WO2014187294A1 - 一种下行导频的传输方法、装置及计算机存储介质 - Google Patents
一种下行导频的传输方法、装置及计算机存储介质 Download PDFInfo
- Publication number
- WO2014187294A1 WO2014187294A1 PCT/CN2014/077804 CN2014077804W WO2014187294A1 WO 2014187294 A1 WO2014187294 A1 WO 2014187294A1 CN 2014077804 W CN2014077804 W CN 2014077804W WO 2014187294 A1 WO2014187294 A1 WO 2014187294A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sequence
- antenna
- random number
- pilot
- downlink pilot
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- 238000003860 storage Methods 0.000 title claims abstract description 14
- 238000005259 measurement Methods 0.000 claims description 34
- 230000005540 biological transmission Effects 0.000 claims description 31
- 125000004122 cyclic group Chemical group 0.000 claims description 13
- 238000010586 diagram Methods 0.000 description 10
- 238000012545 processing Methods 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 7
- 238000004590 computer program Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 230000001629 suppression Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 238000010295 mobile communication Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/0051—Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0032—Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
- H04L5/0035—Resource allocation in a cooperative multipoint environment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0058—Allocation criteria
- H04L5/0073—Allocation arrangements that take into account other cell interferences
Definitions
- the present invention relates to a pilot transmission technology, and in particular, to a downlink pilot transmission method and apparatus, and a computer storage medium. Background technique
- the large-scale antenna array technology based on large-dimensional antennas. It can deeply exploit and utilize spatial radio resources, which can theoretically improve the spectral efficiency and power efficiency of the system.
- the Massive antenna array transmission will present some new features, such as: The channel will have obvious sparsity in spatial distribution; the large array beam can almost completely eliminate the influence of noise, but the co-channel interference caused by pilot pollution becomes a constraint system. The main factor of performance.
- LTE Long Term Evolution
- resources are distinguished by airspace-antenna or antenna ports, time domain and frequency domain three-dimensional.
- the downlink pilots are uniformly distributed in the frequency domain, for example, a measurement pilot (CRS, used for channel state information acquisition).
- CRS measurement pilot
- Cell-specific Reference Signals Cell-specific Reference Signals
- the subcarrier spacing of two adjacent pilot symbols is 6, and the channel state information reference signals (CSI-S, Channel-State Information Reference Signals) are subcarrier spacings of two adjacent pilot symbols. It is 12, and each antenna needs to send a pilot.
- CSI-S Channel state information reference signals
- a large-scale antenna array is configured on the base station side, such as more than 100 antennas, or even more, if required according to current protocols.
- the pilot needs to be transmitted in each antenna, and the subcarrier position occupied by the pilot is mapped according to the existing protocol, and the pilot overhead is relatively large, which seriously affects the data rate and spectrum efficiency of the system.
- a solution for a highly efficient downlink pilot transmission method with low overhead and applicable to the above channel information acquisition method has not yet been proposed. Summary of the invention
- the embodiments of the present invention provide a downlink pilot transmission method, a device, and a computer storage medium, which ensure that the pilot frequency domain positions of any two antennas in a neighboring cell or the same cell are randomly distributed and do not collide, and can implement a guide. Frequency-to-air frequency domain compression improves the spectrum utilization of the system.
- An embodiment of the present invention provides a method for transmitting a downlink pilot, where the method includes: configuring a sequence according to a system parameter and a preset rule, and generating a random number according to the sequence; determining a downlink according to the sequence and the random number The resource index value of the pilot and the downlink pilot is transmitted.
- the system parameters include: a total number of base station antennas and/or a system maximum bandwidth.
- the resource index value includes at least one of the following parameters: an antenna index value, a frequency domain subcarrier index value, and a time domain symbol index value.
- the configuring a sequence according to the system parameter and the preset rule, and generating a random number, determining a resource index value of the downlink pilot according to the sequence and the random number including:
- the configuring a sequence according to the system parameter and the preset rule, and generating a random number, determining a resource index value of the downlink pilot according to the sequence and the random number including:
- Determining, by the random number, a subcarrier index value, where the downlink pilot is located, where the subcarriers where the downlink pilot is located are discontinuous and irregularly distributed; and the number of subcarriers and the bandwidth where the downlink pilot is located includes The total number of subcarriers is smaller than the second predetermined threshold.
- the allocating the one or more sequences to the antenna in the cell and the pilot in the cell includes:
- One or more sequences in the sequence group are allocated to the antenna in which the pilot in the cell is located, so that the sequences obtained by the antenna in which the pilot is located are different.
- the number of the one or more sequences is determined according to the number of neighboring cells and the number of antennas transmitting pilots in each cell.
- the method further includes: assigning the same sequence to the antenna when the antenna transmits the pilot in a time-division manner in different channel measurement times; wherein the channel measurement time interval includes: at least one subframe , time slot or Orthogonal Frequency Division Multiplexing (OFDM) symbol.
- OFDM Orthogonal Frequency Division Multiplexing
- the embodiment of the present invention further provides a downlink pilot transmission device, where the device includes: a configuration module, a resource determination module, and a transmission module;
- the configuration module is configured to configure a sequence according to the system parameter and the preset rule, and generate a random number according to the sequence, and send the sequence and the random number to the resource determining module;
- the resource determining module is configured to determine a resource index value of the downlink pilot according to the sequence and the random number sent by the configuration module;
- the transmitting module is configured to send a downlink pilot according to the resource index value determined by the resource determining module.
- the configuration module is configured to determine, according to a total number of base station antennas, a length of a random number sequence of generating an antenna index value; determining an initial value of the random number sequence according to a preset rule; and circulating according to an initial value of the random number sequence
- the shifting generates a plurality of random numbers.
- the preset rule includes: the antenna index value range in which the downlink pilot is located covers all antennas;
- the resource determining module is configured to determine the random number as an antenna index value of the downlink pilot, where the ratio of the number of antennas in which the downlink pilot is located to the total number of antennas of the base station is smaller than the first preset. Threshold.
- the configuration module is configured to determine, according to a maximum bandwidth of the system, a length of a sequence of random numbers for generating a subcarrier index value; determining one or more sequences according to a preset rule; and assigning the one or more sequences to a cell and a pilot in the cell An antenna, the sequence is used as an initial value of a random number sequence; and a plurality of random numbers are generated according to the initial value of the random number sequence; wherein the preset rule includes: an index of a subcarrier where the downlink pilot is located Range covers the bandwidth range of the system; sequence generation of each antenna configuration of neighboring cells during the same channel measurement time Multiple random numbers are different;
- the resource determining module is configured to determine a random number generated by the configuration module as a subcarrier index value of the downlink pilot, where the subcarriers in which the downlink pilot is located are discontinuous and irregularly distributed; The ratio of the number of subcarriers in which the downlink pilot is located to the total number of subcarriers included in the bandwidth is smaller than a second preset threshold.
- the configuration module is further configured to group the one or more sequences, and allocate a sequence group to each cell, so that the sequence groups allocated by the two adjacent cells are different; and one of the sequence groups is The above sequence is allocated to the antenna where the pilot in the cell is located, so that the sequences obtained by the antenna where the pilot is located are different.
- the configuration module is configured to determine the number of the one or more sequences according to the number of neighboring cells and the number of antennas transmitting pilots in each cell.
- the configuration module is further configured to allocate the same sequence when the antenna transmits the pilot in a time division manner in different channel measurement times; wherein the channel measurement time interval includes: at least one subframe, a time slot Or OFDM symbol.
- the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the downlink pilot transmission method according to the embodiment of the present invention.
- the downlink pilot transmission method and apparatus configured a sequence according to system parameters and preset rules, and generate a random number according to the sequence; according to the sequence and the random compression, and ensure adjacent cells or The pilot frequency domain positions of any two antennas in the same cell are randomly distributed and do not collide, and at the same time reduce the pilot overhead and interference suppression, and improve the spectrum utilization of the system.
- FIG. 1 is a schematic flowchart of a method for transmitting a downlink pilot according to an embodiment of the present invention
- 2 is a schematic flowchart of a method for determining an antenna index value according to an embodiment of the present invention
- FIG. 3 is a schematic flowchart of a method for determining a subcarrier index value of a downlink pilot of an antenna according to an embodiment of the present invention
- FIG. 4 is a schematic flowchart of a method for determining a specific sequence of a subcarrier index value in which a pilot is located for each antenna of each cell according to an embodiment of the present invention
- FIG. 5 is a schematic diagram of a sequence group used by a neighboring cell according to an embodiment of the present invention.
- FIG. 6 is a schematic diagram of selecting subcarrier index values of different antennas in different channel measurement interval scenarios according to an embodiment of the present invention
- FIG. 7 is a schematic structural diagram of a downlink pilot transmission apparatus according to an embodiment of the present invention. detailed description
- FIG. 1 is a schematic flowchart of a downlink pilot transmission method according to an embodiment of the present invention. As shown in FIG. 1, the method includes the following steps:
- Step 101 Determine the sequence and the random number according to the system parameters and the preset rules.
- the system parameters include: a total number of base station antennas and/or a system maximum bandwidth.
- the resource index value includes at least one of the following parameters: an antenna index value, a frequency domain subcarrier index value, and a time domain symbol index value.
- the preset rule includes: an antenna index value range in which the downlink pilot is located covers all antennas;
- the subcarrier index value range in which the downlink pilot is located covers the bandwidth range of the system, that is, the subcarrier index value is similarly uniform in the bandwidth range of the system, so as to prevent the pilot number from being too rare in the scheduled small bandwidth.
- the sequence and random number determined by the neighboring cells are different, that is, the frequency domain positions of the pilots of each antenna do not overlap.
- Step 102 Determine a resource index value of the downlink pilot according to the sequence and the random number, and send the next Line pilot.
- the determining the sequence and the random number according to the system parameter and the preset rule, determining the resource index value of the downlink pilot according to the sequence and the random number including:
- the length of the sequence of the random number of the antenna index is determined according to the total number of the antennas of the base station; the initial value of the random number sequence is determined according to a preset rule; wherein the preset rule includes: the antenna index value range in which the downlink pilot is located covers all the antennas;
- the number of the antennas in which the pilots are located is far less than the total number of antennas of the base station.
- the first preset threshold may be a quarter, that is, the number of antennas in which the pilots are located may be only a base station antenna. A quarter of the total number of purposes.
- the first preset threshold may also be any other value less than 1.
- the generating a plurality of random numbers according to the initial value cyclic shift of the random number sequence may generate a plurality of random numbers according to a preset sequence rule, and the sequence is a sequence having incoherence.
- a preset sequence rule such as m sequence, gold sequence, and the like.
- the sequence and the random number are determined according to the system parameter and the preset rule, and the resource index value of the downlink pilot is determined according to the sequence and the random number, including :
- Determining, by the random number, a subcarrier index value, where the downlink pilot is located, where the subcarriers where the downlink pilot is located are discontinuous and irregularly distributed; and the number of subcarriers and the bandwidth where the downlink pilot is located includes The total number of subcarriers is smaller than the second predetermined threshold.
- the number of subcarriers in which the pilot is located is much smaller than the number of subcarriers; the subcarriers in which the pilots are located are discontinuous and irregularly distributed in the subcarriers; preferably, the second The preset threshold may be twenty-fourth, that is, the number of subcarriers in which the pilot is located may be only twenty-fourth of the total number of subcarriers.
- the second preset threshold may also be any other value less than one.
- the allocating the one or more sequences to the antenna in the cell and the pilot in the cell includes:
- One or more sequences in the sequence group are allocated to the antenna in which the pilot in the cell is located, so that the sequences obtained by the antenna in which the pilot is located are different.
- the base station may notify the sequence group used by the cell where the terminal is located by using signaling, or the base station and the terminal implicitly obtain the sequence group used by the cell by using the cell identification code (ID); for example: a predefined function name mod (cell ID, 8)
- ID a predefined function name mod
- the number of the one or more sequences is determined according to the number of neighboring cells and the number of antennas that transmit pilots in each cell. For example, the number of antennas transmitting pilots in each cell is M, and the number of neighbor cells in the cell is 6, and the number of the one or more sequences is 7M.
- the antennas are allocated the same sequence when the antenna transmits the pilots in a time-division manner in different channel measurement times.
- the channel measurement time interval includes: at least one subframe, a time slot, or an OFDM. symbol.
- the downlink pilot transmission method described in the embodiments of the present invention is applicable to a single antenna system in a broadband mobile communication, or a centralized multi-antenna system, or a distributed multi-antenna system; or a frequency selective for sparse delay domain A time-selective channel that is sparse in a channel or a Doppler domain.
- the pilot scheme can implement pilot space-frequency domain compression and ensure pilot frequency domain of any two antennas in a neighboring cell or the same cell. The locations are randomly distributed in the same channel measurement interval and do not collide, and at the same time reduce the pilot overhead and interference suppression, and improve the spectrum utilization of the system.
- FIG. 2 is a schematic flowchart of a method for determining an antenna index value according to an embodiment of the present invention.
- a base station has a total of 256 antennas, and an antenna index is 1, 2 256
- each antenna can be used to transmit pilots.
- the technical solution provided by the embodiment of the present invention transmits the pilot only on some of the antennas.
- one quarter of the 256 antennas are used to transmit the pilot, that is, 64 antennas transmit the pilot,
- the method for determining the 64 antennas is as shown in FIG. 2, and includes the following steps:
- Step 201 Determine the length of the random number sequence according to the total number of antennas or the maximum antenna index value antenna.
- the antenna index is represented by a sequence of random numbers of length 8.
- Step 202 Determine an initial value of the random number sequence according to a preset rule.
- the preset rule is that the antenna index value range in which the downlink pilot is located covers all the antennas, that is, similarly distributed in 0 to 255, so that the antennas are evenly distributed, but not concentrated; to ensure that the determined antenna can cover all the antennas.
- the initial value of the random number sequence should be as close as possible to all In the middle of the antenna, in this embodiment, the initial value of the random number sequence can be set to 00101000.
- Step 203 Generate a random number according to the initial value cyclic shift of the random number sequence.
- the preset sequence rule may be a random sequence rule, such as an m sequence, a gold sequence, or the like.
- an antenna index value may be determined according to a random number generated by an m sequence of length 8 in the embodiment.
- the initial value of the random number sequence is 00101000, and the random number generated by the cyclic shift is 40, 80, 161, 67...
- Step 204 Determine the generated random number as an antenna index value.
- the antenna indexes selected by the non-adjacent cells may overlap, or even be the same, that is, the initial values of the m sequences used by all the base stations may be the same, or each base station is uniformly configured by the network side. .
- the method for determining the antenna index by using the random number generated by the random sequence provided by the embodiment of the present invention not only ensures that the antenna does not have a concentrated distribution in the spatial domain, but also achieves the purpose of random selection.
- FIG. 3 is a schematic flowchart of a method for determining a subcarrier index value of a downlink pilot of an antenna according to an embodiment of the present invention.
- a base station has a total of 128 antennas, and an antenna index is 1.
- each antenna can be used to transmit a pilot, but the technical solution provided by the embodiment of the present invention transmits the pilot only on some of the antennas.
- one quarter of the 128 antennas are selected.
- the pilot is transmitted, that is, the antenna is transmitted by the 32 antennas. It is assumed that the maximum bandwidth supported by the system is 20 MHz, which is equivalent to a total of 1200 subcarriers.
- twenty-fourth of the 1200 subcarriers are selected to transmit pilots. That is, the base station transmits the pilot on only 50 subcarriers of the 1200 subcarriers, and the remaining subcarriers transmit data.
- the method for determining the subcarrier index of the 50 transmit pilots is as shown in FIG. 3, and includes the following steps:
- Step 301 Determine a length of the subcarrier random number sequence according to a maximum bandwidth supported by the system.
- the maximum bandwidth supported by the system is 20 MHz, it is equivalent to 1200 subcarriers, that is, the maximum subcarrier index is 1199, and the binary number 11111111111 with a length of 11 can The range of numbers from 0 to 2047 is represented, so the pilot subcarrier index is represented by a sequence of random numbers of length 11.
- Step 302 Determine one or more sequences according to a preset rule, and allocate the one or more sequences to the antenna where the pilot in the cell and the cell is located, and use the sequence as an initial value for generating a random number.
- the pilot subcarrier indexes of any two antennas of different or neighboring cells do not overlap, that is, the pilot does not collide or cause interference
- the condition for selecting 224 sequences from the sequence of 2048 random numbers of length 11 is: the random numbers generated when the 224 random number sequences are cyclically shifted each time are different, step 303: each antenna according to the The initial value cyclic shift generates a series of random numbers.
- Step 304 Each antenna determines a series of random numbers generated as the subcarrier index value of the downlink pilot.
- the subcarrier index values of the pilots of different or neighboring cells at any time are not the same, that is, the frequency domain positions of the pilots do not collide, and at the same time,
- the subcarrier index value of the frequency is random and covers all subcarrier ranges, and there is no overdensity, which avoids the case where the interception scheduling bandwidth is too small in the 1.4 MHz, which affects the accuracy of channel measurement.
- FIG. 4 is a schematic flowchart of a method for determining a specific sequence of a subcarrier index value in which a pilot is located for each antenna of each cell according to an embodiment of the present invention; as shown in FIG. 4, the base station selects one or more conditions that satisfy the condition. After the sequence, it needs to be allocated to each cell and the antenna where the pilot is located.
- the specific allocation method includes the following steps:
- Step 401 Number the determined one or more sequences, and group the one or more sequences.
- all the selected sequences satisfying the condition are pre-defined, that is, each sequence has a corresponding number, and the sequences are grouped, and the grouping manner is arbitrary, as long as the numbers included in each group cannot overlap, that is, Yes, and each group contains a number of sequences greater than or equal to each
- the number of antennas selected by each cell that is, a separate sequence is assigned to each antenna transmitting the pilot. For example, a total of 224 sequences are determined to satisfy a preset rule, and the sequence number is 1, 2
- each sequence group can be divided into 8 groups, the sequence number contained in each sequence group can be as shown in Table 1.
- Step 402 The base station configures the sequence group used by each cell.
- the base station uniformly allocates the sequence group used for each cell, and ensures that the sequence groups used by the neighboring cells are different when configured, and then the base station notifies the sequence group used by the cell where the terminal is located by signaling, or the base station and the terminal pass
- the cell ID implicitly obtains the sequence group used by the cell.
- mod (cell ID, 8) 3.
- the sequence group used by the cell is 3.
- FIG. 5 is a schematic diagram of a sequence group used by a neighboring cell according to an embodiment of the present invention, and FIG. 5 is a case where a sequence group used by a neighboring seven cells is configured.
- Step 403 Allocate the one or more sequences in the sequence group to an antenna where the pilot in the cell is located, so that the sequences obtained by the antenna where the pilot is located are different.
- the antenna in the small cell is in accordance with the antenna index.
- the numbers in the sequence group are taken in order from small to large, which ensures that the sequence of each antenna in which the pilot is located is different.
- Step 404 The base station intercepts the pilot sequence of the corresponding length by using the maximum bandwidth of the system.
- the foregoing embodiment can be used to ensure that the sequence allocation method provided by the embodiment of the present invention ensures that the subcarrier indexes of any two antenna pilots in the neighboring cell are not the same, and the sequence is used to generate the random number to implement the pilot frequency domain location.
- the purpose of randomization is used to ensure that the sequence allocation method provided by the embodiment of the present invention ensures that the subcarrier indexes of any two antenna pilots in the neighboring cell are not the same, and the sequence is used to generate the random number to implement the pilot frequency domain location.
- the base station determines, according to the random number sequentially generated by the initial sequence, the antenna index value of the downlink pilot transmitted by the local cell and the subcarrier index value where the uplink and downlink pilots of each antenna are located.
- the initial sequence is selected to ensure that the generated random number covers the entire antenna index or subcarrier index.
- the antenna or antenna port index value determined in this embodiment is ⁇ 1, 5, 9, 17, 24, 36, 42, 56, 78, ... 120 ⁇ , during the same channel measurement time,
- the frequency division mode suppression step 601 generating a first pilot sequence of a corresponding length according to a maximum bandwidth value supported by the system and a pilot overhead, that is, a number of subcarriers occupied by the frequency domain, and intercepting according to an actual system bandwidth.
- a sequence yields a second pilot sequence to be transmitted.
- the maximum bandwidth supported by the system is 20 MHz
- the pilot overhead is 1/24
- the length of the generated pilot sequence is approximately 48. If the actual system bandwidth is 5MHz, only the pilot sequence within 5MHz can be intercepted from the middle.
- Step 602 Map the second pilot sequence to the time-frequency position of the antenna determined by the method provided by the embodiment of the present invention.
- Step 603 The base station sends the mapped pilot symbols and other downlink data through the antenna or the antenna port.
- the antenna and subcarrier index set selected by the base station can multiplex the same sequence in a time division manner. Try to use the antenna and subcarrier index in turn to achieve random distribution of pilot positions in the space-frequency domain.
- the antenna index selected for different channel measurement intervals can be as shown in Table 2.
- the antenna indexes selected by different base stations in the same channel measurement time can overlap, and the antennas selected by different channel measurement intervals of the same base station are different as much as possible, and the selected antennas are selected.
- the index is similarly evenly valued within 1-128.
- FIG. 6 is a schematic diagram of selecting subcarrier index values of different antennas in different channel measurement interval scenarios according to an embodiment of the present invention; for different channel measurement intervals, the subcarrier index selection of different antennas is as shown in FIG. 6.
- the index values of the subcarriers in which the different antenna pilots are located do not overlap, and the pilots are sparsely and randomly distributed throughout the bandwidth.
- the specific index values are determined according to a series of random numbers generated by the allocated sequence.
- the index values of the subcarriers in which different antenna pilots are located may be the same in different channel measurement intervals.
- the distribution of pilots on different antennas of adjacent cells cannot overlap at the same channel measurement interval to suppress interference between pilots.
- the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the downlink pilot transmission method according to the embodiment of the present invention.
- FIG. 7 is a schematic structural diagram of a downlink pilot transmission apparatus according to an embodiment of the present invention.
- the downlink pilot transmission apparatus according to the embodiment of the present invention is applied to a base station.
- the apparatus includes: a configuration module 71. , a resource determining module 72 and a transmission module 73; wherein
- the configuration module 71 is configured to configure a sequence according to the system parameters and the preset rules, and generate a random number according to the sequence, and send the sequence and the random number to the resource determining module 72;
- the resource determining module 72 is configured to determine a resource index value of the downlink pilot according to the sequence and the random number sent by the configuration module 71;
- the transmitting module 73 is configured to send the downlink pilot according to the resource index value determined by the resource determining module 72.
- the configuration module 71 is configured to determine, according to the total number of base station antennas, a length of a random number sequence of generating an antenna index value; determining an initial value of the random number sequence according to a preset rule; and determining an initial value according to the random number sequence;
- the cyclic shift generates a plurality of random numbers; wherein, the preset rule includes: an antenna index value range in which the downlink pilot is located covers all antennas;
- the resource determining module 72 is configured to determine the random number as an antenna index value of the downlink pilot, where the ratio of the number of antennas where the downlink pilot is located to the total number of antennas of the base station is smaller than a first preset threshold.
- the configuration module 71 is configured to determine, according to a maximum bandwidth of the system, a length of a sequence of random numbers generated by a subcarrier index value; determine one or more sequences according to a preset rule; and allocate the one or more sequences to a cell and a pilot in a cell.
- An antenna the sequence is used as an initial value of a random number sequence; and a plurality of random numbers are generated according to the initial value of the random number sequence; wherein the preset rule includes: a subcarrier where the downlink pilot is located
- the index range covers the bandwidth range of the system; during the same channel measurement time, the multiple random numbers generated by the sequence of each antenna configuration of the neighboring cell are different;
- the resource determining module 72 is configured to determine a random number generated by the configuration module as a subcarrier index value in which the downlink pilot is located, where the subcarriers in which the downlink pilot is located are discontinuous and irregularly distributed; The ratio of the number of subcarriers in which the downlink pilot is located to the total number of subcarriers included in the bandwidth is smaller than a second preset threshold.
- the configuration module 71 is further configured to group the one or more sequences, and assign a sequence group to each cell, so that the sequence groups allocated by the two adjacent cells are different; More than one sequence is allocated to the antenna where the pilot in the cell is located, so that the sequences obtained by the antenna where the pilot is located are different.
- the configuration module 71 is configured to determine the number of the one or more sequences according to the number of neighboring cells and the number of antennas transmitting pilots in each cell.
- the configuration module 71 is further configured to allocate the same sequence when the antenna transmits the pilot in a time division manner in different channel measurement times; wherein the channel measurement time interval includes: at least one subframe, time Gap or OFDM symbol.
- each of the processing modules in the downlink pilot transmission device of the embodiment of the present invention may be implemented by using an analog circuit that implements the functions described in the embodiments of the present invention, or may be implemented on a smart terminal by executing software of the functions described in the embodiments of the present invention. The operation is implemented.
- the downlink pilot transmission device is applied to the base station, and the configuration module 71 and the resource determination module 72 in the device may be implemented by a central processing unit (CPU, Central Processing Unit) or a digital number in the base station.
- the signal processor DSP, Digital Signal Processor
- FPGA programmable gate array
- the embodiment of the present invention designs a pilot position for multiple antennas, multiple cells, different channel measurement intervals, different pilot patterns-different spatial frequency domains, and is guaranteed to be the same in the maximum bandwidth.
- the frequency domain positions of the pilots between different cells and antennas are different, so as to achieve interference suppression.
- a downlink pilot transmission method and apparatus provided by the embodiments of the present invention solve the problem of large original pilot overhead in a large-scale multi-antenna system, and can be applied to Massive.
- the new channel information acquisition method proposed by the antenna array transmission further improves the spectrum utilization and throughput of the system.
- embodiments of the present invention can be provided as a method, apparatus, or computer program product. Accordingly, the present invention may take the form of a hardware embodiment, a software embodiment, or an embodiment of a combination of software and hardware. Moreover, the invention can be embodied in the form of a computer program product embodied on one or more computer usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
- the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
- the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
- These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
- the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
- the embodiment of the present invention configures a sequence according to the system parameter and the preset rule, and generates a random number according to the sequence; determines a resource index value of the downlink pilot according to the sequence and the random number, and sends a downlink pilot;
- the pilot air-frequency domain is compressed, and the pilot frequency domain positions of any two antennas in the neighboring cell or the same cell are randomly distributed and do not collide, and the pilot overhead and interference suppression are reduced, thereby improving the system. Spectrum utilization.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明实施例公开了一种下行导频的传输方法,所述方法包括:根据系统参数和预设规则配置序列,及根据所述序列生成随机数;根据所述序列及所述随机数确定下行导频的资源索引值并发送下行导频。本发明实施例同时还公开了一种下行导频的传输装置及计算机存储介质。
Description
一种下行导频的传输方法、 装置及计算机存储介质 技术领域
本发明涉及导频传输技术, 具体涉及一种下行导频的传输方法、 装置 及计算机存储介质。 背景技术
随着移动通信业务流量需求的快速增长,未来 B4G/5G移动通信系统将 面对更加广泛的需求, 4G移动通信标准中先进多天线技术以及信道自适应 技术等的釆用已经使系统的频谱效率逼近了信道容量。 要实现上述目标, 就需要对传统网络架构做出调整, 并寻找新的无线资源增长点。 小区的小 型化和异构化是未来无线网络发展的趋势, 也就是通过缩短终端与接入点 之间的距离, 能够降低信号的路径损耗, 可以提高系统的频谱效率和功率 效率; 还有就是通过配置更大规模的天线阵列来提升系统容量和覆盖。
近两年兴起的热门研究方向之一即基于大维度天线排列的大规模 ( Massive ) 天线阵列技术, 能够深度挖掘和利用空间的无线资源, 理论上 可以显著的提高系统的频谱效率和功率效率。但 Massive天线阵列传输将呈 现一些新的特性, 比如: 信道在空间分布上将具有明显的稀疏性; 大阵列 波束可几乎完全消除噪声的影响, 但导频污染等引起的同频干扰成为制约 系统性能的主要因素。
面对上述的特征, 要设计出高效可靠的新型 Massive 天线阵列传输技 术, 首先需要解决接收侧信道信息的获取问题。
目前, 在长期演进( LTE, Long Term Evolution ) 系统中, 资源是以空 域 -天线或天线端口, 时域和频域三维进行区分的。 其中, 下行导频在频域 上都是均勾分布的, 比如用于信道状态信息获取的测量导频 (CRS,
Cell-specific Reference Signals )相邻两个导频符号的子载波间隔均为 6, 信 道状态信息参考信号 ( CSI- S, Channel- State Information Reference Signals ) 相邻两个导频符号的子载波间隔均为 12, 且每根天线都需要发送导频。
在基于 LTE 的大规模天线多入多 出 ( MIMO, Multiple-Input Multiple-Output )技术中, 由于基站侧配置有大规模天线阵列, 比如 100多 根天线, 甚至更多, 如果按照目前的协议要求需要在每根天线都发送导频, 且导频所占的子载波位置按现有协议映射, 导频开销就会比较大, 严重影 响系统的数据率及频谱效率。 目前还没有提出具有低开销的且能适用于上 述信道信息获取方法的高效的下行导频的传输方法的解决方案。 发明内容
本发明实施例提供一种下行导频的传输方法、 装置及计算机存储介质, 保证相邻小区或同一小区的任意两根天线的导频频域位置是随机分布的且 不会发生碰撞, 能够实现导频空频域压缩, 提升系统的频谱利用率。
本发明实施例的技术方案是这样实现的:
本发明实施例提供了一种下行导频的传输方法, 所述方法包括: 根据系统参数和预设规则配置序列, 及根据所述序列生成随机数; 根据所述序列及所述随机数确定下行导频的资源索引值并发送下行导 频。
优选地, 所述系统参数包括: 基站天线总数目和 /或系统最大带宽。 优选地, 所述资源索引值包括以下参数的至少之一: 天线索引值、 频 域子载波索引值、 时域符号索引值。
优选地, 所述根据系统参数和预设规则配置序列及生成随机数, 根据 所述序列及随机数确定下行导频的资源索引值, 包括:
根据基站天线总数目确定生成天线索引值随机数序列的长度; 根据预设规则确定所述随机数序列的初始值; 其中, 所述预设规则包
括: 下行导频所在的天线索引值范围覆盖所有天线;
根据所述随机数序列的初始值循环移位生成多个随机数;
将所述随机数确定为所述下行导频所在的天线索引值; 其中, 所述下 行导频所在的天线数目与所述基站天线总数目的比值小于第一预设阈值。
优选地, 所述根据系统参数和预设规则配置序列及生成随机数, 根据 所述序列及随机数确定下行导频的资源索引值, 包括:
根据系统最大带宽确定生成子载波索引值随机数序列的长度; 根据预设规则确定一个以上序列; 其中, 所述预设规则包括: 下行导 频所在的子载波的索引范围覆盖所述系统的带宽范围;
将所述一个以上序列分配给小区及小区内导频所在天线, 将所述序列 作为随机数序列的初始值;
根据所述随机数序列的初始值循环移位生成多个随机数; 其中, 在相 同的信道测量时间内, 相邻小区的每根天线配置的序列生成的多个随机数 不同;
将所述随机数确定为下行导频所在的子载波索引值; 其中, 所述下行 导频所在的子载波为不连续且不规则分布; 且所述下行导频所在的子载波 数目与带宽包含的子载波总数目的比值小于第二预设阈值。
优选地, 所述将所述一个以上序列分配给小区及小区内导频所在天线, 包括:
将所述一个以上序列进行分组, 将序列组分配至每个小区, 使相邻两 个小区所分配的序列组不同;
将所述序列组中的一个以上序列分配给小区内导频所在天线, 使所述 导频所在天线获得的序列都不同。
优选地, 所述一个以上序列的数量根据邻小区数量及每个小区内发送 导频的天线数量确定。
优选地, 所述方法还包括: 在不同的信道测量时间内, 当天线通过时 分方式传输导频时, 为所述天线分配相同的序列; 其中, 所述信道测量时 间间隔包括: 至少一个子帧、 时隙或者正交频分复用 (OFDM, Orthogonal Frequency Division Multiplexing )符号。
本发明实施例还提供了一种下行导频的传输装置, 所述装置包括: 配 置模块、 资源确定模块和传输模块; 其中,
所述配置模块, 配置为根据系统参数和预设规则配置序列, 及根据所 述序列生成随机数, 将所述序列及随机数发送至资源确定模块;
所述资源确定模块, 配置为根据所述配置模块发送的序列及随机数确 定下行导频的资源索引值;
所述传输模块, 配置为根据所述资源确定模块确定的资源索引值发送 下行导频。
优选地, 所述配置模块, 配置为根据基站天线总数目确定生成天线索 引值随机数序列的长度; 根据预设规则确定所述随机数序列的初始值; 根 据所述随机数序列的初始值循环移位生成多个随机数; 其中, 所述预设规 则包括: 下行导频所在的天线索引值范围覆盖所有天线;
所述资源确定模块, 配置为将所述随机数确定为所述下行导频所在的 天线索引值; 其中, 所述下行导频所在的天线数目与所述基站天线总数目 的比值小于第一预设阈值。
优选地, 所述配置模块, 配置为根据系统最大带宽确定生成子载波索 引值随机数序列的长度; 根据预设规则确定一个以上序列; 将所述一个以 上序列分配给小区及小区内导频所在天线, 将所述序列作为随机数序列的 初始值; 根据所述随机数序列的初始值循环移位生成多个随机数; 其中, 所述预设规则包括: 下行导频所在的子载波的索引范围覆盖所述系统的带 宽范围; 在相同的信道测量时间内, 相邻小区的每根天线配置的序列生成
的多个随机数不同;
所述资源确定模块, 配置为将所述配置模块生成的随机数确定为下行 导频所在的子载波索引值; 其中, 所述下行导频所在的子载波是为不连续 且不规则分布的; 所述下行导频所在的子载波数目与带宽包含的子载波总 数目的比值小于第二预设阈值。
优选地, 所述配置模块, 还配置为将所述一个以上序列进行分组, 将 序列组分配至每个小区, 使相邻两个小区所分配的序列组不同; 将所述序 列组中的一个以上序列分配给小区内导频所在天线, 使所述导频所在天线 获得的序列都不同。
优选地, 所述配置模块, 配置为根据邻小区数量及每个小区内发送导 频的天线数量确定所述一个以上序列的数量。
优选地, 所述配置模块, 还配置为在不同的信道测量时间内, 当天线 通过时分方式传输导频时分配相同的序列; 其中, 所述信道测量时间间隔 包括: 至少一个子帧、 时隙或者 OFDM符号。
本发明实施例还提供了一种计算机存储介质, 所述计算机存储介质中 存储有计算机可执行指令, 所述计算机可执行指令用于执行本发明实施例 所述的下行导频的传输方法。
本发明实施例提供的下行导频的传输方法及装置, 根据系统参数和预 设规则配置序列, 及根据所述序列生成随机数; 根据所述序列及所述随机 压缩, 并且保证相邻小区或同一小区的任意两根天线的导频频域位置是随 机分布的且不会发生碰撞, 同时达到降低导频开销及干扰抑制的目的, 提 升了系统的频谱利用率。 附图说明
图 1为本发明实施例的下行导频的传输方法的流程示意图;
图 2为本发明实施例中天线索引值的确定方法的流程示意图; 图 3 为本发明实施例中天线的下行导频所在的子载波索引值的确定方 法的流程示意图;
图 4 为本发明实施例中对每个小区的每根天线确定导频所在的子载波 索引值的具体序列的确定方法的流程示意图;
图 5为本发明实施例中相邻小区釆用的序列组的示意图;
图 6 为本发明实施例中不同的信道测量间隔场景下不同天线的子载波 索引值选取示意图;
图 7为本发明实施例的下行导频的传输装置的组成结构示意图。 具体实施方式
下面结合附图及具体实施例对本发明作进一步详细的说明。
图 1为本发明实施例的下行导频传输方法的流程示意图, 如图 1所示, 包括以下步骤:
步骤 101 : 根据系统参数和预设规则确定序列及随机数。
这里, 所述系统参数包括: 基站天线总数目和 /或系统最大带宽。
所述资源索引值包括以下参数的至少之一: 天线索引值、 频域子载波 索引值、 时域符号索引值。
所述预设规则包括: 所述下行导频所在的天线索引值范围覆盖所有天 线;
所述下行导频所在的子载波索引值范围覆盖所述系统的带宽范围, 即 子载波索引值在系统的带宽范围内类似均匀取值, 避免出现在调度的小带 宽内导频数目过于稀少的情况;
在相同的信道测量间隔内, 相邻小区所确定的序列及随机数都不相同, 即每根天线的导频所在频域位置不重叠。
步骤 102:根据所述序列及随机数确定下行导频的资源索引值并发送下
行导频。
优选地, 当所述资源索引值为天线索引值时, 所述根据系统参数和预 设规则确定序列及随机数, 根据所述序列及随机数确定下行导频的资源索 引值, 包括:
根据基站天线总数目确定生成天线索引值随机数序列的长度; 根据预设规则确定随机数序列的初始值; 其中, 所述预设规则包括: 下行导频所在的天线索引值范围覆盖所有天线;
根据所述随机数序列的初始值循环移位生成多个随机数;
将所述随机数确定为所述下行导频所在的天线索引值; 其中, 所述下 行导频所在的天线数目与所述基站天线总数目的比值小于第一预设阈值。
这里, 所述导频所在的天线的数目远小于所述基站天线总数目; 优选 地, 所述第一预设阈值可为四分之一, 即所述导频所在天线数目可以仅为 基站天线总数目的四分之一。 当然, 所述第一预设阈值也可为其他小于 1 的任意数值。
本实施例中, 所述根据所述随机数序列的初始值循环移位生成多个随 机数可根据预设序列规则循环移位生成多个随机数, 所述序列为具有不相 干性的序列, 如 m序列、 gold序列等。
优选地, 当所述资源索引值为频域子载波索引值时, 所述根据系统参 数和预设规则确定序列及随机数, 根据所述序列及随机数确定下行导频的 资源索引值, 包括:
根据系统最大带宽确定生成子载波索引值随机数序列的长度; 根据预设规则确定一个以上序列; 其中, 所述预设规则包括: 下行导 频所在的子载波的索引范围覆盖所述系统的带宽范围;
将所述一个以上序列分配给小区及小区内导频所在天线, 将所述序列 作为随机数序列的初始值;
根据所述随机数序列的初始值循环移位生成多个随机数; 其中, 在相 同的信道测量时间内, 相邻小区的每根天线配置的序列生成的多个随机数 不同;
将所述随机数确定为下行导频所在的子载波索引值; 其中, 所述下行 导频所在的子载波为不连续且不规则分布; 且所述下行导频所在的子载波 数目与带宽包含的子载波总数目的比值小于第二预设阈值。
这里, 所述导频所在的子载波的数目远小于所述子载波的数目; 所述 导频所在的子载波不连续且不规则的分布在所述子载波中; 优选地, 所述 第二预设阈值可以为二十四分之一, 即所述导频所在的子载波数目可以仅 为子载波总数目的二十四分之一。 当然, 所述第二预设阈值也可为其他小 于 1的任意数值。
优选地, 所述将所述一个以上序列分配给小区及小区内导频所在天线, 包括:
将所述一个以上序列进行分组, 将序列组分配至每个小区, 使相邻两 个小区所分配的序列组不同;
将所述序列组中的一个以上序列分配给小区内导频所在天线, 使所述 导频所在天线获得的序列都不同。
具体的, 基站可通过信令通知终端所在小区所用的序列组, 或者基站 和终端通过小区识别码(ID ) 来隐含得到本小区所用的序列组; 例如: 预 定义函数名 mod (小区 ID, 8 ) =1的小区所用的序列组为 1, mod (小区 ID, 8 ) =2的小区所用的序列组为 2, mod (小区 ID, 8 ) =3的小区所用的序列 组为 3。
其中, 所述一个以上序列的数量根据邻小区数量及每个小区内发送导 频的天线数量确定。 例如: 每个小区内发送导频的天线数目为 M, 小区的 邻小区数量为 6, 则所述一个以上序列的数量为 7M。
优选地, 在不同的信道测量时间内, 当天线通过时分方式传输导频时, 可以为所述天线分配相同的序列; 其中, 所述信道测量时间间隔包括: 至 少一个子帧、 时隙或者 OFDM符号。
本发明实施例中所述的下行导频的传输方法适用于宽带移动通信中的 单天线系统, 或集中式多天线系统, 或分布式多天线系统; 或者用于时延 域稀疏的频率选择性信道或多普勒域稀疏的时间选择性信道; 通过本发明 实施例所提出的技术方案, 能实现导频空频域压缩, 并且保证相邻小区或 同一小区的任意两根天线的导频频域位置在相同的信道测量间隔内都是随 机分布的且不会发生碰撞, 同时达到降低导频开销及干扰抑制的目的, 提 升了系统的频谱利用率。
图 2 为本发明实施例中天线索引值的确定方法的流程示意图, 在本实 施例中, 假设基站共有 256根天线, 天线索引为 1、 2 256, 每根天 线都可以用来发送导频, 但本发明实施例提供的技术方案仅在其中的部分 天线上发送导频, 本发明实施例中, 选取 256根天线中的四分之一发送导 频, 即 64根天线发送导频, 则所述 64根天线的确定方法如图 2所示, 包 括以下步骤:
步骤 201:根据天线总数目或最大天线索引值天线确定随机数序列的长 度。
这里, 由于天线总数目或最大天线索引值为 256, 由于长度为 8的二进 制数 11111111能够表示 0~255的数字范围, 因此用长度为 8的随机数序列 表示天线索引。
步骤 202: 根据预设规则确定所述随机数序列的初始值。
这里, 所述预设规则为下行导频所在的天线索引值范围覆盖所有天线, 即在 0~255 中类似均匀分布, 使天线分布均匀, 不过分集中; 为确保所确 定的天线能覆盖所有天线范围, 所述随机数序列的初始值应尽量位于所有
天线的中间, 本实施例中, 所述随机数序列的初始值可设定为 00101000。 步骤 203: 根据所述随机数序列的初始值循环移位生成随机数。
这里, 所述预设序列规则可以是随机序列规则, 如 m序列、 gold序列 等, 本实施例中可按照长度为 8的 m序列依次生成的随机数确定天线索引 值, 本实施例中, 通过所述随机数序列的初始值 00101000, 循环移位依次 生成的随机数为 40、 80、 161、 67... ...。
步骤 204: 将生成的随机数确定为天线索引值。
本实施例中, 不相邻的小区所选择的天线索引可以重叠, 甚至完全相 同, 即所有基站用的 m序列的初始值可以都是相同的, 或者每个基站都是 由网络侧统一配置的。
通过本实施例可以看出本发明实施例提供的利用随机序列生成的随机 数来确定天线索引的方法既保证了天线在空间域不会出现集中分布的情 况, 也能达到随机选择的目的。
图 3 为本发明实施例中天线的下行导频所在的子载波索引值的确定方 法的流程示意图,在本实施例中,假设基站共有 128根天线,天线索引为 1、
2 128, 每根天线都可以用来发送导频, 但本发明实施例提供的技 术方案仅在其中的部分天线上发送导频, 本发明实施例中, 选取 128根天 线中的四分之一发送导频, 即 32根天线发送导频; 假设系统支持的最大带 宽为 20MHz, 相当于共有 1200个子载波, 本发明实施例中, 选取 1200个 子载波中的二十四分之一发送导频, 即基站仅在 1200个子载波中的 50个 子载波上发送导频, 其余子载波发送数据; 所述 50个发送导频的子载波索 引的确定方法如图 3所示, 包括以下步骤:
步骤 301 : 根据系统支持的最大带宽确定子载波随机数序列的长度。 这里, 由于系统支持的最大带宽为 20MHz, 相当于有 1200个子载波, 即最大子载波索引为 1199, 由于长度为 11的二进制数 11111111111, 能够
表示 0~2047的数字范围, 因此用长度为 11的随机数序列表示导频子载波 索引。
步骤 302: 根据预设规则确定一个以上序列, 将所述一个以上序列分配 给小区及小区内导频所在天线, 将所述序列作为生成随机数的初始值。
本实施例中, 为避免不同或相邻小区的任意两根天线的导频子载波索 引不会发生重叠, 即导频不会发生碰撞或产生干扰, 至少需要 7 x 32=224 条随机数序列; 从长度为 11的 2048条随机数序列中选定 224条序列的条 件为: 所述 224条随机数序列每次循环移位时生成的随机数是不同的, 步骤 303: 每根天线根据所述初始值循环移位生成一系列随机数。
步骤 304:每根天线将生成的一系列随机数确定为下行导频所在的子载 波索引值。
通过本实施例可以看出, 通过以上预设规则可以满足不同或相邻小区 任何时刻导频所在的子载波索引值都不会相同, 即导频的频域位置都不会 发生碰撞, 同时导频所在的子载波索引值是随机的且覆盖所有子载波范围, 不会出现过密,避免了截取调度带宽 1.4MHz内导频数目太少的情况,影响 信道测量的准确性。
图 4 为本发明实施例中对每个小区的每根天线确定导频所在的子载波 索引值的具体序列的确定方法的流程示意图; 如图 4所示, 基站在挑选到 满足条件的一个以上序列后, 需要分配给每个小区及导频所在天线, 具体 分配方法包括以下步骤:
步骤 401 : 将确定的一个以上序列进行编号, 并对所述一个以上序列进 行分组。
这里, 将挑选出的满足条件的所有序列进行预定义编号, 即每条序列 有个——对应的编号, 对这些序列进行分组, 分组方式随意, 只要保证每 个组内包含的编号不能重叠即可, 且每个组包含的序列的条数大于等于每
个小区所选择的天线数目, 即给每根发送导频的天线分配一条单独的序列。 例如,一共确定 224条序列满足预设规则,所述序列的编号为 1、 2
224, 可以分为 8组, 每个序列组内包含的序列编号可以如表 1所示。
表 1
步骤 402: 基站给每个小区配置所用的序列组。
这里, 基站统一给每个小区配置所用的序列组, 配置的时候要保证相 邻小区所用的序列组是不相同的, 然后基站通过信令通知终端所在小区所 用的序列组,或者基站和终端通过小区 ID来隐含得到本小区所用的序列组。
例如: 预定义 mod (小区 ID, 8 ) =1 的小区所用的序列组为 1, mod (小区 ID, 8 ) =2的小区所用的序列组为 2, mod (小区 ID, 8 ) =3的小区 所用的序列组为 3。
例如, 图 5 为本发明实施例中相邻小区釆用的序列组的示意图, 配置 某相邻 7个小区所釆用的序列组的情况如附图 5所示。
步骤 403:将所述序列组中的所述一个以上序列分配给小区内导频所在 天线, 使所述导频所在天线获得的序列都不同。
优选地, 每个小区获得序列组后, 小区内导频所在天线按照天线索引
从小到大的顺序依次取序列组内的编号, 这样可以确保导频所在的每根天 线的序列都是不相同的。
步骤 404: 基站通过系统最大带宽来截取相应长度的导频序列。
通过本实施例可以看出本发明实施例提供的上述序列分配方法, 保证 了相邻小区的任意两根天线导频所在的子载波索引不会相同, 并且利用序 列产生随机数实现导频频域位置随机化的目的。
下面结合实施例对本发明实施例中在一个时间段内导频在导频位置发 送的整个过程作进一步详细的说明。
在下行导频发送之前, 在一个信道测量间隔内, 基站根据初始序列依 次生成的随机数确定本小区发送下行导频的天线索引值及每根天线上下行 导频所在的子载波索引值; 其中, 所述初始序列的选择要保证生成的随机 数覆盖整个天线索引或子载波索引。 所述确定发送下行导频的天线索引值 及每根天线上下行导频所在的子载波索引值的方法如图 2至图 4所用方法, 此处不在赘述。
殳设本实施例中确定的天线或天线端口索引值为 {1, 5, 9, 17, 24, 36, 42, 56, 78, ... ... 120} , 相同的信道测量时间内, 不同天线端口之间 频分即选择的子载波索引不同, 时分即下行导频发送所在的 OFDM符 号或者时隙或者子帧不同。
当釆用频分方式抑制干扰时, 就是在相同的 OFDM符号上, 不同天线 导频所在的子载波索引按照这一系列随机数确定。 所述釆用频分方式抑制 步骤 601 : 根据系统支持的最大带宽值及导频开销, 即频域所占的子载 波数目生成相应长度的第一导频序列, 并按照实际的系统带宽截取第一序 列得到要发送的第二导频序列。
例如, 系统支持的最大带宽为 20MHz, 导频开销为 1/24, 大概生成的 导频序列的长度为 48。 如果实际系统带宽为 5MHz 的话, 仅从中间截取 5MHz内的导频序列即可。
步骤 602:将所述第二导频序列映射到本发明实施例所提供的方法所确 定的天线的时频位置上。
步骤 603:基站将映射好的导频符号以及其他下行数据通过天线或天线 端口发送出去。
在不同的信道测量间隔, 基站所选择的天线及子载波索引组可以通过 时分的方式复用相同的序列。 尽量轮流使用天线及子载波索引, 从而实现 空频域导频位置的随机化分布。
例如, 对于总数目为 128根天线的基站, 不同的信道测量间隔所选择 的天线索引可以如表 2所示。
表 2
可以看出, 不同基站在相同信道测量时间内所选择的天线索引可以重 叠, 相同基站不同的信道测量间隔所选择的天线尽量不同, 所选择的天线
索引在 1-128内类似均匀取值。
图 6 为本发明实施例中不同的信道测量间隔场景下不同天线的子载波 索引值选取示意图; 对于不同的信道测量间隔, 不同天线的子载波索引选 取的情况如附图 6所示。 不同天线导频所在的子载波的索引值是不重叠的, 且导频在整个带宽内稀疏随机分布, 具体索引值按照分配的序列生成的一 系列随机数来确定。 另外, 不同的信道测量间隔内, 不同天线导频所在的 子载波的索引值可以相同。
同时, 相邻小区不同的天线上导频的分布在相同的信道测量间隔也是 不能重叠的, 来抑制导频之间的干扰。
本发明实施例还提供了一种计算机存储介质, 所述计算机存储介质中 存储有计算机可执行指令, 所述计算机可执行指令用于执行本发明实施例 所述的下行导频的传输方法。
图 7 为本发明实施例的下行导频的传输装置的组成结构示意图, 本发 明实施例所述的下行导频的传输装置应用于基站; 如图 7 所述, 所述装置 包括: 配置模块 71、 资源确定模块 72和传输模块 73; 其中,
所述配置模块 71, 配置为根据系统参数和预设规则配置序列, 及根据 所述序列生成随机数, 将所述序列及随机数发送至资源确定模块 72;
所述资源确定模块 72,配置为根据所述配置模块 71发送的序列及随机 数确定下行导频的资源索引值;
所述传输模块 73,配置为才艮据所述资源确定模块 72确定的资源索引值 发送下行导频。
优选地, 所述配置模块 71, 配置为根据基站天线总数目确定生成天线 索引值随机数序列的长度; 根据预设规则确定所述随机数序列的初始值; 根据所述随机数序列的初始值循环移位生成多个随机数; 其中, 所述预设 规则包括: 下行导频所在的天线索引值范围覆盖所有天线;
所述资源确定模块 72, 配置为将所述随机数确定为下行导频所在的天 线索引值; 其中, 所述下行导频所在的天线数目与所述基站天线总数目的 比值小于第一预设阈值。
优选地, 所述配置模块 71, 配置为根据系统最大带宽确定生成子载波 索引值随机数序列的长度; 根据预设规则确定一个以上序列; 将所述一个 以上序列分配给小区及小区内导频所在天线, 将所述序列作为随机数序列 的初始值; 根据所述随机数序列的初始值循环移位生成多个随机数; 其中, 所述预设规则包括: 下行导频所在的子载波的索引范围覆盖所述系统的带 宽范围; 在相同的信道测量时间内, ,相邻小区的每根天线配置的序列生成 的多个随机数不同;
所述资源确定模块 72, 配置为将所述配置模块生成的随机数确定为下 行导频所在的子载波索引值; 其中, 所述下行导频所在的子载波为不连续 且不规则分布; 所述下行导频所在的子载波数目与带宽包含的子载波总数 目的比值小于第二预设阈值。
优选地, 所述配置模块 71, 还配置为将所述一个以上序列进行分组, 将序列组分配至每个小区, 使相邻两个小区所分配的序列组不同; 将所述 序列组中的一个以上序列分配给小区内导频所在天线, 使所述导频所在天 线获得的序列都不同。
优选地, 所述配置模块 71, 配置为根据邻小区数量及每个小区内发送 导频的天线数量确定所述一个以上序列的数量。
优选地, 所述配置模块 71, 还配置为在不同的信道测量时间内, 当天 线通过时分方式传输导频时分配相同的序列; 其中, 所述信道测量时间间 隔包括: 至少一个子帧、 时隙或者 OFDM符号。
本领域技术人员应当理解, 本发明实施例的下行导频的传输装置中各 处理模块的功能, 可参照前述下行导频的传输方法的相关描述而理解, 本
发明实施例的下行导频的传输装置中各处理模块, 可通过实现本发明实施 例所述的功能的模拟电路而实现, 也可以通过执行本发明实施例所述的功 能的软件在智能终端上的运行而实现。
其中, 所述下行导频的传输装置应用于基站中, 所述装置中的配置模 块 71和资源确定模块 72, 在实际应用中可由基站中的中央处理器(CPU、 Central Processing Unit )、或数字信号处理器( DSP, Digital Signal Processor ), 或可编程门阵列 (FPGA、 Field-Programmable Gate Array ) 实现; 所述装置 中的传输模块 73, 在实际应用中可由基站中的传输天线实现。
本发明实施例针对 LTE下行, 设计了最大带宽内的针对多天线, 多小 区, 不同信道测量间隔, 不同的导频图样 -不同的空频域稀疏随机分布的导 频位置, 并且保证了在相同的信道测量间隔内, 不同小区及天线之间导频 所在的频域位置都是不相同的, 从而达到干扰抑制的目的。
同时, 从上述所有实施例可以看出, 本发明实施例所提供的一种下行 导频的传输方法和装置解决了大规模多天线系统中原有导频开销大的问 题, 并且能适用于针对 Massive 天线阵列传输提出的新的信道信息获取方 法, 最终进一步提升了系统的频谱利用率及吞吐量。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 装置、 或计算机程序产品。 因此, 本发明可釆用硬件实施例、 软件实施例、 或结 合软件和硬件方面的实施例的形式。 而且, 本发明可釆用在一个或多个其 中包含有计算机可用程序代码的计算机可用存储介质 (包括但不限于磁盘 存储器和光学存储器等 )上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、 装置、 和计算机程序产品的 流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 / 或方框图中的每一流程和 /或方框、以及流程图和 /或方框图中的流程和 /或方 框的结合。 可提供这些计算机程序指令到通用计算机、 专用计算机、 嵌入
式处理机或其他可编程数据处理设备的处理器以产生一个机器, 使得通过 程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理 设备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存 储器中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个 流程或多个流程和 /或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备 上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机 实现的处理, 从而在计算机或其他可编程设备上执行的指令提供用于实现 在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功 能的步骤。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。 工业实用性
本发明实施例根据系统参数和预设规则配置序列, 及根据所述序列生 成随机数; 根据所述序列及所述随机数确定下行导频的资源索引值并发送 下行导频; 如此, 实现了导频空频域压缩, 并且保证相邻小区或同一小区 的任意两根天线的导频频域位置是随机分布的且不会发生碰撞, 同时达到 降低导频开销及干扰抑制的目的, 提升了系统的频谱利用率。
Claims
1、 一种下行导频的传输方法, 所述方法包括:
根据系统参数和预设规则配置序列, 及根据所述序列生成随机数; 根据所述序列及所述随机数确定下行导频的资源索引值并发送下行导 频。
2、 根据权利要求 1所述的方法, 其中, 所述系统参数包括: 基站天线 总数目和 /或系统最大带宽。
3、 根据权利要求 1所述的方法, 其中, 所述资源索引值包括以下参数 的至少之一: 天线索引值、 频域子载波索引值、 时域符号索引值。
4、 根据权利要求 1至 3任一项所述的方法, 其中, 所述根据系统参数 和预设规则配置序列及生成随机数, 根据所述序列及随机数确定下行导频 的资源索引值, 包括:
根据基站天线总数目确定生成天线索引值随机数序列的长度; 根据预设规则确定所述随机数序列的初始值; 其中, 所述预设规则包 括: 下行导频所在的天线索引值范围覆盖所有天线;
根据所述随机数序列的初始值循环移位生成多个随机数;
将所述随机数确定为所述下行导频所在的天线索引值; 其中, 所述下 行导频所在的天线数目与所述基站天线总数目的比值小于第一预设阈值。
5、 根据权利要求 1至 3任一项所述的方法, 其中, 所述根据系统参数 和预设规则配置序列及生成随机数, 根据所述序列及随机数确定下行导频 的资源索引值, 包括:
根据系统最大带宽确定生成子载波索引值随机数序列的长度; 根据预设规则确定一个以上序列; 其中, 所述预设规则包括: 下行导 频所在的子载波的索引范围覆盖所述系统的带宽范围;
将所述一个以上序列分配给小区及小区内导频所在天线, 将所述序列
作为随机数序列的初始值;
根据所述随机数序列的初始值循环移位生成多个随机数; 其中, 在相 同的信道测量时间内, 相邻小区的每根天线配置的序列生成的多个随机数 不同;
将所述随机数确定为下行导频所在的子载波索引值; 其中, 所述下行 导频所在的子载波为不连续且不规则分布; 且所述下行导频所在的子载波 数目与带宽包含的子载波总数目的比值小于第二预设阈值。
6、 根据权利要求 5所述的方法, 其中, 所述将所述一个以上序列分配 给小区及小区内导频所在天线, 包括:
将所述一个以上序列进行分组, 将序列组分配至每个小区, 使相邻两 个小区所分配的序列组不同;
将所述序列组中的一个以上序列分配给小区内导频所在天线, 使所述 导频所在天线获得的序列都不同。
7、 根据权利要求 5或 6所述的方法, 其中, 所述一个以上序列的数量 根据邻小区数量及每个小区内发送导频的天线数量确定。
8、 根据权利要求 5所述的方法, 其中, 所述方法还包括: 在不同的信 道测量时间内, 当天线通过时分方式传输导频时, 为所述天线分配相同的 序列; 其中, 所述信道测量时间间隔包括: 至少一个子帧、 时隙或者正交 频分复用 OFDM符号。
9、 一种下行导频的传输装置, 所述装置包括: 配置模块、 资源确定模 块和传输模块; 其中,
所述配置模块, 配置为根据系统参数和预设规则配置序列, 及根据所 述序列生成随机数, 将所述序列及随机数发送至资源确定模块;
所述资源确定模块, 配置为根据所述配置模块发送的序列及随机数确 定下行导频的资源索引值;
所述传输模块, 配置为根据所述资源确定模块确定的资源索引值发送 下行导频。
10、 根据权利要求 9所述的装置, 其中, 所述配置模块, 配置为根据 基站天线总数目确定生成天线索引值随机数序列的长度; 根据预设规则确 定所述随机数序列的初始值; 根据所述随机数序列的初始值循环移位生成 多个随机数; 其中, 所述预设规则包括: 下行导频所在的天线索引值范围 覆盖所有天线;
所述资源确定模块, 配置为将所述随机数确定为所述下行导频所在的 天线索引值; 其中, 所述下行导频所在的天线数目与所述基站天线总数目 的比值小于第一预设阈值。
11、 根据权利要求 9 所述的装置, 其中, 所述配置模块, 配置为根据 系统最大带宽确定生成子载波索引值随机数序列的长度; 根据预设规则确 定一个以上序列; 将所述一个以上序列分配给小区及小区内导频所在天线, 将所述序列作为随机数序列的初始值; 根据所述随机数序列的初始值循环 移位生成多个随机数; 其中, 所述预设规则包括: 下行导频所在的子载波 的索引范围覆盖所述系统的带宽范围; 在相同的信道测量时间内, ,相邻小 区的每根天线配置的序列生成的多个随机数不同;
所述资源确定模块, 配置为将所述配置模块生成的随机数确定为下行 导频所在的子载波索引值; 其中, 所述下行导频所在的子载波是为不连续 且不规则分布的; 所述下行导频所在的子载波数目与带宽包含的子载波总 数目的比值小于第二预设阈值。
12、 根据权利要求 11所述的装置, 其中, 所述配置模块, 还配置为将 所述一个以上序列进行分组, 将序列组分配至每个小区, 使相邻两个小区 所分配的序列组不同; 将所述序列组中的一个以上序列分配给小区内导频 所在天线, 使所述导频所在天线获得的序列都不同。
13、 根据权利要求 11或 12所述的装置, 其中, 所述配置模块, 配置 为根据邻小区数量及每个小区内发送导频的天线数量确定所述一个以上序 列的数量。
14、 根据权利要求 11所述的装置, 其中, 所述配置模块, 还配置为在 不同的信道测量时间内, 当天线通过时分方式传输导频时分配相同的序列; 其中, 所述信道测量时间间隔包括: 至少一个子帧、 时隙或者正交频分复 用 OFDM符号。
15、 一种计算机存储介质, 所述计算机存储介质中存储有计算机可执 行指令, 所述计算机可执行指令用于执行权利要求 1至 8任一项所述的下 行导频的传输方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310676444.2A CN104717659B (zh) | 2013-12-11 | 2013-12-11 | 一种下行导频的传输方法及装置 |
CN201310676444.2 | 2013-12-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014187294A1 true WO2014187294A1 (zh) | 2014-11-27 |
Family
ID=51932862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/077804 WO2014187294A1 (zh) | 2013-12-11 | 2014-05-19 | 一种下行导频的传输方法、装置及计算机存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104717659B (zh) |
WO (1) | WO2014187294A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106998247A (zh) * | 2016-01-22 | 2017-08-01 | 中兴通讯股份有限公司 | 一种传输参考信号的方法及网络设备 |
CN107453853B (zh) * | 2016-05-31 | 2020-10-16 | 华为技术有限公司 | 一种导频传输的方法及设备 |
CN114696971B (zh) * | 2020-12-25 | 2024-08-23 | 维沃移动通信有限公司 | 导频传输方法、装置、设备及存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1531230A (zh) * | 2003-03-14 | 2004-09-22 | 北京泰美世纪科技有限公司 | 基于ofdm的广播系统中频率跳变的连续导频的数据传输方法 |
CN1829373A (zh) * | 2005-03-01 | 2006-09-06 | 阿尔卡特公司 | 传输方法、基站收发信机、基站控制器、移动终端和网络 |
CN101005470A (zh) * | 2006-01-16 | 2007-07-25 | 华为技术有限公司 | 通信系统中的同步导频序列生成系统和方法 |
CN101882943A (zh) * | 2009-05-08 | 2010-11-10 | 中兴通讯股份有限公司 | 下行测量导频的发送方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101605117B (zh) * | 2008-06-13 | 2012-09-05 | 中兴通讯股份有限公司 | 导频分配方法及系统 |
US8218663B2 (en) * | 2008-07-29 | 2012-07-10 | Texas Instruments Incorporated | Reference signal resource allocation for single user MIMO |
US8194762B2 (en) * | 2008-08-19 | 2012-06-05 | Motorola Mobility, Inc. | Feedforward of non-quantized precoding weights in a wireless communications system |
CN101541085B (zh) * | 2009-04-27 | 2015-06-03 | 中兴通讯股份有限公司 | 一种测量参考信号的发送及使用方法 |
CN101540631B (zh) * | 2009-04-27 | 2014-03-12 | 中兴通讯股份有限公司 | 测量参考信号的多天线发送方法及装置 |
-
2013
- 2013-12-11 CN CN201310676444.2A patent/CN104717659B/zh active Active
-
2014
- 2014-05-19 WO PCT/CN2014/077804 patent/WO2014187294A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1531230A (zh) * | 2003-03-14 | 2004-09-22 | 北京泰美世纪科技有限公司 | 基于ofdm的广播系统中频率跳变的连续导频的数据传输方法 |
CN1829373A (zh) * | 2005-03-01 | 2006-09-06 | 阿尔卡特公司 | 传输方法、基站收发信机、基站控制器、移动终端和网络 |
CN101005470A (zh) * | 2006-01-16 | 2007-07-25 | 华为技术有限公司 | 通信系统中的同步导频序列生成系统和方法 |
CN101882943A (zh) * | 2009-05-08 | 2010-11-10 | 中兴通讯股份有限公司 | 下行测量导频的发送方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104717659B (zh) | 2019-08-30 |
CN104717659A (zh) | 2015-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11632791B2 (en) | Transmission resource allocation by splitting physical resource blocks | |
TWI621369B (zh) | 一種進行資料傳輸的方法和設備 | |
US20220022181A1 (en) | Integrated circuit | |
EP3740011B1 (en) | Method and device for receiving and sending reference signal, and computer-readable storage medium | |
CN106656446B (zh) | 参考信号的发送方法及装置、接收方法及装置 | |
JP7126317B2 (ja) | 狭帯域用の物理的に分離されたチャンネル、低複雑な受信機 | |
JP7350018B2 (ja) | 移動局、基地局、送信方法及び受信方法 | |
CN106788926B (zh) | 一种降低网络延迟的无线通信方法和装置 | |
IL267415B (en) | A method for transmitting data, a network device and a terminal device | |
EP3120638A1 (en) | Small cell resource allocation | |
US11395328B2 (en) | Method and apparatus for configuring multiple scheduling requests | |
CN108288988A (zh) | 上行参考信号的发送、接收处理方法、装置及基站、终端 | |
US10320597B2 (en) | Scheduling of users for multi-user transmission in a wireless communication system | |
WO2014187294A1 (zh) | 一种下行导频的传输方法、装置及计算机存储介质 | |
EP3648527A1 (en) | Method, device, and system for transmitting downlink control information | |
Lee et al. | Frequency diversity-aware Wi-Fi using OFDM-based Bloom filters | |
US11201704B2 (en) | Interlace hopping in unlicensed band | |
WO2022067798A1 (zh) | 一种通信方法及装置 | |
CN101932099B (zh) | 支持sdma时的rot分配方法和装置 | |
CN107852702B (zh) | 空分复用处理方法、装置及设备 | |
WO2024065113A1 (zh) | 上行波形的指示方法、装置、介质及产品 | |
CN112399575B (zh) | 通信方法及装置 | |
CN105228249A (zh) | 一种子载波分配方法、相关装置以及基站 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14800537 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14800537 Country of ref document: EP Kind code of ref document: A1 |