032
可表示为
Figure PCTCN2021122757-appb-000033
x是根据a、b和N确定的唯一值。
可选的,第一序列r(n)与
Figure PCTCN2021122757-appb-000034
之间满足:
Figure PCTCN2021122757-appb-000035
其中,A为非零复数,n=0,1,2,…,L-1。
公式四也可以替换为以下表述:r(n)根据
Figure PCTCN2021122757-appb-000036
获得,比如,是对序列
Figure PCTCN2021122757-appb-000037
进行截断或循环扩充,和/或根据功率控制因子A进行功率控制后获得r(n)。
A是非零复数。在具体实施过程中,本领域技术人员可以根据需要赋予A的取值。例如,技术人员可以根据发送参考信号的设备的发射功率,确定A的取值,实现发送功率控制。也就是说,对于A的取值,本申请实施例可以不做限制。
举个例子,比如,L=144,且N=8,若M=16,则需要对
Figure PCTCN2021122757-appb-000038
扩充得到r(n);又比如,L=252,且N=8,若M=32,则需要对
Figure PCTCN2021122757-appb-000039
截断得到r(n);再比如,L=192,且N=8,若M=24,则在获得r(n)时不需要对
Figure PCTCN2021122757-appb-000040
截断或者扩充。
以上第一序列r(n)可以是终端设备存储的,也可以是该终端设备根据预定义的公式(公式三和/或公式四)计算得到的。
应理解,网络设备可按照类似的方式确定第一序列。
S102:终端设备根据第一序列发送第一信号。
相应地,网络设备根据第一序列接收第一信号,第一信号是根据第一序列生成的。
示例性的,终端设备可将第一序列映射至L个子载波,生成承载于L个子载波的第一信号,并通过射频发送第一信号,第一信号例如是SRS或其他的上行参考信号。相应地,网络设备根据第一序列接收终端发送承载于L个子载波的第一信号。网络设备确定第一序列的方式可参照终端设备确定第一序列的说明。
在得到第一序列后,终端设备可将长度为L的第一序列按照子载波指标从小到大(或者从大到小)的顺序映射到等间隔分布的子载波上,比如按照图3A所示,L长的第一序列可映射至连续的L个子载波(L个连续的子载波分别表示为s+0、s+1、……s+L-1,s为子载波编号,s为整数)上;或者,可按照子载波编号由大到小的顺序将L长的第一序列映射到连续分布的子载波上,比如按照图3B所示,将L长第一序列映射到子载波s+L-1、s+L-2、……s+0上。可选的,也可以将L长的第一序列分别映射至等间隔分布的子载波(等间隔分布的子载波分别表示为s+0、s+2、……s+2(L-1))上,如图3C所示,或者,可以按照子载波编号由大到小的顺序将L长的第一序列分别映射至等间隔分布的子载波,比如按照图3D所示,将L长的第一序列映射到子载波s+2(L-1)、s+2(L-2)、……s+0)上。在图3B中所示示例中,将L长序列分别映射至以2f s为间隔的子载波,f s表示相邻子载波的中心频率之间的宽度。
应理解,上述子载波映射的过程或步骤仅仅是示例性的说明,在实际发送第一信号的过程中,可能经过其他处理,本申请不再具体限定。
一个实施方式中,包括S103,所述网络设备根据所述第一信号进行信道估计。可选的,所述网络设备根据所述第一信号进行数据解调。
可选的,所述网络设备可以同样先获取第一序列,再根据所述第一序列接收第一信号,为了区分开终端侧发送的第一序列的描述,这里的第一序列可以称为本地第一序列。应理解,获取第一序列的步骤和接收第一信号的步骤可以互换。
作为一个可替换的步骤,所述网络设备可以不获取第一序列,而是存储、生成或确定一个本地序列,在接收第一信号后,根据所述本地序列和第一信号确定出终端侧发送的第 一序列。应理解,本地序列可以是多个序列,例如是多个可能被终端确定为第一序列的序列集合。网络设备根据接收到的第一信号,和该多个序列做比对,确认出第一信号为该多个序列中的一个。应理解,本地序列不一定完全为第一序列,例如可以仅存储第一序列中的前几项,只要能确定出上述终端设备发送的第一信号对应的第一序列即可。
采用以上方法,第一序列是根据第一序列组中的第二序列获得的,其中,第一序列组内的第二序列之间正交,且第一序列组与第二序列组中的序列之间部分正交,因此,根据不同序列组中的第二序列分别获得的不同的参考信号,相比于采用ZC序列获得的参考信号,能够与更多的其他参考信号正交,也就是说,根据该第一序列发送第一信号,能够降低第一信号与其他信号之间的干扰,同时保证第一信号的峰均功率比(peak-to-average power ratio,PAPR)比较低。
如图10所示场景,可对第一序列进行分配,以保证UE组3和UE组1中的UE之间使用的序列正交,以及UE组3和UE组2中的UE之间使用的序列也正交,能有效保证协同UE(UE组3)信道估计的准确性。
假设第一序列组所属的多个序列组包含的第二序列的数量表示为K,第二序列的长度均为N,以K=32、N=8为例,本申请实施例提供的一种序列组的示意图如图11所示。该示例中,第二序列可分为四组,图11所示的第一组序列与第二组序列中,白色所示的序列之间相互正交,黑色所示的序列之间相互正交。此外,图11中,未示出的第三组序列中的序列与第四组序列的序列之间或者其他任意两组序列之间的正交方式可参照第一组序列中的序列与第二组序列中的序列的正交方式,或者可采取其他正交方式,本申请中不予具体限定。
可选的,当L=32、N=8时,第一序列组所属的多个序列组中的第二序列例如表1所示。
Figure PCTCN2021122757-appb-000041
Figure PCTCN2021122757-appb-000042
表1
应理解,本申请中例如表1等的表格不一定是对第二序列的穷举性质的示例,比如,第二序列也可以包括表1以外的其他序列。在实际确定第二序列的过程中,可能不会采用表1中的下标i、j对应的数字,比如也可以是将下标i、j替换为其他的标识,或者不作标识。
表1中,G ij表示第i组第二序列中的第j个第二序列。i可以是组标识,也可以是组标识对应的序列组的编号(或索引)。
应理解,当多个序列组包括的第二序列如表1所示时,第一序列组和第二序列组可分别为i取不同值时的第二序列。比如,第一序列组包括G 11、G 12、……G 18,第二序列组包括G 21、G 22、……G 28
换句话说,第一序列组的序列或第二序列组的序列包括下述序列:
{1,1,1,1,1,1,1}、{1,-1,1,-1,1,-1,1,-1}、{1,1,-1,-1,1,1,-1,-1}、{1,-1,-1,1,1,-1,-1,1}、{1,11,1,-1,-1,-1,-1}、{1,-1,1,-1,-1,1,-1,1}、{1,1,-1,-1,-1,-1,1,1}、{1,-1,-1,1,-1,1,1,-1};或者,
第一序列组的序列或第二序列组的序列包括下述序列:{1,1,1,-1,-1,1,-1,-1}、{1,-1,1,1,-1,-1,-1,1}、{1,1,-1,1,-1,1,1,1}、{1,-1,-1,-1,-1,-1,1,-1}、{1,1,1,-1,1,-1,1,1}、{1,-1,1,1,1,1,1,-1}、{1,1,-1,1,1,-1,-1,-1}、{1,-1,-1,-1,1,1,-1,1};或者,
所述第一序列组的序列或第二序列组的序列包括下述序列:{1,1,-1,-1,1,-1,-1,1}、{1,-1,-1,1,1,1,-1,-1}、{1,1,1,1,1,-1,1,-1}、{1,-1,1,-1,1,1,1,1}、{1,1,-1,-1,-1,1,1,-1}、{1,-1,-1,1,-1,-1,1,1}、{1,1,1,1,-1,1,-1,1}、{1,-1,1,-1,-1,-1,-1,-1};或者,
当N=8时,所述第一序列组的序列或第二序列组的序列包括下述序列:{1,1,-1,1,-1,-1,1,-1}、{1,-1,-1,-1,-1,1,1,1}、{1,1,1,-1,-1,-1,-1,1}、{1,-1,1,1,-1,1,-1,-1}、{1,1,-1,1,1,1,-1,1}、{1,-1,-1,-1,1,-1,-1,-1}、{1,1,1,-1,1,1,1,-1}、{1,-1,1,1,1,-1,1,1}。
如表1所示的两个第二序列之间的互相关系数如表2所示。可见,第二序列之间相互正交的第二序列之间的互相关系数为0,不相互正交的第二序列之间的互相关系数为0.5。可根据实际场景需求将第二序列分配给不同的终端设备,由不同的终端设备按照第二序列对应的第一序列发送上行参考信号,可降低终端设备的上行参考信号之间的传输干扰。
Figure PCTCN2021122757-appb-000043
Figure PCTCN2021122757-appb-000044
Figure PCTCN2021122757-appb-000045
表2
以表2为例,第1组(即i=1)第二序列中,G 11与G 12至G 18中的任意一个第二序列正交,或者说,第1组第二序列之间两两正交。此外,G 11分别与G 21、G 22、G 27以及G 28正交,也就是说,G 11与第2组第二序列中的部分第二序列正交。其他序列组内的序列同理。因此,当根据某个序列组中的第二序列确定第一信号时,能够保证该第一信号与根据相同序列组内的任何其他第二序列确定的其他信号正交,且保证该第一信号与根据其他序列组内的部分第二序列确定的其他信号正交。
可选的,本申请实施例提供的另一种实现方式中,当N=4时,第一序列组的序列或第二序列组的序列包括下述序列:
{1,1,1,1}、{1,-1,1,-1}、{1,1,-1,-1}、{1,-1,-1,1};或者,
第一序列组的序列或第二序列组的序列包括下述序列:
{1,j,1,j}、{1,-j,1,-j}、{1,j,-1,-j}、{1,-j,-1,j}。
采用该设计,第一序列中的任一序列与第二序列中的任一序列之间的正交,或者第一序列中的任一序列与第二序列中的任一序列之间的互相关系数为
Figure PCTCN2021122757-appb-000046
可选的,本申请实施例提供的另一种实现方式中,当N=8时,第一序列组的序列或第二序列组的序列包括下述序列:
{1,-j,-j,-1,1,-j,-j,-1}、{1,j,-j,1,1,j,-j,1}、{1,-j,j,1,1,-j,j,1}、{1,j,j,-1,1,j,j,-1}、{1,-j,-j,-1,-1,j,j,1}、{1,j,-j,1,-1,-j,j,-1}、{1,-j,j,1,-1,j,-j,-1}或者{1,j,j,-1,-1,-j,-j,1}。
或者,第一序列组的序列或第二序列组的序列包括下述序列:
{1,-1,-j,-j,1,-1,-j,-j}、{1,1,-j,j,1,1,-j,j}、{1,-1,j,j,1,-1,j,j}、{1,1,j,-j,1,1,j,-j}、{1,-1,-j,-j,-1,1,j,j}、{1,1,-j,j,-1,-1,j,-j}、{1,-1,j,j,-1,1,-j,-j}或者{1,1,j,-j,-1,-1,-j,j}。
或者,第一序列组的序列或第二序列组的序列包括下述序列:
{1,1,1,1,1,1,1,1}、{1,-1,1,-1,1,-1,1,-1}、{1,1,-1,-1,1,1,-1,-1}、{1,-1,-1,1,1,-1,-1,1}、{1,1,1,1,-1,-1,-1,-1}、{1,-1,1,-1,-1,1,-1,1}、{1,1,-1,-1,-1,-1,1,1}或者{1,-1,-1,1,-1,1,1,-1}。
或者,第一序列组的序列或第二序列组的序列包括下述序列:
{1,-j,-1,-j,1,-j,-1,-j}、{1,j,-1,j,1,j,-1,j}、{1,-j,1,j,1,-j,1,j}、{1,j,1,-j,1,j,1,-j}、{1,-j,-1,-j,-1,j,1,j}、{1,j,-1,j,-1,-j,1,-j}、{1,-j,1,j,-1,j,-1,-j}或者{1,j,1,-j,-1,-j,-1,j}。
采用该设计,第一序列中的任一序列与第二序列中的任一序列之间正交,或者第一序列中的任一序列与第二序列中的任一序列之间的互相关系数为0.5。
可选的,在图11所示的多个序列组的基础上,则本申请实施例提供的一种图11中第二序列对应的第一序列的集合的示意图如图12所示,其中,不同终端设备分别获取的第一序列可以是图12所示第一序列的集合中的一个。第一序列的集合中,每个第一序列是根据多个序列组中的一个第二序列确定的;第一序列的集合中的全部第一序列,包括根据多个序列组中的全部第二序列确定的第一序列。如图所示,第一序列的集合中的第一序列可分为四组,各组内的第一序列之间相互正交,各组间的第一序列部分正交,图12所示的第一组第一序列与第二组第一序列中,第一组中的白色所示的第一序列与第二组中的白色所示的第一序列正交,同时,第一组中的白色所示的第一序列的序列局部(局部长度为N)与第二组的白色所示的第一序列的序列局部(局部长度为N)之间也相互正交。同理,图11中黑色所示的序列的相互正交,同时满足局部正交。
第一序列的局部(或称局部序列)是指第一序列中包含的与c(b)对应的项。以N=8为例,如图13所示,第一序列可包括多个与c(b)相对应的项。示例性的,第一组中的一个第一序列与第二组中的一个第一序列正交,则同时也满足,该第一组中的一个第一序列的子载波位置s+0、s+1、……s+7对应的局部序列(即第一组第一序列的一个局部序列)与该第二组中的一个第一序列的子载波位置s+0、s+1、……s+7对应的局部序列(即第二组第一序列的一个局部序列)正交。
应理解,以上图11和图12中以K=32、N=8为例进行说明,在实施中可根据实际场景需求对以上方法进行扩展,比如,K和N可分别取其他值。该扩展的方式也应认为是本申请实施例的保护范围。
如图14所示,当K=32、N=8、M=24时,本申请中得到的32个192长的第一序列对应的上行参考信号的PAPR分布范围为[4.4,6.8],而采用ZC序列时,上行参考信号的PAPR的分布范围为[3.4,6.6],二者相差不大。因此在保证PAPR的基础上,本申请所示的通信方法可降低信号之间的干扰。其中,图14为根据不同的c(b)获得的32个192长的第一序列对应的上行参考信号的PAPR的累积分布函数(cumulative distribution function,CDF)以及按照不同的ZC序列获得的不同的上行参考信号序列的PAPR的CDF的对比示意图。
作为一个实施例,对于本发明所涉及的发送装置接收装置,可以存储上述实施例中涉及的各个序列(或序列集合、序列组),这种存储方式可以采用一个存储器、存储介质、或其他的具有存储功能的设备实现,例如芯片或处理器。存储的具体内容在此不做限定,作为进一步的一种实施方式,可以存储生成公式的方法,例如存储公式、程序、或通过生成序列的固化的电路,然后再通过获取各种与序列相关的参数,生成对应的序列。例如,可以存储第一序列组和/或第二序列组,再根据公式或参数确定出第一序列。
本申请实施例提供一种通信装置。该通信装置可用于实现上述实施例所涉及的终端设备,该通信装置可包括图5和/或图6所示结构。
本申请实施例提供一种通信装置。该通信装置可用于实现上述实施例所涉及的网络设备,该通信装置可包括图7和/或图8所示结构。
应理解,本发明中,终端设备和网络设备可以互换,即本发明既适用于上行传输和下 行传输。
本申请实施例提供一种通信系统。该通信系统可以包括上述实施例所涉及的终端设备,以及包括上述实施例所涉及的网络设备。可选的,该通信系统中的终端设备和网络设备可执行上述方法实施例中任一所示的通信方法。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,该计算机可以实现上述方法实施例中任一所示的实施例中与终端设备或网络设备相关的流程。
本申请实施例还提供一种计算机程序产品,该计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,该计算机可以实现上述方法实施例中任一所示的实施例中与终端设备或网络设备相关的流程。
本申请实施例还提供一种芯片或芯片系统,该芯片可包括处理器,该处理器可用于调用存储器中的程序或指令,执行上述方法实施例中任一所示的实施例中与终端设备或网络设备相关的流程。该芯片系统可包括该芯片,还可存储器或收发器等其他组件。
本申请实施例还提供一种电路,该电路可与存储器耦合,可用于执行上述方法实施例中任一所示的实施例中与终端设备或网络设备相关的流程。该芯片系统可包括该芯片,还可存储器或收发器等其他组件。
应理解,本申请实施例中提及的处理器可以是CPU,还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以 硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的通信方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。
该功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例该方法的全部或部分步骤。而前述的计算机可读存储介质,可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、电可擦可编程只读存储器(electrically erasable programmable read only memory,EEPROM)、紧凑型光盘只读存储器(compact disc read-only memory,CD-ROM)、通用串行总线闪存盘(universal serial bus flash disk)、移动硬盘、或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
以上所示,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (31)

  1. 一种通信方法,其特征在于,包括:
    获取第一序列,所述第一序列根据
    Figure PCTCN2021122757-appb-100001
    获得,
    Figure PCTCN2021122757-appb-100002
    满足:
    Figure PCTCN2021122757-appb-100003
    其中,a=0,1,2,…,M-1,b=0,1,2,…,N-1,σ(b)的每一项属于{0,1,2,…,N-1},且σ(b)的任意两项不同,j为虚数单位,x b(·)是长度为k的CAZAC序列,
    Figure PCTCN2021122757-appb-100004
    k为正整数,
    Figure PCTCN2021122757-appb-100005
    或者
    Figure PCTCN2021122757-appb-100006
    表示下取整,
    Figure PCTCN2021122757-appb-100007
    表示上取整,L是所述第一序列的长度;c(b)为第一序列组中的第二序列,所述第一序列组与组标识相关联,所述第一序列组为多个序列组中的一个,所述多个序列组还包括第二序列组,所述第一序列组中包括至少两个第二序列;所述第二序列组中包括至少两个第二序列;所述第一序列组中各第二序列之间正交,所述第二序列组中各第二序列之间正交,所述第一序列组中的部分第二序列与所述第二序列组中的部分第二序列正交;
    根据第一序列发送第一信号。
  2. 如权利要求1所述的方法,其特征在于,所述第一序列r(n)与
    Figure PCTCN2021122757-appb-100008
    满足:
    Figure PCTCN2021122757-appb-100009
    其中,A为非零复数,n=0,1,2,…,L-1。
  3. 如权利要求1或2所述的方法,其特征在于,根据第一序列发送第一信号,包括:
    将所述第一序列映射到L个子载波上,生成承载于所述L个子载波的第一信号;
    发送所述第一信号。
  4. 如权利要求3所述的方法,其特征在于,所述L个子载波连续分布;或者,所述L个子载波等间隔分布。
  5. 如权利要求1-4中任一所述的方法,其特征在于,当N=4时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
    {1,1,1,1}、{1,-1,1,-1}、{1,1,-1,-1}和{1,-1,-1,1};或者,
    当N=4时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
    {1,j,1,j}、{1,-j,1,-j}、{1,j,-1,-j}和{1,-j,-1,j}。
  6. 如权利要求1-4中任一所述的方法,其特征在于,当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
    {1,-j,-j,-1,1,-j,-j,-1}、{1,j,-j,1,1,j,-j,1}、{1,-j,j,1,1,-j,j,1}、{1,j,j,-1,1,j,j,-1}、{1,-j,-j,-1,-1,j,j,1}、{1,j,-j,1,-1,-j,j,-1}、{1,-j,j,1,-1,j,-j,-1}和{1,j,j,-1,-1,-j,-j,1};或者,
    当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
    {1,-1,-j,-j,1,-1,-j,-j}、{1,1,-j,j,1,1,-j,j}、{1,-1,j,j,1,-1,j,j}、{1,1,j,-j,1,1,j,-j}、{1,-1,-j,-j,-1,1,j,j}、{1,1,-j,j,-1,-1,j,-j}、{1,-1,j,j,-1,1,-j,-j}和{1,1,j,-j,-1,-1,-j,j};或者,
    当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
    {1,1,1,1,1,1,1,1}、{1,-1,1,-1,1,-1,1,-1}、{1,1,-1,-1,1,1,-1,-1}、{1,-1,-1,1,1,-1,-1,1}、{1,1,1,1,-1,-1,-1,-1}、{1,-1,1,-1,-1,1,-1,1}、{1,1,-1,-1,-1,-1,1,1}和{1,-1,-1,1,-1,1,1,-1};或者,
    当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
    {1,-j,-1,-j,1,-j,-1,-j}、{1,j,-1,j,1,j,-1,j}、{1,-j,1,j,1,-j,1,j}、{1,j,1,-j,1,j,1,-j}、{1,-j,-1,-j, -1,j,1,j}、{1,j,-1,j,-1,-j,1,-j}、{1,-j,1,j,-1,j,-1,-j}和{1,j,1,-j,-1,-j,-1,j}。
  7. 如权利要求1-4中任一所述的方法,其特征在于,当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
    {1,1,1,1,1,1,1}、{1,-1,1,-1,1,-1,1,-1}、{1,1,-1,-1,1,1,-1,-1}、{1,-1,-1,1,1,-1,-1,1}、{1,11,1,-1,-1,-1,-1}、{1,-1,1,-1,-1,1,-1,1}、{1,1,-1,-1,-1,-1,1,1}和{1,-1,-1,1,-1,1,1,-1};或者,
    当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:{1,1,1,-1,-1,1,-1,-1}、{1,-1,1,1,-1,-1,-1,1}、{1,1,-1,1,-1,1,1,1}、{1,-1,-1,-1,-1,-1,1,-1}、{1,1,1,-1,1,-1,1,1}、{1,-1,1,1,1,1,1,-1}、{1,1,-1,1,1,-1,-1,-1}和{1,-1,-1,-1,1,1,-1,1};或者,
    当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:{1,1,-1,-1,1,-1,-1,1}、{1,-1,-1,1,1,1,-1,-1}、{1,1,1,1,1,-1,1,-1}、{1,-1,1,-1,1,1,1,1}、{1,1,-1,-1,-1,1,1,-1}、{1,-1,-1,1,-1,-1,1,1}、{1,1,1,1,-1,1,-1,1}和{1,-1,1,-1,-1,-1,-1,-1};或者,
    当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:{1,1,-1,1,-1,-1,1,-1}、{1,-1,-1,-1,-1,1,1,1}、{1,1,1,-1,-1,-1,-1,1}、{1,-1,1,1,-1,1,-1,-1}、{1,1,-1,1,1,1,-1,1}、{1,-1,-1,-1,1,-1,-1,-1}、{1,1,1,-1,1,1,1,-1}和{1,-1,1,1,1,-1,1,1}。
  8. 一种通信方法,其特征在于,包括:
    获取第一序列,所述第一序列根据
    Figure PCTCN2021122757-appb-100010
    获得,
    Figure PCTCN2021122757-appb-100011
    满足:
    Figure PCTCN2021122757-appb-100012
    其中,a=0,1,2,…,M-1,b=0,1,2,…,N-1,σ(b)的每一项属于{0,1,2,…,N-1},且σ(b)的任意两项不同,j为虚数单位,x b(·)是长度为k的CAZAC序列,
    Figure PCTCN2021122757-appb-100013
    k为正整数,
    Figure PCTCN2021122757-appb-100014
    或者
    Figure PCTCN2021122757-appb-100015
    表示下取整,
    Figure PCTCN2021122757-appb-100016
    表示上取整,L是所述第一序列的长度;c(b)为第一序列组中的第二序列,所述第一序列组与组标识相关联,所述第一序列组为多个序列组中的一个,所述多个序列组还包括第二序列组,所述第一序列组中包括至少两个第二序列;所述第二序列组中包括至少两个第二序列;所述第一序列组中各第二序列之间正交,所述第二序列组中各第二序列之间正交,所述第一序列组中的部分第二序列与所述第二序列组中的部分第二序列正交;
    根据第一序列接收第一信号。
  9. 如权利要求8所述的方法,其特征在于,所述第一序列r(n)与
    Figure PCTCN2021122757-appb-100017
    满足:
    Figure PCTCN2021122757-appb-100018
    其中,A为非零复数,n=0,1,2,…,L-1。
  10. 如权利要求8或9所述的方法,其特征在于,根据第一序列接收第一信号,包括:
    接收承载于L个子载波的第一信号。
  11. 如权利要求10所述的方法,其特征在于,所述L个子载波连续分布;或者,所述L个子载波等间隔分布。
  12. 如权利要求8-11中任一所述的方法,其特征在于,当N=4时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
    {1,1,1,1}、{1,-1,1,-1}、{1,1,-1,-1}和{1,-1,-1,1};或者,
    当N=4时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
    {1,j,1,j}、{1,-j,1,-j}、{1,j,-1,-j}和{1,-j,-1,j}。
  13. 如权利要求8-11中任一所述的方法,其特征在于,当N=8时,所述第一序列组的 序列或所述第二序列组的序列包括下述序列:
    {1,-j,-j,-1,1,-j,-j,-1}、{1,j,-j,1,1,j,-j,1}、{1,-j,j,1,1,-j,j,1}、{1,j,j,-1,1,j,j,-1}、{1,-j,-j,-1,-1,j,j,1}、{1,j,-j,1,-1,-j,j,-1}、{1,-j,j,1,-1,j,-j,-1}和{1,j,j,-1,-1,-j,-j,1};或者,
    当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
    {1,-1,-j,-j,1,-1,-j,-j}、{1,1,-j,j,1,1,-j,j}、{1,-1,j,j,1,-1,j,j}、{1,1,j,-j,1,1,j,-j}、{1,-1,-j,-j,-1,1,j,j}、{1,1,-j,j,-1,-1,j,-j}、{1,-1,j,j,-1,1,-j,-j}和{1,1,j,-j,-1,-1,-j,j};或者,
    当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
    {1,1,1,1,1,1,1,1}、{1,-1,1,-1,1,-1,1,-1}、{1,1,-1,-1,1,1,-1,-1}、{1,-1,-1,1,1,-1,-1,1}、{1,1,1,1,-1,-1,-1,-1}、{1,-1,1,-1,-1,1,-1,1}、{1,1,-1,-1,-1,-1,1,1}和{1,-1,-1,1,-1,1,1,-1};或者,
    当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
    {1,-j,-1,-j,1,-j,-1,-j}、{1,j,-1,j,1,j,-1,j}、{1,-j,1,j,1,-j,1,j}、{1,j,1,-j,1,j,1,-j}、{1,-j,-1,-j,-1,j,1,j}、{1,j,-1,j,-1,-j,1,-j}、{1,-j,1,j,-1,j,-1,-j}和{1,j,1,-j,-1,-j,-1,j}。
  14. 如权利要求8-11中任一所述的方法,其特征在于,当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
    {1,1,1,1,1,1,1}、{1,-1,1,-1,1,-1,1,-1}、{1,1,-1,-1,1,1,-1,-1}、{1,-1,-1,1,1,-1,-1,1}、{1,11,1,-1,-1,-1,-1}、{1,-1,1,-1,-1,1,-1,1}、{1,1,-1,-1,-1,-1,1,1}和{1,-1,-1,1,-1,1,1,-1};或者,
    当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:{1,1,1,-1,-1,1,-1,-1}、{1,-1,1,1,-1,-1,-1,1}、{1,1,-1,1,-1,1,1,1}、{1,-1,-1,-1,-1,-1,1,-1}、{1,1,1,-1,1,-1,1,1}、{1,-1,1,1,1,1,1,-1}、{1,1,-1,1,1,-1,-1,-1}和{1,-1,-1,-1,1,1,-1,1};或者,
    当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:{1,1,-1,-1,1,-1,-1,1}、{1,-1,-1,1,1,1,-1,-1}、{1,1,1,1,1,-1,1,-1}、{1,-1,1,-1,1,1,1,1}、{1,1,-1,-1,-1,1,1,-1}、{1,-1,-1,1,-1,-1,1,1}、{1,1,1,1,-1,1,-1,1}和{1,-1,1,-1,-1,-1,-1,-1};或者,
    当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:{1,1,-1,1,-1,-1,1,-1}、{1,-1,-1,-1,-1,1,1,1}、{1,1,1,-1,-1,-1,-1,1}、{1,-1,1,1,-1,1,-1,-1}、{1,1,-1,1,1,1,-1,1}、{1,-1,-1,-1,1,-1,-1,-1}、{1,1,1,-1,1,1,1,-1}和{1,-1,1,1,1,-1,1,1}。
  15. 一种通信装置,其特征在于,包括:
    处理模块,用于获取第一序列,所述第一序列根据
    Figure PCTCN2021122757-appb-100019
    获得,
    Figure PCTCN2021122757-appb-100020
    满足:
    Figure PCTCN2021122757-appb-100021
    其中,a=0,1,2,…,M-1,b=0,1,2,…,N-1,σ(b)的每一项属于{0,1,2,…,N-1},且σ(b)的任意两项不同,j为虚数单位,x b(·)是长度为k的CAZAC序列,
    Figure PCTCN2021122757-appb-100022
    k为正整数,
    Figure PCTCN2021122757-appb-100023
    或者
    Figure PCTCN2021122757-appb-100024
    表示下取整,
    Figure PCTCN2021122757-appb-100025
    表示上取整,L是所述第一序列的长度;c(b)为第一序列组中的第二序列,所述第一序列组与组标识相关联,所述第一序列组为多个序列组中的一个,所述多个序列组还包括第二序列组,所述第一序列组中包括至少两个第二序列;所述第二序列组中包括至少两个第二序列;所述第一序列组中各第二序列之间正交,所述第二序列组中各第二序列之间正交,所述第一序列组中的部分第二序列与所述第二序列组中的部分第二序列正交;
    收发模块,用于根据第一序列发送第一信号。
  16. 如权利要求15所述的通信装置,其特征在于,所述第一序列r(n)与
    Figure PCTCN2021122757-appb-100026
    满足:
    Figure PCTCN2021122757-appb-100027
    其中,A为非零复数,n=0,1,2,…,L-1。
  17. 如权利要求15或16所述的通信装置,其特征在于,所述收发模块具体用于:
    将所述第一序列映射到L个子载波上,生成承载于所述L个子载波的第一信号;
    发送所述第一信号。
  18. 如权利要求17所述的通信装置,其特征在于,所述L个子载波连续分布;或者,所述L个子载波等间隔分布。
  19. 如权利要求15-18中任一所述的通信装置,其特征在于,当N=4时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
    {1,1,1,1}、{1,-1,1,-1}、{1,1,-1,-1}和{1,-1,-1,1};或者,
    当N=4时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
    {1,j,1,j}、{1,-j,1,-j}、{1,j,-1,-j}和{1,-j,-1,j}。
  20. 如权利要求15-18中任一所述的通信装置,其特征在于,当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
    {1,-j,-j,-1,1,-j,-j,-1}、{1,j,-j,1,1,j,-j,1}、{1,-j,j,1,1,-j,j,1}、{1,j,j,-1,1,j,j,-1}、{1,-j,-j,-1,-1,j,j,1}、{1,j,-j,1,-1,-j,j,-1}、{1,-j,j,1,-1,j,-j,-1}和{1,j,j,-1,-1,-j,-j,1};或者,
    当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
    {1,-1,-j,-j,1,-1,-j,-j}、{1,1,-j,j,1,1,-j,j}、{1,-1,j,j,1,-1,j,j}、{1,1,j,-j,1,1,j,-j}、{1,-1,-j,-j,-1,1,j,j}、{1,1,-j,j,-1,-1,j,-j}、{1,-1,j,j,-1,1,-j,-j}和{1,1,j,-j,-1,-1,-j,j};或者,
    当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
    {1,1,1,1,1,1,1,1}、{1,-1,1,-1,1,-1,1,-1}、{1,1,-1,-1,1,1,-1,-1}、{1,-1,-1,1,1,-1,-1,1}、{1,1,1,1,-1,-1,-1,-1}、{1,-1,1,-1,-1,1,-1,1}、{1,1,-1,-1,-1,-1,1,1}和{1,-1,-1,1,-1,1,1,-1};或者,
    当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
    {1,-j,-1,-j,1,-j,-1,-j}、{1,j,-1,j,1,j,-1,j}、{1,-j,1,j,1,-j,1,j}、{1,j,1,-j,1,j,1,-j}、{1,-j,-1,-j,-1,j,1,j}、{1,j,-1,j,-1,-j,1,-j}、{1,-j,1,j,-1,j,-1,-j}和{1,j,1,-j,-1,-j,-1,j}。
  21. 如权利要求15-18中任一所述的通信装置,其特征在于,当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
    {1,1,1,1,1,1,1}、{1,-1,1,-1,1,-1,1,-1}、{1,1,-1,-1,1,1,-1,-1}、{1,-1,-1,1,1,-1,-1,1}、{1,11,1,-1,-1,-1,-1}、{1,-1,1,-1,-1,1,-1,1}、{1,1,-1,-1,-1,-1,1,1}和{1,-1,-1,1,-1,1,1,-1};或者,
    当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:{1,1,1,-1,-1,1,-1,-1}、{1,-1,1,1,-1,-1,-1,1}、{1,1,-1,1,-1,1,1,1}、{1,-1,-1,-1,-1,-1,1,-1}、{1,1,1,-1,1,-1,1,1}、{1,-1,1,1,1,1,1,-1}、{1,1,-1,1,1,-1,-1,-1}和{1,-1,-1,-1,1,1,-1,1};或者,
    当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:{1,1,-1,-1,1,-1,-1,1}、{1,-1,-1,1,1,1,-1,-1}、{1,1,1,1,1,-1,1,-1}、{1,-1,1,-1,1,1,1,1}、{1,1,-1,-1,-1,1,1,-1}、{1,-1,-1,1,-1,-1,1,1}、{1,1,1,1,-1,1,-1,1}和{1,-1,1,-1,-1,-1,-1,-1};或者,
    当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:{1,1,-1,1,-1,-1,1,-1}、{1,-1,-1,-1,-1,1,1,1}、{1,1,1,-1,-1,-1,-1,1}、{1,-1,1,1,-1,1,-1,-1}、{1,1,-1,1,1,1,-1,1}、{1,-1,-1,-1,1,-1,-1,-1}、{1,1,1,-1,1,1,1,-1}和{1,-1,1,1,1,-1,1,1}。
  22. 一种通信装置,其特征在于,包括:
    处理模块,用于获取第一序列,所述第一序列根据
    Figure PCTCN2021122757-appb-100028
    获得,
    Figure PCTCN2021122757-appb-100029
    满足:
    Figure PCTCN2021122757-appb-100030
    其中,a=0,1,2,…,M-1,b=0,1,2,…,N-1,σ(b)的每一项属于{0,1,2,…,N-1}, 且σ(b)的任意两项不同,j为虚数单位,x b(·)是长度为k的CAZAC序列,
    Figure PCTCN2021122757-appb-100031
    k为正整数,
    Figure PCTCN2021122757-appb-100032
    或者
    Figure PCTCN2021122757-appb-100033
    表示下取整,
    Figure PCTCN2021122757-appb-100034
    表示上取整,L是所述第一序列的长度;c(b)为第一序列组中的第二序列,所述第一序列组与组标识相关联,所述第一序列组为多个序列组中的一个,所述多个序列组还包括第二序列组,所述第一序列组中包括至少两个第二序列;所述第二序列组中包括至少两个第二序列;所述第一序列组中各第二序列之间正交,所述第二序列组中各第二序列之间正交,所述第一序列组中的部分第二序列与所述第二序列组中的部分第二序列正交;
    收发模块,用于根据第一序列接收第一信号。
  23. 如权利要求22所述的通信装置,其特征在于,所述第一序列r(n)与
    Figure PCTCN2021122757-appb-100035
    满足:
    Figure PCTCN2021122757-appb-100036
    其中,A为非零复数,n=0,1,2,…,L-1。
  24. 如权利要求22或23所述的通信装置,其特征在于,所述收发模块具体用于:
    接收承载于L个子载波的第一信号。
  25. 如权利要求24所述的通信装置,其特征在于,所述L个子载波连续分布;或者,所述L个子载波等间隔分布。
  26. 如权利要求22-25中任一所述的通信装置,其特征在于,当N=4时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
    {1,1,1,1}、{1,-1,1,-1}、{1,1,-1,-1}和{1,-1,-1,1};或者,
    当N=4时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
    {1,j,1,j}、{1,-j,1,-j}、{1,j,-1,-j}和{1,-j,-1,j}。
  27. 如权利要求22-25中任一所述的通信装置,其特征在于,当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
    {1,-j,-j,-1,1,-j,-j,-1}、{1,j,-j,1,1,j,-j,1}、{1,-j,j,1,1,-j,j,1}、{1,j,j,-1,1,j,j,-1}、{1,-j,-j,-1,-1,j,j,1}、{1,j,-j,1,-1,-j,j,-1}、{1,-j,j,1,-1,j,-j,-1}和{1,j,j,-1,-1,-j,-j,1};或者,
    当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
    {1,-1,-j,-j,1,-1,-j,-j}、{1,1,-j,j,1,1,-j,j}、{1,-1,j,j,1,-1,j,j}、{1,1,j,-j,1,1,j,-j}、{1,-1,-j,-j,-1,1,j,j}、{1,1,-j,j,-1,-1,j,-j}、{1,-1,j,j,-1,1,-j,-j}和{1,1,j,-j,-1,-1,-j,j};或者,
    当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
    {1,1,1,1,1,1,1,1}、{1,-1,1,-1,1,-1,1,-1}、{1,1,-1,-1,1,1,-1,-1}、{1,-1,-1,1,1,-1,-1,1}、{1,1,1,1,-1,-1,-1,-1}、{1,-1,1,-1,-1,1,-1,1}、{1,1,-1,-1,-1,-1,1,1}和{1,-1,-1,1,-1,1,1,-1};或者,
    当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
    {1,-j,-1,-j,1,-j,-1,-j}、{1,j,-1,j,1,j,-1,j}、{1,-j,1,j,1,-j,1,j}、{1,j,1,-j,1,j,1,-j}、{1,-j,-1,-j,-1,j,1,j}、{1,j,-1,j,-1,-j,1,-j}、{1,-j,1,j,-1,j,-1,-j}和{1,j,1,-j,-1,-j,-1,j}。
  28. 如权利要求22-25中任一所述的通信装置,其特征在于,当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:
    {1,1,1,1,1,1,1}、{1,-1,1,-1,1,-1,1,-1}、{1,1,-1,-1,1,1,-1,-1}、{1,-1,-1,1,1,-1,-1,1}、{1,11,1,-1,-1,-1,-1}、{1,-1,1,-1,-1,1,-1,1}、{1,1,-1,-1,-1,-1,1,1}和{1,-1,-1,1,-1,1,1,-1};或者,
    当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:{1,1,1,-1,-1,1,-1,-1}、{1,-1,1,1,-1,-1,-1,1}、{1,1,-1,1,-1,1,1,1}、{1,-1,-1,-1,-1,-1,1,-1}、{1,1,1,-1,1,-1,1,1}、{1,-1,1,1,1,1,1,-1}、{1,1,-1,1,1,-1,-1,-1}和{1,-1,-1,-1,1,1,-1,1};或者,
    当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:{1,1,-1,-1,1,-1,-1,1}、{1,-1,-1,1,1,1,-1,-1}、{1,1,1,1,1,-1,1,-1}、{1,-1,1,-1,1,1,1,1}、{1,1,-1,-1,-1,1,1,-1}、{1,-1,-1,1,-1,-1,1,1}、{1,1,1,1,-1,1,-1,1}和{1,-1,1,-1,-1,-1,-1,-1};或者,
    当N=8时,所述第一序列组的序列或所述第二序列组的序列包括下述序列:{1,1,-1,1,-1,-1,1,-1}、{1,-1,-1,-1,-1,1,1,1}、{1,1,1,-1,-1,-1,-1,1}、{1,-1,1,1,-1,1,-1,-1}、{1,1,-1,1,1,1,-1,1}、{1,-1,-1,-1,1,-1,-1,-1}、{1,1,1,-1,1,1,1,-1}和{1,-1,1,1,1,-1,1,1}。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求1-14中任一项所述的方法。
  30. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当处理器执行所述指令时,实现如权利要求1-14中任一项所述的方法。
  31. 一种芯片,其特征在于,包括处理器,所述处理器与存储器耦合,当所述处理器执行所述存储器中存储的所述计算机程序或指令时,如权利要求1-14中任意一项所述的方法被执行。
PCT/CN2021/122757 2020-10-31 2021-10-09 一种通信方法及装置 WO2022089172A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011199027.XA CN114448580A (zh) 2020-10-31 2020-10-31 一种通信方法及装置
CN202011199027.X 2020-10-31

Publications (1)

Publication Number Publication Date
WO2022089172A1 true WO2022089172A1 (zh) 2022-05-05

Family

ID=81358263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122757 WO2022089172A1 (zh) 2020-10-31 2021-10-09 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN114448580A (zh)
WO (1) WO2022089172A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741793A (zh) * 2008-11-04 2010-06-16 华为技术有限公司 上行参考信号的发射方法、系统和设备
WO2011102692A2 (en) * 2010-02-22 2011-08-25 Samsung Electronics Co., Ltd. Application of sequence hopping and orthogonal covering codes to uplink reference signals
US20130044716A1 (en) * 2010-04-29 2013-02-21 Fujitsu Limited Method and apparatus for aperiodically transmitting sounding reference signal
CN107370701A (zh) * 2016-05-11 2017-11-21 华为技术有限公司 传输信号的方法、发送端和接收端
CN110868279A (zh) * 2018-08-27 2020-03-06 华为技术有限公司 一种信号发送、接收方法及装置
CN110999168A (zh) * 2017-08-10 2020-04-10 华为技术有限公司 用于探测参考信号传输的系统和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741793A (zh) * 2008-11-04 2010-06-16 华为技术有限公司 上行参考信号的发射方法、系统和设备
WO2011102692A2 (en) * 2010-02-22 2011-08-25 Samsung Electronics Co., Ltd. Application of sequence hopping and orthogonal covering codes to uplink reference signals
US20130044716A1 (en) * 2010-04-29 2013-02-21 Fujitsu Limited Method and apparatus for aperiodically transmitting sounding reference signal
CN107370701A (zh) * 2016-05-11 2017-11-21 华为技术有限公司 传输信号的方法、发送端和接收端
CN110999168A (zh) * 2017-08-10 2020-04-10 华为技术有限公司 用于探测参考信号传输的系统和方法
CN110868279A (zh) * 2018-08-27 2020-03-06 华为技术有限公司 一种信号发送、接收方法及装置

Also Published As

Publication number Publication date
CN114448580A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
WO2018127111A1 (zh) 参考信号的传输方法和装置
WO2021093858A1 (zh) 传输物理层协议数据单元的方法和装置
US10966159B2 (en) Uplink reference signal sending method and apparatus
WO2020238992A1 (zh) 一种通信方法及装置
US20230141169A1 (en) Sequence-based signal processing method and apparatus
WO2017215642A1 (zh) 一种资源分配方法、网络设备及终端设备
CN114071723A (zh) 一种通信方法及装置
WO2018137669A1 (zh) 一种信号的发射方法,接收方法及设备
WO2021083249A1 (zh) 基于序列的信号传输的方法和通信装置
US11252003B2 (en) Sequence-based signal processing method and apparatus
TW201828672A (zh) 信號傳輸方法和設備
WO2022089172A1 (zh) 一种通信方法及装置
CN110149293B (zh) 一种ofdm基带信号生成方法及装置
WO2021062872A1 (zh) 一种通信方法及装置
WO2019095863A1 (zh) Pucch传输方法、终端及网络侧设备
WO2022110236A1 (zh) 一种通信方法及装置
WO2024067265A1 (zh) 一种通信方法、装置及设备
WO2022082492A1 (zh) 信号发送、接收的方法及通信装置
WO2024032693A1 (zh) 探测参考信号的传输方法及装置、终端、网络设备
WO2020259231A1 (zh) 通信方法及装置
WO2023207476A1 (zh) 一种通信方法、装置及设备
WO2022042618A1 (zh) 传输信号的方法和通信装置
WO2024067652A1 (zh) 通信方法、通信装置、芯片及计算机可读存储介质
WO2020200296A1 (zh) Csi测量方法及装置
WO2022262532A1 (zh) 符号传输的方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21884901

Country of ref document: EP

Kind code of ref document: A1