WO2022088586A1 - 全自动化学发光免疫分析仪液路中气泡检测系统及方法 - Google Patents

全自动化学发光免疫分析仪液路中气泡检测系统及方法 Download PDF

Info

Publication number
WO2022088586A1
WO2022088586A1 PCT/CN2021/081006 CN2021081006W WO2022088586A1 WO 2022088586 A1 WO2022088586 A1 WO 2022088586A1 CN 2021081006 W CN2021081006 W CN 2021081006W WO 2022088586 A1 WO2022088586 A1 WO 2022088586A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
liquid path
current signal
infrared
pipeline
Prior art date
Application number
PCT/CN2021/081006
Other languages
English (en)
French (fr)
Inventor
尤文艳
Original Assignee
苏州长光华医生物医学工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州长光华医生物医学工程有限公司 filed Critical 苏州长光华医生物医学工程有限公司
Publication of WO2022088586A1 publication Critical patent/WO2022088586A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity

Definitions

  • the application belongs to the technical field of medical apparatus and equipment, and in particular relates to a system and method for detecting air bubbles in the liquid path of an automatic chemiluminescence immunoassay analyzer.
  • Fully automatic chemiluminescence immunoassay analyzer is a medical testing instrument that conducts immunological analysis of human body by detecting serum of patients. clinical diagnosis.
  • the technical problem to be solved by the present invention is: in order to solve the deficiencies in the prior art, a system and method for detecting air bubbles in the liquid path of an automatic chemiluminescence immunoassay analyzer are provided.
  • Liquid pipeline made of light-transmitting material
  • the sealing mounting seat is sleeved on the liquid pipeline
  • the infrared generator is arranged in the sealed mounting seat and located on one side of the liquid pipeline, and is used to emit infrared rays;
  • the infrared sensor is arranged on the other side of the liquid pipeline in the sealed mounting seat, and is used for receiving the infrared rays emitted by the infrared generator and passing through the liquid pipeline, and outputting a current signal;
  • the microprocessor is used to receive the current signal of the infrared sensor, match the current signal with the relationship between the set bubble size and the current signal, and output the size of the bubble.
  • the output current signal of the infrared sensor is first amplified by the amplifier and then connected to the microprocessor.
  • the liquid path pipeline includes a pipeline body, and the refractometers made of glass located on both sides of the infrared generator are distributed in the space surrounded by the sealed mounting seat.
  • the refracting body is a concave lens.
  • both sides of the refractor are concave.
  • the liquid path pipeline includes a pipeline body, and the refractometers made of glass located on both sides of the infrared generator are distributed in the space surrounded by the sealed mounting seat.
  • the refracting body is a convex lens, and the intersection of the two convex lenses with respect to infrared rays is located outside the receiving range of the infrared sensor.
  • the present invention also provides a method for detecting bubbles in the liquid path of an automatic chemiluminescence immunoassay analyzer, using the above-mentioned automatic chemiluminescence immunoassay analyzer liquid path bubble detection system;
  • S2 Monitor the output current signal of the infrared sensor in real time, and calculate the amount of liquid passing through according to the magnitude of the output current signal.
  • the method for detecting air bubbles in the liquid path of an automatic chemiluminescence immunoassay analyzer of the present invention is a method for detecting air bubbles in the liquid path of an automatic chemiluminescence immunoassay analyzer of the present invention
  • the output current signal of the infrared sensor is amplified by a certain multiple of the amplifier
  • step S1 a relationship curve between the output current signal of the amplified infrared sensor and the size of the bubble is established; in step S2, the output current signal of the amplified infrared sensor is monitored in real time.
  • a temperature sensor is further provided before the sealing seat, and the temperature sensor can sense the temperature of the liquid flowing through the liquid path pipeline.
  • the emission frequency of the infrared generator is the flow rate of the liquid divided by the width of the seal mount.
  • a sealing mounting seat is arranged on the liquid path pipeline, and the sealing mounting seat plays the role of installing other components, and at the same time, a "" In the dark room" part, the infrared generator emits infrared rays, and the infrared sensor receives the infrared rays emitted by the infrared generator and passing through the liquid pipeline.
  • the overall light transmittance will be enhanced, that is, The infrared sensor senses more infrared light, and its current signal is stronger, and the microprocessor can use the current signal to calculate the size of the bubble.
  • Fig. 1 is the structural representation of the bubble detection system in the liquid circuit of the fully automatic chemiluminescence immunoassay analyzer according to the embodiment of the present application;
  • Fig. 2 is the structural schematic diagram of the refractor in the bubble detection system in the liquid circuit of the fully automatic chemiluminescence immunoassay analyzer according to Embodiment 1 of the present application;
  • FIG. 3 is a schematic structural diagram of another type of refractor in the bubble detection system in the liquid path of the fully automatic chemiluminescence immunoassay analyzer according to Embodiment 1 of the present application;
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • the present embodiment provides a fully automatic chemiluminescence immunoassay analyzer liquid circuit bubble detection system, as shown in Figure 1, including:
  • the liquid pipeline 1 is made of light-transmitting material, such as common medical transparent plastic;
  • the sealing mounting seat 2 is sleeved on the liquid pipeline 1;
  • the infrared generator 3 is arranged on the side of the liquid pipeline 1 in the sealing mounting seat 2, and is used for emitting infrared rays;
  • the infrared sensor 4 is arranged on the other side of the liquid pipeline 1 in the sealed mounting seat 2, and is used for receiving the infrared rays emitted by the infrared generator 3 and passing through the liquid pipeline 1, and outputs a current signal;
  • the microprocessor 5 is used for receiving the current signal of the infrared sensor, matching the current signal with the set relationship between the size of the bubble and the current signal, and outputting the size of the bubble.
  • a sealing mounting seat 2 is arranged on the liquid path pipeline 1, and the sealing mounting seat 2 plays the role of installing other components.
  • a "dark room” part is formed, the infrared generator 3 emits infrared rays, and the infrared sensor 4 receives the infrared rays emitted by the infrared generator 3 and passes through the liquid pipeline 1.
  • the whole is transparent.
  • the optical properties will be enhanced, that is, the infrared sensor 4 will sense more infrared rays, and its current signal will be stronger. Contains air bubbles, thus realizing the detection of air bubbles in the pipeline.
  • the output current signal of the infrared sensor 6 is first amplified by an amplifier and then connected to the microprocessor 5.
  • the amplifier is a common circuit, which can amplify the output current of the infrared sensor 6 and improve the sensitivity.
  • This embodiment provides a fully automatic chemiluminescence immunoassay analyzer liquid path bubble detection system, as shown in FIG. 2 , including:
  • the liquid pipeline 1 is made of light-transmitting material, such as common medical transparent plastic;
  • the sealing mounting seat 2 is sleeved on the liquid pipeline 1 to form an infrared darkroom space;
  • the infrared generator 3 is arranged on the side of the liquid pipeline 1 in the sealing mounting seat 2, and is used for emitting infrared rays;
  • the infrared sensor 4 is arranged on the other side of the liquid pipeline 1 in the sealed mounting seat 2, and is used for receiving the infrared rays emitted by the infrared generator 3 and passing through the liquid pipeline 1, and outputs a current signal;
  • the microprocessor 5 is used for receiving the current signal of the infrared sensor, matching the current signal with the set relationship between the size of the bubble and the current signal, and outputting the size of the bubble.
  • the microprocessor 5 can also be connected with an alarm, when the current signal is too large (bubble exists) to issue an alarm to inform the relevant personnel.
  • the liquid pipeline 1 includes a pipeline body 10, a refractor 11 made of glass and located on both sides of the infrared generator 3 distributed in the space enclosed by the sealing mounting seat 2.
  • the refractor 11 is a concave lens (the refractor 11 is a A concave lens, except that the center is formed with a flow channel for the liquid to pass through, and the flow channel is equal to the diameter of the flow channel of the pipe body 10). That is to say, a section of refracting body 11 is embedded in the sealing mounting seat 2 of the liquid pipeline 1, and the light is diffused through the concave lens, so that the infrared rays (external light is unavoidable) in the environment injected from the outside of the sealing mounting seat 2 along the liquid pipeline 1.
  • Both sides of the refracting body 11 are concave, and the outward side may be concave and the other side may be flat.
  • the liquid pipeline 1 includes a pipeline body 10 , refractors 11 made of glass and located on both sides of the infrared generator 3 distributed in the space surrounded by the sealing mount 2 .
  • the refracting body 11 is a convex lens, and the intersection of the two convex lenses for infrared rays is located outside the receiving range of the infrared sensor 4 .
  • the infrared rays in the environment injected from the outside of the sealing mount 2 along the liquid pipeline 1 can be concentrated outside the receiving range of the infrared sensor 4, thereby avoiding the infrared rays in the environment.
  • the infrared sensor 4 is injected to reduce the influence of infrared rays in the environment on the detection result.
  • the present embodiment provides a method for detecting air bubbles in the liquid path of an automatic chemiluminescence immunoassay analyzer, using the above-mentioned system for detecting air bubbles in the liquid path of an automatic chemiluminescence immunoassay analyzer;
  • S2 Monitor the output current signal of the infrared sensor in real time, and calculate the amount of liquid passing through according to the magnitude of the output current signal.
  • t is the time that the liquid flows through the pipeline
  • R is the radius of the pipeline
  • v is the liquid flow rate
  • k is the coefficient
  • i is the output current signal of the infrared sensor
  • k represents the relationship between the output current signal of the infrared sensor and the size of the bubble, in a cross section of the pipe, the proportional coefficient of the area occupied by the bubble and the output current signal of the infrared sensor.
  • the emission frequency of the infrared generator 3 is the flow rate of the liquid divided by the width of the seal mount 2 . In the emission interval of the infrared generator 3 , the liquid just goes to the width of the sealing mount 2 . In order to ensure that the above-mentioned values match, a flow rate sensor can be provided, and the emission frequency of the infrared generator 3 can be adjusted by the flow rate sensor.
  • the method for detecting air bubbles in the liquid path of an automatic chemiluminescence immunoassay analyzer of this embodiment is a method for detecting air bubbles in the liquid path of an automatic chemiluminescence immunoassay analyzer of this embodiment
  • the output current signal of the infrared sensor is amplified by a certain multiple of the amplifier
  • step S1 a relationship curve between the output current signal of the amplified infrared sensor and the size of the bubble is established; in step S2, the output current signal of the amplified infrared sensor is monitored in real time. You can also set up a filter circuit to filter out the clutter in the signal.
  • a temperature sensor is further provided before the sealing seat, and the temperature sensor can sense the temperature of the liquid flowing in the liquid path pipeline.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

一种全自动化学发光免疫分析仪液路中气泡检测系统和方法,该系统在液路管道(1)上设置密封安装座(2),密封安装座(2)起到安装其他部件的作用,同时又使液路管道(1)上形成一个"暗室"部分,红外线发生器(3)发出红外线,红外线感应器(4)接收红外线发生器(3)发出的并穿过液路管道(1)的红外线,当液路管道(1)内有气泡时,其整体透光性就会增强,也即红外线感应器(4)会感应到更多的红外线,其电流信号也更强,微型处理器(5)就可以电流信号来计算气泡大小。

Description

全自动化学发光免疫分析仪液路中气泡检测系统及方法 技术领域
本申请属于医疗器械设备技术领域,尤其是涉及一种全自动化学发光免疫分析仪液路中气泡检测系统及方法。
背景技术
全自动化学发光免疫分析仪是通过检测患者血清从而对人体进行免疫分析的医学检验仪器,将样品中的待测分子浓度根据标准品建立的数学模型进行定量分析,最后,打印数据报告,以辅助临床诊断。
全自动化学发光免疫分析仪中的样本及各种实际的加样量有不同的液量精度要求,当液量过高或者过低时可能会影响测试结果,因此如何能够有效吸取准确液量的样本和试剂是关键问题,常用的方法是进行实时的液面探测,当样本针或者试剂针探测到液面时吸取定量的液体,以此达到吸取准确液量的目的;但是这种方法可能会受到电机上下运动误差、试剂或者样本在运动过程中的液面变化,试剂瓶冷凝水等因素的影响,在探测过程中出现偏差,导致针未真正的接触到液面,从而样本针或者试剂针吸空,导致测试结果不准确,样本针或者试剂针吸空时,会在管道内形成气泡,因而需要一种对管道内是否存在气泡进行检测。
发明内容
本发明要解决的技术问题是:为解决现有技术中的不足,从而提供一种全自动化学发光免疫分析仪液路中气泡检测系统及方法。
本发明解决其技术问题所采用的技术方案是:
一种全自动化学发光免疫分析仪液路中气泡检测系统,
液路管道,由透光材料制成;
密封安装座,套设在所述液路管道上;
红外线发生器,设置在密封安装座内位于液路管道的一侧,用于发出红外线;
红外线感应器,设置在密封安装座内位于液路管道的另一侧,用于接收红外线发生器发出的并穿过所述液路管道的红外线,并输出电流信号;
微型处理器,用于接收红外线感应器的电流信号,并将电流信号与设定的气泡大小与电流信号的关系式进行匹配,并输出气泡的大小。
优选地,本发明的全自动化学发光免疫分析仪液路中气泡检测系统,所述红外线感应器输出电流信号先经过放大器放大电流后再与微型处理器连接。
优选地,本发明的全自动化学发光免疫分析仪液路中气泡检测系统,所述液路管道包括管道本体,分布在密封安装座所包围空间的位于红外线发生器两侧的玻璃制成的折光体,所述折光体为凹透镜。
优选地,本发明的全自动化学发光免疫分析仪液路中气泡检测系统,所述折光体的两侧均为凹面。
优选地,本发明的全自动化学发光免疫分析仪液路中气泡检测系统,所述液路管道包括管道本体,分布在密封安装座所包围空间的位于红外线发生器两侧的玻璃制成的折光体,所述折光体为凸透镜,且 两个凸透镜对于红外线的交点位置位于红外线感应器接收范围之外。
本发明还提供一种全自动化学发光免疫分析仪液路中气泡检测方法,使用上述的全自动化学发光免疫分析仪液路中气泡检测系统;
包括以下步骤:
S1:建立红外线感应器输出电流信号与气泡大小的关系曲线;
S2:实时监控红外线感应器输出电流信号,根据输出电流信号的大小计算通过的液体的量。
优选地,本发明的全自动化学发光免疫分析仪液路中气泡检测方法,
红外线感应器输出电流信号经过放大器的放大一定倍数;
S1步骤中建立放大后的红外线感应器输出电流信号与气泡大小的关系曲线;S2步骤中实时监控放大后的红外线感应器输出电流信号。
优选地,本发明的全自动化学发光免疫分析仪液路中气泡检测方法,在密封安装座之前还设置有温度传感器,所述温度传感器能够感应液路管道内流过液体的温度。
优选地,红外线发生器的发射频率为液体的流速除以密封安装座的宽度。
本发明的有益效果是:
本发明的全自动化学发光免疫分析仪液路中气泡检测系统和方法,在液路管道上设置密封安装座,密封安装座起到安装其他部件的作用,同时又时液路管道上形成一个“暗室”部分,红外线发生器发 出红外线,红外线感应器接收红外线发生器发出的并穿过所述液路管道的红外线,当液路管道内有气泡时,其整体透光性就会增强,也即红外线感应器会感应到更多的红外线,其电流信号也更强,微型处理器就可以电流信号来计算气泡大小。
附图说明
下面结合附图和实施例对本申请的技术方案进一步说明。
图1是本申请实施例的全自动化学发光免疫分析仪液路中气泡检测系统的结构示意图;
图2是本申请实施例1的全自动化学发光免疫分析仪液路中气泡检测系统中折光体的结构示意图;
图3是本申请实施例1的全自动化学发光免疫分析仪液路中气泡检测系统中另一种折光体的结构示意图;
图中的附图标记为:
1  液路管道;
2  密封安装座;
3  红外线发生器;
4  红外线感应器;
5  微型处理器;
6  红外线感应器;
10 管道本体;
11 折光体。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请保护范围的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明创造的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以通过具体情况理解上述术语在本申请中的具体含义。
下面将参考附图并结合实施例来详细说明本申请的技术方案。
实施例1
本实施例提供一种全自动化学发光免疫分析仪液路中气泡检测 系统,如图1所示,包括:
液路管道1,由透光材料制成,比如常见的医用透明塑料;
密封安装座2,套设在所述液路管道1上;
红外线发生器3,设置在密封安装座2内位于液路管道1的一侧,用于发出红外线;
红外线感应器4,设置在密封安装座2内位于液路管道1的另一侧,用于接收红外线发生器3发出的并穿过所述液路管道1的红外线,并输出电流信号;
微型处理器5,用于接收红外线感应器的电流信号,并将电流信号与设定的气泡大小与电流信号的关系式进行匹配,并输出气泡的大小。
本实施例的全自动化学发光免疫分析仪液路中气泡检测系统,在液路管道1上设置密封安装座2,密封安装座2起到安装其他部件的作用,同时又时液路管道1上形成一个“暗室”部分,红外线发生器3发出红外线,红外线感应器4接收红外线发生器3发出的并穿过所述液路管道1的红外线,当液路管道1内有气泡时,其整体透光性就会增强,也即红外线感应器4会感应到更多的红外线,其电流信号也更强,微型处理器5还可以根据过大的电流信号来进行警报,提醒使用者通过的液体中含有气泡,从而实现了对管道中气泡的检测。
需要指出的是,这里的暗室只是针对一般而言,阻挡了大部分的光线,不可能也没有必要做到无任何光线的完全暗室。
优选地,所述红外线感应器6输出电流信号先经过放大器放大电 流后再与微型处理器5连接。放大器为常见的电路,能够放大所述红外线感应器6的输出电流,提高灵敏度。
实施例2
本实施例提供一种全自动化学发光免疫分析仪液路中气泡检测系统,如图2所示,包括:
液路管道1,由透光材料制成,比如常见的医用透明塑料;
密封安装座2,套设在所述液路管道1上,形成红外暗室空间;
红外线发生器3,设置在密封安装座2内位于液路管道1的一侧,用于发出红外线;
红外线感应器4,设置在密封安装座2内位于液路管道1的另一侧,用于接收红外线发生器3发出的并穿过所述液路管道1的红外线,并输出电流信号;
微型处理器5,用于接收红外线感应器的电流信号,并将电流信号与设定的气泡大小与电流信号的关系式进行匹配,并输出气泡的大小。
微型处理器5还可以与警报器连接,当电流信号过大时(存在气泡)发出警报告知相关人员。
所述液路管道1包括管道本体10,分布在密封安装座2所包围空间的位于红外线发生器3两侧的玻璃制成的折光体11,所述折光体11为凹透镜(折光体11整体为一凹透镜,只不过中心成型有供液体通过的流道,该流道与管道本体10的流道直径相等)。也即在液路管道1的密封安装座2内嵌入了一段折光体11,通过凹透镜将光线 发散,从而使得密封安装座2外部沿液路管道1射入的环境中的红外线(外部光线不可避免地从两侧射入到密封安装座2内),能够被凹透镜发散,而无法到达红外线感应器4区,从而克服红外线感应器4接收到环境中的红外线,降低环境中红外线对检测结果的影响。
所述折光体11的两侧均为凹面,也可以是朝向外的一侧为凹面,另一侧为平面。
作为一种替代的实施方式,如图3所示,所述液路管道1包括管道本体10,分布在密封安装座2所包围空间的位于红外线发生器3两侧的玻璃制成的折光体11,所述折光体11为凸透镜,且两个凸透镜对于红外线的交点位置位于红外线感应器4接收范围之外。
也即通过调整折光体11的焦点和设置位置,使密封安装座2外部沿液路管道1射入的环境中的红外线,能够在红外线感应器4接收范围之外汇聚,从而避免环境中的红外线射入红外线感应器4,降低环境中红外线对检测结果的影响。
实施例3
本实施例提供一种全自动化学发光免疫分析仪液路中气泡检测方法,使用上述的全自动化学发光免疫分析仪液路中气泡检测系统;
包括以下步骤:
S1:建立红外线感应器输出电流信号与气泡大小的关系曲线;
S2:实时监控红外线感应器输出电流信号,根据输出电流信号的大小计算通过的液体的量。
通过的
Figure PCTCN2021081006-appb-000001
其中t为液体流 过管道的时间,R为管道的半径,v为液体流速,k为系数,i为红外线感应器输出电流信号;
其中k表示红外线感应器输出电流信号与气泡大小的关系曲线中,在一个管道横截面内,气泡所占的面积与红外线感应器输出电流信号的比例系数。
红外线发生器3的发射频率为液体的流速除以密封安装座2的宽度。红外线发生器3的发射间隔中,液体刚好走密封安装座2的宽度。为了保证上述数值相匹配,可以设置流速传感器,通过流速传感器来调整红外线发生器3的发射频率。
优选地,本实施例的全自动化学发光免疫分析仪液路中气泡检测方法,
红外线感应器输出电流信号经过放大器的放大一定倍数;
S1步骤中建立放大后的红外线感应器输出电流信号与气泡大小的关系曲线;S2步骤中实时监控放大后的红外线感应器输出电流信号。还可以设置滤波电路来滤去信号中的杂波。
优选地,本实施例的全自动化学发光免疫分析仪液路中气泡检测方法,在密封安装座之前还设置有温度传感器,所述温度传感器能够感应液路管道内流过液体的温度。
以上述依据本申请的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项申请技术思想的范围内,进行多样的变更以及修改。本项申请的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (9)

  1. 一种全自动化学发光免疫分析仪液路中气泡检测系统,其特征在于,液路管道(1),由透光材料制成;密封安装座(2),套设在所述液路管道(1)上;红外线发生器(3),设置在密封安装座(2)内位于液路管道(1)的一侧,用于发出红外线;红外线感应器(4),设置在密封安装座(2)内位于液路管道(1)的另一侧,用于接收红外线发生器(3)发出的并穿过所述液路管道(1)的红外线,并输出电流信号;微型处理器(5),用于接收红外线感应器(4)的电流信号,并将电流信号与设定的气泡大小与电流信号的关系式进行匹配,并输出气泡的大小。
  2. 根据权利要求1所述的全自动化学发光免疫分析仪液路中气泡检测系统,其特征在于,所述红外线感应器(6)输出电流信号先经放大器放大电流后再与微型处理器(5)连接。
  3. 根据权利要求1或2所述的全自动化学发光免疫分析仪液路中气泡检测系统,其特征在于,所述液路管道(1)包括管道本体(10),分布在密封安装座(2)所包围空间的位于红外线发生器(3)两侧的玻璃制成的折光体(11),所述折光体(11)为凹透镜。
  4. 根据权利要求3所述的全自动化学发光免疫分析仪液路中气泡检测系统,其特征在于,所述折光体(11)的两侧均为凹面。
  5. 根据权利要求1或2所述的全自动化学发光免疫分析仪液路中气泡检测系统,其特征在于,所述液路管道(1)包括管道本体(10),分布在密封安装座(2)所包围空间的位于红外线发生器(3)两侧的玻璃制成的折光体(11),所述折光体(11)为凸透镜,且两个凸透镜对于红外线的交点位置位于红外线感应器(4)接收范围之外。
  6. 一种全自动化学发光免疫分析仪液路中气泡检测方法,其特征在于,使用如权利要求1-5任一项所述的全自动化学发光免疫分析仪液路中气泡检测系统;包括以下步骤:S1:建立红外线感应器(4)输出电流信号与气泡大小的关系曲线;S2:实时监控红外线感应器(4)输出电流信号,根据输出电流信号的大小计算通过的液体的量。
  7. 根据权利要求6所述的全自动化学发光免疫分析仪液路中气泡检测方法,其特征在于,红外线感应器(4)输出电流信号经过放大器的放大一定 倍数;S1步骤中建立放大后的红外线感应器(4)输出电流信号与气泡大小的关系曲线;S2步骤中实时监控放大后的红外线感应器(4)输出电流信号。
  8. 根据权利要求6所述的全自动化学发光免疫分析仪液路中气泡检测方法,其特征在于,在密封安装座(2)之前还设置有温度传感器,所述温度传感器能够感应液路管道(1)内流过液体的温度。
  9. 根据权利要求6所述的全自动化学发光免疫分析仪液路中气泡检测方法,其特征在于,红外线发生器(3)的发射频率应当为液体的流速除以密封安装座(2)的宽度。
PCT/CN2021/081006 2020-11-02 2021-03-16 全自动化学发光免疫分析仪液路中气泡检测系统及方法 WO2022088586A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011201482.9A CN112326604A (zh) 2020-11-02 2020-11-02 全自动化学发光免疫分析仪液路中气泡检测系统及方法
CN202011201482.9 2020-11-02

Publications (1)

Publication Number Publication Date
WO2022088586A1 true WO2022088586A1 (zh) 2022-05-05

Family

ID=74324215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081006 WO2022088586A1 (zh) 2020-11-02 2021-03-16 全自动化学发光免疫分析仪液路中气泡检测系统及方法

Country Status (2)

Country Link
CN (1) CN112326604A (zh)
WO (1) WO2022088586A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115318140A (zh) * 2022-08-08 2022-11-11 宁夏东和化工科技有限公司 一种自动监控醋酸酐含量的方法及装置
CN116625990A (zh) * 2023-06-05 2023-08-22 冠礼控制科技(上海)有限公司 抗气泡高稳定性折光计

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112326604A (zh) * 2020-11-02 2021-02-05 苏州长光华医生物医学工程有限公司 全自动化学发光免疫分析仪液路中气泡检测系统及方法
CN113445067B (zh) * 2021-06-04 2022-04-08 清华大学 氢气生产设备与质子交换膜电解槽内气泡观测方法
CN115479627B (zh) * 2022-07-27 2024-05-07 谭万龙 一种液滴计数和流量测量方法、系统、设备、存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004248716A (ja) * 2003-02-18 2004-09-09 Citizen Watch Co Ltd 血液分析装置
CN201033190Y (zh) * 2007-01-17 2008-03-12 华南理工大学 医用输液管气泡红外线检测装置
CN202442954U (zh) * 2012-01-18 2012-09-19 中国石油大学(北京) 用红外线检测气液两相流流型的装置
CN103471502A (zh) * 2013-08-22 2013-12-25 中国电子科技集团公司第四十八研究所 一种气液两相流气泡体积检测装置及检测方法
CN103591901A (zh) * 2013-08-22 2014-02-19 中国电子科技集团公司第四十八研究所 一种气液两相流气泡直径检测方法
CN105910663A (zh) * 2016-04-06 2016-08-31 河北大学 一种测量气液两相流流量的装置及方法
CN107530530A (zh) * 2015-02-27 2018-01-02 迈奎特心肺有限公司 流体流量测量和气泡检测装置
CN207280948U (zh) * 2017-09-28 2018-04-27 天津天河分析仪器有限公司 一种微粒分析仪用液路检测装置
CN112326604A (zh) * 2020-11-02 2021-02-05 苏州长光华医生物医学工程有限公司 全自动化学发光免疫分析仪液路中气泡检测系统及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004248716A (ja) * 2003-02-18 2004-09-09 Citizen Watch Co Ltd 血液分析装置
CN201033190Y (zh) * 2007-01-17 2008-03-12 华南理工大学 医用输液管气泡红外线检测装置
CN202442954U (zh) * 2012-01-18 2012-09-19 中国石油大学(北京) 用红外线检测气液两相流流型的装置
CN103471502A (zh) * 2013-08-22 2013-12-25 中国电子科技集团公司第四十八研究所 一种气液两相流气泡体积检测装置及检测方法
CN103591901A (zh) * 2013-08-22 2014-02-19 中国电子科技集团公司第四十八研究所 一种气液两相流气泡直径检测方法
CN107530530A (zh) * 2015-02-27 2018-01-02 迈奎特心肺有限公司 流体流量测量和气泡检测装置
CN105910663A (zh) * 2016-04-06 2016-08-31 河北大学 一种测量气液两相流流量的装置及方法
CN207280948U (zh) * 2017-09-28 2018-04-27 天津天河分析仪器有限公司 一种微粒分析仪用液路检测装置
CN112326604A (zh) * 2020-11-02 2021-02-05 苏州长光华医生物医学工程有限公司 全自动化学发光免疫分析仪液路中气泡检测系统及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115318140A (zh) * 2022-08-08 2022-11-11 宁夏东和化工科技有限公司 一种自动监控醋酸酐含量的方法及装置
CN115318140B (zh) * 2022-08-08 2024-02-27 宁夏东和化工科技有限公司 一种自动监控醋酸酐含量的方法及装置
CN116625990A (zh) * 2023-06-05 2023-08-22 冠礼控制科技(上海)有限公司 抗气泡高稳定性折光计
CN116625990B (zh) * 2023-06-05 2023-12-08 冠礼控制科技(上海)有限公司 抗气泡高稳定性折光计

Also Published As

Publication number Publication date
CN112326604A (zh) 2021-02-05

Similar Documents

Publication Publication Date Title
WO2022088586A1 (zh) 全自动化学发光免疫分析仪液路中气泡检测系统及方法
AU597168B2 (en) Sensor and method for detecting the presence of air bubbles in liquid
JP2651349B2 (ja) 透明な測定管における流体相境界の検知装置および液量の正確な自動計量装置
JP2015516583A5 (zh)
CN108663303A (zh) 一种血液分析仪
JP2018169400A (ja) 血液沈降速度およびそれに関連する他のパラメータを決定する装置および方法
CN102946803A (zh) 用于酒精浓度测定的采血模组
CN207280552U (zh) 一种试剂瓶液面检测装置
CN205073362U (zh) 微型负压吸引器
US4419903A (en) Method and apparatus for detecting insufficient liquid levels
CN206684321U (zh) 一种便携式痕量炸药及毒品探测器
CN208420635U (zh) 一种血液分析仪
JPS6086439A (ja) 光学式微量定量装置
CN213482063U (zh) 全自动化学发光免疫分析仪液路中气泡检测系统
TW201604533A (zh) 可攜式電子分析裝置、可攜式分析裝置以及套組
CN210180617U (zh) 一种阀门泄漏检测装置
TWI513973B (zh) 氣體濃度偵測裝置
CN209606313U (zh) 同时检测环境空气中二氧化硫和二氧化氮的装置
CN208984523U (zh) 一种粗查与精查一体的酒精检测仪
CN204177810U (zh) 血浆蛋白快速分析系统
CN209495967U (zh) 一种可视化电气火灾多级自动报警装置
CN208239295U (zh) 水质在线监测仪及测量单元
CN102608119B (zh) 管道药液中的运动异物检测装置及方法
CN215448939U (zh) 一种检测高浓度臭氧的吸收池
CN109342346A (zh) 一种可视化电气火灾多级自动报警装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21884330

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21884330

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.11.2023)