WO2022089056A1 - 颅骨中轴垂线的确定方法、装置、存储介质及电子设备 - Google Patents

颅骨中轴垂线的确定方法、装置、存储介质及电子设备 Download PDF

Info

Publication number
WO2022089056A1
WO2022089056A1 PCT/CN2021/118039 CN2021118039W WO2022089056A1 WO 2022089056 A1 WO2022089056 A1 WO 2022089056A1 CN 2021118039 W CN2021118039 W CN 2021118039W WO 2022089056 A1 WO2022089056 A1 WO 2022089056A1
Authority
WO
WIPO (PCT)
Prior art keywords
view
skull
line
reference plane
determining
Prior art date
Application number
PCT/CN2021/118039
Other languages
English (en)
French (fr)
Inventor
李艳
陈科屹
赵梦瑶
Original Assignee
李艳
陈科屹
赵梦瑶
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李艳, 陈科屹, 赵梦瑶 filed Critical 李艳
Publication of WO2022089056A1 publication Critical patent/WO2022089056A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/68Analysis of geometric attributes of symmetry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30008Bone

Definitions

  • the present invention relates to a method, a device, a storage medium and an electronic device for determining the vertical line of the central axis of the skull.
  • the human body structure data is obtained through the detection of medical scanning equipment and imported into the terminal equipment.
  • the skull is a part of the axial bone.
  • the skull follows parity conservation, but due to congenital or acquired nature Factors such as the asymmetric shape of the skull, which affect the sagittal plane, coronal plane and horizontal plane standards in the conventional slicing method, make users unable to perform model slicing and data analysis according to the criterion of parity conservation, and the basis for establishing the standard is to obtain
  • the vertical line of the central axis of the skull is used to establish the six-view reference plane of the skull. Therefore, a method, device, storage medium and electronic equipment for determining the vertical line of the central axis of the skull are required.
  • the present invention provides a method, a device, a storage medium and an electronic device for determining the vertical line of the central axis of the skull, aiming to solve the problem of obtaining the vertical line of the central axis of the skull mentioned in the background art
  • the invention provides a method for determining the vertical line of the mid-axis of the skull, the method comprising the following steps:
  • a central axis vertical line is determined, the central axis vertical line passing through the midpoint of the reference line segment and the nose base point.
  • the "obtaining the front view of the three-dimensional model of the skull” includes:
  • the forehead and the chin in the initial side view of the skull three-dimensional model connect the forehead and the chin to determine the forward-looking reference line, according to the forward-looking reference
  • the line determines a front-view reference plane that passes through the front-view reference line and is perpendicular to the plane where the front-view side view is located, and acquires the front view of the three-dimensional skull model according to the front-view reference plane.
  • the view with the largest projection area of the nose of the three-dimensional skull model is obtained as the initial side view of the three-dimensional skull model.
  • the method also includes:
  • Determining a left-view critical line and a right-view critical line on the front view wherein the left-view critical line is parallel to the mid-axis vertical line and the left-view critical line intersects the leftmost side of the skull, where The right-view critical line is parallel to the vertical line of the central axis and the right-view critical line intersects the rightmost side of the skull;
  • a left-view reference plane passing through the left-view critical line and perpendicular to the front-view reference plane is determined according to the left-view critical line
  • a left-view reference plane passing through the right-view critical line and perpendicular to the front-view reference plane is determined according to the right-view critical line.
  • a top-view reference plane passing through the top-view critical line and perpendicular to the front-view reference plane is determined according to the top-view critical line
  • a top-view reference plane passing through the bottom-view critical line and perpendicular to the front-view reference plane is determined according to the bottom-view critical line.
  • the method also includes:
  • the front view of the three-dimensional skull model is obtained according to the front view reference plane, and a first sagittal tangent and a second sagittal tangent symmetrical about the vertical line of the central axis are obtained from the front view, and the first sagittal tangent is obtained.
  • Asymmetry information of the three-dimensional model of the skull is determined according to the first sagittal plane slice and the second sagittal plane slice.
  • the method also includes:
  • Data fusion is performed on the six-view datum plane of the skull obtained from the first three-dimensional model of the skull and the six-view datum plane obtained from the second three-dimensional model of the skull to obtain the third three-dimensional model of the skull, wherein the first three-dimensional model of the skull is obtained by spiral CT , the three-dimensional model of the second skull is acquired by nuclear magnetic resonance.
  • the left anatomical landmark is the infraorbital foramen on the left side of the maxilla
  • the right anatomical landmark is the infraorbital foramen on the right side of the maxilla.
  • the present invention also provides a device for determining the vertical line of the central axis of the skull, comprising:
  • an acquisition module for acquiring the front view of the 3D model of the skull
  • An anchor point determination module for determining the nasal base point, the left anatomical landmark point and the right anatomical landmark point according to the front view, wherein the left anatomical landmark point and the right anatomical landmark point correspond to left and right in anatomy;
  • a reference line segment determination module for determining a reference line segment passing through the left anatomical landmark and the right anatomical landmark
  • the central axis vertical line determination module is used to determine the central axis vertical line, and the central axis vertical line passes through the midpoint of the reference line segment and the nose base point.
  • the present invention also provides a storage medium on which a computer program is stored, and when the program is executed by a processor, the above-mentioned method for determining the vertical line of the central axis of the skull is realized.
  • the present invention also provides an electronic device, comprising:
  • processors one or more processors
  • a storage device for storing one or more programs that, when executed by the one or more processors, cause the one or more processors to implement the above-mentioned vertical axis of the skull Determine the method.
  • the present invention determines the nasal base point, the left anatomical landmark point and the right anatomical landmark point which are corresponding to each other in anatomy, and uses the principle that the distance between the straight line passing through the midpoint of the line segment and the two ends of the line segment is equal to select the vertical line of the central axis, so that the It not only passes through the nasal base point, but also has the same vertical distance from the left anatomical landmark and the right anatomical landmark, so that on the premise of assuming mirror symmetry of the skull, the vertical line of the mid-axis corresponds to all the anatomical landmarks.
  • the vertical distances of the anatomical landmark groups are equal, and the establishment of the six-view datum of the skull is achieved by determining the vertical line of the central axis, and then the six-view datum of the skull is used to detect the asymmetric information of the human skull.
  • FIG. 1 is a flow chart of steps of a method for determining a vertical line of a skull mid-axis according to an embodiment of the present invention.
  • FIG. 2 is a demonstration diagram of a method for acquiring a front view of an embodiment in the embodiment of FIG. 1 .
  • FIG. 3 is a demonstration diagram of a method for determining an axis vertical line in the embodiment of FIG. 1 .
  • FIG. 4 is another schematic diagram of a method for determining an axis vertical line in the embodiment of FIG. 1 .
  • FIG. 5 is a demonstration diagram of a method for determining a six-view reference plane of a skull according to an embodiment of the present invention.
  • FIG. 6 is a block diagram of a device for determining a vertical line of a skull mid-axis according to an embodiment of the present invention.
  • the present invention provides a method for determining the vertical line of the mid-axis of the skull, as shown in FIG. 1 , including the following steps:
  • S200 Determine the nasal base point 101, the left anatomical landmark 102 and the right anatomical landmark 103 according to the front view, wherein the left anatomical landmark 102 and the right anatomical landmark 103 correspond to left and right in anatomy.
  • S300 Determine a reference line segment passing through the left anatomical landmark 102 and the right anatomical landmark 103.
  • S400 Determine the central axis vertical line 104, the central axis vertical line 104 passing through the midpoint of the reference line segment and the nose base point 101.
  • the nose base point 101 (the nose base point 101 in anatomy is the bottom end point on the side of the human nose towards the lips) is selected as the first reference point of the central axis vertical line 104, and passes through The left anatomical landmark 102 and the right anatomical landmark 103 corresponding to each other in human anatomy are used to obtain the second reference point, and the central axis vertical line 104 is established by using the principle of two points to determine a straight line.
  • the S100 specifically includes:
  • the frontmost point of the forehead and the frontmost point of the chin in the initial side view of the three-dimensional model of the skull connect the frontmost point of the forehead and the frontmost point of the chin to determine the front view reference line 10, according to the front view
  • the reference line 10 determines a front-view reference plane passing through the front-view reference line 10 and perpendicular to the plane where the front-view side view is located, and the front view of the three-dimensional skull model is obtained according to the front-view reference plane.
  • the human skull information is obtained by scanning medical equipment, and then loaded into a computer to obtain a three-dimensional model.
  • the methods of obtaining the three-dimensional model of the skull include spiral CT, nuclear magnetic resonance, etc., and the loaded three-dimensional model is used to determine the initial side view.
  • the front-view reference plane is established through the forehead frontmost point and the lower chin frontline point on the initial side view, and the front-view reference plane is used as the initial reference for establishing the skull six-view reference plane; according to the front-view reference plane
  • the reference plane obtains a corresponding front view, and the vertical line 104 of the central axis is determined by the front view.
  • the view with the largest projection area of the nose of the three-dimensional skull model is obtained as the initial side view of the three-dimensional skull model.
  • the view with the largest projection area on the side of the nose is used as the initial side view of the three-dimensional skull model, and the view with the most prominent point of the nose can also be used as the initial side view of the three-dimensional skull model.
  • This serves as the original reference plane for determining the forward-looking reference line 10 .
  • the method further includes:
  • S500 Determine the left-view critical line 20 and the right-view critical line 30 on the front view, wherein the left-view critical line 20 is parallel to the central axis vertical line 104 and the left-view critical line 20 is parallel to the The leftmost side of the skull intersects, the right-view critical line 30 is parallel to the mid-axis vertical line 104 and the right-view critical line 30 intersects the rightmost side of the skull;
  • S600 Determine a left-view reference plane passing through the left-view critical line 20 and perpendicular to the front-view reference plane according to the left-view critical line 20, and determine to pass the right-view critical line according to the right-view critical line 30 30 and the right reference plane perpendicular to the front reference plane;
  • S700 Determine the top-view critical line 40 and the bottom-view critical line 50 on the front view, wherein the top-view critical line 40 and the central axis vertical line 104 are perpendicular to each other, and the top-view critical line 40 and all The uppermost side of the skull intersects, the lower-sight critical line 50 and the mid-axis vertical line 104 are perpendicular to each other, and the lower-sight critical line 50 intersects the lowermost side of the skull;
  • S800 Determine a top-view reference plane passing through the top-view critical line 40 and perpendicular to the front-view reference plane according to the top-view critical line 40, and determine to pass the bottom-view critical line according to the bottom-view critical line 50 50 and the downward reference plane perpendicular to the front reference plane;
  • the left-view critical line 20 and the right-view critical line 30 parallel to the vertical line 104 of the central axis are obtained as a reference, so as to generate a left-view reference close to the three-dimensional model of the skull plane and right-view reference plane, and then the three-dimensional model of the skull is limited between the left-view reference plane and the right-view reference plane; further, the central axis vertical line 104 is used as a reference to obtain and the left-view critical plane Line 20 is perpendicular to the upper-view critical line 40 and the lower-view critical line to generate upper- and lower-view datums that are close to the 3D model of the skull, thereby constraining the 3D model of the skull to the upper and lower datums.
  • the critical line mentioned in the present invention refers to the boundary line that divides the three-dimensional model and other regions.
  • One side of the critical line is the three-dimensional model, and the other side is other regions. Models have intersections.
  • S900 Determine a rear-view reference plane that is parallel to the front-view reference plane and is respectively perpendicular to the left-view reference plane and the top-view reference plane, to obtain the skull six-view reference plane.
  • the upper-view reference plane, the lower-view reference plane, the left-view reference plane, and the right-view reference plane of the three-dimensional skull model are determined by the determined central axis vertical line 104 and the front-view reference plane and rear view datum to establish a six-view datum about the 3D model of the skull.
  • the left-view reference plane and the right-view reference plane are established based on the vertical line 104 of the central axis of the skull, so as to determine the six-view reference plane wrapping the skull to determine the standard of the skull coronal plane, sagittal plane and horizontal plane, and by determining
  • the standard is helpful for data comparison and analysis according to the law of parity conservation, so as to realize the establishment of corresponding standards based on the skulls of different human bodies, and has strong adaptability; and can be based on the established six-view datum for the same human body obtained by different acquisition methods.
  • the skull data information is compared to combine the advantages of multiple model acquisition methods.
  • the S900 further includes:
  • the three-dimensional skull model is limited to a six-view reference plane by setting a rear-view reference plane that has only one intersection point with the three-dimensional skull model, so as to establish a more accurate skull standard.
  • an embodiment of the present invention further includes after S400:
  • the front view of the three-dimensional skull model is obtained according to the front view reference plane, and the first sagittal tangent and the second sagittal tangent symmetrical about the mid-axis vertical line 104 are obtained from the front view, and the The first sagittal tangent and the second sagittal tangent are parallel to the mid-axis perpendicular 104 .
  • a first sagittal plane slice passing through the first sagittal tangent and parallel to the left reference plane is acquired.
  • a second sagittal plane slice passing through the second sagittal tangent and parallel to the left reference plane is acquired.
  • Asymmetry information of the three-dimensional model of the skull is determined according to the first sagittal plane slice and the second sagittal plane slice.
  • two first sagittal plane tangents and second sagittal plane tangents that are theoretically symmetrical on the three-dimensional skull model are determined through the front view and the mid-axis vertical line 104 , and the corresponding skull tangents are obtained by obtaining
  • the deviation of the position data of the bones can be used to judge the asymmetric information of the human body, and then the problem parts of the human body can be judged by the asymmetric information, and then the corresponding problem parts can be deeply diagnosed and analyzed.
  • At least one item of the corresponding brain, nerves, blood vessels, muscles, ligaments and internal organs is loaded to establish a The digital twin model corresponding to the actual human body, so as to obtain the relative positional relationship between the bones and the brain, nerves, blood vessels, muscles, ligaments or internal organs through the first sagittal plane slice and the second sagittal plane slice, and then obtain more Accurate human body asymmetry information, and its influence on human organs or tissues can be judged through the relative positional relationship.
  • the method further includes:
  • S601 Divide N equally spaced horizontal cut planes, wherein the horizontal cut planes are parallel to the top-view reference plane, and all the horizontal cut planes are located between the top-view reference plane and the bottom-view reference plane.
  • S602 Obtain a horizontal slice of the corresponding three-dimensional skull model according to the horizontal slice.
  • the upper and lower limits of the skull are limited by the upper and lower datum planes, and equally spaced horizontal slices are divided to generate equidistant horizontal plane slices.
  • the number of the horizontal plane slices obtained by cutting is relatively small, that is, the effective data obtained from the horizontal plane slices is relatively large.
  • the method also includes:
  • S701 Divide N equally spaced coronal slices, wherein the coronal slices are parallel to the front reference plane, and all the coronal slices are located between the front reference plane and the rear reference plane.
  • S702 Obtain a coronal slice of the corresponding three-dimensional skull model according to the coronal slice.
  • the anterior and posterior limits of the skull are limited by the front-view reference plane and the rear-view reference plane, and equally spaced horizontal slices are divided to generate equally-spaced coronal plane slices.
  • the front-view reference plane has been established
  • the number of the horizontal plane slices obtained by cutting is relatively small, that is, the effective data obtained from the coronal plane slice is relatively large.
  • the method further includes a data fusion step, including:
  • Data fusion is performed on the six-view datum plane of the skull obtained from the first three-dimensional model of the skull and the six-view datum plane obtained from the second three-dimensional model of the skull to obtain the third three-dimensional model of the skull, wherein the first three-dimensional model of the skull is obtained by spiral CT , the three-dimensional model of the second skull is acquired by nuclear magnetic resonance.
  • the first three-dimensional model of the skull and the second three-dimensional model of the second skull are obtained by spiral CT and nuclear magnetic resonance respectively, and the same method of establishing a six-view datum is used to find one or more landmark points relative to the six-view datum.
  • the 3D model of the skull obtained in different ways is fused to obtain a third 3D model of the skull with more accurate data.
  • the method also includes:
  • a first three-dimensional model of the head is obtained by the helical CT, wherein the first three-dimensional model of the head includes a first three-dimensional model of the skull.
  • a second three-dimensional head model is obtained by the nuclear magnetic resonance, wherein the second three-dimensional head model includes a second skull three-dimensional model, and further includes model information of at least one of blood vessels and nerves.
  • the first three-dimensional model of the head and the three-dimensional model of the second head are used for data analysis. Fusion to obtain a 3D model of the third head.
  • the first three-dimensional model of the head and the second three-dimensional model of the second head of the same human body are obtained through spiral CT and nuclear magnetic resonance respectively, and the first three-dimensional model of the skull and the third three-dimensional model of the first head in the three-dimensional model of the first head are obtained.
  • the second skull three-dimensional model in the two-head three-dimensional model is used as the reference basis, and the first six-view datum plane and the second six-view datum plane of the skull are used to obtain the corresponding positions of the anatomical landmarks in the different skull three-dimensional models.
  • Anatomical landmarks are used to locate and fuse the first three-dimensional skull model and the second three-dimensional skull model, and then fuse the first three-dimensional head model and the second three-dimensional head model.
  • the blood vessel model or the nerve model in the second three-dimensional model of the head obtained by the nuclear magnetic resonance is imported into the first three-dimensional model of the skull, and the spiral CT and the nuclear magnetic resonance are used.
  • the accuracy of different structures, tissues and organs obtained by resonance detection is different, and the advantages of the two are combined to obtain a more accurate three-dimensional model of the head.
  • the standard coordinates of the human body are established, and then the relative coordinates of all bones are derived to realize the spine.
  • Geometric modeling and mathematical modeling of bones such as pelvis, lower limbs, upper limbs, sternum, clavicle, ribs, etc., and through the data conversion based on the model and relative coordinates, the measurement and evaluation of the bones can be standardized, scientific, and intelligent. Dataization lays a scientific foundation for the deduction of the coordinates of biomechanics between each bone.
  • a standard coordinate system of the human body is established by modeling the human skeleton, and any one or more of the brain, blood vessels, nerves, muscles and internal organs are constructed on the basis of such a coordinate system. Therefore, through the combination of the above modeling and the standard coordinate system and the relative coordinate system, the forward algorithm and the reverse algorithm are derived, so that the precise positioning of the bones and the brain, nerves, blood vessels, muscles, internal organs, etc. can be achieved.
  • the position-distance relationship enables these human tissues to form a complete global scientific measurement system, and realizes the digital twin under the fusion of the organizational structure of the human digital human.
  • the positional distance relationship between the bones and the brain, nerves, blood vessels, muscles, internal organs, etc., as well as the subsequent medical plans and medical effects for the human body can be stored in the cloud server as an analysis data source, and based on big data, each human body can be analyzed.
  • the corresponding analysis data source is analyzed to determine and obtain the relationship function of the relative position distance relationship, the medical plan and the corresponding medical effect, and medical diagnosis and analysis are performed based on the relationship function.
  • the left anatomical landmark 102 is the infraorbital foramen on the left side of the maxilla
  • the right anatomical landmark 103 is the infraorbital foramen on the right side of the maxilla.
  • the left anatomical landmark 102 and the right anatomical landmark 103 can also be selected from the uppermost edge point of the left and right supraorbital foramen, the distance point between the medial wall of the left and right orbits, and the left and right where the frontal bone meets the zygomatic bone.
  • Symmetrical left and right anatomical landmarks 103 such as the lateral wall of the orbit.
  • the present invention provides a device 1000 for determining the vertical axis of the skull, the device stores a plurality of instructions, and the instructions are adapted to be loaded by a processor and execute the method for determining the vertical axis of the skull ,include:
  • the first anchor point, the left anatomical landmark and the right anatomical landmark are determined according to the front view, wherein the first anchor is the nasal base point, the left anatomical landmark and the right anatomical landmark They are the corresponding left anatomical landmarks and right anatomical landmarks in anatomy;
  • a central axis vertical line is determined, the central axis vertical line passing through the midpoint of the reference line segment and the nose base point.
  • the device 1000 for determining the six-view reference plane of the skull is divided into a functional module structure, as shown in FIG. 6 , including:
  • the anchor point determination module 200 determines the nasal base point, the left anatomical landmark point and the right anatomical landmark point according to the front view, wherein the left anatomical landmark point and the right anatomical landmark point correspond to left and right in anatomy;
  • a reference line segment determination module 300 configured to determine a reference line segment passing through the left anatomical landmark point and the right anatomical landmark point;
  • the central axis vertical line determination module 400 is used for determining the central axis vertical line, the central axis vertical line passing through the midpoint of the reference line segment and the nose base point.
  • the present invention provides a storage medium on which a computer program is stored, and when the program is processed and executed, the above-mentioned method for determining the vertical line of the central axis of the skull is realized.
  • the present invention also provides an electronic device, comprising:
  • processors one or more processors
  • a storage device for storing one or more programs that, when executed by the one or more processors, cause the one or more processors to implement the above-mentioned vertical axis of the skull Determine the method.
  • the modules/units integrated in the electronic device are implemented in the form of software functional units and sold or used as independent products, they may be stored in a computer-readable storage medium.
  • the present invention realizes all or part of the processes in the method for multi-opening application programs described in the above embodiments, and can also be completed by using a computer program to refer to related hardware, and the computer program can be stored in a computer In the read storage medium, when the computer program is executed by the processor, the steps of the method for determining the vertical line of the skull mid-axis described in the above method embodiments can be implemented.
  • the computer program includes computer program code, and the computer program code can be in the form of source code, object code form, executable file or some intermediate form, etc.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, recording medium, U disk, removable hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM, Read-Only Memory) , Random Access Memory (RAM, Random Access Memory), electric carrier signal, telecommunication signal and software distribution medium, etc. It should be noted that the content contained in the computer-readable media may be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction, for example, in some jurisdictions, according to legislation and patent practice, the computer-readable media Electric carrier signals and telecommunication signals are not included.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Geometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明提供了一种颅骨中轴垂线的确定方法,所述方法包括以下步骤:获取颅骨三维模型的前视图;根据所述前视图确定鼻基点、左侧解剖标志点和右侧解剖标志点,其中,左侧解剖标志点和右侧解剖标志点在解剖学中左右对应;确定经过所述左侧解剖标志点与所述右侧解剖标志点的基准线段;确定中轴垂线,所述中轴垂线经过所述基准线段的中点和所述鼻基点。

Description

颅骨中轴垂线的确定方法、装置、存储介质及电子设备 技术领域
本发明涉及一种颅骨中轴垂线的确定方法、装置、存储介质及电子设备。
背景技术
随着生物医学和人体生物力学的发展,通过建立人体三维模型来对人体进行分析和研究,进而探索人体组织器官相对位置关系对人体健康的影响。
目前通过医学扫描设备检测获取人体结构数据,并导入到终端设备中,但是由于人体结构的复杂性,以颅骨属于中轴骨的一部分,理论上颅骨是遵循宇称守恒的,但是由于先天或者后天等因素颅骨存在不对称形,进而影响常规的切片方法中的矢状面、冠状面和水平面标准,导致使用者无法依据宇称守恒的准则进行模型切片以及数据分析,而建立标准的基础是获取颅骨的中轴垂线,利用确定的中轴垂线来来建立颅骨六视基准面,因此需要一种颅骨中轴垂线的确定方法、装置、存储介质及电子设备。
发明内容
本发明提供了一种颅骨中轴垂线的确定方法、装置、存储介质及电子设备,旨在解决背景技术中提及的获取颅骨的中轴垂线的问题
本发明提供了一种颅骨中轴垂线的确定方法,所述方法包括以下步骤:
获取颅骨三维模型的前视图;
根据所述前视图确定鼻基点、左侧解剖标志点和右侧解剖标志点,其中,左侧解剖标志点和右侧解剖标志点在解剖学中左右对应;
确定经过所述左侧解剖标志点与所述右侧解剖标志点的基准线 段;
确定中轴垂线,所述中轴垂线经过所述基准线段的中点和所述鼻基点。
进一步的,所述“获取颅骨三维模型的前视图”包括:
根据所述颅骨三维模型的初始侧视图中的额头最前沿点和下颏最前沿点,连接所述额头最前沿点和所述下颏最前沿点确定前视基准线,根据所述前视基准线确定经过所述前视基准线且垂直于所述前视侧视图所在平面的前视基准面,根据所述前视基准面获取所述颅骨三维模型的前视图。
进一步的,获取所述颅骨三维模型鼻部投影面积最大的视图作为为所述颅骨三维模型的初始侧视图。
进一步的,所述方法还包括:
确定所述前视图上的左视临界线和右视临界线,其中,所述左视临界线与所述中轴垂线平行并且所述左视临界线与所述颅骨最左侧相交,所述右视临界线与所述中轴垂线平行并且所述右视临界线所述颅骨最右侧相交;
根据所述左视临界线确定经过所述左视临界线且与所述前视基准面垂直的左视基准面,根据所述右视临界线确定经过所述右视临界线且与所述前视基准面垂直的右视基准面;
确定所述前视图上的上视临界线和下视临界线,其中,所述上视临界线与所述中轴垂线互相垂直并且所述上视临界线与所述颅骨最上侧相交,所述下视临界线与所述中轴垂线互相垂直并且所述下视临界线与所述颅骨最下侧相交;
根据所述上视临界线确定经过所述上视临界线且与所述前视基准面垂直的上视基准面,根据所述下视临界线确定经过所述下视临界线且与所述前视基准面垂直的下视基准面;
确定与所述前视基准面平行且分别与所述左视基准面和所述上 视基准面垂直的后视基准面,得到所述颅骨六视基准面。
进一步的,所述方法还包括:
根据所述前视基准面获取所述颅骨三维模型的前视图,并通过所述前视图上获取关于所述中轴垂线对称的第一矢状切线和第二矢状切线,且所述第一矢状切线和所述第二矢状切线平行于所述中轴垂线;
获取经过所述第一矢状切线且平行于所述左视基准面的第一矢状面切片;
获取经过所述第二矢状切线且平行于所述左视基准面的第二矢状面切片;
根据所述第一矢状面切片和所述第二矢状面切片确定所述颅骨三维模型的不对称信息。
进一步的,所述方法还包括:
以第一颅骨三维模型获得的颅骨六视基准面以及以第二颅骨三维模型获得的颅骨六视基准面进行数据融合得到第三颅骨三维模型,其中,所述第一颅骨三维模型通过螺旋CT获取,所述第二颅骨三维模型通过核磁共振获取。
进一步的,所述左侧解剖标志点为上颌骨左侧的眶下孔,所述右侧解剖标志点为上颌骨右侧的眶下孔。
本发明还提供了一种颅骨中轴垂线的确定装置,包括:
获取模块,用于获取颅骨三维模型的前视图;
锚点确定模块,根据所述前视图确定鼻基点、左侧解剖标志点和右侧解剖标志点,其中,左侧解剖标志点和右侧解剖标志点在解剖学中左右对应;
基准线段确定模块,用于确定经过所述左侧解剖标志点与所述右侧解剖标志点的基准线段;
中轴垂线确定模块,用于确定中轴垂线,所述中轴垂线经过所述 基准线段的中点和所述鼻基点。
本发明还提供了一种存储介质,其上存储有计算机程序,所述程序被处理器执行时实现上述的颅骨中轴垂线的确定方法。
本发明还提供了一种电子设备,包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现上述的颅骨中轴垂线的确定方法。
本发明通过确定鼻基点,解剖学中互为对应的左侧解剖标志点和右侧解剖标志点,利用穿过线段中点的直线与线段两端的距离相等的原理选取出中轴垂线,以使其既经过鼻基点,且与左侧解剖标志点的垂直距离以及与右侧解剖标志点的垂直距离相等,进而使得在假定颅骨镜像对称的前提下该中轴垂线与所有互为对应的解剖标志点组的垂直距离相等,并通过确定中轴垂线以实现颅骨六视基准面的建立,进而利用颅骨六视基准面来进行人体颅骨不对称信息的检测。
应当理解的是,以上的一般描述和后面的细节描述仅仅是示例性和解释性的,并不能限制本公开。
附图说明
图1是本发明的一实施例的颅骨中轴垂线的确定方法的步骤流程图。
图2是图1实施例中的一实施方式的前视图的获取方法的演示图。
图3是图1实施例中轴垂线的确定方法的一演示图。
图4是图1实施例中轴垂线的确定方法的另一示意图。
图5是本发明的一实施例的颅骨六视基准面的确定方法的演示图。
图6是本发明的一实施例的颅骨中轴垂线的确定装置的模块图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得所有其他实施例,都属于本发明的保护范围。可以理解的是,附图仅仅提供参考与说明用,并非用来对本发明加以限制。附图中显示的连接关系仅仅是为了便于清晰描述,并不限定连接方式。
需要说明的是,当一个组件被认为是“连接”另一个组件时,它可以是直接连接到另一个组件,或者可能同时存在居中组件。除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
还需要说明的是,本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在一种实施例中,本发明提供一种颅骨中轴垂线的确定方法,如图1所示,包括以下步骤:
S100:获取颅骨三维模型的前视图。
S200:根据所述前视图确定鼻基点101、左侧解剖标志点102和右侧解剖标志点103,其中,左侧解剖标志点102和右侧解剖标志点103在解剖学中左右对应。
S300:确定经过所述左侧解剖标志点102与所述右侧解剖标志点103的基准线段。
S400:确定中轴垂线104,所述中轴垂线104经过所述基准线段的中点和所述鼻基点101。
本实施例中,图3-4所示,选择鼻基点101(解剖学中鼻基点101为人体鼻部朝嘴唇一侧的最底端点)作为中轴垂线104的第一基准点,并通过人体解剖学中互相对应的左侧解剖标志点102和右侧解剖标志点103来获取第二基准点,利用两点确定一直线的原理建立中轴垂线104。
如图2所示,本发明的一种实施例,所述S100具体包括:
根据所述颅骨三维模型的初始侧视图中的额头最前沿点和下颏最前沿点,连接所述额头最前沿点和所述下颏最前沿点确定前视基准线10,根据所述前视基准线10确定经过所述前视基准线10且垂直于所述前视侧视图所在平面的前视基准面,根据所述前视基准面获取所述颅骨三维模型的前视图。
本实施例中,通过医疗器械扫描获取人体颅骨信息,进而载入到电脑以获取三维模型,获取颅骨三维模型的方式包括螺旋CT、核磁共振等,利用载入后的三维模型确定初始侧视图,通过所述初始侧视图上的额头最前沿点和所述下颏最前沿点以建立前视基准面,将所述前视基准面作为建立颅骨六视基准面的初始基准;根据所述前视基准面获取相对应的前视图,通过所述前视图确中轴垂线104。
作为一个优选的实施例,获取所述颅骨三维模型鼻部投影面积最大的视图作为为所述颅骨三维模型的初始侧视图。
本实施例中,通过寻找鼻部侧面投影面积最大的视图以作为所述颅骨三维模型的初始侧视图,也可以通过寻找鼻尖点最突出的视图作为所述颅骨三维模型的初始侧视图,并以此作为确定前视基准线10的原始基准面。
本发明的另一实施例中,所述方法还包括:
S500:确定所述前视图上的左视临界线20和右视临界线30,其中,所述左视临界线20与所述中轴垂线104平行并且所述左视临界线20与所述颅骨最左侧相交,所述右视临界线30与所述中轴垂线104平行并且所述右视临界线30所述颅骨最右侧相交;
S600:根据所述左视临界线20确定经过所述左视临界线20且与所述前视基准面垂直的左视基准面,根据所述右视临界线30确定经过所述右视临界线30且与所述前视基准面垂直的右视基准面;
S700:确定所述前视图上的上视临界线40和下视临界线50,其中,所述上视临界线40与所述中轴垂线104互相垂直并且所述上视临界线40与所述颅骨最上侧相交,所述下视临界线50与所述中轴垂线104互相垂直并且所述下视临界线50与所述颅骨最下侧相交;
S800:根据所述上视临界线40确定经过所述上视临界线40且与所述前视基准面垂直的上视基准面,根据所述下视临界线50确定经过所述下视临界线50且与所述前视基准面垂直的下视基准面;
如图5所示,本实施例中,通过所述中轴垂线104为基准获取与其平行的左视临界线20和右视临界线30,以生成紧贴所述颅骨三维模型的左视基准面和右视基准面,进而将所述颅骨三维模型限制于所述左视基准面和所述右视基准面之间;进一步通过所述中轴垂线104为基准获取与所述左视临界线20垂直的上视临界线40和下视临界,以生成紧贴所述颅骨三维模型的上视基准面和下视基准面,进而将所 述颅骨三维模型限制于所述上视基准面和所述下视基准面之间。应当说明的是,本发明中提及的临界线是指划分三维模型与其他区域的边界线,所述临界线的一侧为三维模型,另一侧为其他区域,且所述临界线与三维模型存在交点。
S900:确定与所述前视基准面平行且分别与所述左视基准面和所述上视基准面垂直的后视基准面,得到所述颅骨六视基准面。
本实施例中,通过已经确定的所述中轴垂线104和所述前视基准面,确定所述颅骨三维模型的上视基准面、下视基准面、左视基准面、右视基准面和后视基准面,以建立关于所述颅骨三维模型的六视基准面。
本实施例中,通过以颅骨中轴垂线104为基准建立左视基准面和右视基准面,从而确定包裹颅骨的六视基准面确定颅骨冠状面、矢状面和水平面标准,并且通过确定标准以助于依据宇称守恒定律进行数据对比分析,从而实现依据不同人体的颅骨建立对应的标准,具备较强适应性;并且可以依据建立的六视基准面来对不同获取方式获得的同一人体的颅骨数据信息进行对比,以结合多种模型获取方式的优点。
本发明的一种实施例,所述S900还包括:
确定与所述前视基准面平行且分别与所述左视基准面和所述上视基准面垂直的后视基准面,所述后视基准面与所述颅骨三维模型有且仅有一个交点。
本实施例中,通过设置与所述颅骨三维模型有且仅有一个交点的后视基准面,从而将所述颅骨三维模型限制于六视基准面中,以建立更为精确的颅骨标准。
进一步的,本发明的一种实施例,在S400之后还包括:
根据所述前视基准面获取所述颅骨三维模型的前视图,并通过所述前视图上获取关于所述中轴垂线104对称的第一矢状切线和第二 矢状切线,且所述第一矢状切线和所述第二矢状切线平行于所述中轴垂线104。
获取经过所述第一矢状切线且平行于所述左视基准面的第一矢状面切片。
获取经过所述第二矢状切线且平行于所述左视基准面的第二矢状面切片。
根据所述第一矢状面切片和所述第二矢状面切片确定所述颅骨三维模型的不对称信息。
本实施例中,通过所述前视图和所述中轴垂线104确定所述颅骨三维模型上理论对称的两个第一矢状面切线和第二矢状面切线,并通过获取对应的颅骨骨骼的位置数据的偏差来判断人体的不对称信息,进而通过所述不对称信息来判断人体的问题部位,再进而对相应的问题部位做深层次的诊断和分析。
更进一步的,本发明的另一实施例中,通过以所述颅骨建立的标准坐标系为基础,将对应的大脑、神经、血管、肌肉、韧带和内脏中的至少一项载入,建立与实际人体对应的数字孪生模型,从而通过所述第一矢状面切片和所述第二矢状面切片来获取骨骼与大脑、神经、血管、肌肉、韧带或内脏的相对位置关系,进而获取较为精确的人体不对称信息,以及通过所述相对位置关系来判断其对人体器官或者组织的影响。
本发明的一种实施例,在所述S800之后,所述方法还包括:
S601:划分N个等间距的水平切面,其中所述水平切面与所述上视基准面平行,且所有所述水平切面处于所述上视基准面与所述下视基准面之间。
S602:根据所述水平切面获取与其对应的所述颅骨三维模型的水平面切片。
本实施例中,通过所述上视基准面和所述下视基准面来限制颅骨 的上下极限,划分等间距的水平切面进而生成等间距的水平面切片,在已经建立所述上视基准面和所述下视基准面以紧贴所述颅骨的基础上,切割获取的所述水平面切片数量相对较少,也即是所述水平面切片上获取的有效数据相对较多。
进一步的,本发明的一种实施例,在所述S900之后,所述方法还包括:
S701:划分N个等间距的冠状切面,其中所述冠状切面与所述前视基准面平行,且所有所述冠状切面处于所述前视基准面与所述后视基准面之间。
S702:根据所述冠状切面获取与其对应的所述颅骨三维模型的冠状面切片。
本实施例中,通过所述前视基准面与所述后视基准面来限制颅骨的前后极限,划分等间距的水平切面进而生成等间距的冠状面切片,在已经建立所述前视基准面和所述后视基准面以紧贴所述颅骨的基础上,切割获取的所述水平面切片数量相对较少,也即是所述冠状面切片上获取的有效数据相对较多。
本发明的另一实施例中,所述方法还包括数据融合步骤,包括:
以第一颅骨三维模型获得的颅骨六视基准面以及以第二颅骨三维模型获得的颅骨六视基准面进行数据融合得到第三颅骨三维模型,其中,所述第一颅骨三维模型通过螺旋CT获取,所述第二颅骨三维模型通过核磁共振获取。
本实施例中通过螺旋CT和核磁共振分别获取第一颅骨三维模型和第二颅骨三维模型,并通过相同的建立六视基准面的方法,通过找出一个或多个标志点相对六视基准面的位置,将不同方式获取的颅骨三维模型进行数据融合,获取数据更为精确的第三颅骨三维模型。
更进一步的,所述方法还包括:
通过所述螺旋CT获取第一头部三维模型,其中所述第一头部三 维模型包括第一颅骨三维模型。
通过所述核磁共振获取第二头部三维模型,其中所述第二头部三维模型包括第二颅骨三维模型,且还包括血管和神经中至少一项的模型信息。
以第一颅骨三维模型获得的颅骨六视基准面以及以第二颅骨三维模型获得的颅骨六视基准面为基准,将所述第一头部三维模型与所述第二头部三维模型进行数据融合,以获取第三头部三维模型。
本实施例中,通过螺旋CT和核磁共振分别获取同一人体的第一头部三维模型和第二头部三维模型,通过所述第一头部三维模型中的第一颅骨三维模型和所述第二头部三维模型中的第二颅骨三维模型为参考基础,利用建立的第一颅骨六视基准面和第二颅骨六视基准面获取解剖标志点在不同颅骨三维模型对应的位置,通过所述解剖标志点以定位和融合所述第一颅骨三维模型和所述第二颅骨三维模型,进而融合所述第一头部三维模型和所述第二头部三维模型。
优选的,以螺旋CT获取的第一颅骨三维模型为基准,将以核磁共振获取的第二头部三维模型中的血管模型或神经模型导入所述第一颅骨三维模型中,利用螺旋CT和核磁共振检测获取的不同结构、组织及器官的精确度不一,将两者的优势融合从而获取更为精确的头部三维模型。
本发明的另一实施例,通过获取人体整体三维模型,在确定所述颅骨三维模型的六视基准面的前提下,建立了人体的标准坐标,进而衍生到建立所有骨骼的相对坐标,实现脊柱、骨盆、下肢、上肢、胸骨、锁骨、肋骨等骨骼的几何建模和数学建模,并通过模型以及相对坐标为基础的数据换算,实现骨骼的测量评估结构换算标准化、科学化,智能化,数据化,为生物力学在每一块骨骼之间的坐标的推演打下科学的基础。
进一步的,本发明的另一实施例通过人体骨骼的建模建立人体的 标准坐标系,在这样的坐标系基础上再进行大脑、血管、神经、肌肉和内脏中任一项或者多项的建模,从而通过以上建模和标准坐标系与相对坐标系之间的结合,衍生出来正向算法与逆向算法,这样就能够实现精准定位骨骼与大脑、神经、血管、肌肉、内脏等之间的位置距离关系,让这些人体组织形成一个完整的全局科学测量体系,实现人类数字人的组织结构融合下的数字孪生。
更进一步的,骨骼与大脑、神经、血管、肌肉、内脏等之间的位置距离关系以及后续针对该人体的医疗方案和医疗效果可以作为分析数据源存储进入云服务器,基于大数据对每个人体对应的所述分析数据源进行分析,确定并获取相对位置距离关系、医疗方案以及相应的医疗效果的关系函数,以通过所述关系函数为依据进行医疗诊断和分析。
本实施例中,所述左侧解剖标志点102为上颌骨左侧的眶下孔,所述右侧解剖标志点103为上颌骨右侧的眶下孔。当然,在其他实施例中,所述左侧解剖标志点102和所述右侧解剖标志点103也可以选择左右眶上孔最上缘点、左右眼眶内侧壁距离点、额骨与颧骨交汇左右眼眶外侧壁等对称的左右侧解剖标志点103。
在一种实施例中,本发明提供一种颅骨中轴垂线的确定装置1000,所述装置存储有多条指令,所述指令适于由处理器加载并执行颅骨中轴垂线的确定方法,包括:
获取颅骨三维模型的前视图;
根据所述前视图确定第一锚点、左侧解剖标志点和右侧解剖标志点,其中,所述第一锚点为鼻基点,所述左侧解剖标志点和所述右侧解剖标志点分别为解剖学中互为对应的左侧解剖标志点和右侧解剖标志点;
确定经过所述左侧解剖标志点与所述右侧解剖标志点的基准线段;
确定中轴垂线,所述中轴垂线经过所述基准线段的中点和所述鼻基点。
为了便于描述,将所述颅骨六视基准面的确定装置1000拆分为功能模块架构,如图6所示,包括:
获取模块100,用于获取颅骨三维模型的前视图;
锚点确定模块200,根据所述前视图确定鼻基点、左侧解剖标志点和右侧解剖标志点,其中,左侧解剖标志点和右侧解剖标志点在解剖学中左右对应;
基准线段确定模块300,用于确定经过所述左侧解剖标志点与所述右侧解剖标志点的基准线段;
中轴垂线确定模块400,用于确定中轴垂线,所述中轴垂线经过所述基准线段的中点和所述鼻基点。
在一种实施例中,本发明提供一种存储介质,其上存储有计算机程序,所述程序被处理执行时实现上述的颅骨中轴垂线的确定方法。
在一种实施例中,本发还提供一种电子设备,包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现上述的颅骨中轴垂线的确定方法。
所述电子设备集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例所述的应用程序多开方法中的全部或部分流程,也可以通过计算机程序来指相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上文方法实施例所述的颅骨中轴垂线的确定方法的步骤。其中,所述算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件 或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
本申请的说明书和权利要求书中,词语“包括/包含”和词语“具有/包括”及其变形,用于指定所陈述的特征、数值、步骤或部件的存在,但不排除存在或添加一个或多个其他特征、数值、步骤、部件或它们的组合。
本发明的一些特征,为阐述清晰,分别在不同的实施例中描述,然而,这些特征也可以结合于单一实施例中描述。相反,本发明的一些特征,为简要起见,仅在单一实施例中描述,然而,这些特征也可以单独或以任何合适的组合于不同的实施例中描述。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包括在本发明的保护范围之内。

Claims (10)

  1. 一种颅骨中轴垂线的确定方法,其特征在于,所述方法包括以下步骤:
    获取颅骨三维模型的前视图;
    根据所述前视图确定鼻基点、左侧解剖标志点和右侧解剖标志点,其中,左侧解剖标志点和右侧解剖标志点在解剖学中左右对应;
    确定经过所述左侧解剖标志点与所述右侧解剖标志点的基准线段;
    确定中轴垂线,所述中轴垂线经过所述基准线段的中点和所述鼻基点。
  2. 根据权利要求1所述的颅骨中轴垂线的确定方法,其特征在于,所述“获取颅骨三维模型的前视图”包括:
    根据所述颅骨三维模型的初始侧视图中的额头最前沿点和下颏最前沿点,连接所述额头最前沿点和所述下颏最前沿点确定前视基准线,根据所述前视基准线确定经过所述前视基准线且垂直于所述前视侧视图所在平面的前视基准面,根据所述前视基准面获取所述颅骨三维模型的前视图。
  3. 根据权利要求2所述的颅骨中轴垂线的确定方法,其特征在于,获取所述颅骨三维模型鼻部投影面积最大的视图作为为所述颅骨三维模型的初始侧视图。
  4. 根据权利要求1所述的颅骨中轴垂线的确定方法,其特征在于,所述方法还包括:
    确定所述前视图上的左视临界线和右视临界线,其中,所述左视临界线与所述中轴垂线平行并且所述左视临界线与所述颅骨最左侧相交,所述右视临界线与所述中轴垂线平行并且所述右视临界线所述颅骨最右侧相交;
    根据所述左视临界线确定经过所述左视临界线且与所述前视基准面垂直的左视基准面,根据所述右视临界线确定经过所述右视临界 线且与所述前视基准面垂直的右视基准面;
    确定所述前视图上的上视临界线和下视临界线,其中,所述上视临界线与所述中轴垂线互相垂直并且所述上视临界线与所述颅骨最上侧相交,所述下视临界线与所述中轴垂线互相垂直并且所述下视临界线与所述颅骨最下侧相交;
    根据所述上视临界线确定经过所述上视临界线且与所述前视基准面垂直的上视基准面,根据所述下视临界线确定经过所述下视临界线且与所述前视基准面垂直的下视基准面;
    确定与所述前视基准面平行且分别与所述左视基准面和所述上视基准面垂直的后视基准面,得到所述颅骨六视基准面。
  5. 根据权利要求4所述的颅骨中轴垂线的确定方法,其特征在于,所述方法还包括:
    根据所述前视基准面获取所述颅骨三维模型的前视图,并通过所述前视图上获取关于所述中轴垂线对称的第一矢状切线和第二矢状切线,且所述第一矢状切线和所述第二矢状切线平行于所述中轴垂线;
    获取经过所述第一矢状切线且平行于所述左视基准面的第一矢状面切片;
    获取经过所述第二矢状切线且平行于所述左视基准面的第二矢状面切片;
    根据所述第一矢状面切片和所述第二矢状面切片确定所述颅骨三维模型的不对称信息。
  6. 根据权利要求4所述的颅骨中轴垂线的确定方法,其特征在于,所述方法还包括数据融合步骤,包括:
    以第一颅骨三维模型获得的颅骨六视基准面以及以第二颅骨三维模型获得的颅骨六视基准面进行数据融合得到第三颅骨三维模型,其中,所述第一颅骨三维模型通过螺旋CT获取,所述第二颅骨三维 模型通过核磁共振获取。
  7. 根据权利要求1所述的颅骨中轴垂线的确定方法,其特征在于,所述左侧解剖标志点为上颌骨左侧的眶下孔,所述右侧解剖标志点为上颌骨右侧的眶下孔。
  8. 一种颅骨中轴垂线的确定装置,其特征在于,包括:
    获取模块,用于获取颅骨三维模型的前视图;
    锚点确定模块,根据所述前视图确定鼻基点、左侧解剖标志点和右侧解剖标志点,其中,左侧解剖标志点和右侧解剖标志点在解剖学中左右对应;
    基准线段确定模块,用于确定经过所述左侧解剖标志点与所述右侧解剖标志点的基准线段;
    中轴垂线确定模块,用于确定中轴垂线,所述中轴垂线经过所述基准线段的中点和所述鼻基点。
  9. 一种存储介质,其上存储有计算机程序,其特征在于,所述程序被处理器执行时实现如权利要求1-7中任一项所述的颅骨中轴垂线的确定方法。
  10. 一种电子设备,其特征在于,包括:
    一个或多个处理器;
    存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如权利要求1-7中任一项所述的颅骨中轴垂线的确定方法。
PCT/CN2021/118039 2020-10-30 2021-09-13 颅骨中轴垂线的确定方法、装置、存储介质及电子设备 WO2022089056A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011195810.9 2020-10-30
CN202011195810.9A CN112288725B (zh) 2020-10-30 2020-10-30 颅骨中轴垂线的确定方法、装置、存储介质及电子设备

Publications (1)

Publication Number Publication Date
WO2022089056A1 true WO2022089056A1 (zh) 2022-05-05

Family

ID=74354146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118039 WO2022089056A1 (zh) 2020-10-30 2021-09-13 颅骨中轴垂线的确定方法、装置、存储介质及电子设备

Country Status (2)

Country Link
CN (1) CN112288725B (zh)
WO (1) WO2022089056A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115063556A (zh) * 2022-08-17 2022-09-16 中国汽车技术研究中心有限公司 一种汽车碰撞假人颅骨模型的构建方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112288725B (zh) * 2020-10-30 2021-11-02 李艳 颅骨中轴垂线的确定方法、装置、存储介质及电子设备
CN112270743B (zh) * 2020-10-30 2021-10-15 李艳 颅骨六视基准面的确定方法、装置、存储介质及电子设备
CN112258640B (zh) * 2020-10-30 2024-03-22 李艳 颅骨模型的建立方法、装置、存储介质及电子设备
CN112258638B (zh) * 2020-10-30 2021-11-12 李艳 人体模型的建模方法、装置、存储介质及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060111631A1 (en) * 2004-11-19 2006-05-25 Kelliher Timothy P System, apparatus and method for forensic facial approximation
CN109829915A (zh) * 2019-02-28 2019-05-31 南京医科大学 基于三维空间面型的正畸专用微笑美学评测方法及系统
CN109961436A (zh) * 2019-04-04 2019-07-02 北京大学口腔医学院 一种基于人工神经网络模型的正中矢状平面构建方法
CN112288725A (zh) * 2020-10-30 2021-01-29 李艳 颅骨中轴垂线的确定方法、装置、存储介质及电子设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1782386B1 (en) * 2004-07-27 2018-11-21 Koninklijke Philips N.V. Automatic determination of parameters of an imaging geometry
CN103914826B (zh) * 2013-01-09 2017-11-28 上海联影医疗科技有限公司 一种中心矢状面的提取方法
CN104771189B (zh) * 2015-03-11 2017-10-27 北京朗视仪器有限公司 三维头颅图像对正方法及装置
CN105405119B (zh) * 2015-10-21 2018-07-13 复旦大学 基于深度置信网络和三维模型的胎儿正中矢状面自动检测方法
RU2621124C1 (ru) * 2016-03-16 2017-05-31 Федеральное государственное автономное учреждение "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова" Министерства здравоохранения Российской Федерации Способ измерения выстояния передних границ глазных яблок, опорно-двигательной культи и глазного косметического протеза
CN107203997B (zh) * 2016-03-16 2020-06-02 上海联影医疗科技有限公司 一种左右半脑的分割方法
CN108846866B (zh) * 2018-05-29 2022-04-12 南京医科大学附属口腔医院 基于光学成像的颅颌面软组织矢状向中轴面确定方法及系统
CN109522786B (zh) * 2018-09-26 2021-05-07 珠海横琴现联盛科技发展有限公司 基于3d摄像头的动态人脸配准方法
CN110169782B (zh) * 2019-06-27 2023-06-02 北京大学第三医院(北京大学第三临床医学院) 一种颅面骨骼结构的头影测量方法
CN111047538B (zh) * 2019-12-27 2023-05-09 三星电子(中国)研发中心 一种人脸照片的修复方法
CN115300138A (zh) * 2020-03-12 2022-11-08 北京大学口腔医学院 决策正畸正颌联合治疗手术时机的计算机辅助设计方法
CN111513719B (zh) * 2020-04-30 2021-08-17 赤峰学院附属医院 颅颌面状态的分析方法及装置、电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060111631A1 (en) * 2004-11-19 2006-05-25 Kelliher Timothy P System, apparatus and method for forensic facial approximation
CN109829915A (zh) * 2019-02-28 2019-05-31 南京医科大学 基于三维空间面型的正畸专用微笑美学评测方法及系统
CN109961436A (zh) * 2019-04-04 2019-07-02 北京大学口腔医学院 一种基于人工神经网络模型的正中矢状平面构建方法
CN112288725A (zh) * 2020-10-30 2021-01-29 李艳 颅骨中轴垂线的确定方法、装置、存储介质及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI YUANYUAN: "Visual Analysis and Study of Compensatory Relationships Among Facial Structures of Oriental Females with Esthetically Pleasing Faces", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, UNIVERSITY OF CHINESE ACADEMY OF SCIENCES, CN, no. 2, 15 February 2017 (2017-02-15), CN , XP055926356, ISSN: 1674-022X *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115063556A (zh) * 2022-08-17 2022-09-16 中国汽车技术研究中心有限公司 一种汽车碰撞假人颅骨模型的构建方法
US11735065B1 (en) 2022-08-17 2023-08-22 China Automotive Technology And Research Center Co., Ltd Method for building vehicle crash dummy skull model

Also Published As

Publication number Publication date
CN112288725A (zh) 2021-01-29
CN112288725B (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
WO2022089056A1 (zh) 颅骨中轴垂线的确定方法、装置、存储介质及电子设备
WO2022089058A1 (zh) 人体模型的建模方法、装置、存储介质及电子设备
WO2022089053A1 (zh) 颅骨六视基准面的确定方法、装置、存储介质及电子设备
WO2022089049A1 (zh) 颅骨不对称信息的获取方法、存储介质及电子设备
WO2022089054A1 (zh) 颅骨模型的建立方法、装置、存储介质及电子设备
WO2022089057A1 (zh) 人体骨骼的建模方法、存储介质及电子设备
WO2022089050A1 (zh) 颅骨的切片方法、存储介质及电子设备
WO2022089052A1 (zh) 颅骨矫正信息的获取方法、存储介质及电子设备
Douglas Image processing for craniofacial landmark identification and measurement: a review of photogrammetry and cephalometry
CN110021053B (zh) 一种基于坐标转换的图像定位方法、装置、存储介质及设备
US11471218B2 (en) Hair transplant planning system
CN112509119B (zh) 针对颞骨的空间数据处理及定位方法、装置及电子设备
CN107833248B (zh) 医学图像扫描方法及医学影像设备
CN107854177A (zh) 一种基于光学定位配准的超声与ct/mr图像融合手术导航系统及其方法
CN106163408A (zh) 使用同时的x平面成像的图像配准和引导
US20210374452A1 (en) Method and device for image processing, and elecrtonic equipment
KR20100110785A (ko) 의용 촬영용 마커 및 그 활용 프로그램
WO2022089055A1 (zh) 颅骨切片的获取方法、装置、存储介质及电子设备
CA3069598A1 (en) Method for detecting spinal deformity using three-dimensional ultrasound imaging
WO2022089051A1 (zh) 颅骨矫正方案生成系统、构建方法、获取方法及装置
JP2004024739A (ja) 眼底の立体表示および座標計測方法と装置
CN114190963A (zh) 一种基于cbct容积数据进行头影测量标志点定位的方法及系统
Mao Computer assisted methods to support the clinical assessment of human surface anatomy in 3D images
Bocioaca et al. A Software Tool for Interactive Determination of the Plane of Cut through the Rat Brain
ES2564397A1 (es) Procedimiento y sistema para detectar queratocono subclínico

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21884786

Country of ref document: EP

Kind code of ref document: A1