WO2022089051A1 - 颅骨矫正方案生成系统、构建方法、获取方法及装置 - Google Patents

颅骨矫正方案生成系统、构建方法、获取方法及装置 Download PDF

Info

Publication number
WO2022089051A1
WO2022089051A1 PCT/CN2021/118034 CN2021118034W WO2022089051A1 WO 2022089051 A1 WO2022089051 A1 WO 2022089051A1 CN 2021118034 W CN2021118034 W CN 2021118034W WO 2022089051 A1 WO2022089051 A1 WO 2022089051A1
Authority
WO
WIPO (PCT)
Prior art keywords
skull
view
line
reference plane
point
Prior art date
Application number
PCT/CN2021/118034
Other languages
English (en)
French (fr)
Inventor
李艳
陈科屹
赵梦瑶
Original Assignee
李艳
陈科屹
赵梦瑶
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李艳, 陈科屹, 赵梦瑶 filed Critical 李艳
Publication of WO2022089051A1 publication Critical patent/WO2022089051A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/68Analysis of geometric attributes of symmetry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30008Bone

Definitions

  • the invention relates to a skull correction scheme generation system, construction method, acquisition method and device.
  • Bone-setting refers to the treatment of fractures, facet joint dislocation, bone misalignment, dislocation and other diseases by pushing, pulling, pressing, pressing and other manipulations in traditional Chinese medicine. Damage to internal organs caused by similar causes.
  • the current bone-setting diagnosis lacks specific medical data support and theoretical basis. It is unknown what method can be used for bone-setting and what effect can be achieved, resulting in higher requirements for medical personnel's experience and operation level, so a skull correction solution is needed.
  • the present invention provides a skull correction scheme generation system, construction method, acquisition method and device.
  • the present invention first provides a method for constructing a skull correction scheme generation system, characterized in that the method comprises the following steps:
  • the skull correction plan includes the force application point, the force application direction and the force application value
  • the skull position offset information of the patient is obtained
  • an analyzer for analyzing the skull correction scheme and the skull displacement law, and use the force application point, the force application direction, the force application value and the skull position offset information as the neural network input data to train the analyzer to output an association formula.
  • the "obtaining information on skull asymmetry” specifically includes:
  • first anatomical landmark point and a second anatomical landmark point determining a first anatomical landmark point and a second anatomical landmark point, the first anatomical landmark point and the second anatomical landmark point being the left anatomical landmark point and the right anatomical landmark point corresponding to each other in anatomy;
  • first asymmetry information of the skull according to the first three-dimensional coordinates and the second three-dimensional coordinates; wherein the first asymmetry information includes the absolute values of the first three-dimensional coordinates and the second three-dimensional coordinates value difference.
  • the "determination of the vertical axis of the central axis according to the anatomical landmarks of the front view” specifically includes:
  • a central axis vertical line is determined, the central axis vertical line passing through the midpoint of the reference line segment and the nose base point.
  • the coordinate origin is the nose base point.
  • the view with the largest projection area of the nose of the three-dimensional skull model is obtained as the initial side view of the three-dimensional skull model.
  • it also includes a method for establishing a six-view datum plane of the skull, after the process of “determining the front view of the three-dimensional model of the skull according to the front-view datum plane, and determining the vertical line of the central axis according to the anatomical landmarks of the front view”.
  • Determining a left-view critical line and a right-view critical line on the front view wherein the left-view critical line is parallel to the mid-axis vertical line and the left-view critical line intersects the leftmost side of the skull, where The right-view critical line is parallel to the vertical line of the central axis and the right-view critical line intersects the rightmost side of the skull;
  • a left-view reference plane passing through the left-view critical line and perpendicular to the front-view reference plane is determined according to the left-view critical line
  • a left-view reference plane passing through the right-view critical line and perpendicular to the front-view reference plane is determined according to the right-view critical line.
  • a top-view reference plane passing through the top-view critical line and perpendicular to the front-view reference plane is determined according to the top-view critical line
  • a top-view reference plane passing through the bottom-view critical line and perpendicular to the front-view reference plane is determined according to the bottom-view critical line.
  • a rear-view reference plane parallel to the front-view reference plane and respectively perpendicular to the left-view reference plane and the upper-view reference plane is determined to obtain the skull six-view reference plane.
  • the present invention also provides a skull correction scheme generation system, which is constructed by the above construction method.
  • the present invention also provides a method for obtaining a skull correction scheme, which is applied to the above-mentioned skull correction scheme generation system, and the method includes the following steps:
  • a skull correction scheme is calculated by the analyzer in combination with the target skull asymmetry information and an associated formula, wherein the skull correction scheme includes a force application point, a force application direction and a force application value.
  • the present invention also provides a device for obtaining a skull correction solution, the device comprising:
  • the information acquisition module is used to acquire the target skull asymmetry information to be corrected
  • the data processing module stores a computer program, and the computer program is used to execute the steps in the acquisition method.
  • the scheme output module is used for outputting the scheme result generated by the data processing module.
  • the present invention constructs a skull correction scheme generation system by acquiring the first bone asymmetry information of the patient before correction, the second bone asymmetry information of the patient after correction and the correction scheme, and using them as training data, which can generate a skull correction scheme according to multiple
  • the correlation formula between the correction orientation and the bone displacement is obtained by analyzing the patient data, so that ordinary medical staff can obtain a standard correction plan according to the correlation formula and the information of the target patient, and then it is easy to formulate specific treatment methods according to the standard correction plan. It reduces the professional requirements for medical staff, and on the other hand, establishes standards to effectively simulate the correction results.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for constructing a skull correction plan generation system according to the present invention.
  • FIG. 2 is a schematic flowchart of an embodiment of a method for acquiring skull asymmetry information in the embodiment of FIG. 1 .
  • FIG. 3 is a diagram illustrating an embodiment of the method for determining the reference line of the front view of the skull according to the present invention.
  • FIG. 4 is a diagram illustrating an embodiment of the method for determining the vertical line of the skull mid-axis according to the present invention.
  • FIG. 5 is another schematic diagram of the method for determining the vertical line of the central axis in FIG. 4 .
  • FIG. 6 is a diagram illustrating an embodiment of the reference line of the skull portion of the present invention.
  • FIG. 7 is a schematic flowchart of an embodiment of a method for obtaining a skull correction solution provided by the present invention.
  • FIG. 8 is a schematic structural diagram of a device for obtaining a skull correction solution according to an embodiment of the present invention
  • the present invention provides a method for constructing a skull correction scheme generation system, characterized in that the method comprises the following steps:
  • S200 Obtain the skull correction scheme of the patient, and the skull correction scheme includes a force application point, a force application direction and a force application value;
  • the skull correction scheme may be information input by humans, that is, judgments made by medical personnel based on their own experience; or may be calculated by the skull correction scheme generation system according to the correlation formula and the first skull asymmetry information.
  • S400 obtain the skull position offset information of the patient according to the comparison of the first skull position information and the second skull position information;
  • position offset information before and after correction is obtained by comparing the first skull position information with the second skull position information, where the position offset information may include distance, azimuth, and coordinate difference .
  • S500 Using a neural network, construct an analyzer for analyzing the skull correction scheme and the skull displacement law, and use the force application point, the force application direction, the force application value, and the skull position offset information as the Input data to a neural network to train the analyzer to output an association formula.
  • the present invention constructs a skull correction scheme generation system by acquiring the first bone asymmetry information of the patient before correction, the second bone asymmetry information of the patient after correction and the correction scheme, and using them as training data, which can generate a skull correction scheme according to multiple
  • the correlation formula between the correction orientation and the bone displacement is obtained by analyzing the patient data, so that ordinary medical staff can obtain a standard correction plan according to the correlation formula and the information of the target patient, and then it is easy to formulate specific treatment methods according to the standard correction plan. It reduces the professional requirements for medical staff, and on the other hand, establishes standards to effectively simulate the correction results.
  • the specific steps of "obtaining skull asymmetry information" are as follows:
  • S2 determine the front reference plane passing through the front reference line 10 and perpendicular to the plane where the initial side view is located according to the front reference line 10;
  • the human skull information is obtained by scanning medical equipment, and then loaded into a computer to obtain a three-dimensional model.
  • the methods of obtaining the three-dimensional model of the skull include spiral CT, nuclear magnetic resonance, etc.
  • the model determines an initial side view, and establishes a front-view reference plane through the forehead front-most point and the lower chin front-point point on the initial side view, and uses the front-view reference plane as the initial reference for establishing the six-view reference plane of the skull .
  • S3 determine the front view of the three-dimensional model of the skull according to the front-view reference plane, and determine the central axis vertical line 104 according to the anatomical landmarks of the front view;
  • S4 determine the y-axis in the three-dimensional coordinate system, wherein the y-axis and the central axis vertical line 104 are located on the same line;
  • S5 determine the origin of coordinates, wherein the origin of coordinates is any point on the vertical line 104 of the central axis;
  • S6 determine the z-axis in the three-dimensional coordinate system, wherein the z-axis passes through the coordinate origin and is perpendicular to the front-view reference plane;
  • S7 determine the x-axis in the three-dimensional coordinate system, and establish a three-dimensional coordinate system, wherein the x-axis passes through the coordinate origin and is respectively perpendicular to the y-axis and the z-axis;
  • the standard of the skull is established, and the three-dimensional coordinates of any point on the skull relative to it are obtained based on the three-dimensional coordinate system.
  • S8 determine the first anatomical landmark point and the second anatomical landmark point, the first anatomical landmark point and the second anatomical landmark point are the left anatomical landmark point and the right anatomical landmark point corresponding to each other in anatomy;
  • S10 Acquire the second three-dimensional coordinates of the second anatomical landmark with respect to the three-dimensional coordinate system
  • S11 Acquire first asymmetry information of the skull according to the first three-dimensional coordinates and the second three-dimensional coordinates; wherein, the first asymmetry information includes the first three-dimensional coordinates and the second three-dimensional coordinates absolute value difference.
  • the first anatomical landmark point and the second anatomical landmark point are determined first, and the first anatomical landmark point and the second anatomical landmark point are the left anatomical landmark point and the right anatomical landmark point corresponding to each other in anatomy
  • Anatomical landmarks obtain the corresponding three-dimensional coordinates of the two, and obtain them by comparing the two three-dimensional coordinates; for example, the obtained first three-dimensional coordinates are (X1, Y1, Z1), and the second three-dimensional coordinates obtained are (X2 , Y2, Z2), the absolute value difference is (
  • the S3 includes:
  • the nasal base point 101 , the left anatomical landmark 102 and the right anatomical landmark 103 are determined according to the front view, wherein the left anatomical landmark 102 and the right anatomical landmark 103 correspond to left and right in anatomy.
  • a reference line segment passing through the left anatomical landmark 102 and the right anatomical landmark 103 is determined.
  • a central axis vertical line 104 is determined, and the central axis vertical line 104 passes through the midpoint of the reference line segment and the nose base point 101 .
  • the nasal base point (the nasal base point refers to the lowest end point of the nasal bone toward the lips in anatomy) is selected as the first reference point of the central axis vertical line 104, and the left side anatomy corresponding to each other in human anatomy is selected.
  • the second reference point is obtained from the landmark point and the right anatomical landmark point, and the vertical line 104 of the central axis is established by using the principle of determining a straight line with two points.
  • the left anatomical landmark 102 is the infraorbital foramen on the right side of the maxilla
  • the right anatomical landmark 103 is the infraorbital foramen on the left side of the maxilla.
  • the left anatomical landmark 102 and the right anatomical landmark are 103 Symmetrical left and right anatomical landmarks such as the uppermost edge point of the left and right supraorbital foramen, the distance point of the left and right orbital medial walls, the intersection of the frontal bone and the zygomatic bone and the left and right lateral orbital walls can also be selected.
  • the coordinate origin is the nose base point.
  • the method further includes:
  • the view with the largest projection area of the nose of the three-dimensional skull model is acquired as the initial side view of the three-dimensional skull model.
  • the view with the largest projection area on the side of the nose is used as the initial side view of the three-dimensional skull model, and the view with the most prominent point of the nose can also be used as the initial side view of the three-dimensional skull model. This serves as the original datum from which the foresight datum line is determined.
  • a method for establishing a six-view datum plane of the skull is also included, and after S3, the method includes:
  • S12 Determine the left-view critical line 20 and the right-view critical line 30 on the front view, wherein the left-view critical line 20 is parallel to the central axis vertical line 104 and the left-view critical line 20 is parallel to the The leftmost side of the skull intersects, the right-view critical line 30 is parallel to the mid-axis vertical line 104 and the right-view critical line 30 intersects the rightmost side of the skull;
  • S13 Determine the left-view critical line 20 and the right-view critical line 30 that are parallel to the central axis vertical line on the front view according to the central axis vertical line 104, and determine according to the left-view critical line 20 to pass through the The left-view critical line 20 and the left-view reference plane perpendicular to the front-view reference plane are determined according to the right-view critical line 30, which passes through the right-view critical line 30 and is perpendicular to the front-view reference plane. datum plane;
  • S14 Determine the top-view critical line 40 and the bottom-view critical line 50 on the front view, wherein the top-view critical line 40 and the central axis vertical line 104 are perpendicular to each other, and the top-view critical line 40 and all The uppermost side of the skull intersects, the lower-looking critical line 50 and the mid-axis vertical line 104 are perpendicular to each other, and the lower-looking critical line 50 intersects the lowermost side of the skull.
  • S15 Determine a top-view reference plane passing through the top-view critical line 40 and perpendicular to the front-view reference plane according to the top-view critical line 40, and determine to pass the bottom-view critical line according to the bottom-view critical line 50 50 and the downward reference plane perpendicular to the front reference plane.
  • the left-view critical line 20 and the right-view critical line 30 parallel to the vertical line 104 of the central axis are obtained as a reference, so as to generate a left-view reference close to the three-dimensional model of the skull plane and the right-view reference plane, and then the three-dimensional model of the skull is limited between the left-view reference plane and the right-view reference plane; further, the central axis vertical line 104 is used as a reference to obtain and the left-view critical plane Line 20 is perpendicular to the upper-view critical line 40 and the lower-view critical line 50 to generate upper and lower datum planes close to the 3D model of the skull, thereby constraining the 3D model of the skull to the upper datum between the surface and the lower-looking reference plane.
  • the critical line mentioned in the present invention refers to the boundary line that divides the three-dimensional model and other regions. One side of the critical line is the three-dimensional model, and the other side is other regions. Models have intersections
  • S16 Determine a rear-view reference plane that is parallel to the front-view reference plane and is respectively perpendicular to the left-view reference plane and the top-view reference plane.
  • the front-view reference line and the front-view reference plane are determined by the forehead forehead and the lower chin in the initial side view, and then the vertical line of the central axis of the skull is determined by using the front-view reference plane.
  • Establish left-view datum and right-view datum for the datum so as to determine the six-view datum that wraps the skull
  • the standard coordinates of the human body are established, and then the relative coordinates of all bones are derived to realize the spine.
  • Geometric modeling and mathematical modeling of bones such as pelvis, lower limbs, upper limbs, sternum, clavicle, ribs, etc., and through the data conversion based on the model and relative coordinates, the measurement and evaluation of the bones can be standardized, scientific, and intelligent. Dataization lays a scientific foundation for the deduction of the coordinates of biomechanics between each bone.
  • a standard coordinate system of the human body is established by modeling the human skeleton, and any one or more of the brain, blood vessels, nerves, muscles and internal organs are constructed on the basis of such a coordinate system. Therefore, through the combination of the above modeling and the standard coordinate system and the relative coordinate system, the forward algorithm and the reverse algorithm are derived, so that the precise positioning of the bones and the brain, nerves, blood vessels, muscles, internal organs, etc. can be achieved.
  • the position-distance relationship allows these human tissues to form a complete global scientific measurement system, and realizes the digital twin under the fusion of the organizational structure of the human digital human.
  • the positional distance relationship between the bones and the brain, nerves, blood vessels, muscles, internal organs, etc., as well as the subsequent medical plans and medical effects for the human body can be stored in the cloud server as an analysis data source, and based on big data, each human body can be analyzed.
  • the corresponding analysis data source is analyzed to determine and obtain the relationship function of the relative position distance relationship, the medical plan and the corresponding medical effect, and medical diagnosis and analysis are performed based on the relationship function.
  • the S16 further includes:
  • the three-dimensional skull model is limited to a six-view reference plane by setting a rear-view reference plane that has only one intersection point with the three-dimensional skull model, so as to establish a more accurate skull standard.
  • described method also comprises:
  • the front view of the three-dimensional skull model is obtained according to the front view reference plane, and the first sagittal tangent and the second sagittal tangent symmetrical about the mid-axis vertical line 104 are obtained from the front view, and the The first sagittal tangent and the second sagittal tangent are parallel to the mid-axis perpendicular 104 .
  • a first sagittal plane slice passing through the first sagittal tangent and parallel to the left reference plane is acquired.
  • a second sagittal plane slice passing through the second sagittal tangent and parallel to the left reference plane is acquired.
  • Second asymmetry information of the three-dimensional skull model is determined from the first sagittal plane slice and the second sagittal plane slice.
  • two first sagittal plane tangents and second sagittal plane tangents that are theoretically symmetrical on the three-dimensional skull model are determined through the front view and the mid-axis vertical line 104 , and the corresponding skull tangents are obtained by obtaining
  • the deviation of the position data of the bones can be used to judge the asymmetric information of the human body, and then the problem parts of the human body can be judged by the asymmetric information, and then the corresponding problem parts can be deeply diagnosed and analyzed.
  • At least one item of the corresponding brain, nerves, blood vessels, muscles, ligaments and internal organs is loaded to establish a The digital twin model corresponding to the actual human body, so as to obtain the relative positional relationship between the bones and the brain, nerves, blood vessels, muscles, ligaments or internal organs through the first sagittal plane slice and the second sagittal plane slice, and then obtain more Accurate human body asymmetry information, and its influence on human organs or tissues can be judged through the relative positional relationship.
  • An embodiment of the present invention, after described S15, described method also comprises:
  • a horizontal slice of the three-dimensional model of the skull corresponding to the horizontal slice is obtained according to the horizontal slice.
  • the upper and lower limits of the skull are limited by the upper and lower datum planes, and equally spaced horizontal slices are divided to generate equidistant horizontal plane slices.
  • the number of the horizontal plane slices obtained by cutting is relatively small, that is, the effective data obtained from the horizontal plane slices is relatively large.
  • described method also comprises:
  • N equally spaced coronal slices are divided, wherein the coronal slices are parallel to the front reference plane, and all the coronal slices are located between the front reference plane and the rear reference plane.
  • a coronal slice of the three-dimensional skull model corresponding to the coronal slice is obtained according to the coronal slice.
  • the anterior and posterior limits of the skull are limited by the front-view reference plane and the rear-view reference plane, and equally spaced horizontal slices are divided to generate equally-spaced coronal plane slices.
  • the front-view reference plane has been established
  • the number of the horizontal plane slices obtained by cutting is relatively small, that is, the effective data obtained from the coronal plane slice is relatively large.
  • the present invention also provides a skull correction scheme generation system, which is constructed by the above construction method.
  • the present invention provides a method for obtaining a skull correction scheme, which is applied to the above-mentioned skull correction scheme generation system, and the method includes the following steps:
  • S30 Calculate a skull correction scheme by combining the target skull asymmetry information and an associated formula by the analyzer, wherein the skull correction scheme includes a force application point, a force application direction, and a force application value.
  • the present invention also provides a device for obtaining a skull correction solution, the device comprising:
  • the information acquisition module is used to acquire the target skull asymmetry information to be corrected
  • the data processing module stores a computer program, and the computer program is used to execute the steps in the acquisition method.
  • the scheme output module is used for outputting the scheme result generated by the data processing module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Theoretical Computer Science (AREA)
  • Public Health (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Primary Health Care (AREA)
  • Robotics (AREA)
  • Epidemiology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Computer Graphics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

一种颅骨矫正方案生成系统及构建方法和颅骨矫正方案的获取方法及获取装置(1000),构建方法包括以下步骤:获取患者的矫正前的第一颅骨不对称信息(S100);获取患者的颅骨矫正方案,颅骨矫正方案包括施力点、施力方向以及施力值(S200);获取患者的矫正后的第二颅骨不对称信息(S300);根据第一颅骨不对称信息和第二颅骨不对称信息对比得到患者的颅骨位置偏移信息(S400);使用神经网络,构建用于分析颅骨矫正方案与颅骨位移规律的分析器,并将施力点、施力方向、施力值以及颅骨位置偏移信息作为神经网络的输入数据,以对分析器进行训练进而输出关联公式(S500)。

Description

颅骨矫正方案生成系统、构建方法、获取方法及装置 技术领域
本发明涉及一种颅骨矫正方案生成系统、构建方法、获取方法及装置。
背景技术
随着生物医学和人体生物力学的发展,通过建立人体三维模型来对人体进行分析和研究,进而探索人体组织器官相对位置关系对人体健康的影响。
正骨,是指中医用推、拽、按、捺等手法治疗骨折、小关节错位、骨错缝、脱臼等疾病,正骨对象主要是外力作用所致的骨、关节和软组织的损伤,但也包括同类原因引致的体内脏器损伤。而目前的正骨诊断缺少具体的医学数据支持,缺少理论依据,对于采用什么方法进行正骨能达到什么效果是未知的,导致对于医疗人员的经验和操作水平要求较高,因此需要一种颅骨矫正方案生成系统、构建方法、获取方法及装置。
发明内容
为解决背景技术中所提及的问题,本发明提供了一种颅骨矫正方案生成系统、构建方法、获取方法及装置。
本发明首先提供了一种颅骨矫正方案生成系统的构建方法,其特征在于,所述方法包括以下步骤:
获取患者的矫正前的第一颅骨不对称信息;
获取该患者的颅骨矫正方案,所述颅骨矫正方案包括施力点、施力方向以及施力值;
获取该患者的矫正后的第二颅骨不对称信息;
根据所述第一颅骨位置信息和所述第二颅骨位置信息对比得到 该患者的颅骨位置偏移信息;
使用神经网络,构建用于分析颅骨矫正方案与颅骨位移规律的分析器,并将所述施力点、所述施力方向、所述施力值以及所述颅骨位置偏移信息作为所述神经网络的输入数据,以对所述分析器进行训练进而输出关联公式。
进一步的,所述“获取颅骨不对称信息”具体包括:
根据颅骨三维模型的初始侧视图中的额头最前沿点和下颏最前沿点,连接所述额头最前沿点和所述下颏最前沿点确定前视基准线;
根据所述前视基准线确定经过所述前视基准线且垂直于所述初始侧视图所在平面的前视基准面;
根据所述前视基准面确定所述颅骨三维模型的前视图,根据所述前视图的解剖标志点确定中轴垂线;
确定三维坐标系中的y轴,其中所述y轴与所述中轴垂线位于同一直线上;
确定坐标原点,其中所述坐标原点为所述中轴垂线上的任一点;
确定三维坐标系中的z轴,其中所述z轴经过所述坐标原点且垂直于所述前视基准面;
确定三维坐标系中的x轴,建立三维坐标系,其中所述x轴经过所述坐标原点且分别垂直于所述y轴和z轴;
确定第一解剖标志点和第二解剖标志点,所述第一解剖标志点与所述第二解剖标志点为解剖学中互相对应的左侧解剖标志点和右侧解剖标志点;
获取所述第一解剖标志点关于所述三维坐标系的第一三维坐标;
获取所述第二解剖标志点关于所述三维坐标系的第二三维坐标;
根据所述第一三维坐标与所述第二三维坐标获取所述颅骨的第一不对称信息;其中,所述第一不对称信息包括所述第一三维坐标与所述第二三维坐标的绝对值差。
进一步的,所述“根据所述前视图的解剖标志点确定中轴垂线”,具体包括:
根据所述前视图确定鼻基点、左侧解剖标志点和右侧解剖标志点,其中,左侧解剖标志点和右侧解剖标志点在解剖学中左右对应;
确定经过所述左侧解剖标志点与所述右侧解剖标志点的基准线段;
确定中轴垂线,所述中轴垂线经过所述基准线段的中点和所述鼻基点。
进一步的,所述坐标原点为鼻基点。
进一步的,获取所述颅骨三维模型鼻部投影面积最大的视图作为所述颅骨三维模型的初始侧视图。
进一步的,还包括颅骨六视基准面的建立方法,所述“根据所述前视基准面确定所述颅骨三维模型的前视图,根据所述前视图的解剖标志点确定中轴垂线”之后包括:
确定所述前视图上的左视临界线和右视临界线,其中,所述左视临界线与所述中轴垂线平行并且所述左视临界线与所述颅骨最左侧相交,所述右视临界线与所述中轴垂线平行并且所述右视临界线所述颅骨最右侧相交;
根据所述左视临界线确定经过所述左视临界线且与所述前视基准面垂直的左视基准面,根据所述右视临界线确定经过所述右视临界线且与所述前视基准面垂直的右视基准面;
确定所述前视图上的上视临界线和下视临界线,其中,所述上视临界线与所述中轴垂线互相垂直并且所述上视临界线与所述颅骨最上侧相交,所述下视临界线与所述中轴垂线互相垂直并且所述下视临界线与所述颅骨最下侧相交;
根据所述上视临界线确定经过所述上视临界线且与所述前视基准面垂直的上视基准面,根据所述下视临界线确定经过所述下视临界 线且与所述前视基准面垂直的下视基准面;
确定与所述前视基准面平行且分别与所述左视基准面和所述上视基准面垂直的后视基准面,得到所述颅骨六视基准面。
本发明还提供了一种颅骨矫正方案生成系统,所述颅骨矫正方案生成系统是由上述的构建方法构建得到的。
本发明还提供了一种颅骨矫正方案的获取方法,应用于上述的颅骨矫正方案生成系统,所述方法包括以下步骤:
获取待矫正的目标颅骨不对称信息;
将所述目标颅骨不对称信息作为所述颅骨矫正方案生成系统的分析器的输入数据;
通过所述分析器结合所述目标颅骨不对称信息和关联公式计算得出颅骨矫正方案,其中所述颅骨矫正方案包括施力点、施力方向以及施力值。
本发明还提供了一种颅骨矫正方案的获取装置,所述装置包括:
信息获取模块,用于获取待矫正的目标颅骨不对称信息;
数据处理模块,保存有计算机程序,所述计算机程序用于执行所述获取方法中的步骤。
进一步的,还包括:
方案输出模块,用于输出所述数据处理模块生成的方案结果。
本发明通过获取患者矫正前的第一骨骼不对称信息、患者矫正后的第二骨骼不对称信息以及矫正方案,并以此作为训练数据,构建了一种颅骨矫正方案生成系统,可以根据多个患者数据分析得出矫正方位与骨骼位移的关联公式,以便于普通的医护人员可以根据该关联公式以及目标患者的信息得到标准矫正方案,进而易于根据该标准矫正方案制定具体的治疗方法,一方面降低了对医护人员的专业性要求,另一方面也通过建立标准以有效模拟矫正结果。
应当理解的是,以上的一般描述和后面的细节描述仅仅是示例性 和解释性的,并不能限制本公开。
附图说明
图1是本发明颅骨矫正方案生成系统的构建方法的一实施例流程示意图。
图2是图1实施例中的颅骨不对称信息的获取方法的一实施例流程示意图。
图3是本发明颅骨前视基准线的确定方法的一实施例演示图。
图4是本发明颅骨中轴垂线的确定方法的一实施例演示图。
图5是图4中中轴垂线的确定方法的另一示意图。
图6是本发明颅骨部分基准线的一实施例演示图。
图7是本发明提供的颅骨矫正方案的获取方法的一实施例流程示意图。
图8是本发明提供的一实施例的颅骨矫正方案的获取装置的结构示意图
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有 术语(包括技术术语和科学术语),具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
请参阅图1,本发明提供了一种颅骨矫正方案生成系统的构建方法,其特征在于,所述方法包括以下步骤:
S100:获取患者的矫正前的第一颅骨不对称信息;
S200:获取该患者的颅骨矫正方案,所述颅骨矫正方案包括施力点、施力方向以及施力值;
本实施例中,颅骨矫正方案可以是人为输入的信息,即医疗人员依据自身经验做出的判断;也可以是颅骨矫正方案生成系统依据关联公式和所述第一颅骨不对称信息计算得到的。
S300:获取该患者的矫正后的第二颅骨不对称信息;
S400:根据所述第一颅骨位置信息和所述第二颅骨位置信息对比得到该患者的颅骨位置偏移信息;
本实施例中,通过对所述第一颅骨位置信息和所述第二颅骨位置信息进行对比,以得到矫正前后的位置偏移信息,所述位置偏移信息可以包括距离、方位角以及坐标差。
S500:使用神经网络,构建用于分析颅骨矫正方案与颅骨位移规律的分析器,并将所述施力点、所述施力方向、所述施力值以及所述颅骨位置偏移信息作为所述神经网络的输入数据,以对所述分析器进行训练进而输出关联公式。
本发明通过获取患者矫正前的第一骨骼不对称信息、患者矫正后的第二骨骼不对称信息以及矫正方案,并以此作为训练数据,构建了一种颅骨矫正方案生成系统,可以根据多个患者数据分析得出矫正方位与骨骼位移的关联公式,以便于普通的医护人员可以根据该关联公 式以及目标患者的信息得到标准矫正方案,进而易于根据该标准矫正方案制定具体的治疗方法,一方面降低了对医护人员的专业性要求,另一方面也通过建立标准以有效模拟矫正结果。
本发明的一种实施例中,所述“获取颅骨不对称信息”的具体步骤如下:
S1:根据颅骨三维模型的初始侧视图中的额头最前沿点和下颏最前沿点,连接所述额头最前沿点和所述下颏最前沿点确定前视基准线10.
S2:根据所述前视基准线10确定经过所述前视基准线10且垂直于所述初始侧视图所在平面的前视基准面;
如图3所示,本实施例中,通过医疗器械扫描获取人体颅骨信息,进而载入到电脑以获取三维模型,获取颅骨三维模型的方式包括螺旋CT、核磁共振等,利用载入后的三维模型确定初始侧视图,通过所述初始侧视图上的额头最前沿点和所述下颏最前沿点以建立前视基准面,将所述前视基准面作为建立颅骨六视基准面的初始基准。
S3:根据所述前视基准面确定所述颅骨三维模型的前视图,根据所述前视图的解剖标志点确定中轴垂线104;
S4:确定三维坐标系中的y轴,其中所述y轴与所述中轴垂线104位于同一直线上;
S5:确定坐标原点,其中所述坐标原点为所述中轴垂线104上的任一点;
S6:确定三维坐标系中的z轴,其中所述z轴经过所述坐标原点且垂直于所述前视基准面;
S7:确定三维坐标系中的x轴,建立三维坐标系,其中所述x轴经过所述坐标原点且分别垂直于所述y轴和z轴;
本实施例中通过获取中轴垂线,并以中轴垂线104为基准建立三维坐标系,从而建立颅骨的标准,并以该三维坐标系为基础获取颅骨 上任一点相对其的三维坐标。
S8:确定第一解剖标志点和第二解剖标志点,所述第一解剖标志点与所述第二解剖标志点为解剖学中互相对应的左侧解剖标志点和右侧解剖标志点;
S9:获取所述第一解剖标志点关于所述三维坐标系的第一三维坐标;
S10:获取所述第二解剖标志点关于所述三维坐标系的第二三维坐标;
S11:根据所述第一三维坐标与所述第二三维坐标获取所述颅骨的第一不对称信息;其中,所述第一不对称信息包括所述第一三维坐标与所述第二三维坐标的绝对值差。
本实施例中,先确定第一解剖标志点和第二解剖标志点,且所述第一解剖标志点和所述第二解剖标志点为解剖学中互相对应的左侧解剖标志点和右侧解剖标志点,获取两者分别对应的三维坐标,并通过对两个三维坐标的对比获取;例如,获取的第一三维坐标为(X1,Y1,Z1),获取的第二三维坐标为(X2,Y2,Z2),所述绝对值差为(|X2-X1|,|Y2-Y1|,|Z2-Z1|),结合人体的其他数据报告以及该不对称信息,以便于医护人员或者研究人员分析颅骨的病变以及病变原因。
本发明的一种实施例,如图4-5所示,所述S3包括:
根据所述前视图确定鼻基点101、左侧解剖标志点102和右侧解剖标志点103,其中,左侧解剖标志点102和右侧解剖标志点103在解剖学中左右对应。
确定经过所述左侧解剖标志点102与所述右侧解剖标志点103的基准线段。
确定中轴垂线104,所述中轴垂线104经过所述基准线段的中点和所述鼻基点101。
本实施例中,选择鼻基点(鼻基点在解剖学中指的是鼻骨朝嘴唇方向的最底端点)作为中轴垂线104的第一基准点,并通过人体解剖学中互相对应的左侧解剖标志点和右侧解剖标志点来获取第二基准点,利用两点确定一直线的原理建立中轴垂线104。左侧解剖标志点102为上颌骨右侧的眶下孔,右侧解剖标志点103为上颌骨左侧的眶下孔,当然,所述左侧解剖标志点102和所述右侧解剖标志点103也可以选择左右眶上孔最上缘点、左右眼眶内侧壁距离点、额骨与颧骨交汇左右眼眶外侧壁等对称的左右侧解剖标志点。
在本实施例中,所述坐标原点为鼻基点。
本发明的另一实施例中,所述方法还包括:
获取所述颅骨三维模型鼻部投影面积最大的视图作为为所述颅骨三维模型的初始侧视图。
本实施例中,通过寻找鼻部侧面投影面积最大的视图以作为所述颅骨三维模型的初始侧视图,也可以通过寻找鼻尖点最突出的视图作为所述颅骨三维模型的初始侧视图,并以此作为确定前视基准线的原始基准面。
本发明提供的另一实施例中,还包括颅骨六视基准面的建立方法,所述S3之后包括:
S12:确定所述前视图上的左视临界线20和右视临界线30,其中,所述左视临界线20与所述中轴垂线104平行并且所述左视临界线20与所述颅骨最左侧相交,所述右视临界线30与所述中轴垂线104平行并且所述右视临界线30所述颅骨最右侧相交;
S13:根据所述中轴垂线104确定在所述前视图上与所述中轴垂线互相平行的左视临界线20和右视临界线30,根据所述左视临界线20确定经过所述左视临界线20且与所述前视基准面垂直的左视基准面,根据所述右视临界线30确定经过所述右视临界线30且与所述前视基准面垂直的右视基准面;
S14:确定所述前视图上的上视临界线40和下视临界线50,其中,所述上视临界线40与所述中轴垂线104互相垂直并且所述上视临界线40与所述颅骨最上侧相交,所述下视临界线50与所述中轴垂线104互相垂直并且所述下视临界线50与所述颅骨最下侧相交。
S15:根据所述上视临界线40确定经过所述上视临界线40且与所述前视基准面垂直的上视基准面,根据所述下视临界线50确定经过所述下视临界线50且与所述前视基准面垂直的下视基准面。
如图6所示,本实施例中,通过所述中轴垂线104为基准获取与其平行的左视临界线20和右视临界线30,以生成紧贴所述颅骨三维模型的左视基准面和右视基准面,进而将所述颅骨三维模型限制于所述左视基准面和所述右视基准面之间;进一步通过所述中轴垂线104为基准获取与所述左视临界线20垂直的上视临界线40和下视临界线50,以生成紧贴所述颅骨三维模型的上视基准面和下视基准面,进而将所述颅骨三维模型限制于所述上视基准面和所述下视基准面之间。应当说明的是,本发明中提及的临界线是指划分三维模型与其他区域的边界线,所述临界线的一侧为三维模型,另一侧为其他区域,且所述临界线与三维模型存在交点。
S16:确定与所述前视基准面平行且分别与所述左视基准面和所述上视基准面垂直的后视基准面。
本发明通过初始侧视图中的额头最前沿点和下颏最前沿点确定前视基准线以及前视基准面,进而利用前视基准面确定颅骨中轴垂线,并通过以颅骨中轴垂线为基准建立左视基准面和右视基准面,从而确定包裹颅骨的六视基准面确定颅骨冠状面、矢状面和水平面标准,并且通过确定标准以助于依据宇称守恒定律进行数据对比分析,从而实现依据不同人体的颅骨建立对应的标准,具备较强适应性;并且可以依据建立的六视基准面来对不同获取方式获得的同一人体的颅骨数据信息进行对比,以结合多种模型获取方式的优点。
本发明的另一实施例,通过获取人体整体三维模型,在确定所述颅骨三维模型的六视基准面的前提下,建立了人体的标准坐标,进而衍生到建立所有骨骼的相对坐标,实现脊柱、骨盆、下肢、上肢、胸骨、锁骨、肋骨等骨骼的几何建模和数学建模,并通过模型以及相对坐标为基础的数据换算,实现骨骼的测量评估结构换算标准化、科学化,智能化,数据化,为生物力学在每一块骨骼之间的坐标的推演打下科学的基础。
进一步的,本发明的另一实施例通过人体骨骼的建模建立人体的标准坐标系,在这样的坐标系基础上再进行大脑、血管、神经、肌肉和内脏中任一项或者多项的建模,从而通过以上建模和标准坐标系与相对坐标系之间的结合,衍生出来正向算法与逆向算法,这样就能够实现精准定位骨骼与大脑、神经、血管、肌肉、内脏等之间的位置距离关系,让这些人体组织形成一个完整的全局科学测量体系,实现人类数字人的组织结构融合下的数字孪生。
更进一步的,骨骼与大脑、神经、血管、肌肉、内脏等之间的位置距离关系以及后续针对该人体的医疗方案和医疗效果可以作为分析数据源存储进入云服务器,基于大数据对每个人体对应的所述分析数据源进行分析,确定并获取相对位置距离关系、医疗方案以及相应的医疗效果的关系函数,以通过所述关系函数为依据进行医疗诊断和分析。
本发明的一种实施例,所述S16还包括:
确定与所述前视基准面平行且分别与所述左视基准面和所述上视基准面垂直的后视基准面,所述后视基准面与所述颅骨三维模型有且仅有一个交点。
本实施例中,通过设置与所述颅骨三维模型有且仅有一个交点的后视基准面,从而将所述颅骨三维模型限制于六视基准面中,以建立更为精确的颅骨标准。
进一步的,本发明的一种实施例,在所述S13之后,所述方法还包括:
根据所述前视基准面获取所述颅骨三维模型的前视图,并通过所述前视图上获取关于所述中轴垂线104对称的第一矢状切线和第二矢状切线,且所述第一矢状切线和所述第二矢状切线平行于所述中轴垂线104。
获取经过所述第一矢状切线且平行于所述左视基准面的第一矢状面切片。
获取经过所述第二矢状切线且平行于所述左视基准面的第二矢状面切片。
根据所述第一矢状面切片和所述第二矢状面切片确定所述颅骨三维模型的第二不对称信息。
本实施例中,通过所述前视图和所述中轴垂线104确定所述颅骨三维模型上理论对称的两个第一矢状面切线和第二矢状面切线,并通过获取对应的颅骨骨骼的位置数据的偏差来判断人体的不对称信息,进而通过所述不对称信息来判断人体的问题部位,再进而对相应的问题部位做深层次的诊断和分析。
更进一步的,本发明的另一实施例中,通过以所述颅骨建立的标准坐标系为基础,将对应的大脑、神经、血管、肌肉、韧带和内脏中的至少一项载入,建立与实际人体对应的数字孪生模型,从而通过所述第一矢状面切片和所述第二矢状面切片来获取骨骼与大脑、神经、血管、肌肉、韧带或内脏的相对位置关系,进而获取较为精确的人体不对称信息,以及通过所述相对位置关系来判断其对人体器官或者组织的影响。
本发明的一种实施例,在所述S15之后,所述方法还包括:
划分N个等间距的水平切面,其中所述水平切面与所述上视基准面平行,且所有所述水平切面处于所述上视基准面与所述下视基准 面之间。
根据所述水平切面获取与其对应的所述颅骨三维模型的水平面切片。
本实施例中,通过所述上视基准面和所述下视基准面来限制颅骨的上下极限,划分等间距的水平切面进而生成等间距的水平面切片,在已经建立所述上视基准面和所述下视基准面以紧贴所述颅骨的基础上,切割获取的所述水平面切片数量相对较少,也即是所述水平面切片上获取的有效数据相对较多。
进一步的,本发明的一种实施例,在所述S16之后,所述方法还包括:
划分N个等间距的冠状切面,其中所述冠状切面与所述前视基准面平行,且所有所述冠状切面处于所述前视基准面与所述后视基准面之间。
根据所述冠状切面获取与其对应的所述颅骨三维模型的冠状面切片。
本实施例中,通过所述前视基准面与所述后视基准面来限制颅骨的前后极限,划分等间距的水平切面进而生成等间距的冠状面切片,在已经建立所述前视基准面和所述后视基准面以紧贴所述颅骨的基础上,切割获取的所述水平面切片数量相对较少,也即是所述冠状面切片上获取的有效数据相对较多。
本发明还提供了一种颅骨矫正方案生成系统,所述颅骨矫正方案生成系统是由上述的构建方法构建得到的。
请参阅图7,本发明提供了一种颅骨矫正方案的获取方法,应用于上述的颅骨矫正方案生成系统,所述方法包括以下步骤:
S10:获取待矫正的目标颅骨不对称信息;
S20:将所述目标颅骨不对称信息作为所述颅骨矫正方案生成系统的分析器的输入数据;
S30:通过所述分析器结合所述目标颅骨不对称信息和关联公式计算得出颅骨矫正方案,其中所述颅骨矫正方案包括施力点、施力方向以及施力值。
请参阅图8,本发明还提供了一种颅骨矫正方案的获取装置,所述装置包括:
信息获取模块,用于获取待矫正的目标颅骨不对称信息;
数据处理模块,保存有计算机程序,所述计算机程序用于执行所述获取方法中的步骤。
方案输出模块,用于输出所述数据处理模块生成的方案结果。
本申请的说明书和权利要求书中,词语“包括/包含”和词语“具有/包括”及其变形,用于指定所陈述的特征、数值、步骤或部件的存在,但不排除存在或添加一个或多个其他特征、数值、步骤、部件或它们的组合。
本发明的一些特征,为阐述清晰,分别在不同的实施例中描述,然而,这些特征也可以结合于单一实施例中描述。相反,本发明的一些特征,为简要起见,仅在单一实施例中描述,然而,这些特征也可以单独或以任何合适的组合于不同的实施例中描述。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包括在本发明的保护范围之内。

Claims (10)

  1. 一种颅骨矫正方案生成系统的构建方法,其特征在于,所述方法包括以下步骤:
    获取患者的矫正前的第一颅骨不对称信息;
    获取该患者的颅骨矫正方案,所述颅骨矫正方案包括施力点、施力方向以及施力值;
    获取该患者的矫正后的第二颅骨不对称信息;
    根据所述第一颅骨位置信息和所述第二颅骨位置信息对比得到该患者的颅骨位置偏移信息;
    使用神经网络,构建用于分析颅骨矫正方案与颅骨位移规律的分析器,并将所述施力点、所述施力方向、所述施力值以及所述颅骨位置偏移信息作为所述神经网络的输入数据,以对所述分析器进行训练进而输出关联公式。
  2. 根据权利要求1所述的构建方法,其特征在于,所述“获取颅骨不对称信息”具体包括:
    根据颅骨三维模型的初始侧视图中的额头最前沿点和下颏最前沿点,连接所述额头最前沿点和所述下颏最前沿点确定前视基准线;
    根据所述前视基准线确定经过所述前视基准线且垂直于所述初始侧视图所在平面的前视基准面;
    根据所述前视基准面确定所述颅骨三维模型的前视图,根据所述前视图的解剖标志点确定中轴垂线;
    确定三维坐标系中的y轴,其中所述y轴与所述中轴垂线位于同一直线上;
    确定坐标原点,其中所述坐标原点为所述中轴垂线上的任一点;
    确定三维坐标系中的z轴,其中所述z轴经过所述坐标原点且垂直于所述前视基准面;
    确定三维坐标系中的x轴,建立三维坐标系,其中所述x轴经过所述坐标原点且分别垂直于所述y轴和z轴;
    确定第一解剖标志点和第二解剖标志点,所述第一解剖标志点与所述第二解剖标志点为解剖学中互相对应的左侧解剖标志点和右侧解剖标志点;
    获取所述第一解剖标志点关于所述三维坐标系的第一三维坐标;
    获取所述第二解剖标志点关于所述三维坐标系的第二三维坐标;
    根据所述第一三维坐标与所述第二三维坐标获取所述颅骨的第一不对称信息;其中,所述第一不对称信息包括所述第一三维坐标与所述第二三维坐标的绝对值差。
  3. 根据权利要求2所述的构建方法,其特征在于,所述“根据所述前视图的解剖标志点确定中轴垂线”,具体包括:
    根据所述前视图确定鼻基点、左侧解剖标志点和右侧解剖标志点,其中,左侧解剖标志点和右侧解剖标志点在解剖学中左右对应;
    确定经过所述左侧解剖标志点与所述右侧解剖标志点的基准线段;
    确定中轴垂线,所述中轴垂线经过所述基准线段的中点和所述鼻基点。
  4. 根据权利要求3所述的构建方法,其特征在于,所述坐标原点为鼻基点。
  5. 根据权利要求2所述的构建方法,其特征在于,获取所述颅骨三维模型鼻部投影面积最大的视图作为所述颅骨三维模型的初始侧视图。
  6. 根据权利要求2所述的构建方法,其特征在于,还包括颅骨六视基准面的建立方法,所述“根据所述前视基准面确定所述颅骨三维模型的前视图,根据所述前视图的解剖标志点确定中轴垂线”之后包括:
    确定所述前视图上的左视临界线和右视临界线,其中,所述左视临界线与所述中轴垂线平行并且所述左视临界线与所述颅骨最左侧 相交,所述右视临界线与所述中轴垂线平行并且所述右视临界线所述颅骨最右侧相交;
    根据所述左视临界线确定经过所述左视临界线且与所述前视基准面垂直的左视基准面,根据所述右视临界线确定经过所述右视临界线且与所述前视基准面垂直的右视基准面;
    确定所述前视图上的上视临界线和下视临界线,其中,所述上视临界线与所述中轴垂线互相垂直并且所述上视临界线与所述颅骨最上侧相交,所述下视临界线与所述中轴垂线互相垂直并且所述下视临界线与所述颅骨最下侧相交;
    根据所述上视临界线确定经过所述上视临界线且与所述前视基准面垂直的上视基准面,根据所述下视临界线确定经过所述下视临界线且与所述前视基准面垂直的下视基准面;
    确定与所述前视基准面平行且分别与所述左视基准面和所述上视基准面垂直的后视基准面,得到所述颅骨六视基准面。
  7. 一种颅骨矫正方案生成系统,其特征在于,所述颅骨矫正方案生成系统是由上述权利要求1-6中任一项所述的构建方法构建得到的。
  8. 一种颅骨矫正方案的获取方法,应用于如权利要求7所述的颅骨矫正方案生成系统,其特征在于,所述方法包括以下步骤:
    获取待矫正的目标颅骨不对称信息;
    将所述目标颅骨不对称信息作为所述颅骨矫正方案生成系统的分析器的输入数据;
    通过所述分析器结合所述目标颅骨不对称信息和关联公式计算得出颅骨矫正方案,其中所述颅骨矫正方案包括施力点、施力方向以及施力值。
  9. 一种颅骨矫正方案的获取装置,其特征在于,所述装置包括:
    信息获取模块,用于获取待矫正的目标颅骨不对称信息;
    数据处理模块,保存有计算机程序,所述计算机程序用于执行如权利要求8所述的获取方法中的步骤。
  10. 根据权利要求9所述的获取装置,其特征在于,还包括:
    方案输出模块,用于输出所述数据处理模块生成的方案结果。
PCT/CN2021/118034 2020-10-30 2021-09-13 颅骨矫正方案生成系统、构建方法、获取方法及装置 WO2022089051A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011191096.6 2020-10-30
CN202011191096.6A CN112288797B (zh) 2020-10-30 2020-10-30 颅骨矫正方案生成系统、构建方法、获取方法及装置

Publications (1)

Publication Number Publication Date
WO2022089051A1 true WO2022089051A1 (zh) 2022-05-05

Family

ID=74353317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118034 WO2022089051A1 (zh) 2020-10-30 2021-09-13 颅骨矫正方案生成系统、构建方法、获取方法及装置

Country Status (2)

Country Link
CN (1) CN112288797B (zh)
WO (1) WO2022089051A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112270743B (zh) * 2020-10-30 2021-10-15 李艳 颅骨六视基准面的确定方法、装置、存储介质及电子设备
CN112288797B (zh) * 2020-10-30 2021-11-30 李艳 颅骨矫正方案生成系统、构建方法、获取方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130251192A1 (en) * 2012-03-20 2013-09-26 Microsoft Corporation Estimated pose correction
CN110169782A (zh) * 2019-06-27 2019-08-27 北京大学第三医院(北京大学第三临床医学院) 一种颅面骨骼结构的头影测量方法
CN110223396A (zh) * 2019-06-19 2019-09-10 合肥工业大学 一种基于形态学的脊柱模拟矫正方法及装置
CN111063023A (zh) * 2019-12-02 2020-04-24 西南石油大学 基于三维卷积神经网络的颅骨缺损重建方法
CN111513718A (zh) * 2020-04-30 2020-08-11 赤峰学院附属医院 颅颌面状态的分析方法及装置、电子设备
CN111681311A (zh) * 2020-06-14 2020-09-18 北京大学口腔医学院 通过计算机辅助的稳定正颌手术术后颌骨位置的方法
CN112288797A (zh) * 2020-10-30 2021-01-29 李艳 颅骨矫正方案生成系统、构建方法、获取方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101488236B (zh) * 2008-08-18 2010-10-13 西北工业大学 漏斗胸矫形手术仿真方法
CN101886995B (zh) * 2010-06-09 2011-08-24 北京航空航天大学 一种骨生物力学测量装置
KR101439283B1 (ko) * 2012-08-08 2014-09-11 권순용 가상 의료시술방법/치과시술방법 및 이를 위한 시스템
CN103258349B (zh) * 2013-05-30 2015-09-30 西北大学 颅面复原用模型库及颅面复原方法
CN103310072B (zh) * 2013-06-28 2015-12-23 哈尔滨理工大学 基于力反馈的股骨生物力学有限元分析系统
CN104537708B (zh) * 2014-12-12 2017-05-17 北京师范大学 一种基于测地线的躺卧三维颅面模型的直立矫正方法
CN105139442A (zh) * 2015-07-23 2015-12-09 昆明医科大学第一附属医院 一种结合ct和mri二维图像建立人体膝关节三维仿真模型的方法
EP3552184A4 (en) * 2016-12-06 2020-06-24 National University of Singapore SKULL RECONSTRUCTION PROCESSES
KR101901646B1 (ko) * 2017-03-07 2018-10-01 주식회사 메가젠임플란트 3차원 하이브리드 영상 구축 프로그램을 이용한 악교정 시스템
CN109829915B (zh) * 2019-02-28 2023-05-02 南京医科大学 基于三维空间面型的正畸专用微笑美学评测方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130251192A1 (en) * 2012-03-20 2013-09-26 Microsoft Corporation Estimated pose correction
CN110223396A (zh) * 2019-06-19 2019-09-10 合肥工业大学 一种基于形态学的脊柱模拟矫正方法及装置
CN110169782A (zh) * 2019-06-27 2019-08-27 北京大学第三医院(北京大学第三临床医学院) 一种颅面骨骼结构的头影测量方法
CN111063023A (zh) * 2019-12-02 2020-04-24 西南石油大学 基于三维卷积神经网络的颅骨缺损重建方法
CN111513718A (zh) * 2020-04-30 2020-08-11 赤峰学院附属医院 颅颌面状态的分析方法及装置、电子设备
CN111681311A (zh) * 2020-06-14 2020-09-18 北京大学口腔医学院 通过计算机辅助的稳定正颌手术术后颌骨位置的方法
CN112288797A (zh) * 2020-10-30 2021-01-29 李艳 颅骨矫正方案生成系统、构建方法、获取方法及装置

Also Published As

Publication number Publication date
CN112288797A (zh) 2021-01-29
CN112288797B (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
CN112258638B (zh) 人体模型的建模方法、装置、存储介质及电子设备
WO2022089052A1 (zh) 颅骨矫正信息的获取方法、存储介质及电子设备
Yu et al. The indication and application of computer-assisted navigation in oral and maxillofacial surgery—Shanghai's experience based on 104 cases
CN112258492B (zh) 颅骨不对称信息的获取方法、存储介质及电子设备
Fisher et al. Three-dimensional computed tomographic analysis of the primary nasal deformity in 3-month-old infants with complete unilateral cleft lip and palate
KR20190049733A (ko) 컴퓨터 지원 악교정 수술 계획을 위한 시스템 및 방법
WO2022089051A1 (zh) 颅骨矫正方案生成系统、构建方法、获取方法及装置
CN112288725B (zh) 颅骨中轴垂线的确定方法、装置、存储介质及电子设备
CN112288858B (zh) 人体骨骼的建模方法、存储介质及电子设备
CN112270743B (zh) 颅骨六视基准面的确定方法、装置、存储介质及电子设备
CN109767841B (zh) 一种基于颅颌面三维形态数据库的相似模型检索方法及装置
WO2022089054A1 (zh) 颅骨模型的建立方法、装置、存储介质及电子设备
WO2022089050A1 (zh) 颅骨的切片方法、存储介质及电子设备
Burke et al. Stereophotographic measurement of change in facial soft tissue morphology following surgery
Chen et al. The preliminary application of augmented reality in unilateral orbitozygomatic maxillary complex fractures treatment
WO2022089055A1 (zh) 颅骨切片的获取方法、装置、存储介质及电子设备
WO2023198118A1 (en) Method and apparatus for determining acetabulum-to-femoral-head distance
CN114190963A (zh) 一种基于cbct容积数据进行头影测量标志点定位的方法及系统
KR102238483B1 (ko) 신체 유사도 지수 산출 방법과, 이를 이용한 수술 계획 시뮬레이션 방법 및 장치
TWI809660B (zh) 應用於手術規劃與導航系統的最佳正中線設定方法
CN117649442B (zh) 利用平衡器官解剖标志构筑三维头影测量坐标系的方法
CN113855081B (zh) 孕37-42周预测足月新生儿出生体重的方法
KR102243271B1 (ko) 신체 유사도 지수 산출 방법과, 이를 이용한 수술 계획 시뮬레이션 방법 및 장치
CN109700529B (zh) 一种用于可弯曲刚性组织的导航系统
Bussink Augmented reality in craniomaxillofacial surgery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21884781

Country of ref document: EP

Kind code of ref document: A1