CN103471502A - 一种气液两相流气泡体积检测装置及检测方法 - Google Patents

一种气液两相流气泡体积检测装置及检测方法 Download PDF

Info

Publication number
CN103471502A
CN103471502A CN2013103703610A CN201310370361A CN103471502A CN 103471502 A CN103471502 A CN 103471502A CN 2013103703610 A CN2013103703610 A CN 2013103703610A CN 201310370361 A CN201310370361 A CN 201310370361A CN 103471502 A CN103471502 A CN 103471502A
Authority
CN
China
Prior art keywords
bubble
flow
slug
max
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013103703610A
Other languages
English (en)
Other versions
CN103471502B (zh
Inventor
何峰
谢贵久
颜志红
金忠
陈伟
陈云锋
张川
杨毓彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 48 Research Institute
Original Assignee
CETC 48 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 48 Research Institute filed Critical CETC 48 Research Institute
Priority to CN201310370361.0A priority Critical patent/CN103471502B/zh
Publication of CN103471502A publication Critical patent/CN103471502A/zh
Application granted granted Critical
Publication of CN103471502B publication Critical patent/CN103471502B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种气液两相流气泡体积检测装置及检测方法,本发明的检测装置采用对射式光路,包括双路红外检测对管,与红外检测对管相连的信号调理模块包括红外发光二极管的脉冲恒流源驱动电路、红外探测器的光信号检测电路及红外发光二极管的恒温控制电路。单路红外检测对管实现泡状流条件下气泡大小的检测,通过对累计脉冲个数统计实现气泡体积计量;计算同一气泡流经固定距离内的二对红外发光二极管所需时间,实现弹状流、环状流的气泡流速测量,并结合气泡大小,实现气泡体积的测量。本发明可实现不同流型条件下的气液两相流气泡体积检测,具有测量精度高、响应时间快及体积小等优势。

Description

一种气液两相流气泡体积检测装置及检测方法
技术领域
本发明涉及一种测量气液两相流气泡体积的装置及方法,特别适用于密闭环境下电解制氧装置中循环水中气泡体积检测。
背景技术
对于载人空间站、潜艇等装备,一般都是采用电解水制氧方法来实现对乘员的供氧需求。SPE(solid pilymer electrode)电解制氧技术是以固体聚合物为电解质的电解水制氧技术。它目前广泛应用在航天器、核潜艇等装备上,取代传统的碱性电解制氧装置。
在SPE电解制氧装置中,作为反应物的水经过净化,在电解槽、换热器、水箱之间循环。水气分离装置将反应产生的气/水混和物进行分离,分离出的水将重新投入循环。在此过程中,未电解的水需要循环利用,而返回的水通常带有一定量的氢气和氧气,如果气泡大小及体积含量超过一定比例,容易引起“气蚀”现象,导致电解制氧装置循环泵的损坏,这对电解制氧装置乃至整个装备都将造成极大的安全隐患,因此需要实时检测水中的气泡大小及体积含量,判定电解制氧装置是否正常工作,防止安全事故的发生。
目前,国内外检测液态水中气泡大小及体积含量比较常见的方法为医疗器械领域中采用超声波测量法。如专利《一种气泡检测装置》(申请号:CN102335476A)基本只能监测血液中有无气泡,而无法实现气泡大小的准确测量。专利《光气泡检测系统》(申请号:01823139.X)基于光的折射实现气泡大小的测量,其效果只能实现管道内有无气泡,而无法实现不同流型条件下气泡累计体积的计量。专利《在线气泡检测仪器》(授权号:CN2935140Y),基于激光技术实现涂布流体在制备、处理和输送过程中微气泡的监测,该技术只能实现单一流型条件下的气泡测量,基于单传感器基本无法实现复杂流型条件下的气泡体积准确测量。
因此,需要一种能够在不同流型条件下实现气泡体积的测量装置及方法,以便对电解制氧装置的安全运行提供保障。
发明内容
本发明所要解决的技术问题是,针对现有技术不足,提供一种气液两相流气泡体积检测装置及检测方法,在不同流型条件下准确测量气泡体积,为电解制氧装置及其他需要检测气泡大小的装置的安全运行提供保障。
为解决上述技术问题,本发明所采用的技术方案是:一种气液两相流气泡体积检测装置,包括测量气液两相流气泡体积的测量通道,所述测量通道的两个出口上各安装有红外检测对管,所述红外检测对管包括分别安装于所述测量通道出口两侧且位置相对的红外发光二极管与红外探测器;所述红外发光二极管和红外探测器均与信号调理模块电连接,所述信号调理模块通过数据采集卡接入计算机。
所述信号调理模块包括与所述红外探测器电连接的光信号检测电路、与所述红外发光二极管电连接的恒温控制电路、以及与所述光信号检测电路、恒温控制电路连接的脉冲恒流源驱动电路。
所述测量通道两个出口上的两个红外发光二极管的波长范围分别为1.4μm±0.1μm、1.9μm±0.1μm。
所述测量通道两个出口上的红外检测对管平行,且所述两个出口上的红外检测对管中心轴之间的距离L的范围为6mm~50mm。
所述测量通道为蓝宝石玻璃管,所述蓝宝石玻璃管的内径D的范围为1mm~20mm。
本发明利用所述检测装置检测气液两相流气泡体积的方法为:
1)数据采集卡采集信号调理模块的输出电压信号以采样频率f,并对采集的电压信号进行平滑、去噪处理;
2)设定分析周期T,将分析周期T内信号调理模块的输出电压信号存入数组a[M],其中M=T·f;其中T的取值范围为0.5s~60s;
3)比较数据a[M]中输出电压信号与弹状流电压信号阈值Vslug-max的大小,若a[M]≥Vslug-max,则判定为弹状流气泡;比较数组a[M]中电压信号与泡状流电压信号最大阈值Vbubble-max、泡状流电压信号最小阈值Vbubble-mix的大小,若Vbubble-mix≤a[M]≤Vbubble-max,则判定为泡状流气泡;比较数组a[M]中电压信号与泡状流电压信号最大阈值Vbubble-max、弹状流电压信号最大阈值Vslug-max的大小,若Vbubble-max<a[M]<Vslug-max,则判定为环状流气泡;
4)弹状流气泡体积Vslug的计算公式为:
Vslug=π·(Dslug/2)2·vslug·P·(1/f),
其中,Dslug为弹状流气泡直径,Dslug大小与测量通道内径相同,P为数组a[M]中大于弹状流电压信号阈值Vslug-max的电压脉冲的个数;vslug为弹状流气泡的流速,vslug=L/t,L为测量通道两个出口上的红外检测对管中心轴之间的距离,t为测量通道两个出口上红外检测对管之间同一弹状流的电压信号序列的峰值间隔时间;
5)泡状流气泡体积Vbubble的计算公式为:
Figure BDA0000370525260000031
其中,Dbubble[i]为第i个泡状流气泡直径,N为一个分析周期T内累计的泡状流气泡个数,气泡个数与分析周期T内Vbubble-mix≤a[M]≤Vbubble-max的a[M]中的电压脉冲信号个数相同;
6)环状流气泡体积Vannular的计算公式为:
Vannular=π·(Dannular/2)2·Q·(1/f),
其中,Dannular为环状流气泡直径,Q为数组a[M]中,满足Vbubble-max<a[M]<Vslug-max的电压脉冲的个数;
7)计算整个采用周期内的气液两相流气泡体积V:
V=∑(Vbubble+Vslug+Vannular)。
第i个泡状流气泡直径Dbubble[i]的计算公式为:
Dbubble[i]=a21·U[i]2+a22·U[i]+a23
其中,a21,a22,a23为二次拟合曲线系数,U[i]为分析周期T内数组a[M]中电压信号在Vbubble-mix~Vbubble-max之间的第i个脉冲信号对应的峰值。
所述步骤6)中,环状流气泡直径Dannular的计算公式为:
Dannular=a31·Vannular-avr 2+a32·Vannular-avr+a33
其中,a31,a32,a33为二次拟合曲线系数,Vannular-avr为数组a[M]中大于泡状流电压信号最大阈值Vbubble-max,小于弹状流电压信号最大阈值Vslug-max的大小的所有电压数据的平均值。
与现有技术相比,本发明所具有的有益效果为:本发明可在不同流型条件下,实现气液两相流中气泡大小及体积的测量,与超声波测量技术相比,具有气泡大小测量精度高的优势,与现有单光路检测装置相比,本发明能够准确测量弹状流、环状流的气泡速度,提高气液两相流气泡体积测量精度。同时,本发明装置具有体积小、功耗低、响应时间快等优点,特别适应复杂环境、快速响应的气液两相流气泡体积的测量。
附图说明
图1为本发明一实施例检测装置结构示意图;
图2为本发明一实施例信号调理模块结构框图;
图3为本发明一实施例弹状流信号采集结果示意图;
图4为本发明一实施例泡状流信号采集结果示意图;
图5为本发明一实施例环状流信号采集结果示意图;
图6为本发明一实施例方法流程图。
具体实施方式
如图1所示,本发明一实施例检测装置包括测量气液两相流气泡体积的测量通道1,所述测量通道1的两个出口上各安装有红外检测对管,所述红外检测对管包括分别安装于所述测量通道1出口两侧且位置相对的红外发光二极管2与红外探测器3;所述红外发光二极管2和红外探测器3均与信号调理模块8电连接,所述信号调理模块8通过数据采集卡12接入计算机14。
如图2所示,信号调理模块8包括与所述红外探测器3电连接的光信号检测电路10、与所述红外发光二极管2电连接的恒温控制电路11、以及与所述光信号检测电路10、恒温控制电路11连接的脉冲恒流源驱动电路9。
本实施例中,测量通道为蓝宝石玻璃管,其内径D为8mm。
测量通道两个出口上的红外检测对管平行,且位置相对,即两个红外发光二极管的位置相对,两个红外探测器的位置相对;测量通道两个出口上的红外检测对管中心轴之间的距离L(即两个红外发光二极管中心轴或两个红外探测器中心轴之间的距离)的范围为20mm。
本实施例的气泡体积检测方法如下:
(1)数据采集及预处理:数据采集卡13对信号调理模块8的输出电压信号以采样频率f≥1KHz进行采集。并对采集的电压信号进行数据平滑、去噪处理。
(2)设定分析周期T,通过对单个分析周期内的气泡体积进行累加求和,最终实现气泡体积计量。将分析周期T内的采集数据存在数组a[M],M=T·f。比较数据a[M]中电压信号与弹状流电压信号阈值Vslug-max,若a[M]≥Vslug-max,则判别为弹状流。
对数组a[M]中大于弹状流电压信号阈值Vslug-max的所有数据求平均值,得到弹状流信号平均值VSlug-avr,其与弹状流气泡直径大小Dslug的关系见式(1)。
DSlug=a11·VSlug-avr 2+a12·VSlug-avr+a13   (1)
弹状流气泡直径大小Dslug也可以根据测量通道内径确定,本发明中,Dslug与测量通道内径相同。
其中:a11,a12,a13为二次拟合曲线系数。累计统计信号大于Vslug-max的采集信号个数P。比较脉冲信号峰值,计算出测量通道两个出口上的红外检测对管之间同一弹状流的电压信号序列的峰值间隔时间t,并通过两个出口上红外检测对管中心轴之间的固定距离L,计算出弹状流气泡的流速vslug=L/t,弹状流气泡体积Vslug可根据式(2)计算:
Vslug=π·(Dslug/2)2·vslug·P·(1/f)   (2)
(3)比较数组a[M]中电压信号与泡状流电压信号最大阈值Vbubble-max及最小阈值Vbubble-mix。若Vbubble-mix≤a[M]≤Vbubble-max,则判定为泡状流。
通过峰值检测,统计电压信号在Vbubble-mix~Vbubble-max之间的脉冲个数及对应的脉冲信号峰值电压U,存入数组b[N],N为脉冲个数。第i个泡状流气泡直径大小Dbubble[i]与第i个脉冲信号峰值电压U[i]之间的关系见式(3)。
Dbubble[i]=a21·U[i]2+a22·U[i]+a23   (3)
其中:a21,a22,a23为二次拟合曲线系数。并根据式(4),计算泡状流气泡体积Vbubble
Figure BDA0000370525260000071
(4))比较数组a[M]中电压信号与泡状流电压信号最大阈值Vbubble-max及环状流阈值Vslug-max。若Vbubble-max<a[M]<Vslug-max,则判定为环状流。并累计满足Ububble-max<a[M]<Uslug-max的a[M]中的电压脉冲数量Q。
对数组a[M]中大于弹状流电压信号阈值Vslug-max,小于弹状流电压信号阈值Vslug-max的所有数据求平均值,得到环状流采集信号平均值Vannular-avr。环状流气柱直径大小Dannular与采集信号平均值Vannular-avr的关系见式(5):
Dannular=a31·Vannular-avr 2+a32·Vannular-avr+a33   (5)
其中:a31,a32,a33为二次拟合曲线系数。环状流气泡体积Vannular可根据式(6)计算:
Vannular=π·(Dannular/2)2·Q·(1/f)   (6)
(5)整个采样周期内,气泡体积V可通过对三种流型条件下的气泡体积进行累加求和。
V=∑(Vbubble+Vslug+Vannular)   (7)
气液两相流气泡体积检测装置测量的气泡体积可在计算机14上实时显示出来。
本实施例中,信号调理模块输出电压信号范围为0.5V~4.5V。0.5V对应管道内全水状态时红外探测器的信号输出值,4.5V对应管道内全气状态时红外探测器的信号输出值。
图3、图4、图5对应装置对环状流、弹状流、泡状流流型条件下的信号采集波形。本发明中,红外检测对管的输出电压范围为0.5~4.5V,弹状流气泡对应的电压大小≥4.4V,泡状流气泡对应的电压大小为0.5~3.6V,环状流气泡对应的电压大小为3.6~4.4V。其中,弹状流电压信号阈值Vslug-max为4.4V,泡状流电压信号最大阈值Vbubble-max为3.6V,最小阈值Vbubble-mix为0.6V。
其中:
弹状流气泡直径为8mm;
在标准气泡信号源发生装置上,选取三个或三个以上气泡直径标定点(选取的标定点越多,拟合误差越小),本实施例中选取了直径为2mm、4mm、6mm的泡状流气泡,其脉冲峰值电压信号分别为0.8V,1.5V,3.6V。采用二阶函数拟合得到如下关系:
Dbubble[i]=-0.80·U[i]2+5.03·U[i]-1.83
其中:a11=-0.8,a12=5.03,a13=-1.83。
环状流气泡直径与峰值电压的拟合曲线计算过程如下:
在标准气泡信号源发生装置上,选取三个或三个以上标定点(选取的标定点越多,拟合误差越小),本实施例中选取了平均直径为6.5mm,7mm,7.5mm的环状流气泡,其信号平均值输出为3.81V,4.12V,4.38V。采用二阶函数拟合得到如下关系:
Dannular=-0.62·Vannular-avr 2+6.82·Vannular-avr-10.48
其中:a21=-0.62,a12=6.82,a13=-10.48。
对采集信号按照图6所示流程图进行数据处理,得到气液两相流气泡大小及体积的测量结果。

Claims (8)

1.一种气液两相流气泡体积检测装置,包括测量气液两相流气泡体积的测量通道(1),其特征在于,所述测量通道(1)的两个出口上各安装有红外检测对管,所述红外检测对管包括分别安装于所述测量通道(1)出口两侧且位置相对的红外发光二极管(2)与红外探测器(3);所述红外发光二极管(2)和红外探测器(3)均与信号调理模块(8)电连接,所述信号调理模块(8)通过数据采集卡(12)接入计算机(14)。
2.根据权利要求1所述的气液两相流气泡体积检测装置,其特征在于,所述信号调理模块(8)包括与所述红外探测器(3)电连接的光信号检测电路(10)、与所述红外发光二极管(2)电连接的恒温控制电路(11)、以及与所述光信号检测电路(10)、恒温控制电路(11)连接的脉冲恒流源驱动电路(9)。
3.根据权利要求1所述的气液两相流气泡体积检测装置,其特征在于,所述测量通道(1)两个出口上的两个红外发光二极管(2)的波长范围分别为1.4μm±0.1μm、1.9μm±0.1μm。
4.根据权利要求2或3所述的气液两相流气泡体积检测装置,其特征在于,所述测量通道(1)两个出口上的红外检测对管平行,且所述两个出口上的红外检测对管中心轴之间的距离L的范围为6mm~50mm。
5.根据权利要求4所述的气液两相流气泡体积检测装置,其特征在于,所述测量通道(1)为蓝宝石玻璃管,所述蓝宝石玻璃管的内径D的范围为1mm~20mm。
6.利用权利要求1或2所述检测装置检测气液两相流气泡体积的方法,其特征在于,该方法为:
1)数据采集卡(13)采集信号调理模块(8)的输出电压信号以采样频率f,并对采集的电压信号进行平滑、去噪处理;
2)设定分析周期T,将分析周期T内信号调理模块(8)的输出电压信号存入数组a[M],其中M=T·f;其中T的取值范围为0.5s~60s;
3)比较数据a[M]中输出电压信号与弹状流电压信号最大阈值Vslug-max的大小,若a[M]≥Vslug-max,则判定为弹状流气泡;比较数组a[M]中电压信号与泡状流电压信号最大阈值Vbubble-max、泡状流电压信号最小阈值Vbubble-mix的大小,若Vbubble-mix≤a[M]≤Vbubble-max,则判定为泡状流气泡;比较数组a[M]中电压信号与泡状流电压信号最大阈值Vbubble-max、弹状流电压信号最大阈值Vslug-max的大小,若Vbubble-max<a[M]<Vslug-max,则判定为环状流气泡;
4)弹状流气泡体积Vslug的计算公式为:
Vslug=π·(Dslug/2)2·vslug·P·(1/f),
其中,Dslug为弹状流气泡直径,Dslug大小与测量通道内径相同,P为数组a[M]中大于弹状流电压信号阈值Vslug-max的电压脉冲的个数;vslug为弹状流气泡的流速,vslug=L/t,L为测量通道两个出口上的红外检测对管中心轴之间的距离,t为测量通道两个出口上红外检测对管之间同一弹状流的电压信号序列的峰值间隔时间;
5)泡状流气泡体积Vbubble的计算公式为:
Figure FDA0000370525250000021
其中,Dbubble[i]为第i个泡状流气泡直径,N为一个分析周期T内累计的泡状流气泡个数,气泡个数与分析周期T内Vbubble-mix≤a[M]≤Vbubble-max的a[M]中的电压脉冲信号个数相同;
6)环状流气泡体积Vannular的计算公式为:
Vannular=π·(Dannular/2)2·Q·(1/f),
其中,Dannular为环状流气泡直径,Q为数组a[M]中,满足Vbubble-max<a[M]<Vslug-max的电压脉冲的个数;
7)计算整个采用周期内的气液两相流气泡体积V:
V=∑(Vbubble+Vslug+Vannular)。
7.根据权利要求6所述的检测气液两相流气泡体积的方法,其特征在于,所述步骤5)中,第i个泡状流气泡直径Dbubble[i]的计算公式为:
Dbubble[i]=a21·U[i]2+a22·U[i]+a23
其中,a21,a22,a23为二次拟合曲线系数,U[i]为分析周期T内数组a[M]中电压信号在Vbubble-mix~Vbubble-max之间的第i个脉冲信号对应的峰值。
8.根据权利要求6所述的检测气液两相流气泡体积的方法,其特征在于,所述步骤6)中,环状流气泡直径Dannular的计算公式为:
Dannular=a31·Vannular-avr 2+a32·Vannular-avr+a33
其中,a31,a32,a33为二次拟合曲线系数,Vannular-avr为数组a[M]中大于泡状流电压信号最大阈值Vbubble-max,小于弹状流电压信号最大阈值Vslug-max的大小的所有电压数据的平均值。
CN201310370361.0A 2013-08-22 2013-08-22 一种气液两相流气泡体积检测装置及检测方法 Active CN103471502B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310370361.0A CN103471502B (zh) 2013-08-22 2013-08-22 一种气液两相流气泡体积检测装置及检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310370361.0A CN103471502B (zh) 2013-08-22 2013-08-22 一种气液两相流气泡体积检测装置及检测方法

Publications (2)

Publication Number Publication Date
CN103471502A true CN103471502A (zh) 2013-12-25
CN103471502B CN103471502B (zh) 2016-08-10

Family

ID=49796456

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310370361.0A Active CN103471502B (zh) 2013-08-22 2013-08-22 一种气液两相流气泡体积检测装置及检测方法

Country Status (1)

Country Link
CN (1) CN103471502B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104101578A (zh) * 2014-06-23 2014-10-15 中国电子科技集团公司第四十八研究所 一种用于气液两相流测量装置的红外检测电路
CN105389814A (zh) * 2015-11-03 2016-03-09 浙江工业大学 一种用于气密性试验的气泡检测方法
CN106501215A (zh) * 2016-10-31 2017-03-15 天津科技大学 一种微气泡体积浓度测量装置
CN106629954A (zh) * 2016-10-17 2017-05-10 西安建筑科技大学 一种气浮微气泡动态观测及调控系统
CN106705845A (zh) * 2017-01-13 2017-05-24 哈尔滨工业大学(威海) 一种液体环境中气泡体积测量方法
CN110411985A (zh) * 2019-07-02 2019-11-05 燕山大学 一种油气水三相流分相含率测量方法及系统
CN111414938A (zh) * 2020-03-04 2020-07-14 中国计量大学 一种板式换热器内气泡的目标检测方法
CN112326604A (zh) * 2020-11-02 2021-02-05 苏州长光华医生物医学工程有限公司 全自动化学发光免疫分析仪液路中气泡检测系统及方法
CN112648709A (zh) * 2020-12-04 2021-04-13 中国航空工业集团公司西安航空计算技术研究所 一种密闭空间氧气浓度自动保持控制装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206707A (ja) * 1983-04-20 1984-11-22 コミサリア・タ・レネルジー・アトミック 気泡状態で流動する気相を含む二相混合物中の界面面積の測定法及び測定装置
CN103185808A (zh) * 2012-03-30 2013-07-03 嘉兴学院 一种基于光电技术的气泡测速系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206707A (ja) * 1983-04-20 1984-11-22 コミサリア・タ・レネルジー・アトミック 気泡状態で流動する気相を含む二相混合物中の界面面積の測定法及び測定装置
CN103185808A (zh) * 2012-03-30 2013-07-03 嘉兴学院 一种基于光电技术的气泡测速系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高敦岳等: "两相流中气泡和液滴的直径及其分布的自动测量", 《化工学报》, no. 1, 28 February 1990 (1990-02-28), pages 111 - 117 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104101578A (zh) * 2014-06-23 2014-10-15 中国电子科技集团公司第四十八研究所 一种用于气液两相流测量装置的红外检测电路
CN105389814A (zh) * 2015-11-03 2016-03-09 浙江工业大学 一种用于气密性试验的气泡检测方法
CN105389814B (zh) * 2015-11-03 2017-12-08 浙江工业大学 一种用于气密性试验的气泡检测方法
CN106629954A (zh) * 2016-10-17 2017-05-10 西安建筑科技大学 一种气浮微气泡动态观测及调控系统
CN106629954B (zh) * 2016-10-17 2019-07-09 西安建筑科技大学 一种气浮微气泡动态观测及调控系统
CN106501215A (zh) * 2016-10-31 2017-03-15 天津科技大学 一种微气泡体积浓度测量装置
CN106705845B (zh) * 2017-01-13 2019-01-08 哈尔滨工业大学(威海) 一种液体环境中气泡体积测量方法
CN106705845A (zh) * 2017-01-13 2017-05-24 哈尔滨工业大学(威海) 一种液体环境中气泡体积测量方法
CN110411985A (zh) * 2019-07-02 2019-11-05 燕山大学 一种油气水三相流分相含率测量方法及系统
CN110411985B (zh) * 2019-07-02 2020-06-19 燕山大学 一种油气水三相流分相含率测量方法及系统
CN111414938A (zh) * 2020-03-04 2020-07-14 中国计量大学 一种板式换热器内气泡的目标检测方法
CN111414938B (zh) * 2020-03-04 2023-06-20 中国计量大学 一种板式换热器内气泡的目标检测方法
CN112326604A (zh) * 2020-11-02 2021-02-05 苏州长光华医生物医学工程有限公司 全自动化学发光免疫分析仪液路中气泡检测系统及方法
WO2022088586A1 (zh) * 2020-11-02 2022-05-05 苏州长光华医生物医学工程有限公司 全自动化学发光免疫分析仪液路中气泡检测系统及方法
CN112648709A (zh) * 2020-12-04 2021-04-13 中国航空工业集团公司西安航空计算技术研究所 一种密闭空间氧气浓度自动保持控制装置

Also Published As

Publication number Publication date
CN103471502B (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
CN103471502A (zh) 一种气液两相流气泡体积检测装置及检测方法
CN100561211C (zh) 一种氨检测方法及装置
CN105222833A (zh) 气液两相流中气泡大小、数目和运动速度的测量方法
CN103591901B (zh) 一种气液两相流气泡直径检测方法
CN103954736B (zh) 水下实时微流控芯片生化检测装置
CN109358128B (zh) 一种有机氮-有机碳串联式在线检测方法与装置
CN101067617A (zh) 变压器油中微水及混合气体超声在线检测方法及装置
CN202710481U (zh) 高浓度分散相多相流中的气泡识别及测量装置
CN103185808A (zh) 一种基于光电技术的气泡测速系统
CN104888611B (zh) 一种中空纤维膜组件完整性检测装置
CN204009413U (zh) 一种用于废水排放的自动化监测装置
CN203489847U (zh) 一种气液两相流气泡直径及体积检测装置
CN108896728A (zh) 一种基于新能源无人船平台的智能水质监测系统
CN103383296A (zh) 一种凝汽器检漏系统
CN204347022U (zh) 一种油液污染度检测中监测和消除气泡的装置
CN209821226U (zh) 一种基于改进sia技术的水下微型现场自动营养盐分析仪
CN103913553A (zh) 一种海水溶解无机碳走航测量装置
CN105606170A (zh) 一种带自学习模板的超声波气体计量装置及方法
CN105319205A (zh) 一种电厂水汽中氯离子自动快速检测方法及系统和应用
CN207051233U (zh) 一种简易在线电导率检测辅助装置
CN104730216B (zh) 一种分析计量装置及液体分析系统
CN203745413U (zh) 一种船用液压管路清洗油在线检测装置
CN100567953C (zh) 一种海水cod自动检测仪
CN103245765B (zh) 一种海洋参数测定系统
CN202236656U (zh) 医用注射泵和输液泵检测仪

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant