WO2022088705A1 - 含氧化层锆铌合金分区骨小梁单间室股骨髁及制备方法 - Google Patents

含氧化层锆铌合金分区骨小梁单间室股骨髁及制备方法 Download PDF

Info

Publication number
WO2022088705A1
WO2022088705A1 PCT/CN2021/101288 CN2021101288W WO2022088705A1 WO 2022088705 A1 WO2022088705 A1 WO 2022088705A1 CN 2021101288 W CN2021101288 W CN 2021101288W WO 2022088705 A1 WO2022088705 A1 WO 2022088705A1
Authority
WO
WIPO (PCT)
Prior art keywords
femoral condyle
bone
trabecular
intermediate product
zirconium
Prior art date
Application number
PCT/CN2021/101288
Other languages
English (en)
French (fr)
Inventor
陈伟
曹雨
张月静
杨友
李莉
Original Assignee
嘉思特华剑医疗器材(天津)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 嘉思特华剑医疗器材(天津)有限公司 filed Critical 嘉思特华剑医疗器材(天津)有限公司
Priority to JP2022545447A priority Critical patent/JP7392167B2/ja
Priority to EP21884446.2A priority patent/EP4086022B1/en
Priority to US17/907,913 priority patent/US20230321729A1/en
Publication of WO2022088705A1 publication Critical patent/WO2022088705A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/3859Femoral components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30878Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/3093Special external or bone-contacting surface, e.g. coating for improving bone ingrowth for promoting ingrowth of bone tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30968Sintering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30985Designing or manufacturing processes using three dimensional printing [3DP]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00035Other metals or alloys
    • A61F2310/00089Zirconium or Zr-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00035Other metals or alloys
    • A61F2310/00095Niobium or Nb-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/24Materials or treatment for tissue regeneration for joint reconstruction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to the field of artificial joints, in particular to a trabecular bone single-compartment femoral condyle containing an oxide layer of zirconium-niobium alloy and a preparation method thereof.
  • the single-compartment knee prosthesis is used for surface replacement of the unilateral diseased compartment of the knee joint. It has the characteristics of small surgical incision, less intraoperative osteotomy, and preservation of the ligament structure of the knee joint. normal movement and proprioception of the knee joint.
  • the biological single-compartment knee prosthesis can realize the effective fitting of the bone tissue and the prosthesis interface, and avoid the defects caused by bone cement fixation.
  • most of the biological single-compartment knee prosthesis is a double-coating process (titanium microporous + HA coating), and there are problems such as coating peeling off and uneven coating thickness.
  • the main reason for the failure of artificial joint replacement is the loosening of the prosthesis, and the stress shielding caused by the huge stiffness mismatch between the prosthesis and the bone will cause the bone remodeling around the prosthesis and lead to the loosening of the prosthesis.
  • the base part of the existing biological single-compartment knee prosthesis is still a solid structure, and the elastic modulus is much larger than that of the bone tissue, which will greatly increase the stress shielding effect between the prosthesis and the bone interface, thereby reducing the formation of osteoblasts. Eventually the prosthesis loosens.
  • Zirconium-niobium alloys have excellent corrosion resistance, mechanical properties and good biocompatibility, and are gradually used in the field of medical devices.
  • Zirconium-niobium alloy can react with N, C, O and other elements to form a hard oxide layer on the surface, with excellent wear resistance and low wear rate, which can reduce the wear of soft materials, that is, it has excellent wear resistance of the joint surface interface;
  • the oxide layer can reduce the release of metal ions, and has excellent biocompatibility, that is, excellent biocompatibility with an osseointegrated interface.
  • the articular surface with low wear rate is organically compatible with the osseointegration interface (trabecular bone) with excellent bone ingrowth performance, so that the prosthesis can achieve the advantages of both interfaces at the same time.
  • the prior art fails to realize this optimized design at the same time.
  • 3D printing technology breaks through the product design concept oriented to the manufacturing process and realizes the product design concept oriented to performance, which not only solves the difficulty of integral molding of complex parts, but also reduces the waste of raw materials and energy caused by machining. .
  • the solid part of the 3D printing product is prone to problems such as uneven microstructure and internal defects, and poor mechanical properties; the powder in the structure of the trabecular bone cannot be well sintered, and the mechanical properties are poor.
  • the main purpose of the present invention is to overcome the deficiencies of the prior art, and to provide a trabecular bone single compartment femoral condyle containing an oxide layer of zirconium-niobium alloy.
  • the second object of the present invention is to provide a method for preparing a trabecular bone single compartment femoral condyle containing an oxide layer of zirconium-niobium alloy.
  • a method for preparing a trabecular bone single-compartment femoral condyle with an oxide layer of zirconium-niobium alloy zone includes the following steps:
  • the first intermediate product of the trabecular bone single-compartment femoral condyle containing the oxide layer of zirconium-niobium alloy is obtained by integral molding through 3D printing. Under the protection of argon or helium, the temperature is raised to 1250°C-1400°C, placed at a constant temperature of 140MPa-180MPa for 1h-3h, lowered to normal pressure, cooled to below 200°C with the furnace, and taken out to obtain the second intermediate product:
  • the fourth intermediate product subjecting the fourth intermediate product to surface machining, polishing, cleaning and drying to obtain a fifth intermediate product; the roughness Ra of the femoral condyle articular surface of the fifth intermediate product is less than or equal to 0.05 ⁇ m;
  • the fifth intermediate product is placed in the tube furnace, and the normal pressure argon or helium with an oxygen content of 5%-15% is introduced, and heated to 500°C-700°C at 5°C/min-20°C/min. °C, cooled to 400°C-495°C at 0.4°C/min-0.9°C/min, and then naturally cooled to below 200°C and taken out to obtain trabecular single-compartment femoral condyle containing oxide layer zirconium-niobium alloy zone;
  • the structure of the trabecular single-compartment femoral condyle with zirconium-niobium alloy containing oxide layer includes femoral condyle articular surface 1 and osseointegration surface 2.
  • the longitudinal section of femoral condyle articular surface 1 is arc-shaped, and the osseointegration surface includes the osseointegration of the posterior end of the femoral condyle.
  • the osseointegration surface of the rear end of the femoral condyle is set in a vertical plane
  • the osseointegration surface of the distal end of the femoral condyle is set in an arc shape, and has a common spherical center with the articular surface of the femoral condyle
  • a first cylindrical fixing column 4 is arranged in the middle of the distal osseointegration surface
  • a second cylindrical fixing column 5 is arranged at the front of the osseointegration surface of the distal femoral condyle, and the diameter of the second cylindrical fixing column 5 is smaller than that of the first cylindrical fixing column.
  • the edge of the osseointegration surface 2 is provided with a side wall 3, and within the side wall, other parts except the first cylindrical fixing column and the second cylindrical fixing column are arranged to partition the trabecular bone 6, and the trabecular bone partition line 7 It is located in the middle of the osseointegration in the front and back direction; the first type of bone trabecular 8 and the second type of bone trabecular 9 are respectively set before and after the trabecular bone partition line, and the aperture and porosity of the first type of bone trabecular are less than Pore size and porosity of the second trabecular bone.
  • the diameter of the first trabecular bone is 0.40mm-0.60mm, and the porosity is 60%-75%;
  • the second type of trabecular bone has a diameter of 0.61mm-0.80mm and a porosity of 76%-90%;
  • the thickness of the first trabecular bone and the second trabecular bone are equal, ranging from 1 mm to 2 mm.
  • the chemical composition of the zirconium-niobium alloy powder is 85.6%-96.5% Zr, 1.0%-12.5% Nb, and the rest are unavoidable impurities.
  • the particle size of the zirconium-niobium alloy powder is 45-150 ⁇ m.
  • the adjustment temperature described in steps 2) and 3) is as follows: heating to -120°C ⁇ -80°C, maintaining a constant temperature for 3h-5h; heating to -40°C ⁇ -20°C, maintaining a constant temperature for 3h-5h; heating to 4°C- 8 °C, the constant temperature is maintained for 1h-3h, and the temperature is increased.
  • the trabecular bone single-compartment femoral condyle prepared by the above method is a zirconium-niobium alloy zoned trabecular bone.
  • the oxide-containing zirconium-niobium alloy partitioned trabecular single compartment femoral condyle of the invention can reduce the fretting of the interface between the prosthesis and the bone, reduce the stress shielding effect of the prosthesis on the bone tissue, make the stress of the femoral condyle bone tissue uniform, and improve the single compartment Initial and long-term stability of the ventricular femoral condyle.
  • the invention adopts 3D printing to form integrally, solves the problem that traditional machining cannot prepare complex structures, and has high bonding strength between trabecular bone and solid body, is not easy to fall off, and prolongs the life of the prosthesis.
  • the zirconium-niobium alloy containing oxide layer of the invention has excellent compressive performance of the trabecular bone of the single compartment of the femoral condyle; the compressive yield strength of the solid part is enhanced, and the plasticity is enhanced.
  • the invention integrates to realize the excellent biocompatibility of the osseointegration interface, the bone ingrowth and the super wear resistance and low wear rate of the friction interface.
  • the zirconium-niobium alloy containing oxide layer of the present invention has an oxygen-rich layer between the oxide layer of the trabecular single-compartment femoral condyle and the matrix, and the oxygen-rich layer has the function of a transition layer, which improves the adhesion between the oxide layer and the matrix, and avoids the oxide layer.
  • the zirconium-niobium alloy containing oxide layer of the invention has low artifact on the femoral condyle of the single compartment of the trabecular bone, has little interference to the nuclear magnetic field, and can be detected by the nuclear magnetic field.
  • FIG. 1 is a schematic structural diagram of the trabecular bone single-compartment femoral condyle of the zirconium-niobium alloy partitioned with oxide layer according to the present invention.
  • Fig. 2 is a top view of the trabecular bone single-compartment femoral condyle of the zirconium-niobium alloy containing oxide layer according to the present invention.
  • Figure 3 is the micro-movement cloud image at the interface between the finite element model of the femoral condyle of the uniform trabecular bone and the single compartment of the femoral condyle and the finite element model of the femoral condyle bone tissue in control group 1.
  • FIG. 4 is a fretting cloud diagram at the interface between the trabecular bone single compartment femoral condyle finite element model and the femoral condyle bone tissue finite element model in Example 1.
  • Figure 5 is the contact pressure cloud diagram of the finite element model of the femoral condyle of the uniform trabecular bone in the control group 1;
  • Fig. 6 is the contact pressure cloud diagram of the finite element model of the femoral condyle of the trabecular bone single compartment of the zirconium-niobium alloy zone containing the oxide layer of Example 1;
  • Fig. 7 is the equivalent stress cloud diagram of the finite element model of the femoral condyle of the uniform trabecular bone single-compartment in the control group 1;
  • Figure 8 is the equivalent stress cloud diagram of the finite element model of the trabecular bone single compartment femoral condyle of the zirconium-niobium alloy zone containing oxide layer of Example 1;
  • FIG. 9 is the metallographic microstructure diagram of the solid part of the control group 2 (A is for observation at a magnification of 50 times; B is for observation at a magnification of 500 times).
  • FIG. 10 is a metallographic microstructure diagram of the solid part of Example 1 without steps 4) and 5) in the preparation method (A is for observation at a magnification of 50 times; B is for observation at a magnification of 500 times).
  • FIG. 11 is the SEM image of the trabecular bone part of control group 2.
  • FIG. 12 is a SEM image of the bone trabecular portion of Example 1 without steps 4) and 5) in the preparation method.
  • FIG. 13 is a cross-sectional SEM image of the oxide layer and the substrate of Example 1.
  • FIG. 14 is the XRD curve of the surface of the oxide layer of Example 1.
  • the preparation method of the trabecular bone single-compartment femoral condyle (see Fig. 1-2) of the zirconium-niobium alloy partitioned with oxide layer includes the following steps:
  • the first intermediate product of the trabecular bone single-compartment femoral condyle containing the oxide layer of zirconium-niobium alloy is obtained by integral molding through 3D printing. Under the protection of helium, the temperature was raised to 1250°C, placed at a constant temperature of 180MPa for 3 hours, lowered to normal pressure, cooled to below 200°C with the furnace, and taken out to obtain the second intermediate product;
  • Steps 2) and 3) The specific steps of adjusting the temperature are as follows: heating to -120°C, maintaining a constant temperature for 5 hours; then heating to -40°C, maintaining a constant temperature for 5 hours; then heating to 4°C, maintaining a constant temperature for 3 hours, and heating up.
  • the fifth intermediate product is placed in the tube furnace, and the normal pressure helium gas containing 5% oxygen-containing mass percentage is introduced, heated to 500°C with 5°C/min, cooled to 400°C with 0.4°C/min, and then Naturally cooled to below 200°C and taken out to obtain trabecular bone single-compartment femoral condyle containing oxide layer of zirconium-niobium alloy;
  • the chemical composition of the zirconium-niobium alloy powder is 85.6% Zr, 12.5% Nb, and the rest are inevitable impurities; limited liability company.
  • the longitudinal section of the femoral condyle articular surface 1 is arc-shaped, and the osseointegration surface includes the osseointegration surface 21 of the rear end of the femoral condyle and the osseointegration surface 22 of the distal end of the femoral condyle,
  • the osseointegration surface 21 at the rear end of the femoral condyle is arranged in a vertical plane
  • the osseointegration surface 22 at the distal end of the femoral condyle is arranged in an arc shape, and has a common spherical center with the articular surface 1 of the femoral condyle; the middle part of the osseointegration surface 22 at the distal end of the femoral condyle
  • a first cylindrical fixation post 4 is provided, and a second cylindrical fixation post 5 is provided at the front of the osseointegr
  • the first type of bone trabecular 8 has a pore diameter of 0.50 mm and a porosity of 70%;
  • the second type of trabecular bone 9 has a pore size of 0.70 mm and a porosity of 80%;
  • the thickness of the first trabecular bone and the second trabecular bone was 1.5 mm.
  • a method for preparing a trabecular bone single-compartment femoral condyle with an oxide layer of zirconium-niobium alloy zone includes the following steps:
  • the first intermediate product of the trabecular bone single-compartment femoral condyle containing the oxide layer of zirconium-niobium alloy is obtained by integral molding through 3D printing. Under the protection of helium, the temperature was raised to 1325°C, placed at a constant temperature of 160MPa for 2 hours, lowered to normal pressure, cooled to below 200°C with the furnace, and taken out to obtain the second intermediate product;
  • Steps 2) and 3) of adjusting the temperature are as follows: the temperature is raised to -100°C, and kept at a constant temperature for 4 hours; the temperature is then raised to -30°C, and the temperature is kept at a constant temperature for 4 hours; the temperature is raised to 6°C and kept at a constant temperature for 2 hours, and the temperature is raised;
  • the fifth intermediate product is placed in the tube furnace, and the normal pressure helium gas containing 10% oxygen-containing mass percentage is introduced, heated to 600°C at 15°C/min, cooled to 450°C at 0.7°C/min, and then heated to 600°C at 15°C/min.
  • the chemical composition of the zirconium-niobium alloy powder is 93.4% Zr, 5.1% Nb, and the rest are inevitable impurities by mass percentage; Metal Materials LLC.
  • the structure of the trabecular single-compartment femoral condyle of the oxide-containing zirconium-niobium alloy partitioned in this embodiment is the same as the structure of the oxide-containing zirconium-niobium alloy partitioned bone trabecular single-compartment femoral condyle of Example 1.
  • the first kind of trabecular bone 8 has a pore size of 0.40 mm and a porosity of 60%;
  • the second type of trabecular bone 9 has a pore size of 0.61 mm and a porosity of 76%;
  • the thickness of the first trabecular bone and the second trabecular bone was 1 mm.
  • a method for preparing a trabecular bone single-compartment femoral condyle with an oxide layer of zirconium-niobium alloy comprising the following steps:
  • the first intermediate product of the trabecular bone single-compartment femoral condyle containing oxide layer of zirconium-niobium alloy is obtained by 3D printing integral molding, and the first intermediate product is put into a hot isostatic pressing furnace, Under the protection of argon, the temperature was raised to 1400°C, placed at a constant temperature of 140MPa for 1 h, lowered to normal pressure, cooled to below 200°C with the furnace, and taken out to obtain the second intermediate product;
  • Steps 2) and 3) The specific steps of adjusting the temperature are: heating to -80°C, maintaining a constant temperature for 3 hours; heating to -20°C, maintaining a constant temperature for 3 hours; heating to 8°C, maintaining a constant temperature for 1 hour, and heating up.
  • the fourth intermediate product machining, trimming, polishing, cleaning and drying to obtain a fifth intermediate product, the roughness Ra of the articular surface of the femoral condyle of the fifth intermediate product is 0.050 ⁇ m;
  • the chemical composition of the zirconium-niobium alloy powder is 96.5% Zr, 1% Nb, and the rest are inevitable impurities by mass percentage; Metal Materials Co., Ltd.;
  • the structure of the trabecular single-compartment femoral condyle of the oxide-containing zirconium-niobium alloy partitioned in this embodiment is the same as the structure of the oxide-containing zirconium-niobium alloy partitioned bone trabecular single-compartment femoral condyle of Example 1.
  • the first type of trabecular bone 8 has a pore size of 0.60 mm and a porosity of 75%;
  • the second type of trabecular bone 9 has a pore size of 0.80 mm and a porosity of 90%;
  • the thickness of the first trabecular bone and the second trabecular bone was 2 mm.
  • Example 1 The preparation method and structure of the unicompartmental femoral condyle of the uniform trabecular bone are different from those in Example 1:
  • the first type of bone trabeculae and the second type of bone trabeculae are the same type of bone trabeculae, the diameter of which is 0.50mm, the porosity is 70%, and the thickness of the bone trabecula is 1.5mm.
  • Example 1 Using zirconium-niobium alloy powder (same as Example 1) as raw material, through 3D printing integral molding and machining trimming, a single-compartment femoral condyle with the same structure as Example 1 was obtained.
  • the reliable biological fixation of the prosthesis-bone interface mainly depends on the initial stability of the prosthesis fixation. Excessive relative motion between the prosthesis and bone interface will inhibit the osseointegration process. Studies have shown that when the fretting of the prosthesis-bone interface exceeds 50-150 ⁇ m, a large amount of fibrous tissue will be formed at the bone interface, which will reduce the fixation strength of the prosthesis and eventually lead to the loosening of the prosthesis.
  • the finite element models of the control group 1 and example 1 and the simplified femoral condyle distal cancellous bone partition model were subjected to finite element analysis to obtain a micro-movement cloud map, as shown in Figure 3-4, which was similar to the uniform trabecular femur of the control group 1.
  • the maximum value of the fretting at the interface between the trabecular single-compartment femoral condyle finite element model of the trabecular bone and the femoral condyle bone tissue finite element model in Example 1 was 23.9 ⁇ m, which was reduced by 47%;
  • the maximum value of the fretting at the rear end interface of the finite element model of the condyle is 9.44 ⁇ m, which is reduced by 26%, indicating that the present invention can obtain small fretting and has excellent initial stability.
  • the finite element model of control group 1 and example 1 and the simplified femoral condyle distal cancellous bone partition model were subjected to finite element analysis to obtain the contact pressure cloud map ( Figure 5-6) and the equivalent stress cloud map ( Figure 7-8).
  • the contact pressure of the trabecular single-compartment femoral condyle of the trabecular bone in Example 1 is more uniform, indicating that the bone ingrowth performance of the present invention is uniform; the equivalent stress is the largest.
  • the value is 2.23 MPa, a decrease of 37.8%, indicating that the present invention can effectively reduce the stress shielding effect and has excellent bone ingrowth performance.
  • the oxide-containing zirconium-niobium alloy partitioned bone trabecular single-compartment femoral condyle of the present invention has excellent and uniform bone ingrowth performance, avoids prosthesis loosening caused by osteoporosis after long-term implantation of the prosthesis, and obtains long-term stability. sex;
  • An electronic universal testing machine (UTM5105, Shenzhen Sansi Zongheng Technology Co., Ltd., China) used a solid compression test piece (the size of the test piece is: 8*8*) without performing steps 4) and 5) of the preparation method in Example 1. 10mm 3 ) and the solid compression test pieces of the control group 2 (specimen size: 8*8*10 mm 3 ) were tested for compression performance, and each of the solid compression test pieces of Example 1 and the control group 2 was 5 pieces. The results are shown in Table 1.
  • Example 1 The compressive yield strength of Example 1 is 546.72 MPa, which is better than that of Control Group 2 (P ⁇ 0.05), indicating that the solid part of the trabecular single-compartment femoral condyle of the oxide-containing zirconium-niobium alloy zone of the present invention has Excellent compression resistance.
  • the yield strength of the trabecular bone in Example 1 was 19.21 MPa, which was significantly higher than that in the control group 2 (P ⁇ 0.05), indicating that the trabecular bone of the present invention contained a zirconium-niobium alloy zone.
  • the trabecular part of the bone has excellent compressive properties.
  • XRD XRD (D8DISCOVER, Bruker, Germany) analyzed the oxide layer of the trabecular bone single-compartment femoral condyle of the zirconium-niobium alloy zone containing the oxide layer in Example 1 (Fig. 14), and the oxide layer contained monoclinic zirconium dioxide and tetragonal phase dioxide zirconium.
  • a microhardness tester (MHVS-1000 PLUS, Shanghai Aolong Xingdi Testing Equipment Co., Ltd., China) was used to measure the microhardness of the trabecular single-compartment femoral condyle of the zirconium-niobium alloy containing oxide layer in Examples 1-3, and test The load is 0.05kg, the load time of the specimen is 20s, and 8 points are taken from each specimen.
  • the average hardness values measured in Examples 1-3 are 1948.6Hv, 1923.7Hv and 1967.2Hv, indicating that the oxide layer of the zirconium-niobium alloy containing oxide layer of the present invention has high hardness of the oxide layer of the trabecular single-compartment femoral condyle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)
  • Powder Metallurgy (AREA)

Abstract

含氧化层锆铌合金分区骨小梁单间室股骨髁及制备方法,以锆铌合金粉为原料,经3D打印一体成型得到含氧化层锆铌合金分区骨小梁单间室股骨髁的中间产物,再经热等静压、深冷和表面氧化,得到含氧化层锆铌合金分区骨小梁单间室股骨髁,该股骨髁包括股骨髁关节面(1)和骨整合面(2),骨整合面(2)分区设置骨小梁(6)。该股骨髁可降低假体与骨界面的微动,降低假体对骨组织的应力遮挡效应,使股骨髁骨组织应力均一,提高单间室股骨髁的初始稳定性与长期稳定性。

Description

含氧化层锆铌合金分区骨小梁单间室股骨髁及制备方法 技术领域
本发明涉及人工关节领域,尤其是涉及含氧化层锆铌合金分区骨小梁单间室股骨髁及制备方法。
背景技术
单间室膝关节假体用于对膝关节单侧病变间室进行表面置换,具有手术切口小、术中截骨量少、保留膝关节韧带结构等特点,因此单髁置换术后恢复快、保存了膝关节的正常运动和本体感觉。
生物型单间室膝关节假体可实现骨组织与假体界面的有效嵌合,避免骨水泥固定带来的缺陷。目前,生物型单间室膝关节假体多为双涂层工艺(钛微孔+HA涂层),存在涂层脱落、涂层喷涂厚度不均匀等问题。并且,人工关节置换失败的主要原因是假体松动,假体与骨之间巨大的刚度不匹配所引发的应力遮挡将引起假体周围骨重塑并导致假体松动。现有生物型单间室膝关节假体的基体部分仍为实体结构,弹性模量远大于骨组织,这将大幅度增加假体与骨界面间的应力遮挡效应,进而降低成骨细胞的形成,最终导致假体松动。
另外,由于生物型单间室股骨髁假体的后髁截骨面位置所处的力学环境为剪切力,且骨密度相对较低,临床中,固定柱至后髁的骨组织区域骨吸收情况普遍,极易引发假体长期松动。3D打印均匀骨小梁单间室膝关节假体可在一定程度上降低应力遮挡效应,提高假体的长期生存率。但由于骨组织在不同区域的力学差异性,以及假体在不同区域的力学环境差异性,将造成均匀骨小梁假体固定的不均匀性,对假体的长期稳定性造成一定影响,增加失败风险。
锆铌合金具有优异耐腐蚀性、力学性能和良好生物相容性,被逐渐应用于医疗器械领域。锆铌合金可与N、C、O等元素反应在表面形成坚硬的氧化层,具有优异耐磨性和低磨损率,可降低对软体材料的磨损,即具有关节面界面的优异耐磨性;且氧化层可降低金属离子的释放,具有优异生物相容性,即具有骨整合界面的优异生物相容性。低磨损率的关节面与骨长入性能优异的骨整合界面(骨小梁)有机配伍,可使假体同时实现两界面优点。但现有技术未能同时实现此优化设计。
3D打印技术,作为一种增材制造技术,突破面向制造工艺的产品设计概念,实现面向性能的产品设计理念,即解决复杂零件难以整体成型难题,又减少机加工制造带来的原材料和能源浪费。但3D打印产品实体部分易存在显微组织不均匀、内部缺陷等问题,力学性能不佳;骨小梁部分结构中粉末未能得到良好熔结,力学性能差。
针对现有技术的不足之处,本领域的技术人员致力于开发力学性能优异、同时实现两界面优点的含氧化层锆铌合金分区骨小梁单间室股骨髁,提高单间室股骨髁的固定可靠性以及假体的初始稳定与长期稳定性。
发明内容
本发明的主要目的在于克服现有技术的不足,提供含氧化层锆铌合金分区骨小梁单间室股骨髁。
本发明的第二个目的是提供含氧化层锆铌合金分区骨小梁单间室股骨髁的制备方法。
本发明的技术方案概述如下:
含氧化层锆铌合金分区骨小梁单间室股骨髁的制备方法,包括如下步骤:
1)以锆铌合金粉为原料,经3D打印一体成型得到含氧化层锆铌合金分区骨小梁单间室股骨髁的第一中间产物,将第一中间产物放入热等静压炉,在氩气或氦气保护下,升温至1250℃-1400℃,在140MPa-180MPa,恒温放置1h-3h,降至常压,随炉冷却至200℃以下取出,得到第二中间产物:
2)将第二中间产物放置于程序性降温盒中以1℃/min的速度降温至-80℃~-120℃,恒温放置5h-10h,从程序性降温盒中取出;在液氮中再放置16h-36h,调节温度至室温,得到第三中间产物;
3)将第三中间产物放置于程序性降温盒中以1℃/min的速度降温至-80℃~-120℃,恒温放置5h-10h;从程序性降温盒中取出;在液氮中再放置16h-36h,调节温度至室温;得第四中间产物;
4)将第四中间产物进行表面机加工修整、抛光、清洗和干燥,得第五中间产物;所述第五中间产物的股骨髁关节面的粗糙度Ra≤0.05μm;
5)将第五中间产物放置于管式炉内,通入含氧量为5%-15%的常压氩气或氦气,以5℃/min-20℃/min加热至500℃-700℃,以0.4℃/min-0.9℃/min降温至400℃-495℃,再自然冷却至200℃以下取出,得到含氧化层锆铌合金分区骨小梁单间室股骨髁;
含氧化层锆铌合金分区骨小梁单间室股骨髁的第一中间产物、第二中间产物、第三中间产物、第四中间产物和第五中间产物的结构与含氧化层锆铌合金分区骨小梁单间室股骨髁的结构相同。
含氧化层锆铌合金分区骨小梁单间室股骨髁的结构包括股骨髁关节面1和骨整合面2,股骨髁关节面1的纵截面呈弧形,骨整合面包括股骨髁后端骨整合面21和股骨髁远端骨整合面22,股骨髁后端骨整合面为竖直平面设置,股骨髁远端骨整合面为弧形设置,且与股骨髁关节面具有共同球心;股骨髁远端骨整合面中部设置有第一圆柱形固定柱4,股骨髁远端骨整合面前部设置有第二圆柱形固定柱5,第二圆柱形固定柱5的直径小于第一圆柱形固定柱4;骨整合面2的边缘设置有侧壁3,在侧壁以内除设置第一圆柱形固定柱和第二圆柱形固定柱以外的其他部分分区设置骨小梁6,骨小梁分区线7位于所述骨整合面前后方向的中部;骨小梁分区线之前、后分别设置有第一种骨小梁8和第二种骨小梁9,第一种骨小梁的孔径和孔隙率小于第二种骨小梁的孔径和孔隙率。
第一种骨小梁的孔径为0.40mm-0.60mm,孔隙率为60%-75%;
第二种骨小梁的孔径为0.61mm-0.80mm,孔隙率为76%-90%;
第一种骨小梁和第二种骨小梁的厚度相等,为1mm-2mm。
锆铌合金粉的化学成分按质量百分比计分别为85.6%-96.5%的Zr,1.0%-12.5%的Nb,其余为不可避免的杂质。所述锆铌合金粉的粒径为45-150μm。
步骤2)、3)中所述调节温度为:升温至-120℃~-80℃,恒温保持3h-5h;升温至-40℃~-20℃,恒温保持3h-5h;升温至4℃-8℃,恒温保持1h-3h,升温。
上述方法制备的含氧化层锆铌合金分区骨小梁单间室股骨髁。
本发明的优点:
本发明的含氧化层锆铌合金分区骨小梁单间室股骨髁可降低假体与骨界面的微动,降低假体对骨组织的应力遮挡效应,使股骨髁骨组织的应力均一,提高单间室股骨髁的初始稳定性与长期稳定性。本发明采用3D打印一体成型,解决传统机加工无法制备复杂结构的难题,且骨小梁与实体结合强度高,不易脱落,提升假体寿命。本发明含氧化层锆铌合金分区骨小梁单间室股骨髁骨小梁具有优异抗压性能;实体部分抗压屈服强度增强,塑性增强。本发明一体化实现骨整合界面的优良生物相容性、骨长入性和摩擦界面的超强耐磨性、低磨损率。本发明的含氧化层锆铌合金分区骨小梁单间室股骨髁的氧化层与基体之间存在富氧层,富氧层有过渡层作用,提高氧化层与基体之间附着力,避免氧化层脱落,且氧化层硬度高。本发明的含氧化层锆铌合金分区骨小梁单间室股骨髁低伪影,对核磁干扰小,可进行核磁检测。
附图说明
图1为本发明含氧化层锆铌合金分区骨小梁单间室股骨髁的结构示意图。
图2为本发明含氧化层锆铌合金分区骨小梁单间室股骨髁的俯视图。
图3为对照组1的均匀骨小梁单间室股骨髁有限元模型与股骨髁骨组织有限元模型界面处的微动云图。
图4为实施例1的含氧化层锆铌合金分区骨小梁单间室股骨髁有限元模型与股骨髁骨组织有限元模型界面处的微动云图。
图5为对照组1的均匀骨小梁单间室股骨髁有限元模型的接触压力云图;
图6为实施例1的含氧化层锆铌合金分区骨小梁单间室股骨髁有限元模型接触压力云图;
图7为对照组1的均匀骨小梁单间室股骨髁有限元模型等效应力云图;
图8为实施例1的含氧化层锆铌合金分区骨小梁单间室股骨髁有限元模型等效应力云图;
图9为对照组2的实体部分金相显微结构图(A为放大50倍观察;B为放大500倍观察)。
图10为实施例1的未进行制备方法中步骤4)和步骤5)的实体部分金相显微结构图(A为放大50倍观察;B为放大500倍观察)。
图11为对照组2的骨小梁部分SEM图。
图12为实施例1的未进行制备方法中步骤4)和步骤5)的骨小梁部分SEM图。
图13为实施例1的氧化层与基体的横截面SEM图。
图14为实施例1的氧化层表面的XRD曲线。
具体实施方式
下面结合具体实施例对本发明作进一步的说明。
实施例1
含氧化层锆铌合金分区骨小梁单间室股骨髁(见图1-2)的制备方法,包括如下步骤:
1)以锆铌合金粉为原料,经3D打印一体成型得到含氧化层锆铌合金分区骨小梁单间室股骨髁的第一中间产物,将第一中间产物放入热等静压炉,在氦气保护下,升温至1250℃,在180MPa,恒温放置3h,降至常压,随炉冷却至200℃以下取出,得到第二中间产物;
2)将第二中间产物放置于程序性降温盒中以1℃/min的速度降温至-80℃,恒温放置10h,从程序性降温盒中取出;在液氮中再放置16h,调节温度至室温,得到第三中间产物;
3)将第三中间产物放置于程序性降温盒中以1℃/min的速度降温至-80℃,恒温放置10h;从程序性降温盒中取出;在液氮中再放置16h,调节温度至室温;得第四中间产物;
步骤2)、3)调节温度具体步骤是:升温至-120℃,恒温保持5h;再升温至-40℃,恒温保持5h;再升温至4℃,恒温保持3h,升温。
4)将第四中间产物进行机加工修整、抛光、清洗和干燥,得第五中间产物,所述第五中间产物的股骨髁关节面的粗糙度Ra=0.012μm;
5)将第五中间产物放置于管式炉内,通入含氧质量百分比为5%的常压氦气,以5℃/min加热至500℃,以0.4℃/min降温至400℃,再自然冷却至200℃以下取出,得到含氧化层锆铌合金分区骨小梁单间室股骨髁;
含氧化层锆铌合金分区骨小梁单间室股骨髁的第一中间产物、第二中间产物、第三中间产物、第四中间产物和第五中间产物的结构与含氧化层锆铌合金分区骨小梁单间室股骨髁的结构相同。
锆铌合金粉的化学成分按质量百分比分别为85.6%的Zr,12.5%的Nb,其余为不可避免的杂质;所述锆铌合金粉的粒径为45-150μm,购置于西安赛隆金属材料有限责任公司。
含氧化层锆铌合金分区骨小梁单间室股骨髁的结构:
包括股骨髁关节面1和骨整合面2,所述股骨髁关节面1的纵截面呈弧形,所述骨整合面包括股骨髁后端骨整合面21和股骨髁远端骨整合面22,股骨髁后端骨整合面21为竖直平面设置,股骨髁远端骨整合面22为弧形设置,且与股骨髁关节面1具有共同球心;所述股骨髁远端骨整合面22中部设置有第一圆柱形固定柱4,股骨髁远端骨整合面前部设置有第二圆柱形固定柱5,第二圆柱形固定柱5的直径小于第一圆柱形固定柱4;骨整 合面2的边缘设置有侧壁3,在侧壁3以内除设置第一圆柱形固定柱4和第二圆柱形固定柱5以外的其他部分分区设置骨小梁6,骨小梁分区线7位于所述骨整合面2前后方向的中部;骨小梁分区线7之前、后分别设置有第一种骨小梁8和第二种骨小梁9,第一种骨小梁的孔径和孔隙率小于第二种骨小梁的孔径和孔隙率。
第一种骨小梁8的孔径为0.50mm,孔隙率为70%;
第二种骨小梁9的孔径为0.70mm,孔隙率为80%;
第一种骨小梁和第二种骨小梁的厚度为1.5mm。
实施例2
含氧化层锆铌合金分区骨小梁单间室股骨髁的制备方法,包括如下步骤:
1)以锆铌合金粉为原料,经3D打印一体成型得到含氧化层锆铌合金分区骨小梁单间室股骨髁的第一中间产物,将第一中间产物放入热等静压炉,在氦气保护下,升温至1325℃,在160MPa,恒温放置2h,降至常压,随炉冷却至200℃以下取出,得到第二中间产物;
2)将第二中间产物放置于程序性降温盒中以1℃/min的速度降温至-100℃,恒温放置7h,从程序性降温盒中取出;在液氮中再放置24h,调节温度至室温,得到第三中间产物;
3)将第三中间产物放置于程序性降温盒中以1℃/min的速度降温至-100℃,恒温放置7h;从程序性降温盒中取出;在液氮中再放置24h,调节温度至室温;得第四中间产物;
步骤2)、3)调节温度的步骤为:升温至-100℃,恒温保持4h;再升温至-30℃,恒温保持4h;升温至6℃恒温保持2h,升温;
4)将第四中间产物进行机加工修整、抛光、清洗和干燥,得第五中间产物,所述第五中间产物的股骨髁关节面的粗糙度Ra=0.035μm;
5)将第五中间产物放置于管式炉内,通入含氧质量百分比为10%的常压氦气,以15℃/min加热至600℃,以0.7℃/min降温至450℃,再自然冷却至200℃以下取出,得到含氧化层锆铌合金分区骨小梁单间室股骨髁;
含氧化层锆铌合金分区骨小梁单间室股骨髁的第一中间产物、第二中间产物、第三中间产物、第四中间产物和第五中间产物的结构与含氧化层锆铌合金分区骨小梁单间室股骨髁的结构相同。
所述锆铌合金粉的化学成分按质量百分比分别为93.4%的Zr,5.1%的Nb,其余为不可避免的杂质;所述锆铌合金粉的粒径为45-150μm,购置于西安赛隆金属材料有限责任公司。
本实施例的含氧化层锆铌合金分区骨小梁单间室股骨髁的结构同实施例1的含氧化层锆铌合金分区骨小梁单间室股骨髁的结构。
不同的是,
第一种骨小梁8的孔径为0.40mm,孔隙率为60%;
第二种骨小梁9的孔径为0.61mm,孔隙率为76%;
第一种骨小梁和第二种骨小梁的厚度为1mm。
实施例3
1.含氧化层锆铌合金分区骨小梁单间室股骨髁的制备方法,包括如下步骤:
(1)以锆铌合金粉为原料,经3D打印一体成型得到含氧化层锆铌合金分区骨小梁单间室股骨髁的第一中间产物,将第一中间产物放入热等静压炉,在氩气保护下,升温至1400℃,在140MPa,恒温放置1h,降至常压,随炉冷却至200℃以下取出,得到第二中间产物;
(2)将第二中间产物放置于程序性降温盒中以1℃/min的速度降温至-120℃,恒温放置5h,从程序性降温盒中取出;在液氮中再放置36h,调节温度至室温,得到第三中间产物;
(3)将第三中间产物放置于程序性降温盒中以1℃/min的速度降温至-120℃,恒温放置5h;从程序性降温盒中取出;在液氮中再放置36h,调节温度至室温;得第四中间产物;
步骤2)、3)调节温度具体步骤是:升温至-80℃,恒温保持3h;再升温至-20℃,恒温保持3h;再升温至8℃,恒温保持1h,升温。
(4)将第四中间产物进行机加工修整、抛光、清洗和干燥,得第五中间产物,所述第五中间产物的股骨髁关节面的粗糙度Ra=0.050μm;
(5)将第五中间产物放置于管式炉内,通入含氧质量百分比为15%的常压氩气,以20℃/min加热至700℃,以0.9℃/min降温至495℃,自然冷却至200℃以下取出,得到含氧化层锆铌合金分区骨小梁单间室股骨髁;
含氧化层锆铌合金分区骨小梁单间室股骨髁的第一中间产物、第二中间产物、第三中间产物、第四中间产物和第五中间产物的结构与含氧化层锆铌合金分区骨小梁单间室股骨髁的结构相同。
所述锆铌合金粉的化学成分按质量百分比分别为96.5%的Zr,1%的Nb,其余为不可避免的杂质;所述锆铌合金粉的粒径为45-150μm,购置于西安赛隆金属材料有限责任公司;
本实施例的含氧化层锆铌合金分区骨小梁单间室股骨髁的结构同实施例1的含氧化层锆铌合金分区骨小梁单间室股骨髁的结构。
不同的是,
第一种骨小梁8的孔径为0.60mm,孔隙率为75%;
第二种骨小梁9的孔径为0.80mm,孔隙率为90%;
第一种骨小梁和第二种骨小梁的厚度为2mm。
对照组1
均匀骨小梁单间室股骨髁的制备方法和结构与实施例1不同的是,
第一种骨小梁和第二种骨小梁为同一种骨小梁,其孔径为0.50mm,孔隙率为70%,骨小梁的厚度为1.5mm。
对照组2
以锆铌合金粉(同实施例1)为原料,经3D打印一体成型和机加工修整,得到结构同实施例1的单间室股骨髁。
实验验证:
假体与骨界面可靠的生物固定,主要依赖于假体固定的初始稳定性。假体与骨界面间过度的相对运动将抑制骨整合过程。研究表明,假体-骨界面的微动超过50~150μm时,骨界面将形成大量的纤维组织,将降低假体固定强度,最终导致假体松动。对照组1和实施例1的有限元模型和简化的股骨髁远端松质骨分区模型进行有限元分析得到微动云图,如图3-4所示,与对照组1的均匀骨小梁股骨髁相比,实施例1的含氧化层锆铌合金分区骨小梁单间室股骨髁有限元模型与股骨髁骨组织有限元模型界面处的微动最大值为23.9μm,降低了47%;股骨髁有限元模型后端界面处微动最大值为9.44μm,降低了26%,提示本发明可获得较小微动,具有优异的初始稳定性。
对照组1和实施例1的有限元模型和简化的股骨髁远端松质骨分区模型进行有限元分析得到接触压力云图(图5-6)和等效应力云图(图7-8)。与对照组1的均匀骨小梁股骨髁相比,实施例1含氧化层锆铌合金分区骨小梁单间室股骨髁的接触压力更均匀,提示本发明骨长入性能均一;等效应力最大值为2.23MPa,降低了37.8%,提示本发明可有效降低应力遮挡效应,具有优异骨长入性能。结果表明本发明所述含氧化层锆铌合金分区骨小梁单间室股骨髁具有优异且均一的骨长入性能,避免假体长期植入后因骨质疏松造成的假体松动,获得长期稳定性;
有限元分析结果证明,实施例2、3的微动云图、接触压力云图、等效应力云图与实施例1相似。
倒置万能材料显微镜(Axio Vert.A1,德国蔡司zeiss公司,德国)对对照组2的实体部分和实施例1的未进行所述制备方法中步骤4)和步骤5)的实体部分进行金相显微组织观察。结果如图9-10所示,对照组2的金相照片中可以观察到细小α马氏体,组织较细小,易产生应力集中,塑性较差;实施例1金相显示为α相,呈网篮结构,晶粒细化。结果提示,本发明所述含氧化层锆铌合金分区骨小梁单间室股骨髁基体部分(不含氧化层)具有优异的强度和塑性。
扫描电子显微镜(Crossbeam340/550,蔡司,德国)对对照组2的骨小梁部分和实施例1的未进行所述制备方法中步骤4)和步骤5)骨小梁部分进行观察分析,结果如图11-12所示,与对照组2相比,实施例1含氧化层锆铌合金分区骨小梁单间室股骨髁的骨小梁结构中锆铌合金粉发生进一步熔结,提示骨小梁综合性能提高。
电子万能试验机(UTM5105,深圳三思纵横科技股份有限公司,中国)对实施例1未进行所述制备方法中步骤4)和步骤5)的实体压缩试件(试件大小为:8*8*10mm 3)和对照组2的实体压缩试件(试件大小为:8*8*10mm 3)进行压缩性能测试,实施例1和对照组2的实体压缩试件各5个。结果如表1所示,实施例1的抗压屈服强度为546.72MPa,优于对照组2(P<0.05),提示本发明含氧化层锆铌合金分区骨小梁单间室股骨髁实体部分具有优异抗压缩性能。
表1对照组2和实施例1的实体试件抗压缩实验结果(
Figure PCTCN2021101288-appb-000001
n=5,*P<0.05,与对照组2比较)
Figure PCTCN2021101288-appb-000002
电子万能试验机(UTM5105,深圳三思纵横科技股份有限公司,中国)对对照组2的孔径为0.50mm,孔隙率为70%的骨小梁压缩试件和实施例1的未进行所述制备方法中步骤4)和步骤5)的孔径为0.50mm,孔隙率为70%的骨小梁压缩试件(试件大小为:8*8*10mm 3)进行压缩实验,对照组2和实施例1的骨小梁压缩试件各5个。结果如表2所示,实施例1的骨小梁屈服强度为19.21MPa,显著高于对照组2(P<0.05),提示本发明含氧化层锆铌合金分区骨小梁单间室股骨髁的骨小梁部分抗压性能优异。
表2对照组2和实施例1的骨小梁试件抗压缩实验结果(
Figure PCTCN2021101288-appb-000003
n=5,*P<0.05,与对照组2比较)
Figure PCTCN2021101288-appb-000004
扫描电子显微镜(Crossbeam340/550,蔡司,德国)对实施例1所述含氧化层锆铌合金分区骨小梁单间室股骨髁的锆铌金属基体与氧化层的横截面进行观察,(见图13)。并对实施例2、3含氧化层锆铌合金分区骨小梁单间室股骨髁的锆铌金属基体与氧化层的横截面进行观察,其氧化层厚度分别为10.3μm、17.2μm和20.6μm,且氧化层与锆铌金属基体之间存在富氧层,增强锆铌合金基体与氧化层之间的结合力。
XRD(D8DISCOVER,Bruker,德国)对实施例1含氧化层锆铌合金分区骨小梁单间室股骨髁的氧化层进行分析(图14),氧化层包含单斜相二氧化锆和四方相二氧化锆。
显微硬度仪(MHVS-1000 PLUS,上海奥龙星迪检测设备有限公司,中国)对实施例1-3的含氧化层锆铌合金分区骨小梁单间室股骨髁进行显微硬度测量,测试载荷为0.05kg,试件载荷时间为20s,每个试件取8个点。实施例1-3测得平均硬度值为1948.6Hv、1923.7Hv和1967.2Hv,提示本发明所述含氧化层锆铌合金分区骨小梁单间室股骨髁的氧化层硬度高。
实验证明,实施例2、3制备的含氧化层锆铌合金分区骨小梁单间室股骨髁的骨小梁部分的锆铌合金粉熔结程度、抗压性能,实体部分抗压性能、金相组织,氧化层的晶体结构、厚度和硬度与实施例1制备的含氧化层锆铌合金分区骨小梁单间室股骨髁相似。

Claims (5)

  1. 含氧化层锆铌合金分区骨小梁单间室股骨髁的制备方法,其特征是包括如下步骤:
    1)以锆铌合金粉为原料,经3D打印一体成型得到含氧化层锆铌合金分区骨小梁单间室股骨髁的第一中间产物,将第一中间产物放入热等静压炉,在氩气或氦气保护下,升温至1250℃-1400℃,在140MPa-180MPa,恒温放置1h-3h,降至常压,随炉冷却至200℃以下取出,得到第二中间产物:
    2)将第二中间产物放置于程序性降温盒中以1℃/min的速度降温至-80℃~-120℃,恒温放置5h-10h,从程序性降温盒中取出;在液氮中再放置16h-36h,调节温度至室温,得到第三中间产物;
    3)将第三中间产物放置于程序性降温盒中以1℃/min的速度降温至-80℃~-120℃,恒温放置5h-10h;从程序性降温盒中取出;在液氮中再放置16h-36h,调节温度至室温;得第四中间产物;
    4)将第四中间产物进行表面机加工修整、抛光、清洗和干燥,得第五中间产物;所述第五中间产物的股骨髁关节面的粗糙度Ra≤0.05μm;
    5)将第五中间产物放置于管式炉内,通入含氧量为5%-15%的常压氩气或氦气,以5℃/min-20℃/min加热至500℃-700℃,以0.4℃/min-0.9℃/min降温至400℃-495℃,再自然冷却至200℃以下取出,得到含氧化层锆铌合金分区骨小梁单间室股骨髁;
    含氧化层锆铌合金分区骨小梁单间室股骨髁的第一中间产物、第二中间产物、第三中间产物、第四中间产物和第五中间产物的结构与含氧化层锆铌合金分区骨小梁单间室股骨髁的结构相同;
    所述含氧化层锆铌合金分区骨小梁单间室股骨髁的结构包括股骨髁关节面(1)和骨整合面(2),所述股骨髁关节面(1)的纵截面呈弧形,所述骨整合面包括股骨髁后端骨整合面(21)和股骨髁远端骨整合面(22),股骨髁后端骨整合面(21)为竖直平面设置,股骨髁远端骨整合面(22)为弧形设置,且与股骨髁关节面(1)具有共同球心;所述股骨髁远端骨整合面(22)中部设置有第一圆柱形固定柱(4),股骨髁远端骨整合面前部设置有第二圆柱形固定柱(5),第二圆柱形固定柱(5)的直径小于第一圆柱形固定柱(4);骨整合面(2)的边缘设置有侧壁(3),在侧壁(3)以内除设置第一圆柱形固定柱(4)和第二圆柱形固定柱(5)以外的其他部分分区设置骨小梁(6),骨小梁分区线(7)位于所述骨整合面(2)前后方向的中部;骨小梁分区线(7)之前、 后分别设置有第一种骨小梁(8)和第二种骨小梁(9),第一种骨小梁的孔径和孔隙率小于第二种骨小梁的孔径和孔隙率。
  2. 根据权利要求1所述的方法,其特征是所述第一种骨小梁(8)的孔径为0.40mm-0.60mm,孔隙率为60%-75%;所述第二种骨小梁(9)的孔径为0.61mm-0.80mm,孔隙率为76%-90%;所述第一种骨小梁和第二种骨小梁的厚度相等,为1mm-2mm。
  3. 根据权利要求1所述的方法,其特征在于所述锆铌合金粉的化学成分按质量百分比计分别为85.6%-96.5%的Zr,1.0%-12.5%的Nb,其余为不可避免的杂质;所述锆铌合金粉的粒径为45-150μm。
  4. 根据权利要求1所述的方法,其特征在于,所述步骤2)、3)中所述调节温度为:升温至-120℃~-80℃,恒温保持3h-5h;升温至-40℃~-20℃,恒温保持3h-5h;升温至4℃-8℃,恒温保持1h-3h,升温。
  5. 权利要求1-4之一的方法制备的含氧化层锆铌合金分区骨小梁单间室股骨髁。
PCT/CN2021/101288 2020-10-30 2021-06-21 含氧化层锆铌合金分区骨小梁单间室股骨髁及制备方法 WO2022088705A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022545447A JP7392167B2 (ja) 2020-10-30 2021-06-21 酸化物層を含むジルコニウム・ニオブ合金の領域分割骨梁単一コンパートメント大腿骨顆及びその製造方法
EP21884446.2A EP4086022B1 (en) 2020-10-30 2021-06-21 Oxide layer-containing zirconium-niobium alloy partitioned trabecular bone single-compartment femoral condyle and preparation method
US17/907,913 US20230321729A1 (en) 2020-10-30 2021-06-21 Zonal trabecular uni-compartmental femoral condylar component containing zirconium-niobium alloy on oxidation layer and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011191014.8 2020-10-30
CN202011191014.8A CN112296342B (zh) 2020-10-30 2020-10-30 含氧化层锆铌合金分区骨小梁单间室股骨髁及制备方法

Publications (1)

Publication Number Publication Date
WO2022088705A1 true WO2022088705A1 (zh) 2022-05-05

Family

ID=74332786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101288 WO2022088705A1 (zh) 2020-10-30 2021-06-21 含氧化层锆铌合金分区骨小梁单间室股骨髁及制备方法

Country Status (5)

Country Link
US (1) US20230321729A1 (zh)
EP (1) EP4086022B1 (zh)
JP (1) JP7392167B2 (zh)
CN (1) CN112296342B (zh)
WO (1) WO2022088705A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115970058A (zh) * 2022-12-21 2023-04-18 北京市春立正达医疗器械股份有限公司 一种股骨髁表面制备陶瓷改性层的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112296342B (zh) * 2020-10-30 2023-03-10 嘉思特华剑医疗器材(天津)有限公司 含氧化层锆铌合金分区骨小梁单间室股骨髁及制备方法
CN113209381A (zh) * 2021-04-23 2021-08-06 江苏毅松医疗科技有限公司 一种人工膝关节骰骨髁及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477864A (en) * 1989-12-21 1995-12-26 Smith & Nephew Richards, Inc. Cardiovascular guidewire of enhanced biocompatibility
WO2010036191A1 (en) * 2008-09-23 2010-04-01 Sandvik Intellectual Property Ab Titanium-based alloy
CN105030383A (zh) * 2015-05-08 2015-11-11 江苏奥康尼医疗科技发展有限公司 一种组合式全有机高分子材料单髁人工膝关节
CN205019202U (zh) * 2015-07-03 2016-02-10 江苏奥康尼医疗科技发展有限公司 一种骨缺损填充物
CN108472730A (zh) * 2015-11-20 2018-08-31 泰坦脊椎公司 增材制造骨科植入物的处理
CN109385548A (zh) * 2018-10-25 2019-02-26 湖南工业大学 一种基于液态氮冷却的硬质合金成型方法
CN112296342A (zh) * 2020-10-30 2021-02-02 嘉思特华剑医疗器材(天津)有限公司 含氧化层锆铌合金分区骨小梁单间室股骨髁及制备方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0555033T3 (da) * 1992-02-07 1999-12-13 Smith & Nephew Inc Overfladehærdede, biokompatible medicinske implantater af metal
US6585772B2 (en) * 1997-03-27 2003-07-01 Smith & Nephew, Inc. Method of surface oxidizing zirconium and zirconium alloys and resulting product
US5900083A (en) * 1997-04-22 1999-05-04 The Duriron Company, Inc. Heat treatment of cast alpha/beta metals and metal alloys and cast articles which have been so treated
CA2468512A1 (en) * 2001-12-06 2003-06-19 Smith & Nephew, Inc. In-situ oxidized textured surfaces for prosthetic devices and method of making same
EP1803513B1 (en) * 2005-12-30 2017-03-29 Howmedica Osteonics Corp. Method of manufacturing implants using laser
US7951412B2 (en) * 2006-06-07 2011-05-31 Medicinelodge Inc. Laser based metal deposition (LBMD) of antimicrobials to implant surfaces
US20100256758A1 (en) * 2009-04-02 2010-10-07 Synvasive Technology, Inc. Monolithic orthopedic implant with an articular finished surface
JP6933879B2 (ja) * 2012-02-20 2021-09-08 スミス アンド ネフュー インコーポレイテッド 多孔質構造体、及びその作製方法
CA2903188A1 (en) * 2013-03-05 2014-09-12 Pcc Structurals Inc. Bonding of titanium coating to cast cocr
RU2016143164A (ru) * 2014-04-11 2018-05-14 Смит Энд Нефью, Инк. Dmls ортопедическое интрамедуллярное устройство и способ изготовления
CN204709085U (zh) * 2015-02-10 2015-10-21 江苏奥康尼医疗科技发展有限公司 一种有机高分子材料双滑动人工膝关节
FR3047489B1 (fr) * 2016-02-08 2022-09-23 Abdelmadjid Djemai Procede de fabrication d'un beta-alliage titane niobium zirconium (tnz) a tres bas module d'elasticite pour applications biomedicales et son mode de realisation par fabrication additive
EP3475013B1 (en) * 2016-06-28 2021-04-21 Viper Technologies LLC Methods of forming an oxide layer on a metal body
CN106618804B (zh) * 2016-12-28 2018-06-22 嘉思特华剑医疗器材(天津)有限公司 一种骨诱导差异化的金属骨小梁膝关节假体及其制备方法
WO2018197706A1 (en) * 2017-04-28 2018-11-01 Evonik Röhm Gmbh Biodegradable bone glue
CN109620481A (zh) * 2019-02-02 2019-04-16 优适医疗科技(苏州)有限公司 膝关节股骨髁部件及应用其的全髁关节系统
CN111118339B (zh) * 2020-01-06 2021-03-30 华南理工大学 一种含Si高强低模医用钛合金及其增材制造方法与应用
CN111297519B (zh) * 2020-02-17 2021-05-25 赵德伟 一种具有多孔层结构的金属髋关节假体及其制备方法
CN111345921A (zh) * 2020-03-09 2020-06-30 嘉思特华剑医疗器材(天津)有限公司 单间室膝关节假体及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477864A (en) * 1989-12-21 1995-12-26 Smith & Nephew Richards, Inc. Cardiovascular guidewire of enhanced biocompatibility
WO2010036191A1 (en) * 2008-09-23 2010-04-01 Sandvik Intellectual Property Ab Titanium-based alloy
CN105030383A (zh) * 2015-05-08 2015-11-11 江苏奥康尼医疗科技发展有限公司 一种组合式全有机高分子材料单髁人工膝关节
CN205019202U (zh) * 2015-07-03 2016-02-10 江苏奥康尼医疗科技发展有限公司 一种骨缺损填充物
CN108472730A (zh) * 2015-11-20 2018-08-31 泰坦脊椎公司 增材制造骨科植入物的处理
CN109385548A (zh) * 2018-10-25 2019-02-26 湖南工业大学 一种基于液态氮冷却的硬质合金成型方法
CN112296342A (zh) * 2020-10-30 2021-02-02 嘉思特华剑医疗器材(天津)有限公司 含氧化层锆铌合金分区骨小梁单间室股骨髁及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4086022A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115970058A (zh) * 2022-12-21 2023-04-18 北京市春立正达医疗器械股份有限公司 一种股骨髁表面制备陶瓷改性层的方法

Also Published As

Publication number Publication date
EP4086022B1 (en) 2024-10-16
JP7392167B2 (ja) 2023-12-05
US20230321729A1 (en) 2023-10-12
CN112296342B (zh) 2023-03-10
EP4086022A4 (en) 2024-02-07
CN112296342A (zh) 2021-02-02
EP4086022A1 (en) 2022-11-09
JP2023511697A (ja) 2023-03-22

Similar Documents

Publication Publication Date Title
WO2022088705A1 (zh) 含氧化层锆铌合金分区骨小梁单间室股骨髁及制备方法
WO2022088703A1 (zh) 含氧化层锆铌合金分区骨小梁单间室胫骨平台及制备方法
WO2022088704A1 (zh) 带有骨小梁的含氧化层锆铌合金胫骨平台假体及制备方法
WO2022088707A1 (zh) 含氧化层锆铌合金分区骨小梁股骨髁假体及制备方法
JP7470194B2 (ja) 酸化物層を含むジルコニウム・ニオブ合金の股関節プロテーゼシステム及びその製造方法
WO2022088702A1 (zh) 含氧化层锆铌合金踝关节假体系统及制备方法
US12091731B2 (en) Biomedical beta titanium alloy and preparation method thereof
CN112168433A (zh) 钴合金分区骨小梁单间室股骨髁假体及制备方法
WO2022088706A1 (zh) 含氧化层锆铌合金肩关节假体系统及制备方法
CN112155801B (zh) 含氧化层锆铌合金骨小梁单间室胫骨平台假体及制备方法
Miao et al. The mechanical properties and bioactivity of Ti–mg composites as orthopedic implants: a pilot study
CN112404432B (zh) 含氧化层锆铌合金骨小梁单间室股骨髁假体及制备方法
Bernard Surface modification and fatigue behavior of nitinol for load bearing implants
Barbosa et al. Characterization of HDH titanium powder for biomaterial applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884446

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022545447

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021884446

Country of ref document: EP

Effective date: 20220801

NENP Non-entry into the national phase

Ref country code: DE