WO2022088712A1 - 一种斜拉索用多锥腔锚具 - Google Patents

一种斜拉索用多锥腔锚具 Download PDF

Info

Publication number
WO2022088712A1
WO2022088712A1 PCT/CN2021/101974 CN2021101974W WO2022088712A1 WO 2022088712 A1 WO2022088712 A1 WO 2022088712A1 CN 2021101974 W CN2021101974 W CN 2021101974W WO 2022088712 A1 WO2022088712 A1 WO 2022088712A1
Authority
WO
WIPO (PCT)
Prior art keywords
anchoring
anchor
cavity
anchor cup
cone
Prior art date
Application number
PCT/CN2021/101974
Other languages
English (en)
French (fr)
Inventor
赵军
薛花娟
吴琼
翟鹏程
缪盛凯
Original Assignee
江苏法尔胜缆索有限公司
江苏法尔胜路桥科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏法尔胜缆索有限公司, 江苏法尔胜路桥科技有限公司 filed Critical 江苏法尔胜缆索有限公司
Publication of WO2022088712A1 publication Critical patent/WO2022088712A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/14Towers; Anchors ; Connection of cables to bridge parts; Saddle supports

Definitions

  • the invention relates to a cold-cast anchor for stay cables used in buildings and bridges.
  • the flexibility of the main girder increases due to the large span, which causes some new problems in the cable-stayed bridge: for example, the rigidity of the cable-stayed bridge will change under the action of its own weight and external load.
  • the structural stiffness matrix is a function related to the structural configuration, and the structure exhibits a nonlinear effect, which is geometric nonlinearity. The larger the span of the main beam, the more obvious the nonlinear effect is.
  • ultra-high-strength steel wires with a strength of 2100 MPa are used.
  • the steel wire specifications become smaller, the cross-sectional specifications of the stay cables will also decrease accordingly.
  • the sizes are correspondingly smaller, which saves the amount of materials and has a certain economy.
  • the stay cable anchor is the main force transmission component of the stay cable.
  • Ultra-high-strength stay cable anchors generally use cold-cast anchors with excellent fatigue resistance. After the structural form of the cold-cast anchor is determined, the dimensions of each part must meet the strength requirements.
  • the length of the anchor cup must meet the bonding length from the inside, and meet the needs of the cable tension from the outside. For cable-stayed bridges with a span of more than 1,000 meters, due to the influence of structural nonlinearity, in order to meet the length adjustment and tensioning requirements of the cable-stayed cable, the length of the corresponding cable-stayed cable anchor cup should be longer than that of the cable-stayed bridge.
  • the length of the traditional stay cable is increased by about 100mm to 200mm.
  • the present invention develops a new anchor structure, and simultaneously solves the problem of the ultra-high Strength and reliability of anchorage of ultra-long stay cables.
  • a multi-cone cavity anchor for a stay cable comprising an anchor cup and a connecting cylinder, the connecting cylinder is arranged at the front end of the anchor cup, the two are coaxially penetrated, and the oblique
  • the stay cable passes through the connecting cylinder and is anchored in the anchor cup
  • the anchor cup has an anchor cavity
  • the wire bundles of the stay cable spread out in a conical shape from front to back and are anchored in the anchor cavity through the anchor filler
  • the anchoring cavity includes two or more consecutively arranged conical anchoring cavities, and the plurality of conical anchoring cavities at least include a main conical anchoring cavity with a length of L1 and an inner cavity taper of ⁇ .
  • the main conical anchoring cavity It alone meets the anchoring strength of the stay cable.
  • Two adjacent conical anchoring cavities are transitioned through rounded corners.
  • the connecting cylinder In the anchoring position of the stay cable, the connecting cylinder is located at the front end of the anchor cup, which is higher than the anchor cup. In the past, the lower end of the connecting cylinder extended into the anchor cup, and the two were threadedly connected. This structure easily caused water to penetrate into the threaded connection part. , resulting in corrosion fatigue of the outer steel wire of the stay cable.
  • a connecting boss In order to further improve the anti-corrosion fatigue performance of the stay cable, a connecting boss extends forward from the front end of the anchor cup, and the connecting boss extends into the connecting cylinder and is fixed by internal and external screw connections.
  • the front end of the anchoring cavity is a small port, and the rear end is a large port, the anchoring cavity is between the small port and the large port, the large port is provided with an anchor plate, and the anchor plate is arranged according to the Wire holes are arranged in the arrangement of the wire bundles, and the tails of the steel wires pass through the wire holes in a one-to-one correspondence, and are pierced at the tails, and the pier head is larger than the diameter of the wire holes.
  • the diameter of the pier head is not less than 1.5 times the diameter of the steel wire, and the height of the pier head is not less than 1 times the diameter of the steel wire.
  • the main conical anchoring cavity starts from the anchoring opening of the anchoring cavity, and the anchoring opening is a small port located at the front end of the anchoring cavity.
  • ⁇ b is the bonding stress of the anchoring filler to the steel wire
  • ⁇ b Nominal tensile strength of steel wire
  • L1 the length of the cone of the main cone anchoring cavity
  • K effective anchoring length coefficient, considering that the wire bundles starting from the small port cannot fully diverge, k is 2/3;
  • the inner cavity taper ⁇ of the above-mentioned main conical anchoring cavity refers to the angle between the tapered hypotenuse and the center line, which is calculated according to the following formula
  • ⁇ c compressive stress of anchored packing cone
  • Pb the breaking load of the stay cable, which is a known parameter
  • Ae the surface area of the cone corresponding to the main cone anchoring cavity, Ae is calculated by ⁇ , L1 and the diameter of the anchor port according to the calculation formula of the surface area of the cone;
  • the plurality of said conical anchoring cavities are composed of n main conical anchoring cavities with a length of L1 and an inner cavity taper of ⁇ and a secondary conical anchoring cavity with a length of L2, where n is greater than A natural number of 0, and L1>L2, L1 and L2 satisfy the following relationship:
  • L n*L1+L2, where L is the total length of the anchoring cavity.
  • ⁇ c the compressive stress of the anchoring packing cone, ⁇ c is the actual value of ⁇ determined by the ⁇ value calculated according to formula (2), and then calculated;
  • Dj the average inner diameter of the anchor cup, the average inner diameter of the anchor cup can be calculated according to L, L1, L2, ⁇ and the diameter of the anchor mouth, where L1 is calculated according to formula (1), and ⁇ is calculated according to formula (2);
  • the advantages of the present invention are: for a long-span cable-stayed bridge, a higher-strength steel wire should be used in engineering to ensure that the specification of the cable-stayed cable does not increase, and a steel wire with a longer length and a higher strength is used.
  • the manufactured stay cable requires longer anchoring length, therefore, the length of the anchor cup used is longer than that of the traditional anchor of the same specification.
  • the stay cable size has not been increased, the increase in anchor length will result in a decrease in the overall taper of the anchor lumen. Decreasing the taper (which will lead to too small taper of the anchor, which will bring about the problem of the overstretching of the stay cable cast and the larger retraction value during use) will affect the anchorage reliability of the stay cable bundle.
  • the present invention divides an anchoring cavity into several continuous conical anchoring cavities along the length direction, and the taper of the conical anchoring cavity is larger than that of the traditional single anchoring cavity.
  • the several conical anchoring cavities are further divided into main conical anchoring cavities and sub-conical anchoring cavities, wherein the length L1 and inner cavity taper ⁇ of the main conical anchoring cavity shall satisfy the anchoring reliability of the stay cable.
  • Auxiliary conical anchoring cavity to supplement the length of the anchor cup. Accordingly, the technical problem described in the previous paragraph is solved.
  • the present invention further provides the minimum value of the length L1 of the main conical anchoring cavity and the inner cavity degree ⁇ to meet the reliability of the anchorage of the stay cable.
  • the calculation formula is based on the diameter of the anchor cup and the anchoring filler, inclined It is concluded on the premise that the engineering parameters such as the cable and the material properties are determined. According to the calculation formula, when the selected anchoring filler, engineering parameters and material properties of stay cables are changed, the anchor cup can be modified adaptively, so that it has wide applicability.
  • Fig. 1 is a schematic diagram of a traditional anchor cup structure
  • Figure 2 is a schematic structural diagram of an anchor cup used for traditional stay cable anchoring
  • FIG. 3 is a schematic structural diagram of the anchor cup in Embodiment 1 of the present invention.
  • FIG. 5 is a schematic structural diagram of the anchor cup in Embodiment 3 of the present invention.
  • FIG. 6 is a schematic structural diagram of an anchor plate according to an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of an anchor plate according to an embodiment of the present invention.
  • Fig. 8 is the tail structure of the anchoring end of the steel wire according to the embodiment of the present invention.
  • Fig. 9 is the schematic diagram of the wire splitting and the pier head of the steel wire bundle on the anchor plate according to the embodiment of the present invention.
  • Fig. 10 is the cold casting anchoring structure of the stay cable according to the embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of an anchor cup with corrosion fatigue resistance in an embodiment of the present invention.
  • Fig. 12 is the cold-cast anchoring structure of the stay cable with corrosion fatigue resistance in the embodiment of the present invention.
  • the cold-casting anchor for the super-long stay cable is composed of an anchor cup 5 , a nut and a connecting cylinder 1 .
  • the connection cylinder 1 is processed with an external thread, which cooperates with the internal thread thread on the small end of the anchor cup to realize connection and fixation.
  • the anchor cup needs to be adjusted to a longer length, as shown in Figure 2, the length of the anchor cup is longer than that of the traditional anchors of the same specification of stay cables (as shown in Figure 1). 100 ⁇ 200mm.
  • the traditional cold-cast anchorage is used, the stay cable passes through the small end of the anchorage, and the steel wire is arranged at a distance of 9mm to 10mm at the large end of the anchorage. will be greatly reduced, from 5.5° to 4.64°.
  • N is a natural integer of 2 or more.
  • the main conical anchoring cavity S1 is generally set at the small end of the anchor cup (starting from the anchor mouth of the anchor cup, where the wire bundle is not fully spread out, the anchoring of the starting end is especially critical).
  • the length L1 and the inner cavity taper ⁇ of the main conical anchoring cavity S1 are determined according to the following principles.
  • L1 In order to determine the grip strength of the stay cable under different grip lengths, first determine L1 according to the following formula. Considering that the steel wire near the anchor port cannot fully diverge, and due to the large size of the stay cable, it is necessary to determine an effective anchorage length coefficient through experiments.
  • ⁇ b is the bonding stress of the anchoring filler to the steel wire
  • ⁇ b Nominal tensile strength of steel wire
  • L1 the length of the cone of the main cone anchoring cavity
  • K effective anchoring length coefficient, considering that the wire bundles starting from the small port cannot fully diverge, k is 2/3;
  • the minimum value of L1 can be calculated according to formula (1).
  • ⁇ c compressive stress of anchored packing cone
  • Pb the breaking load of the stay cable, which is a known parameter and is the performance testing parameter of the stay cable;
  • Ae The surface area of the cone corresponding to the main cone anchoring cavity, Ae is calculated from ⁇ , L1 and the diameter of the anchor cup of the anchor cup according to the calculation formula of the surface area of the cone;
  • the value range of ⁇ can be calculated according to formula (2).
  • the N-section conical anchoring cavity is composed of n-section main conical anchoring cavity S1 with length L1 and inner cavity taper ⁇ and a sub-conical anchoring cavity S2 with length L2, the sub-cone
  • the shape anchoring cavity S2 is used as the supplementary anchoring length, located at the end, n is a natural number greater than 0, and L1>L2, L1 and L2 satisfy the following relationship:
  • L n*L1+L2, where L is the total length of the anchoring cavity.
  • the average inner diameter Dj of the anchor cup can be calculated in combination with the diameter of the anchor mouth.
  • the average wall thickness of the anchor cup can be calculated according to the following formula
  • ⁇ c the compressive stress of the anchoring packing cone, ⁇ c is the actual ⁇ value determined after the range of the ⁇ value calculated according to formula (2), and then calculated;
  • Dj the average inner diameter of the anchor cup
  • the structural parameters of the anchor cup are obtained by the above method to process the anchor cup.
  • the machining roughness in the conical anchoring cavity is not less than 75 ⁇ m.
  • FIG 3-5 there are three schemes for anchor cup processing in this embodiment. All three schemes use two-section conical anchoring cavities. The lengths of the two-section conical anchoring cavities are different, and the inner cavity taper ⁇ is the same. Both can produce a reliable anchoring effect on the stay cable.
  • epoxy iron sand (a mixture of special epoxy and diabase powder, etc., plus steel balls) is poured into the anchor cup from the position of the anchor mouth.
  • the gap between the steel wires in the anchorage is poured at room temperature and cured by heating and heat preservation.
  • the epoxy iron sand wraps the steel wires to form a cone-shaped "casting plug".
  • the steel wire enters the anchor cup through the connecting cylinder.
  • An anchor plate 7 with a thickness of 25mm to 30mm is set at the large end of the anchor cup.
  • the anchor plate 7 is provided with stepped holes (wire holes) with a spacing of 9mm to 10mm according to the arrangement of the stay cables. Easy for wire to pass through. After the steel wire passes through the anchor plate 7, it is headed at the tail, wherein the diameter of the head is not less than 1.5 times the diameter of the steel wire, and the height of the head is not less than 1 times the diameter of the steel wire.
  • the bearing capacity of the upsetting head is not less than 90% of the tensile strength of the steel wire, and the steel wire heading head forms the second line of defense for the anchorage of the stay cable, as shown in Figure 6-9.
  • the dispersing position of the stay cable wires is the connection part between the connecting cylinder and the anchor cup, and the threaded connection part is prone to water ingress, resulting in corrosion fatigue of the outer layer wires of the stay cable.
  • a connecting boss 501 can be used to extend forward from the small end of the anchor cup. As shown in FIG. 11, the connecting boss 501 extends into the interior of the connecting cylinder 1, and the two are then connected and fixed by internal and external threads, such as Figure 12.
  • the above anchorage structure has reliable static load anchoring ability, fatigue resistance and cable length adjustment ability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

本发明涉及一种斜拉索用多锥腔锚具,包括锚杯和连接筒,连接筒设置在锚杯前端、二者同轴贯通,斜拉索穿过连接筒并锚固在锚杯内,锚杯具有锚固腔,斜拉索的钢丝束从前向后呈锥形散开通过锚固填料锚固在锚固腔内,锚固腔包括两个以上连续设置的锥形锚固腔。多个锥形锚固腔的内腔锥度相同。多个锥形锚固腔中至少包括一个长度为L1、内腔锥度为β的主锥形锚固腔,多个所述锥形锚固腔中至少包括一个长度为L1、内腔锥度为β的主锥形锚固腔,该主锥形锚固腔单独满足对斜拉索的锚固强度。

Description

一种斜拉索用多锥腔锚具 技术领域
本发明涉及建筑、桥梁用斜拉索的冷铸锚具。
背景技术
随着社会的发展,交通需求与日俱增,越来越多跨越江河峡谷的大桥被修建,桥梁朝着大跨度的方向发展,大量大跨径桥梁被建设者架设于天堑之上。斜拉桥由于其受力性能良好,刚度大等特点,成为了大跨径桥梁的首要桥型。为了使斜拉桥向更大的跨径发展,新研究的桥梁结构形式与选用的材料本身的自重更小,同时也导致了斜拉索变得更加细长。对于大跨径的斜拉桥,为了避免温度变形或混凝土材料变形导致结构发生破坏,主梁约束通常被设置为漂浮体系。除此之外,由于超大跨径导致主梁的柔性变大,使得斜拉桥产生了一些新的问题:例如斜拉桥在自重与外荷载的作用下,自身的刚度会发生变化。此时结构刚度矩阵是一个与结构构形有关的函数,结构表现出非线性效应,这就是几何非线性,主梁跨径越大,非线性效应往往越明显。
对于超高强度斜拉索,为了降低斜拉索自重,采用了强度达到2100MPa的超高强度钢丝,钢丝规格变小后斜拉索的截面规格也会相应变小,锚具尺寸和锚固空间的尺寸均相应变小,节省了材料用量,具有一定的经济性。
斜拉索锚具是斜拉索主要传力构件。超高强度斜拉索锚具一般采用抗疲劳性能极好的冷铸锚。冷铸锚具的结构形式确定以后,各部分尺寸要满足强度需要。锚杯的长度,从内部必须满足粘结长度,从外部要满足斜拉索张拉伸长的需要。对于跨径达到1000米以上的公铁两用斜拉桥斜拉索,受到结构非线性的影响,为了满足斜拉索长度调整要求和张拉要求,对应的斜拉索锚杯的长度要比传统的斜拉索长度增加了约100mm~200mm。如采用一般的冷铸锚结构,在整个锚具内腔锥度一定的情况下,增大锚杯的长度会导致锚杯大端的锥口直径增大,从而使得梁和塔锚固构件的体积也相应增大,产生其他的结构问题。反之,在锚杯大小端锥口直径不变的情况下,增加锚杯长度会导致锚具内腔锥度变小,而锥度变小会导致冷铸锚对超长斜拉索的锚固可靠性,导致锚固无法满足斜拉索长度、张拉强度变化后的匹配性要求。
发明内容
针对超高强超长斜拉索锚固长度增加后的结构变化,在不改变锥形锚杯大小端锥口直径的前提下,本发明开发出了一款新的锚具结构,同时解决了超高强度、超长斜拉索的锚固可靠性问题。
本发明解决上述问题所采用的技术方案为:一种斜拉索用多锥腔锚具,包括锚杯和连接筒,所述连接筒设置在所述锚杯前端、二者同轴贯通,斜拉索穿过所述连接筒并锚固在所述锚杯内,所述锚杯具有锚固腔,斜拉索的钢丝束从前向后呈锥形散开通过锚固填料锚固在所述锚固腔内,所述锚固腔包括两个以上连续设置的锥形锚固腔,多个所述锥形锚固腔中至少包括一个长度为L1、内腔锥度为β的主锥形锚固腔,该主锥形锚固腔单独满足对斜拉索的锚固强度。
相邻两锥形锚固腔通过圆角过渡。
在斜拉索的锚固位置,连接筒是位于锚杯的前端,位置高于锚杯,以往连接筒的下端是伸入锚杯内的,二者螺纹连接,该结构容易导致水渗入螺纹连接部位,导致斜拉索外层钢丝的腐蚀疲劳。为进一步提高斜拉索的抗腐蚀疲劳性能,锚杯的前端向前延伸出连接凸台,所述连接凸台伸入所述连接筒内部,通过内、外螺纹连接固定。
具体地,所述锚固腔的前端为小端口、后端为大端口,小端口和大端口之间即为所述锚固腔,所述大端口设置有锚板,所述锚板上按照所述钢丝束的排布设置穿丝孔,钢丝尾部一一对应穿过所述穿丝孔,并在尾部墩头,所述墩头大于穿丝孔孔径。
优选地,所述墩头直径不小于1.5倍的钢丝直径,所述墩头高度不小于1倍的钢丝直径。
合理的设置是,多个锥形锚固腔的内腔锥度相同。
进一步地,所述主锥形锚固腔起始于所述锚固腔的锚口,所述锚口即位于所述锚固腔前端的小端口。
上述主锥形锚固腔的L1的有效长度按照如下公式计算
Figure PCTCN2021101974-appb-000001
式(1)中,
τ b为锚固填料对钢丝的粘结应力;
σ b:钢丝公称抗拉强度;
L1:为主锥形锚固腔的锥体长度;
K:有效锚固长度系数,考虑到起始于小端口的钢丝束不能够充分发散,k取值2/3;
b]:钢丝与锚固填料的允许粘接力,取值25MPa;
d:钢丝直径。
上述主锥形锚固腔的内腔锥度β,内腔锥度β是指,锥形斜边和中心线的夹角,按照如下公式计算
Figure PCTCN2021101974-appb-000002
式(2)中,
σ c:锚固填料锥体压缩应力;
Pb:斜拉索破断荷载,为已知参数;
Ae:主锥形锚固腔对应的锥体表面积,Ae由β、L1和锚口口径根据锥体表面积计算公式求算;
θ:锚固填料对锥体的摩擦角为24.22°,该摩擦角由锚固填料和锚杯的摩擦系数确定,Tanθ=0.45;
β:内腔锥度,β≥5.0°;
c]:锚固填料许用压缩应力,为已知参数。
进一步可能的情形是,多个所述锥形锚固腔是由n个长度为L1、内腔锥度为β的主锥形锚固腔和1个长度为L2的副锥形锚固腔组成,n为大于0的自然数,且L1>L2,L1和L2满足如下关系:
L=n*L1+L2,式中L为锚固腔的总长度。
对于主锥形锚固腔有两个以上的情况,n个主锥形锚固腔连续设置,副锥形锚固腔作为末端残余锥形端。则L1和β仍然根据式(1)和式(2)进行确认。此时还需要考虑锚杯的平均壁厚,采用如下公式进行计算(虽然多个锥形锚固腔之间通过圆角过渡,但仍视为一锥形整体)
Figure PCTCN2021101974-appb-000003
式(3)中,
σ r:锚杯总体的环向应力
σ c:锚固填料锥体压缩应力,σ c是根据式(2)计算出的β值确定实际β的取值,然后求算得出;
Di:锚杯平均外径;
Dj:锚杯平均内径,根据L、L1、L2、β和锚口直径可计算出锚杯平均内径,其中L1根据式(1)计算,β根据式(2)计算;
r]:锚杯材料的许用环向应力,为已知参数;
根据式(3)确定锚杯的平均外径Di,则锚杯的平均壁厚=Di-Dj。
与现有技术相比,本发明的优点在于:对于大跨斜拉桥而言,工程上要采用更高强度的钢丝来保证斜拉索规格不增大,长度更长、强度更大的钢丝制成的斜拉索需要更长的锚固长度,因此,所采用的锚杯长度较传统的同规格斜拉索的锚具长度要更长。但是,由于斜拉索规格未增大,锚固长度增加会导致锚固内腔的整体锥度减小。锥度减小(会导致锚具锥度过小,从而带来斜拉索铸体在超张拉和使用中回缩值较大的问题)会影响斜拉索钢丝束的锚固可靠性。
本发明将一个锚固腔沿长度方向分成若干连续的锥形锚固腔,且锥形锚固腔的锥度大于传统单独锚固腔的锥度。并进一步地将若干锥形锚固腔分成主锥形锚固腔和副锥形锚固腔,其中主锥形锚固腔的长度L1和内腔锥度β要满足对斜拉索的锚固可靠性。副锥形锚固腔,用于补充锚杯长度。据此解决了上一段所描述的技术问题。
本发明进一步提供了满足对斜拉索锚固可靠性的主锥形锚固腔的长度L1和内腔制度β的最小取值,该计算公式是基于锚杯锚口口径以及所采用的锚固填料、斜拉索等工程参数、材料性能确定的前提下归纳而出的。根据该计算公式,在所选用的锚固填料、斜拉索的工程参数、材料性能发生改变时,可对锚杯作适应性修改,使具有广泛适用性。
附图说明
图1为传统锚杯结构示意图;
图2为传统斜拉索锚固用锚杯结构示意图;
图3为本发明实施例方案1中锚杯结构示意图;
图4为本发明实施例方案2中锚杯结构示意图;
图5为本发明实施例方案3中锚杯结构示意图;
图6为本发明实施例锚板的结构示意图;
图7为本发明实施例锚板的剖视图;
图8为本发明实施例钢丝锚固端的尾部结构;
图9为本发明实施例钢丝束在锚板上分丝和墩头的示意图;
图10为本发明实施例斜拉索冷铸锚固结构;
图11为本发明实施例中具有抗腐蚀疲劳的锚杯结构示意图;
图12为本发明实施例中具有抗腐蚀疲劳的斜拉索冷铸锚固结构;
图中,1连接筒、2环氧树脂、3定心环、4锚固填料、5锚杯、6钢丝束、7锚板、8连接凸台、501穿丝孔、S1主锥形锚固腔、S2副锥形锚固腔,图中单位为mm。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述,所述实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
本实施例中适用于超长斜拉索冷铸锚具由锚杯5、螺母和连接筒1组成。其中连接筒1上加工出外螺纹,与锚杯小端上的内螺纹螺纹配合实现连接固定。针对超长斜拉索的锚固,需要将锚杯调节成更长的长度,如图2所示,该锚杯长度较传统的同规格斜拉索的锚具(如图1所示)长度长100~200mm。采用传统的冷铸锚具,斜拉索穿过锚具小端,钢丝在锚具大端将钢丝按照间距9mm~10mm排布后,并满足张拉荷载的前提下,锚杯的内腔锥度将会大幅度减小,由5.5°缩小成了4.64°。
锚具内腔锥度的降低会导致斜拉索铸体在超张拉和使用中回缩值较大的问题,影响斜拉索的锚固可靠性。
为了解决以上问题,在保证锚杯锥度不降低的前提下,在锚杯中加工出N段大小直径不同,但锥度一样的锥腔β。N段锥形锚固腔的过渡采用圆角过渡,保证了环氧填料(锚固填料)浇灌的流畅性。N为2以上的自然整数。在以上N段锥形锚固腔中,其中一段作为主锥形锚固腔S1,主锥形锚固腔S1一般设置在锚杯的小端(起始于锚杯的锚口,该处钢丝束尚未充分分散开,起始端的锚固尤为关键)。该主锥形锚固腔S1的长度L1和内腔锥度β按照以下原则确定。
(一)为了确定不同握股长度下斜拉索的握裹力,首先按照以下公式确定L1。考虑到近锚口位置的钢丝不能够充分发散,且由于斜拉索规格较大,需要通过试验确定一个有效锚固长度系数。
Figure PCTCN2021101974-appb-000004
式(1)中,
τ b为锚固填料对钢丝的粘结应力;
σ b:钢丝公称抗拉强度;
L1:为主锥形锚固腔的锥体长度;
K:有效锚固长度系数,考虑到起始于小端口的钢丝束不能够充分发散,k取值2/3;
b]:钢丝与锚固填料的允许粘接力,取值25MPa;
d:钢丝直径。
根据桥梁工程选用的钢丝参数,根据式(1)可计算出L1的最小取值。
(二)锚具内腔锥度β按照以下公式计算
Figure PCTCN2021101974-appb-000005
式(2)中,
σ c:锚固填料锥体压缩应力;
Pb:斜拉索破断荷载,为已知参数,为斜拉索的性能检测参数;
Ae:主锥形锚固腔对应的锥体表面积,Ae由β、L1和锚杯的锚口口径根据锥体表面积计算公式求算;
θ:锚固填料对锥体的摩擦角为24.22°,该摩擦角由锚固填料和锚杯的摩擦系数确定,Tanθ=0.45;
β:内腔锥度,且要求β≥5.0°;
c]:锚固填料许用压缩应力,为已知参数,由所选用的锚固填料检测获得。
根据桥梁工程选用的钢丝参数,根据式(2)可计算出β的取值范围。
(三)进一步地,当N段锥形锚固腔是由n段长度为L1、内腔锥度为β的主锥形锚固腔S1和1个长度为L2的副锥形锚固腔S2组成,副锥形锚固腔S2作为补充锚固长度,位于末端,n为大于0的自然数,且L1>L2,L1和L2满足如下关系:
L=n*L1+L2,式中L为锚固腔的总长度。
确定以上L1、L2、β参数后,再结合锚口口径可计算出锚杯的平均内径Dj。根据以下公式可计算锚杯的平均壁厚
Figure PCTCN2021101974-appb-000006
式(3)中,
σ r:锚杯总体的环向应力
σ c:锚固填料锥体压缩应力,σ c是根据式(2)计算出的β值取值范围后确定的实际β值,然后求算得出;
Di:锚杯平均外径;
Dj:锚杯平均内径;
r]:锚杯材料的许用环向应力;
根据式(3)确定锚杯的平均外径Di,则锚杯的平均壁厚=Di-Dj。
通过上述方法获得锚杯的结构参数加工锚杯。在锥形锚固腔内加工粗糙度不小于75μm。如图3-5为本实施例锚杯加工的三个方案,这三个方案均采用两段锥形锚固腔,两段锥形锚固腔的长度各不相同,内腔锥度β相同。均能够对斜拉索产生可靠的锚固效果。
在斜拉索锚固时,从锚口位置向锚杯内灌注环氧铁砂(特制环氧和辉绿岩粉等的混合料加钢球)。锚具中钢丝间的空隙在常温下浇灌,并经过加热保温固化,环氧铁砂包裹钢丝形成圆锥体状的“铸体塞子”。当斜拉索钢丝束受力时,一方面,借助于楔形原理,铁砂对钢丝产生夹紧力;另一方面,随着斜拉索拉力增加,分段锥腔式锚杯的“铸体塞子”与锚杯内腔壁间的摩擦力增大,锚固愈加可靠,如图10所示。
钢丝经连接筒进入锚杯,在锚杯大端设置厚度为25mm~30mm的锚板7,锚板7上按照斜拉索的排布设置间距为9mm~10mm的阶梯孔(穿丝孔),便于钢丝穿过。钢丝穿过锚板7后在尾部镦头,其中镦头直径不小于1.5倍钢丝直径,镦头高度不小于1倍的钢丝直径。镦头承载力不小于钢丝抗拉强度的90%,钢丝镦头形成了斜拉索锚固的第二道防线,如图6-9所示。
图10中,斜拉索钢丝的散开位置为连接筒与锚杯的连接部位,此螺纹连接部位容易进水,导致斜拉索外层钢丝的腐蚀疲劳。为进一步提高斜拉索的疲劳性能。在以上结构的基础上,可采用在锚杯小端向前延伸出连接凸台501,如图11所示,连接凸台501 伸入连接筒1内部,二者再通过内外螺纹连接固定,如图12所示。
综上所述,以上锚具结构构造具有可靠的静载锚固能力、抗疲劳性能和索长调节能力。锚杯外表面上有梯形外螺纹,并配置与锚杯配套的螺母,便于调整斜拉索长度、索力和更换新索。
尽管以上详细地描述了本发明的优选实施例,但是应该清楚地理解,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种斜拉索用多锥腔锚具,包括锚杯(5)和连接筒(1),所述连接筒(1)设置在所述锚杯(5)前端、二者同轴贯通,斜拉索穿过所述连接筒(1)并锚固在所述锚杯(5)内,其特征在于:所述锚杯(5)具有锚固腔,斜拉索的钢丝束从前向后呈锥形散开通过锚固填料(4)锚固在所述锚固腔内,所述锚固腔包括两个以上连续设置的锥形锚固腔,多个所述锥形锚固腔中至少包括一个长度为L1、内腔锥度为β的主锥形锚固腔,该主锥形锚固腔单独满足对斜拉索的锚固强度。
  2. 根据权利要求1所述的锚具,其特征在于:所述锚杯(5)的前端向前延伸出连接凸台(8),所述连接凸台(8)伸入所述连接筒(5)内部,通过内、外螺纹连接固定。
  3. 根据权利要求1所述的锚具,其特征在于:所述锚固腔的前端为小端口、后端为大端口,小端口和大端口之间即为所述锚固腔,所述大端口设置有锚板(7),所述锚板(7)上按照所述钢丝束(6)的排布设置穿丝孔(501),钢丝尾部一一对应穿过所述穿丝孔,并在尾部墩头,所述墩头大于穿丝孔孔径。
  4. 根据权利要求3所述的锚具,其特征在于:所述墩头直径不小于1.5倍的钢丝直径,所述墩头高度不小于1倍的钢丝直径。
  5. 根据权利要求1所述的锚具,其特征在于:多个所述锥形锚固腔的内腔锥度相同。
  6. 根据权利要求1所述的锚具,其特征在于:所述主锥形锚固腔起始于所述锚固腔的锚口,所述锚口即位于所述锚固腔前端的小端口。
  7. 根据权利要求6所述的锚具,其特征在于:所述L1的有效长度按照如下公式计算
    Figure PCTCN2021101974-appb-100001
    式(1)中,
    τ b为锚固填料对钢丝的粘结应力;
    σ b:钢丝公称抗拉强度;
    L1:为主锥形锚固腔的锥体长度;
    K:有效锚固长度系数,考虑到起始于小端口的钢丝束不能够充分发散,k取值 2/3;
    b]:钢丝与锚固填料的允许粘接力,取值25MPa;
    d:钢丝直径。
  8. 根据权利要求6所述的锚具,其特征在于:所述内腔锥度β按照如下公式计算
    Figure PCTCN2021101974-appb-100002
    式(2)中,
    σ c:锚固填料锥体压缩应力;
    Pb:斜拉索破断荷载,为已知参数;
    Ae:主锥形锚固腔对应的锥体表面积,Ae由β、L1和锚口口径根据锥体表面积计算公式求算;
    θ:锚固填料对锥体的摩擦角为24.22°,该摩擦角由锚固填料和锚杯的摩擦系数确定,Tanθ=0.45;
    β:内腔锥度,β≥5.0°;
    c]:锚固填料许用压缩应力,为已知参数。
  9. 根据权利要求6或7或8所述的锚具,其特征在于:多个所述锥形锚固腔是由n个长度为L1、内腔锥度为β的主锥形锚固腔和1个长度为L2的副锥形锚固腔组成,n为大于0的自然数,且L1>L2,L1和L2满足如下关系:
    L=n*L1+L2,式中L为锚固腔的总长度。
  10. 根据权利要求9所述的锚具,其特征在于:所述锚杯的平均壁厚采用如下公式进行计算
    Figure PCTCN2021101974-appb-100003
    式(3)中,
    σ r:锚杯总体的环向应力;
    σ c:锚固填料锥体压缩应力,σ c是根据式(2)计算出的β值确定实际β的取值,然后求算得出;
    Di:锚杯平均外径;
    Dj:锚杯平均内径,根据L、L1、L2、β和锚口直径可计算出锚杯平均内径,其中L1根据式(1)计算,β根据式(2)计算;
    r]:锚杯材料的许用环向应力,为已知参数;
    根据式(3)确定锚杯的平均外径Di,则锚杯的平均壁厚=Di-Dj。
PCT/CN2021/101974 2020-11-02 2021-06-24 一种斜拉索用多锥腔锚具 WO2022088712A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011201436.9 2020-11-02
CN202011201436.9A CN112458898A (zh) 2020-11-02 2020-11-02 一种超高强度超长斜拉索耐腐蚀疲劳冷铸锚具

Publications (1)

Publication Number Publication Date
WO2022088712A1 true WO2022088712A1 (zh) 2022-05-05

Family

ID=74835755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101974 WO2022088712A1 (zh) 2020-11-02 2021-06-24 一种斜拉索用多锥腔锚具

Country Status (2)

Country Link
CN (1) CN112458898A (zh)
WO (1) WO2022088712A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115538203A (zh) * 2022-10-10 2022-12-30 江苏集萃碳纤维及复合材料应用技术研究院有限公司 一种碳纤维绳索锚固装置及其锚固工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112458898A (zh) * 2020-11-02 2021-03-09 江苏法尔胜缆索有限公司 一种超高强度超长斜拉索耐腐蚀疲劳冷铸锚具
CN113309296A (zh) * 2021-06-21 2021-08-27 马献林 一种纤维复合材料拉索弹性锚具

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1644791A (zh) * 2005-01-25 2005-07-27 江苏法尔胜新日制铁缆索有限公司 超高强度平行钢丝耐久型拉索
CN102587278A (zh) * 2012-03-09 2012-07-18 柳州豪姆机械有限公司 钢绞线冷铸锚拉索
CN105040590A (zh) * 2015-08-31 2015-11-11 江苏法尔胜缆索有限公司 2000MPa耐久型公铁两用斜拉桥平行钢丝斜拉索
JP6211658B1 (ja) * 2016-07-15 2017-10-11 重慶交通大学Chongqing Jiaotong University 分散型光ファイバー測定に基づく斜張ケーブルのアンカーヘッドの性能劣化状態の測定方法
CN207828785U (zh) * 2017-12-12 2018-09-07 柳州桂桥缆索有限公司 一种高应力钢绞线挤压拉索
CN108951401A (zh) * 2017-05-20 2018-12-07 马鞍山平文锻造有限公司 一种新型高强度锚具
CN112458898A (zh) * 2020-11-02 2021-03-09 江苏法尔胜缆索有限公司 一种超高强度超长斜拉索耐腐蚀疲劳冷铸锚具

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2238911Y (zh) * 1995-12-12 1996-10-30 李永和 全长锚固倒楔膨胀式塑钢全长锚杆
JP5586886B2 (ja) * 2009-07-17 2014-09-10 株式会社竹中工務店 コンクリート部材補強構造、及び当該コンクリート部材補強構造を有する建物
CN103074851A (zh) * 2012-12-21 2013-05-01 柳州欧维姆机械股份有限公司 夹片式复合型锚固钢绞线成品索及其制作方法
CN103711508A (zh) * 2014-01-20 2014-04-09 山东科技大学 一种钢丝绳与圆锥台体相互配合的高抗剪锚杆
ES2651160A1 (es) * 2017-05-10 2018-01-24 Mk4 World Wide, S.L. Anclajes planos lineales con sistema de doble cuña para losas de hormigón post tensionado
CN110725547B (zh) * 2019-10-17 2023-08-11 柳州欧维姆机械股份有限公司 一种紧凑型钢绞线拉索及其制作方法
CN211850918U (zh) * 2019-10-17 2020-11-03 柳州欧维姆机械股份有限公司 一种紧凑型钢绞线拉索
CN211973473U (zh) * 2020-02-22 2020-11-20 周兆弟 一种受力筋连接件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1644791A (zh) * 2005-01-25 2005-07-27 江苏法尔胜新日制铁缆索有限公司 超高强度平行钢丝耐久型拉索
CN102587278A (zh) * 2012-03-09 2012-07-18 柳州豪姆机械有限公司 钢绞线冷铸锚拉索
CN105040590A (zh) * 2015-08-31 2015-11-11 江苏法尔胜缆索有限公司 2000MPa耐久型公铁两用斜拉桥平行钢丝斜拉索
JP6211658B1 (ja) * 2016-07-15 2017-10-11 重慶交通大学Chongqing Jiaotong University 分散型光ファイバー測定に基づく斜張ケーブルのアンカーヘッドの性能劣化状態の測定方法
CN108951401A (zh) * 2017-05-20 2018-12-07 马鞍山平文锻造有限公司 一种新型高强度锚具
CN207828785U (zh) * 2017-12-12 2018-09-07 柳州桂桥缆索有限公司 一种高应力钢绞线挤压拉索
CN112458898A (zh) * 2020-11-02 2021-03-09 江苏法尔胜缆索有限公司 一种超高强度超长斜拉索耐腐蚀疲劳冷铸锚具

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANXU ZHU, LONG YANG, SHICONG ZHU, ZONGNING HUANG: "DESIGN AND EXPERIMENTAL STUDY OF MULTI-CONE ANCHORAGES FOR CARBON FIBER TENDONS", INDUSTRIAL CONSTRUCTION, vol. 50, no. 8, 20 August 2020 (2020-08-20), pages 177 - 181, XP055927279, DOI: 10. 13204/ j.gyjzG201908020013 *
WU QIONG, QIANG QIANG; ZHOU ZHU-BING; WANG ZHI-GANG; ZHOU NENG-ZUO: "Study of Anchorage Design for 1 860MPa-Grade Stay Cables of Qingshan Changjiang River Highway Bridge in Wuhan", BRIDGE CONSTRUCTION, vol. 50, no. s1, 18 July 2020 (2020-07-18), pages 106 - 111, XP055927277 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115538203A (zh) * 2022-10-10 2022-12-30 江苏集萃碳纤维及复合材料应用技术研究院有限公司 一种碳纤维绳索锚固装置及其锚固工艺

Also Published As

Publication number Publication date
CN112458898A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
WO2022088712A1 (zh) 一种斜拉索用多锥腔锚具
CN103726447B (zh) 二次张拉低回缩锚固体系竖向预应力钢绞线方法及其系统
CN107575257B (zh) 用于纤维增强高分子材料杆的锚具系统的锚固方法
Tanaka et al. Reexamination of dowel behavior of steel bars embedded in concrete
CN104372745B (zh) 碳纤维复合材料拉索的锚固方法
CN201991141U (zh) 一种预应力钢丝套筒式锚具
CN203160127U (zh) 夹片式复合型锚固钢绞线成品索
CN207633218U (zh) 斜拉索体系
CN214737388U (zh) 一种超高强度超长斜拉索耐腐蚀疲劳冷铸锚具
CN108221666A (zh) 一种frp筋用复合型锚具
CN109750599B (zh) 缓粘结低回缩预应力短索体系及计算、张拉方法
CN110485631A (zh) 一种端部有锚头的先张法预应力预制梁
CN110186751A (zh) 一种用于光圆拉挤cfrp棒材拉伸试验的夹板式锚具
JP7244724B2 (ja) ハイブリッド型永久アンカー
CN209428954U (zh) 悬索桥锚碇用热挤聚乙烯钢丝成品拉索预应力系统
CN206457996U (zh) 钢筋用半灌浆套筒接头
KR20190094644A (ko) 프리스트레스트 강합성 거더
CN108951420A (zh) 悬索桥锚碇用热挤聚乙烯钢丝成品拉索预应力系统
CN212505858U (zh) 一种高强钢绞线预应力锚板工具
US11326347B2 (en) Anchor system for fiber reinforced polymers
CN107386763B (zh) 含预应力钢丝的钢管混凝土输电塔相贯节点及其制作方法
CN220619791U (zh) 一种新型冷铸增强型整束挤压钢绞线拉索
NO322852B1 (no) Terminering av strekklegeme
CN206319253U (zh) 一种粘结式锚具
FI4004302T3 (fi) Esivalmistettujen elementtien kuiva liitosjärjestelmä

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21884453

Country of ref document: EP

Kind code of ref document: A1