WO2022110236A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2022110236A1
WO2022110236A1 PCT/CN2020/132968 CN2020132968W WO2022110236A1 WO 2022110236 A1 WO2022110236 A1 WO 2022110236A1 CN 2020132968 W CN2020132968 W CN 2020132968W WO 2022110236 A1 WO2022110236 A1 WO 2022110236A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
resource unit
ofdm symbol
sequence
frequency domain
Prior art date
Application number
PCT/CN2020/132968
Other languages
English (en)
French (fr)
Inventor
蔡世杰
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/132968 priority Critical patent/WO2022110236A1/zh
Priority to EP20963124.1A priority patent/EP4240078A4/en
Priority to CN202080105781.4A priority patent/CN116325603A/zh
Publication of WO2022110236A1 publication Critical patent/WO2022110236A1/zh
Priority to US18/324,631 priority patent/US20230300016A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a communication method and apparatus.
  • LTE long term evolution
  • new radio access technology new radio access technology
  • MIMO multiple input and multiple output
  • SFBC space frequency block code
  • a multi-layer parallel transmission transmission mode is adopted to provide a higher data transmission rate.
  • the base station can obtain all or part of downlink channel state information (channel state information, CSI), a precoding (precoding) technology can be used to improve the signal transmission quality or rate.
  • CSI channel state information
  • precoding precoding
  • TDD time division duplexing
  • the uplink and downlink of the wireless channel are mutually exclusive.
  • the base station receives the sounding reference signal (SRS) sent by the terminal equipment, performs channel estimation to obtain the uplink CSI, and then according to the uplink and downlink Mutuality obtains downlink CSI.
  • SRS sounding reference signal
  • the SRSs are arranged in a comb-tooth arrangement at equal intervals in the frequency domain, resulting in a limited number of available substrates and reduced port multiplexing capability.
  • Embodiments of the present application provide a communication method and apparatus for improving port multiplexing capability.
  • a communication method is provided.
  • the method may be performed by a first communication apparatus, and the first communication apparatus may be a communication apparatus or a communication apparatus, such as a chip, capable of supporting the functions required by the communication apparatus to implement the method.
  • the first communication apparatus is a terminal device, or a chip or other component provided in the terminal device for realizing the function of the terminal device.
  • the method includes: the terminal device determines a second resource unit set from the first resource unit set, and the frequency domain positions of all resource units in the second resource unit set are distributed at unequal intervals;
  • the first resource element set includes resource elements belonging to the transmission bandwidth of the first signal in the first OFDM symbol, or the first resource element set includes all OFDM symbols in the first OFDM symbol group that belong to the first signal.
  • the resource unit of the transmission bandwidth, the first OFDM symbol group includes multiple OFDM symbols; the terminal device determines the frequency domain position of the first uplink port on all the resource units according to the frequency domain positions of all the resource units in the second resource unit set a first sequence; the terminal device sends the first signal according to the first sequence on all the resource elements.
  • the terminal device can determine the transmission sequence of each uplink transmission port on the second resource unit set according to the frequency domain position of each resource unit in the second resource unit set, so as to realize the first signal transmission of non-uniform pilot resources and reception, the port multiplexing capability can be improved compared to the first signaling scheme with uniform pilot resources.
  • the first uplink port is in the second resource element set
  • the first sequence r (p) (k) on the kth resource unit satisfies:
  • I is the set of frequency domain positions of all resource units in the second resource unit set
  • is a constant
  • C is an integer greater than or equal to 1
  • p is the first uplink port
  • is a cyclic shift value.
  • the ⁇ satisfies:
  • the terminal device may also receive the I and/or parameters for determining the I, and/or receive the ⁇ and/or the By adopting this design, the effect that the terminal's SRS signal receiving and processing modes can be configured can be realized.
  • the first signal corresponding to the resource unit numbered I k +n start in the second resource unit set is Satisfy:
  • is a scaling factor
  • n start is the starting position in the frequency domain of the transmission bandwidth of the first signal.
  • the first OFDM symbol group includes N OFDM symbol, where N is a positive integer greater than 1, the first sequence of the first uplink port on the kth resource unit of the qth OFDM symbol in the first OFDM symbol group r (p) (k,q )Satisfy:
  • I q is the set of frequency domain positions of the resource elements corresponding to the qth OFDM symbol, the resource elements corresponding to the qth OFDM symbol belong to the second set of resource elements
  • k start,q is the the sequence start position of the first uplink port on the qth symbol, the sequence start position is a non-negative integer
  • is a constant
  • C is an integer greater than or equal to 1
  • p is the first uplink port
  • is the cyclic shift value.
  • the network device can jointly process the first signals respectively corresponding to at least two OFDM symbols in the N OFDM symbols of the first uplink port received, such as joint channel estimation, to improve the channel estimation accuracy.
  • the first signal of the multiple ports can be code-division multiplexed to the second set of resource units to improve the multiplexing capability.
  • the ⁇ satisfies:
  • the terminal device may also receive the I q and/or the parameters used to determine the I q , and/or receive the ⁇ and/or the
  • the terminal device may also receive the I q and/or the parameters used to determine the I q , and/or receive the ⁇ and/or the
  • the first signal corresponding to the resource unit numbered I q,k +n start on the qth OFDM symbol Satisfy:
  • is a scaling factor
  • n start is the frequency domain starting position of the transmission bandwidth of the first signal
  • p is the first uplink port
  • L q indicates the number of the qth OFDM symbol.
  • a communication method in a second aspect, can be executed by a second communication device, and the second communication device can be a communication device or a communication device, such as a chip, capable of supporting the functions required by the communication device to implement the method.
  • the first communication apparatus is a network device, or a chip or other component provided in the network device for implementing the function of the network device.
  • the method includes: the network device determines a second resource unit set from the first resource unit set, and the frequency domain positions of all resource units in the second resource unit set are distributed at unequal intervals;
  • the first resource element set includes resource elements belonging to the transmission bandwidth of the first signal in the first OFDM symbol, or the first resource element set includes all OFDM symbols in the first OFDM symbol group that belong to the first signal.
  • the resource unit of the transmission bandwidth, the first OFDM symbol group includes a plurality of OFDM symbols; the network device determines the frequency domain position of the first uplink port on all the resource units according to the frequency domain positions of all the resource units in the second resource unit set a first sequence; the network device receives the first signal according to the first sequence on all the resource elements.
  • the first uplink port is in the second resource element set
  • the first sequence r (p) (k) on the kth resource unit satisfies:
  • I is the set of frequency domain positions of all resource units in the second resource unit set
  • is a constant
  • C is an integer greater than or equal to 1
  • p is the first uplink port
  • is a cyclic shift value.
  • the ⁇ satisfies:
  • the network device may also send the I and/or a parameter for determining the I, and/or send the ⁇ and/or the
  • the first signal corresponding to the resource unit numbered I k +n start in the second resource unit set is Satisfy:
  • is a scaling factor
  • n start is the starting position in the frequency domain of the transmission bandwidth of the first signal.
  • the first OFDM symbol group includes N OFDM symbol, where N is a positive integer greater than 1, the first sequence of the first uplink port on the kth resource unit of the qth OFDM symbol in the first OFDM symbol group r (p) (k,q )Satisfy:
  • I q is the set of frequency domain positions of the resource elements corresponding to the qth OFDM symbol, the resource elements corresponding to the qth OFDM symbol belong to the second set of resource elements
  • k start,q is the the sequence start position of the first uplink port on the qth symbol, the sequence start position is a non-negative integer
  • is a constant
  • C is an integer greater than or equal to 1
  • p is the first uplink port
  • is the cyclic shift value.
  • the ⁇ satisfies:
  • the network device may also send the I q and/or a parameter for determining the I q , and/or send the ⁇ and/or the
  • the first signal corresponding to the resource unit numbered I q,k +n start on the qth OFDM symbol Satisfy:
  • is a scaling factor
  • n start is the frequency domain starting position of the transmission bandwidth of the first signal
  • p is the first uplink port
  • L q indicates the number of the qth OFDM symbol.
  • a communication method is provided.
  • the method may be performed by a first communication apparatus, and the first communication apparatus may be a communication apparatus or a communication apparatus, such as a chip, capable of supporting the functions required by the communication apparatus to implement the method.
  • the first communication apparatus is a terminal device, or a chip or other component provided in the terminal device for realizing the function of the terminal device.
  • the method includes: the terminal device determines a plurality of second resource unit sets from the first resource unit set, and the frequency domain positions of all resource units in each second resource unit set are distributed at unequal intervals ; the first resource unit set includes resource units belonging to the transmission bandwidth of the first signal among the plurality of second OFDM symbols, and each second OFDM symbol corresponds to one of the second resource unit sets; The frequency domain positions of all the resource units in the second resource unit set determine the first sequence of the first uplink port on all the resource units in the any second resource unit set; the terminal equipment is in the any second resource unit The first signal is sent according to the first sequence on all resource elements in the set.
  • the terminal device determines, according to the frequency domain position of each resource unit in any second resource unit set of the plurality of second resource unit sets, the transmission sequence of the uplink transmission port on the any second resource unit set , the first signal transmission of the non-uniform pilot resource is implemented, and the port multiplexing capability can be improved compared with the first signal transmission scheme of the uniform pilot resource.
  • each second OFDM symbol corresponds to a frequency hopping bandwidth
  • the frequency hopping bandwidth is within the transmission bandwidth of the first signal
  • any two second OFDM symbols correspond to two hopping bandwidths.
  • the frequency bandwidths do not overlap in the frequency domain
  • the second resource unit set corresponding to each second OFDM symbol belongs to the frequency hopping bandwidth corresponding to the second OFDM symbol.
  • the number of the multiple second OFDM symbols is N, where N is a positive integer greater than 1, and the first uplink port is on the kth resource unit of the qth second OFDM symbol
  • the first sequence r (p) (k,q) satisfies:
  • I q is the set of frequency domain positions of all resource units in the second resource unit set corresponding to the q-th second OFDM symbol
  • ⁇ q is a constant
  • C q is an integer greater than or equal to 1
  • p is the first uplink port
  • ⁇ q is the cyclic shift value corresponding to the qth second OFDM symbol.
  • the multiple first signals of the multi-port corresponding to each second resource unit set can be code-division multiplexed.
  • the ⁇ q satisfies:
  • the terminal device may also receive the I q and/or a parameter for determining the I q , and/or receive the ⁇ q and/or the
  • is a scaling coefficient
  • n start is the frequency domain starting position of the frequency hopping bandwidth corresponding to the q th second OFDM symbol
  • L q indicates the number of the q th second OFDM symbol.
  • a communication method is provided.
  • the method can be executed by a second communication device, and the second communication device can be a communication device or a communication device, such as a chip, capable of supporting the functions required by the communication device to implement the method.
  • the second communication apparatus is a network device, or a chip or other component provided in the network device for implementing the function of the network device.
  • the method includes: the network device determines a plurality of second resource unit sets from the first resource unit set, and the frequency domain positions of all resource units in each second resource unit set are distributed at unequal intervals ; the first resource unit set includes resource units belonging to the transmission bandwidth of the first signal in the plurality of second OFDM symbols, and each second OFDM symbol corresponds to one of the second resource unit sets; The frequency domain positions of all the resource units in the second resource unit set determine the first sequence of the first uplink port on all the resource units in the any second resource unit set; the network device is in the any second resource unit The first signal is received according to the first sequence on all resource elements in the set.
  • each second OFDM symbol corresponds to a frequency hopping bandwidth
  • the frequency hopping bandwidth is within the transmission bandwidth of the first signal
  • any two second OFDM symbols correspond to two hopping bandwidths.
  • the frequency bandwidths do not overlap in the frequency domain
  • the second resource unit set corresponding to each second OFDM symbol belongs to the frequency hopping bandwidth corresponding to the second OFDM symbol.
  • the number of the multiple second OFDM symbols is N, where N is a positive integer greater than 1, and the first uplink port is on the kth resource unit of the qth second OFDM symbol
  • the first sequence r (p) (k,q) satisfies:
  • I q is the set of frequency domain positions of all resource units in the second resource unit set corresponding to the q-th second OFDM symbol
  • ⁇ q is a constant
  • C q is an integer greater than or equal to 1
  • p is the first uplink port
  • ⁇ q is the cyclic shift value corresponding to the qth second OFDM symbol.
  • the ⁇ q satisfies:
  • the network device may also send the I q and/or a parameter for determining the I q , and/or send the ⁇ q and/or the
  • is a scaling coefficient
  • n start is the frequency domain starting position of the frequency hopping bandwidth corresponding to the q th second OFDM symbol
  • L q indicates the number of the q th second OFDM symbol.
  • a communication device configured to execute the method executed by the first communication apparatus in the first aspect or any possible implementation manner thereof.
  • the communication apparatus may include modules for executing the method performed by the first communication apparatus in the first aspect or any possible implementation manner thereof, for example, including a processing module and a transceiver module.
  • the first communication means may be a terminal device or a component in a terminal device.
  • the transceiver module may include a sending module and a receiving module, and the sending module and the receiving module may be different functional modules, or may be the same functional module, but can implement different functions.
  • the first communication apparatus is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device.
  • the transceiver module can be implemented by a transceiver, and the processing module can be implemented by a processor.
  • the sending module may be implemented by a transmitter
  • the receiving module may be implemented by a receiver
  • the transmitter and the receiver may be different functional modules, or may be the same functional module but capable of implementing different functions.
  • the transceiver is implemented by, for example, an antenna, a feeder, a codec and the like in the communication device.
  • the transceiver (or the transmitter and the receiver) is, for example, a communication interface in the chip, and the communication interface is connected with the radio frequency transceiver component in the communication device to Send and receive information through radio frequency transceiver components.
  • the first communication device is taken as a terminal device, and the processing module and the transceiver module are taken as examples for introduction.
  • the communication device may include a processing module (or processor) and a transceiver module (or transceiver), and the transceiver module (or transceiver) performs the receiving and/or sending performed by the first communication device in the first aspect above.
  • Actions; the processing modules (or processors) perform the processing actions performed by the first communication device in the first aspect, and perform other actions except the receiving and sending actions.
  • the processing module or processor may determine a second resource unit set from the first resource unit set, and determine the frequency domain position of all resource units in the second resource unit set according to the frequency domain positions of all resource units in the second resource unit set.
  • a first sequence of the first uplink port on all the resource elements is determined.
  • a transceiver module or transceiver may be configured to transmit a first signal according to the first sequence on all the resource units.
  • first resource unit set For the description of the first resource unit set, the second resource unit set, and the first sequence, reference may be made to the introduction in the first aspect.
  • the transceiver module or transceiver may also be used to receive I and/or parameters for determining I, and/or, receiving a and/or
  • the transceiver module or transceiver can also be used to receive Iq and/or parameters for determining Iq , and/or, receive ⁇ and/or
  • a communication device configured to perform the method performed by the second communication apparatus in the second aspect or any possible implementation manner thereof.
  • the communication device may include modules for performing the method performed by the second communication device in the second aspect or any possible implementation manner thereof, for example including a processing module and a transceiver module.
  • the transceiver module may include a sending module and a receiving module, and the sending module and the receiving module may be different functional modules, or may be the same functional module, but can implement different functions.
  • the second communication apparatus is a communication device, or a chip or other components provided in the communication device.
  • the communication device is a network device.
  • the second communication apparatus is a network device.
  • the transceiver module can be implemented by a transceiver, and the processing module can be implemented by a processor.
  • the sending module may be implemented by a transmitter
  • the receiving module may be implemented by a receiver
  • the transmitter and the receiver may be different functional modules, or may be the same functional module but capable of implementing different functions.
  • the transceiver is implemented by, for example, an antenna, a feeder, a codec and the like in the communication device.
  • the transceiver (or the transmitter and the receiver) is, for example, a communication interface in the chip, and the communication interface is connected with the radio frequency transceiver component in the communication device to Send and receive information through radio frequency transceiver components.
  • the second communication device is a network device, and the processing module and the transceiver module are used as examples for introduction.
  • the communication device may include a processing module (or processor) and a transceiver module (or transceiver), and the transceiver module (or transceiver) performs the receiving and/or sending performed by the second communication device in the second aspect above.
  • Actions; the processing actions performed by the second communication device in the second aspect above are performed by the processing module (or processor), and actions other than the receiving and sending actions are performed.
  • the processing module or processor may determine a second resource unit set from the first resource unit set, and determine the frequency domain position of all resource units in the second resource unit set according to the frequency domain positions of all resource units in the second resource unit set.
  • a first sequence of the first uplink port on all the resource elements is determined.
  • a transceiver module or transceiver is operable to receive a first signal according to the first sequence on all of the resource units.
  • first resource unit set For the description of the first resource unit set, the second resource unit set, and the first sequence, reference may be made to the introduction in the second aspect.
  • the transceiver module or transceiver may also be used to transmit I and/or parameters for determining I, and/or, sending ⁇ and/or
  • the transceiver module or transceiver can also be used to transmit Iq and/or parameters for determining Iq , and/or, to transmit ⁇ and/or
  • a communication device configured to execute the method executed by the first communication device in the third aspect or any possible implementation manner thereof.
  • the communication apparatus may include modules for executing the method performed by the first communication apparatus in the third aspect or any possible implementation manner thereof, for example, including a processing module and a transceiver module.
  • the first communication means may be a terminal device or a component in a terminal device.
  • the transceiver module may include a sending module and a receiving module, and the sending module and the receiving module may be different functional modules, or may be the same functional module, but can implement different functions.
  • the first communication apparatus is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device.
  • the transceiver module can be implemented by a transceiver, and the processing module can be implemented by a processor.
  • the sending module may be implemented by a transmitter
  • the receiving module may be implemented by a receiver
  • the transmitter and the receiver may be different functional modules, or may be the same functional module but capable of implementing different functions.
  • the transceiver is implemented by, for example, an antenna, a feeder, a codec and the like in the communication device.
  • the transceiver (or the transmitter and the receiver) is, for example, a communication interface in the chip, and the communication interface is connected with the radio frequency transceiver component in the communication device to Send and receive information through radio frequency transceiver components.
  • the first communication device is a terminal device, and the processing module and the transceiver module are taken as examples for introduction.
  • the communication device may include a processing module (or processor) and a transceiver module (or transceiver), and the transceiver module (or transceiver) performs the receiving and/or sending performed by the first communication device in the third aspect above.
  • Actions; the processing modules (or processors) perform the processing actions performed by the first communication device in the third aspect above, and perform other actions except the receiving and sending actions.
  • the processing module or processor may determine a plurality of second resource unit sets from the first resource unit set, and according to the frequency of all resource units in any second resource unit set The domain position determines a first sequence of first uplink ports on all resource elements in any of the second set of resource elements.
  • a transceiver module or transceiver may be configured to transmit a first signal according to the first sequence on all resource elements in any of the second set of resource elements.
  • the transceiver module or transceiver may also be used to receive I q and/or a parameter for determining I q , and/or receive ⁇ q and/or
  • a communication device configured to execute the method executed by the second communication device in the fourth aspect or any possible implementation manner thereof.
  • the communication apparatus may include modules for executing the method performed by the second communication apparatus in the fourth aspect or any possible implementation manner thereof, for example, including a processing module and a transceiver module.
  • the transceiver module may include a sending module and a receiving module, and the sending module and the receiving module may be different functional modules, or may be the same functional module, but can implement different functions.
  • the second communication apparatus is a communication device, or a chip or other components provided in the communication device.
  • the communication device is a network device.
  • the second communication apparatus is a network device.
  • the transceiver module can be implemented by a transceiver, and the processing module can be implemented by a processor.
  • the sending module may be implemented by a transmitter
  • the receiving module may be implemented by a receiver
  • the transmitter and the receiver may be different functional modules, or may be the same functional module but capable of implementing different functions.
  • the transceiver is implemented by, for example, an antenna, a feeder, a codec and the like in the communication device.
  • the transceiver (or the transmitter and the receiver) is, for example, a communication interface in the chip, and the communication interface is connected with the radio frequency transceiver component in the communication device to Send and receive information through radio frequency transceiver components.
  • the second communication device is a network device, and the processing module and the transceiver module are used as examples for introduction.
  • the communication device may include a processing module (or processor) and a transceiver module (or transceiver), and the transceiver module (or transceiver) performs the receiving and/or sending performed by the second communication device in the fourth aspect above.
  • Actions; the processing modules (or processors) perform the processing actions performed by the second communication device in the fourth aspect above, and perform actions other than the receiving and sending actions.
  • the processing module or processor may determine a plurality of second resource unit sets from the first resource unit set, and according to all the resources in the second resource unit set The frequency domain position of the unit determines the first sequence of the first uplink port on all resource units in the any second resource unit set.
  • a transceiver module or transceiver may be configured to receive a first signal according to the first sequence on all resource elements in any of the second set of resource elements.
  • the transceiver module or transceiver may also be used to transmit I q and/or a parameter for determining I q , and/or, to transmit ⁇ q and/or
  • a communication system including the communication device shown in the fifth aspect and the communication device shown in the sixth aspect, or the communication device shown in the seventh aspect and the communication device shown in the eighth aspect device.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store computer instructions, and when the computer instructions are executed on a computer, the computer is made to execute the above-mentioned first to fourth aspects or any of them.
  • An eleventh aspect provides a computer program product comprising instructions, the computer program product comprising computer instructions, when the computer instructions are run on a computer, the computer is made to execute the above-mentioned first to fourth aspects or any one of them The method shown in the possible embodiments.
  • a twelfth aspect provides a circuit coupled to a memory, the circuit being used to perform the method shown in the above-mentioned first to fourth aspects or any one of possible implementations thereof.
  • the circuit may comprise a chip or chip circuit.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the architecture of another communication system provided by an embodiment of the present application.
  • Fig. 3 is a kind of SRS frequency domain distribution schematic diagram
  • FIG. 4 is a schematic diagram of a SRS pilot resource and a corresponding DFT matrix
  • FIG. 5 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of SRS frequency domain distribution provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another SRS frequency domain distribution provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another SRS frequency domain distribution provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • the present application provides a communication method.
  • the present application will be described in further detail below with reference to the accompanying drawings. It should be understood that the specific operation methods in the method embodiments described below can also be applied to the apparatus embodiments or the system embodiments.
  • the measurement feedback method provided in this embodiment of the present application may be applied to a wireless communication system, and the wireless communication system may include a terminal device 101 and a network device 102 .
  • the above wireless communication system is applicable to both a low frequency scenario (sub 6G) and a high frequency scenario (above 6G).
  • Application scenarios of the wireless communication system include, but are not limited to, fifth-generation systems, new radio (NR) communication systems, or future evolved public land mobile network (PLMN) systems, and the like.
  • NR new radio
  • PLMN public land mobile network
  • the terminal device 101 shown above may be a user equipment (UE), a terminal (terminal), an access terminal, a terminal unit, a terminal station, a mobile station (mobile station, MS), a remote station, a remote terminal, a mobile terminal ( mobile terminal), wireless communication equipment, terminal agent or terminal equipment, etc.
  • the terminal device 101 may have a wireless transceiver function, which can communicate with one or more network devices of one or more communication systems (eg, wireless communication), and accept network services provided by the network devices, where the network devices include but not
  • the network device 102 is limited to the illustration.
  • the terminal device 101 may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA) device, Handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in future 5G networks or terminal devices in future evolved PLMN networks, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal device 101 can be deployed on land, including indoor or outdoor, handheld or vehicle; the terminal device 101 can also be deployed on water (such as ships, etc.); the terminal device 101 can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device 101 may specifically be a mobile phone (mobile phone), a tablet computer (pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal, an augmented reality (augmented reality, AR) terminal, an industrial control (industrial control) wireless terminal in control), wireless terminal in self-driving, wireless terminal in remote medical, wireless terminal in smart grid, wireless terminal in transportation safety Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the terminal device 101 may also be a communication chip with a communication module, a vehicle with a communication function, or an in-vehicle device (such as an in-vehicle communication device, an in-vehicle communication chip) or the like.
  • the network device 102 may be an access network device (or an access network point).
  • the access network device refers to a device that provides a network access function, such as a radio access network (radio access network, RAN) base station, and the like.
  • the network device 102 may specifically include a base station (base station, BS), or include a base station and a radio resource management device for controlling the base station, and the like.
  • the network device 101 may further include a relay station (relay device), an access point, a base station in a future 5G network, a base station in a future evolved PLMN network, or an NR base station, and the like.
  • the network device 102 may be a wearable device or a vehicle-mounted device.
  • the network device 102 may also be a chip with a communication module.
  • the network device 102 includes but is not limited to: a next-generation base station (g nodeB, gNB) in 5G, an evolved node B (evolved node B, eNB) in an LTE system, a radio network controller (radio network controller, RNC) , wireless controller, base station controller (BSC), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseBand unit, BBU), transmission point (transmitting point) under the CRAN system and receiving point, TRP), transmitting point (transmitting point, TP) or mobile switching center, etc.
  • the network device 101 may also include a base station in a future 6G or newer mobile communication system.
  • the communication system provided by this embodiment of the present application may include at least one network device 201 .
  • the communication system 200 may further include at least one terminal device, for example, the terminal devices 202 to 207 shown in FIG. 2 .
  • the terminal devices 202 to 207 may be mobile or fixed.
  • Each of the network device 201 and one or more of the end devices 202 to 207 may communicate over a wireless link.
  • Each network device can provide communication coverage for a specific geographic area and can communicate with terminal devices located within that coverage area.
  • the above network device 201 may include the network device 102 shown in FIG. 1 .
  • the terminal devices 202 to 207 may include the terminal device 101 shown in FIG. 1 .
  • any two or more terminal devices can communicate directly.
  • a device to device (device to device, D2D) technology can be used to realize direct communication between terminal devices.
  • D2D technology can be used for direct communication between terminal devices 205 and 206 and between terminal devices 205 and 207 .
  • Terminal device 206 and terminal device 207 may communicate with terminal device 205 individually or simultaneously.
  • the terminal devices 205 to 207 can also communicate with the network device 201, respectively. For example, it can communicate directly with the network device 201, as shown in the figure, the terminal devices 205 and 206 can directly communicate with the network device 201; it can also communicate with the network device 201 indirectly, as in the figure, the terminal device 207 communicates with the network device via the terminal device 206. 201 Communications.
  • the channel sounding method may include uplink channel sounding based on uplink pilot signals (or uplink sounding reference signals) and downlink channel sounding based on downlink pilot signals (or downlink sounding reference signals).
  • a typical downlink channel sounding is performed based on a downlink channel state information reference signal (channel state information reference signal, CSI-RS), that is, the terminal device 101 performs the CSI-RS signal sent by the network device 102 according to the CSI resource configuration sent by the network device 102. Measurement is performed to obtain downlink channel characteristics, and the terminal device 101 reports the downlink channel characteristics to the network device 102 according to the CSI reporting configuration sent by the network device 102 .
  • CSI-RS channel state information reference signal
  • Uplink channel sounding is generally performed based on an uplink sounding reference signal (SRS), that is, the network device 102 sends the SRS configuration to the terminal device 101, the terminal device 101 sends the SRS according to the SRS configuration, and the network device 102 sends the SRS configuration to the terminal device 102.
  • SRS uplink sounding reference signal
  • the SRS sent by the device 101 is measured to obtain uplink channel characteristics.
  • the SRS is used as an example.
  • the SRS can also be replaced by a CSI-RS, or a demodulation reference resource (DMRS), or a time domain/frequency domain/phase tracking reference signal, etc.
  • CSI-RS may be used to obtain channel information to perform known signals for CSI measurement reporting.
  • the DMRS can be used for a known signal for channel estimation when a shared channel or a control channel is received.
  • the UE generates and transmits an SRS on a specific physical resource according to a preset known sequence, and the base station side can estimate the channel matrix through the received SRS on the specific physical resource according to the known sequence, which is used for uplink data scheduling or utilization Channel reciprocity is used for downlink data scheduling.
  • the Zadoff-Chu (ZC) sequence is used to generate the SRS in the prior art.
  • the SRS can be located on one or more OFDM symbols in a time slot, can occupy all subcarriers in the system bandwidth, or can occupy part of the subcarriers in the system bandwidth in the form of comb teeth, thereby improving network resource utilization.
  • the SRS can be sent periodically in the time domain, and the sending period and offset are usually defined, and the SRS will be sent periodically in the periodic time domain position.
  • the SRS may also be sent aperiodically in the time domain. In this case, DCI signaling is required to indicate the sending time of the SRS, and the SRS will be sent instantaneously in the periodic time domain.
  • the SRS resource defines the time-frequency code domain resources used to transmit the SRS. Specifically, each SRS resource is configured with the following parameters:
  • SRS resource index value When multiple SRS resources are configured, the SRS resources are distinguished by the index value.
  • the number of SRS ports can be the number of transmit antennas of the UE.
  • each SRS port corresponds to one transmit antenna of the UE; each SRS port can correspond to a spatial precoding vector of the transmit antenna, that is, it can correspond to A spatial beamforming method.
  • SRS signals of multiple SRS ports on one SRS resource occupy the same time-frequency resource and are multiplexed in a code division manner. For example, SRS signals of different SRS ports use different cyclic shifts (CS).
  • the time domain position occupied by the SRS the configuration information of the time domain period or offset.
  • the transmission bandwidth and frequency hopping bandwidth of the SRS are the transmission bandwidth and frequency hopping bandwidth of the SRS.
  • CS value Also called cyclic shift value, the number of bits by which the sequence is cyclically shifted in the time domain.
  • different SRS signals or different SRS ports can use an orthogonal way of code division multiplexing to avoid mutual interference, and the orthogonal way can be realized by cyclic shift.
  • CS can basically achieve code division orthogonality.
  • the receiving end can eliminate signals using other CSs and only retain signals using a specific CS through specific operations, thereby implementing code division multiplexing.
  • the transmission bandwidth of the SRS refers to the sounding bandwidth of the SRS, that is, the frequency domain range for channel estimation according to the SRS, and the channel corresponding to the transmission bandwidth can be estimated through the subcarriers carrying the SRS. Only part of the subcarriers in the transmission bandwidth may carry the SRS for estimating the entire transmission bandwidth. Subsequently, the transmission bandwidth of the SRS may be referred to as the SRS bandwidth for short.
  • the transmission bandwidth of the SRS may correspond to the frequency domain resources occupied by the SRS at the same time or at different times.
  • the SRS needs multiple times to scan the complete transmission bandwidth, wherein at each time, only a part of the transmission bandwidth is scanned, and this part of the bandwidth is the frequency hopping bandwidth.
  • the SRS occupies 272 RBs in one OFDM symbol; for another example, the transmission bandwidth of the SRS is 272 RB, the frequency hopping mode is configured, and the number of frequency hopping is 4, then The SRS occupies 68 RBs in one OFDM symbol, that is, the frequency hopping bandwidth is 68 RBs, and 272 RBs are occupied by 4 OFDM symbols, and the occupied frequency domain resources between OFDM symbols do not overlap.
  • the system bandwidth in this embodiment of the present application may be understood as a carrier (component carrier, CC), or a bandwidth part (bandwidth part, BWP), etc., where one CC may include multiple BWPs.
  • the present invention numbers the subcarriers, and the subcarriers with different numbers (or frequency domain numbers) have different frequency domain positions.
  • a group of sub-carriers can be numbered consecutively according to frequency from low to high or from high to low.
  • Subcarriers are numbered relative to a certain frequency domain range.
  • the number of a certain sub-carrier in the system bandwidth, or the number of the sub-carrier relative to the system bandwidth means that the number of the sub-carrier with the highest or lowest frequency in the system bandwidth is marked as 0, and the frequency is from high to low.
  • the subcarriers in the system bandwidth are sequentially numbered in an order from low to high, thereby determining the number of a certain subcarrier in the system bandwidth.
  • the starting position of the frequency domain of the SRS bandwidth is the maximum or minimum value among the numbers of subcarriers included in the SRS bandwidth, and the number may be a number relative to the system bandwidth.
  • the starting position of the frequency domain of the frequency hopping bandwidth is the maximum or minimum value among the numbers of subcarriers included in the frequency hopping bandwidth, and the number may be a number relative to the system bandwidth.
  • the frequency domain position of the resource unit is the difference between the number of the subcarrier occupied by the resource unit in the system bandwidth and the frequency domain starting position of the SRS bandwidth, or, is the number and hop of the subcarrier occupied by the resource unit in the system bandwidth.
  • the number of the subcarriers occupied by the resource unit may be simply referred to as the number of the resource unit.
  • SRSs are arranged in equal-spaced combs in the frequency domain.
  • the frequency domain resources are m SRS RBs, and the comb degree is K TC , then the frequency domain is divided into K TC groups of resources , the number of pilots in each group is is the number of subcarriers per RB.
  • ports can be one transmit antenna of a terminal device, and multiple ports can be multiple transmit antennas from multiple terminal devices) in a comb (the same shaded group of frequency domain resources, that is, multiple The ports occupy the same frequency domain resources) and send SRS signals through code division multiplexing.
  • the port multiplexing capability is determined by the properties of a partial discrete Fourier transform (discrete fourier transform, DFT) matrix corresponding to the pilot.
  • DFT discrete Fourier transform
  • frequency domain resources The transformation relationship between the frequency domain channel and the delay domain channel on each pilot is represented by the side length of DFT matrix of Determined, according to the frequency domain channel, matrix Solve for delay-domain channels.
  • pilot resources If from selected from the pilot resources pilot resources, hope to pass To solve the delay domain channel by receiving pilots on each pilot resource, it is necessary to study Part of the DFT matrix F corresponding to each pilot resource (such as ).
  • Each pilot corresponds to a DFT matrix a line, DFT matrix corresponding to each pilot of The row constitutes part of the DFT matrix F, determined by the nature of F Port multiplexing capability on each pilot resource.
  • each column of F can be regarded as a length
  • the substrates were sequentially divided into K TC groups, each group a base. of each group
  • the bases are completely orthogonal, but the corresponding columns of different groups are completely linearly related, for example, the first column of F1 is completely linearly related to the first column of F2, and the second column of F1 is completely linearly related to the second column of F2. Therefore, when multi-port multiplexing is performed, only bases are available (other bases are linearly related to the set of bases, i.e. mathematically indistinguishable). Assuming that the maximum delay extension of each port is L, the maximum number of multiplexed ports is
  • each pilot resource that is, the non-uniform extraction method is used to obtain the frequency domain position of the SRS, and the phenomenon that the corresponding columns of different groups are completely linearly correlated in the prior art will not occur, that is, composed of columns All bases are available.
  • the maximum delay extension of each port is L
  • the maximum number of multiplexed ports is It can be seen that, compared with the prior art, the SRS with non-uniform distribution of frequency domain resources can multiplex more ports on the same frequency domain resources
  • the length of the base is That is, the number of bases is greater than the length of the bases, so Each basis cannot be completely orthogonal, that is, a set of non-orthogonal basis.
  • the positions of the pilot resources determine F, so that each column of F is as orthogonal as possible.
  • the embodiment of the present application provides a communication method, which is used to implement the sending of SRS based on non-uniformly distributed pilot resources, so that more ports are multiplexed on the same frequency domain resources, and the port multiplexing capability is improved.
  • the communication method may be implemented by the first communication device or the second communication device.
  • the first communication apparatus may include a terminal device or a component in the terminal device (such as a processor, a circuit, a chip or a chip system, etc.), and the terminal device here is, for example, the terminal device 101 shown in FIG. 1 .
  • the second communication apparatus may include a network device or a component in the network device (such as a processor, a circuit, a chip or a chip system, etc.), where the network device is, for example, the network device 102 shown in FIG. 1 .
  • the method may include the following steps:
  • the terminal device and the network device determine a second set of resource units (or, in other words, determine a second set of resource units in the first set of resource units) from the first set of resource units, and all resource units in the second set of resource units have The frequency domain locations are unequally spaced.
  • the first resource unit set may include all resource units within the first signal bandwidth range.
  • the second set of resource units includes a set of non-uniformly distributed resource units obtained according to the first set of resource units, for example, the second set of resource units is a set of resource units obtained by non-uniformly extracting the first set of resource units.
  • the first signal here is, for example, SRS or other uplink reference signals.
  • the first signal bandwidth may be the transmission bandwidth of the first signal.
  • the SRS bandwidth refers to the transmission bandwidth of the SRS.
  • the first set of resource units is a set of resource units in which the first orthogonal frequency division multiplexing (OFDM) symbol belongs to the transmission bandwidth of the first signal, or the first set of resource units is a first OFDM symbol group A set of resource elements belonging to the transmission bandwidth of the first signal in all OFDM symbols of the first OFDM symbol group, and the first OFDM symbol group includes a plurality of OFDM symbols.
  • OFDM orthogonal frequency division multiplexing
  • the first set of resource elements is the set of resource elements in which the first OFDM symbol belongs to the SRS bandwidth, or the first set of resource elements is the set of all OFDM symbols in the first OFDM symbol group that belong to the SRS bandwidth.
  • a set of resource elements, the first OFDM symbol group includes a plurality of OFDM symbols.
  • the resource units in the first set of resource units may be distributed in the first OFDM symbol.
  • the first set of resource units includes resource units within the SRS bandwidth range in the first OFDM symbol
  • the second The set of resource units may include a plurality of resource units that are non-uniformly distributed within the first set of resource units.
  • the distribution mode of the first resource unit set shown in FIG. 6 may be referred to as a non-frequency hopping mode.
  • the frequency domain position of each resource unit in the second resource unit set is indicated by I 0 , I 1 . . . IM -1 respectively, for example, I 0 , I 1 .
  • the number of the subcarrier occupied by each resource element in the second resource element set, or, I 0 , I 1 . . . IM-1 respectively indicate the number and reference of the subcarrier occupied by each resource element in the second resource element set.
  • the difference between the numbers of the subcarriers, where the resource elements in the second resource element set are unevenly distributed, or the resource elements indicated by I 0 , I 1 . . . IM-1 are unevenly distributed, or I 0 , I 1 ......I M-1 is not an arithmetic sequence.
  • the resource units in the first resource unit set may be distributed in multiple OFDM symbols, and when distributed in multiple OFDM symbols, the multiple OFDM symbols may be referred to as the first OFDM symbol group, where multiple OFDM symbols are OFDM symbols may be located in the same time unit.
  • a time unit may be a slot, or consist of a part of a time slot or a plurality of time slots.
  • the distribution manner of the first resource unit set shown in FIG. 7 may be referred to as a first frequency hopping manner.
  • the resource units in the first resource unit set may be distributed in the frequency domain range of the SRS bandwidth of N OFDM symbols, N ⁇ 2, and L q indicates the qth OFDM symbol in the N OFDM symbols
  • the OFDM symbols L 0 , L 1 to L N-1 are the first OFDM symbol group, wherein each OFDM symbol corresponds to a frequency hopping bandwidth, and each frequency hopping bandwidth includes one or more resource units, and optionally, different OFDM symbols
  • the frequency domain range of the frequency hopping bandwidth of the symbol does not overlap, that is, the subcarrier number occupied by the resource unit in the frequency hopping bandwidth of any OFDM symbol in the first OFDM symbol group is the same as that of other OFDM symbols in the first OFDM symbol group.
  • the subcarrier numbers occupied by the resource elements in the frequency hopping bandwidth of the OFDM symbol are different.
  • each OFDM symbol includes at least one resource element within its corresponding frequency hopping bandwidth, and the union of the resource elements within the respective frequency hopping bandwidths of all OFDM symbols in the first OFDM symbol group includes the second resource element set.
  • the frequency domain position of each resource unit in the second resource unit set passes through the indicates that,
  • the respectively indicated frequency domain positions that is, the frequency domain positions of the resource units in the second resource unit set
  • Non-uniform distribution refers to the non-arithmetic series after sorting them in ascending or descending order.
  • the terminal device can obtain a second set of non-uniformly distributed resource units according to the first set of resource units in a preset manner, or it can obtain a second set of resource units from the network device according to the frequency of the resource units in the second set of resource units.
  • the domain information determines the second resource unit set, and the frequency domain information may indicate the relative frequency domain positions of the resource units in the second resource unit set in the transmission bandwidth of the first signal, or indicate the frequency domain of the resource units in the system. Location.
  • the present application does not specifically limit the manner of obtaining the second resource units that are non-uniformly distributed according to the first resource unit set.
  • the terminal device and the network device determine a first sequence of the first uplink port of the terminal device on all resource units in the second resource unit set according to the frequency domain positions of all resource units in the second resource unit set.
  • the first sequence may also be referred to as a transmission sequence
  • the first sequence may be referred to as a reception sequence.
  • the first sequence determined by the terminal device and the network device above is the same.
  • the first sequence sent by the first uplink port on the second set of resource elements may be determined according to the frequency domain positions indicated by I 0 , I 1 . . . IM-1 respectively.
  • the respectively indicated frequency domain positions determine the first sequence sent by the first uplink port on the second set of resource elements included in the multiple OFDM symbols.
  • the terminal device sends the first signal according to the first sequence on all resource units in the second resource unit set.
  • the first signal includes SRS, CSI-RS, DMRS or other uplink reference signals.
  • the terminal device sends the first sequence or a signal corresponding to the first sequence on all resource units in the second resource unit set.
  • the network device receives the first signal according to the first sequence on all resource units in the second resource unit set.
  • the network device receives the first sequence or a signal corresponding to the first sequence on all resource units in the second resource unit set.
  • FIG. 6 is used as an example to illustrate the process of sending and receiving the first sequence.
  • the terminal device can map the first sequence to M subcarriers I 0 , I 1 .
  • a signal is, for example, SRS or other uplink reference signals.
  • each subcarrier may have a mapping relationship with the subsequence of the first sequence.
  • a subsequence may be a portion of the first sequence.
  • the network device receives the terminal according to the first sequence and sends the first signal carried on the subcarriers I 0 , I 1 . . . IM-1 .
  • the terminal device and the network device can determine the transmission sequence of each uplink transmission port on the second resource unit set according to the frequency domain position of each resource unit in the second resource unit set, so as to realize the SRS of non-uniform pilot resources Compared with the SRS transmission scheme with uniform pilot resources, the port multiplexing capability can be improved.
  • the method may further include S105, the network device performs channel estimation according to the first signal.
  • the network device performs data demodulation according to the first signal.
  • the first signal is sent according to a first sequence on resource elements of the second set of resource elements.
  • the network device may also obtain the first sequence first, and then receive the first signal according to the first sequence.
  • the first sequence here may be called local.
  • first sequence It should be understood that the steps of acquiring the first sequence and receiving the first signal may be interchanged.
  • the network device may not acquire the first sequence, but store, generate or determine a local sequence, and after receiving the first signal, determine that the terminal-side transmission is based on the local sequence and the first signal. the first sequence.
  • the local sequence may be multiple sequences, for example, multiple sequence sets that may be determined by the terminal as the first sequence.
  • the network device aligns the multiple sequences according to the received first signal, and confirms that the first signal is one of the multiple sequences.
  • the local sequence is not necessarily the first sequence, for example, only the first few items in the first sequence may be stored, as long as the first sequence corresponding to the first signal sent by the terminal device can be determined.
  • the terminal device can also determine the mapping relationship between the first sequence of the first uplink port and the resource elements in the second resource element set according to the position indication information of the reference subcarrier, and according to each The first sequence of uplink ports and the mapping relationship between the first sequence of each port and the resource unit are used to transmit the first signal.
  • the first signal as an SRS as an example
  • a reference subcarrier such as the first subcarrier of the SRS bandwidth (or any other subcarrier)
  • the position indication information of the reference subcarrier may indicate that the first subcarrier is in the system bandwidth 's number.
  • the network device receives the first signal sent by the first uplink port according to the first sequence and the mapping relationship between the first sequence and the resource units in the second resource unit set.
  • the terminal device can determine the mapping relationship between the transmission sequence of each uplink port and/or the transmission sequence and the resource units in the second resource unit set by traversing.
  • the network device may determine the sending sequence of all uplink ports and/or the mapping relationship between the sending sequence and the resource elements in the second resource element set in a similar manner, so as to receive the first signal sent by all uplink ports.
  • 6 and 7 take the first signal SRS as an example for description, and when the first signal is another uplink reference signal, the method for sending the first signal may be implemented with reference.
  • the bandwidth of the first resource unit set is the SRS bandwidth, where the SRS bandwidth is mRB, that is A resource element (resource element, RE).
  • the obtained set of frequency domain positions of the resource units in the second resource unit set (the set of frequency domain positions may be referred to as the first frequency domain position set) domain location set) is denoted as I, so for Figure 6, I is the frequency domain information.
  • I is the frequency domain information.
  • I ⁇ I 0 , I 1 . . . I M-1 ⁇ .
  • the resource units in the second resource unit set are not uniformly distributed, or in other words, the respective values of I 0 , I 1 . . . IM-1 are not arithmetic progressions.
  • the first sequence r (p) (k) of the first uplink port on the kth resource element in the second resource element set satisfies the following formula:
  • I is the first frequency domain location set, including the frequency domain locations of all resource units in the second resource unit set
  • is a constant, such as 0, C is an integer greater than or equal to 1
  • p is the first uplink port.
  • is a cyclic shift value.
  • the kth resource unit in the second resource unit set refers to the kth resource unit after sorting all resource units in the second resource unit set from high to low or from low to high in the frequency domain.
  • v is the base sequence number
  • r ( ⁇ ,I) (k) can be written as or, above can be determined by u and v (or, related to u and v)
  • u is the group number
  • v is the base sequence number within the group
  • r ( ⁇ ,I) (k) can be written as It should be understood that the above examples do not constitute a limitation to the solution of the present invention, and the base sequence can be determined by other parameters.
  • I may be determined by a total of B parameters ⁇ A 0 , A 1 ,..., A B-1 ⁇ , these parameters are parameters used to determine I, B is an integer greater than or equal to 1, I can be written as Ik can be written as M can be written as In this application, ⁇ A 0 , A 1 , . . . , A B-1 ⁇ may be referred to as parameters for determining I, and the parameters for determining I may be used for determining I.
  • the starting position of the transmission bandwidth of the first signal is n start , that is, the frequency domain position of the first resource unit in the first resource unit set in the system bandwidth is n start .
  • the resource unit and sequence numbered I k +n start The correspondence between , which can be a sequence Beared on the resource unit numbered I k +n start , or in other words, the sequence Mapped to the resource unit numbered I k +n start .
  • the first uplink port of the terminal device sends, on each resource unit in the second resource unit set, the first signal corresponding to the resource unit determined according to formula 3.
  • the determination method of the signals sent by the other uplink ports other than the first uplink port may refer to the determination method of the signals sent by the first uplink port.
  • the network device receives, on each resource unit in the second resource unit set, the first signal sent by the terminal device through the first uplink port, where the first signal corresponding to each resource unit satisfies Formula 3 .
  • the network device can receive the first signals respectively sent by the multiple uplink ports, and the way of determining the signals sent by other uplink ports can refer to the first uplink port The way in which the signal sent is determined.
  • the system bandwidth is, for example, a bandwidth part (BWP).
  • BWP bandwidth part
  • I, C, ⁇ , ⁇ , u, v, A 0 , A 1 , ..., A B-1 are configured for the first upstream port.
  • the I, C, ⁇ , ⁇ , One or more parameters of u, v, A 0 , A 1 , ..., A B-1 may be different.
  • I, C, ⁇ , ⁇ , One or more parameters in u, v, A 0 , A 1 , . . . , A B-1 may have a subscript i , which is a parameter corresponding to the pi th port.
  • the scaling factor ⁇ may be determined by one or more of an amplitude scaling parameter, a power control parameter, and the number of pilot transmissions, and the scaling factor ⁇ may be different for different uplink ports.
  • I the parameter used to determine I, ⁇ or At least one of them can be sent by the network device to the terminal device.
  • the network device may send I and/or parameters for determining I to the terminal device, and/or the network device may send ⁇ to the terminal device or
  • the bandwidth of the first resource unit set may be the SRS bandwidth, where the SRS bandwidth is mRB, which is RE. It should be understood that each OFDM symbol in the first OFDM group corresponds to a frequency hopping bandwidth, the frequency hopping bandwidth is within the SRS bandwidth, and n start is the frequency domain starting position of the SRS bandwidth.
  • the set of frequency domain positions of the resource elements in the second set of resource elements (the set of frequency domain positions may be referred to as the first set of A frequency domain location set) is denoted as I.
  • the resource unit set corresponding to the qth OFDM symbol belongs to the second resource unit set, or in other words, the resource unit corresponding to the qth OFDM symbol is a subset of the second resource unit set. It should be understood that the resource units in the second resource unit set are non-uniformly distributed in the frequency domain.
  • I q is the set of frequency domain positions of the resource units corresponding to the qth OFDM symbol, as shown in FIG. 7 ,
  • the first sequence r (p) (k,q) of the first uplink port on the kth resource unit of the qth OFDM symbol satisfies:
  • I q is the set of frequency domain positions of the resource units corresponding to the qth OFDM symbol
  • k start,q is the sequence start position of the first uplink port on the qth symbol
  • is a constant, such as 0, C is an integer greater than or equal to 1
  • p is the first uplink port
  • is a cyclic shift value.
  • the k-th resource unit of the q-th OFDM symbol refers to the resource units on the q-th symbol belonging to the second resource unit set sorted in the order from high to low or from low to high in the frequency domain.
  • the kth resource unit refers to the resource units on the q-th symbol belonging to the second resource unit set sorted in the order from high to low or from low to high in the frequency domain.
  • v is the base sequence number
  • u is the group number
  • v is the base sequence number within the group
  • I q may be determined by ⁇ A 0 , A 1 ,...,A B-1 ⁇ with a total of B parameters, these parameters are the parameters used to determine I q , and B is an integer greater than or equal to 1 , Iq can be written as I q,k can be written as M q can be written as In this application, ⁇ A 0 , A 1 , . . . , A B-1 ⁇ may be referred to as parameters for determining I q , and the parameters for determining I q may be used for determining I q .
  • ⁇ in Formula 4 satisfies:
  • I q , C, ⁇ , ⁇ , u, v It is configured for the first uplink port.
  • the I q , C, ⁇ , ⁇ , u, v, One or more of the parameters can be different.
  • I q , C, ⁇ , ⁇ , u, v, One or more parameters in can have a subscript i , which is denoted as the parameter corresponding to the pi th port.
  • each OFDM symbol corresponds to a subsequence of the first sequence , that is, a part of the first signal is transmitted according to a part of the first sequence on the resource elements of each OFDM symbol.
  • the N OFDM symbols parts of the first sequences corresponding to at least two OFDM symbols respectively are not identical.
  • the network device may perform joint processing on a part of the first signal corresponding to at least two OFDM symbols in the N OFDM symbols, for example, perform joint channel estimation, so as to improve the channel estimation accuracy.
  • N 2.
  • the first sequence can be divided into R segments, and the u-th sequence in the R-segment first sequence can be carried in the q-th OFDM symbol in the first OFDM symbol group symbol.
  • M q can satisfy:
  • the resource unit numbered I q,k +n start (or the subcarrier corresponding to the resource unit) on the qth OFDM symbol corresponds to the a signal Satisfy:
  • is the scaling factor. It should be understood that on resource units other than the second resource unit set, the transmit power of the first signal of the first uplink port is zero. In other words, the mapping relationship between the first sequence (or the first signal) and the resource units in the second resource unit set satisfies the above formula 8.
  • the first uplink port of the terminal device sends, on each resource unit in the second resource unit set, the first signal corresponding to the resource unit determined according to formula 8.
  • the determination method of the signals sent by the other uplink ports other than the first uplink port may refer to the determination method of the signals sent by the first uplink port.
  • the network device receives, on each resource unit in the second resource unit set, the first signal sent by the terminal device through the first uplink port, where the first signal corresponding to each resource unit satisfies the formula Eight.
  • the network device can receive the first signals respectively sent by the multiple uplink ports, and the way of determining the signals sent by other uplink ports can refer to the first uplink port The way in which the signal sent is determined.
  • the scaling factor ⁇ may be determined by one or more of an amplitude scaling parameter, a power control parameter, and the number of pilot transmissions, and the scaling factor ⁇ may be different for different uplink ports or different OFDM symbols.
  • I q the parameter used to determine I q , ⁇ or At least one of them can be sent by the network device to the terminal device.
  • the network device may send Iq and/or parameters for determining Iq to the terminal device, and/or the network device may send ⁇ to the terminal device or
  • the process shown in FIG. 8 provides another communication method provided by the embodiment of the present application, and the method may include the following steps:
  • the terminal device and the network device determine a plurality of second resource unit sets from the first resource unit set, and the frequency domain positions of all resource units in each second resource unit set are distributed at unequal intervals. That is, when the first signal is sent, the frequency domain resources of the first signal are non-uniformly distributed. That is, when the first signal is sent according to the resource units in the second resource unit set, the frequency domain resources of the first signal are non-uniformly distributed.
  • the first resource unit set is a set of resource units belonging to the first signal bandwidth in multiple (for example, N, N ⁇ 2) second OFDM symbols, and each second OFDM symbol corresponds to a second resource unit set .
  • the N second OFDMs may be located in the same time unit. It should be understood that, in this application, a time unit may be a slot, or consist of a part of a time slot or a plurality of time slots.
  • the first signal here is, for example, SRS or other uplink reference signals.
  • the first signal bandwidth may be a transmission bandwidth of the first signal.
  • L q indicates the number of the qth OFDM symbol in the N second OFDM symbols.
  • the number can be is the number of each second OFDM symbol in this slot.
  • the numbering may be a combination of the number of the time slot in which each second OFDM symbol is located and the number of the second OFDM symbol in the time slot.
  • Each second OFDM symbol corresponds to a frequency hopping bandwidth, and the frequency hopping bandwidth is within the SRS bandwidth.
  • the two frequency hopping bandwidths corresponding to any two second OFDM symbols do not overlap in the frequency domain.
  • the second resource unit set belongs to the frequency hopping bandwidth corresponding to the second OFDM symbol. Exemplarily, the resource units in any second resource unit set shown in FIG. 9 are non-uniformly distributed.
  • the terminal device can obtain a second set of non-uniformly distributed resource units from the first set of resource units according to a set method, or it can obtain a second set of resource units from the network device according to the frequency of the resource units in the second set of resource units. Domain information determines the second set of resource units.
  • the network device may obtain a second set of non-uniformly distributed resource units from the first set of resource units according to the set method, and send the frequency domain information of the resource units in the second set of resource units to the terminal.
  • the manner in which the unit set obtains the non-uniformly distributed second resource unit set is not specifically limited.
  • the terminal device and the network device determine a first sequence of the first uplink port on all resource units in any second resource unit set according to the frequency domain positions of all resource units in any second resource unit set.
  • the first sequence may also be referred to as a transmission sequence
  • the first sequence may be referred to as a reception sequence.
  • the first sequence determined by the terminal device and the network device above is the same.
  • S203 The terminal device sends the first signal according to the first sequence on all the resource units in the any second resource unit set.
  • the terminal device sends the first sequence on all resource elements in the any second resource element set.
  • the first signal is eg SRS.
  • the network device receives the first signal according to the first sequence on all resource units in the any second resource unit set.
  • the network device receives the first sequence on all resource units in any second resource unit set.
  • SRS shown above may be replaced by DMRS or other uplink reference signals.
  • the terminal device determines, according to the frequency domain position of each resource unit in any second resource unit set of the plurality of second resource unit sets, the transmission sequence of the uplink transmission port on the second resource unit set , SRS transmission with non-uniform pilot resources is implemented, and port multiplexing capability can be improved compared with the SRS transmission scheme with uniform pilot resources.
  • the steps shown in the above S202 to S204 can also be performed in different second resource unit sets respectively, so as to realize the transmission of multiple first sequences and multiple first signals.
  • the steps shown in S202 to S204 can be Execute separately in multiple second resource unit sets.
  • the terminal device and the network device may determine at least two second resource unit sets from the multiple second resource unit sets, for the at least two second resource unit sets.
  • the first second resource unit set in the resource unit set determine the first sequence of the first uplink port on all resource units in the first second resource unit set, and then the terminal device according to the first sequence in the first sequence
  • the uplink signal is sent on all resource units in the second set of resource units, and the network device receives the uplink signal on all the resource units in the first set of second resource units according to the first sequence; similarly, the terminal device and the network device also For the m th second resource element set in the at least two second resource element sets, the first uplink port (or other uplink ports) on all resource elements in the m th second resource element set may be determined.
  • a sequence, m is a positive integer
  • the terminal device can send uplink signals on all resource units in the m-th second resource unit set according to the first sequence
  • the network device can send uplink signals on the m-th second resource unit set according to the first sequence. Uplink signals are received on all resource units in the resource unit set.
  • the method may further include S205, wherein the network device performs channel estimation according to the first signal.
  • the network device performs data demodulation according to the first signal.
  • the first signal is sent according to a first sequence on resource elements of the second set of resource elements.
  • the network device may also obtain the first sequence first, and then receive the first signal according to the first sequence.
  • the first sequence here may be called local.
  • first sequence It should be understood that the steps of acquiring the first sequence and receiving the first signal may be interchanged.
  • the network device may not acquire the first sequence, but store, generate or determine a local sequence, and after receiving the first signal, determine that the terminal-side transmission is based on the local sequence and the first signal. the first sequence.
  • the local sequence may be multiple sequences, for example, multiple sequence sets that may be determined by the terminal as the first sequence.
  • the network device compares the received first signal with the multiple sequences, and confirms that the first signal is one of the multiple sequences.
  • the local sequence is not necessarily the first sequence, for example, only the first few items in the first sequence may be stored, as long as the first sequence corresponding to the first signal sent by the terminal device can be determined.
  • the terminal device can also determine the mapping relationship between the first sequence of the first uplink port and the resource elements in the second resource element set according to the position indication information of the reference subcarrier, and according to each The first sequence of uplink ports and the mapping relationship between the first sequence of each port and the resource are used to transmit the first signal.
  • the reference subcarrier is, for example, the first subcarrier of the frequency hopping bandwidth corresponding to the second OFDM symbol, and the position indication information of the reference subcarrier may indicate the number of the first subcarrier in the system bandwidth.
  • the network device receives the first signal sent by the first uplink port according to the first sequence and the mapping relationship between the first sequence and the resource unit.
  • the terminal device can determine the sending sequence of each uplink port and/or the mapping relationship between the sending sequence and the resource unit by traversing. Therefore, when the first signal is sent through multiple uplink ports, the network device can In a similar manner, the transmission sequences of all the uplink ports and/or the mapping relationship between the transmission sequences and the resource units are determined, so as to receive the first signals sent by all the uplink ports.
  • the method for sending the first signal provided by the embodiment of the present application will be described according to the distribution manner of the frequency domain resources shown in FIG. 9 .
  • I q,k is the frequency domain position of the kth resource unit in the second resource unit set corresponding to the qth second OFDM symbol. That is to say, I q,k is used to indicate the frequency domain position of the k th resource element in the second resource element set corresponding to the q th second OFDM symbol.
  • I q is the set of frequency domain positions of resource elements in the second resource element set corresponding to the qth second OFDM symbol, That is, for Fig. 9, I q is frequency domain information.
  • the first sequence of the first uplink port on the kth resource unit of the qth second OFDM symbol satisfies:
  • ⁇ q is a constant
  • C q is an integer greater than or equal to 1
  • ⁇ q is a cyclic shift value corresponding to the qth second OFDM symbol.
  • the kth resource unit of the qth second OFDM symbol refers to the resource units in the second resource unit set corresponding to the qth second OFDM symbol from high to low or from low to high in the frequency domain.
  • v is the base sequence number
  • u is the group number
  • v is the base sequence number within the group
  • I q can be determined by a total of B parameters ⁇ A 0 , A 1 ,...,A B-1 ⁇ , where B is an integer greater than or equal to 1, and I q can be written as I q,k can be written as M q can be written as
  • ⁇ A 0 , A 1 , . . . , A B-1 ⁇ may be referred to as parameters for determining I q
  • the parameters for determining I q may be used for determining I q .
  • ⁇ q in formula 9 can satisfy:
  • the resource units (or subcarriers occupied by the resource units) numbered I q,k +n start,q on the qth OFDM symbol correspond to the first signal Satisfy:
  • is a scaling factor
  • p is the first uplink port
  • L q indicates the number of the qth second OFDM symbol in the plurality of second OFDM symbols.
  • the first uplink port of the terminal device sends, on all resource units in any second resource unit set, the first signal corresponding to all the resource units determined according to formula ten.
  • the determination method of the signals sent by the other uplink ports other than the first uplink port may refer to the determination method of the signals sent by the first uplink port.
  • the network device receives, on all resource units in any second resource unit set, the first signal sent by the terminal device through the first uplink port, wherein the first signal corresponding to all the resource units satisfies Formula 10. .
  • the network device can receive the first signals respectively sent by the multiple uplink ports, and the way of determining the signals sent by other uplink ports can refer to the first uplink port The way in which the signal sent is determined.
  • the first signal transmission power of the first uplink port is zero.
  • I q , C q , ⁇ q , ⁇ q , u q , v q , n start,q It is configured for the first uplink port.
  • I q , C q , ⁇ q , ⁇ q , u q , v q , n start,q One or more of the parameters can be different.
  • the first uplink port is the p i th port among the multiple uplink ports of the terminal device
  • One or more parameters in can have a subscript i , which is denoted as the parameter corresponding to the pi th port.
  • the scaling factor ⁇ may be determined by one or more of an amplitude scaling parameter, a power control parameter, and the number of pilot transmissions, and the scaling factor ⁇ may be different for different uplink ports or different OFDM symbols.
  • I q the parameter used to determine I q , ⁇ q or At least one of them can be sent by the network device to the terminal device.
  • the network device may send I q and/or parameters for determining I q to the terminal device, and/or the network device may send ⁇ q to the terminal device or
  • FIG. 10 is a schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus is, for example, the terminal device 1000 shown in FIG. 10 .
  • the terminal device 1000 includes a processing module 1010 and a transceiver module 1020 .
  • the terminal device 1000 may be a network device, or may be a chip applied in the terminal device or other combined devices, components, etc. having the functions of the above-mentioned terminal device.
  • the transceiver module 1020 may be a transceiver
  • the transceiver may include an antenna and a radio frequency circuit, etc.
  • the processing module 1010 may be a processor, such as a baseband processor, and the baseband processor may include one or more Central processing unit (central processing unit, CPU).
  • CPU Central processing unit
  • the transceiver module 1020 may be a radio frequency unit, and the processing module 1010 may be a processor, such as a baseband processor.
  • the transceiver module 1020 may be an input/output interface of a chip (eg, a baseband chip), and the processing module 1010 may be a processor of the chip system, which may include one or more central processing units.
  • the processing module 1010 in this embodiment of the present application may be implemented by a processor or a circuit component related to the processor, and the transceiver module 1020 may be implemented by a transceiver or a circuit component related to the transceiver.
  • the processing module 1010 may be configured to perform all operations except the transceiving operations performed by the terminal device in the embodiment shown in FIG. 5 or FIG. 8, such as S101, S102, S201, S202, and/or for supporting Other processes of the techniques described herein, such as generating messages, information, and/or signaling sent by transceiving module 1020, and processing messages, information, and/or signaling received by transceiving module 1020.
  • the transceiver module 1020 may be used to perform the reception and/or transmission of messages, information and/or signaling, for example, may be used to perform the reception of frequency domain information, for example, for the first resource unit set shown in FIG.
  • the transceiver module 1020 may be used for receiving I; for the first resource unit set shown in FIG. 7 , the transceiver module 1020 may be used to receive I q ; for the first resource unit set shown in FIG. 9 , the transceiver module 1020 may be used to receive I.
  • the transceiver module 1020 may be a functional module, which can perform both sending and receiving operations.
  • the transceiver module 1020 may be used to execute the terminal device in the embodiment shown in FIG. 5 or FIG. 8 . All sending operations and receiving operations, for example, when performing a sending operation, the transceiver module 1020 can be considered as a sending module, and when performing a receiving operation, the transceiver module 1020 can be considered as a receiving module; or, the transceiver module 1020 can also be two Functional modules, the transceiver module 1020 can be regarded as a general term for these two functional modules, these two functional modules are respectively a sending module and a receiving module, the sending module is used to complete the sending operation, for example, the sending module can be used to execute Figure 5 or Figure 8 For all the sending operations performed by the terminal device in the illustrated embodiment, the receiving module is used to complete the receiving operation. For example, the receiving module may be used to perform all the receiving operations performed by the terminal device in the embodiment of FIG. 5
  • the processing module 1010 may determine a second resource unit set from the first resource unit set, and determine the first resource unit set according to the frequency domain positions of all resource units in the second resource unit set.
  • the transceiver module 1020 may be configured to transmit the first signal according to the first sequence on all the resource units.
  • the transceiver module 1020 may also be configured to receive I and/or or parameters used to determine I, and/or, receive ⁇ and/or
  • the transceiver module 1020 can also be used for receiving Iq and/or parameters for determining Iq , and/or, receiving a and/or
  • the processing module 1010 may determine a plurality of second resource unit sets from the first resource unit set, and determine the first uplink according to the frequency domain positions of all resource units in any second resource unit set A first sequence of ports on all resource units in any of the second set of resource units.
  • the transceiver module 1020 may be configured to transmit the first signal according to the first sequence on all resource elements in the second resource element set.
  • the transceiver module 1020 may also be configured to receive I q and/or a parameter for determining I q , and/or receive ⁇ q and/or
  • FIG. 11 is a schematic block diagram of another communication apparatus provided by an embodiment of the present application.
  • the communication apparatus is, for example, the network device 1100 .
  • the network device 1100 may include a processing module 1110 and a transceiver module 1120 .
  • the network device 1100 may be the network device as shown in the figure, or may be a chip applied in the network device or other combined devices, components, etc. having the above-mentioned network device functions.
  • the transceiver module 1120 may be a transceiver, and the transceiver may include an antenna and a radio frequency circuit
  • the processing module 1110 may be a processor, and the processor may include one or more CPUs.
  • the transceiver module 1120 may be a radio frequency unit, and the processing module 1110 may be a processor, such as a baseband processor.
  • the transceiver module 1120 may be an input/output interface of a chip (eg, a baseband chip), and the processing module 1110 may be a processor of the chip system, which may include one or more central processing units.
  • the processing module 1110 in this embodiment of the present application may be implemented by a processor or a circuit component related to the processor, and the transceiver module 1120 may be implemented by a transceiver or a circuit component related to the transceiver.
  • the processing module 1110 may be configured to perform all operations performed by the network device in the embodiment shown in FIG. 3 or FIG. 5 except for the transceiving operations, such as performing S101, S102, S201, and S202, and for example, generating the transceiving operations by the network device.
  • the transceiver module 1120 may be configured to perform all receiving operations performed by the network device in the embodiment shown in FIG. 3 or FIG. Sending of domain information. For example, for the first resource unit set shown in FIG.
  • the transceiver module 1120 can be used to send I; for the first resource unit set shown in FIG. 7, the transceiver module 1120 can be used to send I q ; A set of resource units that the transceiver module 1120 can use to transmit I.
  • the transceiver module 1120 may be a functional module, and the function module can perform both sending and receiving operations.
  • the transceiver module 1120 may be used to execute the network device in the embodiment shown in FIG. 5 or FIG. 8 . All sending operations and receiving operations.
  • the transceiver module 1120 when performing a sending operation, can be considered as a sending module, and when performing a receiving operation, the transceiver module 1120 can be considered as a receiving module; or, the transceiver module 1120 can also be two Functional modules, the transceiver module 1120 can be regarded as a general term for these two functional modules, these two functional modules are respectively a sending module and a receiving module, the sending module is used to complete the sending operation, for example, the sending module can be used to perform the operation shown in FIG. 5 and FIG. 8 . All the sending operations performed by the network device in the embodiment shown, the receiving module is used to complete the receiving operation, for example, the receiving module may be used to perform all the receiving operations performed by the network device in the embodiment shown in FIG. 5 or FIG. 8 .
  • the processing module 1110 may determine a second resource unit set from the first resource unit set, and determine the first resource unit set according to the frequency domain positions of all resource units in the second resource unit set.
  • the transceiver module 1120 may be configured to receive the first signal according to the first sequence on all the resource units.
  • the transceiver module 1120 may also be configured to transmit I and/or or parameters used to determine I, and/or, send alpha and/or
  • the transceiver module 1120 can also be used For sending I q and/or parameters for determining I q , and/or, sending ⁇ and/or
  • the processing module 1110 may determine a plurality of second resource unit sets from the first resource unit set, and determine the first uplink according to the frequency domain positions of all resource units in any second resource unit set A first sequence of ports on all resource units in any of the second set of resource units.
  • the transceiver module 1120 may be configured to receive the first signal according to the first sequence on all resource units in the any second resource unit set.
  • the transceiver module 1120 may also be configured to send I q and/or a parameter for determining I q , and/or send ⁇ q and/or
  • An embodiment of the present application further provides a communication apparatus, where the communication apparatus may be a terminal device or a circuit.
  • the communication apparatus may be configured to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 12 shows a schematic structural diagram of a simplified terminal device.
  • the terminal device takes a mobile phone as an example.
  • the terminal device includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control terminal equipment, execute software programs, and process data of software programs.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 12 only one memory and processor are shown in FIG. 12 . In an actual end device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and the radio frequency circuit with the transceiver function may be regarded as the transceiver unit of the terminal device (the transceiver unit may be a functional unit, and the function unit can realize the sending function and the receiving function; alternatively, the transceiver unit may also be It includes two functional units, namely a receiving unit capable of realizing a receiving function and a transmitting unit capable of realizing a transmitting function), and a processor with a processing function is regarded as a processing unit of the terminal device. As shown in FIG. 12 , the terminal device includes a transceiver unit 1210 and a processing unit 1220 .
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, or the like.
  • the processing unit may also be referred to as a processor, a processing single board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the transceiver unit 1210 may be regarded as a receiving unit, and the device for implementing the transmitting function in the transceiver unit 1210 may be regarded as a transmitting unit, that is, the transceiver unit 1210 includes a receiving unit and a transmitting unit.
  • the transceiver unit may also sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may also sometimes be referred to as a receiver, receiver, or receiving circuit, or the like.
  • the transmitting unit may also sometimes be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • transceiving unit 1210 is configured to perform the sending and receiving operations of the terminal device in the above method embodiments
  • processing unit 1220 is configured to perform other operations on the terminal device except the transceiving operations in the above method embodiments.
  • the processing unit 1220 may perform actions similar to those performed by the processing module 1010 , or in other words, the processing module 1220 includes the processing module 1010 .
  • the transceiving unit 1210 can perform actions similar to those performed by the transceiving module 1020 , or in other words, the transceiving unit 1210 includes the transceiving module 1020 .
  • the processing unit 1220 may determine a second set of resource elements from the first set of resource elements, and determine, according to the frequency domain positions of all resource elements in the second set of resource elements, whether the first uplink port is at the first sequence on all resource units.
  • the transceiver unit 1210 may be configured to transmit a first signal according to the first sequence on all the resource units.
  • the transceiver unit 1210 may also be configured to receive I and/or or parameters used to determine I, and/or, receive ⁇ and/or
  • the transceiver unit 1210 can also be used for receiving Iq and/or parameters for determining Iq , and/or, receiving a and/or
  • the processing unit 1220 may determine a plurality of second resource unit sets from the first resource unit set, and determine the first uplink according to the frequency domain positions of all resource units in any second resource unit set A first sequence of ports on all resource units in any of the second set of resource units.
  • the transceiver unit 1210 may be configured to send a first signal according to the first sequence on all resource units in the any second resource unit set.
  • the transceiver unit 1210 may also be configured to receive I q and/or a parameter for determining I q , and/or receive ⁇ q and/or
  • the device may include a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit and/or a communication interface;
  • the processing unit may be an integrated processor, microprocessor or integrated circuit.
  • the transceiving unit and the processing unit may perform the actions of the transceiving unit 1210 and the processing unit 1220, respectively.
  • the apparatus 1300 includes one or more radio frequency units, such as a remote radio unit (RRU) 1310 and one or more baseband units (BBU) (also referred to as digital units, digital units, DU) 1320 .
  • the RRU 1310 may be called a transceiver module, and the transceiver module may include a sending module and a receiving module, or the transceiver module may be a module capable of transmitting and receiving functions.
  • the transceiver module may correspond to the transceiver module 1120 in FIG. 11 , that is, the transceiver module can perform the actions performed by the transceiver module 1120 .
  • the transceiver module may also be referred to as a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 1311 and a radio frequency unit 1312 .
  • the RRU 1310 part is mainly used for the transceiver of radio frequency signals and the conversion of radio frequency signals and baseband signals.
  • the BBU 1310 part is mainly used for baseband processing, control of the base station, etc.
  • the RRU 1310 and the BBU 1320 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1320 is the control center of the base station, and can also be called a processing module, which can correspond to the processing module 1110 in FIG. 11 and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, etc.
  • the actions performed by the processing module 1110 may be performed by the processing module.
  • the BBU processing module
  • the BBU may be used to control the base station to perform the operation procedures related to the network device in the foregoing method embodiments.
  • the BBU 1320 may be composed of one or more boards, and the multiple boards may jointly support a wireless access network (such as an LTE network) of a single access standard, or may respectively support wireless access systems of different access standards. Access network (such as LTE network, 5G network or other network).
  • the BBU 1320 also includes a memory 1321 and a processor 1322.
  • the memory 1321 is used to store necessary instructions and data.
  • the processor 1322 is configured to control the base station to perform necessary actions, for example, to control the base station to perform the operation flow of the network device in the foregoing method embodiments.
  • the memory 1321 and processor 1322 may serve one or more single boards. That is to say, the memory and processor can be provided separately on each single board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits may also be provided on each single board.
  • the BBU 1320 may determine a second set of resource elements from the first set of resource elements, and determine, according to the frequency domain positions of all resource elements in the second set of resource elements, where the first uplink port is located. the first sequence on all resource units described above.
  • the RRU 1310 may be operable to receive a first signal according to the first sequence on the all resource elements.
  • the RRU 1310 may also be configured to transmit I and/or Parameters used to determine I, and/or, send alpha and/or
  • the RRU 1310 can also be used for Send I q and/or parameters used to determine I q , and/or, send ⁇ and/or
  • the BBU 1320 may determine a plurality of second resource unit sets from the first resource unit set, and determine the first uplink port according to the frequency domain positions of all resource units in any second resource unit set A first sequence on all resource elements in said any second set of resource elements.
  • RRU 1310 may be operable to receive a first signal according to the first sequence on all resource elements in any of the second set of resource elements.
  • the RRU 1310 may also be configured to transmit Iq and/or parameters for determining Iq , and/or, transmit ⁇ q and/or
  • the device may include a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit and/or a communication interface;
  • the processing unit may be an integrated processor, microprocessor or integrated circuit.
  • the transceiver unit and the processing unit may perform the actions of the RRU 1310 and the BBU 1320, respectively.
  • each sequence (or sequence set, sequence group) involved in the foregoing embodiment may be stored.
  • This storage method can be implemented by using a memory, a storage medium, or other devices having a storage function, such as a chip or a processor.
  • the specific content of the storage is not limited here.
  • a method of generating formulas can be stored, such as storing formulas, programs, or by generating a solidified circuit of a sequence, and then by obtaining various sequence-related data. parameters to generate the corresponding sequence.
  • the first sequence can be stored, or the parameters used to determine the first sequence can be stored, and then the first sequence can be determined according to the formula or parameters.
  • Embodiments of the present application provide a communication system.
  • the communication system may include the above-mentioned terminal equipment involved in the system shown in FIG. 1 or FIG. 2 , and include the terminal equipment or network equipment involved in the system shown in FIG. 1 or FIG. 2 .
  • the terminal device and the network device in the communication system can execute the communication method shown in any one of FIG. 3 to FIG. 5 .
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium.
  • the computer program When the computer program is executed by a computer, the computer can implement the method shown in FIG. 5 or FIG. 8 provided by the foregoing method embodiment. Processes related to terminal equipment or network equipment in the embodiments of .
  • Embodiments of the present application further provide a computer program product, where the computer program product is used to store a computer program, and when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. 5 or FIG. 8 provided by the foregoing method embodiments Processes related to terminal equipment or network equipment in .
  • An embodiment of the present application further provides a chip or a chip system, where the chip may include a processor, and the processor may be configured to call a program or an instruction in a memory to execute the embodiment shown in FIG. 5 or FIG. 8 provided by the foregoing method embodiment Processes related to terminal equipment or network equipment in .
  • the chip system may include the chip and other components such as memory or transceivers.
  • An embodiment of the present application further provides a circuit, which can be coupled with a memory, and can be used to execute the process related to the network device in the embodiment shown in FIG. 5 or FIG. 8 provided by the foregoing method embodiment.
  • the chip system may include the chip and other components such as memory or transceivers.
  • processors mentioned in the embodiments of the present application may be a CPU, and may also be other general-purpose processors, digital signal processors (digital signal processors, DSPs), application specific integrated circuits (application specific integrated circuits, ASICs), ready-made Field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGA Field programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SCRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module
  • memory described herein is intended to include, but not be limited to, these and any other suitable types of memory.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the unit is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined or Integration into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the unit described as a separate component may or may not be physically separated, and the component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods shown in the various embodiments of the present application.
  • the aforementioned computer-readable storage medium can be any available medium that can be accessed by a computer.
  • the computer-readable medium may include random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (electrically erasable programmable read-only memory) read only memory, EEPROM), compact disc read-only memory (CD-ROM), universal serial bus flash disk (universal serial bus flash disk), removable hard disk, or other optical disk storage, disk storage A medium or other magnetic storage device, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • universal serial bus flash disk universal serial bus flash disk
  • removable hard disk or other optical disk storage
  • disk storage A medium or other magnetic storage device, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,使得终端设备和网络设备可根据第二资源单元集合中每个资源单元的频域位置确定每个上行发送端口在第二资源单元集合上的发送序列,实现非均匀导频资源的上行参考信号的发送和接收,相比于均匀导频资源的上行参考信号发送方案可提高端口复用能力。

Description

一种通信方法及装置 技术领域
本申请涉及无线通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在长期演进(long term evolution,LTE)以及新无线接入技术(new radio access technology)中,多输入多输出(multiple input and multiple output,MIMO)技术被广泛采用。对于小区边缘用户,采用空频块码(space frequency block code,SFBC)传输模式来提高小区边缘信噪比。对于小区中心用户,采用多层并行传输的传输模式来提供较高的数据传输速率。如果基站可以获得全部或者部分下行信道状态信息(channel state information,CSI)的时候,可以采用预编码(precoding)技术来提高信号传输质量或者速率。对于时分复用(time division duplexing,TDD)系统,无线信道的上下行具有互异性,基站接收终端设备发送的探测参考信号(sounding reference signal,SRS),进行信道估计得到上行CSI,进而根据上下行互异性获得下行CSI。
在现有技术中,SRS在频域呈等间隔梳齿排列,导致可用基底的数量受限,端口复用能力降低。
发明内容
本申请实施例提供一种通信方法及装置,用于提高端口复用能力。
第一方面,提供一种通信方法。该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片。示例性地,该第一通信装置为终端设备,或者为设置在终端设备中的用于实现终端设备的功能的芯片或其他部件。
以终端设备为执行主体为例,该方法包括:终端设备从第一资源单元集合中确定第二资源单元集合,所述第二资源单元集合中所有资源单元的频域位置非等间隔分布;所述第一资源单元集合包括第一OFDM符号中的属于第一信号的发送带宽的资源单元,或者,所述第一资源单元集合包括第一OFDM符号组的所有OFDM符号中的属于第一信号的发送带宽的资源单元,所述第一OFDM符号组包含多个OFDM符号;终端设备根据所述第二资源单元集合中所有资源单元的频域位置确定第一上行端口在所述所有资源单元上的第一序列;终端设备在所述所有资源单元上根据所述第一序列发送所述第一信号。
采用以上方法,终端设备可根据第二资源单元集合中每个资源单元的频域位置确定每个上行发送端口在第二资源单元集合上的发送序列,实现非均匀导频资源的第一信号发送和接收,相比于均匀导频资源的第一信号发送方案可提高端口复用能力。
在一种可能的设计中,当所述第一资源单元集合包括第一OFDM符号中的属于第一信号的发送带宽的资源单元时,所述第一上行端口在所述第二资源单元集合中第k个资源单元上的第一序列r (p)(k)满足:
r (p)(k)=r (α,I)(k),
其中,
Figure PCTCN2020132968-appb-000001
为基序列,I为所述第二资源单元集合中所有资源 单元的频域位置的集合,I k指示所述第二资源单元集合中第k个资源单元的频域位置,k=0,…,M-1;w=1或者w=-1,Δ为常数,C为大于等于1的整数,p为所述第一上行端口,α为循环移位值。采用该设计,当多端口均采用该式生成第一序列时,多端口的第一信号可通过码分复用第二资源单元集合,提高复用能力。
在一种可能的设计中,当第一信号为SRS时,所述α满足:
Figure PCTCN2020132968-appb-000002
Figure PCTCN2020132968-appb-000003
采用该设计,当多端口的SRS信号通过码分复用第二资源单元集合,且分别用该式生成循环移位值时,可降低多端口的SRS信号之间的干扰。
在一种可能的设计中,终端设备还可接收所述I和/或用于确定所述I的参数,和/或,接收所述α和/或所述
Figure PCTCN2020132968-appb-000004
采用该设计,可实现终端的SRS信号接收和处理方式可配置的效果。
在一种可能的设计中,第二资源单元集合中编号为I k+n start的资源单元对应的第一信号
Figure PCTCN2020132968-appb-000005
满足:
Figure PCTCN2020132968-appb-000006
其中,β是缩放系数,n start为所述第一信号的发送带宽的频域起始位置。采用该设计,可将第一序列映射到第二资源单元集合,保证发送功率约束。
在一种可能的设计中,当所述第一资源单元集合包括第一OFDM符号组的所有OFDM符号中的属于第一信号的发送带宽的资源单元时,所述第一OFDM符号组包含N个OFDM符号,N为大于1的正整数,所述第一上行端口在所述第一OFDM符号组中第q个OFDM符号的第k个资源单元上的第一序列r (p)(k,q)满足:
Figure PCTCN2020132968-appb-000007
其中,
Figure PCTCN2020132968-appb-000008
为基序列,I q为所述第q个OFDM符号对应的资源单元的频域位置的集合,所述第q个OFDM符号对应的资源单元属于所述第二资源单元集合,I q,k指示所述第q个OFDM符号对应的资源单元的集合中第k个资源单元的频域位置,k=0,…,M q-1,w=1或者w=-1,k start,q为所述第一上行端口在第q个符号上的序列起始位置,所述序列起始位置为非负整数,Δ为常数,C为大于等于1的整数,p为所述第一上行端口,α为循环移位值。采用该设计,网络设备可将接收到的第一上行端口的N个OFDM符号中的至少两个OFDM符号分别对应的第一信号联合处理,例如联合信道估计,提升信道估计精度。当多端口均采用该式生成第一序列时,多端口的第一信号可通过码分复用第二资源单元集合,提高复用能力。
在一种可能的设计中,当第一信号为SRS时,所述α满足:
Figure PCTCN2020132968-appb-000009
Figure PCTCN2020132968-appb-000010
采用该设计,当多端口的SRS信号通过码分复用第二资源单元集合,且分别用该式生成循环移位值时,可降低多端口的SRS信号之间的干扰。
在一种可能的设计中,终端设备还可接收所述I q和/或用于确定所述I q的参数,和/或,接收所述α和/或所述
Figure PCTCN2020132968-appb-000011
采用该设计,可实现终端的SRS信号接收和处理方式可配置的效果。
在一种可能的设计中,所述第一序列分为R段,第u段第一序列承载在所述第q个OFDM符号上的资源单元,第t段的长度为S t,t=0,…,R-1,
Figure PCTCN2020132968-appb-000012
M q=S u
在一种可能的设计中,所述第q个OFDM符号上的编号为I q,k+n start的资源单元对应的第一信号
Figure PCTCN2020132968-appb-000013
满足:
Figure PCTCN2020132968-appb-000014
其中,β是缩放系数,n start为所述第一信号的发送带宽的频域起始位置,p为所述第 一上行端口,L q指示所述第q个OFDM符号的编号。采用该设计,可将第一序列映射到第二资源单元集合,保证发送功率约束。
第二方面,提供一种通信方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片。示例性地,该第一通信装置为网络设备,或者为设置在网络设备中的用于实现网络设备的功能的芯片或其他部件。
以网络设备为执行主体为例,该方法包括:网络设备从第一资源单元集合中确定第二资源单元集合,所述第二资源单元集合中所有资源单元的频域位置非等间隔分布;所述第一资源单元集合包括第一OFDM符号中的属于第一信号的发送带宽的资源单元,或者,所述第一资源单元集合包括第一OFDM符号组的所有OFDM符号中的属于第一信号的发送带宽的资源单元,所述第一OFDM符号组包含多个OFDM符号;网络设备根据所述第二资源单元集合中所有资源单元的频域位置确定第一上行端口在所述所有资源单元上的第一序列;网络设备在所述所有资源单元上根据所述第一序列接收所述第一信号。
在一种可能的设计中,当所述第一资源单元集合包括第一OFDM符号中的属于第一信号的发送带宽的资源单元时,所述第一上行端口在所述第二资源单元集合中第k个资源单元上的第一序列r (p)(k)满足:
r (p)(k)=r (α,I)(k),
其中,
Figure PCTCN2020132968-appb-000015
为基序列,I为所述第二资源单元集合中所有资源单元的频域位置的集合,I k指示所述第二资源单元集合中第k个资源单元的频域位置,k=0,…,M-1;w=1或者w=-1,Δ为常数,C为大于等于1的整数,p为所述第一上行端口,α为循环移位值。
在一种可能的设计中,当第一信号为SRS时,所述α满足:
Figure PCTCN2020132968-appb-000016
Figure PCTCN2020132968-appb-000017
在一种可能的设计中,网络设备还可发送所述I和/或用于确定所述I的参数,和/或,发送所述α和/或所述
Figure PCTCN2020132968-appb-000018
在一种可能的设计中,第二资源单元集合中编号为I k+n start的资源单元对应的第一信号
Figure PCTCN2020132968-appb-000019
满足:
Figure PCTCN2020132968-appb-000020
其中,β是缩放系数,n start为所述第一信号的发送带宽的频域起始位置。
在一种可能的设计中,当所述第一资源单元集合包括第一OFDM符号组的所有OFDM符号中的属于第一信号的发送带宽的资源单元时,所述第一OFDM符号组包含N个OFDM符号,N为大于1的正整数,所述第一上行端口在所述第一OFDM符号组中第q个OFDM符号的第k个资源单元上的第一序列r (p)(k,q)满足:
Figure PCTCN2020132968-appb-000021
其中,
Figure PCTCN2020132968-appb-000022
为基序列,I q为所述第q个OFDM符号对应的资源单元的频域位置的集合,所述第q个OFDM符号对应的资源单元属于所述第二资源单元集合,I q,k指示所述第q个OFDM符号对应的资源单元的集合中第k个资源单元的频域位置,k=0,…,M q-1,w=1或者w=-1,k start,q为所述第一上行端口在第q个符号上的序列起始位置,所述序列起始位置为非负整数,Δ为常数,C为大于等于1的整数,p为所述第一上行端口,α为循环移位值。
在一种可能的设计中,当第一信号为SRS时,所述α满足:
Figure PCTCN2020132968-appb-000023
Figure PCTCN2020132968-appb-000024
在一种可能的设计中,网络设备还可发送所述I q和/或用于确定所述I q的参数,和/或,发送所述α和/或所述
Figure PCTCN2020132968-appb-000025
在一种可能的设计中,所述第一序列分为R段,第u段第一序列承载在所述第q个OFDM符号上的资源单元,第t段的长度为S t,t=0,…,R-1,
Figure PCTCN2020132968-appb-000026
M q=S u
在一种可能的设计中,所述第q个OFDM符号上的编号为I q,k+n start的资源单元对应的第一信号
Figure PCTCN2020132968-appb-000027
满足:
Figure PCTCN2020132968-appb-000028
其中,β是缩放系数,n start为所述第一信号的发送带宽的频域起始位置,p为所述第一上行端口,L q指示所述第q个OFDM符号的编号。
以上第二方面的有益效果可参见对于第一方面的有益效果的说明。
第三方面,提供一种通信方法。该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片。示例性地,该第一通信装置为终端设备,或者为设置在终端设备中的用于实现终端设备的功能的芯片或其他部件。
以终端设备为执行主体为例,该方法包括:终端设备从第一资源单元集合中确定多个第二资源单元集合,每个第二资源单元集合中所有资源单元的频域位置非等间隔分布;所述第一资源单元集合包括多个第二OFDM符号中的属于第一信号的发送带宽的资源单元,每个第二OFDM符号对应一个所述第二资源单元集合;终端设备根据任一第二资源单元集合中的所有资源单元的频域位置确定第一上行端口在所述任一第二资源单元集合中的所有资源单元上的第一序列;终端设备在所述任一第二资源单元集合中的所有资源单元上根据所述第一序列发送所述第一信号。
采用该方法,终端设备根据多个第二资源单元集合中的任一第二资源单元集合中的每个资源单元的频域位置确定上行发送端口在该任一第二资源单元集合上的发送序列,实现非均匀导频资源的第一信号发送,相比于均匀导频资源的第一信号发送方案可提高端口复用能力。
在一种可能的示例中,每个第二OFDM符号对应一个跳频带宽,所述跳频带宽在所述第一信号的发送带宽内,任意两个第二OFDM符号对应的两个所述跳频带宽在频域不交叠,每个第二OFDM符号对应的第二资源单元集合属于该第二OFDM符号对应的跳频带宽。
在一种可能的示例中,所述多个第二OFDM符号的数量为N,N为大于1的正整数,所述第一上行端口在第q个第二OFDM符号的第k个资源单元上的第一序列r (p)(k,q)满足:
Figure PCTCN2020132968-appb-000029
其中,
Figure PCTCN2020132968-appb-000030
为基序列,I q为所述第q个第二OFDM符号对应的第二资源单元集合中所有资源单元的频域位置的集合,I q,k指示所述第q个第二OFDM符号对应的第二资源单元集合中第k个资源单元的频域位置,k=0,…,M q-1,w=1或者w=-1,Δ q为常数,C q为大于等于1的整数,p为所述第一上行端口,α q为第q个第二OFDM符号对应的循环移位值。采用该设计,网络设备可将接收到的第一上行端口的N个第二OFDM符号中的每个OFDM符号对应的第一信号进行处理, 例如信道估计。当多端口分别采用该式为每个第二资源单元集合生成对应的第一序列时,与每个第二资源单元集合对应的多端口的多个第一信号可通过码分复用该第二资源单元集合,提高复用能力。
在一种可能的示例中,当第一信号为SRS时,所述α q满足:
Figure PCTCN2020132968-appb-000031
Figure PCTCN2020132968-appb-000032
在一种可能的示例中,终端设备还可接收所述I q和/或用于确定所述I q的参数,和/或,接收所述α q和/或所述
Figure PCTCN2020132968-appb-000033
在一种可能的示例中,所述第q个第二OFDM符号上的编号为I q,k+n start,q的资源单元对应的第一信号
Figure PCTCN2020132968-appb-000034
满足:
Figure PCTCN2020132968-appb-000035
其中,β是缩放系数,n start,q为所述第q个第二OFDM符号对应的跳频带宽的频域起始位置,L q指示所述第q个第二OFDM符号的编号。采用该设计,可将与每个第二资源单元集合对应的第一序列映射到该第二资源单元集合,保证发送功率约束。
第四方面,提供一种通信方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片。示例性地,该第二通信装置为网络设备,或者为设置在网络设备中的用于实现网络设备的功能的芯片或其他部件。
以网络设备为执行主体为例,该方法包括:网络设备从第一资源单元集合中确定多个第二资源单元集合,每个第二资源单元集合中所有资源单元的频域位置非等间隔分布;所述第一资源单元集合包括多个第二OFDM符号中的属于第一信号的发送带宽的资源单元,每个第二OFDM符号对应一个所述第二资源单元集合;网络设备根据任一第二资源单元集合中的所有资源单元的频域位置确定第一上行端口在所述任一第二资源单元集合中的所有资源单元上的第一序列;网络设备在所述任一第二资源单元集合中的所有资源单元上根据所述第一序列接收所述第一信号。
在一种可能的示例中,每个第二OFDM符号对应一个跳频带宽,所述跳频带宽在所述第一信号的发送带宽内,任意两个第二OFDM符号对应的两个所述跳频带宽在频域不交叠,每个第二OFDM符号对应的第二资源单元集合属于该第二OFDM符号对应的跳频带宽。
在一种可能的示例中,所述多个第二OFDM符号的数量为N,N为大于1的正整数,所述第一上行端口在第q个第二OFDM符号的第k个资源单元上的第一序列r (p)(k,q)满足:
Figure PCTCN2020132968-appb-000036
其中,
Figure PCTCN2020132968-appb-000037
为基序列,I q为所述第q个第二OFDM符号对应的第二资源单元集合中所有资源单元的频域位置的集合,I q,k指示所述第q个第二OFDM符号对应的第二资源单元集合中第k个资源单元的频域位置,k=0,…,M q-1,w=1或者w=-1,Δ q为常数,C q为大于等于1的整数,p为所述第一上行端口,α q为第q个第二OFDM符号对应的循环移位值。
在一种可能的示例中,当第一信号为SRS时,所述α q满足:
Figure PCTCN2020132968-appb-000038
Figure PCTCN2020132968-appb-000039
在一种可能的示例中,网络设备还可发送所述I q和/或用于确定所述I q的参数,和/或,发送所述α q和/或所述
Figure PCTCN2020132968-appb-000040
在一种可能的示例中,所述第q个第二OFDM符号上的编号为I q,k+n start,q的资源单元对应的第一信号
Figure PCTCN2020132968-appb-000041
满足:
Figure PCTCN2020132968-appb-000042
其中,β是缩放系数,n start,q为所述第q个第二OFDM符号对应的跳频带宽的频域起始位置,L q指示所述第q个第二OFDM符号的编号。
以上第四方面的有益效果可参见对于第三方面的有益效果的说明。
第五方面,提供一种通信装置。该第一通信装置用于执行上述第一方面或其任一可能的实施方式中由第一通信装置执行的方法。具体地,该通信装置可以包括用于执行第一方面或其任一可能的实施方式中由第一通信装置执行的方法的模块,例如包括处理模块和收发模块。该第一通信装置可以是终端设备或终端设备中的组件。示例性地,收发模块可以包括发送模块和接收模块,发送模块和接收模块可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。示例性地,该第一通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,该通信设备为终端设备。下面以第一通信装置是终端设备为例。例如,该收发模块可以通过收发器实现,该处理模块可以通过处理器实现。或者,发送模块可以通过发送器实现,接收模块可以通过接收器实现,发送器和接收器可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。如果第一通信装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第一通信装置为设置在通信设备中的芯片,那么收发器(或,发送器和接收器)例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第五方面的介绍过程中,以该第一通信装置是终端设备,以及,以该处理模块和该收发模块为例进行介绍。
示例性的,通信装置可包括处理模块(或处理器)和收发模块(或收发器),由收发模块(或收发器)执行上述第一方面中由第一通信装置执行的接收和/或发送动作;由处理模块(或处理器)执行上述第一方面中由第一通信装置执行的处理动作,和执行除接收和发送动作以外的其他动作。
其中,在执行上述第一方面所示方法时,处理模块或处理器可从第一资源单元集合中确定第二资源单元集合,并根据所述第二资源单元集合中所有资源单元的频域位置确定第一上行端口在所述所有资源单元上的第一序列。收发模块或收发器可用于在所述所有资源单元上根据所述第一序列发送第一信号。
其中,第一资源单元集合、第二资源单元集合和第一序列的说明可参见第一方面中的介绍。
在一种可能的设计中,当第一信号为SRS,且第一资源单元集合包括第一OFDM符号中的属于第一信号的发送带宽的资源单元时,收发模块或收发器还可用于接收I和/或用于确定I的参数,和/或,接收α和/或
Figure PCTCN2020132968-appb-000043
在一种可能的设计中,当第一信号为SRS,且第一资源单元集合包括第一OFDM符号组的所有OFDM符号中的属于第一信号的发送带宽的资源单元时,收发模块或收发器还可用于接收I q和/或用于确定I q的参数,和/或,接收α和/或
Figure PCTCN2020132968-appb-000044
第六方面,提供一种通信装置。该第二通信装置用于执行上述第二方面或其任一可能的实施方式中由第二通信装置执行的方法。具体地,该通信装置可以包括用于执行第二方面或其任一可能的实施方式中由第二通信装置执行的方法的模块,例如包括处理模块和收 发模块。示例性地,收发模块可以包括发送模块和接收模块,发送模块和接收模块可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。示例性地,该第二通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,该通信设备为网络设备。下面以第二通信装置是网络设备为例。例如,该收发模块可以通过收发器实现,该处理模块可以通过处理器实现。或者,发送模块可以通过发送器实现,接收模块可以通过接收器实现,发送器和接收器可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。如果第二通信装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第二通信装置为设置在通信设备中的芯片,那么收发器(或,发送器和接收器)例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第六方面的介绍过程中,以该第二通信装置是网络设备,以及,以该处理模块和该收发模块为例进行介绍。
示例性的,通信装置可包括处理模块(或处理器)和收发模块(或收发器),由收发模块(或收发器)执行上述第二方面中由第二通信装置执行的接收和/或发送动作;由处理模块(或处理器)执行上述第二方面中由第二通信装置执行的处理动作,和执行除接收和发送动作以外的其他动作。
其中,在执行上述第二方面所示方法时,处理模块或处理器可从第一资源单元集合中确定第二资源单元集合,并根据所述第二资源单元集合中所有资源单元的频域位置确定第一上行端口在所述所有资源单元上的第一序列。收发模块或收发器可用于在所述所有资源单元上根据所述第一序列接收第一信号。
其中,第一资源单元集合、第二资源单元集合和第一序列的说明可参见第二方面中的介绍。
在一种可能的设计中,当第一信号为SRS,且第一资源单元集合包括第一OFDM符号中的属于第一信号的发送带宽的资源单元时,收发模块或收发器还可用于发送I和/或用于确定I的参数,和/或,发送α和/或
Figure PCTCN2020132968-appb-000045
在一种可能的设计中,当第一信号为SRS,且第一资源单元集合包括第一OFDM符号组的所有OFDM符号中的属于第一信号的发送带宽的资源单元时,收发模块或收发器还可用于发送I q和/或用于确定I q的参数,和/或,发送α和/或
Figure PCTCN2020132968-appb-000046
第七方面,提供一种通信装置。该第一通信装置用于执行上述第三方面或其任一可能的实施方式中由第一通信装置执行的方法。具体地,该通信装置可以包括用于执行第三方面或其任一可能的实施方式中由第一通信装置执行的方法的模块,例如包括处理模块和收发模块。该第一通信装置可以是终端设备或终端设备中的组件。示例性地,收发模块可以包括发送模块和接收模块,发送模块和接收模块可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。示例性地,该第一通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,该通信设备为终端设备。下面以第一通信装置是终端设备为例。例如,该收发模块可以通过收发器实现,该处理模块可以通过处理器实现。或者,发送模块可以通过发送器实现,接收模块可以通过接收器实现,发送器和接收器可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。如果第一通信装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第一通信装置为设置在通信设备中的芯片,那么收发器(或,发送器和接收器)例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过 射频收发组件实现信息的收发。在第七方面的介绍过程中,以该第一通信装置是终端设备,以及,以该处理模块和该收发模块为例进行介绍。
示例性的,通信装置可包括处理模块(或处理器)和收发模块(或收发器),由收发模块(或收发器)执行上述第三方面中由第一通信装置执行的接收和/或发送动作;由处理模块(或处理器)执行上述第三方面中由第一通信装置执行的处理动作,和执行除接收和发送动作以外的其他动作。
其中,在执行上述第三方面所示方法时,处理模块或处理器可从第一资源单元集合中确定多个第二资源单元集合,并根据任一第二资源单元集合中所有资源单元的频域位置确定第一上行端口在所述任一第二资源单元集合中的所有资源单元上的第一序列。收发模块或收发器可用于在所述任一第二资源单元集合中所有资源单元上根据所述第一序列发送第一信号。
其中,第一资源单元集合、第二资源单元集合和第一序列的说明可参见第三方面中的介绍。
在一种可能的设计中,当第一信号为SRS时,收发模块或收发器还可用于接收I q和/或用于确定I q的参数,和/或,接收α q和/或
Figure PCTCN2020132968-appb-000047
第八方面,提供一种通信装置。该第二通信装置用于执行上述第四方面或其任一可能的实施方式中由第二通信装置执行的方法。具体地,该通信装置可以包括用于执行第四方面或其任一可能的实施方式中由第二通信装置执行的方法的模块,例如包括处理模块和收发模块。示例性地,收发模块可以包括发送模块和接收模块,发送模块和接收模块可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。示例性地,该第二通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,该通信设备为网络设备。下面以第二通信装置是网络设备为例。例如,该收发模块可以通过收发器实现,该处理模块可以通过处理器实现。或者,发送模块可以通过发送器实现,接收模块可以通过接收器实现,发送器和接收器可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。如果第二通信装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第二通信装置为设置在通信设备中的芯片,那么收发器(或,发送器和接收器)例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第八方面的介绍过程中,以该第二通信装置是网络设备,以及,以该处理模块和该收发模块为例进行介绍。
示例性的,通信装置可包括处理模块(或处理器)和收发模块(或收发器),由收发模块(或收发器)执行上述第四方面中由第二通信装置执行的接收和/或发送动作;由处理模块(或处理器)执行上述第四方面中由第二通信装置执行的处理动作,和执行除接收和发送动作以外的其他动作。
其中,在执行上述第四方面所示方法时,处理模块或处理器可从第一资源单元集合中确定多个第二资源单元集合,并根据所述任一第二资源单元集合中的所有资源单元的频域位置确定第一上行端口在所述任一第二资源单元集合中的所有资源单元上的第一序列。收发模块或收发器可用于在所述任一第二资源单元集合中的所有资源单元上根据所述第一序列接收第一信号。
其中,第一资源单元集合、第二资源单元集合和第一序列的说明可参见第四方面中的介绍。
在一种可能的设计中,当第一信号为SRS时,收发模块或收发器还可用于发送I q和/或用于确定I q的参数,和/或,发送α q和/或
Figure PCTCN2020132968-appb-000048
第九方面,提供一种通信系统,该通信系统包括第五方面所示的通信装置以及第六方面所示的通信装置,或包括第七方面所示的通信装置以及第八方面所示的通信装置。
第十方面,提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机指令,当该计算机指令在计算机上运行时,使得该计算机执行上述第一方面至第四方面或其任意一种可能的实施方式中所示的方法。
第十一方面,提供一种包含指令的计算机程序产品,该计算机程序产品包括计算机指令,当该计算机指令在计算机上运行时,使得该计算机执行上述第一方面至第四方面或其任意一种可能的实施方式中所示的方法。
第十二方面,提供一种电路,该电路与存储器耦合,该电路被用于执行上述第一方面至第四方面或其任意一种可能的实施方式中所示的方法。该电路可包括芯片或芯片电路。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的另一种通信系统的架构示意图;
图3为一种SRS频域分布示意图;
图4为一种SRS导频资源和对应的DFT矩阵示意图;
图5为本申请实施例提供的一种通信方法的流程示意图;
图6为本申请实施例提供的一种SRS频域分布示意图;
图7为本申请实施例提供的另一种SRS频域分布示意图;
图8为本申请实施例提供的另一种通信方法的流程示意图;
图9为本申请实施例提供的另一种SRS频域分布示意图;
图10为本申请实施例提供的一种通信装置的结构示意图;
图11为本申请实施例提供的另一种通信装置的结构示意图;
图12为本申请实施例提供的另一种通信装置的结构示意图;
图13为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
为了提高上行信道估计精度,本申请提供一种通信方法。下面将结合附图对本申请作进一步地详细描述。应理解,下面所介绍的方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。
如图1所示,本申请实施例提供的测量反馈方法可应用于无线通信系统,该无线通信系统可以包括终端设备101以及网络设备102。
应理解,以上无线通信系统既可适用于低频场景(sub 6G),也可适用于高频场景(above6G)。无线通信系统的应用场景包括但不限于第五代系统、新无线(new radio,NR)通信系统或未来的演进的公共陆地移动网络(public land mobile network,PLMN)系统等。
以上所示终端设备101可以是用户设备(user equipment,UE)、终端(terminal)、接入终端、终端单元、终端站、移动台(mobile station,MS)、远方站、远程终端、移动终端(mobile terminal)、无线通信设备、终端代理或终端设备等。该终端设备101可具备无线收 发功能,其能够与一个或多个通信系统的一个或多个网络设备进行通信(如无线通信),并接受网络设备提供的网络服务,这里的网络设备包括但不限于图示网络设备102。
其中,终端设备101可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端装置或者未来演进的PLMN网络中的终端装置等。
另外,终端设备101可以部署在陆地上,包括室内或室外、手持或车载;终端设备101也可以部署在水面上(如轮船等);终端设备101还可以部署在空中(例如飞机、气球和卫星上等)。该终端设备101具体可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。终端设备101也可以是具有通信模块的通信芯片,也可以是具有通信功能的车辆,或者车载设备(如车载通信装置,车载通信芯片)等。
网络设备102可以是接入网设备(或称接入网站点)。其中,接入网设备是指有提供网络接入功能的设备,如无线接入网(radio access network,RAN)基站等等。网络设备102具体可包括基站(base station,BS),或包括基站以及用于控制基站的无线资源管理设备等。该网络设备101还可包括中继站(中继设备)、接入点以及未来5G网络中的基站、未来演进的PLMN网络中的基站或者NR基站等。网络设备102可以是可穿戴设备或车载设备。网络设备102也可以是具有通信模块的芯片。
比如,网络设备102包括但不限于:5G中的下一代基站(g nodeB,gNB)、LTE系统中的演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、CRAN系统下的无线控制器、基站控制器(base station controller,BSC)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)或移动交换中心等。网络设备101还可包括未来6G或更新的移动通信系统中的基站。
此外,如图2所示,本申请实施例提供的通信系统可包括至少一个网络设备201。该通信系统200还可以包括至少一个终端设备,例如图2所示的终端设备202至207。其中,该终端设备202至207可以是移动的或固定的。网络设备201和终端设备202至207中的一个或多个均可以通过无线链路通信。每个网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
应理解,以上网络设备201可包括图1所示网络设备102。终端设备202至207可包括图1所示终端设备101。
可选地,任意两个或多个终端设备之间可以直接通信。例如可以利用设备到设备(device to device,D2D)技术等实现终端设备之间的直接通信。如图中所示,终端设备205与206之间、终端设备205与207之间,可以利用D2D技术直接通信。终端设备206和终端设备207可以单独或同时与终端设备205通信。
终端设备205至207也可以分别与网络设备201通信。例如可以直接与网络设备201通信, 如图中的终端设备205和206可以直接与网络设备201通信;也可以间接地与网络设备201通信,如图中的终端设备207经由终端设备206与网络设备201通信。
下面以图1所示的通信系统为例,说明现有技术中信道探测的方式。
其中,信道探测方式可包括依据上行导频信号(或称上行探测参考信号)进行的上行信道探测,和依据下行导频信号(或称下行探测参考信号)进行的下行信道探测。
典型的下行信道探测基于下行信道状态信息参考信号(channel state information reference signal,CSI-RS)进行,即由终端设备101根据网络设备102发的CSI资源配置对网络设备102发送的CSI-RS信号进行测量,以获得下行信道特征,并由终端设备101根据网络设备102发送的CSI上报配置向网络设备102上报下行信道特征。
上行信道探测一般是基于上行探测参考信号(sounding reference signal,SRS)进行的,即由网络设备102向终端设备101发送SRS配置,由终端设备101根据SRS配置发送SRS,并由网络设备102对终端设备101发送的SRS进行测量,以获得上行信道特征。
在本申请的实施例中,均以SRS作为示例。SRS也可以替换为CSI-RS,或者解调参考信号(demodulation reference resource,DMRS),或者时域/频域/相位跟踪参考信号等。其中,CSI-RS可以用于获取信道信息从而执行CSI测量上报的已知信号。DMRS可以用于共享信道或者控制信道接收时做信道估计的已知信号。
以下介绍本发明中涉及的名词:
探测参考信号
UE根据预设的已知序列在特定的物理资源上生成SRS并发送,基站侧根据已知序列在该特定的物理资源上通过接收的SRS可以估计得到信道矩阵,用于做上行数据调度或者利用信道互易性做下行数据调度。示例性的,现有技术中采用Zadoff-Chu(ZC)序列生成SRS。SRS可以位于一个时隙中的一个或者多个OFDM符号上,可以占用系统带宽中所有的子载波,也可以采用梳齿形式占用系统带宽中的部分子载波,从而提升网络资源利用率。
SRS在时域上可以是周期性发送的,通常会定义发送周期和偏置,SRS会在周期时域位置上做定期发送。SRS在时域上也可以是非周期性发送的,此时需要DCI信令指示SRS的发送时刻,SRS会在周期时域位置上做瞬时发送。
SRS资源定义了用于发送SRS的时频码域资源。具体的,每个SRS资源会配置如下参数:
SRS资源索引值:当配置了多个SRS资源时,通过索引值区分SRS资源。
SRS端口的数量:通常,SRS端口数量可以为UE的发送天线数量,此时,每个SRS端口对应一个UE发送天线;每个SRS端口可以对应发送天线的一个空域预编码向量,也就是可以对应一个空间波束赋形方式。通常,一个SRS资源上的多个SRS端口的SRS信号占用相同的时频资源,通过码分方式复用。例如,不同SRS端口的SRS信号使用不同的循环移位(cyclic shift,CS)。
SRS占用的时域位置:即时域周期或者偏置的配置信息。
SRS的发送带宽和跳频带宽。
CS值:也叫循环移位值,序列在时域做循环移位的位数。同一个时频资源上,不同SRS信号,或者不同SRS端口可以通过码分复用的正交方式,避免彼此的干扰,该正交方式可以通过循环移位实现。当信道的时延扩展很小时,CS可以基本实现码分正交。接收端通过特定操作可以消除采用其他CS的信号而仅保留采用特定CS的信号,从而实现码分复用。
SRS的发送带宽
SRS的发送带宽是指,SRS的扫描(sounding)带宽,也就是根据SRS做信道估计的频域范围,通过承载SRS的子载波,可以将发送带宽对应的信道估计出来。发送带宽内可能仅有部分子载波上承载了SRS,用于估计出整个发送带宽。后续可将SRS的发送带宽简称为SRS带宽。
进一步的,SRS的发送带宽可以对应同一时刻或者不同时刻上SRS占用的频域资源。例如,当配置了SRS的跳频模式,则SRS需要多个时刻才能扫描完整的发送带宽,其中,每个时刻仅扫描发送带宽中的部分带宽,该部分带宽为跳频带宽。例如,SRS的发送带宽为272RB,且未配置跳频模式,则SRS在一个OFDM符号内占用272个RB;再例如,SRS的发送带宽为272RB,配置跳频模式并且跳频次数为4,则SRS在一个OFDM符号内占用68个RB,即跳频带宽为68个RB,通过4个OFDM符号占用了272RB,OFDM符号之间占用的频域资源不重叠。
系统带宽
指基站和终端设备进行通信时收发信号的频域范围。本申请实施例中的系统带宽可以理解为一个载波(component carrier,CC),或者,一个部分带宽(bandwidth part,BWP)等,其中,一个CC可以包括多个BWP。
子载波的编号
为了定义子载波的位置,本发明将子载波做了编号,编号(或称频域编号)不同的子载波的频域位置不同。通常,可以将一组子载波按照频率由低到高或者由高到低连续编号。子载波是相对于某一个频域范围编号的。例如,某一个子载波在系统带宽中的编号,或者说,子载波相对于系统带宽的编号是指,将系统带宽中频率最高或者最低的子载波编号记为0,并按照频率由高到低或者由低到高的顺序将系统带宽中的子载波依次编号,从而确定某一个子载波在系统带宽中的编号。
频域起始位置
SRS带宽的频域起始位置,为SRS带宽包含的子载波的编号中的最大值或最小值,编号可以为相对于系统带宽的编号。
跳频带宽的频域起始位置,为跳频带宽包含的子载波的编号中的最大值或最小值,编号可以为相对于系统带宽的编号。
资源单元(resource element,RE)的频域位置
资源单元的频域位置,为资源单元占用的子载波在系统带宽中的编号与SRS带宽的频域起始位置的差值,或,为资源单元占用的子载波在系统带宽中的编号与跳频带宽的频域起始位置的差值。本申请中,可将资源单元占用的子载波的编号简称为资源单元的编号。
目前的SRS发送方案中,SRS在频域呈等间隔梳齿排列,例如图3所示,频域资源为m SRS个RB,梳齿度为K TC,则频域被分为K TC组资源,每组导频数量为
Figure PCTCN2020132968-appb-000049
Figure PCTCN2020132968-appb-000050
为每RB子载波数。
多个端口(端口可以为一个终端设备的一根发射天线,多个端口可以为来自多个终端设备的多根发射天线)在一把梳齿(同样阴影的一组频域资源,即多个端口占用相同的频域资源)上发送SRS信号,通过码分复用。
下面以
Figure PCTCN2020132968-appb-000051
个导频为例说明一把梳齿支持码分复用的最大端口数量。如图4所示,端口复用能力由导频对应的部分离散傅里叶变换(discrete fourier transform,DFT)矩阵的性质决定。
频域资源
Figure PCTCN2020132968-appb-000052
个导频上的频域信道和时延域信道的变换关系由边长为
Figure PCTCN2020132968-appb-000053
的DFT矩阵
Figure PCTCN2020132968-appb-000054
确定,可根据频域信道、矩阵
Figure PCTCN2020132968-appb-000055
求解时延域信道。
进一步地,若从
Figure PCTCN2020132968-appb-000056
个导频资源中选取
Figure PCTCN2020132968-appb-000057
个导频资源,希望通过
Figure PCTCN2020132968-appb-000058
个导频资源上的接收导频求解时延域信道,则需要研究
Figure PCTCN2020132968-appb-000059
个导频资源对应的部分DFT矩阵F(如
Figure PCTCN2020132968-appb-000060
)。
每一个导频对应DFT矩阵
Figure PCTCN2020132968-appb-000061
的一行,
Figure PCTCN2020132968-appb-000062
个导频对应的DFT矩阵
Figure PCTCN2020132968-appb-000063
Figure PCTCN2020132968-appb-000064
行构成部分DFT矩阵F,F的性质决定
Figure PCTCN2020132968-appb-000065
个导频资源上的端口复用能力。
Figure PCTCN2020132968-appb-000066
个导频资源为对
Figure PCTCN2020132968-appb-000067
个导频资源的K TC梳齿均匀抽取,则F如图4所示,为
Figure PCTCN2020132968-appb-000068
的矩阵,F的每一列可视为一个长度
Figure PCTCN2020132968-appb-000069
的基底,依次分为K TC组,每组
Figure PCTCN2020132968-appb-000070
个基底。每组的
Figure PCTCN2020132968-appb-000071
个基底完全正交,但是不同组的对应列完全线性相关,例如,F1的第一列和F2的第一列完全线性相关,F 1的第二列和F 2的第二列完全线性相关。所以,在进行多端口复用的时候,仅有
Figure PCTCN2020132968-appb-000072
个基底可用(其他基底与该组基底线性相关,即数学上不可区分)。假设每端口的最大时延扩展为L,则最大复用端口数为
Figure PCTCN2020132968-appb-000073
可见,当SRS导频资源采用均匀抽取时,仅有
Figure PCTCN2020132968-appb-000074
个基底可用,最大复用端口数为
Figure PCTCN2020132968-appb-000075
导致端口复用能力受限。
Figure PCTCN2020132968-appb-000076
个导频资源不是对
Figure PCTCN2020132968-appb-000077
个导频资源的均匀抽取,即采用非均匀抽取的方式获得SRS的频域位置,则不会出现现有技术中不同组对应列完全线性相关的现象,即
Figure PCTCN2020132968-appb-000078
个列构成的
Figure PCTCN2020132968-appb-000079
个基均可用。假设每端口的最大时延扩展为L,则最大复用端口数为
Figure PCTCN2020132968-appb-000080
可见,相对于现有技术,频域资源非均匀分布的SRS可以在相同频域资源上复用更多端口
由于
Figure PCTCN2020132968-appb-000081
个基的长度为
Figure PCTCN2020132968-appb-000082
即基的数量大于基的长度,所以
Figure PCTCN2020132968-appb-000083
个基不可能完全正交,即是一组非正交基底。实际上,我们可以设计
Figure PCTCN2020132968-appb-000084
个导频资源的位置(导频资源的位置决定F),使得F的各列尽量正交。
本申请实施例提供一种通信方法,用于实现基于非均匀分布的导频资源发送SRS,因此在相同频域资源上复用更多端口,提高端口复用能力。
该通信方法可由第一通信装置或第二通信装置实施。其中,第一通信装置可包括终端设备或终端设备中的部件(比如处理器、电路、芯片或芯片系统等),这里的终端设备例如图1所示的终端设备101。第二通信装置可包括网络设备或网络设备中的部件(比如处理器、电路、芯片或芯片系统等),这里的网络设备例如图1所示的网络设备102。
如图5所示,该方法可包括以下步骤:
S101:终端设备和网络设备从第一资源单元集合中确定第二资源单元集合(或者说,确定第一资源单元集合中的第二资源单元集合),该第二资源单元集合中所有资源单元的频域位置非等间隔分布。
也就是说,在根据第二资源单元集合中的资源单元发送第一信号时,第一信号的频域位置是非等间隔分布的。其中,该第一资源单元集合可包括第一信号带宽范围内的全部资源单元。第二资源单元集合包括根据第一资源单元集合获得的非均匀分布的资源单元的集合,比如,第二资源单元集合为对第一资源单元集合进行非均匀抽取后获得的资源单元的集合。这里的第一信号例如SRS或其他上行参考信号。第一信号带宽可以是第一信号的发送带宽,比如,本申请中,SRS带宽是指SRS的发送带宽。
其中,第一资源单元集合为第一正交频分复用(orthogonal frequency division multiplexing,OFDM)符号属于第一信号的发送带宽的资源单元集合,或者,第一资源单元集合为第一OFDM符号组的所有OFDM符号中的属于第一信号的发送带宽的资源单元集合,第一OFDM符号组包含多个OFDM符号。
以第一信号是SRS为例,第一资源单元集合为第一OFDM符号属于SRS带宽的资源单元集合,或者,所述第一资源单元集合为第一OFDM符号组的所有OFDM符号属于SRS带宽的资源单元集合,所述第一OFDM符号组包含多个OFDM符号。
可选的,第一资源单元集合中的资源单元可分布在第一OFDM符号中,比如图6所示,第一资源单元集合包括第一OFDM符号中的SRS带宽范围内的资源单元,第二资源单元集合可包括第一资源单元集合内的非均匀分布的多个资源单元。图6所示第一资源单元集合的分布方式可称为不跳频方式。
如图6所示,第二资源单元集合中每个资源单元的频域位置分别通过I 0、I 1……I M-1指示,例如,I 0、I 1……I M-1分别指示第二资源单元集合中每个资源单元占用的子载波的编号,或,I 0、I 1……I M-1分别指示第二资源单元集合中每个资源单元占用的子载波的编号与参考子载波的编号的差值,其中,第二资源单元集合中资源单元非均匀分布,或者说,I 0、I 1……I M-1分别指示的资源单元非均匀分布,或者说,I 0、I 1……I M-1非成等差数列。
可选的,第一资源单元集合中的资源单元可分布在多个OFDM符号中,当分布于多个OFDM符号中时,该多个OFDM符号可称为第一OFDM符号组,其中,多个OFDM符号可位于相同的时间单元中。应理解,本申请中,时间单元可以是时隙(slot),或由部分时隙或多个时隙组成。图7所示第一资源单元集合的分布方式可称为第一跳频方式。
再比如图7所示,第一资源单元集合中的资源单元可分布在N个OFDM符号的SRS带宽的频域范围内,N≥2,L q指示N个OFDM符号中的第q个OFDM符号的编号,当N个OFDM符号属于相同的时隙,则编号可以为每个OFDM符号在该时隙中的编号,例如,L q=q+q 0,q 0为正整数;当N个OFDM符号属于至少两个不同的时隙,则编号可以为每个OFDM符号所在时隙的编号以及OFDM符号在该时隙中的编号。OFDM符号L 0、L 1至L N-1即第一OFDM符号组,其中每个OFDM符号对应一个跳频带宽,每个跳频带宽包括一个或多个资源单元,可选的,不同的OFDM符号的跳频带宽的频域范围不重复,也就是说,第一OFDM符号组内任意一个OFDM符号的跳频带宽中的资源单元占用的子载波编号,与该第一OFDM符号组内其他的OFDM符号的跳频带宽中的资源单元占用的子载波编号不同。示例性的,每个OFDM符号在其对应的跳频带宽内包括至少一个资源单元,第一OFDM符号组内所有OFDM符号分别的跳频带宽内的资源单元的并集包括第二资源单元集合。
如图7所示,第二资源单元集合中每个资源单元的频域位置分别通过
Figure PCTCN2020132968-appb-000085
Figure PCTCN2020132968-appb-000086
指示,其中,
Figure PCTCN2020132968-appb-000087
Figure PCTCN2020132968-appb-000088
分别指示的频域位置(即第二资源单元集合中的资源单元的频域位置)非均匀分布,或者说,
Figure PCTCN2020132968-appb-000089
Figure PCTCN2020132968-appb-000090
非成等差数列。应理解,
Figure PCTCN2020132968-appb-000091
Figure PCTCN2020132968-appb-000092
非均匀分布,是指将其按升序排列或降序排列后非成等差数列。
其中,
Figure PCTCN2020132968-appb-000093
属于OFDM符号L 0
Figure PCTCN2020132968-appb-000094
属于OFDM符号L 1
Figure PCTCN2020132968-appb-000095
属于OFDM符号L N-1
对于终端设备来说,其可以按照设定的方式根据第一资源单元集合获得非均匀分布的 第二资源单元集合,或者,可以根据来自于网络设备的第二资源单元集合中的资源单元的频域信息确定该第二资源单元集合,该频域信息可指示第二资源单元集合中的资源单元在该第一信号的发送带宽中的相对频域位置,或者指示资源单元在系统中的频域位置。可选的,本申请对于根据第一资源单元集合获得非均匀分布的第二资源单元的方式不做具体限定。
S102:终端设备和网络设备根据所述第二资源单元集合中所有资源单元的频域位置,确定终端设备的第一上行端口在第二资源单元集合的所有资源单元上的第一序列。对于终端设备来说,第一序列也可称为发送序列,对于网络设备来说,第一序列可称为接收序列。
可选的,以上终端设备和网络设备确定的第一序列相同。
示例性的,对于图6来说,可根据I 0、I 1……I M-1分别指示的频域位置确定第一上行端口在第二资源单元集合上发送的第一序列。对于图7来说,可根据
Figure PCTCN2020132968-appb-000096
Figure PCTCN2020132968-appb-000097
分别指示的频域位置,确定第一上行端口在多个OFDM符号包括的第二资源单元集合上发送的第一序列。
S103:终端设备在第二资源单元集合的所有资源单元上根据第一序列发送第一信号。第一信号包括SRS、CSI-RS、DMRS或其他上行参考信号。
或者说,终端设备在第二资源单元集合的所有资源单元上发送该第一序列或第一序列对应的信号。
S104:网络设备在第二资源单元集合的所有资源单元上根据第一序列接收第一信号。
或者说,网络设备在第二资源单元集合的所有资源单元上接收该第一序列或第一序列对应的信号。
示例性的,以图6为例说明第一序列的发送和接收过程。如图6所示,终端设备可将第一序列映射至M个子载波I 0、I 1……I M-1,生成承载于M个子载波的第一信号,并通过射频发送第一信号,第一信号例如是SRS或其他的上行参考信号。其中,每个子载波可与第一序列的子序列存在映射关系。本申请中,子序列可以是第一序列中的一部分序列。相应地,网络设备根据第一序列接收终端发送承载于子载波I 0、I 1……I M-1的第一信号。
应理解,上述子载波映射的过程或步骤仅仅是示例性的说明,在实际发送第一信号的过程中,可能经过其他处理,本申请不再具体限定。
采用以上方法,终端设备和网络设备可根据第二资源单元集合中每个资源单元的频域位置确定每个上行发送端口在第二资源单元集合上的发送序列,实现非均匀导频资源的SRS的发送和接收,相比于均匀导频资源的SRS发送方案可提高端口复用能力。
一个实施方式中,该方法还可包括S105,所述网络设备根据所述第一信号进行信道估计。可选的,所述网络设备根据所述第一信号进行数据解调。该第一信号在第二资源单元集合的资源单元上根据第一序列发送。
可选的,所述网络设备可以同样先获取第一序列,再根据所述第一序列接收第一信号,为了区分开终端侧发送的第一序列的描述,这里的第一序列可以称为本地第一序列。应理解,获取第一序列的步骤和接收第一信号的步骤可以互换。
作为一个可替换的步骤,所述网络设备可以不获取第一序列,而是存储、生成或确定一个本地序列,在接收第一信号后,根据所述本地序列和第一信号确定出终端侧发送的第一序列。应理解,本地序列可以是多个序列,例如是多个可能被终端确定为第一序列的序列集合。网络设备根据接收到的第一信号,和该多个序列做比对,确认出第一信号为该多 个序列中的一个。应理解,本地序列不一定完全为第一序列,例如可以仅存储第一序列中的前几项,只要能确定出上述终端设备发送的第一信号对应的第一序列即可。
进一步的,在S101和S102的基础上,终端设备还可根据参考子载波的位置指示信息确定第一上行端口的第一序列与第二资源单元集合中的资源单元的映射关系,并根据每个上行端口的第一序列和每个端口的第一序列与资源单元的映射关系,发送第一信号。以第一信号是SRS为例,参考子载波例如SRS带宽的第一个子载波(或其他任一子载波),该参考子载波的位置指示信息可指示该第一个子载波在系统带宽中的编号。
相应地,网络设备根据第一序列和第一序列与第二资源单元集合中的资源单元的映射关系接收第一上行端口发送的第一信号。
同理,终端设备可采取遍历的方式确定每一个上行端口的发送序列和/或发送序列与第二资源单元集合中的资源单元之间的映射关系,因此当通过多个上行端口进行第一信号的发送时,网络设备可采取类似的方式确定全部上行端口的发送序列和/或发送序列与第二资源单元集合中的资源单元之间的映射关系,以接收全部上行端口发送的第一信号。
下面,分别根据图6和图7所示频域资源的分布方式,对本申请实施例提供的第一信号的发送方法进行说明。其中,图6和图7中以第一信号SRS为例进行说明,第一信号为其他上行参考信号时该第一信号的发送方法可参照实施。
如图6所示,当采用不跳频方案时,也就是当第一资源单元集合中的全部资源单元属于相同的OFDM符号时,假设第一资源单元集合的带宽为SRS带宽,其中,SRS带宽为mRB,即
Figure PCTCN2020132968-appb-000098
个资源单元(resource element,RE)。当根据该第一资源单元集合获得非均匀分布的第二资源单元集合后,获得的第二资源单元集合中的资源单元的频域位置的集合(该频域位置的集合可称为第一频域位置集合)表示为I,因此对于图6,I即频域信息。如图6所示,I={I 0、I 1……I M-1}。应理解,第二资源单元集合中的资源单元非均匀分布,或者说,I 0、I 1……I M-1分别的取值非为等差数列。
第一上行端口在第二资源单元集合中的第k个资源单元上的第一序列r (p)(k)满足以下公式:
r (p)(k)=r (α,I)(k)。      (公式一)
其中,
Figure PCTCN2020132968-appb-000099
为基序列;I为第一频域位置集合,包括第二资源单元集合中所有资源单元的频域位置;I k为第一频域位置集合中的第k个元素,或者说,I k指示第一频域位置集合中的第k个频域位置,或者说,I k指示第二资源单元集合中第k个资源单元的频域位置,k=0,…,M-1;w=1或者w=-1,Δ为常数,比如为0,C为大于等于1的整数,p为该第一上行端口。α为循环移位值。
应理解,第二资源单元集合中的第k个资源单元,是指将第二资源单元集合中的全部资源单元按照频域由高到低或由低到高排序后的第k个资源单元。
需要说明的是,以上
Figure PCTCN2020132968-appb-000100
可以是由v确定的(或者说,
Figure PCTCN2020132968-appb-000101
与v有关),v是基序列编号,
Figure PCTCN2020132968-appb-000102
可写为
Figure PCTCN2020132968-appb-000103
r (α,I)(k)可写为
Figure PCTCN2020132968-appb-000104
或者,以上
Figure PCTCN2020132968-appb-000105
可以是由u和v确定的(或者说,
Figure PCTCN2020132968-appb-000106
与u和v有关),u是组号,v是组内的基序列号,
Figure PCTCN2020132968-appb-000107
可写为
Figure PCTCN2020132968-appb-000108
r (α,I)(k)可写为
Figure PCTCN2020132968-appb-000109
应理解,以上举例不构成对本发明方案的限制,基序列
Figure PCTCN2020132968-appb-000110
可以由其他参数确定。
需要说明的是,以上I可以是由{A 0,A 1,…,A B-1}共B个参数确定的,这些参数为用于确定I的参数,B为大于等于1的整数,I可写为
Figure PCTCN2020132968-appb-000111
I k可写为
Figure PCTCN2020132968-appb-000112
M可写为
Figure PCTCN2020132968-appb-000113
本申请中,可将{A 0,A 1,…,A B-1}称为用于确定I的参数,用于确定I的参数可用于确定I。
在一种可能的示例中,以上公式一中,在第一信号为SRS时,α满足:
Figure PCTCN2020132968-appb-000114
其中,
Figure PCTCN2020132968-appb-000115
和/或
Figure PCTCN2020132968-appb-000116
的取值可由网络设备指示。
Figure PCTCN2020132968-appb-000117
可以是最大码分数。
假设第一信号的发送带宽的起始位置为n start,也就是说,第一资源单元集合中的第一个资源单元在系统带宽中的频域位置为n start。可选的,第二资源单元集合中编号为I k+n start的资源单元(或编号为I k+n start的资源单元占用的子载波)对应的第一信号
Figure PCTCN2020132968-appb-000118
满足:
Figure PCTCN2020132968-appb-000119
其中,β是缩放系数。其中,编号为I k+n start的资源单元与序列
Figure PCTCN2020132968-appb-000120
之间的对应关系,可以是序列
Figure PCTCN2020132968-appb-000121
承载于编号为I k+n start的资源单元上,或者说,序列
Figure PCTCN2020132968-appb-000122
映射到编号为I k+n start的资源单元上。
应理解,在S103中,终端设备的第一上行端口在第二资源单元集合中每个资源单元上,发送根据公式三确定的该资源单元对应的第一信号。此外,如果终端设备通过多个上行端口进行第一信号的发送,则第一上行端口以外的其他上行端口发送的信号的确定方式可参照第一上行端口发送的信号的确定方式。
相应地,在S104中,网络设备在第二资源单元集合中每个资源单元上,接收终端设备通过第一上行端口发送的第一信号,其中,每个资源单元对应的第一信号满足公式三。此外,如果终端设备通过多个上行端口进行第一信号的发送,则网络设备可接收多个上行端口分别发送的第一信号,其中,其他上行端口发送的信号的确定方式可参照第一上行端口发送的信号的确定方式。
本申请中,系统带宽例如为部分带宽(bandwidth part,BWP)。应理解,在第二资源单元集合以外的资源单元上,第一上行端口的第一信号的发送功率为零。或者说,第一序列(或第一信号)与第二资源单元集合中的资源单元的映射关系满足以上公式三。
以上I、C、Δ、α、
Figure PCTCN2020132968-appb-000123
u、v、A 0、A 1、…、A B-1是针对第一上行端口配置的。可选的,不同的第一上行端口对应的I、C、Δ、α、
Figure PCTCN2020132968-appb-000124
u、v、A 0、A 1、…、A B-1中的一个或多个参数可以不同。或者说,当第一上行端口为终端设备的多个上行端口中的第p i个端口时,I、C、Δ、α、
Figure PCTCN2020132968-appb-000125
u、v、A 0、A 1、…、A B-1中的一个或多个参数可具有下标i,为第p i个端口对应的参数。
需要说明的是,缩放系数β可以是由幅度缩放参数、功率控制参数、导频发送数量中的一个或多个决定的,缩放系数β可以对于不同上行端口不同。
以上图6所示的示例中,I、用于确定I的参数、α或者
Figure PCTCN2020132968-appb-000126
中的至少一个可由网络设备发送至终端设备。比如,网络设备可向终端设备发送I和/或用于确定I的参数,和/或,网络设备可向终端设备发送α或者
Figure PCTCN2020132968-appb-000127
当第一资源单元集合中的全部资源单元属于如图7所示第一OFDM符号组中的多个OFDM符号时,可令第一资源单元集合的带宽为SRS带宽,其中,SRS带宽为mRB,即
Figure PCTCN2020132968-appb-000128
个RE。应理解,第一OFDM组中每个OFDM符号对应一个跳频带宽,跳频带宽在SRS带宽内,n start为所述SRS带宽的频域起始位置。
当根据图7所示的第一资源单元集合获得非均匀分布的第二资源单元集合后,第二资源单元集合中的资源单元的频域位置的集合(该频域位置的集合可称为第一频域位置集合) 表示为I。如图7所示,
Figure PCTCN2020132968-appb-000129
Figure PCTCN2020132968-appb-000130
其中,I q,k可用于指示第一OFDM符号组中第q个OFDM符号对应的资源单元的集合中,第k个资源单元的频域位置,q=0,…,N-1,k=0,…,M q-1。或者说,第q个OFDM符号对应的资源单元集合属于第二资源单元集合,或者说,第q个OFDM符号对应的资源单元是第二资源单元集合的子集。应理解,第二资源单元集合中的资源单元在频域非均匀分布。
另外,I q为第q个OFDM符号对应的资源单元的频域位置的集合,如图7所示,
Figure PCTCN2020132968-appb-000131
可选的,第一上行端口在第q个OFDM符号的第k个资源单元上的第一序列r (p)(k,q)满足:
Figure PCTCN2020132968-appb-000132
其中,
Figure PCTCN2020132968-appb-000133
为基序列,I q为所述第q个OFDM符号对应的资源单元的频域位置的集合,k start,q为第一上行端口在第q个符号上的序列起始位置,w=1或者w=-1,Δ为常数,比如为0,C为大于等于1的整数,p为所述第一上行端口,α为循环移位值。
应理解,第q个OFDM符号的第k个资源单元,是指将属于第二资源单元集合的第q个符号上的资源单元按照频域由高到低或由低到高的顺序排序后的第k个资源单元。
需要说明的是,以上
Figure PCTCN2020132968-appb-000134
可以是由v确定的(或者说,
Figure PCTCN2020132968-appb-000135
与v有关),v是基序列编号,
Figure PCTCN2020132968-appb-000136
可写为
Figure PCTCN2020132968-appb-000137
可写为
Figure PCTCN2020132968-appb-000138
或者,以上
Figure PCTCN2020132968-appb-000139
可以是由u和v确定的(或者说,与u和v有关),u是组号,v是组内的基序列号,
Figure PCTCN2020132968-appb-000140
可写为
Figure PCTCN2020132968-appb-000141
可写为
Figure PCTCN2020132968-appb-000142
应理解,以上举例不构成对本发明方案的限制,基序列
Figure PCTCN2020132968-appb-000143
可以由其他参数确定。
需要说明的是,以上I q可以是由{A 0,A 1,…,A B-1}共B个参数确定的,这些参数为用于确定I q的参数,B为大于等于1的整数,I q可写为
Figure PCTCN2020132968-appb-000144
I q,k可写为
Figure PCTCN2020132968-appb-000145
M q可写为
Figure PCTCN2020132968-appb-000146
本申请中,可将{A 0,A 1,…,A B-1}称为用于确定I q的参数,用于确定I q的参数可用于确定I q
可选的,在第一信号为SRS时,公式四中的α满足:
Figure PCTCN2020132968-appb-000147
以上I q、C、Δ、α、
Figure PCTCN2020132968-appb-000148
u、v、
Figure PCTCN2020132968-appb-000149
是针对第一上行端口配置的,可选的,不同的第一上行端口对应的I q、C、Δ、α、
Figure PCTCN2020132968-appb-000150
u、v、
Figure PCTCN2020132968-appb-000151
中的一个或多个参数可以不同。或者说,当第一上行端口为终端设备的多个上行端口中的第p i个端口时,I q、C、Δ、α、
Figure PCTCN2020132968-appb-000152
u、v、
Figure PCTCN2020132968-appb-000153
中的一个或多个参数可具有下标i,表示为第p i个端口对应的参数。
可选的,若以上I q
Figure PCTCN2020132968-appb-000154
中的一个或多个参数对于所有q=0,…,N-1相同,则可以去掉下标q。
可选的,在S103和/或S104中,当第一资源单元集合中的资源单元分布在N个OFDM符号的SRS带宽的频域范围内时,每个OFDM符号对应第一序列的一段子序列,也就是说,在每个OFDM符号的资源单元上根据第一序列的一部分发送第一信号的一部分。N个OFDM符号中,至少两个OFDM符号分别对应的第一序列的一部分不完全相同。网络设备可以将N个OFDM符号中的至少两个OFDM符号对应的第一信号的一部分进行联合处理, 例如,进行联合信道估计,以提升信道估计精度。其中,N≥2。
例如,当采用图7所示第一资源单元集合时,可将第一序列分为R段,R段第一序列中的第u段序列可承载在第一OFDM符号组中的第q个OFDM符号。第t段的长度为S t,t=0,…,R-1,则可令k start,q满足:
Figure PCTCN2020132968-appb-000155
和/或,可令M q满足:
M q=S u。      (公式七)
可选的,当采用图7所示方式确定第二资源单元集合时,第q个OFDM符号上的编号为I q,k+n start的资源单元(或资源单元对应的子载波)对应的第一信号
Figure PCTCN2020132968-appb-000156
满足:
Figure PCTCN2020132968-appb-000157
其中,β是缩放系数。应理解,在第二资源单元集合以外的资源单元上,第一上行端口的第一信号的发送功率为零。或者说,第一序列(或第一信号)与第二资源单元集合中的资源单元的映射关系满足以上公式八。
应理解,在S103中,终端设备的第一上行端口在第二资源单元集合中的每个资源单元上,发送根据公式八确定的该资源单元对应的第一信号。此外,如果终端设备通过多个上行端口进行第一信号的发送,则第一上行端口以外的其他上行端口发送的信号的确定方式可参照第一上行端口发送的信号的确定方式。
相应地,在S104中,网络设备在第二资源单元集合中的每个资源单元上,接收终端设备通过第一上行端口发送的第一信号,其中,每个资源单元对应的第一信号满足公式八。此外,如果终端设备通过多个上行端口进行第一信号的发送,则网络设备可接收多个上行端口分别发送的第一信号,其中,其他上行端口发送的信号的确定方式可参照第一上行端口发送的信号的确定方式。
需要说明的是,缩放系数β可以是由幅度缩放参数、功率控制参数、导频发送数量中的一个或多个决定的,缩放系数β可以对于不同上行端口不同,也可以对于不同OFDM符号不同。
以上图7所示的示例中,I q、用于确定I q的参数、α或者
Figure PCTCN2020132968-appb-000158
中的至少一个可由网络设备发送至终端设备。比如,网络设备可向终端设备发送I q和/或用于确定I q的参数,和/或,网络设备可向终端设备发送α或者
Figure PCTCN2020132968-appb-000159
与图5所示流程相类似,图8所示流程本申请实施例提供的另一种通信方法,该方法可包括以下步骤:
S201:终端设备和网络设备从第一资源单元集合中确定多个第二资源单元集合,每个第二资源单元集合中所有资源单元的频域位置非等间隔分布。也就是说,在发送第一信号时,第一信号的频域资源是非均匀分布的。也就是说,在根据第二资源单元集合中的资源单元发送第一信号时,第一信号的频域资源是非均匀分布的。
其中,第一资源单元集合为多(例如为N个,N≥2)个第二OFDM符号中的属于第一信号带宽的资源单元的集合,每个第二OFDM符号对应一个第二资源单元集合。N个第二OFDM可位于相同的时间单元中。应理解,本申请中,时间单元可以是时隙(slot),或由部分时隙或多个时隙组成。这里的第一信号例如SRS或其他上行参考信号。第一信号带宽可以是第一信号的发送带宽。
以第一信号是SRS为例,如图9所示,L q指示N个第二OFDM符号中的第q个OFDM符号的编号,当N个第二OFDM符号属于相同的时隙,则编号可以为每个第二OFDM符号在该时隙中的编号。当N个第二OFDM符号属于至少两个不同的时隙,则编号可以为每个第二OFDM符号所在时隙的编号以及第二OFDM符号在该时隙中的编号二者的组合。每个第二OFDM符号对应一个跳频带宽,跳频带宽在SRS带宽内,任意两个第二OFDM符号对应的两个跳频带宽在频域不交叠,每个第二OFDM符号对应的第二资源单元集合属于该第二OFDM符号对应的跳频带宽。示例性的,图9所示任意一个第二资源单元集合中的资源单元非均匀分布。
如图9所示,第q个第二OFDM符号中的第二资源单元集合中的第k个资源单元的频域位置信息为I q,k,q=0,…,N-1,k=0,…,M q-1。其中,
Figure PCTCN2020132968-appb-000160
属于第二OFDM符号L 0,将其构成的集合记为I 0
Figure PCTCN2020132968-appb-000161
属于第二OFDM符号L 1,将其构成的集合记为I 1
Figure PCTCN2020132968-appb-000162
属于第二OFDM符号L N-1,将其构成的集合记为I N-1
对于终端设备来说,其可以根据设定的方式从第一资源单元集合获得非均匀分布的第二资源单元集合,或者,可以根据来自于网络设备的第二资源单元集合中的资源单元的频域信息确定该第二资源单元集合。网络设备可以根据设定的方式从第一资源单元集合获得非均匀分布的第二资源单元集合,将第二资源单元集合中的资源单元的频域信息发送给终端,本申请对于根据第一资源单元集合获得该非均匀分布的第二资源单元集合的方式不做具体限定。
S202:终端设备和网络设备根据任一第二资源单元集合中所有资源单元的频域位置确定第一上行端口在该任一第二资源单元集合中所有资源单元上的第一序列。对于终端设备来说,第一序列也可称为发送序列,对于网络设备来说,第一序列可称为接收序列。
可选的,以上终端设备和网络设备确定的第一序列相同。
S203:终端设备在该任一第二资源单元集合的所有资源单元上根据第一序列发送第一信号。
或者说,终端设备在该任一第二资源单元集合的所有资源单元上发送该第一序列。第一信号例如SRS。
S204:网络设备在该任一第二资源单元集合的所有资源单元上根据第一序列接收第一信号。
或者说,网络设备在该任一第二资源单元集合的所有资源单元上接收该第一序列。
应理解,以上所示SRS可替换为DMRS或其他上行参考信号。
示例性的,第一序列的发送和接收过程可参照前述对于S103和S104的说明。
采用以上方法,终端设备根据多个第二资源单元集合中的任一个第二资源单元集合中的每个资源单元的频域位置确定上行发送端口在该任一个第二资源单元集合上的发送序列,实现非均匀导频资源的SRS发送,相比于均匀导频资源的SRS发送方案可提高端口复用能力。
应理解,以上S202至S204所示步骤,也可在不同的第二资源单元集合分别执行,实现多个第一序列和多个第一信号的发送,换句话说,S202至S204所示步骤可在多个第二资源单元集合中分别执行。比如,在S201获得的多个第二资源单元集合的基础上,终端设备和网络设备可从多个第二资源单元集合中,确定出至少两个第二资源单元集合,针对至少两 个第二资源单元集合中的第一个第二资源单元集合,确定第一上行端口在该第一个第二资源单元集合中所有资源单元上的第一序列,进而终端设备根据第一序列在该第一个第二资源单元集合中所有资源单元上发送上行信号,由网络设备根据第一序列在该第一个第二资源单元集合中所有资源单元上接收上行信号;同理,终端设备和网络设备还可针对至少两个第二资源单元集合中的第m个第二资源单元集合,确定第一上行端口(或其他的上行端口)在该第m个第二资源单元集合中所有资源单元上的第一序列,m为正整数,进而终端设备可根据第一序列在该第m个第二资源单元集合中所有资源单元上发送上行信号,由网络设备可根据第一序列在该第m个第二资源单元集合中所有资源单元上接收上行信号。
一个实施方式中,该方法还可包括S205,所述网络设备根据所述第一信号进行信道估计。可选的,所述网络设备根据所述第一信号进行数据解调。该第一信号在第二资源单元集合的资源单元上根据第一序列发送。
可选的,所述网络设备可以同样先获取第一序列,再根据所述第一序列接收第一信号,为了区分开终端侧发送的第一序列的描述,这里的第一序列可以称为本地第一序列。应理解,获取第一序列的步骤和接收第一信号的步骤可以互换。
作为一个可替换的步骤,所述网络设备可以不获取第一序列,而是存储、生成或确定一个本地序列,在接收第一信号后,根据所述本地序列和第一信号确定出终端侧发送的第一序列。应理解,本地序列可以是多个序列,例如是多个可能被终端确定为第一序列的序列集合。网络设备根据接收到的第一信号,和该多个序列做比对,确认出第一信号为该多个序列中的一个。应理解,本地序列不一定完全为第一序列,例如可以仅存储第一序列中的前几项,只要能确定出上述终端设备发送的第一信号对应的第一序列即可。
进一步的,在S201和S202的基础上,终端设备还可根据参考子载波的位置指示信息确定第一上行端口的第一序列与第二资源单元集合中的资源单元的映射关系,并根据每个上行端口的第一序列和每个端口的第一序列与资源的映射关系,发送第一信号。其中,参考子载波例如第二OFDM符号对应的跳频带宽的第一个子载波,该参考子载波的位置指示信息可指示该第一个子载波在系统带宽中的编号。
相应地,网络设备根据第一序列和第一序列与资源单元的映射关系接收第一上行端口发送的第一信号。
同理,终端设备可采取遍历的方式确定每一个上行端口的发送序列和/或发送序列与资源单元之间的映射关系,因此当通过多个上行端口进行第一信号的发送时,网络设备可采取类似的方式确定全部上行端口的发送序列和/或发送序列与资源单元之间的映射关系,以接收全部上行端口发送的第一信号。
下面以第一信号是SRS为例,分别根据图9所示频域资源的分布方式,对本申请实施例提供的第一信号的发送方法进行说明。
如前述,I q,k为第q个第二OFDM符号对应的第二资源单元集合中第k个资源单元的频域位置。也就是说,I q,k用于指示第q个第二OFDM符号对应的第二资源单元集合中第k个资源单元的频域位置。
另外,I q为第q个第二OFDM符号对应的第二资源单元集合中资源单元的频域位置的集合,
Figure PCTCN2020132968-appb-000163
即对于图9,I q为频域信息。
可选的,第一上行端口在第q个第二OFDM符号的第k个资源单元上的第一序列满足:
Figure PCTCN2020132968-appb-000164
其中,
Figure PCTCN2020132968-appb-000165
为基序列,p为所述第一上行端口。w=1或者w=-1,Δ q为常数,C q为大于等于1的整数,α q为第q个第二OFDM符号对应的循环移位值。
应理解,第q个第二OFDM符号的第k个资源单元,是指将第q个第二OFDM符号对应的第二资源单元集合中的资源单元按照频域由高到低或由低到高的顺序排序后的第k个资源单元。
需要说明的是,以上
Figure PCTCN2020132968-appb-000166
可以是由v确定的(或者说,
Figure PCTCN2020132968-appb-000167
与v有关),v是基序列编号,
Figure PCTCN2020132968-appb-000168
可写为
Figure PCTCN2020132968-appb-000169
可写为
Figure PCTCN2020132968-appb-000170
或者,以上
Figure PCTCN2020132968-appb-000171
可以是由u和v确定的(或者说,
Figure PCTCN2020132968-appb-000172
与u和v有关),u是组号,v是组内的基序列号,
Figure PCTCN2020132968-appb-000173
可写为
Figure PCTCN2020132968-appb-000174
Figure PCTCN2020132968-appb-000175
可写为
Figure PCTCN2020132968-appb-000176
应理解,以上举例不构成对本发明方案的限制,基序列
Figure PCTCN2020132968-appb-000177
可以由其他参数确定。
需要说明的是,以上I q可以是由{A 0,A 1,…,A B-1}共B个参数确定的,B为大于等于1的整数,I q可写为
Figure PCTCN2020132968-appb-000178
I q,k可写为
Figure PCTCN2020132968-appb-000179
M q可写为
Figure PCTCN2020132968-appb-000180
本申请中,可将{A 0,A 1,…,A B-1}称为用于确定I q的参数,用于确定I q的参数可用于确定I q
其中,在第一信号为SRS时,公式九中的α q可满足:
Figure PCTCN2020132968-appb-000181
可选的,当采用图9所示方式确定第二资源单元集合时,第q个OFDM符号上的编号为I q,k+n start,q的资源单元(或资源单元占用的子载波)对应的第一信号
Figure PCTCN2020132968-appb-000182
满足:
Figure PCTCN2020132968-appb-000183
其中,β是缩放系数,p为第一上行端口,L q指示多个第二OFDM符号中的第q个第二OFDM符号的编号。或者说,第一序列(或第一信号)与第二资源单元集合中的资源单元的映射关系满足以上公式十。
应理解,在S203中,终端设备的第一上行端口在任一第二资源单元集合中所有资源单元上,发送根据公式十确定的该所有资源单元对应的第一信号。此外,如果终端设备通过多个上行端口进行第一信号的发送,则第一上行端口以外的其他上行端口发送的信号的确定方式可参照第一上行端口发送的信号的确定方式。
相应地,在S204中,网络设备在任一第二资源单元集合中的所有资源单元上,接收终端设备通过第一上行端口发送的第一信号,其中,所有资源单元对应的第一信号满足公式十。此外,如果终端设备通过多个上行端口进行第一信号的发送,则网络设备可接收多个上行端口分别发送的第一信号,其中,其他上行端口发送的信号的确定方式可参照第一上行端口发送的信号的确定方式。
应理解,在第二资源单元集合以外的资源单元上,第一上行端口的第一信号发送功率为零。
以上I q、C q、Δ q、α q
Figure PCTCN2020132968-appb-000184
u q、v q、n start,q
Figure PCTCN2020132968-appb-000185
是针对第一上行端口配置的,可选的,不同的第一上行端口对应的I q、C q、Δ q、α q
Figure PCTCN2020132968-appb-000186
u q、v q、n start,q
Figure PCTCN2020132968-appb-000187
中的一个或多个参数可以不同。或者说,当第一上行端口为终端设备的多个上行端口中的第p i个端口时,I q、C q、Δ q、α q
Figure PCTCN2020132968-appb-000188
u q、v q、n start,q
Figure PCTCN2020132968-appb-000189
中的一个或多个参数可具有下标i,表示为第p i个端口对应的参数。
可选的,若以上I q、C q、Δ q、α q
Figure PCTCN2020132968-appb-000190
u q、v q、n start,q
Figure PCTCN2020132968-appb-000191
中的一个或多个参数对于所有q=0,…,N-1相同,则可以去掉下标q。
需要说明的是,缩放系数β可以是由幅度缩放参数、功率控制参数、导频发送数量中的一个或多个决定的,缩放系数β可以对于不同上行端口不同,也可以对于不同OFDM符号不同。
以上图9所示的示例中,I q、用于确定I q的参数、α q或者
Figure PCTCN2020132968-appb-000192
中的至少一个可由网络设备发送至终端设备。比如,网络设备可向终端设备发送I q和/或用于确定I q的参数,和/或,网络设备可向终端设备发送α q或者
Figure PCTCN2020132968-appb-000193
下面结合附图介绍本申请实施例中用来实现上述方法的通信装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图10为本申请实施例提供的通信装置的示意性框图。示例性地,通信装置例如为图10所示的终端设备1000。
终端设备1000包括处理模块1010和收发模块1020。示例性地,终端设备1000可以是网络设备,也可以是应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当终端设备1000是终端设备时,收发模块1020可以是收发器,收发器可以包括天线和射频电路等,处理模块1010可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个中央处理单元(central processing unit,CPU)。当终端设备1000是具有上述终端设备功能的部件时,收发模块1020可以是射频单元,处理模块1010可以是处理器,例如基带处理器。当终端设备1000是芯片系统时,收发模块1020可以是芯片(例如基带芯片)的输入输出接口、处理模块1010可以是芯片系统的处理器,可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理模块1010可以由处理器或处理器相关电路组件实现,收发模块1020可以由收发器或收发器相关电路组件实现。
例如,处理模块1010可以用于执行图5或图8所示的实施例中由终端设备所执行的除了收发操作之外的全部操作,例如S101、S102、S201、S202,和/或用于支持本文所描述的技术的其它过程,比如生成由收发模块1020发送的消息、信息和/或信令,和对由收发模块1020接收的消息、信息和/或信令进行处理。收发模块1020可以用于执行消息、信息和/或信令的接收和/或发送,例如可用于执行频域信息的接收,比如,对于图6所示的第一资源单元集合,收发模块1020可用于接收I;对于图7所示的第一资源单元集合,收发模块1020可用于接收I q;对于图9所示的第一资源单元集合,收发模块1020可用于接收I。
另外,收发模块1020可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块1020可以用于执行图5或图8所示的实施例中由终端设备所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块1020是发送模块,而在执行接收操作时,可以认为收发模块1020是接收模块;或者,收发模块1020也可以是两个功能模块,收发模块1020可以视为这两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于执行图5或图8所示的实施例中由终端设备所执行的全部发送操作,接收模块用于完成接收操作,例如接收模块可以用于执行图5或图8实施例中由终端设备所执行的全部接收操作。
具体来说,在执行图5所示方法时,处理模块1010可从第一资源单元集合中确定第二资源单元集合,并根据所述第二资源单元集合中所有资源单元的频域位置确定第一上行端口在所述所有资源单元上的第一序列。收发模块1020可用于在所述所有资源单元上根据所述第一序列发送所述第一信号。
其中,第一资源单元集合、第二资源单元集合和第一序列的说明可参见前述对于图5所示流程的介绍。
在一种可能的设计中,当第一信号为SRS,且第一资源单元集合包括第一OFDM符号中的属于第一信号的发送带宽的资源单元时,收发模块1020还可用于接收I和/或用于确定I的参数,和/或,接收α和/或
Figure PCTCN2020132968-appb-000194
在一种可能的设计中,当第一信号为SRS,且第一资源单元集合包括第一OFDM符号组的所有OFDM符号中的属于第一信号的发送带宽的资源单元时,收发模块1020还可用于接收I q和/或用于确定I q的参数,和/或,接收α和/或
Figure PCTCN2020132968-appb-000195
在执行图8所示方法时,处理模块1010可从第一资源单元集合中确定多个第二资源单元集合,并根据任一第二资源单元集合中所有资源单元的频域位置确定第一上行端口在所述任一第二资源单元集合中所有资源单元上的第一序列。收发模块1020可用于在所述任一第二资源单元集合中所有资源单元上根据所述第一序列发送所述第一信号。
其中,第一资源单元集合、第二资源单元集合和第一序列的说明可参见前述对于图8所示流程中的介绍。
在一种可能的设计中,当第一信号为SRS时,收发模块1020还可用于接收I q和/或用于确定I q的参数,和/或,接收α q和/或
Figure PCTCN2020132968-appb-000196
图11为本申请实施例提供的另一通信装置的示意性框图。示例性地,通信装置例如为网络设备1100。
该网络设备1100可包括处理模块1110和收发模块1120。示例性地,网络设备1100可以是如图所示的网络设备,也可以是应用于网络设备中的芯片或者其他具有上述网络设备功能的组合器件、部件等。当网络设备1100是网络设备时,收发模块1120可以是收发器,收发器可以包括天线和射频电路等,处理模块1110可以是处理器,处理器中可以包括一个或多个CPU。当网络设备1100是具有上述网络设备功能的部件时,收发模块1120可以是射频单元,处理模块1110可以是处理器,例如基带处理器。当网络设备1100是芯片系统时,收发模块1120可以是芯片(例如基带芯片)的输入输出接口、处理模块1110可以是芯片系统的处理器,可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理模块1110可以由处理器或处理器相关电路组件实现,收发模块1120可以由收发器或收发器相关电路组件实现。
例如,处理模块1110可以用于执行图3或图5所示的实施例中由网络设备所执行的除了收发操作之外的全部操作,例如执行S101、S102、S201、S202,再比如生成由收发模块1120发送的消息、信息和/或信令,和/或对由收发模块1120接收的消息、信息和/或信令进行处理,和/或用于支持本文所描述的技术的其它过程。收发模块1120可以用于执行图3或图5所示的实施例中由网络设备所执行的全部接收操作,例如执行消息、信息和/或信令的接收和/或发送,如可用于执行频域信息的发送。比如,对于图6所示的第一资源单元集合,收发模块1120可用于发送I;对于图7所示的第一资源单元集合,收发模块1120可用于发送I q;对于图9所示的第一资源单元集合,收发模块1120可用于发送I。
另外,收发模块1120可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块1120可以用于执行图5或图8所示的实施例中由网络设备所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块1120是发送模块,而在执行接收操作时,可以认为收发模块1120是接收模块;或者,收发模块1120也可以是两个功能模块,收发模块1120可以视为这两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于执行图5图8 所示的实施例中由网络设备所执行的全部发送操作,接收模块用于完成接收操作,例如接收模块可以用于执行图5或图8所示的实施例中由网络设备所执行的全部接收操作。
具体来说,在执行图5所示方法时,处理模块1110可从第一资源单元集合中确定第二资源单元集合,并根据所述第二资源单元集合中所有资源单元的频域位置确定第一上行端口在所述所有资源单元上的第一序列。收发模块1120可用于在所述所有资源单元上根据所述第一序列接收第一信号。
其中,第一资源单元集合、第二资源单元集合和第一序列的说明可参见前述对于图5所示流程的介绍。
在一种可能的设计中,当第一信号为SRS,且第一资源单元集合包括第一OFDM符号中的属于第一信号的发送带宽的资源单元时,收发模块1120还可用于发送I和/或用于确定I的参数,和/或,发送α和/或
Figure PCTCN2020132968-appb-000197
在一种可能的设计中,当第一信号为SRS,且第一资源单元集合包括第一OFDM符号组的所有OFDM符号中的属于第一信号的发送带宽的资源单元时,收发模块1120还可用于发送I q和/或用于确定I q的参数,和/或,发送α和/或
Figure PCTCN2020132968-appb-000198
在执行图8所示方法时,处理模块1110可从第一资源单元集合中确定多个第二资源单元集合,并根据任一第二资源单元集合中所有资源单元的频域位置确定第一上行端口在所述任一第二资源单元集合中所有资源单元上的第一序列。收发模块1120可用于在所述任一第二资源单元集合中所有资源单元上根据所述第一序列接收第一信号。
其中,第一资源单元集合、第二资源单元集合和第一序列的说明可参见前述对于图8所示流程中的介绍。
在一种可能的设计中,当第一信号为SRS时,收发模块1120还可用于发送I q和/或用于确定I q的参数,和/或,发送α q和/或
Figure PCTCN2020132968-appb-000199
本申请实施例还提供一种通信装置,该通信装置可以是终端设备也可以是电路。该通信装置可以用于执行上述方法实施例中由终端设备所执行的动作。
当该通信装置为终端设备时,图12示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图12中,终端设备以手机作为例子。如图12所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图12中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元 (收发单元可以是一个功能单元,该功能单元能够实现发送功能和接收功能;或者,收发单元也可以包括两个功能单元,分别为能够实现接收功能的接收单元和能够实现发送功能的发送单元),将具有处理功能的处理器视为终端设备的处理单元。如图12所示,终端设备包括收发单元1210和处理单元1220。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1210中用于实现接收功能的器件视为接收单元,将收发单元1210中用于实现发送功能的器件视为发送单元,即收发单元1210包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1210用于执行上述方法实施例中终端设备的发送操作和接收操作,处理单元1220用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
示例性的,处理单元1220可执行类似于由处理模块1010执行的动作,或者说,处理模块1220包括处理模块1010。收发单元1210可执行类似于由收发模块1020执行的动作,或者说,收发单元1210包括收发模块1020。
在执行图5所示方法时,处理单元1220可从第一资源单元集合中确定第二资源单元集合,并根据所述第二资源单元集合中所有资源单元的频域位置确定第一上行端口在所述所有资源单元上的第一序列。收发单元1210可用于在所述所有资源单元上根据所述第一序列发送第一信号。
其中,第一资源单元集合、第二资源单元集合和第一序列的说明可参见前述对于图5所示流程的介绍。
在一种可能的设计中,当第一信号为SRS,且第一资源单元集合包括第一OFDM符号中的属于第一信号的发送带宽的资源单元时,收发单元1210还可用于接收I和/或用于确定I的参数,和/或,接收α和/或
Figure PCTCN2020132968-appb-000200
在一种可能的设计中,当第一信号为SRS,且第一资源单元集合包括第一OFDM符号组的所有OFDM符号中的属于第一信号的发送带宽的资源单元时,收发单元1210还可用于接收I q和/或用于确定I q的参数,和/或,接收α和/或
Figure PCTCN2020132968-appb-000201
在执行图8所示方法时,处理单元1220可从第一资源单元集合中确定多个第二资源单元集合,并根据任一第二资源单元集合中所有资源单元的频域位置确定第一上行端口在所述任一第二资源单元集合中所有资源单元上的第一序列。收发单元1210可用于在所述任一第二资源单元集合中所有资源单元上根据所述第一序列发送第一信号。
其中,第一资源单元集合、第二资源单元集合和第一序列的说明可参见前述对于图8所示流程中的介绍。
在一种可能的设计中,当第一信号为SRS时,收发单元1210还可用于接收I q和/或用于确定I q的参数,和/或,接收α q和/或
Figure PCTCN2020132968-appb-000202
当该通信装置为芯片类的装置或者电路,或者该通信装置具有图12以外结构时,该装置可以包括收发单元和处理单元。其中,该收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。收发单元和处理单元可分别执行收发单元1210和处理单元1220的动作。
本申请实施例中的装置为网络设备时,该装置可以如图13所示。装置1300包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1310和一个或多个基带单元 (baseband unit,BBU)(也可称为数字单元,digital unit,DU)1320。该RRU 1310可以称为收发模块,该收发模块可以包括发送模块和接收模块,或者,该收发模块可以是一个能够实现发送和接收功能的模块。该收发模块可以与图11中的收发模块1120对应,即可由收发模块执行由收发模块1120执行的动作。可选地,该收发模块还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1311和射频单元1312。该RRU 1310部分主要用于射频信号的收发以及射频信号与基带信号的转换。该BBU 1310部分主要用于进行基带处理,对基站进行控制等。该RRU 1310与BBU 1320可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
该BBU 1320为基站的控制中心,也可以称为处理模块,可以与图11中的处理模块1110对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等,此外,可由处理模块执行由处理模块1110执行的动作。例如该BBU(处理模块)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,该BBU 1320可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网络),也可以分别支持不同接入制式的无线接入网(如LTE网络,5G网络或其他网络)。该BBU 1320还包括存储器1321和处理器1322。该存储器1321用以存储必要的指令和数据。该处理器1322用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。该存储器1321和处理器1322可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
在执行图5所示方法时,BBU 1320可从第一资源单元集合中确定第二资源单元集合,并根据所述第二资源单元集合中所有资源单元的频域位置确定第一上行端口在所述所有资源单元上的第一序列。RRU 1310可用于在所述所有资源单元上根据所述第一序列接收第一信号。
其中,第一资源单元集合、第二资源单元集合和第一序列的说明可参见前述对于图5所示流程的介绍。
在一种可能的设计中,当第一信号为SRS,且第一资源单元集合包括第一OFDM符号中的属于第一信号的发送带宽的资源单元时,RRU 1310还可用于发送I和/或用于确定I的参数,和/或,发送α和/或
Figure PCTCN2020132968-appb-000203
在一种可能的设计中,当第一信号为SRS,且第一资源单元集合包括第一OFDM符号组的所有OFDM符号中的属于第一信号的发送带宽的资源单元时,RRU 1310还可用于发送I q和/或用于确定I q的参数,和/或,发送α和/或
Figure PCTCN2020132968-appb-000204
在执行图8所示方法时,BBU 1320可从第一资源单元集合中确定多个第二资源单元集合,并根据任一第二资源单元集合中所有资源单元的频域位置确定第一上行端口在所述任一第二资源单元集合中所有资源单元上的第一序列。RRU 1310可用于在所述任一第二资源单元集合中所有资源单元上根据所述第一序列接收第一信号。
其中,第一资源单元集合、第二资源单元集合和第一序列的说明可参见前述对于图8所示流程中的介绍。
在一种可能的设计中,当第一信号为SRS时,RRU 1310还可用于发送I q和/或用于确定I q的参数,和/或,发送α q和/或
Figure PCTCN2020132968-appb-000205
当该通信装置为芯片类的装置或者电路,或者该通信装置具有图13以外结构时,该装置可以包括收发单元和处理单元。其中,该收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。收发单元和处理单元可分别执行RRU 1310和BBU 1320的动作。
作为一个实施例,对于本发明所涉及的发送装置(如终端设备)和接收装置(如网络设备),可以存储上述实施例中涉及的各个序列(或序列集合、序列组)。这种存储方式可以采用一个存储器、存储介质、或其他的具有存储功能的设备实现,例如芯片或处理器。存储的具体内容在此不做限定,作为进一步的一种实施方式,可以存储生成公式的方法,例如存储公式、程序、或通过生成序列的固化的电路,然后再通过获取各种与序列相关的参数,生成对应的序列。例如,可以存储第一序列,或存储用于确定第一序列的参数,再根据公式或参数确定出第一序列。
本申请实施例提供一种通信系统。该通信系统可以包括上述的图1或图2所示的系统中所涉及的终端设备,以及包括图1或图2所示的系统中所涉及的终端设备或网络设备。可选的,该通信系统中的终端设备和网络设备可执行图3至图5中任一所示的通信方法。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,该计算机可以实现上述方法实施例提供的图5或图8所示的实施例中与终端设备或网络设备相关的流程。
本申请实施例还提供一种计算机程序产品,该计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,该计算机可以实现上述方法实施例提供的图5或图8所示的实施例中与终端设备或网络设备相关的流程。
本申请实施例还提供一种芯片或芯片系统,该芯片可包括处理器,该处理器可用于调用存储器中的程序或指令,执行上述方法实施例提供的图5或图8所示的实施例中与终端设备或网络设备相关的流程。该芯片系统可包括该芯片,还可存储器或收发器等其他组件。
本申请实施例还提供一种电路,该电路可与存储器耦合,可用于执行上述方法实施例提供的图5或图8所示的实施例中与网络设备相关的流程。该芯片系统可包括该芯片,还可存储器或收发器等其他组件。
应理解,本申请实施例中提及的处理器可以是CPU,还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器 (enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
该功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所示方法的全部或部分步骤。而前述的计算机可读存储介质,可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、电可擦可编程只读存储器(electrically erasable programmable read only memory,EEPROM)、紧凑型光盘只读存储器(compact disc read-only memory,CD-ROM)、通用串行总线闪存盘(universal serial bus flash disk)、移动硬盘、或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
以上所示,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替 换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (39)

  1. 一种通信方法,其特征在于,包括:
    从第一资源单元集合中确定第二资源单元集合,所述第二资源单元集合中所有资源单元的频域位置非等间隔分布;所述第一资源单元集合包括第一OFDM符号中的属于第一信号的发送带宽的资源单元,或者,所述第一资源单元集合包括第一OFDM符号组的所有OFDM符号中的属于所述发送带宽的资源单元,所述第一OFDM符号组包含多个OFDM符号;
    根据所述第二资源单元集合中所有资源单元的频域位置确定第一上行端口在所述所有资源单元上的第一序列;
    在所述所有资源单元上根据所述第一序列发送所述第一信号。
  2. 如权利要求1所述的方法,其特征在于,当所述第一资源单元集合包括所述第一OFDM符号中的属于所述发送带宽的资源单元时,所述第一上行端口在所述第二资源单元集合中第k个资源单元上的第一序列r (p)(k)满足:
    r (p)(k)=r (α,I)(k),
    其中,
    Figure PCTCN2020132968-appb-100001
    Figure PCTCN2020132968-appb-100002
    为基序列,I为所述第二资源单元集合中所有资源单元的频域位置的集合,I k指示所述第二资源单元集合中第k个资源单元的频域位置,k=0,…,M-1;w=1或者w=-1,Δ为常数,C为大于等于1的整数,p为所述第一上行端口,α为循环移位值。
  3. 如权利要求2所述的方法,其特征在于,所述第一信号为上行探测参考信号SRS,所述α满足:
    Figure PCTCN2020132968-appb-100003
  4. 如权利要求3所述的方法,其特征在于,还包括:
    接收所述I和/或用于确定所述I的参数;和/或
    接收所述α和/或所述
    Figure PCTCN2020132968-appb-100004
  5. 如权利要求2-4中任一所述的方法,其特征在于,所述第二资源单元集合中编号为I k+n start的资源单元对应的第一信号
    Figure PCTCN2020132968-appb-100005
    满足:
    Figure PCTCN2020132968-appb-100006
    其中,β是缩放系数,n start为所述发送带宽的频域起始位置。
  6. 如权利要求1所述的方法,其特征在于,当所述第一资源单元集合包括所述第一OFDM符号组的所有OFDM符号中的属于所述发送带宽的资源单元时,所述第一OFDM符号组包含N个OFDM符号,N为大于1的正整数,所述第一上行端口在所述第一OFDM符号组中第q个OFDM符号的第k个资源单元上的第一序列r (p)(k,q)满足:
    Figure PCTCN2020132968-appb-100007
    其中,
    Figure PCTCN2020132968-appb-100008
    q∈{0,1,..,N-1},
    Figure PCTCN2020132968-appb-100009
    为基序列,I q为所述第q个OFDM符号对应的资源单元的频域位置的集合,所述第q个OFDM符号对应的资 源单元属于所述第二资源单元集合,I q,k指示所述第q个OFDM符号对应的资源单元的集合中第k个资源单元的频域位置,k=0,…,M q-1,w=1或者w=-1,k start,q为所述第一上行端口在第q个符号上的序列起始位置,所述序列起始位置为非负整数,Δ为常数,C为大于等于1的整数,p为所述第一上行端口,α为循环移位值。
  7. 如权利要求6所述的方法,其特征在于,所述第一信号为SRS,所述α满足:
    Figure PCTCN2020132968-appb-100010
  8. 如权利要求7所述的方法,其特征在于,还包括:
    接收所述I q和/或用于确定所述I q的参数;和/或
    接收所述α和/或所述
    Figure PCTCN2020132968-appb-100011
  9. 如权利要求6-8中任一所述的方法,其特征在于,
    所述第一序列分为R段,第u段第一序列承载在所述第q个OFDM符号上的资源单元,第t段的长度为S t,t=0,…,R-1,
    Figure PCTCN2020132968-appb-100012
    M q=S u
  10. 如权利要求6-9中任一所述的方法,其特征在于,所述第q个OFDM符号上的编号为I q,k+n start的资源单元对应的第一信号
    Figure PCTCN2020132968-appb-100013
    满足:
    Figure PCTCN2020132968-appb-100014
    其中,β是缩放系数,n start为所述发送带宽的频域起始位置,L q指示所述第q个OFDM符号的编号。
  11. 一种通信方法,其特征在于,包括:
    从第一资源单元集合中确定第二资源单元集合,所述第二资源单元集合中所有资源单元的频域位置非等间隔分布;所述第一资源单元集合包括第一OFDM符号中的属于第一信号的发送带宽的资源单元,或者,所述第一资源单元集合包括第一OFDM符号组的所有OFDM符号中的属于所述发送带宽的资源单元,所述第一OFDM符号组包含多个OFDM符号;
    根据所述第二资源单元集合中所有资源单元的频域位置确定第一上行端口在所述所有资源单元上的第一序列;
    在所述所有资源单元上根据所述第一序列接收所述第一信号。
  12. 如权利要求11所述的方法,其特征在于,当所述第一资源单元集合包括第一OFDM符号中的属于所述发送带宽的资源单元时,所述第一上行端口在所述第二资源单元集合中第k个资源单元上的第一序列r (p)(k)满足:
    r (p)(k)=r (α,I)(k),
    其中,
    Figure PCTCN2020132968-appb-100015
    Figure PCTCN2020132968-appb-100016
    为基序列,I为所述第二资源单元集合中所有资源单元的频域位置的集合,I k指示所述第二资源单元集合中第k个资源单元的频域位置,k=0,…,M-1;w=1或者w=-1,Δ为常数,C为大于等于1的整数,p为所述第一上行端口,α为循环移位值。
  13. 如权利要求12所述的方法,其特征在于,所述第一信号为SRS,所述α满足:
    Figure PCTCN2020132968-appb-100017
  14. 如权利要求13所述的方法,其特征在于,还包括:
    发送所述I和/或用于确定所述I的参数;和/或
    发送所述α和/或所述
    Figure PCTCN2020132968-appb-100018
  15. 如权利要求12-14中任一所述的方法,其特征在于,所述第二资源单元集合中编号为I k+n start的资源单元对应的第一信号
    Figure PCTCN2020132968-appb-100019
    满足:
    Figure PCTCN2020132968-appb-100020
    其中,β是缩放系数,n start为所述发送带宽的频域起始位置。
  16. 如权利要求11所述的方法,其特征在于,当所述第一资源单元集合包括第一OFDM符号组的所有OFDM符号中的属于所述发送带宽的资源单元时,所述第一OFDM符号组包含N个OFDM符号,N为大于1的正整数,所述第一上行端口在所述第一OFDM符号组中第q个OFDM符号的第k个资源单元上的第一序列r (p)(k,q)满足:
    Figure PCTCN2020132968-appb-100021
    其中,
    Figure PCTCN2020132968-appb-100022
    q∈{0,1,..,N-1},
    Figure PCTCN2020132968-appb-100023
    为基序列,I q为所述第q个OFDM符号对应的资源单元的频域位置的集合,所述第q个OFDM符号对应的资源单元属于所述第二资源单元集合,I q,k指示所述第q个OFDM符号对应的资源单元的集合中第k个资源单元的频域位置,k=0,…,M q-1,w=1或者w=-1,k start,q为所述第一上行端口在第q个符号上的序列起始位置,所述序列起始位置为非负整数,Δ为常数,C为大于等于1的整数,p为所述第一上行端口,α为循环移位值。
  17. 如权利要求16所述的方法,其特征在于,所述第一信号为SRS,所述α满足:
    Figure PCTCN2020132968-appb-100024
  18. 如权利要求17所述的方法,其特征在于,还包括:
    发送所述I q和/或用于确定所述I q的参数;和/或
    发送所述α和/或所述
    Figure PCTCN2020132968-appb-100025
  19. 如权利要求16-18中任一所述的方法,其特征在于,
    所述第一序列分为R段,第u段第一序列承载在所述第q个OFDM符号上的资源单元,第t段的长度为S t,t=0,…,R-1,
    Figure PCTCN2020132968-appb-100026
    M q=S u
  20. 如权利要求16-19中任一所述的方法,其特征在于,所述第q个OFDM符号上的编号为I q,k+n start的资源单元对应的第一信号
    Figure PCTCN2020132968-appb-100027
    满足:
    Figure PCTCN2020132968-appb-100028
    其中,β是缩放系数,n start为所述发送带宽的频域起始位置,L q指示所述第q个OFDM符号的编号。
  21. 一种通信方法,其特征在于,包括:
    从第一资源单元集合中确定多个第二资源单元集合,每个第二资源单元集合中所有资源单元的频域位置非等间隔分布;所述第一资源单元集合包括多个第二OFDM符号中的属于第一信号的发送带宽的资源单元,每个第二OFDM符号对应一个所述第二资源单元集合;
    根据所述多个第二资源单元集合中的任一第二资源单元集合中所有资源单元的频域位置,确定第一上行端口在所述任一第二资源单元集合中所有资源单元上的第一序列;
    在所述任一第二资源单元集合中的所有资源单元上根据所述第一序列发送所述第一信号。
  22. 如权利要求21所述的方法,其特征在于,
    每个第二OFDM符号对应一个跳频带宽,所述跳频带宽在所述发送带宽内,任意两个第二OFDM符号对应的两个所述跳频带宽在频域不交叠,每个第二OFDM符号对应的第二资源单元集合属于该第二OFDM符号对应的跳频带宽。
  23. 如权利要求21或22所述的方法,其特征在于,所述多个第二OFDM符号的数量为N,N为大于1的正整数,所述第一上行端口在第q个第二OFDM符号的第k个资源单元上的第一序列r (p)(k,q)满足:
    Figure PCTCN2020132968-appb-100029
    其中,
    Figure PCTCN2020132968-appb-100030
    q∈{0,1,..,N-1},
    Figure PCTCN2020132968-appb-100031
    为基序列,I q为所述第q个第二OFDM符号对应的第二资源单元集合中所有资源单元的频域位置的集合,I q,k指示所述第q个第二OFDM符号对应的第二资源单元集合中第k个资源单元的频域位置,k=0,…,M q-1,w=1或者w=-1,Δ q为常数,C q为大于等于1的整数,p为所述第一上行端口,α q为第q个第二OFDM符号对应的循环移位值。
  24. 如权利要求23所述的方法,其特征在于,所述第一信号为SRS,所述α q满足:
    Figure PCTCN2020132968-appb-100032
  25. 如权利要求23或24所述的方法,其特征在于,还包括:
    接收所述I q和/或用于确定所述I q的参数;和/或
    接收所述α q和/或所述
    Figure PCTCN2020132968-appb-100033
  26. 如权利要求23-25中任一所述的方法,其特征在于,所述第q个第二OFDM符号上的编号为I q,k+n start,q的资源单元对应的第一信号
    Figure PCTCN2020132968-appb-100034
    满足:
    Figure PCTCN2020132968-appb-100035
    其中,β是缩放系数,n start,q为所述第q个第二OFDM符号对应的跳频带宽的频域起始位置,L q指示所述第q个第二OFDM符号的编号。
  27. 一种通信方法,其特征在于,包括:
    从第一资源单元集合中确定多个第二资源单元集合,每个第二资源单元集合中所有资源单元的频域位置非等间隔分布;所述第一资源单元集合包括多个第二OFDM符号中的属 于第一信号的发送带宽的资源单元,每个第二OFDM符号对应一个所述第二资源单元集合;
    根据所述多个第二资源单元集合中的任一第二资源单元集合中所有资源单元的频域位置,确定第一上行端口在所述任一第二资源单元集合中所有资源单元上的第一序列;
    在所述任一第二资源单元集合中所有资源单元上根据所述第一序列接收所述第一信号。
  28. 如权利要求27所述的方法,其特征在于,
    每个第二OFDM符号对应一个跳频带宽,所述跳频带宽在所述发送带宽内,任意两个第二OFDM符号对应的两个所述跳频带宽在频域不交叠,每个第二OFDM符号对应的第二资源单元集合属于该第二OFDM符号对应的跳频带宽。
  29. 如权利要求27或28所述的方法,其特征在于,所述多个第二OFDM符号的数量为N,N为大于1的正整数,所述第一上行端口在第q个第二OFDM符号的第k个资源单元上的第一序列r (p)(k,q)满足:
    Figure PCTCN2020132968-appb-100036
    其中,
    Figure PCTCN2020132968-appb-100037
    q∈{0,1,..,N-1},
    Figure PCTCN2020132968-appb-100038
    为基序列,I q为所述第q个第二OFDM符号对应的第二资源单元集合中所有资源单元的频域位置的集合,I q,k指示所述第q个第二OFDM符号对应的第二资源单元集合中第k个资源单元的频域位置,k=0,…,M q-1,w=1或者w=-1,Δ q为常数,C q为大于等于1的整数,p为所述第一上行端口,α q为第q个第二OFDM符号对应的循环移位值。
  30. 如权利要求29所述的方法,其特征在于,所述第一信号为SRS,所述α q满足:
    Figure PCTCN2020132968-appb-100039
  31. 如权利要求29或30所述的方法,其特征在于,还包括:
    发送所述I q和/或用于确定所述I q的参数;和/或
    发送所述α q和/或所述
    Figure PCTCN2020132968-appb-100040
  32. 如权利要求29-31中任一所述的方法,其特征在于,所述第q个第二OFDM符号上的编号为I q,k+n start,q的资源单元对应的第一信号
    Figure PCTCN2020132968-appb-100041
    满足:
    Figure PCTCN2020132968-appb-100042
    其中,β是缩放系数,n start,q为所述第q个第二OFDM符号对应的跳频带宽的频域起始位置,L q指示所述第q个第二OFDM符号的编号。
  33. 一种通信装置,其特征在于,包括:
    存储器,用于存储指令;
    处理器,用于从所述存储器中调用并运行所述指令,使得所述通信装置执行如权利要求1-10中任一项所述的方法。
  34. 一种通信装置,其特征在于,包括:
    存储器,用于存储指令;
    处理器,用于从所述存储器中调用并运行所述指令,使得所述通信装置执行如权利要求11-20中任一项所述的方法。
  35. 一种通信装置,其特征在于,包括:
    存储器,用于存储指令;
    处理器,用于从所述存储器中调用并运行所述指令,使得所述通信装置执行如权利要求21-26中任一项所述的方法。
  36. 一种通信装置,其特征在于,包括:
    存储器,用于存储指令;
    处理器,用于从所述存储器中调用并运行所述指令,使得所述通信装置执行如权利要求27-32中任一项所述的方法。
  37. 一种计算机可读存储介质,其特征在于,所述计算机存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求1-32中任一项所述的方法。
  38. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1-32中任一项所述的方法。
  39. 一种电路,其特征在于,所述电路与存储器耦合,所述电路用于读取并执行所述存储器中存储的程序以执行如权利要求1-32中任一项所述的方法。
PCT/CN2020/132968 2020-11-30 2020-11-30 一种通信方法及装置 WO2022110236A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/132968 WO2022110236A1 (zh) 2020-11-30 2020-11-30 一种通信方法及装置
EP20963124.1A EP4240078A4 (en) 2020-11-30 2020-11-30 COMMUNICATION METHOD AND APPARATUS
CN202080105781.4A CN116325603A (zh) 2020-11-30 2020-11-30 一种通信方法及装置
US18/324,631 US20230300016A1 (en) 2020-11-30 2023-05-26 Communication Method and Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/132968 WO2022110236A1 (zh) 2020-11-30 2020-11-30 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/324,631 Continuation US20230300016A1 (en) 2020-11-30 2023-05-26 Communication Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2022110236A1 true WO2022110236A1 (zh) 2022-06-02

Family

ID=81753928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132968 WO2022110236A1 (zh) 2020-11-30 2020-11-30 一种通信方法及装置

Country Status (4)

Country Link
US (1) US20230300016A1 (zh)
EP (1) EP4240078A4 (zh)
CN (1) CN116325603A (zh)
WO (1) WO2022110236A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1805318A (zh) * 2005-08-24 2006-07-19 华为技术有限公司 一种上行时频资源的分配方法
WO2017147439A1 (en) * 2016-02-25 2017-08-31 Cohere Technologies Reference signal packing for wireless communications
CN109495232A (zh) * 2017-08-11 2019-03-19 华为技术有限公司 发送和接收参考信号的方法、网络设备、终端设备和系统
CN110115083A (zh) * 2016-11-02 2019-08-09 株式会社Ntt都科摩 用户装置、基站及参考信号发送方法
WO2020198304A1 (en) * 2019-03-28 2020-10-01 Qualcomm Incorporated Sounding reference signal waveform design for wireless communications

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11115943B2 (en) * 2017-07-28 2021-09-07 Lg Electronics Inc. Method of transmitting and receiving synchronization signal block and method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1805318A (zh) * 2005-08-24 2006-07-19 华为技术有限公司 一种上行时频资源的分配方法
WO2017147439A1 (en) * 2016-02-25 2017-08-31 Cohere Technologies Reference signal packing for wireless communications
CN110115083A (zh) * 2016-11-02 2019-08-09 株式会社Ntt都科摩 用户装置、基站及参考信号发送方法
CN109495232A (zh) * 2017-08-11 2019-03-19 华为技术有限公司 发送和接收参考信号的方法、网络设备、终端设备和系统
WO2020198304A1 (en) * 2019-03-28 2020-10-01 Qualcomm Incorporated Sounding reference signal waveform design for wireless communications

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical channels and modulation (Release 16)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.211, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. V16.3.0, 1 October 2020 (2020-10-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 133, XP051961275 *
See also references of EP4240078A4 *

Also Published As

Publication number Publication date
US20230300016A1 (en) 2023-09-21
EP4240078A4 (en) 2023-12-20
EP4240078A1 (en) 2023-09-06
CN116325603A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
US9426802B2 (en) Transmission of sounding reference signals from a user equipment in response to multiple requests
EP3591880B1 (en) Dmrs transmission method and device
US20210368498A1 (en) Method and apparatus for transmitting uplink signal
CN105557046B (zh) 导频信号的传输方法及装置
KR20180074331A (ko) 무선 통신 시스템에서 기준 신호 생성 방법 및 장치
JP6923703B2 (ja) 基地局、通信方法、及び、集積回路
JPWO2020003682A1 (ja) 基地局、端末、受信方法及び送信方法
CN108282309B (zh) 参考信号传输方法和设备
CN108282288B (zh) 一种参考信号配置的方法、基站、用户设备和系统
WO2021195975A1 (zh) 传输参考信号的方法和装置
US11362780B2 (en) DMRS sequence transmitting method, terminal device and network device
WO2017190361A1 (zh) 一种参考信号传输方法及装置
WO2022110236A1 (zh) 一种通信方法及装置
CN114902774A (zh) 一种确定参考信号的方法及装置
CN110050412A (zh) 信号传输方法和设备
US20220038238A1 (en) Reference Signal Sending Method And Apparatus
WO2022067798A1 (zh) 一种通信方法及装置
CN117121414A (zh) 用于传输参考信号的方法和装置
WO2019095863A1 (zh) Pucch传输方法、终端及网络侧设备
WO2018228296A1 (zh) 用于进行数据传输的方法和装置
US20220022196A1 (en) Csi measurement method and apparatus
JPWO2020090998A1 (ja) 通信装置、通信方法および集積回路
WO2022089172A1 (zh) 一种通信方法及装置
WO2022068616A1 (zh) 一种通信方法及装置
WO2022262532A1 (zh) 符号传输的方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963124

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020963124

Country of ref document: EP

Effective date: 20230530

NENP Non-entry into the national phase

Ref country code: DE