WO2022067798A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2022067798A1
WO2022067798A1 PCT/CN2020/119723 CN2020119723W WO2022067798A1 WO 2022067798 A1 WO2022067798 A1 WO 2022067798A1 CN 2020119723 W CN2020119723 W CN 2020119723W WO 2022067798 A1 WO2022067798 A1 WO 2022067798A1
Authority
WO
WIPO (PCT)
Prior art keywords
subcarriers
parameter
subcarrier
frequency domain
relative index
Prior art date
Application number
PCT/CN2020/119723
Other languages
English (en)
French (fr)
Inventor
蔡世杰
曲秉玉
刘显达
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080105500.5A priority Critical patent/CN116420329A/zh
Priority to PCT/CN2020/119723 priority patent/WO2022067798A1/zh
Publication of WO2022067798A1 publication Critical patent/WO2022067798A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the embodiments of the present application relate to the field of wireless communication, and in particular, to a communication method and apparatus.
  • Multiple Input and Multiple Output adopts the transmission mode of multi-layer parallel transmission to provide higher data transmission rate.
  • the network device side can use the obtained downlink channel information (channel state information, CSI) to perform spatial precoding (precoding) to improve the signal transmission quality or rate.
  • CSI channel state information
  • precoding spatial precoding
  • TDD time division duplexing
  • the uplink and downlink channels of the wireless channel are reciprocal.
  • the network device receives the sounding reference signal (SRS) sent by the terminal device, performs channel estimation to obtain the uplink CSI, and then The downlink CSI is obtained according to the reciprocity of uplink and downlink.
  • SRS sounding reference signal
  • the frequency domain resources used for transmitting the SRS are arranged in comb teeth at equal intervals, and the interval between the center frequency points of adjacent subcarriers in frequency is K TC subcarriers.
  • the frequency domain resources are m SRS RBs, they are divided into K TC groups of frequency domain resources in the frequency domain, and the number of subcarriers included in each group of frequency domain resources is in Number of subcarriers included for each RB.
  • subcarriers are Uniform decimation of subcarriers.
  • Each group of frequency domain resources can be used to transmit SRS.
  • the terminal device may send the SRS on the above at least one set of resources. Multiple terminal devices can transmit SRS on the same set of frequency domain resources by means of code division multiplexing.
  • the index of the SRS signal may be a port, and multiple ports correspond to multiple transmit antennas from multiple terminal devices.
  • the number of subcarriers included in a set of frequency domain resources is For example, the maximum number of ports that a comb supports code division multiplexing is Among them, the maximum delay extension of each port is L, and the unit is ), where T s is the time of one OFDM symbol (excluding the cyclic prefix). Increasing the capacity of the SRS can support more users and perform uplink channel measurement in a more timely manner.
  • Embodiments of the present application provide a communication method and apparatus for multiplexing SRS signals with more ports on the same frequency domain resource.
  • an embodiment of the present application provides a communication method.
  • an execution subject of the method may be a terminal device or a chip in the terminal device.
  • the method includes: determining one or more sets of subcarriers, the one or more sets of subcarriers being determined by a first parameter p and a second parameter ⁇ from a first frequency domain resource, the first frequency domain resource being determined by The transmission bandwidth of the SRS is determined, the number of subcarriers included in the first frequency domain resource is N, the N subcarriers included in the first frequency domain resource are distributed at equal intervals, the first parameter p is a prime number, and the first parameter p is a prime number.
  • the second parameter ⁇ is the original root of the first parameter p; the SRS is sent on the one or more subcarrier sets.
  • the terminal device determines the SRS sequence according to the number of subcarriers included in the first frequency domain resource, and maps the SRS sequence on the first frequency domain resource.
  • the N subcarriers included in the first frequency domain resource are continuous in the frequency domain, or the N subcarriers included in the first frequency domain resource are an equally spaced subcarrier group with an interval of 2 subcarriers, or, the No.
  • the N subcarriers included in a frequency domain resource are equally spaced subcarrier groups with an interval of 4 subcarriers, or the N subcarriers included in the first frequency domain resource are equally spaced subcarrier groups with an interval of 8 subcarriers.
  • the value of the first parameter p is determined according to N.
  • the value of the first parameter p is directly determined according to the number of subcarriers included in the transmission bandwidth of the SRS.
  • the value of the second parameter ⁇ is determined according to the value of the first parameter p.
  • the terminal device transmits the SRS on one or more sets of sub-carriers, wherein the one or more sets of sub-carriers are obtained by non-uniformly extracting sub-carriers from the first frequency domain resources, so it can be implemented on the same frequency domain resources Multiplex more ports.
  • each configured SRS resource corresponds to one of the S candidate subcarrier sets.
  • the candidate subcarrier sets corresponding to different SRS resources are the same or different.
  • the N subcarriers included in the first frequency domain resource can be divided into S candidate subcarrier sets, and the subcarriers included in any candidate subcarrier set in the S candidate subcarrier sets are unequal in the frequency domain interval, multiple SRS ports can be multiplexed on the same candidate subcarrier set by means of code division multiplexing, and multiple SRS ports can be multiplexed by means of frequency division multiplexing on different subcarrier sets.
  • the one or more subcarrier sets are one or more of S candidate subcarrier sets, any two of the S candidate subcarrier sets do not have the same subcarrier, and the The rth candidate subcarrier set in the S candidate subcarrier sets includes the subcarriers in the first frequency domain resource determined by the relative index set Cr, S is a positive integer, r ⁇ 0,...,S-1 ⁇ ;
  • the relative index set C r is in, v ⁇ 0,1,...,N-p+1 ⁇ , Or, the relative index set C r is The intersection with the set ⁇ 0,1,...,N-1 ⁇ , where,
  • the N subcarriers included in the first frequency domain resource can be divided into S candidate subcarrier sets, and the subcarriers included in any two subcarrier sets in the S candidate subcarrier sets are different from each other.
  • the subcarriers included in any candidate subcarrier set in the candidate subcarrier set are unequally spaced in the frequency domain.
  • Multiple SRS ports can be multiplexed on the same candidate subcarrier set by code division multiplexing. Different subcarrier sets Multiple SRS ports can be multiplexed by means of frequency division multiplexing.
  • the r-th candidate sub-carrier set further includes at least one sub-carrier other than the sub-carrier determined by the relative index set C r in the first frequency domain resource, for all the at least one subcarrier and the relative index set The determined subcarriers in the first frequency domain resource do not overlap.
  • the subcarriers included in any two subcarrier sets in the S candidate subcarrier sets are different from each other.
  • the index value of the subcarrier in the first frequency domain resource determined by the relative index set C r in the system bandwidth is:
  • T is a positive integer, ⁇ 0,...,T-1 ⁇ , is the frequency domain shift value with subcarriers as the count unit.
  • the index value of the subcarrier in the first frequency domain resource determined by the relative index set Cr in the system bandwidth can be determined.
  • the first parameter p is the largest prime number less than or equal to N+1; or the first parameter p is the smallest prime number greater than or equal to N+1.
  • the value manner of the first parameter p is related to the number of subcarriers occupied by the first frequency domain resource or the number of subcarriers occupied by the transmission bandwidth of the SRS. Specifically, when the number of subcarriers occupied by the first frequency domain resources satisfies the first value range, the value of the first parameter p is a maximum prime number less than or equal to N+1, and when the number of subcarriers occupied by the first frequency domain resources When the number of carriers satisfies the second value range, the first parameter p is the smallest prime number greater than or equal to N+1.
  • the second parameter ⁇ is the largest primitive root of the first parameter p; or, the second parameter ⁇ is the smallest primitive root of the first parameter p.
  • the value manner of the second parameter ⁇ is related to the value of the first parameter p. Specifically, when the size of the first parameter p satisfies the first value range, the second parameter ⁇ is the largest primitive root of the first parameter p, and when the size of the first parameter p satisfies the second value range, the second parameter ⁇ is the smallest primitive root of the first parameter p.
  • first information is received, where the first information is used to indicate a value of a configuration parameter, and the configuration parameter includes at least one of the first parameter p, the second parameter ⁇ , the parameter T, and the parameter ⁇ one.
  • the network device can configure the value of at least one of the above parameters for the terminal device through RRC signaling or MAC CE signaling.
  • an embodiment of the present application provides a communication method.
  • an execution body of the method may be a network device or a chip in the network device.
  • the method includes: determining one or more sets of subcarriers, the one or more sets of subcarriers being determined by a first parameter p and a second parameter ⁇ from a first frequency domain resource, the first frequency domain resource being determined by The transmission bandwidth of the sounding reference signal SRS is determined, the number of subcarriers included in the first frequency domain resource is N, the N subcarriers included in the first frequency domain resource are distributed at equal intervals, and the first parameter p is a prime number,
  • the second parameter ⁇ is the primitive root of the first parameter p; the SRS is received on the one or more subcarrier sets.
  • the network device can receive SRS on one or more subcarrier sets, wherein the one or more subcarrier sets are obtained by non-uniformly extracting subcarriers in the first frequency domain resources, so that the same frequency domain resources can be implemented in the same frequency domain. multiplex more ports.
  • the one or more subcarrier sets are one or more of S candidate subcarrier sets, and the subcarriers included in any two subcarrier sets in the S candidate subcarrier sets are mutually exclusive. Not the same;
  • the rth candidate subcarrier set in the S candidate subcarrier sets includes the subcarriers in the first frequency domain resource determined by the relative index set Cr, S is a positive integer, r ⁇ 0,...,S-1 ⁇ ,
  • the relative index set C r is in, v ⁇ 0,1,...,N-p+1 ⁇ ,
  • the relative index set C r is The intersection with the set ⁇ 0,1,...,N-1 ⁇ , where,
  • is a real number, m ⁇ [1,p-1], l cs is a cyclic shift.
  • the one or more subcarrier sets are one or more of S candidate subcarrier sets, any two of the S candidate subcarrier sets do not have the same subcarrier, and the The rth candidate subcarrier set in the S candidate subcarrier sets includes the subcarriers in the first frequency domain resource determined by the relative index set Cr, S is a positive integer, r ⁇ 0,...,S-1 ⁇ ;
  • the relative index set C r is in, v ⁇ 0,1,...,N-p+1 ⁇ ,
  • the relative index set C r is The intersection with the set ⁇ 0,1,...,N-1 ⁇ , where
  • is a real number
  • l cs is a cyclic shift
  • the r-th candidate sub-carrier set further includes at least one sub-carrier other than the sub-carrier determined by the relative index set C r in the first frequency domain resource, for all the at least one subcarrier and the relative index set The determined subcarriers in the first frequency domain resource do not overlap.
  • the index value of the subcarrier in the first frequency domain resource determined by the relative index set C r in the system bandwidth is:
  • T is a positive integer, ⁇ 0,...,T-1 ⁇ , is the frequency domain shift value with subcarriers as the count unit.
  • the first parameter p is the largest prime number less than or equal to N+1; or the first parameter p is the smallest prime number greater than or equal to N+1.
  • the second parameter ⁇ is the largest primitive root of the first parameter p; or, the second parameter ⁇ is the smallest primitive root of the first parameter p.
  • first information is sent, where the first information is used to refer to the value of a configuration parameter, and the configuration parameter includes at least one of the first parameter p, the second parameter ⁇ , the parameter T, and the parameter ⁇ one.
  • an embodiment of the present application provides a communication apparatus, the apparatus includes a module for performing any one of the first aspect and any possible design of the first aspect, or the apparatus includes a module for performing the second aspect and A module of any possible design in the second aspect.
  • an embodiment of the present application provides a communication device, including a processor and an interface circuit, where the interface circuit is configured to receive signals from other communication devices other than the communication device and transmit to the processor or transfer signals to the processor.
  • the signal from the processor is sent to other communication devices other than the communication device, and the processor is used to implement any one of the first aspect and the possible design of the first aspect through logic circuits or executing code instructions, Alternatively, the processor is used to implement any one of the possible designs of the second aspect and the second aspect through logic circuits or executing code instructions.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program or instruction is stored in the storage medium, and when the computer program or instruction is executed by a communication device, the first aspect and the first aspect are implemented Any one of the possible designs of the second aspect, or any one of the possible designs of the second aspect and the second aspect.
  • an embodiment of the present application provides a computer program product including a program, which, when running on a communication device, enables the communication device to execute any one of the possible designs of the first aspect and the first aspect or the second aspect and any of the possible designs in the second aspect.
  • 1 is a schematic diagram of a comb-tooth arrangement at equal intervals on the frequency domain resources used for transmitting SRS in the background technology of the application;
  • FIG. 2 is a schematic diagram of a communication system to which an embodiment of the present application is applied;
  • FIG. 3 is one of the schematic diagrams of the maximum number of orthogonal ports that a comb tooth can support in an embodiment of the present application
  • FIG. 4 is the second schematic diagram of the maximum number of orthogonal ports that a comb tooth can support in an embodiment of the present application
  • FIG. 5 is an overview flowchart of a communication method in an embodiment of the application.
  • FIG. 6 is a schematic diagram of the coexistence of a new user and an old user in the same OFDM symbol in an embodiment of the present application
  • FIG. 7 is one of the schematic structural diagrams of a communication device in an embodiment of the present application.
  • FIG. 8 is a second schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 2 shows a schematic diagram of a communication system to which an embodiment of the present application is applicable.
  • the communication system 100 may include at least one network device, for example, the network device 101 shown in FIG. 2 .
  • the communication system 100 may also include at least one terminal device, such as the terminal devices 102 to 107 shown in FIG. 2 .
  • the terminal devices 102 to 107 may be mobile or stationary.
  • Each of the network device 101 and one or more of the end devices 102 to 107 may communicate over a wireless link.
  • Each network device can provide communication coverage for a specific geographic area and can communicate with terminal devices located within that coverage area.
  • D2D device to device
  • FIG. 2 a device to device (device to device, D2D) technology can be used to realize direct communication between terminal devices.
  • the D2D technology can be used for direct communication.
  • Terminal device 106 and terminal device 107 may communicate with terminal device 105 individually or simultaneously.
  • the terminal devices 105 to 107 can also communicate with the network device 101, respectively. For example, it can communicate directly with the network device 101, as shown in FIG. 2, the terminal devices 105 and 106 can directly communicate with the network device 101; it can also communicate with the network device 101 indirectly, such as the terminal device 107 in FIG. The network device 101 communicates.
  • FIG. 2 is only a schematic diagram, and the communication system may also include other network devices, such as core network devices, wireless relay devices and wireless backhaul devices, which are not shown in FIG. 2 .
  • the embodiments of the present application do not limit the number of network devices and terminal devices included in the communication system.
  • the terminal device is connected with the network device in a wireless manner, so as to access the mobile communication system.
  • the network equipment can be a base station (base station), an evolved NodeB (eNodeB), a transmission reception point (TRP), a next generation NodeB (gNB) in the 5G mobile communication system, future mobile A base station in a communication system or an access node in a WiFi system, etc.; it can also be a module or unit that completes some functions of the base station, for example, it can be a centralized unit (central unit, CU) or a distributed unit (distributed unit) , DU).
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the network device.
  • a terminal device may also be referred to as a terminal, user equipment (UE), a mobile station, a mobile terminal, and the like.
  • the terminal equipment can be mobile phone, tablet computer, computer with wireless transceiver function, virtual reality terminal equipment, augmented reality terminal equipment, wireless terminal in industrial control, wireless terminal in unmanned driving, wireless terminal in remote surgery, smart grid wireless terminals in transportation security, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • Network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle; can also be deployed on water; can also be deployed in the air on aircraft, balloons and satellites.
  • the embodiments of the present application do not limit the application scenarios of the network device and the terminal device.
  • the network device and the terminal device can communicate through the licensed spectrum, the unlicensed spectrum, or the licensed spectrum and the unlicensed spectrum at the same time.
  • the network device and the terminal device can communicate through the frequency spectrum below 6 GHz (gigahertz, GHz), and can also communicate through the frequency spectrum above 6 GHz, and can also use the frequency spectrum below 6 GHz and the frequency spectrum above 6 GHz for communication at the same time.
  • the embodiments of the present application do not limit the spectrum resources used between the network device and the terminal device.
  • the time domain symbols may be orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols, or may be discrete Fourier transform spread spectrum OFDM (Discrete Fourier Transform-spread-OFDM, DFT) symbols -s-OFDM) symbols.
  • OFDM orthogonal frequency division multiplexing
  • DFT discrete Fourier Transform-spread-OFDM
  • the symbols in the embodiments of the present application all refer to time-domain symbols.
  • the SRS is used as an example.
  • the SRS can also be replaced with a channel state information reference signal (Channel State Information Reference Resource, CSI-RS), or a demodulation reference signal (Demodulation Reference Resource, DMRS), or a time domain/frequency domain/phase tracking reference signal, etc.
  • CSI-RS may be used to obtain channel information to perform known signals for CSI measurement reporting.
  • DMRS can be used for a known signal for channel estimation when a shared channel or a control channel is received.
  • SRS Sounding Reference Signal
  • the UE generates and transmits an SRS on a specific physical resource according to a preset known sequence, and the base station side can estimate the channel matrix through the received SRS on the specific physical resource according to the known sequence, which is used for uplink data scheduling or utilization Channel reciprocity is used for downlink data scheduling.
  • the ZC sequence is used to generate the SRS.
  • the SRS can be located on one or more OFDM symbols in a time slot, can occupy all subcarriers in the system bandwidth, or can occupy part of the subcarriers in the system bandwidth in the form of comb teeth, thereby improving network resource utilization.
  • the SRS can be sent periodically in the time domain, and the sending period and offset are usually defined, and the SRS will be sent periodically in the periodic time domain position.
  • the SRS may also be sent aperiodically in the time domain. In this case, DCI signaling is required to indicate the sending time of the SRS, and the SRS will be sent instantaneously in the periodic time domain.
  • the SRS resource defines the time-frequency resource used to transmit the SRS.
  • each SRS resource is configured with the following parameters:
  • SRS resource index value When multiple SRS resources are configured, the SRS resources are distinguished by the index value.
  • the number of SRS ports of a UE can be the number of transmit antennas of the UE.
  • each SRS port corresponds to one transmit antenna of the UE; each SRS port can correspond to a spatial precoding vector of the transmit antenna, or That is, it can correspond to a spatial beamforming method.
  • SRS signals of multiple SRS ports on one SRS resource occupy the same time-frequency resource and are multiplexed in a code division manner.
  • the SRS signals of different SRS ports use different cyclic shifts (Cyclic shift, CS).
  • the time domain position occupied by the SRS the configuration information of the time domain period or offset.
  • the transmission bandwidth of the SRS is the transmission bandwidth of the SRS.
  • CS value The number of bits by which the sequence is cyclically shifted in the time domain.
  • time-frequency resources of the SRS are subcarriers distributed at equal intervals
  • different SRS signals of different SRS ports can use the orthogonal method of code division multiplexing to avoid mutual interference.
  • CS can basically achieve code division orthogonality.
  • the receiving end can eliminate signals using other CSs and only retain signals using a specific CS through specific operations, thereby implementing code division multiplexing.
  • Transmission comb tooth degree T and comb tooth displacement ⁇ used to determine the subcarrier positions occupied by the SRS within the transmission bandwidth.
  • the transmission comb tooth degree T indicates that within the transmission bandwidth, one subcarrier in every 2 subcarriers is used to transmit SRS, and the comb tooth displacement ⁇ can be configured to be 0 or 1;
  • the transmission comb tooth degree T of 4 indicates that within the transmission bandwidth , 1 subcarrier in every 4 subcarriers is used for sending SRS, and the comb tooth shift ⁇ can be configured as 0 or 1 or 2 or 3.
  • the network device usually defines multiple SRS sequences, and assigns each sequence to different UEs to reduce interference between multiple users.
  • Spatial filtering parameters used to indicate the beamforming method.
  • the transmission bandwidth of the SRS refers to the sounding bandwidth of the SRS, that is, the frequency domain range for channel estimation according to the SRS, and the channel corresponding to the transmission bandwidth can be estimated through the subcarriers carrying the SRS. Only part of the subcarriers in the transmission bandwidth may carry the SRS for estimating the entire transmission bandwidth.
  • the network device may configure the transmission bandwidth of the SRS for the terminal device.
  • the terminal device determines the total number of subcarriers corresponding to the transmission bandwidth of the SRS according to the transmission bandwidth of the SRS. It can be understood that, if the network device only configures the SRS transmission bandwidth for the terminal device, the terminal device can determine that the subcarrier corresponding to the SRS transmission bandwidth is the first frequency domain resource.
  • the N subcarriers included in the first frequency domain resource are subcarriers corresponding to the transmission bandwidth of the SRS, and the N subcarriers are continuous subcarriers (which can also be described as N subcarriers with a subcarrier interval of 1).
  • the value of N is equal to the total number of subcarriers corresponding to the transmission bandwidth of the SRS.
  • the transmission bandwidth of the SRS includes m SRS RBs, and the total number of subcarriers corresponding to the transmission bandwidth of the SRS is For the number of subcarriers included in each RB, the terminal equipment determines
  • the system bandwidth in this embodiment of the present application may be understood as one carrier (Component Carrier, CC), or one bandwidth part (Bandwidth part, BWP), etc., where one CC may include multiple BWPs.
  • Component Carrier CC
  • BWP bandwidth part
  • the embodiments of the present application number the subcarriers, and the subcarriers with different numbers correspond to different frequency domain positions.
  • a group of subcarriers can be consecutively arranged in frequency from low to high or from high to low Numbering.
  • Subcarriers are numbered relative to a certain frequency domain range.
  • the index value of a certain subcarrier in the system bandwidth, or, in other words, the number of the subcarrier relative to the system bandwidth means that the number of the subcarrier with the highest or lowest frequency in the system bandwidth is marked as 0, and the subcarriers are numbered according to the frequency from high to low.
  • the subcarriers in the system bandwidth are numbered in sequence from low or from low to high, thereby determining the index value of a certain subcarrier in the system bandwidth.
  • the relative index of the subcarrier mentioned in the embodiment of the present application refers to that the number of the subcarrier with the highest or the lowest frequency in the first frequency domain resource is marked as 0, and the frequency is from high to low or from low to high.
  • the subcarriers in the first frequency domain resource are sequentially numbered in the order of , so as to determine the index value of the subcarrier in the first frequency domain resource.
  • the uniform extraction of subcarriers is called non-uniform extraction, and the maximum number of multiplexed ports is More ports can be multiplexed on the same frequency domain resources.
  • a scheme of determining the frequency domain resources for transmitting SRS by non-uniformly extracting subcarriers may be considered.
  • the bandwidth of the subcarriers is taken as an example to illustrate the maximum number of ports that a subcarrier set can support, as shown in FIG. 3 .
  • the port multiplexing capability is determined by the properties of the partial DFT matrix corresponding to the set of frequency domain resources.
  • the transformation relationship between the frequency domain channel and the delay domain channel on the subcarriers is represented by the side length of DFT matrix of Determined, according to the frequency domain channel, matrix Solve for delay-domain channels.
  • Each subcarrier corresponds to the DFT matrix a line
  • DFT matrix corresponding to subcarriers of The rows form part of the DFT matrix F
  • the properties of F determine the port multiplexing capability on subcarriers.
  • the uniform extraction of sub-carriers is called non-uniform extraction, and the phenomenon that the corresponding columns of different groups are completely linearly correlated will not appear, that is, composed of columns All bases are available.
  • the length of the base is That is, the number of bases is greater than the length of the bases, so The bases cannot be completely orthogonal, that is, a set of non-orthogonal bases, as shown in Figure 4. Assuming that the maximum delay extension of each port is L, the maximum number of multiplexed ports is Therefore, it is possible to multiplex SRS signals of more ports on the same frequency domain resources.
  • an embodiment of the present application provides a communication method to implement multiplexing of more ports on the same frequency domain resource. As shown in Figure 5, the method includes:
  • Step 500 The terminal device determines one or more subcarrier sets.
  • the one or more subcarrier sets are determined from the first frequency domain resource by the first parameter p and the second parameter ⁇ , the first frequency domain resource is determined by the transmission bandwidth of the sounding reference signal SRS, the first frequency domain resource
  • the number of subcarriers included in the domain resource is N, the N subcarriers included in the first frequency domain resource are equally spaced, the first parameter p is a prime number, and the second parameter ⁇ is the original root of the first parameter p.
  • the second parameter ⁇ is the original root representation of the first parameter p, and when n is taken over ⁇ 0,1,...,p-2 ⁇ , ⁇ n mod p is taken over ⁇ 1,...,p-1 ⁇ .
  • determining one or more subcarrier sets from the first frequency domain resource refers to directly determining the numbers of subcarriers included in the one or more subcarrier sets.
  • the first frequency domain resource is all subcarriers included in the transmission bandwidth of the SRS, that is, the first frequency domain resource and the transmission bandwidth of the SRS both include the same N subcarriers. At this time, it can be understood that the interval of N subcarriers is 0.
  • the first frequency domain resource is a part of the subcarriers included in the transmission bandwidth of the sounding reference signal SRS, and the part of the subcarriers is determined according to the transmission comb tooth degree T and the comb tooth displacement ⁇ .
  • the transmission comb degree T is 2
  • the first frequency domain resource includes N subcarriers
  • the transmission bandwidth of the SRS includes 2N subcarriers.
  • the N subcarriers are equally spaced subcarriers with an interval of 2 subcarriers Group.
  • the transmission comb degree T is 4
  • the first frequency domain resource includes N subcarriers
  • the transmission bandwidth of the SRS includes 4N subcarriers.
  • the N subcarriers are equally spaced subcarriers with an interval of 4 subcarriers. carrier group.
  • the network device may send RRC signaling to the terminal device.
  • the RRC signaling may carry the transmission bandwidth of the SRS.
  • the RRC signaling further carries indication information indicating the first frequency domain resource from the transmission bandwidth of the SRS.
  • the indication information is the transmission comb tooth degree T and the comb tooth displacement ⁇ .
  • the indication information is used to determine the position of the first frequency domain resource from the transmission bandwidth of the SRS.
  • the terminal device receives configuration information, which is used to indicate the number of configured SRS resources. Different SRS ports in each SRS resource may occupy different CSs in the same subcarrier set. Different SRS resources may occupy different subcarrier sets, or occupy different CSs in the same subcarrier set.
  • the terminal device may determine the first parameter p and the second parameter ⁇ in the following manners, but not limited to.
  • the network device may configure the transmission bandwidth of the SRS for the terminal device.
  • the terminal device determines the total number of subcarriers corresponding to the transmission bandwidth of the SRS according to the transmission bandwidth of the SRS.
  • the network device may also configure at least two parameters of the starting subcarrier index, the number of subcarriers, or the ending subcarrier index for the terminal device. Therefore, after determining the total number of subcarriers corresponding to the transmission bandwidth of the SRS, the terminal device may further determine the subcarriers corresponding to the transmission bandwidth of the SRS according to at least two parameters in the starting subcarrier index, the number of subcarriers, or the ending subcarrier index Part of the subcarriers in the carrier.
  • the N subcarriers included in the first frequency domain resource are N consecutive subcarriers in the subcarriers corresponding to the transmission bandwidth of the SRS.
  • the value of N is determined by the start subcarrier index and the end subcarrier index, or the number of subcarriers.
  • the N subcarriers included in the first frequency domain resource are continuous subcarriers (which can also be described as N subcarriers with a subcarrier interval of 1).
  • the transmission bandwidth of the SRS includes 34 RBs, the number of subcarriers included in each RB is 12, and the total number of subcarriers corresponding to the transmission bandwidth of the SRS is 408. It is assumed that the indices of the above 408 subcarriers are 0 ⁇ 407.
  • the network device may send RRC signaling to the terminal device.
  • the RRC signaling may carry the transmission bandwidth of the SRS, and the RRC signaling may also carry at least two parameters of the starting subcarrier index, the number of subcarriers, or the ending subcarrier index.
  • the network device can send MAC CE signaling to the terminal device.
  • the MAC CE signaling may carry the transmission bandwidth of the SRS, and the MAC CE signaling may also carry at least two parameters in the starting subcarrier index, the number of subcarriers, or the ending subcarrier index.
  • the network device may configure the transmission bandwidth of the SRS for the terminal device.
  • the terminal device determines the total number of subcarriers corresponding to the transmission bandwidth of the SRS according to the transmission bandwidth of the SRS.
  • the network device can also configure the sending comb tooth degree T and the comb tooth displacement ⁇ for the terminal device, where T is a positive integer and ⁇ 0,...,T-1 ⁇ .
  • the terminal device may determine N subcarriers in the subcarriers corresponding to the transmission bandwidth of the SRS as the first frequency domain resource according to the transmission comb tooth degree T and the comb tooth displacement ⁇ .
  • the value of N is jointly determined by the total number of subcarriers corresponding to the transmission bandwidth of the SRS and the transmission comb tooth degree T.
  • the N subcarriers included in the first frequency domain resource are N equally spaced subcarriers in the subcarriers corresponding to the transmission bandwidth of the SRS, where the subcarrier spacing here is determined by the transmission comb tooth degree T.
  • the transmission bandwidth of the SRS includes 34 RBs, the number of subcarriers included in each RB is 12, and the total number of subcarriers corresponding to the transmission bandwidth of the SRS is 408. It is assumed that the indices of the above 408 subcarriers are 0 ⁇ 407.
  • the network device also configures the sending comb tooth degree T and the comb tooth displacement ⁇ for the terminal device.
  • the network device may send RRC signaling to the terminal device.
  • the RRC signaling may carry the transmission bandwidth of the SRS, and the RRC signaling may also carry the transmission comb tooth degree T and the comb tooth displacement ⁇ .
  • the network device can send MAC CE signaling to the terminal device.
  • the MAC CE signaling may carry the transmission bandwidth of the SRS, and the MAC CE signaling may also carry the transmission comb tooth degree T and the comb tooth displacement ⁇ .
  • each subcarrier in the above-mentioned first frequency domain resource is used to carry an SRS, and the SRS is used to estimate a channel of a transmission bandwidth of the SRS.
  • the terminal device may determine the first parameter p according to the relationship between the first parameter p and N specified in the protocol or configured by the network device.
  • the relationship between the first parameter p and N can be defined as at least one value range of N, for example, the value range of N is N1 to N2 subcarriers, N2 to N3 subcarriers, then N1 to N2 subcarriers Corresponding to the same p value p1, the N2 to N3 subcarriers correspond to the same p value p2, and the values of p1 and p2 are different.
  • the terminal device may also receive first information, where the first information is used to indicate the first parameter p.
  • the terminal device may determine the second parameter ⁇ according to the relationship between the first parameter p and the second parameter ⁇ specified in the protocol or configured by the network device.
  • the relationship between the first parameter p and the second parameter ⁇ may be that the second parameter ⁇ is the largest primitive root of the first parameter p, or the second parameter ⁇ is the smallest primitive root of the first parameter p.
  • the terminal device receives second information, where the second information is used to indicate the second parameter ⁇ .
  • the terminal device receives second information, where the second information is used to indicate a value range of the second parameter ⁇ , and the terminal device determines the second parameter ⁇ according to the second information and the first parameter p.
  • sending comb tooth degree T, comb tooth displacement ⁇ , first parameter p and second parameter ⁇ may be carried by one or more pieces of information, or may be carried by one RRC signaling or MAC CE signaling. This application does not limit this.
  • One or more subcarrier sets are one or more of the S candidate subcarrier sets, and any two of the S candidate subcarrier sets do not have the same subcarrier, that is, the subcarriers included in any two candidate subcarrier sets are completely different.
  • the rth candidate subcarrier set in the S candidate subcarrier sets includes subcarriers in the first frequency domain resource determined by the relative index set Cr, S is a positive integer, r ⁇ 0,...,S-1 ⁇ .
  • the relative index set C r is in, v ⁇ 0,1,...,N-p+1 ⁇ ,
  • the value range of the index value in the relative index set Cr is [0, N-1], and the index value in the relative index set Cr represents the position of the corresponding subcarrier in the first frequency domain resource.
  • a special definition of c 0,0 is made, and the definition method can make c 0,0 , 0 is not the same as all elements in all relative index sets Cr generated by the above method.
  • any two relative index sets in the S relative index sets Cr generated according to the above method do not have the same element, and the union of the S relative index sets Cr is ⁇ v,1+v,...,p-2+ v ⁇ .
  • the relative index set C r is The intersection with the set ⁇ 0,1,...,N-1 ⁇ , where,
  • the relative index set C r is The intersection with the set ⁇ 0,1,...,N-1 ⁇ can ensure that the candidate subcarrier set determined by each relative index set C r is the subcarrier in the first frequency domain resource.
  • a special definition of c 0,0 is made, and the definition method can make c 0,0 , 0 is not the same as all elements in all relative index sets Cr generated by the above method.
  • any two relative index sets in the S relative index sets Cr generated according to the above method do not have the same element, and the union of the S relative index sets Cr is ⁇ 0, 1, . . . , N-1 ⁇ .
  • is a real number, m ⁇ [1,p-1], l cs is a cyclic shift.
  • a value range of m is preset, and an RRC signaling is used to indicate that one of multiple m values is selected for generating an SRS signal on a corresponding SRS resource.
  • the relative index set C r is r ⁇ 0,1,2,3 ⁇ .
  • the rth candidate subcarrier set includes subcarriers in the first frequency domain resource determined relative to the index set Cr.
  • C 0 ⁇ 10,14,25,...,786,795,801 ⁇ has 199 elements in total
  • C 1 ⁇ 17,19,23,...,794,799,803 ⁇ has 199 elements in total
  • C 2 ⁇ 9,13,15 ,...,793,798,802 ⁇ has a total of 199 elements
  • C 3 ⁇ 8,11,12,...,796,797,800 ⁇ has a total of 199 elements.
  • the rth candidate subcarrier set may further include one or more subcarriers corresponding to the relative index set ⁇ 0, 1, . . . , 7 ⁇ .
  • the 0th candidate subcarrier set further includes two subcarriers corresponding to the relative index set ⁇ 0, 5 ⁇
  • the first candidate subcarrier set also includes four subcarriers corresponding to the relative index set ⁇ 1,...,4 ⁇
  • the second candidate subcarrier set also includes two subcarriers corresponding to the relative index set ⁇ 6,7 ⁇
  • the third candidate subcarrier set does not include the subcarriers corresponding to the relative index set ⁇ 0,1,...,7 ⁇ any subcarrier. It can be understood that, the allocation manner of the subcarriers corresponding to the above relative index sets ⁇ 0, 1, .
  • the rth candidate subcarrier set includes subcarriers corresponding to the relative index set Cr.
  • C 0 ⁇ 2,6,17,...,778,787,793 ⁇ has 199 elements in total
  • C 1 ⁇ 9,11,15,...,786,791,795 ⁇ has 199 elements in total
  • C 2 ⁇ 1,5,7 ,...,785,790,794 ⁇ has 199 elements in total
  • C 3 ⁇ 0,3,4,...,788,789,792 ⁇ has 199 elements in total.
  • the rth candidate subcarrier set may further include one or more subcarriers corresponding to the relative index set ⁇ 796, 797, . . . , 803 ⁇ , for example, the 0th candidate subcarrier set also includes the relative index set ⁇ 796, ..., 800 ⁇ corresponding to five subcarriers, the first candidate subcarrier set also includes three subcarriers corresponding to the relative index set ⁇ 801, 802, 803 ⁇ , the second candidate subcarrier set and the third candidate subcarrier set do not include relative indices Any subcarrier in the subcarriers corresponding to the set ⁇ 796,797,...,803 ⁇ . It can be understood that the allocation manner of the subcarriers corresponding to the foregoing relative index set ⁇ 796, 797, .
  • the relative index determined by the relative index set Cr is cr
  • is a real number
  • l cs is a cyclic shift.
  • the SRS sequence elements on the subcarriers corresponding to the relative index set ⁇ 0, 1, . . . , 7 ⁇ may be random sequences or other preset sequences.
  • the SRS sequence elements on the subcarriers corresponding to the relative index set ⁇ 796, 797, . . . , 803 ⁇ may be random sequences or other preset sequences.
  • the rth candidate subcarrier set includes subcarriers corresponding to the relative index set Cr, and the relative index set Cr is The intersection with the set ⁇ 0,1,...,803 ⁇ , where, r ⁇ 0,1,2,3 ⁇ .
  • C 0 ⁇ 1,2,3,...,790,794,799 ⁇ has 202 elements in total
  • C 1 ⁇ 7,9,12,...,789,796,803 ⁇ has 201 elements in total
  • C 2 ⁇ 0,5,8 ,...,800,801,802 ⁇ has 201 elements in total
  • C 3 ⁇ 4,16,17,...,793,795,797 ⁇ has 200 elements in total.
  • is a real number, m ⁇ [1,p-1], l cs is a cyclic shift.
  • One or more subcarrier sets are one or more of the S candidate subcarrier sets, and any two of the S candidate subcarrier sets do not have the same subcarrier, that is, any two candidate subcarrier sets are completely different.
  • the rth candidate subcarrier set in the S candidate subcarrier sets includes subcarriers in the first frequency domain resource determined by the relative index set Cr, S is a positive integer, r ⁇ 0,...,S-1 ⁇ .
  • the relative index set C r is in, v ⁇ 0,1,...,N-p+1 ⁇ ,
  • the value range of the index value in the relative index set Cr is [0, N-1], and the index value in the relative index set Cr represents the position of the corresponding subcarrier in the first frequency domain resource.
  • any two relative index sets in the S relative index sets Cr generated according to the above method do not have the same element, and the union of the S relative index sets Cr is ⁇ v,1+v,...,p-2+ v ⁇ .
  • the relative index set C r is The intersection with the set ⁇ 0,1,...,N-1 ⁇ , where,
  • any two relative index sets in the S relative index sets Cr generated according to the above method do not have the same element, and the union of the S relative index sets Cr is ⁇ 0, 1, . . . , N-1 ⁇ .
  • the relative index determined by the index set Cr is cr
  • a value range of m is preset, and an RRC signaling is used to indicate that one of multiple m values is selected for generating an SRS signal on a corresponding SRS resource.
  • the relative index set C r is r ⁇ 0,1 ⁇ .
  • the rth candidate subcarrier set includes subcarriers corresponding to the relative index set Cr.
  • the rth candidate subcarrier set further includes one or more subcarriers corresponding to the relative index set ⁇ 0,1,...,7 ⁇ , for example, the 0th candidate subcarrier set further includes the relative index set ⁇ 0 , 2, 4, 6 ⁇ corresponding to four sub-carriers, the first candidate sub-carrier set further includes four sub-carriers corresponding to the relative index set ⁇ 1, 3, 5, 7 ⁇ . It can be understood that the allocation manner of the subcarriers corresponding to the above relative index sets ⁇ 0, 1, .
  • the relative index set C r is r ⁇ 0,1 ⁇ .
  • the rth candidate subcarrier set includes subcarriers corresponding to the relative index set Cr.
  • the rth candidate subcarrier set also includes one or more subcarriers corresponding to the relative index set ⁇ 796, 797, . of four subcarriers.
  • the first candidate subcarrier set further includes four subcarriers corresponding to the relative index set ⁇ 797, 799, 801, 803 ⁇ .
  • the rth candidate subcarrier set includes subcarriers corresponding to the relative index set Cr, and the relative index set Cr is The intersection with the set ⁇ 0,1,...,803 ⁇ , where, r ⁇ 0,1 ⁇ .
  • lcs can have multiple possible values, for example, lcs can be equal to 0.
  • Each subcarrier set in the one or more subcarrier sets determined by the terminal device corresponds to one or more values of lcs . If the terminal device determines multiple subcarrier sets, the values of lcs corresponding to the multiple subcarrier sets may be different.
  • the value of cs can be configured by signaling, for example, by a network device.
  • the network device can distinguish different SRS signals according to the values of different lcs , thereby distinguishing different terminal devices. Therefore, the network device can implement code division multiplexing by assigning different values of lcs to different terminal devices.
  • the network device can distinguish different SRS signals according to the values of different lcs , and further distinguish different ports (also called antennas or virtual ports) of the same terminal device. Therefore, the network device can implement code division multiplexing by assigning different values of lcs to different ports.
  • the terminal device transmits the SRS on the two subcarrier sets through two different ports.
  • Two different ports are described below as a first port and a second port.
  • Two sets of sub-carriers are described below with the first set of sub-carriers and the second set of sub-sub-carriers.
  • the terminal device transmits the SRS through the first port in the first subcarrier set, wherein the value of lcs of the SRS sequence element is the first value.
  • the terminal device sends the SRS through the second port in the second subcarrier set, where the value of lcs of the SRS sequence element is the second value.
  • the first value and the second value may be different.
  • the rth candidate subcarrier set includes the subcarriers in the first frequency domain resource determined by the relative index set Cr, and may also include the subcarriers in the first frequency domain resource except the relative index set C r .
  • At least one sub-carrier other than the sub-carriers in the first frequency domain resource determined by the index set C r is, for example, an example corresponding to the above solution 1 and solution 2 respectively.
  • At least one subcarrier with a relative index set The determined subcarriers in the first frequency domain resource do not overlap. That is, there are no overlapping subcarriers in any two subcarrier sets.
  • the terminal device can set the relative index set
  • the subcarriers in the first frequency domain resource determined by C1 are directly used as a subcarrier set (for example, denoted as subcarrier set 1), and then the N subcarriers are divided into the first frequency domain resource determined by the relative index set C1 .
  • the sub-carriers other than the sub-carriers are regarded as a sub-carrier set (for example, denoted as sub-carrier set 0).
  • the terminal device adopts the above solution 1 or solution 2, and the terminal device can directly regard the subcarriers in the first frequency domain resource determined by the relative index set C1 as a subcarrier set (for example, denoted as subcarriers Carrier set 1), the subcarriers in the first frequency domain resource determined by the relative index set C2 are directly used as a subcarrier set (for example, denoted as subcarrier set 2 ) , and the first frequency determined by the relative index set C3
  • the subcarriers in the domain resources are directly regarded as a subcarrier set (for example, denoted as subcarrier set 3), and then the subcarriers in the N subcarriers except subcarrier sets 1 to 3 are regarded as a subcarrier set (for example, denoted as subcarrier set 3) is the subcarrier set 0). Therefore, the terminal device can directly determine S-1 subcarrier sets by using the above solution 1 or 2, and then the remaining one subcarrier set is the subcarriers of the
  • the index value in the relative index set Cr is the relative position information of the subcarriers in the first frequency domain resource, and it is also necessary to determine the subcarriers in the first frequency domain resource corresponding to the relative index set Cr in the system bandwidth.
  • T is a positive integer, ⁇ 0,...,T-1 ⁇ , is the frequency domain shift value with subcarriers as the count unit.
  • in is the number of subcarriers included in each resource block, is the frequency domain shift value with the resource block as the count unit.
  • the 0th candidate subcarrier set includes the subcarriers in the first frequency domain resource determined by the relative index set C 0 , and specifically includes 199 subcarriers whose index values are ⁇ 128, 144, 188, . . . , 3232, 3268, 3292 ⁇ in the system bandwidth;
  • the first candidate subcarrier set includes the subcarriers in the first frequency domain resource determined by the relative index set C1 , and specifically includes 199 subcarriers with index values ⁇ 156, 164, 180, ..., 3264, 3284, 3300 ⁇ in the system bandwidth;
  • the second candidate subcarrier set includes the subcarriers in the first frequency domain resource determined by the relative index set C2, and specifically includes 199 subcarriers with index values ⁇ 124, 140, 148, . . . , 3260, 3280, 3296 ⁇ in the system bandwidth;
  • the third candidate subcarrier set includes the subcarriers in the first frequency domain resource determined by the relative index set C3, and specifically includes 199 subcarriers with index values ⁇ 120, 132, 136, . . . , 3272, 3276, 3288 ⁇ in the system bandwidth.
  • each possible value of ⁇ in ⁇ 0,...,T-1 ⁇ corresponds to a frequency domain resource group, and each frequency domain resource group is an equally spaced sub-group.
  • Carrier group the interval is T subcarriers.
  • S candidate subcarrier sets can be obtained by adopting the method of the embodiment shown in FIG. 5 based on the frequency domain resource group .
  • the value of S can also be different.
  • the terminal device may select one or more subcarrier sets from the S candidate subcarrier sets corresponding to one of the possible values of ⁇ to send the SRS.
  • the frequency domain resource group 1 can use the method provided by the embodiment shown in FIG. 5 to determine 4 candidate subcarrier sets
  • the frequency domain resource group 2 can use the method provided by the above embodiment shown in FIG. 5 to determine 2 candidate subcarriers gather.
  • the terminal device may transmit the SRS on one or more of the 4 candidate subcarrier sets determined by the frequency domain resource group 1 .
  • the terminal device may transmit the SRS on one or more subcarrier sets in the 2 candidate subcarrier sets determined by frequency domain resource group 2 .
  • the method of the above-mentioned embodiment shown in FIG. 5 may be adopted based on the frequency domain resource group Obtain S candidate subcarrier sets. And for different possible values of ⁇ , the value of S can also be different.
  • the technical solution provided in the background art can be used to send SRS, such as sending ZC sequence.
  • the operation ⁇ is the set subtraction operation.
  • the old comb teeth can be used for SRS transmission by old users (ie, some terminal equipment), and the new comb teeth can use the method provided by the embodiment shown in FIG. 5 to determine 4 candidate subcarrier sets.
  • a new user ie, another part of terminal equipment
  • the technical solutions provided in the embodiments of the present application and the technical solutions provided in the background art can coexist in the same OFDM symbol. Therefore, the technical solutions provided in the embodiments of the present application can be compatible with the technical solutions provided in the background art, and have a wide range of application scenarios.
  • the metric ⁇ is the maximum value of the correlation coefficient of any two columns of F, which characterizes the column orthogonality of F. The smaller the ⁇ , the better the channel estimation performance:
  • F i is the i-th column of F
  • F j is the j-th column of F.
  • the partial DFT matrix F corresponding to the 199 subcarriers determined by the relative index set C 0 is a matrix with 199 rows and 796 columns, each column of the matrix F is a basis vector, and the 796 columns have 796 lengths is the basis vector of 199.
  • the partial DFT matrix F corresponding to the 199 subcarriers determined by the relative index set C1 is a matrix with 199 rows and 796 columns, each column of the matrix F is a basis vector, and the 796 columns have 796 lengths is the basis vector of 199.
  • the partial DFT matrix F corresponding to the 199 subcarriers determined by the relative index set C2 is a matrix with 199 rows and 796 columns, each column of the matrix F is a basis vector, and the 796 columns have 796 lengths is the basis vector of 199.
  • the partial DFT matrix F corresponding to the 199 subcarriers determined by the relative index set C3 is a matrix with 199 rows and 796 columns, each column of the matrix F is a basis vector, and the 796 columns have 796 lengths is the basis vector of 199.
  • a group of 796 equally spaced subcarriers are divided into 4 candidate subcarrier sets, each candidate subcarrier set corresponds to 796 quasi-orthogonal basis vectors of length 199, and the set The cross-correlation between any two of the quasi-orthogonal basis vectors is extremely low.
  • a group of 796 sub-carriers at equal intervals are divided into 4 groups according to uniform comb teeth, and each group of sub-carriers corresponds to 199 orthogonal basis vectors with a length of 199.
  • the embodiment of the present application can utilize the same frequency domain resources to obtain S times the number of available basis vectors provided by the solution of the background art, and the cross-correlation between the obtained basis vectors is extremely low, thereby realizing S times the code domain expansion. .
  • the rth candidate subcarrier set is in the first frequency domain determined by including the relative index set Cr
  • it may also include one or more subcarriers in the first frequency domain resource determined by the relative index set ⁇ 796, 797, ..., 803 ⁇
  • the 0th candidate subcarrier set also includes a relative index set ⁇ 796, . It can be understood that the number of sub-carriers corresponding to the relative index set ⁇ 796, 797, .
  • the five subcarriers corresponding to the relative index set ⁇ 796,...,800 ⁇ can be used for channel estimation together with other subcarriers in the 0th candidate subcarrier set, or can be independently estimated.
  • the three subcarriers corresponding to the relative index set ⁇ 801, 802, 803 ⁇ may perform channel estimation together with other subcarriers in the first candidate subcarrier set, or may perform channel estimation independently.
  • the embodiment of the present application also provides a design scheme of the SRS sequence corresponding to the determination of the S candidate subcarrier sets. Combined with the design scheme of the SRS sequence provided by the embodiment of the present application, it can approximate the existing uniform comb
  • the tooth pilot allocation scheme combines the peak to average power ratio (PAPR) performance of the existing ZC sequences.
  • Step 510 The terminal device transmits the SRS on one or more sets of subcarriers.
  • the network device can configure which subcarrier set or sets the terminal device uses. For example, each subcarrier set has an index, and the network device can configure the index of the subcarrier set used by the terminal device. Alternatively, the terminal device may inform the network device of the index of the set of subcarriers employed.
  • the terminal device generates the frequency domain SRS sequence according to the SRS sequence elements and the CS, and performs IFFT transformation according to the relative index cr,n to form the SRS signal to be sent.
  • the terminal device may split the determined SRS sequence element into multiple segments, and the multiple segments are transmitted in a frequency hopping manner.
  • the terminal device receives SRS frequency hopping configuration information, where the configuration information is used to indicate the number of SRS frequency hopping and/or the SRS frequency hopping bandwidth.
  • the terminal device determines, according to the above SRS sequence elements, the SRS sequence elements for sending the SRS on each SRS frequency hopping bandwidth.
  • the terminal device determines the SRS sequence element corresponding to the frequency domain position according to the frequency domain position occupied by the frequency hopping bandwidth.
  • the network device may determine one or more subcarrier sets in the same manner as in step 500, and receive the SRS from the terminal device on the determined subcarrier set, which will not be repeated here.
  • Example 1 The embodiments of the present application will be further illustrated below with reference to Example 1 and Example 2.
  • the N subcarriers are divided into two sets of subcarriers, which are respectively represented by subcarrier set 0 and subcarrier set 1, wherein the number of subcarriers included in each subcarrier set is N/2.
  • the relative index set C1 corresponding to the subcarrier set 1 is constructed as follows:
  • the relative index set C0 corresponding to the subcarrier set 0 is the complement of the relative index set C1.
  • the relative index set C1 corresponding to subcarrier set 1 is ⁇ 1 2 3 5 8 10 12 15 16 20 22 26 30 35 38 39 42 45 46 47 48 49 53 54 55..., 406 ⁇
  • the relative index set C0 is the complement of the relative index set C1.
  • N in the above formula can be replaced by p-1, and according to the definition of the relative index set above, determine the relative index set C1' corresponding to subcarrier set 1 and the relative index set C0 corresponding to subcarrier set 0 ', from the subcarriers corresponding to N-P+1 index values ⁇ p-1, p,...N-1 ⁇ , determine the first subcarrier set and the second subcarrier set, wherein the subcarrier set 1 includes the first subcarrier set Subcarrier set, subcarrier set 0 includes the second subcarrier set.
  • N-P+1 subcarriers may be randomly allocated to subcarrier set 1 and subcarrier set 0.
  • N in the above formula can be replaced by p-1.
  • N in the above formula can be replaced by p-1.
  • the index values exceeding N-1 in "and C0" are deleted to obtain subcarrier set 1 and subcarrier set 0.
  • the number of index values to be deleted is P-1-N.
  • the N subcarriers are divided into four subcarrier sets, which are represented by subcarrier set 1, subcarrier set 2, subcarrier set 3, and subcarrier set 0, respectively.
  • the number of subcarriers in each set is not necessarily the same.
  • C0 is the set ⁇ 0,...,N-1 ⁇ (C1 ⁇ C2 ⁇ C3).
  • C0 is the set ⁇ 0,...,N-1 ⁇ (C1 ⁇ C2 ⁇ C3).
  • N in the above formula can be replaced by p-1, first determine the relative index set C0' ⁇ C3', and further expand according to N-P+1 to obtain the subcarrier sets 0 ⁇ 3.
  • N-P+1 subcarriers may be randomly allocated to subcarrier set 0 to subcarrier set 3.
  • N in the above formula can be replaced by p-1, first determine the relative index set C0" ⁇ C3", and further delete the index values exceeding N-1 in C0" ⁇ C3" according to N, Obtain subcarrier sets 0-3. Among them, the number of index values to be deleted is P-1-N.
  • the network device and the terminal device include corresponding hardware structures and/or software modules for performing each function.
  • the units and method steps of each example described in conjunction with the embodiments disclosed in the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software-driven hardware depends on the specific application scenarios and design constraints of the technical solution.
  • FIG. 7 and FIG. 8 are schematic structural diagrams of possible communication apparatuses provided by embodiments of the present application. These communication apparatuses can be used to implement the functions of the terminal equipment or the network equipment in the above method embodiments, and thus can also achieve the beneficial effects of the above method embodiments.
  • the communication apparatus may be a terminal device, a network device, or a module (eg, a chip) applied to the terminal device or the network device.
  • the communication apparatus 700 includes a processing unit 710 and a transceiver unit 720 .
  • the communication apparatus 700 is configured to implement the function of the terminal device or the network device in the method embodiment shown in the above 5.
  • the processing unit 710 is used to determine one or more subcarrier sets, the one or more subcarrier sets are determined by the first parameter p and The second parameter ⁇ is determined from the first frequency domain resource, the first frequency domain resource is determined by the transmission bandwidth of the SRS, the number of subcarriers included in the first frequency domain resource is N, and the first frequency domain resource is N.
  • the N subcarriers included in the domain resources are distributed at equal intervals, the first parameter p is a prime number, and the second parameter ⁇ is the original root of the first parameter p; the transceiver unit 720 is used for the one or more subcarriers
  • the SRS is sent on the set.
  • the processing unit 710 is used to determine one or more subcarrier sets, the one or more subcarrier sets are determined by the first parameter p and The second parameter ⁇ is determined from the first frequency domain resource, the first frequency domain resource is determined by the transmission bandwidth of the sounding reference signal SRS, the number of subcarriers included in the first frequency domain resource is N, and the The N subcarriers included in the first frequency domain resource are distributed at equal intervals, the first parameter p is a prime number, and the second parameter ⁇ is the original root of the first parameter p;
  • the SRS is received on multiple sets of subcarriers.
  • the communication apparatus 800 includes a processor 810 and an interface circuit 820 .
  • the processor 810 and the interface circuit 820 are coupled to each other.
  • the interface circuit 820 can be a transceiver or an input-output interface.
  • the communication apparatus 800 may further include a memory 830 for storing instructions executed by the processor 810 or input data required by the processor 810 to execute the instructions or data generated after the processor 810 executes the instructions.
  • the processor 810 is used to implement the function of the above-mentioned processing unit 710
  • the interface circuit 820 is used to implement the function of the above-mentioned transceiver unit 720 .
  • the terminal device chip When the above communication device is a chip applied to a terminal device, the terminal device chip implements the functions of the terminal device in the above method embodiments.
  • the terminal device chip receives information from other modules (such as a radio frequency module or an antenna) in the terminal device, and the information is sent by the network device to the terminal device; or, the terminal device chip sends information to other modules (such as a radio frequency module or an antenna) in the terminal device antenna) to send information, the information is sent by the terminal equipment to the network equipment.
  • modules such as a radio frequency module or an antenna
  • the network device chip When the above communication device is a chip applied to a network device, the network device chip implements the functions of the network device in the above method embodiments.
  • the network device chip receives information from other modules (such as a radio frequency module or an antenna) in the network device, and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as a radio frequency module or an antenna). antenna) to send information, the information is sent by the network equipment to the terminal equipment.
  • modules such as a radio frequency module or an antenna
  • the processor in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM) , PROM), Erasable Programmable Read-Only Memory (Erasable PROM, EPROM), Electrically Erasable Programmable Read-Only Memory (Electrically Erasable Programmable Read-Only Memory (Electrically EPROM, EEPROM), registers, hard disks, removable hard disks, CD-ROMs or known in the art in any other form of storage medium.
  • RAM Random Access Memory
  • ROM read-only memory
  • PROM programmable read-only memory
  • PROM Erasable Programmable Read-Only Memory
  • EPROM Electrically Erasable Programmable Read-Only Memory
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in a network device or in an end device.
  • the processor and the storage medium may also exist in the network device or the terminal device as discrete components.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs or instructions.
  • the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable apparatus.
  • the computer program or instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website site, computer, A server or data center transmits by wire or wireless to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server, data center, or the like that integrates one or more available media.
  • the usable medium can be a magnetic medium, such as a floppy disk, a hard disk, and a magnetic tape; it can also be an optical medium, such as a digital video disc (DVD); it can also be a semiconductor medium, such as a solid state drive (solid state drive). , SSD).
  • a magnetic medium such as a floppy disk, a hard disk, and a magnetic tape
  • an optical medium such as a digital video disc (DVD)
  • DVD digital video disc
  • it can also be a semiconductor medium, such as a solid state drive (solid state drive). , SSD).
  • “at least one” means one or more, and “plurality” means two or more.
  • “And/or”, which describes the relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, it can indicate that A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are a kind of "or” relationship; in the formula of this application, the character "/” indicates that the related objects are a kind of "division” Relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,该方法包括:终端设备确定一个或多个子载波集合,在一个或多个子载波集合上发送SRS。其中,一个或多个子载波集合是由第一参数p和第二参数α从第一频域资源中确定的,第一频域资源是由SRS的发送带宽确定的,第一频域资源包括的子载波数量为N,第一频域资源包括的N个子载波等间隔分布,第一参数p为素数,第二参数α为第一参数p的原根。采用上述方法可以实现在相同频域资源上复用更多端口。

Description

一种通信方法及装置 技术领域
本申请实施例涉及无线通信领域,尤其涉及一种通信方法及装置。
背景技术
在长期演进(long term evolution,LTE)以及新空口接入技术(new radio access technology,NR)中,多输入多输出(Multiple Input and Multiple Output,MIMO)技术被广泛采用。多输入多输出采用多层并行传输的传输模式来提供较高的数据传输速率。网络设备侧可以利用获得的下行信道信息(channel state information,CSI),进行空域预编码(precoding),来提高信号传输质量或者速率。对于时分双工(time division duplexing,TDD)系统,无线信道的上下行信道具有互易性,网络设备接收终端设备发送的探测参考信号(sounding reference signal,SRS),进行信道估计得到上行CSI,进而根据上下行互易性获得下行CSI。
其中,用于传输SRS的频域资源呈等间隔梳齿排列,频率上相邻的子载波的中心频点的间隔为K TC个子载波。例如,频域资源为m SRS个RB,则在频域上被分为K TC组频域资源,每组频域资源包括的子载波数量为
Figure PCTCN2020119723-appb-000001
其中
Figure PCTCN2020119723-appb-000002
为每个RB包括的子载波数量。如图1所示,
Figure PCTCN2020119723-appb-000003
个子载波是对
Figure PCTCN2020119723-appb-000004
个子载波的均匀抽取。每组频域资源均可用于传输SRS。终端设备可以在上述至少一组资源上发送SRS。多个终端设备可以通过码分复用方式在同一组频域资源上发送SRS。SRS信号的索引可以是端口,多个端口对应来自多个终端设备的多根发射天线。
以一组频域资源包括的子载波数量为
Figure PCTCN2020119723-appb-000005
个为例,一把梳齿支持码分复用的最大端口数量为
Figure PCTCN2020119723-appb-000006
其中,每个端口的最大时延扩展为L,单位为
Figure PCTCN2020119723-appb-000007
),其中T s为一个OFDM符号的时间(不包括循环前缀)。提高SRS的容量可以支持更多的用户,更及时的进行上行信道的测量。
发明内容
本申请实施例提供一种通信方法及装置,用于实现在相同频域资源上复用更多端口的SRS信号。
第一方面,本申请实施例提供一种通信方法,示例性地,该方法的执行主体可以为终端设备或终端设备内的芯片。该方法包括:确定一个或多个子载波集合,所述一个或多个子载波集合是由第一参数p和第二参数α从第一频域资源中确定的,所述第一频域资源是由SRS的发送带宽确定的,所述第一频域资源包括的子载波数量为N,所述第一频域资源包括的N个子载波等间隔分布,所述第一参数p为素数,所述第二参数α为所述第一参数p的原根;在所述一个或多个子载波集合上发送所述SRS。
可选的,在发送SRS之前,终端设备根据第一频域资源包括的子载波数量,确定SRS的序列,并将SRS的序列映射在第一频域资源上。
可选的,第一频域资源中包括的N个子载波是频域连续的,或者,第一频域资源中包 括的N个子载波是间隔为2个子载波的等间隔子载波组,或者,第一频域资源中包括的N个子载波是间隔为4个子载波的等间隔子载波组,或者,第一频域资源中包括的N个子载波是间隔为8个子载波的等间隔子载波组。
可选的,第一参数p的取值是根据N确定的。
可选的,第一参数p的取值直接根据SRS的发送带宽包括的子载波数量确定的。
可选的,第二参数α的取值是根据第一参数p的取值确定的。
采用上述方法,终端设备在一个或多个子载波集合上发送SRS,其中,上述一个或多个子载波集合是在第一频域资源非均匀抽取子载波得到的,因而能够实现在相同频域资源上复用更多端口。
在一种可能的设计中,所述一个或多个子载波集合为S个候选子载波集合中的一个或多个,所述S个候选子载波集合中任何两个子载波集合各自包括的子载波互不相同;所述S个候选子载波集合中的第r个候选子载波集合包含相对索引集合C r确定的第一频域资源中的子载波,S为正整数,r∈{0,…,S-1},所述相对索引集合C r
Figure PCTCN2020119723-appb-000008
Figure PCTCN2020119723-appb-000009
其中,
Figure PCTCN2020119723-appb-000010
v∈{0,1,…,N-p+1},
Figure PCTCN2020119723-appb-000011
或,所述相对索引集合C r
Figure PCTCN2020119723-appb-000012
Figure PCTCN2020119723-appb-000013
与集合{0,1,…,N-1}的交集,其中,
Figure PCTCN2020119723-appb-000014
Figure PCTCN2020119723-appb-000015
运算log α(·)为:给定任意元素x∈[1,p-1],log α(x)=y,y为满足y∈[0,p-2],并且α y mod p=x的整数。
可选的,每个配置的SRS资源对应S个候选子载波集合中的一个。不同SRS资源对应的候选子载波集合相同或不同。
采用上述设计,可以实现将第一频域资源包括的N个子载波分为S个候选子载波集合,S个候选子载波集合中的任意一个候选子载波集合包括的子载波在频域上非等间隔,同一个候选子载波集合上可以通过码分复用的方式复用多个SRS端口,不同子载波集合可以通过频分复用的方式复用多个SRS端口。
在一种可能的设计中,所述相对索引集合C r中相对索引为c r,n的子载波上的SRS序列元素为
Figure PCTCN2020119723-appb-000016
d r,n=α rα Sn mod p,w=1,或者w=-1,Δ为实数,
Figure PCTCN2020119723-appb-000017
m∈[1,p-1],l cs为循环移位。
采用上述设计的SRS序列元素可逼近现有均匀梳齿导频分配方案结合现有ZC序列的PAPR性能。
在一种可能的设计中,所述一个或多个子载波集合为S个候选子载波集合中的一个或多个,所述S个候选子载波集合的任何两个没有相同的子载波,所述S个候选子载波集合中的第r个候选子载波集合包含相对索引集合C r确定的第一频域资源中的子载波,S为正整数,r∈{0,…,S-1};所述相对索引集合C r
Figure PCTCN2020119723-appb-000018
其中,
Figure PCTCN2020119723-appb-000019
v∈{0,1,…,N-p+1},
Figure PCTCN2020119723-appb-000020
或,所述相对索引集合C r
Figure PCTCN2020119723-appb-000021
与集合{0,1,…,N-1}的交集,其中,
Figure PCTCN2020119723-appb-000022
Figure PCTCN2020119723-appb-000023
采用上述设计,可以实现将第一频域资源包括的N个子载波分为S个候选子载波集合,且S个候选子载波集合中任何两个子载波集合各自包括的子载波互不相同,S个候选子载 波集合中的任意一个候选子载波集合包括的子载波在频域上非等间隔,同一个候选子载波集合上可以通过码分复用的方式复用多个SRS端口,不同子载波集合可以通过频分复用的方式复用多个SRS端口。
在一种可能的设计中,相对索引集合C r中的相对索引为c r,n的子载波上的SRS序列元素为
Figure PCTCN2020119723-appb-000024
m∈[1,p-2],Δ为实数,l cs为循环移位,
Figure PCTCN2020119723-appb-000025
w=1或者w=-1,或者
Figure PCTCN2020119723-appb-000026
m∈[1,p-2],Δ为实数,l cs为循环移位,
Figure PCTCN2020119723-appb-000027
w=1或者w=-1;运算log α(·)为:给定任意元素x∈[1,p-1],log α(x)=y,y为满足y∈[0,p-2],并且α y mod p=x的整数。
采用上述设计的SRS序列元素可逼近现有均匀梳齿导频分配方案结合现有ZC序列的PAPR性能。
在一种可能的设计中,在所述第r个候选子载波集合还包括所述第一频域资源中除相对索引集合C r确定的子载波之外的至少一个子载波时,对于所有
Figure PCTCN2020119723-appb-000028
所述至少一个子载波与所述相对索引集合
Figure PCTCN2020119723-appb-000029
确定的所述第一频域资源中的子载波不交叠。
采用上述设计S个候选子载波集合中任何两个子载波集合各自包括的子载波互不相同。
在一种可能的设计中,所述相对索引集合C r确定的第一频域资源中的子载波在系统带宽中的索引值为:
Figure PCTCN2020119723-appb-000030
其中,T为正整数,β∈{0,…,T-1},
Figure PCTCN2020119723-appb-000031
为以子载波为计数单位的频域移位值。
采用上述设计可以确定由相对索引集合C r确定的第一频域资源中的子载波在系统带宽中的索引值。
在一种可能的设计中,所述第一参数p为小于或等于N+1的最大素数;或者,所述第一参数p为大于或等于N+1的最小素数。
在一种可能的设计中,第一参数p的取值方式与第一频域资源占用的子载波数量或者SRS的发送带宽占用的子载波数量是相关的。具体的,当第一频域资源占用的子载波数量满足第一取值范围时,第一参数p的取值方式为小于或等于N+1的最大素数,当第一频域资源占用的子载波数量满足第二取值范围时,第一参数p为大于或等于N+1的最小素数。
在一种可能的设计中,所述第二参数α为所述第一参数p的最大原根;或者,所述第二参数α为所述第一参数p的最小原根。
在一种可能的设计中,第二参数α的取值方式与第一参数p的取值是相关的。具体的,当第一参数p的大小满足第一取值范围时,第二参数α为第一参数p的最大原根,当第一参数p的大小满足第二取值范围时,第二参数α为第一参数p的最小原根。
在一种可能的设计中,接收第一信息,所述第一信息用于指示配置参数的取值,所述配置参数包括第一参数p,第二参数α,参数T,参数β中的至少一个。
采用上述设计,网络设备可以通过RRC信令或MAC CE信令为终端设备配置上述至少一种参数的取值。
第二方面,本申请实施例提供一种通信方法,示例性地,该方法的执行主体可以为网络设备或网络设备内的芯片。该方法包括:确定一个或多个子载波集合,所述一个或多个子载波集合是由第一参数p和第二参数α从第一频域资源中确定的,所述第一频域资源是由探测参考信号SRS的发送带宽确定的,所述第一频域资源包括的子载波数量为N,所述 第一频域资源包括的N个子载波等间隔分布,所述第一参数p为素数,所述第二参数α为所述第一参数p的原根;在所述一个或多个子载波集合上接收所述SRS。
采用上述方法,网络设备可以在一个或多个子载波集合上接收SRS,其中,上述一个或多个子载波集合是在第一频域资源非均匀抽取子载波得到的,因而能够实现在相同频域资源上复用更多端口。
在一种可能的设计中,所述一个或多个子载波集合为S个候选子载波集合中的一个或多个,所述S个候选子载波集合中任何两个子载波集合各自包括的子载波互不相同;
所述S个候选子载波集合中的第r个候选子载波集合包含相对索引集合C r确定的第一频域资源中的子载波,S为正整数,r∈{0,…,S-1},
所述相对索引集合C r
Figure PCTCN2020119723-appb-000032
其中,
Figure PCTCN2020119723-appb-000033
v∈{0,1,…,N-p+1},
Figure PCTCN2020119723-appb-000034
或,
所述相对索引集合C r
Figure PCTCN2020119723-appb-000035
与集合{0,1,…,N-1}的交集,其中,
Figure PCTCN2020119723-appb-000036
Figure PCTCN2020119723-appb-000037
运算log α(·)为:给定任意元素x∈[1,p-1],log α(x)=y,y为满足y∈[0,p-2],并且α y mod p=x的整数。
在一种可能的设计中,所述相对索引集合C r中相对索引为c r,n的子载波上的SRS序列元素为
Figure PCTCN2020119723-appb-000038
d r,n=α rα Sn mod p,w=1,或者w=-1。Δ为实数,
Figure PCTCN2020119723-appb-000039
m∈[1,p-1],l cs为循环移位。
在一种可能的设计中,所述一个或多个子载波集合为S个候选子载波集合中的一个或多个,所述S个候选子载波集合的任何两个没有相同的子载波,所述S个候选子载波集合中的第r个候选子载波集合包含相对索引集合C r确定的第一频域资源中的子载波,S为正整数,r∈{0,…,S-1};
所述相对索引集合C r
Figure PCTCN2020119723-appb-000040
其中,
Figure PCTCN2020119723-appb-000041
v∈{0,1,…,N-p+1},
Figure PCTCN2020119723-appb-000042
或,
所述相对索引集合C r
Figure PCTCN2020119723-appb-000043
与集合{0,1,…,N-1}的交集,其中
Figure PCTCN2020119723-appb-000044
在一种可能的设计中,索引集合C r确定的相对索引为c r,n的子载波上的SRS序列元素为
Figure PCTCN2020119723-appb-000045
m∈[1,p-2],Δ为实数,,l cs为循环移位,
Figure PCTCN2020119723-appb-000046
w=1或者w=-1,或者
Figure PCTCN2020119723-appb-000047
m∈[1,p-2],Δ为实数,l cs为循环移位,
Figure PCTCN2020119723-appb-000048
w=1或者w=-1;
运算log α(·)为:给定任意元素x∈[1,p-1],log α(x)=y,y为满足y∈[0,p-2],并且α y mod p=x的整数。
在一种可能的设计中,在所述第r个候选子载波集合还包括所述第一频域资源中除相 对索引集合C r确定的子载波之外的至少一个子载波时,对于所有
Figure PCTCN2020119723-appb-000049
所述至少一个子载波与所述相对索引集合
Figure PCTCN2020119723-appb-000050
确定的所述第一频域资源中的子载波不交叠。
在一种可能的设计中,所述相对索引集合C r确定的第一频域资源中的子载波在系统带宽中的索引值为:
Figure PCTCN2020119723-appb-000051
其中,T为正整数,β∈{0,…,T-1},
Figure PCTCN2020119723-appb-000052
为以子载波为计数单位的频域移位值。
在一种可能的设计中,所述第一参数p为小于或等于N+1的最大素数;或者,所述第一参数p为大于或等于N+1的最小素数。
在一种可能的设计中,所述第二参数α为所述第一参数p的最大原根;或者,所述第二参数α为所述第一参数p的最小原根。
在一种可能的设计中,发送第一信息,所述第一信息用于指配置参数的取值,所述配置参数包括第一参数p,第二参数α,参数T,参数β中的至少一个。
第三方面,本申请实施例提供一种通信装置,所述装置包括用于执行第一方面和第一方面中的任意一种可能的设计的模块或者所述装置包括用于执行第二方面和第二方面中的任意一种可能的设计的模块。
第四方面,本申请实施例提供一种通信装置,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现第一方面和第一方面中的任意一种可能的设计,或者,所述处理器通过逻辑电路或执行代码指令用于实现第二方面和第二方面中的任意一种可能的设计。
第六方面,本申请实施例提供一种计算机可读存储介质,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现第一方面和第一方面中的任意一种可能的设计,或者第二方面和第二方面中的任意一种可能的设计。
第七方面,本申请实施例提供一种包含程序的计算机程序产品,当其在通信装置上运行时,使得通信装置执行第一方面和第一方面中的任意一种可能的设计或者第二方面和第二方面中的任意一种可能的设计。
附图说明
图1为本申请背景技术中用于传输SRS的频域资源上呈等间隔梳齿排列的示意图;
图2为本申请的实施例应用的通信系统的示意图;
图3为本申请实施例中一把梳齿可以支持的最大正交端口的数量的示意图之一;
图4为本申请实施例中一把梳齿可以支持的最大正交端口的数量的示意图之二;
图5为本申请实施例中一种通信方法的概述流程图;
图6为本申请实施例中新用户和老用户在同一个OFDM符号内共存的示意图;
图7为本申请实施例中一种通信装置的结构示意图之一;
图8为本申请实施例中一种通信装置的结构示意图之二。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
图2示出了本申请实施例适用的一种通信系统的示意图。如图2所示,该通信系统100可以包括至少一个网络设备,例如图2所示的网络设备101。该通信系统100还可以包括至少一个终端设备,例如图2所示的终端设备102至107。其中,该终端设备102至107可以是移动的或固定的。网络设备101和终端设备102至107中的一个或多个均可以通过无线链路通信。每个网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
可选地,终端设备之间可以直接通信。例如可以利用设备到设备(device to device,D2D)技术等实现终端设备之间的直接通信。如图2中所示,终端设备105与106之间、终端设备105与107之间,可以利用D2D技术直接通信。终端设备106和终端设备107可以单独或同时与终端设备105通信。
终端设备105至107也可以分别与网络设备101通信。例如可以直接与网络设备101通信,如图2中的终端设备105和106可以直接与网络设备101通信;也可以间接地与网络设备101通信,如图2中的终端设备107经由终端设备106与网络设备101通信。
可以理解的是,图2只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括核心网设备、无线中继设备和无线回传设备,在图2中未画出。此外本申请的实施例对该通信系统中包括的网络设备和终端设备的数量不做限定。
其中,终端设备通过无线方式与网络设备相连,从而接入到该移动通信系统中。网络设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
终端设备也可以称为终端、用户设备(user equipment,UE)、移动台、移动终端等。终端设备可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
网络设备和终端设备之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端设备之间可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
在本申请的实施例中,时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是离散傅里叶变换扩频OFDM(Discrete Fourier Transform-spread-OFDM,DFT-s-OFDM)符号。如果没有特别说明,本申请实施例中的符号均指时域符号。
在本申请的实施例中,均以SRS作为示例。SRS也可以替换为信道状态信息参考信号(Channel State Information Reference Resource,CSI-RS),或者解调参考信号(Demodulation Reference Resource,DMRS),或者时域/频域/相位跟踪参考信号等。其中,CSI-RS可以用于获取信道信息从而执行CSI测量上报的已知信号。DMRS可以用于共享信道或者控制信道接收时做信道估计的已知信号。
以下介绍本发明中的名词:
探测参考信号(Sounding Reference Signal,SRS)
UE根据预设的已知序列在特定的物理资源上生成SRS并发送,基站侧根据已知序列在该特定的物理资源上通过接收的SRS可以估计得到信道矩阵,用于做上行数据调度或者利用信道互易性做下行数据调度。示例性的,现有技术中采用ZC序列生成SRS。SRS可以位于一个时隙中的一个或者多个OFDM符号上,可以占用系统带宽中所有的子载波,也可以采用梳齿形式占用系统带宽中的部分子载波,从而提升网络资源利用率。
SRS在时域上可以是周期性发送的,通常会定义发送周期和偏置,SRS会在周期时域位置上做定期发送。SRS在时域上也可以是非周期性发送的,此时需要DCI信令指示SRS的发送时刻,SRS会在周期时域位置上做瞬时发送。
SRS资源定义了用于发送SRS的时频资源。具体的,每个SRS资源会配置如下参数:
SRS资源索引值:当配置了多个SRS资源时,通过索引值区分SRS资源。
SRS端口的数量:通常,一个UE的SRS端口数量可以为UE的发送天线数量,此时,每个SRS端口对应一个UE发送天线;每个SRS端口可以对应发送天线的一个空域预编码向量,也就是可以对应一个空间波束赋形方式。通常,一个SRS资源上的多个SRS端口的SRS信号占用相同的时频资源,通过码分方式复用。例如,不同SRS端口的SRS信号使用不同的循环移位(Cyclic shift,CS)。
SRS占用的时域位置:即时域周期或者偏置的配置信息。
SRS的发送带宽。
CS值:序列在时域做循环移位的位数。同一个时频资源上,当SRS的时频资源是等间隔分布的子载波时,不同SRS端口的不同SRS信号可以通过码分复用的正交方式,避免彼此的干扰,该正交方式可以通过循环移位实现。当信道的时延扩展很小时,CS可以基本实现码分正交。接收端通过特定操作可以消除采用其他CS的信号而仅保留采用特定CS的信号,从而实现码分复用。
发送梳齿度T和梳齿位移β:用于确定SRS在发送带宽内占用的子载波位置。例如发送梳齿度T表明,发送带宽内,每2个子载波中有1个子载波用于发送SRS,且梳齿位移β可以配置为0或1;发送梳齿度T为4表明,发送带宽内,每4个子载波中有1个子载波用于发送SRS,且梳齿位移β可以配置为0或1或2或3。
SRS序列索引值:网络设备通常会定义多个SRS序列,会将每个序列分配给不同UE用于降低多用户之间的干扰。
空间滤波参数:用于指示波束赋形方式。
SRS的发送带宽
SRS的发送带宽是指,SRS的扫描(sounding)带宽,也就是根据SRS做信道估计的频域范围,通过承载SRS的子载波,可以将发送带宽对应的信道估计出来。发送带宽内可能仅有部分子载波上承载了SRS,用于估计出整个发送带宽。
在一示例中,网络设备可以为终端设备配置SRS的发送带宽。终端设备根据SRS的发送带宽确定SRS的发送带宽所对应的子载波总数。可以理解的是,若网络设备仅为终端设备配置SRS的发送带宽,终端设备可以确定SRS的发送带宽所对应的子载波即为第一频域资源。此时,第一频域资源包括的N个子载波为SRS的发送带宽所对应的子载波,且N个子载波为连续的子载波(又可描述为子载波间隔为1的N个子载波)。N的取值等于SRS的发送带宽所对应的子载波总数。
例如,SRS的发送带宽包括m SRS个RB,SRS的发送带宽所对应的子载波总数为
Figure PCTCN2020119723-appb-000053
为每个RB包括的子载波数量,则终端设备确定
Figure PCTCN2020119723-appb-000054
系统带宽
指基站和终端设备进行通信时收发信号的频域范围。本申请实施例中的系统带宽可以理解为一个载波(Component Carrier,CC),或者,一个部分带宽(Bandwidth part,BWP)等,其中,一个CC可以包括多个BWP。
相对索引
为了定义子载波的位置,本申请实施例将子载波做了编号,编号不同的子载波对应的频域位置不同,通常,可以将一组子载波按照频率由低到高或者由高到低连续编号。子载波是相对于某一个频域范围编号的。例如,某一个子载波在系统带宽中的索引值,或者说,子载波相对于系统带宽的编号是指,将系统带宽中频率最高或者最低的子载波编号记为0,并按照频率由高到低或者由低到高的顺序将系统带宽中的子载波依次编号,从而确定某一个子载波在系统带宽中的索引值。再例如,本申请实施例所说的子载波的相对索引是指,将第一频域资源中频率最高或者最低的子载波的编号记为0,并按照频率由高到低或者由低到高的顺序将第一频域资源中的子载波依次编号,从而确定该子载波在第一频域资源中的索引值。
Figure PCTCN2020119723-appb-000055
个子载波不是对
Figure PCTCN2020119723-appb-000056
个子载波的均匀抽取,即为非均匀抽取,则最大复用端口数为
Figure PCTCN2020119723-appb-000057
可以实现在相同频域资源上复用更多端口。而为了实现在相同频域资源上复用更多端口,可以考虑采用非均匀抽取子载波的方式确定用于传输SRS的频域资源的方案。
以包括
Figure PCTCN2020119723-appb-000058
个子载波的带宽为例,说明一个子载波集合可以支持的最大端口的数量,如图3所示。其中,端口复用能力由该组频域资源对应的部分DFT矩阵的性质决定。
Figure PCTCN2020119723-appb-000059
个子载波上的频域信道和时延域信道的变换关系由边长为
Figure PCTCN2020119723-appb-000060
的DFT矩阵
Figure PCTCN2020119723-appb-000061
确定,可以根据频域信道、矩阵
Figure PCTCN2020119723-appb-000062
求解时延域信道。
进一步地,若从
Figure PCTCN2020119723-appb-000063
个子载波中选取
Figure PCTCN2020119723-appb-000064
个子载波,并希望在通过该
Figure PCTCN2020119723-appb-000065
个子载波上的频域信道求解时延域信道,则需要确定该
Figure PCTCN2020119723-appb-000066
个子载波对应的部分DFT矩阵F。
每一个子载波对应DFT矩阵
Figure PCTCN2020119723-appb-000067
的一行,
Figure PCTCN2020119723-appb-000068
个子载波对应的DFT矩阵
Figure PCTCN2020119723-appb-000069
Figure PCTCN2020119723-appb-000070
行构成部分DFT矩阵F,F的性质决定该
Figure PCTCN2020119723-appb-000071
个子载波上的端口复用能力。
Figure PCTCN2020119723-appb-000072
个子载波为对
Figure PCTCN2020119723-appb-000073
个子载波的K TC梳齿均匀抽取,如图1所示,则F为
Figure PCTCN2020119723-appb-000074
的矩阵,每一列视为一个长度为
Figure PCTCN2020119723-appb-000075
的基底,依次分为K TC组,每组包括
Figure PCTCN2020119723-appb-000076
个基底。每组包括的
Figure PCTCN2020119723-appb-000077
个基底完全正交,但是不同组的对应列完全线性相关,例如,F1的第一列和F2的第一列完全线性相关,F1的第二列和F2的第二列完全线性相关。
在进行多端口复用时,仅有
Figure PCTCN2020119723-appb-000078
个基底可用(由于其他基底与该组基底线性相关,即 数学上不可区分)。假设每个端口的最大时延扩展为L,则最大复用端口数为
Figure PCTCN2020119723-appb-000079
因此,由于
Figure PCTCN2020119723-appb-000080
个子载波为对
Figure PCTCN2020119723-appb-000081
个子载波的K TC梳齿均匀抽取,导致F仅有
Figure PCTCN2020119723-appb-000082
个基底可用。
Figure PCTCN2020119723-appb-000083
个子载波不是对
Figure PCTCN2020119723-appb-000084
个子载波的均匀抽取,即为非均匀抽取,则不会出现上述不同组的对应列完全线性相关的现象,即
Figure PCTCN2020119723-appb-000085
个列构成的
Figure PCTCN2020119723-appb-000086
个基均可用。具体的,由于
Figure PCTCN2020119723-appb-000087
个基的长度为
Figure PCTCN2020119723-appb-000088
即基的数量大于基的长度,所以
Figure PCTCN2020119723-appb-000089
个基不可能完全正交,即是一组非正交基底,如图4所示。假设每个端口的最大时延扩展为L,则最大复用端口数为
Figure PCTCN2020119723-appb-000090
因而可以实现在相同频域资源上复用更多端口的SRS信号。
基于此,本申请实施例提供一种通信方法,用以实现在相同频域资源上复用更多端口。如图5所示,该方法包括:
步骤500:终端设备确定一个或多个子载波集合。
其中,该一个或多个子载波集合是由第一参数p和第二参数α从第一频域资源中确定的,第一频域资源是由探测参考信号SRS的发送带宽确定的,第一频域资源包括的子载波数量为N,第一频域资源包括的N个子载波等间隔分布,第一参数p为素数,第二参数α为第一参数p的原根。
其中,第二参数α为第一参数p的原根表示,当n取遍{0,1,…,p-2}时,α n mod p取遍{1,…,p-1}。
其中,一个或多个子载波集合用于承载SRS。从第一频域资源中确定一个或多个子载波集合指的是,确定一个或者多个子载波集合包括的子载波在第一频域资源中的编号。
可选的,从第一频域资源中确定一个或多个子载波集合指的是,直接确定一个或者多个子载波集合包括的子载波的编号。
可选的,第一频域资源为SRS的发送带宽包括的所有子载波,也就是说,第一频域资源和SRS的发送带宽均包括相同的N个子载波。此时,可以理解为N个子载波的间隔为0。
可选的,第一频域资源为探测参考信号SRS的发送带宽包括的部分子载波,该部分子载波根据发送梳齿度T和梳齿位移β确定。例如,发送梳齿度T为2,则第一频域资源包括N个子载波,SRS的发送带宽包括2N个子载波,此时,可以理解为N个子载波是间隔为2个子载波的等间隔子载波组。再例如,发送梳齿度T为4,则第一频域资源包括N个子载波,SRS的发送带宽包括4N个子载波,此时,可以理解为N个子载波是间隔为4个子载波的等间隔子载波组。
可以理解的是,网络设备可以向终端设备发送RRC信令。该RRC信令可以携带SRS的发送带宽。
可选的,RRC信令还携带了从SRS的发送带宽中指示第一频域资源的指示信息。例如,该指示信息为发送梳齿度T和梳齿位移β。该指示信息用于从SRS的发送带宽中确定第一频域资源的位置。可选的,终端设备接收配置信息,用于指示配置的SRS资源数量。每个SRS资源中的不同SRS端口可以占用同一个子载波集合中的不同CS。不同SRS资源可以占用不同的子载波集合,或者,占用同一个子载波集合的不同CS。
可以理解的是,终端设备可以采用但不限于以下方式确定第一参数p和第二参数α。
在一示例中,网络设备可以为终端设备配置SRS的发送带宽。终端设备根据SRS的发送带宽确定SRS的发送带宽所对应的子载波总数。同时,网络设备还可以为终端设备配置起始子载波索引、子载波数量或结束子载波索引中的至少两个参数。因此,终端设备在确定SRS的发送带宽所对应的子载波总数之后,进一步可以根据起始子载波索引、子载波数量或结束子载波索引中的至少两个参数确定SRS的发送带宽所对应的子载波中的部分子载波。此时,第一频域资源包括的N个子载波为SRS的发送带宽所对应的子载波中的N个连续的子载波。N的取值由起始子载波索引和结束子载波索引,或者子载波数量确定。此时,第一频域资源包括的N个子载波为连续的子载波(又可描述为子载波间隔为1的N个子载波)。
例如,SRS的发送带宽包括34个RB,每个RB包括的子载波数量为12,SRS的发送带宽所对应的子载波总数为408。假设上述408个子载波的索引为0~407。网络设备还为终端设备配置起始子载波索引101和结束子载波索引400,终端设备确定N=300,第一频域资源包括子载波索引101~子载波索引400的300个连续子载波。
可以理解的是,网络设备可以向终端设备发送RRC信令。该RRC信令可以携带SRS的发送带宽,该RRC信令还可以携带起始子载波索引、子载波数量或结束子载波索引中的至少两个参数。
可以理解的是,网络设备可以向终端设备发送MAC CE信令。该MAC CE信令可以携带SRS的发送带宽,该MAC CE信令还可以携带起始子载波索引、子载波数量或结束子载波索引中的至少两个参数。
在一示例中,网络设备可以为终端设备配置SRS的发送带宽。终端设备根据SRS的发送带宽确定SRS的发送带宽所对应的子载波总数。同时,网络设备还可以为终端设备配置发送梳齿度T和梳齿位移β,其中,T为正整数,β∈{0,…,T-1}。终端设备可以根据发送梳齿度T和梳齿位移β确定SRS的发送带宽所对应的子载波中的N个子载波作为第一频域资源。N的取值由SRS的发送带宽所对应的子载波总数、发送梳齿度T共同确定。第一频域资源包括的N个子载波为SRS的发送带宽所对应的子载波中的N个等间隔的子载波,其中,这里的子载波的间隔由发送梳齿度T确定。
例如,SRS的发送带宽包括34个RB,每个RB包括的子载波数量为12,SRS的发送带宽所对应的子载波总数为408。假设上述408个子载波的索引为0~407。网络设备还为终端设备配置发送梳齿度T和梳齿位移β。
若T=2,β=1,则终端设备确定N=408/2=204,第一频域资源包括{子载波索引1,子载波索引3,子载波索引5,……子载波索引407}的204个子载波。
若T=2,β=0。则终端设备确定N=408/2=204,第一频域资源包括{子载波索引0,子载波索引2,子载波索引4,……子载波索引406}的204个子载波。
若T=3,β=0。则终端设备确定N=408/3=136,第一频域资源包括{子载波索引0,子载波索引3,子载波索引6,……子载波索引405}的136个子载波。
可以理解的是,网络设备可以向终端设备发送RRC信令。该RRC信令可以携带SRS的发送带宽,该RRC信令还可以携带发送梳齿度T和梳齿位移β。
可以理解的是,网络设备可以向终端设备发送MAC CE信令。该MAC CE信令可以携带SRS的发送带宽,该MAC CE信令还可以携带发送梳齿度T和梳齿位移β。
可选的,上述第一频域资源中的每个子载波均用于承载SRS,该SRS用于估计SRS的发送带宽的信道。
进一步地,终端设备在确定N个子载波后,终端设备可以根据协议规定的或网络设备配置的第一参数p与N的关系确定第一参数p。示例性地,第一参数p与N的关系可以为第一参数p为小于或等于N+1的最大素数,或者,第一参数p为大于或等于N+1的最小素数,或者,第一参数p为小于或等于N+1的次大素数,或者,第一参数p为大于或等于N+1的次小素数。例如,当N=408时,P=409。
可选的,第一参数p与N的关系可以为,定义N的至少一个取值范围,例如,N的取值范围为N1至N2个子载波,N2至N3个子载波,则N1至N2个子载波对应同一个p值p1,N2至N3个子载波对应同一个p值p2,p1和p2取值不同。
可选的,终端设备还可以接收第一信息,第一信息用于指示第一参数p。
在终端设备确定第一参数p后,终端设备可以根据协议规定的或网络设备配置的第一参数p与第二参数α的关系确定第二参数α。示例性地,第一参数p与第二参数α的关系可以为第二参数α为第一参数p的最大原根,或者,第二参数α为第一参数p的最小原根。
可选的,终端设备接收第二信息,第二信息用于指示第二参数α。
可选的,终端设备接收第二信息,第二信息用于指示第二参数α的取值范围,终端设备根据第二信息和第一参数p确定第二参数α。
可以理解的是,上述发送梳齿度T、梳齿位移β、第一参数p和第二参数α可以通过一条或多条信息携带,或者,可以通过一个RRC信令或者MAC CE信令携带。本申请对此不作限定。
以下说明终端设备确定一个或多个子载波集合的具体方案。可以理解的是,下述方案1和方案2仅为举例,不作为本申请实施例的限定。
方案1:
一个或多个子载波集合为S个候选子载波集合中的一个或多个,S个候选子载波集合的任何两个没有相同的子载波,即任意两个候选子载波集合中包括的子载波完全不同。
S个候选子载波集合中的第r个候选子载波集合包含相对索引集合C r确定的第一频域资源中的子载波,S为正整数,r∈{0,…,S-1}。
其中,在N>p-1的场景下,相对索引集合C r
Figure PCTCN2020119723-appb-000091
Figure PCTCN2020119723-appb-000092
其中,
Figure PCTCN2020119723-appb-000093
v∈{0,1,…,N-p+1},
Figure PCTCN2020119723-appb-000094
可选的,相对索引集合C r中的索引值的取值范围为[0,N-1],相对索引集合C r中的索引值表征了相应子载波在第一频域资源中的位置。
此外,若p-1不能被S整除,对于
Figure PCTCN2020119723-appb-000095
相对索引集合C r还包括集合{c r,K=log αrα SK mod p-1)+v}。
此外,相对索引集合C 0还包括集合{c 0,0=log α(p-1)+v}。可以理解,由于d 0,0=α 0α S×0 mod p=1,c 0,0无法按照上述方法生成,这里对于c 0,0进行了特殊定义,且该定义方式可使得c 0,0与上述方法生成的所有相对索引集合C r中的所有元素不相同。
按照以上方法生成的S个相对索引集合C r中的任意两个相对索引集合没有相同的元素,且S个相对索引集合C r的并集为{v,1+v,…,p-2+v}。
在N≤p-1的场景下,相对索引集合C r
Figure PCTCN2020119723-appb-000096
与集合{0,1,…,N-1}的交集,其中,
Figure PCTCN2020119723-appb-000097
Figure PCTCN2020119723-appb-000098
可以理解的是,相对索引集合C r
Figure PCTCN2020119723-appb-000099
与集合{0,1,…,N-1}的交集,可以保证每个相对索引集合C r确定的候选子载波集合为第一频域资源中的子载波。
此外,若p-1不能被S整除,对于
Figure PCTCN2020119723-appb-000100
相对索引集合C r还包括集合{c r,K=log αrα SK mod p-1)}与集合{0,1,…,N-1}的交集。
此外,相对索引集合C 0还包括集合{c 0,0=log α(p-1)}与集合{0,1,…,N-1}的交集。可以理解,由于d 0,0=α 0α S×0 mod p=1,c 0,0无法按照上述方法生成,这里对于c 0,0进行了特殊定义,且该定义方式可使得c 0,0与上述方法生成的所有相对索引集合C r中的所有元素不相同。
按照以上方法生成的S个相对索引集合C r中的任意两个相对索引集合没有相同的元素,且S个相对索引集合C r的并集为{0,1,…,N-1}。
其中,运算
Figure PCTCN2020119723-appb-000101
为下取整。
其中,运算log α(·)为:给定任意元素x∈[1,p-1],log α(x)=y,y为满足y∈[0,p-2],并且α y mod p=x的整数。
此外,索引集合C r确定的相对索引为c r,n的子载波上的SRS序列元素为
Figure PCTCN2020119723-appb-000102
Figure PCTCN2020119723-appb-000103
d r,n=α rα Sn mod p,w=1,或者w=-1。Δ为实数,
Figure PCTCN2020119723-appb-000104
m∈[1,p-1],l cs为循环移位。
可选的,预先设定m的取值范围,通过RRC信令指示从多个m取值中选择一个用于相应SRS资源上生成SRS信号。
以下以方案1为例说明当SRS的发送带宽为268RB,T=4,β=0时如何确定4个候选子载波集合。其中,第一频域资源包括N=268*12/4=804个子载波,804个子载波的相对索引为{0,1,…,803}。
(1)在N>p-1的场景下,小于或等于N+1=805的最大素数为p=797,则
Figure PCTCN2020119723-appb-000105
Figure PCTCN2020119723-appb-000106
α=3为p=797的原根。
当v=8时,C 0∪C 1∪C 2∪C 3={8,9,…,803}。其中,相对索引集合C r
Figure PCTCN2020119723-appb-000107
Figure PCTCN2020119723-appb-000108
Figure PCTCN2020119723-appb-000109
Figure PCTCN2020119723-appb-000110
r∈{0,1,2,3}。此外,相对索引集合C 0还包括集合{c 0,0=log α(p-1)+8}。第r个候选子载波集合包括相对索引集合C r确定的第一频域资源中的子载波。
具体地,C 0={10,14,25,…,786,795,801}共199个元素,C 1={17,19,23,…,794,799,803}共199个元素,C 2={9,13,15,…,793,798,802}共199个元素,C 3={8,11,12,…,796,797,800}共199个元素。
此外,第r个候选子载波集合还可以包括相对索引集合{0,1,…,7}对应的子载波中的一个或多个。例如,第0个候选子载波集合还包括相对索引集合{0,5}对应的两个子载波,第1个候选子载波集合还包括相对索引集合{1,…,4}对应的四个子载波,第2个候选子载波集合还包括相对索引集合{6,7}对应的两个子载波,第3个候选子载波集合不包括相对索引集合{0,1,…,7}对应的子载波中的任意一子载波。可以理解的是,上述相对索引集合{0,1,…,7} 对应的子载波的分配方式仅为举例,不作为本申请实施例的限定。
当v=0时,C 0∪C 1∪C 2∪C 3={0,1,…,795}。其中,相对索引集合C r
Figure PCTCN2020119723-appb-000111
Figure PCTCN2020119723-appb-000112
Figure PCTCN2020119723-appb-000113
r∈{0,1,2,3}。此外,相对索引集合C 0还包括集合{c 0,0=log α(p-1)}。第r个候选子载波集合包含相对索引集合C r对应的子载波。
具体地,C 0={2,6,17,…,778,787,793}共199个元素,C 1={9,11,15,…,786,791,795}共199个元素,C 2={1,5,7,…,785,790,794}共199个元素,C 3={0,3,4,…,788,789,792}共199个元素。
此外,第r个候选子载波集合还可以包括相对索引集合{796,797,…,803}对应的子载波中的一个或多个,例如,第0个候选子载波集合还包括相对索引集合{796,…,800}对应的五个子载波,第1个候选子载波集合还包括相对索引集合{801,802,803}对应的三个子载波,第2个候选子载波集合和第3个候选子载波集合不包括相对索引集合{796,797,…,803}对应的子载波中的任意一个子载波。可以理解的是,上述相对索引集合{796,797,…,803}对应的子载波的分配方式仅为举例,不作为本申请实施例的限定。
可以理解的是,上述v=0或v=8仅为举例,不作为本申请实施例的限定。
此外,无论v=0或v=8,或其他v的取值,相对索引集合C r确定的相对索引为c r,n的子载波上的SRS序列元素为
Figure PCTCN2020119723-appb-000114
d r,n=α rα 4n mod p,w=1,或者w=-1。Δ为实数,
Figure PCTCN2020119723-appb-000115
m∈[1,p-1],l cs为循环移位。
特别地,当v=8时,相对索引集合{0,1,…,7}对应的子载波上的SRS序列元素可以为随机序列,或其他预设序列。同理,当v=0时,相对索引集合{796,797,…,803}对应的子载波上的SRS序列元素可以为随机序列,或其他预设序列。
(2)在N≤p-1的场景下,大于或等于N+1=805的最小素数为p=809,α=3为p=809的原根,则
Figure PCTCN2020119723-appb-000116
第r个候选子载波集合包含相对索引集合C r对应的子载波,相对索引集合C r
Figure PCTCN2020119723-appb-000117
与集合{0,1,…,803}的交集,其中,
Figure PCTCN2020119723-appb-000118
r∈{0,1,2,3}。此外,相对索引集合C 0还包括集合{c 0,0=log α(p-1)}与集合{0,1,…,803}的交集。
具体地,C 0={1,2,3,…,790,794,799}共202个元素,C 1={7,9,12,…,789,796,803}共201个元素,C 2={0,5,8,…,800,801,802}共201个元素,C 3={4,16,17,…,793,795,797}共200个元素。
相对索引集合C r确定的相对索引为c r,n的子载波上的SRS序列元素为
Figure PCTCN2020119723-appb-000119
Figure PCTCN2020119723-appb-000120
d r,n=α rα 4n mod p,w=1,或者w=-1。Δ为实数,
Figure PCTCN2020119723-appb-000121
m∈[1,p-1],l cs为循环移位。
方案2:一个或多个子载波集合为S个候选子载波集合中的一个或多个,S个候选子载波集合的任何两个没有相同的子载波,即任意两个候选子载波集合完全不同。S个候选子载波集合中的第r个候选子载波集合包含相对索引集合C r确定的第一频域资源中的子载波,S为正整数,r∈{0,…,S-1}。
在N>p-1的场景下,相对索引集合C r
Figure PCTCN2020119723-appb-000122
其中,
Figure PCTCN2020119723-appb-000123
v∈{0,1,…,N-p+1},
Figure PCTCN2020119723-appb-000124
可选的,相对索引集合C r中的索引值的取值范围为[0,N-1],相对索引集合C r中的索引值表征了相应子载波在第一频域资源中的位置。
此外,若p-1不能被S整除,对于
Figure PCTCN2020119723-appb-000125
相对索引集合C r还包括集合{c r,K=α rα SK mod p-1+v}。
按照以上方法生成的S个相对索引集合C r中的任意两个相对索引集合没有相同的元素,且S个相对索引集合C r的并集为{v,1+v,…,p-2+v}。
在N≤p-1的场景下,相对索引集合C r
Figure PCTCN2020119723-appb-000126
与集合{0,1,…,N-1}的交集,其中,
Figure PCTCN2020119723-appb-000127
Figure PCTCN2020119723-appb-000128
可以理解的是,相对索引集合C r为{c r,n=x r,n-1:
Figure PCTCN2020119723-appb-000129
}与集合{0,1,…,N-1}的交集,可以保证每个相对索引集合C r确定的候选子载波集合为第一频域资源中的子载波。
此外,若p-1不能被S整除,对于
Figure PCTCN2020119723-appb-000130
相对索引集合C r还包括集合{c r,K=α rα SK mod p-1}与集合{0,1,…,N-1}的交集。
按照以上方法生成的S个相对索引集合C r中的任意两个相对索引集合没有相同的元素,且S个相对索引集合C r的并集为{0,1,…,N-1}。
其中,运算
Figure PCTCN2020119723-appb-000131
为下取整。
此外,索引集合C r确定的相对索引为c r,n的子载波上的SRS序列元素为
Figure PCTCN2020119723-appb-000132
Figure PCTCN2020119723-appb-000133
m∈[1,p-2],l cs为循环移位,Δ为实数,
Figure PCTCN2020119723-appb-000134
w=1或者w=-1,或者,
Figure PCTCN2020119723-appb-000135
m∈[1,p-2],l cs为循环移位,Δ为实数,
Figure PCTCN2020119723-appb-000136
w=1或者w=-1。
运算log α(·)为:给定任意元素x∈[1,p-1],log α(x)=y,y为满足y∈[0,p-2],并且α y mod p=x的整数。
可选的,预先设定m的取值范围,通过RRC信令指示从多个m取值中选择一个用于相应SRS资源上生成SRS信号。
以下以方案2为例说明当SRS的发送带宽为268RB,T=4,β=0时如何确定2个候选子载波集合。其中,第一频域资源包括N=268*12/4=804个子载波,804个子载波的相对索引为{0,1,…,803}。
(1)在N>p-1的场景下,小于或等于N+1=805的最大素数为p=797,则K=398,α=3为p=797的原根。
当v=8时,C 0∪C 1={8,9,…,803}。其中,相对索引集合C r
Figure PCTCN2020119723-appb-000137
Figure PCTCN2020119723-appb-000138
Figure PCTCN2020119723-appb-000139
r∈{0,1}。第r个候选子载波集合包含相对索引集合C r对应的子载波。
此外,第r个候选子载波集合还包含相对索引集合{0,1,…,7}对应的子载波中的一个或多个,例如,第0个候选子载波集合还包括相对索引集合{0,2,4,6}对应的四个子载波,第1个候选子载波集合还包括相对索引集合{1,3,5,7}对应的四个子载波。可以理解的是,上述相对索引集合{0,1,…,7}对应的子载波的分配方式仅为举例,不作为本申请实施例的限定。
当v=0时,C 0∪C 1={0,1,…,795}。其中,相对索引集合C r
Figure PCTCN2020119723-appb-000140
Figure PCTCN2020119723-appb-000141
Figure PCTCN2020119723-appb-000142
r∈{0,1}。第r个候选子载波 集合包含相对索引集合C r对应的子载波。
此外,第r个候选子载波集合还包含相对索引集合{796,797,…,803}对应的子载波中的一个或多个,例如,第0个候选子载波集合还包括相对索引集合{796,798,800,802}对应的四个子载波。第1个候选子载波集合还包括相对索引集合{797,799,801,803}对应的四个子载波。
可以理解的是,上述v=0或v=8仅为举例,不作为本申请实施例的限定。
此外,无论v=0或v=8,或其他v的取值,索引集合C r确定的相对索引为c r,n的子载波上的SRS序列元素为
Figure PCTCN2020119723-appb-000143
m∈[1,p-2],l cs为循环移位,Δ为实数,
Figure PCTCN2020119723-appb-000144
w=1或者w=-1,或者,
Figure PCTCN2020119723-appb-000145
m∈[1,p-2],l cs为循环移位,Δ为实数,
Figure PCTCN2020119723-appb-000146
w=1或者w=-1。
(2)在N≤p-1的场景下,大于或等于N+1=805的最小素数为p=809,α=3为p=809的原根,则
Figure PCTCN2020119723-appb-000147
第r个候选子载波集合包含相对索引集合C r对应的子载波,相对索引集合C r
Figure PCTCN2020119723-appb-000148
与集合{0,1,…,803}的交集,其中,
Figure PCTCN2020119723-appb-000149
Figure PCTCN2020119723-appb-000150
r∈{0,1}。
索引集合C r确定的相对索引为c r,n的子载波上的SRS序列元素为
Figure PCTCN2020119723-appb-000151
m∈[1,p-2],l cs为循环移位,Δ为实数,
Figure PCTCN2020119723-appb-000152
w=1或者w=-1,或者,
Figure PCTCN2020119723-appb-000153
m∈[1,p-2],l cs为循环移位,Δ为实数,
Figure PCTCN2020119723-appb-000154
w=1或者w=-1。
针对上述方案1和方案2还有以下几点需要说明:
第一,l cs可以具有多种可能的取值,例如,l cs可以等于0。终端设备确定的一个或多个子载波集合中的每个子载波集合对应一个或多个l cs的取值,若终端设备确定多个子载波集合,多个子载波集合对应的l cs的取值可以不同。
l cs的取值可以是信令配置的,例如,是由网络设备配置的。网络设备可以根据不同l cs的取值区分不同的SRS信号,进而区分不同的终端设备。因此,网络设备可以通过为不同终端设备分配不同的l cs的取值实现码分复用。或者,网络设备可以根据不同l cs的取值区分不同的SRS信号,进而区分同一终端设备的不同端口(又可称为天线或虚拟端口)。因此,网络设备可以通过为不同端口分配不同的l cs的取值实现码分复用。
示例性地,终端设备在两个子载波集合通过两个不同的端口发送SRS。两个不同的端口以下以第一端口和第二端口进行说明。两个子载波集合以下以第一子载波集合和第二子子载波集合进行说明。其中,终端设备在第一子载波集合通过第一端口发送SRS,其中,SRS序列元素的l cs的取值为第一取值。终端设备在第二子载波集合通过第二端口发送SRS,其中,SRS序列元素的l cs的取值为第二取值。第一取值与第二取值可以不同。
第二,在N>p-1的场景下,第r个候选子载波集合包括相对索引集合C r确定的第一频域资源中的子载波,还可以同时包括第一频域资源中除相对索引集合C r确定的第一频域资源中的子载波之外的至少一个子载波,例如,上述方案1和方案2分别对应的举例。对于所有
Figure PCTCN2020119723-appb-000155
至少一个子载波与相对索引集合
Figure PCTCN2020119723-appb-000156
确定的第一频域资源中的子载波不交叠。即任意两个子载波集合不存在重叠的子载波。
在一些实施例中,例如,当S=2时,终端设备在采用上述方案1或方案2确定相对索引集合C 1确定的第一频域资源中的子载波后,终端设备可以将相对索引集合C 1确定的第一频域资源中的子载波直接作为一个子载波集合(例如,记为子载波集合1),然后将N个子载波中除相对索引集合C 1确定的第一频域资源中的子载波之外的子载波作为一个子载波集合(例如,记为子载波集合0)。或者,当S=4时,终端设备采用上述方案1或方案2,终端设备可以将相对索引集合C 1确定的第一频域资源中的子载波直接作为一个子载波集合(例如,记为子载波集合1),将相对索引集合C 2确定的第一频域资源中的子载波直接作为一个子载波集合(例如,记为子载波集合2),将相对索引集合C 3确定的第一频域资源中的子载波直接作为一个子载波集合(例如,记为子载波集合3),然后将N个子载波中除子载波集合1~3之外的子载波作为一个子载波集合(例如,记为子载波集合0)。因此,终端设备可以采用上述方案1或方案2直接确定S-1个子载波集合,然后剩余的一个子载波集合为N个子载波中除上述S-1个子载波集合之外的子载波。
第三,相对索引集合C r中的索引值是子载波在第一频域资源中的相对位置信息,还需确定第一频域资源中与相对索引集合C r对应的子载波在系统带宽中的索引值
Figure PCTCN2020119723-appb-000157
其中,
Figure PCTCN2020119723-appb-000158
T为正整数,β∈{0,…,T-1},
Figure PCTCN2020119723-appb-000159
为以子载波为计数单位的频域移位值。其中,
Figure PCTCN2020119723-appb-000160
其中,
Figure PCTCN2020119723-appb-000161
为每个资源块包括的子载波个数,
Figure PCTCN2020119723-appb-000162
为以资源块为计数单位的频域移位值。
例如,SRS的发送带宽为268RB,T=4,β=0,
Figure PCTCN2020119723-appb-000163
Figure PCTCN2020119723-appb-000164
Figure PCTCN2020119723-appb-000165
例如,在上述方案1示例中,N>p-1场景下,与v=0对应的设计中,C 0={2,6,17,…,778,787,793}共199个元素,C 1={9,11,15,…,786,791,795}共199个元素,C 2={1,5,7,…,785,790,794}共199个元素,C 3={0,3,4,…,788,789,792}共199个元素。
第0个候选子载波集合包括相对索引集合C 0确定的第一频域资源中的子载波,具体包含系统带宽中索引值为{128,144,188,…,3232,3268,3292}的199个子载波;
第1个候选子载波集合包括相对索引集合C 1确定的第一频域资源中的子载波,具体包含系统带宽中索引值为{156,164,180,…,3264,3284,3300}的199个子载波;
第2个候选子载波集合包括相对索引集合C 2确定的第一频域资源中的子载波,具体包含系统带宽中索引值为{124,140,148,…,3260,3280,3296}的199个子载波;
第3个候选子载波集合包括相对索引集合C 3确定的第一频域资源中的子载波,具体包含系统带宽中索引值为{120,132,136,…,3272,3276,3288}的199个子载波。
第四,在一个用于发送SRS的OFDM符号内,{0,…,T-1}中的每一个β的可能取值对应一个频域资源组,每个频域资源组为等间隔的子载波组,该间隔为T个子载波。对于{0,…,T-1}中的每一个β的可能取值对应的频域资源组,可以基于该频域资源组采用上述图5所示实施例的方法得到S个候选子载波集合。且针对不同β的可能取值,S的值也可以不同。进一步地,终端设备可以在其中一个β的可能取值所对应的S个候选子载波集合中选 择一个或多个子载波集合发送SRS。
例如,假设T=2,β∈{0,1},当β=0时,可以确定一个频域资源组(以下简称频域资源组1),当β=1时,可以确定一个频域资源组(以下简称频域资源组2)。其中,频域资源组1可以采用上述图5所示实施例提供的方法确定4个候选子载波集合,频域资源组2可以采用上述图5所示实施例提供的方法确定2个候选子载波集合。终端设备可以在由频域资源组1确定的4个候选子载波集合中的一个或多个子载波集合上发送SRS。或者,终端设备可以在由频域资源组2确定的2个候选子载波集合中的一个或多个子载波集合上发送SRS。
此外,对于{0,…,T-1}的一个子集G中的每一个β的可能取值对应的频域资源组,可以基于该频域资源组采用上述图5所示实施例的方法得到S个候选子载波集合。且针对不同β的可能取值,S的值也可以不同。对于集合{0,…,T-1}\G中的任何一个β值,由于其对应的频域资源组为等间隔子载波组,可以采用背景技术中提供的技术方案发送SRS,例如发送ZC序列。其中,运算·\·为集合减操作。
例如,如图6所示,在一个用于发送SRS的OFDM符号内,假设T=2,β∈{0,1},当β=0时,可以确定一个频域资源组(以下简称老梳齿),当β=1时,可以确定一个频域资源组(以下简称新梳齿)。其中,老梳齿可以用于老用户(即一部分终端设备)进行SRS发送,新梳齿可以采用上述图5所示实施例提供的方法确定4个候选子载波集合。新用户(即另一部分终端设备)可以在4个候选子载波集合中的一个或多个子载波集合上发送SRS。
因此,本申请实施例提供的技术方案和背景技术中提供的技术方案可以在同一个OFDM符号内共存,因此,本申请实施例提供的技术方案可以兼容背景技术中提供的技术方案,具有广泛的应用场景。
第五,采用上述方案1和方案2确定的子载波集合可以使得相应的F的各列尽量正交,有利于信道估计。例如,度量μ为F任意两列相关系数的最大值,表征F的列正交性。μ越小,信道估计性能越好:
Figure PCTCN2020119723-appb-000166
其中,F i为F的第i列,F j为F的第j列。
例如,上述方案1示例中N>p-1场景下与v=0对应的设计:
在第0个候选子载波集合中,相对索引集合C 0确定的199个子载波对应的部分DFT矩阵F为199行796列的矩阵,矩阵F的每一列为一个基向量,796列为796个长度为199的基向量。在该设计中,796个基向量中任意两个基向量相关系数的最大值为0.1071,即μ=0.1071。
在第1个候选子载波集合中,相对索引集合C 1确定的199个子载波对应的部分DFT矩阵F为199行796列的矩阵,矩阵F的每一列为一个基向量,796列为796个长度为199的基向量。在该设计中,796个基向量中任意两个基向量相关系数的最大值为0.1072,即μ=0.1072。
在第2个候选子载波集合中,相对索引集合C 2确定的199个子载波对应的部分DFT矩阵F为199行796列的矩阵,矩阵F的每一列为一个基向量,796列为796个长度为199 的基向量。在该设计中,796个基向量中任意两个基向量相关系数的最大值为0.1074,即μ=0.1074。
在第3个候选子载波集合中,相对索引集合C 3确定的199个子载波对应的部分DFT矩阵F为199行796列的矩阵,矩阵F的每一列为一个基向量,796列为796个长度为199的基向量。在该设计中,796个基向量中任意两个基向量相关系数的最大值为0.1066,即μ=0.1066。
在上述S=4的例子中,将一组等间隔的796个子载波分为4个候选子载波集合,每个候选子载波集合对应796个长度为199的准正交的基向量,且该组准正交的基向量中的任意两个基向量之间的互相关性极低。而在背景技术提供的技术方案中,将一组等间隔的796个子载波按均匀梳齿分为4组,每组子载波对应199个长度为199的正交的基向量。可见,本申请实施例可利用相同的频域资源,获得S倍于背景技术的方案提供的可用基向量数量,且获得的基向量之间的互相关性极低,进而实现S倍码域扩容。
此外,还需说明的时,例如,在上述方案1示例中N>p-1场景下v=0的设计中,第r个候选子载波集合在包括相对索引集合C r确定的第一频域资源中的子载波之外,还可以包括相对索引集合{796,797,…,803}确定的第一频域资源中的一个或多个子载波,例如,第0个候选子载波集合还包括相对索引集合{796,…,800}对应的五个子载波,第1个候选子载波集合还包括相对索引集合{801,802,803}对应的三个子载波。可以理解的是,相对索引集合{796,797,…,803}对应的子载波数量很少,其分配方法以及使用方法对信道估计性能影响很小。相对索引集合{796,…,800}对应的五个子载波可以与第0个候选子载波集合中的其他子载波一起做信道估计,也可以单独做信道估计。相对索引集合{801,802,803}对应的三个子载波可以与第1个候选子载波集合中的其他子载波一起做信道估计,也可以单独做信道估计。
此外,需要说明的是,本申请实施例还提供了与确定S个候选子载波集合相对应的SRS序列的设计方案,结合本申请实施例提供的SRS序列的设计方案,可逼近现有均匀梳齿导频分配方案结合现有ZC序列的峰值平均功率比(peak to average power ratio,PAPR)性能。
步骤510:终端设备在一个或多个子载波集合上发送SRS。
需要说明的是,网络设备可以配置终端设备采用哪个或哪几个子载波集合,例如,每个子载波集合具有一个索引,网络设备可以配置终端设备采用的子载波集合的索引。或者终端设备可以通知网络设备采用的子载波集合的索引。
可选的,终端设备根据SRS序列元素以及CS生成频域SRS序列,并根据相对索引c r,n做IFFT变换形成待发送的SRS信号。
此外,需要说明的是,终端设备可以将确定的SRS序列元素拆成多段,且多段以跳频方式进行传输。
可选的,终端设备接收SRS跳频的配置信息,该配置信息用于指示SRS跳频的次数和/或SRS的跳频带宽。终端设备根据上述SRS序列元素,确定每个SRS跳频带宽上发送SRS的SRS序列元素。
可选的,终端设备根据跳频带宽所占的频域位置确定与该频域位置相对应的SRS序列元素。
可以理解的是,网络设备可以采用与步骤500相同的方式确定一个或多个子载波集合, 并在确定的子载波集合上接收来自于终端设备的SRS,此处不再赘述。
以下结合示例1和示例2对本申请实施例作进一步举例说明。
示例1:
采用方案1提供的方法将N个子载波分成两个子载波的集合,分别以子载波集合0和子载波集合1表示,其中,每个子载波集合包括的子载波个数为N/2。
若N=p-1,则子载波集合1对应的相对索引集合C1构造如下:
Figure PCTCN2020119723-appb-000167
其中,
Figure PCTCN2020119723-appb-000168
子载波集合0对应的相对索引集合C0为相对索引集合C1的补集。
例如,当p=409,N=408,α=21时,子载波集合1对应的相对索引集合C1为{1 2 3 5 8 10 12 15 16 20 22 26 30 35 38 39 42 45 46 47 48 49 53 54 55…,406}相对索引集合C0为相对索引集合C1的补集。
若p-1<N,可将上述公式中的N替换为p-1,根据上述相对索引集合的定义,确定子载波集合1对应的相对索引集合C1’和子载波集合0对应的相对索引集合C0’,从N-P+1个索引值{p-1,p,…N-1}对应的子载波中,确定第一子载波集合和第二子载波集合,其中子载波集合1包括第一子载波集合,子载波集合0包括第二子载波集合。例如,N-P+1个子载波可以随机分配至子载波集合1和子载波集合0。
若p-1>N,可将上述公式中的N替换为p-1,首先确定子载波集合1对应的相对索引集合C1”和子载波集合0对应的相对索引集合C0”,进一步根据N将C1”和C0”中超过N-1的索引值删除,得到子载波集合1和子载波集合0。其中,共删除的索引值数目为P-1-N个。
示例2:
采用方案1提供的方法将N个子载波分成四个子载波的集合,分别以子载波集合1、子载波集合2、子载波集合3和子载波集合0表示。其中,各个集合中子载波个数不一定相同。
若N=p-1,当N可以被4整除时,则相对索引集合C0~C3中元素的个数均为
Figure PCTCN2020119723-appb-000169
其中,C1:
Figure PCTCN2020119723-appb-000170
Figure PCTCN2020119723-appb-000171
C2:
Figure PCTCN2020119723-appb-000172
Figure PCTCN2020119723-appb-000173
C3:
Figure PCTCN2020119723-appb-000174
Figure PCTCN2020119723-appb-000175
C0:为集合{0,…,N-1}\(C1∪C2∪C3)。
若N不能被4整除(其中,N mod 4=2),则相对索引集合C0、C1中元素的个数为
Figure PCTCN2020119723-appb-000176
相对索引集合C2、C3中元素的个数为
Figure PCTCN2020119723-appb-000177
C1:
Figure PCTCN2020119723-appb-000178
Figure PCTCN2020119723-appb-000179
C2:
Figure PCTCN2020119723-appb-000180
Figure PCTCN2020119723-appb-000181
C3:
Figure PCTCN2020119723-appb-000182
Figure PCTCN2020119723-appb-000183
C0:为集合{0,…,N-1}\(C1∪C2∪C3)。
若p-1<N,可将上述公式中的N替换为p-1,首先确定相对索引集合C0’~C3’,进一步根据N-P+1扩充得到子载波集合0~3。例如,N-P+1个子载波可以随机分配至子载波集合0~子载波集合3。
若p-1>N,可将上述公式中的N替换为p-1,首先确定相对索引集合C0”~C3”,进一步根据N将C0”~C3”中超过N-1的索引值删除,得到子载波集合0~3。其中,共删除的索引值数目为P-1-N个。
可以理解的是,为了实现上述实施例中功能,网络设备和终端设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图7和图8为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端设备或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是终端设备,也可以是网络设备,还可以是应用于终端设备或网络设备的模块(如芯片)。
如图7所示,通信装置700包括处理单元710和收发单元720。通信装置700用于实现上述5中所示的方法实施例中终端设备或网络设备的功能。
当通信装置700用于实现图5所示的方法实施例中终端设备的功能时:处理单元710用于确定一个或多个子载波集合,所述一个或多个子载波集合是由第一参数p和第二参数α从第一频域资源中确定的,所述第一频域资源是由SRS的发送带宽确定的,所述第一频域资源包括的子载波数量为N,所述第一频域资源包括的N个子载波等间隔分布,所述第一参数p为素数,所述第二参数α为所述第一参数p的原根;收发单元720用于在所述一个或多个子载波集合上发送所述SRS。
当通信装置700用于实现图5所示的方法实施例中网络设备的功能时:处理单元710用于确定一个或多个子载波集合,所述一个或多个子载波集合是由第一参数p和第二参数α从第一频域资源中确定的,所述第一频域资源是由探测参考信号SRS的发送带宽确定的,所述第一频域资源包括的子载波数量为N,所述第一频域资源包括的N个子载波等间隔分布,所述第一参数p为素数,所述第二参数α为所述第一参数p的原根;收发单元720用于在所述一个或多个子载波集合上接收所述SRS。
有关上述处理单元710和收发单元720更详细的描述可以直接参考图5所示的方法实施例中相关描述直接得到,这里不加赘述。
如图8所示,通信装置800包括处理器810和接口电路820。处理器810和接口电路820之间相互耦合。可以理解的是,接口电路820可以为收发器或输入输出接口。可选的,通信装置800还可以包括存储器830,用于存储处理器810执行的指令或存储处理器810运行指令所需要的输入数据或存储处理器810运行指令后产生的数据。
当通信装置800用于实现图5所示的方法时,处理器810用于实现上述处理单元710的功能,接口电路820用于实现上述收发单元720的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘(digital video disc,DVD);还可以是半导体介质,例如,固态硬盘(solid state drive,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (23)

  1. 一种通信方法,其特征在于,该方法包括:
    确定一个或多个子载波集合,所述一个或多个子载波集合是由第一参数p和第二参数α从第一频域资源中确定的,所述第一频域资源是由探测参考信号SRS的发送带宽确定的,所述第一频域资源包括的子载波数量为N,所述第一频域资源包括的N个子载波等间隔分布,所述第一参数p为素数,所述第二参数α为所述第一参数p的原根;
    在所述一个或多个子载波集合上发送所述SRS。
  2. 如权利要求1所述的方法,其特征在于,所述一个或多个子载波集合为S个候选子载波集合中的一个或多个,所述S个候选子载波集合中任何两个子载波集合各自包括的子载波互不相同;
    所述S个候选子载波集合中的第r个候选子载波集合包含相对索引集合C r确定的第一频域资源中的子载波,S为正整数,r∈{0,…,S-1},
    所述相对索引集合C r
    Figure PCTCN2020119723-appb-100001
    其中,
    Figure PCTCN2020119723-appb-100002
    v∈{0,1,…,N-p+1},
    Figure PCTCN2020119723-appb-100003
    或,
    所述相对索引集合C r
    Figure PCTCN2020119723-appb-100004
    与集合{0,1,…,N-1}的交集,其中,
    Figure PCTCN2020119723-appb-100005
    Figure PCTCN2020119723-appb-100006
    运算log α(·)为:给定任意元素x∈[1,p-1],log α(x)=y,y为满足y∈[0,p-2],并且α ymod p=x的整数。
  3. 如权利要求2所述的方法,其特征在于,
    所述相对索引集合C r中相对索引为c r,n的子载波上的SRS序列元素为
    Figure PCTCN2020119723-appb-100007
    Figure PCTCN2020119723-appb-100008
    d r,n=α rα Snmod p,w=1,或者w=-1,Δ为实数,
    Figure PCTCN2020119723-appb-100009
    m∈[1,p-1],l cs为循环移位。
  4. 如权利要求1所述的方法,其特征在于,所述一个或多个子载波集合为S个候选子载波集合中的一个或多个,所述S个候选子载波集合的任何两个没有相同的子载波,所述S个候选子载波集合中的第r个候选子载波集合包含相对索引集合C r确定的第一频域资源中的子载波,S为正整数,r∈{0,…,S-1};
    所述相对索引集合C r
    Figure PCTCN2020119723-appb-100010
    其中,
    Figure PCTCN2020119723-appb-100011
    v∈{0,1,…,N-p+1},
    Figure PCTCN2020119723-appb-100012
    或,
    所述相对索引集合C r
    Figure PCTCN2020119723-appb-100013
    与集合{0,1,…,N-1}的交集,其中,
    Figure PCTCN2020119723-appb-100014
  5. 如权利要求4所述的方法,其特征在于,
    所述相对索引集合C r中相对索引为c r,n的子载波上的SRS序列元素为
    Figure PCTCN2020119723-appb-100015
    Figure PCTCN2020119723-appb-100016
    m∈[1,p-2],Δ为实数,l cs为循环移位,
    Figure PCTCN2020119723-appb-100017
    w=1或者w=-1,或者
    Figure PCTCN2020119723-appb-100018
    m∈[1,p-2],Δ为实数,l cs为循环移位,
    Figure PCTCN2020119723-appb-100019
    w=1或者w=-1;
    运算log α(·)为:给定任意元素x∈[1,p-1],log α(x)=y,y为满足y∈[0,p-2],并且α ymod p=x的整数。
  6. 如权利要求2-5任一项所述的方法,其特征在于
    在所述第r个候选子载波集合还包括所述第一频域资源中除相对索引集合C r确定的子载波之外的至少一个子载波时,对于所有
    Figure PCTCN2020119723-appb-100020
    所述至少一个子载波与所述相对索引集合
    Figure PCTCN2020119723-appb-100021
    确定的所述第一频域资源中的子载波不交叠。
  7. 如权利要求2-6任一项所述的方法,其特征在于,所述相对索引集合C r确定的第一频域资源中的子载波在系统带宽中的索引值为:
    Figure PCTCN2020119723-appb-100022
    其中,T为正整数,β∈{0,…,T-1},
    Figure PCTCN2020119723-appb-100023
    为以子载波为计数单位的频域移位值。
  8. 如权利要求1-7任一项所述的方法,其特征在于,所述第一参数p为小于或等于N+1的最大素数;或者,所述第一参数p为大于或等于N+1的最小素数。
  9. 如权利要求1-8任一项所述的方法,其特征在于,所述第二参数α为所述第一参数p的最大原根;或者,所述第二参数α为所述第一参数p的最小原根。
  10. 如权利要求1-9任一项所述的方法,其特征在于,接收第一信息,所述第一信息用于指示配置参数的取值,所述配置参数包括第一参数p,第二参数α,参数T,参数β中的至少一个。
  11. 一种通信方法,其特征在于,该方法包括:
    确定一个或多个子载波集合,所述一个或多个子载波集合是由第一参数p和第二参数α从第一频域资源中确定的,所述第一频域资源是由探测参考信号SRS的发送带宽确定的,所述第一频域资源包括的子载波数量为N,所述第一频域资源包括的N个子载波等间隔分布,所述第一参数p为素数,所述第二参数α为所述第一参数p的原根;
    在所述一个或多个子载波集合上接收所述SRS。
  12. 如权利要求11所述的方法,其特征在于,所述一个或多个子载波集合为S个候选子载波集合中的一个或多个,所述S个候选子载波集合中任何两个子载波集合各自包括的子载波互不相同;
    所述S个候选子载波集合中的第r个候选子载波集合包含相对索引集合C r确定的第一频域资源中的子载波,S为正整数,r∈{0,…,S-1},
    所述相对索引集合C r
    Figure PCTCN2020119723-appb-100024
    其中,
    Figure PCTCN2020119723-appb-100025
    v∈{0,1,…,N-p+1},
    Figure PCTCN2020119723-appb-100026
    或,
    所述相对索引集合C r
    Figure PCTCN2020119723-appb-100027
    与集合{0,1,…,N-1}的交集,其中,
    Figure PCTCN2020119723-appb-100028
    Figure PCTCN2020119723-appb-100029
    运算log α(·)为:给定任意元素x∈[1,p-1],log α(x)=y,y为满足y∈[0,p-2],并且α ymod p=x的整数。
  13. 如权利要求12所述的方法,其特征在于,
    所述相对索引集合C r中相对索引为c r,n的子载波上的SRS序列元素为
    Figure PCTCN2020119723-appb-100030
    Figure PCTCN2020119723-appb-100031
    d r,n=α rα Snmod p,w=1,或者w=-1。Δ为实数,
    Figure PCTCN2020119723-appb-100032
    m∈[1,p-1],l cs为循环移位。
  14. 如权利要求11所述的方法,其特征在于,所述一个或多个子载波集合为S个候选子载波集合中的一个或多个,所述S个候选子载波集合的任何两个没有相同的子载波,所述S个候选子载波集合中的第r个候选子载波集合包含相对索引集合C r确定的第一频域资源中的子载波,S为正整数,r∈{0,…,S-1};
    所述相对索引集合C r
    Figure PCTCN2020119723-appb-100033
    其中,
    Figure PCTCN2020119723-appb-100034
    v∈{0,1,…,N-p+1},
    Figure PCTCN2020119723-appb-100035
    或,
    所述相对索引集合C r
    Figure PCTCN2020119723-appb-100036
    与集合{0,1,…,N-1}的交集,其中,
    Figure PCTCN2020119723-appb-100037
  15. 如权利要求14所述的方法,其特征在于,
    所述相对索引集合C r中相对索引为c r,n的子载波上的SRS序列元素为
    Figure PCTCN2020119723-appb-100038
    Figure PCTCN2020119723-appb-100039
    m∈[1,p-2],Δ为实数,l cs为循环移位,
    Figure PCTCN2020119723-appb-100040
    w=1或者w=-1,或者
    Figure PCTCN2020119723-appb-100041
    m∈[1,p-2],Δ为实数,l cs为循环移位,
    Figure PCTCN2020119723-appb-100042
    w=1或者w=-1;
    运算log α(·)为:给定任意元素x∈[1,p-1],log α(x)=y,y为满足y∈[0,p-2],并且α ymod p=x的整数。
  16. 如权利要求12-15任一项所述的方法,其特征在于,在所述第r个候选子载波集合还包括所述第一频域资源中除相对索引集合C r确定的子载波之外的至少一个子载波时,对于所有
    Figure PCTCN2020119723-appb-100043
    所述至少一个子载波与所述相对索引集合
    Figure PCTCN2020119723-appb-100044
    确定的所述第一频域资源中的子载波不交叠。
  17. 如权利要求12-16任一项所述的方法,其特征在于,所述相对索引集合C r确定的第一频域资源中的子载波在系统带宽中的索引值为:
    Figure PCTCN2020119723-appb-100045
    其中,T为正整数,β∈{0,…,T-1},
    Figure PCTCN2020119723-appb-100046
    为以子载波为计数单位的频域移位值。
  18. 如权利要求11-17任一项所述的方法,其特征在于,所述第一参数p为小于或等于N+1的最大素数;或者,所述第一参数p为大于或等于N+1的最小素数。
  19. 如权利要求11-18任一项所述的方法,其特征在于,所述第二参数α为所述第一参数p的最大原根;或者,所述第二参数α为所述第一参数p的最小原根。
  20. 如权利要求11-19任一项所述的方法,其特征在于,发送第一信息,所述第一信息用于指配置参数的取值,所述配置参数包括第一参数p,第二参数α,参数T,参数β中的至少一个。
  21. 一种通信装置,其特征在于,包括用于执行如权利要求1至20中的任一项所述方法的模块。
  22. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来 自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至20中任一项所述的方法。
  23. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至20中任一项所述的方法。
PCT/CN2020/119723 2020-09-30 2020-09-30 一种通信方法及装置 WO2022067798A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080105500.5A CN116420329A (zh) 2020-09-30 2020-09-30 一种通信方法及装置
PCT/CN2020/119723 WO2022067798A1 (zh) 2020-09-30 2020-09-30 一种通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119723 WO2022067798A1 (zh) 2020-09-30 2020-09-30 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2022067798A1 true WO2022067798A1 (zh) 2022-04-07

Family

ID=80949405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119723 WO2022067798A1 (zh) 2020-09-30 2020-09-30 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN116420329A (zh)
WO (1) WO2022067798A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023226037A1 (zh) * 2022-05-27 2023-11-30 北京小米移动软件有限公司 一种通信系统中的资源分配方法/装置/设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102484576A (zh) * 2009-09-10 2012-05-30 高通股份有限公司 用于无线通信的特定于ue 的参考信号的传输
CN103220101A (zh) * 2012-01-19 2013-07-24 中兴通讯股份有限公司 频谱梳信令的通知、探测参考信号的发送方法与装置
WO2018064313A1 (en) * 2016-09-28 2018-04-05 Idac Holdings, Inc. Reference signal design for wireless communication systems
WO2019072167A1 (zh) * 2017-10-11 2019-04-18 索尼公司 无线通信系统中的电子设备、通信方法和存储介质
CN110831162A (zh) * 2018-08-07 2020-02-21 华为技术有限公司 参考信号传输方法及设备
CN111277375A (zh) * 2018-12-05 2020-06-12 大唐移动通信设备有限公司 一种资源分配的方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102484576A (zh) * 2009-09-10 2012-05-30 高通股份有限公司 用于无线通信的特定于ue 的参考信号的传输
CN103220101A (zh) * 2012-01-19 2013-07-24 中兴通讯股份有限公司 频谱梳信令的通知、探测参考信号的发送方法与装置
WO2018064313A1 (en) * 2016-09-28 2018-04-05 Idac Holdings, Inc. Reference signal design for wireless communication systems
WO2019072167A1 (zh) * 2017-10-11 2019-04-18 索尼公司 无线通信系统中的电子设备、通信方法和存储介质
CN110831162A (zh) * 2018-08-07 2020-02-21 华为技术有限公司 参考信号传输方法及设备
CN111277375A (zh) * 2018-12-05 2020-06-12 大唐移动通信设备有限公司 一种资源分配的方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "SRS carrier switching involving SUL", 3GPP DRAFT; R1-1804284, vol. RAN WG1, 7 April 2018 (2018-04-07), Sanya, China, pages 1 - 4, XP051413853 *
LG ELECTRONICS: "Remaining issues on simultaneous SRSs on more than one carrier", 3GPP DRAFT; R1-111615 MULTIPLE SRS TRANSMISSION RELATED, vol. RAN WG1, 3 May 2011 (2011-05-03), Barcelona, Spain, pages 1 - 3, XP050491258 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023226037A1 (zh) * 2022-05-27 2023-11-30 北京小米移动软件有限公司 一种通信系统中的资源分配方法/装置/设备及存储介质

Also Published As

Publication number Publication date
CN116420329A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
JP7280414B2 (ja) 受信機及び受信方法
CN107318086B (zh) 分配时频资源的方法和装置
US11095408B2 (en) Generating reference signal(s) using Zadoff-Chu sequence(s)
US11018830B2 (en) Reference signal transmission method and apparatus
WO2018228335A1 (zh) 导频信号发送、接收方法及装置、设备、存储介质
US11343046B2 (en) Method and device for receiving and sending reference signal, and computer-readable storage medium
EP3579469B1 (en) Wireless communication method and device
WO2022022579A1 (zh) 一种通信方法及装置
JP6824232B2 (ja) データを伝送するための方法およびデバイス
WO2018195984A1 (zh) 一种随机接入前导码发送方法及设备
WO2021195975A1 (zh) 传输参考信号的方法和装置
CN111565458A (zh) 一种下行传输方法及其装置
WO2018024127A1 (zh) 一种传输信号的方法及网络设备
WO2022067798A1 (zh) 一种通信方法及装置
CA3208342A1 (en) Communication method and apparatus
WO2022110236A1 (zh) 一种通信方法及装置
CN111294306B (zh) 一种参考信号的传输方法及装置
WO2017101607A1 (zh) 数据的传输方法及装置
WO2014187294A1 (zh) 一种下行导频的传输方法、装置及计算机存储介质
CN117121414A (zh) 用于传输参考信号的方法和装置
WO2023164909A1 (zh) 发送srs的方法、接收srs的方法、装置、设备、介质及产品
WO2022183390A1 (zh) 一种无线通信方法、通信装置及通信系统
EP4369823A1 (en) Communication method and communication apparatus
WO2022042618A1 (zh) 传输信号的方法和通信装置
CN110710290A (zh) 用于传输数据的方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955821

Country of ref document: EP

Kind code of ref document: A1