WO2022089057A1 - 人体骨骼的建模方法、存储介质及电子设备 - Google Patents

人体骨骼的建模方法、存储介质及电子设备 Download PDF

Info

Publication number
WO2022089057A1
WO2022089057A1 PCT/CN2021/118040 CN2021118040W WO2022089057A1 WO 2022089057 A1 WO2022089057 A1 WO 2022089057A1 CN 2021118040 W CN2021118040 W CN 2021118040W WO 2022089057 A1 WO2022089057 A1 WO 2022089057A1
Authority
WO
WIPO (PCT)
Prior art keywords
skull
view
reference plane
dimensional model
human skeleton
Prior art date
Application number
PCT/CN2021/118040
Other languages
English (en)
French (fr)
Inventor
李艳
陈科屹
赵梦瑶
Original Assignee
李艳
陈科屹
赵梦瑶
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李艳, 陈科屹, 赵梦瑶 filed Critical 李艳
Publication of WO2022089057A1 publication Critical patent/WO2022089057A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/66Analysis of geometric attributes of image moments or centre of gravity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30008Bone

Definitions

  • the invention relates to a modeling method of human skeleton, a storage medium and an electronic device.
  • the human body structure data is detected and obtained by medical scanning equipment and imported into the terminal equipment.
  • the complexity of the human body structure it is difficult to convert the three-dimensional model of human skeleton obtained by spiral CT and MRI into specific data.
  • a method for modeling the human skeleton for easy analysis is provided.
  • the present invention provides a modeling method, storage medium and electronic device of human skeleton, aiming at solving the problem that the three-dimensional model of human skeleton mentioned in the background art is inconvenient for analysis.
  • the invention provides a modeling method of human skeleton, the method comprises the following steps:
  • the three-dimensional model of the human skeleton includes a three-dimensional model of a skull
  • Determining a left-view critical line and a right-view critical line on the front view wherein the left-view critical line is parallel to the mid-axis vertical line and the left-view critical line intersects the leftmost side of the skull, where The right-view critical line is parallel to the vertical line of the central axis and the right-view critical line intersects the rightmost side of the skull;
  • the left-view critical line determine the left-view reference plane of the skull that passes through the left-view critical line and is perpendicular to the skull front-view reference plane; the skull right view reference plane perpendicular to the skull front view reference plane;
  • the skull top-view datum that passes the top-sight critical line and is perpendicular to the skull front-view reference plane
  • the lower skull reference plane perpendicular to the front view reference plane of the skull
  • the skull back-view reference plane that is parallel to the skull front-view reference plane and is respectively perpendicular to the skull left-view reference plane and the skull upper-view reference plane to obtain the skull six-view reference plane;
  • the skull positioning rectangle is composed of the skull front reference plane, the skull rear reference plane, the skull left reference plane, the skull right reference plane, and the skull reference plane. obtained from the intersection of the upper-view reference plane of the skull and the lower-view reference plane of the skull;
  • the relative positional relationship between the bone positioning rectangle and the skull positioning rectangle is determined.
  • determine the relative positional relationship between the bone positioning rectangle and the skull positioning rectangle specifically includes:
  • the relative positional relationship between the bone positioning rectangle and the skull positioning rectangle is determined according to the center point of the skull positioning rectangle and the distance and orientation of the center point of the bone positioning rectangle.
  • the "determination of the vertical axis of the central axis according to the anatomical landmarks of the front view” specifically includes:
  • a central axis vertical line is determined, the central axis vertical line passing through the midpoint of the reference line segment and the nose base point.
  • the view with the largest projection area of the nose of the three-dimensional skull model is obtained as the initial side view of the three-dimensional skull model.
  • the first three-dimensional model of the human skeleton includes a first three-dimensional model of the skull
  • the second three-dimensional model of the human skeleton includes a second three-dimensional model of the skull, wherein the first three-dimensional model of the human skeleton is obtained by spiral CT, and the second three-dimensional model of the human skeleton
  • the 3D model was acquired by nuclear magnetic resonance;
  • the method also includes a data fusion step, including:
  • the first three-dimensional model of the skull and the second three-dimensional model of the skull are obtained by data fusion.
  • a third bone three-dimensional model is obtained by performing data fusion with the first bone six-view reference plane and the second bone six-view reference plane, wherein the first bone six-view reference plane is obtained by dividing the first human skeleton three-dimensional model.
  • the three-dimensional model of any other bone other than the skull is obtained, and the six-view reference plane of the two bones is obtained from the three-dimensional model of any other bone except the skull in the second three-dimensional model of human skeleton;
  • a third three-dimensional human skeleton model is obtained according to the third three-dimensional skull model and the third three-dimensional bone model.
  • the method also includes:
  • the center points corresponding to the bones are connected according to the connection relationship of the human bones, so as to obtain the geometric model diagram of the human bones.
  • the method also includes:
  • the human skeleton change information is obtained.
  • the present invention also provides a storage medium on which a computer program is stored, and when the program is executed by a processor, the above-mentioned method for modeling a human skeleton is implemented.
  • the present invention also provides an electronic device, comprising:
  • processors one or more processors
  • a storage device for storing one or more programs, when the one or more programs are executed by the one or more processors, so that the one or more processors implement the above-mentioned method for modeling human skeleton .
  • (1) Determine the front-view reference line and the skull front-view reference plane through the forehead front-end point and the chin front-line point in the initial side view, and then use the skull front-view reference plane to determine the vertical line of the central axis of the skull, and use the central axis of the skull to determine the vertical line
  • the vertical line is used as the reference to establish the left-view reference plane of the skull and the right-view reference plane of the skull, so as to determine the six-view reference plane that wraps the skull.
  • the present invention obtains the six-view reference plane of the skull by using the three-dimensional model of the skull, and uses the six-view reference plane of the skull as the reference to determine the six-view reference plane of other bones in the human skeleton except the skull.
  • the skull positioning rectangle is determined by the six-view datum plane of the skull, and the bone positioning rectangle is determined by the six-view reference plane of other bones except the skull, and the complex human skeleton is converted into a regular rectangle representation, so as to facilitate the analysis of different The relative positional relationship between bones to infer the cause of human lesions.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for modeling human skeleton of the present invention.
  • FIG. 2 is a diagram illustrating an embodiment of the method for determining the reference line of the front view of the skull according to the present invention.
  • FIG. 3 is a diagram illustrating an embodiment of the method for determining the vertical line of the skull mid-axis according to the present invention.
  • FIG. 4 is another schematic diagram of the method for determining the vertical line of the central axis in FIG. 3 .
  • FIG. 5 is a diagram illustrating an embodiment of the reference line of the skull portion of the present invention.
  • the present invention provides a method for modeling human skeleton, as shown in FIG. 1 , comprising the following steps:
  • S1 Obtain a three-dimensional model of a human skeleton, where the three-dimensional model of the human skeleton includes a three-dimensional model of a skull.
  • S3 According to the front-view reference line 10, determine the front-view reference plane of the skull that passes through the front-view reference line 10 and is perpendicular to the plane where the initial side view is located;
  • the information of the human skull is obtained by scanning medical equipment, and then loaded into a computer to obtain a three-dimensional model.
  • the methods of obtaining the three-dimensional model of the skull include spiral CT, nuclear magnetic resonance, etc.
  • the model determines the initial side view, and establishes the front-view datum of the skull through the front-most point of the forehead and the front-most point of the chin on the initial side view. initial benchmark.
  • S4 determine the front view of the skull three-dimensional model according to the skull front view reference plane, and determine the mid-axis vertical line 104 according to the anatomical landmarks of the front view;
  • S5 Determine the left-view critical line 20 and the right-view critical line 30 on the front view, wherein the left-view critical line 20 is parallel to the central axis vertical line 104 and the left-view critical line 20 is parallel to the The leftmost side of the skull intersects, the right-view critical line 30 is parallel to the mid-axis vertical line 104 and the right-view critical line 30 intersects the rightmost side of the skull;
  • S6 Determine the left-view critical line 20 and the right-view critical line 30 that are parallel to the central axis vertical line on the front view according to the central axis vertical line 104, and determine according to the left-view critical line 20 that The left-view critical line 20 and the skull left-view reference plane perpendicular to the skull front-view reference plane are determined according to the right-view critical line 30 and pass through the right-view critical line 30 and are perpendicular to the skull front-view reference plane The skull right view datum;
  • S7 Determine the top-view critical line 40 and the bottom-view critical line 50 on the front view, wherein the top-view critical line 40 and the central axis vertical line 104 are perpendicular to each other, and the top-view critical line 40 and all The uppermost side of the skull intersects, the lower-looking critical line 50 and the mid-axis vertical line 104 are perpendicular to each other, and the lower-looking critical line 50 intersects the lowermost side of the skull.
  • S8 According to the upper-sight critical line 40, determine the upper-view reference plane of the skull that passes through the upper-view critical line 40 and is perpendicular to the skull front-view reference plane, and determines according to the lower-sight critical line 50 that passes through the lower-sighted reference plane The critical line 50 and the lower skull reference plane perpendicular to the skull forward reference plane.
  • the left-view critical line 20 and the right-view critical line 30 parallel to the vertical line 104 of the central axis are obtained as a reference, so as to generate a left-view skull close to the three-dimensional model of the skull
  • the upper-view critical line 40 and the lower-view critical line 50 perpendicular to the left-view critical line 20 are used to generate the upper-view reference plane and the lower-view reference plane of the skull that are close to the three-dimensional model of the skull, thereby limiting the three-dimensional model of the skull.
  • the critical line mentioned in the present invention refers to the boundary line that divides the three-dimensional model and other regions.
  • One side of the critical line is the three-dimensional model, and the other side is other regions. Models have intersections.
  • S9 Determine the skull rear view reference plane that is parallel to the skull front view reference plane and is respectively perpendicular to the skull left view reference plane and the skull upper view reference plane to obtain the skull six-view reference plane.
  • the front-view reference line and the skull front-view reference plane are determined by the forehead front-end point and the lower chin front-line point in the initial side view, and then the skull central axis vertical line is determined by the skull front-view reference plane, and the skull central axis is determined by using the skull front reference plane.
  • the vertical line is used as the reference to establish the left-view reference plane of the skull and the right-view reference plane of the skull, so as to determine the six-view reference plane that wraps the skull.
  • the skull positioning rectangle is composed of the skull front reference plane, the skull rear reference plane, the skull left reference plane, the skull right reference plane, It is obtained by intersecting the upper-view reference plane of the skull and the lower-view reference plane of the skull.
  • S11 obtain the six-view reference plane corresponding to the three-dimensional model of any other bone except the skull in the three-dimensional model of the human skeleton, and obtain the corresponding bone positioning rectangular body according to the six-view reference plane;
  • the six-view reference plane of the skull is obtained by using the three-dimensional model of the skull, and the six-view reference plane of the human skeleton except the skull is determined based on the six-view reference plane of the skull, and the positioning of the skull is determined by the six-view reference plane of the skull.
  • Rectangular body, the bone positioning rectangle is determined by the six-view datum of other bones except the skull, and the complex human skeleton is converted into a regular rectangular body representation, so as to analyze the relative position relationship between different bones to infer the cause of human lesions .
  • the method also includes:
  • the center points of the skull positioning rectangle and the bone positioning rectangle represent the corresponding bones, and the center points are connected according to the connection relationship of human bones to form a human skeleton model diagram composed of points.
  • the method also includes
  • first geometric model diagram of the human skeleton in the first stage obtain the second geometric model diagram of the human skeleton in the second stage, and obtain the human skeleton according to the comparative analysis of the first geometric model diagram and the second geometric model diagram. change information.
  • the above method is used to obtain the geometric model diagrams of human skeleton of the same person at different stages, such as before and after treatment, so that medical personnel or researchers can intuitively compare and analyze the treatment effect according to the geometric model diagrams of different stages.
  • the method further includes:
  • the view with the largest projection area of the nose of the three-dimensional skull model is acquired as the initial side view of the three-dimensional skull model.
  • the view with the largest projection area on the side of the nose is used as the initial side view of the three-dimensional skull model, and the view with the most prominent point of the nose can also be used as the initial side view of the three-dimensional skull model. This serves as the original datum from which the foresight datum line is determined.
  • the S4 includes:
  • S401 Determine the nasal base point 101, the left anatomical landmark 102 and the right anatomical landmark 103 according to the front view, wherein the left anatomical landmark 102 and the right anatomical landmark 103 correspond to left and right in anatomy.
  • S402 Determine a reference line segment passing through the left anatomical landmark 102 and the right anatomical landmark 103.
  • S403 Determine the central axis vertical line 104, the central axis vertical line 104 passing through the midpoint of the reference line segment and the nose base point 101.
  • the nasal base point (the nasal base point refers to the lowest end point of the nasal bone toward the lips in anatomy) is selected as the first reference point of the central axis vertical line 104, and the left side anatomy corresponding to each other in human anatomy is selected.
  • the second reference point is obtained from the landmark point and the right anatomical landmark point, and the vertical line 104 of the central axis is established by using the principle of determining a straight line with two points.
  • the left anatomical landmark 102 is the infraorbital foramen on the right side of the maxilla
  • the right anatomical landmark 103 is the infraorbital foramen on the left side of the maxilla.
  • the left anatomical landmark 102 and the right anatomical landmark are 103 Symmetrical left and right anatomical landmarks such as the uppermost edge point of the left and right supraorbital foramen, the distance point of the left and right orbital medial walls, the intersection of the frontal bone and the zygomatic bone and the left and right lateral orbital walls can also be selected.
  • the vertical line of the skull mid-axis shown in FIG. 4 is not exactly the same as that shown in FIG. 3 .
  • the vertical distance of the lateral anatomical landmarks is fine-tuned.
  • the first three-dimensional model of human bones includes a three-dimensional model of a first skull
  • the second three-dimensional model of human bones includes a three-dimensional model of a second skull
  • the first three-dimensional model of human bones is obtained by spiral CT
  • the second three-dimensional model of human skeleton is obtained by nuclear magnetic resonance
  • the method further includes a data fusion step, including:
  • the first three-dimensional model of the skull and the second three-dimensional model of the skull are obtained by data fusion.
  • 3D model of the third skull is obtained by data fusion.
  • a third bone three-dimensional model is obtained by performing data fusion with the first bone six-view reference plane and the second bone six-view reference plane, wherein the first bone six-view reference plane is obtained by dividing the first human skeleton three-dimensional model.
  • the three-dimensional model of any other bone other than the skull is obtained, and the two-bones six-view reference plane is obtained from the three-dimensional model of any other bone except the skull in the second three-dimensional model of human skeleton.
  • a third three-dimensional human skeleton model is obtained according to the third three-dimensional skull model and the third three-dimensional bone model.
  • the first three-dimensional model of the skull and the second three-dimensional model of the second skull are obtained by spiral CT and nuclear magnetic resonance respectively, and the same method of establishing a six-view datum is used to find one or more landmark points relative to the six-view datum.
  • the position of the skull 3D model obtained in different ways is fused to obtain a third skull 3D model with more accurate data; and the third bone 3D model is obtained by the same method, and then a complete human skeleton 3D model is obtained by fusion.
  • the method also includes:
  • a first three-dimensional model of a human body is acquired through the spiral CT, wherein the first three-dimensional model of a human body includes a three-dimensional model of a first human skeleton.
  • the above steps are performed according to the first three-dimensional model of the human skeleton to determine the first six-view reference plane of the skull.
  • a second three-dimensional model of the human body is acquired through the nuclear magnetic resonance, wherein the second three-dimensional model of the human body includes a three-dimensional model of the second human skeleton, and further includes model information of at least one of blood vessels and nerves.
  • the above steps are performed according to the second three-dimensional model of the human skeleton to determine the six-view reference plane of the second skull.
  • the first three-dimensional model of the human skeleton and the three-dimensional model of the second human skeleton are data fused to obtain a three-dimensional three-dimensional model of the third human skeleton. Model.
  • the first three-dimensional model of the human body and the second three-dimensional model of the second human body are obtained by spiral CT and nuclear magnetic resonance respectively, and the three-dimensional model of the first human body and the three-dimensional model of the second first human body are obtained from the three-dimensional model of the first human body in the three-dimensional model of the first human body.
  • the second three-dimensional model of the human skeleton in the model is used as a reference basis, and the first six-view reference plane of the skull and the second six-view reference plane of the skull are used to obtain the corresponding positions of anatomical landmarks in different three-dimensional models of human bones, and the anatomical landmarks point to locate and fuse the first three-dimensional human skeleton model and the second three-dimensional human skeleton model, and then fuse the first three-dimensional human body model and the second three-dimensional human body model.
  • the blood vessel model or the nerve model in the second three-dimensional model of the human body obtained by the nuclear magnetic resonance is imported into the three-dimensional model of the first human body, and the spiral CT and
  • the accuracy of different structures, tissues and organs obtained by MRI detection is different, and the advantages of the two are combined to obtain a more accurate three-dimensional model of the human body.
  • step S9 further includes:
  • the skull rear view reference plane that is parallel to the skull front view reference plane and is respectively perpendicular to the skull left view reference plane and the skull upper view reference plane, and the skull rear view reference plane has a relationship with the three-dimensional skull model. and only one intersection.
  • the skull rear view reference plane having only one intersection point with the skull three-dimensional model is set, so that the skull three-dimensional model is limited to the six-view reference plane, so as to establish a more accurate skull standard.
  • the step S12 includes:
  • S1203 Determine the relative positional relationship between the bone positioning rectangle and the skull positioning rectangle according to the center point of the skull positioning rectangle and the distance and orientation of the center point of the bone positioning rectangle.
  • the center point of the positioning rectangle is used as the representative of the rectangle and the corresponding bone, and the distance and orientation of the center point are used to determine the relative positional relationship between the bone positioning rectangle and the skull positioning rectangle, so that It is used to analyze and calculate the force of human bones, which is helpful to analyze the source of human lesions.
  • the human skeleton has a total of 206 bones, which are connected to each other to form the skeleton of the human body - the skeleton. It is divided into three parts: skull, trunk and limbs. Among them, there are 29 skull bones, 51 trunk bones, and 126 limb bones. In the present invention, a large category of skull bones is regarded as a whole, and a six-view reference plane of the skull and a rectangular body for positioning the skull are established, and are used as reference points, and all the bones included in the trunk bone and the limb bones are regarded as a whole, so as to Analyze the relative positional relationship between different bones.
  • a standard coordinate system of the human body is established by modeling the human skeleton, and any one or more modelings of the brain, blood vessels, nerves, muscles and internal organs are performed on the basis of such a coordinate system, Therefore, through the combination of the above modeling and the standard coordinate system and the relative coordinate system, the forward algorithm and the reverse algorithm are derived, so that the position distance between the bones and the brain, nerves, blood vessels, muscles, internal organs, etc. can be accurately located. relationship, so that these human tissues form a complete global scientific measurement system, and realize the digital twin under the integration of the organizational structure of human digital human.
  • the positional distance relationship between the bones and the brain, nerves, blood vessels, muscles, internal organs, etc., as well as the subsequent medical plans and medical effects for the human body can be stored in the cloud server as an analysis data source, and based on big data, each human body can be analyzed.
  • the corresponding analysis data source is analyzed to determine and obtain the relationship function of the relative position distance relationship, the medical plan and the corresponding medical effect, and medical diagnosis and analysis are performed based on the relationship function.
  • the present invention provides a storage medium on which a computer program is stored, and when the program is processed and executed, the above-mentioned method for modeling a human skeleton is implemented.
  • the present invention also provides an electronic device, comprising:
  • processors one or more processors
  • a storage device for storing one or more programs, when the one or more programs are executed by the one or more processors, so that the one or more processors implement the above-mentioned method for modeling human skeleton .
  • modules/units integrated in the electronic device are implemented in the form of software functional units and sold or used as independent products, they may be stored in a computer-readable storage medium.
  • the present invention realizes all or part of the processes in the method for multi-opening application programs described in the above embodiments, and can also be completed by using a computer program to refer to related hardware, and the computer program can be stored in a computer In the read storage medium, when the computer program is executed by the processor, the steps of the method for modeling the human skeleton described in the above method embodiments can be implemented.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form, and the like.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, a recording medium, a U disk, a removable hard disk, a magnetic disk, an optical disk, a computer memory, a read-only memory (ROM, Read-Only Memory) , Random Access Memory (RAM, Random Access Memory), electric carrier signal, telecommunication signal and software distribution medium, etc.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • electric carrier signal telecommunication signal and software distribution medium, etc.
  • the content contained in the computer-readable media may be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction, for example, in some jurisdictions, according to legislation and patent practice, the computer-readable media Electric carrier signals and telecommunication signals are not included.
  • the human body model diagram shown in the present invention is a schematic diagram drawn by software, and is only used as a reference in the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Graphics (AREA)
  • Software Systems (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Surgical Instruments (AREA)

Abstract

一种人体骨骼的建模方法、存储介质及电子设备,旨在解决背景技术中提及的人体骨骼三维模型不便于分析的问题,首先通过以颅骨三维模型获取颅骨六视基准面,并以颅骨六视基准面为基准确定人体骨骼中除颅骨外的其他骨骼的六视基准面;还通过颅骨六视基准面确定颅骨定位矩形体,通过除颅骨外的其他骨骼的六视基准面确定骨头定位矩形体,将复杂的人体骨骼转换为规则的矩形体表示,以便于分析不同骨骼之间的相对位置关系以推断人体病变原因。

Description

人体骨骼的建模方法、存储介质及电子设备 技术领域
本发明涉及一种人体骨骼的建模方法、存储介质及电子设备。
背景技术
随着生物医学和人体生物力学的发展,通过建立人体三维模型来对人体进行分析和研究,进而探索人体组织器官相对位置关系对人体健康的影响。
目前通过医学扫描设备检测获取人体结构数据,并导入到终端设备中,但是由于人体结构的复杂性,通过螺旋CT和核磁共振获取的人体骨骼三维模型难以转换为具体的数据,因此需要一种能够便于分析的人体骨骼的建模方法。
发明内容
本发明提供了一种人体骨骼的建模方法、存储介质及电子设备,旨在解决背景技术中提及的人体骨骼三维模型不便于分析的问题。
本发明提供了一种人体骨骼的建模方法,所述方法包括以下步骤:
获取人体骨骼三维模型,所述人体骨骼三维模型包括颅骨三维模型;
根据所述颅骨三维模型的初始侧视图中的额头最前沿点和下颏最前沿点,连接所述额头最前沿点和所述下颏最前沿点确定前视基准线;
根据所述前视基准线确定经过所述前视基准线且垂直于所述初始侧视图所在平面的颅骨前视基准面;
根据所述颅骨前视基准面确定所述颅骨三维模型的前视图,根据所述前视图的解剖标志点确定中轴垂线;
确定所述前视图上的左视临界线和右视临界线,其中,所述左视临界线与所述中轴垂线平行并且所述左视临界线与所述颅骨最左侧相交,所述右视临界线与所述中轴垂线平行并且所述右视临界线所述颅骨最右侧相交;
根据所述左视临界线确定经过所述左视临界线且与所述颅骨前视基准面垂直的颅骨左视基准面,根据所述右视临界线确定经过所述右视临界线且与所述颅骨前视基准面垂直的颅骨右视基准面;
确定所述前视图上的上视临界线和下视临界线,其中,所述上视临界线与所述中轴垂线互相垂直并且所述上视临界线与所述颅骨最上侧相交,所述下视临界线与所述中轴垂线互相垂直并且所述下视临界线与所述颅骨最下侧相交;
根据所述上视临界线确定经过所述上视临界线且与所述颅骨前视基准面垂直的颅骨上视基准面,根据所述下视临界线确定经过所述下视临界线且与所述颅骨前视基准面垂直的颅骨下视基准面;
确定与所述颅骨前视基准面平行且分别与所述颅骨左视基准面和所述颅骨上视基准面垂直的颅骨后视基准面,以得到颅骨六视基准面;
获取颅骨定位矩形体;其中,所述颅骨定位矩形体是由所述颅骨前视基准面、所述颅骨后视基准面、所述颅骨左视基准面、所述颅骨右视基准面、所述颅骨上视基准面和所述颅骨下视基准面相交所得到的;
获取所述人体骨骼三维模型中除颅骨外的其他任意骨头的三维模型所对应的六视基准面,并根据该六视基准面获取相对应的骨头定位矩形体;
以所述颅骨定位矩形体为基准,确定所述骨头定位矩形体与所述颅骨定位矩形体的相对位置关系。
进一步的,所述“以所述颅骨定位矩形体为基准,确定所述骨头 定位矩形体与所述颅骨定位矩形体的相对位置关系”具体包括:
获取所述颅骨定位矩形体的中心点;
获取所述骨头定位矩形体的中心点;
根据所述颅骨定位矩形体的中心点以及所述骨头定位矩形体的中心点的距离以及方位以确定所述骨头定位矩形体与所述颅骨定位矩形体的相对位置关系。
进一步的,所述“根据所述前视图的解剖标志点确定中轴垂线”,具体包括:
根据所述前视图确定鼻基点、左侧解剖标志点和右侧解剖标志点,其中,左侧解剖标志点和右侧解剖标志点在解剖学中左右对应;
确定经过所述左侧解剖标志点与所述右侧解剖标志点的基准线段;
确定中轴垂线,所述中轴垂线经过所述基准线段的中点和所述鼻基点。
进一步的,获取所述颅骨三维模型鼻部投影面积最大的视图作为所述颅骨三维模型的初始侧视图。
进一步的,第一人体骨骼三维模型包括第一颅骨三维模型,第二人体骨骼三维模型包括第二颅骨三维模型,其中,所述第一人体骨骼三维模型通过螺旋CT获取,所述第二人体骨骼三维模型通过核磁共振获取;
所述方法还包括数据融合步骤,包括:
以第一颅骨三维模型获得的颅骨六视基准面以及以第二颅骨三维模型获得的颅骨六视基准面为基准,将所述第一颅骨三维模型和所述第二颅骨三维模型进行数据融合得到第三颅骨三维模型;
以第一骨头六视基准面以及以第二骨头六视基准面进行数据融合得到第三骨头三维模型,其中,所述第一骨头六视基准面是由所述第一人体骨骼三维模型中除颅骨外的其他任意骨头的三维模型获得, 所述二骨头六视基准面是由所述第二人体骨骼三维模型中除颅骨外的其他任意骨头的三维模型获得的;
根据所述第三颅骨三维模型与所述第三骨头三维模型以获取第三人体骨骼三维模型。
进一步的,所述方法还包括:
获取所述颅骨定位矩形体以及所述骨头定位矩形体的中心点;
根据人体骨骼的连接关系将骨骼相对应的所述中心点连接,以获取人体骨骼的几何模型图。
进一步的,所述方法还包括:
获取人体骨骼在第一阶段的第一几何模型图;
获取人体骨骼在第二阶段的第二几何模型图;
根据所述第一几何模型图和所述第二几何模型图对比分析得到人体骨骼变化信息。
本发明还提供了一种存储介质,其上存储有计算机程序,所述程序被处理器执行时实现上述的人体骨骼的建模方法。
本发明还提供了一种电子设备,包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现上述的人体骨骼的建模方法。
本发明至少包括以下有益效果:
(1)通过初始侧视图中的额头最前沿点和下颏最前沿点确定前视基准线以及颅骨前视基准面,进而利用颅骨前视基准面确定颅骨中轴垂线,并以颅骨中轴垂线为基准建立颅骨左视基准面和颅骨右视基准面,从而确定包裹颅骨的六视基准面确定颅骨冠状面、矢状面和水平面标准,并且通过确定标准以助于依据宇称守恒定律进行数据对比分析,从而实现依据不同人体的颅骨建立对应的标准,具备较强适应 性。
(2)本发明通过以颅骨三维模型获取颅骨六视基准面,并以颅骨六视基准面为基准确定人体骨骼中除颅骨外的其他骨骼的六视基准面。
(3)通过颅骨六视基准面确定颅骨定位矩形体,通过除颅骨外的其他骨骼的六视基准面确定骨头定位矩形体,将复杂的人体骨骼转换为规则的矩形体表示,以便于分析不同骨骼之间的相对位置关系以推断人体病变原因。
应当理解的是,以上的一般描述和后面的细节描述仅仅是示例性和解释性的,并不能限制本公开。
附图说明
图1是本发明人体骨骼的建模方法的一实施例流程示意图。
图2是本发明颅骨前视基准线的确定方法的一实施例演示图。
图3是本发明颅骨中轴垂线的确定方法的一实施例演示图。
图4是图3中中轴垂线的确定方法的另一示意图。
图5是本发明颅骨部分基准线的一实施例演示图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得所有其他实施例,都属于本发明的保护范围。可以理解的是,附图仅仅提供参考与说明用,并非用来对本发明加以限制。附图中显示的连接关系仅仅是为了便于清晰描述,并不限定连接方式。
需要说明的是,当一个组件被认为是“连接”另一个组件时,它可 以是直接连接到另一个组件,或者可能同时存在居中组件。除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
还需要说明的是,本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在一种实施例中,本发明提供一种人体骨骼的建模方法,如图1所示,包括以下步骤:
S1:获取人体骨骼三维模型,所述人体骨骼三维模型包括颅骨三维模型。
S2:根据颅骨三维模型的初始侧视图中的额头最前沿点和下颏最前沿点,连接所述额头最前沿点和所述下颏最前沿点确定前视基准线10。
S3:根据所述前视基准线10确定经过所述前视基准线10且垂直于所述初始侧视图所在平面的颅骨前视基准面;
如图2所示,本实施例中,通过医疗器械扫描获取人体颅骨信息,进而载入到电脑以获取三维模型,获取颅骨三维模型的方式包括螺旋 CT、核磁共振等,利用载入后的三维模型确定初始侧视图,通过所述初始侧视图上的额头最前沿点和所述下颏最前沿点以建立颅骨前视基准面,将所述颅骨前视基准面作为建立颅骨六视基准面的初始基准。
S4:根据所述颅骨前视基准面确定所述颅骨三维模型的前视图,根据所述前视图的解剖标志点确定中轴垂线104;
S5:确定所述前视图上的左视临界线20和右视临界线30,其中,所述左视临界线20与所述中轴垂线104平行并且所述左视临界线20与所述颅骨最左侧相交,所述右视临界线30与所述中轴垂线104平行并且所述右视临界线30所述颅骨最右侧相交;
S6:根据所述中轴垂线104确定在所述前视图上与所述中轴垂线互相平行的左视临界线20和右视临界线30,根据所述左视临界线20确定经过所述左视临界线20且与所述颅骨前视基准面垂直的颅骨左视基准面,根据所述右视临界线30确定经过所述右视临界线30且与所述颅骨前视基准面垂直的颅骨右视基准面;
S7:确定所述前视图上的上视临界线40和下视临界线50,其中,所述上视临界线40与所述中轴垂线104互相垂直并且所述上视临界线40与所述颅骨最上侧相交,所述下视临界线50与所述中轴垂线104互相垂直并且所述下视临界线50与所述颅骨最下侧相交。
S8:根据所述上视临界线40确定经过所述上视临界线40且与所述颅骨前视基准面垂直的颅骨上视基准面,根据所述下视临界线50确定经过所述下视临界线50且与所述颅骨前视基准面垂直的颅骨下视基准面。
如图5所示,本实施例中,通过所述中轴垂线104为基准获取与其平行的左视临界线20和右视临界线30,以生成紧贴所述颅骨三维模型的颅骨左视基准面和颅骨右视基准面,进而将所述颅骨三维模型限制于所述颅骨左视基准面和所述颅骨右视基准面之间;进一步通过 所述中轴垂线104为基准获取与所述左视临界线20垂直的上视临界线40和下视临界线50,以生成紧贴所述颅骨三维模型的颅骨上视基准面和颅骨下视基准面,进而将所述颅骨三维模型限制于所述颅骨上视基准面和所述颅骨下视基准面之间。应当说明的是,本发明中提及的临界线是指划分三维模型与其他区域的边界线,所述临界线的一侧为三维模型,另一侧为其他区域,且所述临界线与三维模型存在交点。
S9:确定与所述颅骨前视基准面平行且分别与所述颅骨左视基准面和所述颅骨上视基准面垂直的颅骨后视基准面,以得到颅骨六视基准面。
本发明通过初始侧视图中的额头最前沿点和下颏最前沿点确定前视基准线以及颅骨前视基准面,进而利用颅骨前视基准面确定颅骨中轴垂线,并通过以颅骨中轴垂线为基准建立颅骨左视基准面和颅骨右视基准面,从而确定包裹颅骨的六视基准面确定颅骨冠状面、矢状面和水平面标准,并且通过确定标准以助于依据宇称守恒定律进行数据对比分析,从而实现依据不同人体的颅骨建立对应的标准,具备较强适应性;并且可以依据建立的六视基准面来对不同获取方式获得的同一人体的颅骨数据信息进行对比,以结合多种模型获取方式的优点。
S10:获取颅骨定位矩形体;其中,所述颅骨定位矩形体是由所述颅骨前视基准面、所述颅骨后视基准面、所述颅骨左视基准面、所述颅骨右视基准面、所述颅骨上视基准面和所述颅骨下视基准面相交所得到的。
S11:获取所述人体骨骼三维模型中除颅骨外的其他任意骨头的三维模型所对应的六视基准面,并根据该六视基准面获取相对应的骨头定位矩形体;
S12:以所述颅骨定位矩形体为基准,确定所述骨头定位矩形体与所述颅骨定位矩形体的相对位置关系。
本发明中通过以颅骨三维模型获取颅骨六视基准面,并以颅骨六视基准面为基准确定人体骨骼中除颅骨外的其他骨骼的六视基准面,并通过颅骨六视基准面确定颅骨定位矩形体,通过除颅骨外的其他骨骼的六视基准面确定骨头定位矩形体,将复杂的人体骨骼转换为规则的矩形体表示,以便于分析不同骨头之间的相对位置关系以推断人体病变原因。
本发明的一种实施例,所述方法还包括:
S13:获取所述颅骨定位矩形体以及所述骨头定位矩形体的中心点;
S14:根据人体骨骼的连接关系将骨骼相对应的所述中心点连接,以获取人体骨骼的几何模型图。
本实施例中通过将颅骨定位矩形体以及骨头定位矩形体的中心点代表与其相对应的骨头,并根据人体骨骼的连接关系将中心点连接,形成由点组成的人体骨骼模型图,从几何角度直观的展示人体骨骼信息,以便于对比分析。
进一步的,所述方法还包括
获取人体骨骼在第一阶段的第一几何模型图,获取人体骨骼在第二阶段的第二几何模型图,并根据所述第一几何模型图和所述第二几何模型图对比分析得到人体骨骼变化信息。
本实施例通过上述方法获取同一人在不同阶段的人体骨骼几何模型图,例如治疗前和治疗后,以便于医疗人员或者研究人员根据不同阶段的几何模型图直观对比分析获知治疗效果。
本发明的另一实施例中,所述方法还包括:
获取所述颅骨三维模型鼻部投影面积最大的视图作为为所述颅骨三维模型的初始侧视图。
本实施例中,通过寻找鼻部侧面投影面积最大的视图以作为所述颅骨三维模型的初始侧视图,也可以通过寻找鼻尖点最突出的视图作 为所述颅骨三维模型的初始侧视图,并以此作为确定前视基准线的原始基准面。
本发明的一种实施例,如图3-4所示,所述S4包括:
S401:根据所述前视图确定鼻基点101、左侧解剖标志点102和右侧解剖标志点103,其中,左侧解剖标志点102和右侧解剖标志点103在解剖学中左右对应。
S402:确定经过所述左侧解剖标志点102与所述右侧解剖标志点103的基准线段。
S403:确定中轴垂线104,所述中轴垂线104经过所述基准线段的中点和所述鼻基点101。
本实施例中,选择鼻基点(鼻基点在解剖学中指的是鼻骨朝嘴唇方向的最底端点)作为中轴垂线104的第一基准点,并通过人体解剖学中互相对应的左侧解剖标志点和右侧解剖标志点来获取第二基准点,利用两点确定一直线的原理建立中轴垂线104。左侧解剖标志点102为上颌骨右侧的眶下孔,右侧解剖标志点103为上颌骨左侧的眶下孔,当然,所述左侧解剖标志点102和所述右侧解剖标志点103也可以选择左右眶上孔最上缘点、左右眼眶内侧壁距离点、额骨与颧骨交汇左右眼眶外侧壁等对称的左右侧解剖标志点。
应当说明的是,图4中所示的颅骨中轴垂线与图3中所示并不完全相同,图4中为了便于显示颅骨中轴垂线与所述左侧解剖标志点以及所述右侧解剖标志点的垂直距离,而进行微调。
本发明的另一实施例中,第一人体骨骼三维模型包括第一颅骨三维模型,第二人体骨骼三维模型包括第二颅骨三维模型,其中,所述第一人体骨骼三维模型通过螺旋CT获取,所述第二人体骨骼三维模型通过核磁共振获取;所述方法还包括数据融合步骤,包括:
以第一颅骨三维模型获得的颅骨六视基准面以及以第二颅骨三维模型获得的颅骨六视基准面为基准,将所述第一颅骨三维模型和 所述第二颅骨三维模型进行数据融合得到第三颅骨三维模型。
以第一骨头六视基准面以及以第二骨头六视基准面进行数据融合得到第三骨头三维模型,其中,所述第一骨头六视基准面是由所述第一人体骨骼三维模型中除颅骨外的其他任意骨头的三维模型获得,所述二骨头六视基准面是由所述第二人体骨骼三维模型中除颅骨外的其他任意骨头的三维模型获得的。
根据所述第三颅骨三维模型与所述第三骨头三维模型以获取第三人体骨骼三维模型。
本实施例中通过螺旋CT和核磁共振分别获取第一颅骨三维模型和第二颅骨三维模型,并通过相同的建立六视基准面的方法,通过找出一个或多个标志点相对六视基准面的位置,将不同方式获取的颅骨三维模型进行数据融合,获取数据更为精确的第三颅骨三维模型;并通过同样的方法获取第三骨头三维模型,进而融合得到完整的人体骨骼三维模型。
更进一步的,所述方法还包括:
通过所述螺旋CT获取第一人体三维模型,其中所述第一人体三维模型包括第一人体骨骼三维模型。
根据所述第一人体骨骼三维模型执行上述步骤,确定第一颅骨六视基准面。
通过所述核磁共振获取第二人体三维模型,其中所述第二人体三维模型包括第二人体骨骼三维模型,且还包括血管和神经中至少一项的模型信息。
根据所述第第二人体骨骼三维模型执行上述步骤,确定第二颅骨六视基准面。
根据所述第一颅骨六视基准面和所述第二颅骨六视基准面,将所述第一人体骨骼三维模型与所述第二人体骨骼三维模型进行数据融合,以获取第三人体骨骼三维模型。
本实施例中,通过螺旋CT和核磁共振分别获取第一人体三维模型和第二人体三维模型,通过所述第一人体三维模型中的第一人体骨骼三维模型和所述第二第一人体三维模型中的第二人体骨骼三维模型为参考基础,利用建立的第一颅骨六视基准面和第二颅骨六视基准面获取解剖标志点在不同人体骨骼三维模型对应的位置,通过所述解剖标志点以定位和融合所述第一人体骨骼三维模型和所述第二人体骨骼三维模型,进而融合所述第一人体三维模型和所述第二人体三维模型。
优选的,以螺旋CT获取的第一人体骨骼三维模型为基准,将以核磁共振获取的第二人体三维模型中的血管模型或神经模型导入所述第一人体骨骼三维模型中,利用螺旋CT和核磁共振检测获取的不同结构、组织及器官的精确度不一,将两者的优势融合从而获取更为精确的人体三维模型。
本发明的一种实施例,所述步骤S9还包括:
确定与所述颅骨前视基准面平行且分别与所述颅骨左视基准面和所述颅骨上视基准面垂直的颅骨后视基准面,所述颅骨后视基准面与所述颅骨三维模型有且仅有一个交点。
本实施例中,通过设置与所述颅骨三维模型有且仅有一个交点的颅骨后视基准面,从而将所述颅骨三维模型限制于六视基准面中,以建立更为精确的颅骨标准。
本发明的一种实施例,所述步骤S12包括:
S1201:获取所述颅骨定位矩形体的中心点;
S1202:获取所述骨头定位矩形体的中心点;
S1203:根据所述颅骨定位矩形体的中心点以及所述骨头定位矩形体的中心点的距离以及方位以确定所述骨头定位矩形体与所述颅骨定位矩形体的相对位置关系。
本实施例中将定位矩形体的中心点作为该矩形体以及对应的骨 骼的代表,利用中心点的距离以及方位以确定所述骨头定位矩形体与所述颅骨定位矩形体的相对位置关系,以便于进行人体骨骼的受力分析计算,有助于分析人体病变源。
人体骨骼共有206块骨,它们相互连接构成人体的骨架——骨骼。分为颅骨、躯干骨和四肢骨3个大部分。其中,有颅骨29块、躯干骨51块、四肢骨126块。本发明中将颅骨一大类视为一个整体,建立颅骨六视基准面以及颅骨定位矩形体,并以其为基准点,将躯干骨和四肢骨包含的所有骨头分别作为一个整体,以此来分析不同骨头之间的相对位置关系。
本发明的另一实施例,通过人体骨骼的建模建立人体的标准坐标系,在这样的坐标系基础上再进行大脑、血管、神经、肌肉和内脏中任一项或者多项的建模,从而通过以上建模和标准坐标系与相对坐标系之间的结合,衍生出来正向算法与逆向算法,这样就能够实现精准定位骨骼与大脑、神经、血管、肌肉、内脏等之间的位置距离关系,让这些人体组织形成一个完整的全局科学测量体系,实现人类数字人的组织结构融合下的数字孪生。
更进一步的,骨骼与大脑、神经、血管、肌肉、内脏等之间的位置距离关系以及后续针对该人体的医疗方案和医疗效果可以作为分析数据源存储进入云服务器,基于大数据对每个人体对应的所述分析数据源进行分析,确定并获取相对位置距离关系、医疗方案以及相应的医疗效果的关系函数,以通过所述关系函数为依据进行医疗诊断和分析。
在一种实施例中,本发明提供一种存储介质,其上存储有计算机程序,所述程序被处理执行时实现上述的人体骨骼的建模方法。
在一种实施例中,本发还提供一种电子设备,包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序,当所述一个或多个程序被 所述一个或多个处理器执行时,使得所述一个或多个处理器实现上述的人体骨骼的建模方法。
所述电子设备集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例所述的应用程序多开方法中的全部或部分流程,也可以通过计算机程序来指相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上文方法实施例所述的人体骨骼的建模方法的步骤。其中,所述算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
基于人体隐私考虑,本发明所示出的人体模型图为通过软件绘制的示意图,且仅作为本发明的参考。
本申请的说明书和权利要求书中,词语“包括/包含”和词语“具有/包括”及其变形,用于指定所陈述的特征、数值、步骤或部件的存在,但不排除存在或添加一个或多个其他特征、数值、步骤、部件或它们的组合。
本发明的一些特征,为阐述清晰,分别在不同的实施例中描述,然而,这些特征也可以结合于单一实施例中描述。相反,本发明的一些特征,为简要起见,仅在单一实施例中描述,然而,这些特征也可 以单独或以任何合适的组合于不同的实施例中描述。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包括在本发明的保护范围之内。

Claims (9)

  1. 一种人体骨骼的建模方法,其特征在于,所述方法包括以下步骤:
    获取人体骨骼三维模型,所述人体骨骼三维模型包括颅骨三维模型;
    根据所述颅骨三维模型的初始侧视图中的额头最前沿点和下颏最前沿点,连接所述额头最前沿点和所述下颏最前沿点确定前视基准线;
    根据所述前视基准线确定经过所述前视基准线且垂直于所述初始侧视图所在平面的颅骨前视基准面;
    根据所述颅骨前视基准面确定所述颅骨三维模型的前视图,根据所述前视图的解剖标志点确定中轴垂线;
    确定所述前视图上的左视临界线和右视临界线,其中,所述左视临界线与所述中轴垂线平行并且所述左视临界线与所述颅骨最左侧相交,所述右视临界线与所述中轴垂线平行并且所述右视临界线所述颅骨最右侧相交;
    根据所述左视临界线确定经过所述左视临界线且与所述颅骨前视基准面垂直的颅骨左视基准面,根据所述右视临界线确定经过所述右视临界线且与所述颅骨前视基准面垂直的颅骨右视基准面;
    确定所述前视图上的上视临界线和下视临界线,其中,所述上视临界线与所述中轴垂线互相垂直并且所述上视临界线与所述颅骨最上侧相交,所述下视临界线与所述中轴垂线互相垂直并且所述下视临界线与所述颅骨最下侧相交;
    根据所述上视临界线确定经过所述上视临界线且与所述颅骨前视基准面垂直的颅骨上视基准面,根据所述下视临界线确定经过所述下视临界线且与所述颅骨前视基准面垂直的颅骨下视基准面;
    确定与所述颅骨前视基准面平行且分别与所述颅骨左视基准面和所述颅骨上视基准面垂直的颅骨后视基准面,以得到颅骨六视基准 面;
    获取颅骨定位矩形体;其中,所述颅骨定位矩形体是由所述颅骨前视基准面、所述颅骨后视基准面、所述颅骨左视基准面、所述颅骨右视基准面、所述颅骨上视基准面和所述颅骨下视基准面相交所得到的;
    获取所述人体骨骼三维模型中除颅骨外的其他任意骨头的三维模型所对应的六视基准面,并根据该六视基准面获取相对应的骨头定位矩形体;
    以所述颅骨定位矩形体为基准,确定所述骨头定位矩形体与所述颅骨定位矩形体的相对位置关系。
  2. 根据权利要求1所述的人体骨骼的建模方法,其特征在于,所述“以所述颅骨定位矩形体为基准,确定所述骨头定位矩形体与所述颅骨定位矩形体的相对位置关系”具体包括:
    获取所述颅骨定位矩形体的中心点;
    获取所述骨头定位矩形体的中心点;
    根据所述颅骨定位矩形体的中心点以及所述骨头定位矩形体的中心点的距离以及方位以确定所述骨头定位矩形体与所述颅骨定位矩形体的相对位置关系。
  3. 根据权利要求1所述的人体骨骼的建模方法,其特征在于,所述“根据所述前视图的解剖标志点确定中轴垂线”,具体包括:
    根据所述前视图确定鼻基点、左侧解剖标志点和右侧解剖标志点,其中,左侧解剖标志点和右侧解剖标志点在解剖学中左右对应;
    确定经过所述左侧解剖标志点与所述右侧解剖标志点的基准线段;
    确定中轴垂线,所述中轴垂线经过所述基准线段的中点和所述鼻基点。
  4. 根据权利要求1所述的人体骨骼的建模方法,其特征在于,获 取所述颅骨三维模型鼻部投影面积最大的视图作为所述颅骨三维模型的初始侧视图。
  5. 根据权利要求1所述的人体骨骼的建模方法,其特征在于,第一人体骨骼三维模型包括第一颅骨三维模型,第二人体骨骼三维模型包括第二颅骨三维模型,其中,所述第一人体骨骼三维模型通过螺旋CT获取,所述第二人体骨骼三维模型通过核磁共振获取;
    所述方法还包括数据融合步骤,包括:
    以第一颅骨三维模型获得的颅骨六视基准面以及以第二颅骨三维模型获得的颅骨六视基准面为基准,将所述第一颅骨三维模型和所述第二颅骨三维模型进行数据融合得到第三颅骨三维模型;
    以第一骨头六视基准面以及以第二骨头六视基准面进行数据融合得到第三骨头三维模型,其中,所述第一骨头六视基准面是由所述第一人体骨骼三维模型中除颅骨外的其他任意骨头的三维模型获得,所述二骨头六视基准面是由所述第二人体骨骼三维模型中除颅骨外的其他任意骨头的三维模型获得的;
    所述第三颅骨三维模型与所述第三骨头三维模型以获取第三人体骨骼三维模型。
  6. 根据权利要求1所述的人体骨骼的建模方法,其特征在于,所述方法还包括:
    获取所述颅骨定位矩形体以及所述骨头定位矩形体的中心点;
    根据人体骨骼的连接关系将骨骼相对应的所述中心点连接,以获取人体骨骼的几何模型图。
  7. 根据权利要求6所述的人体骨骼的建模方法,其特征在于,所述方法还包括:
    获取人体骨骼在第一阶段的第一几何模型图;
    获取人体骨骼在第二阶段的第二几何模型图;
    根据所述第一几何模型图和所述第二几何模型图对比分析得到 人体骨骼变化信息。
  8. 一种存储介质,其上存储有计算机程序,其特征在于,所述程序被处理器执行时实现如权利要求1-7中任一项所述的人体骨骼的建模方法。
  9. 一种电子设备,其特征在于,包括:
    一个或多个处理器;
    存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如权利要求1-7中任一项所述的人体骨骼的建模方法。
PCT/CN2021/118040 2020-10-30 2021-09-13 人体骨骼的建模方法、存储介质及电子设备 WO2022089057A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011191078.8A CN112288858B (zh) 2020-10-30 2020-10-30 人体骨骼的建模方法、存储介质及电子设备
CN202011191078.8 2020-10-30

Publications (1)

Publication Number Publication Date
WO2022089057A1 true WO2022089057A1 (zh) 2022-05-05

Family

ID=74354096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118040 WO2022089057A1 (zh) 2020-10-30 2021-09-13 人体骨骼的建模方法、存储介质及电子设备

Country Status (2)

Country Link
CN (1) CN112288858B (zh)
WO (1) WO2022089057A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112258640B (zh) * 2020-10-30 2024-03-22 李艳 颅骨模型的建立方法、装置、存储介质及电子设备
CN112288858B (zh) * 2020-10-30 2022-11-11 李艳 人体骨骼的建模方法、存储介质及电子设备
CN112270743B (zh) * 2020-10-30 2021-10-15 李艳 颅骨六视基准面的确定方法、装置、存储介质及电子设备
CN112258638B (zh) * 2020-10-30 2021-11-12 李艳 人体模型的建模方法、装置、存储介质及电子设备
CN115544812B (zh) * 2022-11-28 2023-05-05 杭州轻宇宙科技有限公司 一种数字孪生虚拟人的构建方法、系统、电子设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106777473A (zh) * 2016-11-11 2017-05-31 南京林业大学 一种用于汽车碰撞损伤研究的人体头部有限元建模方法
CN108122282A (zh) * 2016-11-30 2018-06-05 财团法人金属工业研究发展中心 医学图像建模系统以及医学图像建模方法
CN207489318U (zh) * 2017-09-29 2018-06-12 曲靖医学高等专科学校 一种头颅的断层解剖磁力模型
WO2018106182A1 (en) * 2016-12-06 2018-06-14 National University Of Singapore Methods of reconstructing skulls
CN111243413A (zh) * 2020-03-06 2020-06-05 吉林大学 一种颜面部解剖教学的建模方法及教学系统
CN112288858A (zh) * 2020-10-30 2021-01-29 李艳 人体骨骼的建模方法、存储介质及电子设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1801213A (zh) * 2005-09-30 2006-07-12 铁岭市公安局213研究所 三维颅骨身源鉴定方法及设备
CN100538745C (zh) * 2008-01-04 2009-09-09 西北工业大学 颅骨三维模型构建方法
US9216084B2 (en) * 2013-08-09 2015-12-22 Howmedica Osteonics Corp. Patient-specific craniofacial implants
CN207425197U (zh) * 2017-08-01 2018-05-29 曲靖医学高等专科学校 一种基于颅脑解剖结构的磁力模型
CN108280881A (zh) * 2018-01-23 2018-07-13 清华大学 一种参数化人体假肢骨骼建模方法
CN110169782B (zh) * 2019-06-27 2023-06-02 北京大学第三医院(北京大学第三临床医学院) 一种颅面骨骼结构的头影测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106777473A (zh) * 2016-11-11 2017-05-31 南京林业大学 一种用于汽车碰撞损伤研究的人体头部有限元建模方法
CN108122282A (zh) * 2016-11-30 2018-06-05 财团法人金属工业研究发展中心 医学图像建模系统以及医学图像建模方法
WO2018106182A1 (en) * 2016-12-06 2018-06-14 National University Of Singapore Methods of reconstructing skulls
CN207489318U (zh) * 2017-09-29 2018-06-12 曲靖医学高等专科学校 一种头颅的断层解剖磁力模型
CN111243413A (zh) * 2020-03-06 2020-06-05 吉林大学 一种颜面部解剖教学的建模方法及教学系统
CN112288858A (zh) * 2020-10-30 2021-01-29 李艳 人体骨骼的建模方法、存储介质及电子设备

Also Published As

Publication number Publication date
CN112288858B (zh) 2022-11-11
CN112288858A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
WO2022089057A1 (zh) 人体骨骼的建模方法、存储介质及电子设备
WO2022089049A1 (zh) 颅骨不对称信息的获取方法、存储介质及电子设备
WO2022089058A1 (zh) 人体模型的建模方法、装置、存储介质及电子设备
WO2022089052A1 (zh) 颅骨矫正信息的获取方法、存储介质及电子设备
WO2022089056A1 (zh) 颅骨中轴垂线的确定方法、装置、存储介质及电子设备
WO2022089053A1 (zh) 颅骨六视基准面的确定方法、装置、存储介质及电子设备
WO2022089054A1 (zh) 颅骨模型的建立方法、装置、存储介质及电子设备
US9892564B1 (en) Augmenting real-time views of a patient with three-dimensional data
WO2022089050A1 (zh) 颅骨的切片方法、存储介质及电子设备
US20210374452A1 (en) Method and device for image processing, and elecrtonic equipment
WO2022089055A1 (zh) 颅骨切片的获取方法、装置、存储介质及电子设备
KR101831514B1 (ko) 환자의 악골의 움직임 추정이 반영된 증강현실 시스템 및 증강현실 제공방법
WO2022089051A1 (zh) 颅骨矫正方案生成系统、构建方法、获取方法及装置
JP4446881B2 (ja) 三次元ボリュームの画像を生成し表示する方法
JP2005524896A5 (zh)
CN112842531B (zh) 一种神经外科手术计划系统
US11869203B2 (en) Dental image registration device and method
KR102184001B1 (ko) 수술용 네비게이션을 위한 영상 정합 장치 및 영상 정합 방법
JP2005328933A (ja) 経頭蓋的脳機能測定装置
CN117649442B (zh) 利用平衡器官解剖标志构筑三维头影测量坐标系的方法
TWI809660B (zh) 應用於手術規劃與導航系統的最佳正中線設定方法
EP3975120A1 (en) Technique for guiding acquisition of one or more registration points on a patient's body
KR20090038773A (ko) 수술용 항법 장치의 작동 방법
CN114519771A (zh) 基于混合现实技术的手术模型成像方法、装置、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21884787

Country of ref document: EP

Kind code of ref document: A1