WO2022087787A1 - 基于超声成像的穿刺引导方法和超声成像系统 - Google Patents

基于超声成像的穿刺引导方法和超声成像系统 Download PDF

Info

Publication number
WO2022087787A1
WO2022087787A1 PCT/CN2020/123707 CN2020123707W WO2022087787A1 WO 2022087787 A1 WO2022087787 A1 WO 2022087787A1 CN 2020123707 W CN2020123707 W CN 2020123707W WO 2022087787 A1 WO2022087787 A1 WO 2022087787A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
ultrasonic
mode
ultrasound image
real time
Prior art date
Application number
PCT/CN2020/123707
Other languages
English (en)
French (fr)
Inventor
兰帮鑫
李双双
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2020/123707 priority Critical patent/WO2022087787A1/zh
Priority to CN202080104090.2A priority patent/CN116096297A/zh
Publication of WO2022087787A1 publication Critical patent/WO2022087787A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves

Definitions

  • the present application relates to the technical field of ultrasound imaging, and more particularly, to a puncture guidance method and an ultrasound imaging system based on ultrasound imaging.
  • Ultrasound is the most commonly used method for screening tissue lesions in clinical practice, and ultrasound elastography technology can quantitatively reflect the softness and hardness of lesions and surrounding tissues, and has unique auxiliary diagnostic value and advantages in cancer diagnosis. More and more widely used in the clinical diagnosis of prostate diseases.
  • Prostate cancer is one of the most common malignant tumors in the male genitourinary system, and its morbidity and mortality have been on the rise in recent years.
  • the diagnosis method of prostate cancer is usually to perform systematic puncture in patients with elevated PSA (Prostate Serum Antigen, prostate serum antigen) or digitally diagnosed prostate lumps to obtain tissue samples for corresponding pathological examination and pathological diagnosis.
  • PSA Prostate Serum Antigen, prostate serum antigen
  • prostate system puncture is performed under ultrasound guidance.
  • diffuse tumors such as prostate cancer, because the ultrasound usually shows blurred intracapsular boundaries, it is difficult to identify the location of the lesion from conventional B-mode ultrasound images, resulting in a low success rate of puncture. .
  • a first aspect of the embodiments of the present application provides a puncture guidance method based on ultrasound imaging, the method comprising:
  • Display the second B-mode ultrasound image in real time perform real-time matching between the first B-mode ultrasound image and the second B-mode ultrasound image, and output a matching result in real time, and the matching result is used to guide the user to display the real-time B-mode ultrasound image.
  • the target puncture slice is determined during the second B-mode ultrasound image.
  • a second aspect of the embodiments of the present application provides a puncture guidance method based on ultrasound imaging, the method comprising:
  • the first B-mode ultrasonic image is determined based on the first elasticity image obtained by elastography and corresponding to the target puncture slice;
  • Display the second B-mode ultrasound image in real time perform real-time matching between the first B-mode ultrasound image and the second B-mode ultrasound image, and output a matching result in real time, and the matching result is used to guide the user to display the real-time B-mode ultrasound image.
  • the target puncture slice is determined during the second B-mode ultrasound image.
  • a third aspect of the embodiments of the present application provides a puncture guidance method based on ultrasound imaging, the method comprising:
  • the first B-mode ultrasonic image is determined based on the first elasticity image obtained by elastography and corresponding to the target puncture slice;
  • Control the ultrasonic probe to transmit ultrasonic waves to the target area along different positions or angles, receive ultrasonic echoes of the ultrasonic waves to obtain ultrasonic echo signals, and generate a second B-mode ultrasonic wave of the target area in real time based on the ultrasonic echo signals image;
  • the ultrasonic probe is controlled to remain at the current position or angle, so as to guide the user to perform puncture on the slice corresponding to the second B-mode ultrasonic image obtained based on the current position or angle.
  • a fourth aspect of the embodiments of the present application provides a puncture guidance method based on ultrasound imaging, the method comprising:
  • the first B-mode ultrasonic image is determined based on the first elasticity image obtained by elastography and corresponding to the target puncture slice;
  • the ultrasonic echo signal is performed on the ultrasonic echo signal to generate a color ultrasonic image of the target area in real time, the color ultrasonic image includes a second B-mode ultrasonic image and a color multi-color image superimposed on the second B-mode ultrasonic image.
  • a fifth aspect of the embodiments of the present application provides a puncture guidance method based on ultrasound imaging, the method comprising:
  • first B-mode ultrasound image corresponding to the target puncture slice, wherein the first B-mode ultrasonic image is determined based on a first color Doppler ultrasonic image obtained by color ultrasonic imaging and corresponding to the target puncture slice;
  • the second B-mode ultrasound image in real time, perform real-time matching between the first B-mode ultrasound image and the second B-mode ultrasound image, and output the matching result in real time, and the matching result is used to guide the user to display in real time
  • the target puncture slice is determined during the second B-mode ultrasound image.
  • a sixth aspect of the embodiments of the present application provides an ultrasonic imaging system, the ultrasonic imaging system includes an ultrasonic probe, a transmitting circuit, a receiving circuit, a processor, and a display device, wherein:
  • the transmitting circuit is used to excite the ultrasonic probe to transmit the first ultrasonic wave to the target area;
  • the receiving circuit is used to control the ultrasonic probe to receive the ultrasonic echo of the first ultrasonic wave to obtain a first ultrasonic echo signal
  • the processor is used to:
  • a seventh aspect of the embodiments of the present application provides an ultrasonic imaging system, the ultrasonic imaging system includes an ultrasonic probe, a transmitting circuit, a receiving circuit, a processor, and a display device, wherein:
  • the transmitting circuit is used to excite the ultrasonic probe to transmit ultrasonic waves to the target area;
  • the receiving circuit is used to control the ultrasonic probe to receive the ultrasonic echo of the ultrasonic wave to obtain an ultrasonic echo signal
  • the processor is used to:
  • the first B-mode ultrasonic image is determined based on the first elasticity image obtained by elastography and corresponding to the target puncture slice;
  • An eighth aspect of the embodiments of the present application provides an ultrasonic imaging system, the ultrasonic imaging system includes an ultrasonic probe, a transmitting circuit, a receiving circuit, a processor, and a display device, wherein:
  • the transmitting circuit is used to excite the ultrasonic probe to transmit ultrasonic waves to the target area of the measured object along different positions or angles;
  • the receiving circuit is used to control the ultrasonic probe to receive the ultrasonic echo of the ultrasonic wave to obtain an ultrasonic echo signal
  • the processor is used to:
  • the first B-mode ultrasonic image is determined based on the first elasticity image obtained by elastography and corresponding to the target puncture slice;
  • the ultrasound probe is controlled to remain at the current position or angle, so as to guide the user to perform puncture on the slice corresponding to the second B-mode ultrasound image obtained based on the current position or angle.
  • a ninth aspect of an embodiment of the present application provides an ultrasonic imaging system, the ultrasonic imaging system includes an ultrasonic probe, a transmitting circuit, a receiving circuit, a processor, and a display device, wherein:
  • the transmitting circuit is used to excite the ultrasonic probe to transmit ultrasonic waves to the target area;
  • the receiving circuit is used to control the ultrasonic probe to receive the ultrasonic echo of the ultrasonic wave to obtain an ultrasonic echo signal
  • the processor is used to:
  • the first B-mode ultrasonic image is determined based on the first elasticity image obtained by elastography and corresponding to the target puncture slice;
  • the ultrasonic echo signal is performed on the ultrasonic echo signal to generate a color ultrasonic image of the target area in real time, the color ultrasonic image includes a second B-mode ultrasonic image and a color multi-color image superimposed on the second B-mode ultrasonic image.
  • a tenth aspect of the embodiments of the present application provides an ultrasonic imaging system, the ultrasonic imaging system includes an ultrasonic probe, a transmitting circuit, a receiving circuit, a processor, and a display device, wherein:
  • the transmitting circuit is used to excite the ultrasonic probe to transmit ultrasonic waves to the target area;
  • the receiving circuit is used to control the ultrasonic probe to receive the ultrasonic echo of the ultrasonic wave to obtain an ultrasonic echo signal
  • the processor is used to:
  • the first B-type ultrasound image corresponding to the target puncture section wherein the first B-type ultrasound image is determined based on the first color Doppler ultrasound image corresponding to the target puncture section obtained based on color ultrasound imaging;
  • the user is guided to determine the target puncture slice in the process of displaying the second B-mode ultrasound image in real time.
  • the ultrasonic imaging-based puncture guidance method and ultrasonic imaging system determine a first B-type ultrasonic image corresponding to the target puncture slice in advance according to the elasticity image corresponding to the target puncture slice, and collect the second B-type ultrasonic image in real time During the image process, the first B-mode ultrasound image corresponding to the target puncture section is used as the image to be matched for real-time matching, and the matching result is output in real time, so as to guide the user to determine the target in the process of displaying the second B-mode ultrasound image in real time.
  • the puncture section improves the puncture success rate.
  • FIG. 1 shows a schematic block diagram of an ultrasound imaging system according to an embodiment of the present application
  • FIG. 2 shows a schematic flowchart of a method for puncture guidance based on ultrasound imaging according to an embodiment of the present invention
  • FIG. 3 shows a schematic diagram of a display interface according to an embodiment of the present invention
  • FIG. 4 shows a schematic diagram of a display interface according to another embodiment of the present invention.
  • FIG. 5 shows a schematic diagram of a display interface according to yet another embodiment of the present invention.
  • FIG. 6 shows a schematic flowchart of a method for puncturing guidance based on ultrasound imaging according to another embodiment of the present invention
  • FIG. 7 shows a schematic flowchart of a method for puncturing guidance based on ultrasound imaging according to yet another embodiment of the present invention.
  • FIG. 8 shows a schematic flowchart of a method for puncturing guidance based on ultrasound imaging according to yet another embodiment of the present invention.
  • FIG. 9 shows a schematic flowchart of a method for puncturing guidance based on ultrasound imaging according to yet another embodiment of the present invention.
  • FIG. 1 shows a schematic structural block diagram of an ultrasound imaging system 100 according to an embodiment of the present application.
  • the ultrasound imaging system 100 includes an ultrasound probe 110 , a transmitting circuit 112 , a receiving circuit 114 , a processor 116 and a display device 118 . Further, the ultrasound imaging system may further include a transmit/receive selection switch 120 and a beam forming circuit 122 , and the transmit circuit 112 and the reception circuit 114 may be connected to the ultrasound probe 110 through the transmit/receive selection switch 120 .
  • the ultrasonic probe 110 includes a plurality of transducer array elements, and the plurality of transducer array elements can be arranged in a row to form a linear array, or arranged in a two-dimensional matrix to form an area array, and a plurality of transducer array elements can also form a convex array. .
  • the transducer is used to transmit ultrasonic waves according to the excitation electrical signal, or convert the received ultrasonic waves into electrical signals, so each array element can be used to realize the mutual conversion of electrical pulse signals and ultrasonic waves, so as to realize the tissue emission to the target area of the measured object.
  • Ultrasound can also be used to receive ultrasound echoes reflected back by tissue.
  • transducer array elements are used to transmit ultrasonic waves and which transducer array elements are used to receive ultrasonic waves can be controlled through the transmitting sequence and receiving sequence, or the transducer array elements can be controlled to divide time slots for transmitting ultrasonic waves Or receive echoes of ultrasonic waves.
  • the transducer elements participating in ultrasonic emission can be excited by electrical signals at the same time, so as to emit ultrasonic waves at the same time; Ultrasound at certain time intervals.
  • the transducer is used both to transmit ultrasound waves that generate B-mode ultrasound images and to apply force pulses of acoustic radiation to a target area of the subject to generate shear waves.
  • the ultrasound imaging system 100 may further include a vibrator. During transient elasticity detection, the vibrator generates mechanical vibrations under the control of the processor 116, thereby generating shear waves propagating in the tissue at the target area of the object under test.
  • the vibrator may be a built-in vibrator provided inside the ultrasonic probe 110, or may be an external vibrator provided separately.
  • the transmit circuit 112 transmits the delayed-focused transmit pulses to the ultrasound probe 110 through the transmit/receive selection switch 120 .
  • the ultrasonic probe 110 is stimulated by the transmission pulse to transmit an ultrasonic beam to the tissue in the target area of the object to be measured, and after a certain delay, receives the ultrasonic echo with tissue information reflected from the tissue in the target area, and sends the ultrasonic wave back to the target area.
  • the waves are reconverted into electrical signals.
  • the receiving circuit 114 receives the electrical signals converted and generated by the ultrasonic probe 110, obtains ultrasonic echo signals, and sends these ultrasonic echo signals into the beam forming circuit 122, and the beam forming circuit 122 performs focus delay, weighting and channeling on the ultrasonic echo data Summation, etc., are then sent to processor 116.
  • the processor 116 performs signal detection, signal enhancement, data conversion, logarithmic compression, etc. on the ultrasonic echo signal to form an ultrasonic image.
  • the processor 116 can perform conventional B-mode ultrasonic image processing on the ultrasonic echo signal to generate a B-mode ultrasonic image; the processor 116 can also perform color Doppler imaging processing on the ultrasonic echo signal to obtain a color Doppler image
  • the ultrasound image, or the ultrasound echo signal is processed by elastography, and the elasticity parameter for generating the elasticity image is calculated, so as to generate the corresponding elasticity image according to the elasticity parameter.
  • Ultrasound images e.g., B-mode ultrasound images, color Doppler ultrasound images, elastic images, etc.
  • obtained by processor 116 may be displayed on display device 118 or stored in memory 124.
  • the processor 116 may be implemented as software, hardware, firmware, or any combination thereof, and may use single or multiple application specific integrated circuits (ASICs), single or multiple general-purpose integrated circuits, single or multiple microprocessors, single or multiple programmable logic devices, or any combination of the foregoing circuits and/or devices, or other suitable circuits or devices. Also, the processor 116 may control other components in the ultrasound imaging system 100 to perform corresponding steps of the methods in the various embodiments in this specification.
  • ASICs application specific integrated circuits
  • the processor 116 may control other components in the ultrasound imaging system 100 to perform corresponding steps of the methods in the various embodiments in this specification.
  • the display device 118 is connected to the processor 116, and the display device 118 can be a touch screen display, a liquid crystal display screen, etc.; or, the display device 118 can be an independent display device such as a liquid crystal display, a TV, etc., which is independent of the ultrasound imaging system 100; or , the display device 118 may be a display screen of an electronic device such as a smart phone, a tablet computer, and the like.
  • the number of display devices 118 may be one or more.
  • the display device 118 may include a main screen and a touch screen, where the main screen is mainly used for displaying ultrasound images, and the touch screen is mainly used for human-computer interaction.
  • the display device 118 may display the ultrasound images obtained by the processor 116 .
  • the display device 118 can also provide the user with a graphical interface for human-computer interaction while displaying the ultrasound image, set one or more controlled objects on the graphical interface, and provide the user with the human-computer interaction device to input operation instructions to control These controlled objects perform corresponding control operations.
  • an icon is displayed on the graphical interface, and the icon can be operated by using a human-computer interaction device to perform a specific function, such as drawing a region of interest frame on the ultrasound image.
  • the ultrasound imaging system 100 may further include other human-computer interaction devices other than the display device 118, which are connected to the processor 116.
  • the processor 116 may be connected to the human-computer interaction device through an external input/output port, and the external The input/output port can be a wireless communication module, a wired communication module, or a combination of both.
  • External input/output ports may also be implemented based on USB, bus protocols such as CAN, and/or wired network protocols, and the like.
  • the human-computer interaction device may include an input device for detecting the user's input information, for example, the input information may be a control instruction for the ultrasonic transmission/reception sequence, or a point, line or frame drawn on the ultrasonic image. Manipulate input instructions, or may also include other instruction types.
  • the input device may include one or a combination of a keyboard, a mouse, a scroll wheel, a trackball, a mobile input device (eg, a mobile device with a touch display screen, a cell phone, etc.), a multi-function knob, and the like.
  • the human-computer interaction apparatus may also include an output device such as a printer.
  • the ultrasound imaging system 100 may also include a memory 124 for storing instructions executed by the processor, storing received ultrasound echoes, storing ultrasound images, and the like.
  • the memory may be a flash memory card, solid state memory, hard disk, or the like. It may be volatile memory and/or non-volatile memory, removable memory and/or non-removable memory, and the like.
  • the components included in the ultrasound imaging system 100 shown in FIG. 1 are only illustrative, and may include more or less components. This application is not limited to this.
  • FIG. 2 is a schematic flowchart of a puncture guidance method 200 based on ultrasound imaging according to an embodiment of the present application.
  • the ultrasound imaging-based puncture guidance method 200 includes the following steps:
  • step S210 acquiring at least one frame of B-mode ultrasound image and at least one frame of shear wave elasticity image of the target area based on shear wave elasticity imaging;
  • step S220 determining a first shear wave elasticity image corresponding to the target puncture slice from the at least one frame of shear wave elasticity images
  • step S230 determining a first B-mode ultrasound image corresponding to the target puncture slice from the at least one frame of B-mode ultrasound image based on the first shear wave elasticity image;
  • step S240 a first ultrasonic wave is transmitted to the target area, an ultrasonic echo of the first ultrasonic wave is received, a first ultrasonic echo signal is obtained, and the target area is generated in real time based on the first ultrasonic echo signal The second B-mode ultrasound image;
  • step S250 the second B-mode ultrasound image is displayed in real time, the first B-mode ultrasound image and the second B-mode ultrasound image are matched in real time, and a matching result is output in real time, and the matching result is used to guide the user in The target puncture slice is determined in the process of displaying the second B-mode ultrasound image in real time.
  • the ultrasound imaging-based puncture guidance method 200 in the embodiment of the present application is mainly suitable for puncture guidance of diffuse lesions such as prostate cancer, wherein the target area of the measured object may be a prostate lesion area or other areas to be punctured.
  • elastography is performed on the target area in advance. Since the tissue in the area where the lesion is located is relatively hard, the slice containing the suspicious lesion can be more accurately found through the elastography image, so that the first slice corresponding to the target puncture slice can be obtained. Shear wave elasticity image and corresponding first B-mode ultrasound image.
  • the real-time B-type imaging mode during the puncture process collect the second B-type ultrasonic image in real time, use the first B-type ultrasonic image as the image to be matched and the second B-type ultrasonic image to perform real-time matching, and output the matching result to obtain a matching result.
  • the user is guided to find the target puncture section in the process of displaying the second B-mode ultrasound image in real time, so as to perform the puncture operation, thereby improving the positive puncture rate of the lesion.
  • step S210 can be performed in the shear wave elastography mode before the puncture, or can also read at least one frame of B-mode ultrasound image and at least one stored image of the target region based on shear wave elastography.
  • Frame shear wave elasticity images can be performed in the shear wave elastography mode before the puncture, or can also read at least one frame of B-mode ultrasound image and at least one stored image of the target region based on shear wave elastography.
  • the ultrasound probe When acquiring at least one frame of B-mode ultrasound image and at least one frame of shear wave elasticity image in the elastography mode, the ultrasound probe is controlled to transmit the second ultrasound to the target area, and the ultrasound echo of the second ultrasound is received, so as to obtain the second ultrasound echo signals, and obtain at least one frame of B-mode ultrasound images based on the second ultrasound echo signals; and generate shear waves propagating in the target area, and transmit a third ultrasonic wave to the target area to track the target area
  • the shear wave propagating in the area receives the ultrasonic echo of the third ultrasonic wave to obtain a third ultrasonic echo signal, and obtains at least one frame of shear wave elasticity image based on the third ultrasonic echo signal.
  • the user may input an instruction through the input device or through the human-computer interaction interface of the display device to start the shear wave elastography mode, and firstly enter the shear wave elastography preparation stage.
  • the transmitting circuit 112 sends an appropriately delayed electrical signal to each transducer element in the ultrasonic probe 110, and the transducer converts the electrical signal into a second ultrasonic wave and transmits it to the measured object.
  • the target area; the transducer in the ultrasonic probe 110 receives the ultrasonic echo of the second ultrasonic wave returned by the target area and converts it into an electrical signal to obtain a second ultrasonic echo signal, which is transmitted after signal amplification, analog-to-digital conversion, etc.
  • the processor 116 can perform logarithmic compression, dynamic range adjustment, digital Scan conversion and other processing to form at least one frame of B-mode ultrasound image for reflecting the tissue morphological structure of the target area, and output the real-time B-mode ultrasound image to the display device 118 for display, the user can observe the B-mode ultrasound image in real time. It is necessary to adjust the scope of inspection, the angle of placement of the ultrasound probe, etc.
  • a region of interest (ROI) frame on the B-mode ultrasound image can be manually selected by the user, and the position of the ROI can be determined according to the detected user input instruction.
  • the region of interest box can be a rectangle, or a circle, an ellipse, a fan shape, or the like.
  • the user can also draw a region of interest frame on the B-mode ultrasound image through an input device such as a mouse or a touch screen.
  • the position of the region of interest can be automatically determined on the B-mode ultrasound image based on a related machine recognition algorithm, that is, the region of interest frame can be automatically generated.
  • the region of interest can also be acquired by semi-automatic detection. For example, first, the position of the region of interest on the B-mode ultrasound image is automatically detected based on a machine recognition algorithm, and an editable region of interest is displayed on the ultrasound image.
  • the area box allows the user to adjust its height, width and position through the mouse, touch screen, etc. to determine the specific location of the area of interest.
  • the display device 118 transmits the determined coordinate information of the region of interest to the processor 116, and the processor 116 determines the position of the region of interest in the tissue according to the coordinate information of the region of interest, so as to perform subsequent operations on the region of interest.
  • Shear wave elastography In some embodiments, the region of interest can also be selected in other ways. For example, a predetermined distance below a certain position of the ultrasound probe is set as the region of interest by default. According to the displayed ultrasound image, the user can adjust by moving the ultrasound probe. region of interest, thereby changing the location of shear wave elastography.
  • shear waves propagating within the target area of the measured object are first generated.
  • shear waves can be generated inside tissue in the region of interest by acoustic radiation force focused impingement.
  • a series of ultrasonic propelling pulses may be transmitted through the ultrasonic probe 110 to the tissue of the region of interest to generate propagation of shear waves in the tissue based on the acoustic radiation force.
  • a vibrator may also be used to apply mechanical vibration to the object to be measured, thereby generating shear waves within the tissue of the region of interest.
  • the vibrator may be disposed inside the ultrasonic probe 110 , or may be an independent vibrator disposed outside the ultrasonic probe 110 .
  • the transmitting circuit 112 excites the ultrasonic probe 110 to transmit a third ultrasonic wave tracking the shear wave to the determined region of interest and receive the echo of the third ultrasonic wave to obtain a third ultrasonic echo signal.
  • the processor 116 calculates an elastic parameter of the region of interest, such as at least one of shear wave propagation velocity, Young's modulus value or shear modulus value, according to the third ultrasonic signal, and then generates at least one frame based on the distribution of the elastic parameter Shear wave elasticity image, in the shear wave elasticity image, different properties of hardness tissue can be identified by different colors, grayscales or filling methods.
  • pseudo-color mapping can be performed according to elastic parameters at multiple positions of the region of interest and superimposed within the region of interest frame of the B-mode ultrasound image, so as to form an elastic image of the region of interest.
  • the elastic parameter can be calculated by the following method: calculate the displacement of a certain point on the propagation path of the shear wave according to the received third ultrasonic echo signal, and when the displacement of the point is the largest, it is considered that the shear wave has reached this point. point.
  • the propagation path or propagation trajectory of the shear wave can be located, so that the shear wave trajectory diagram can be drawn.
  • the slope is the propagation velocity of the shear wave.
  • other elastic parameters such as Young's modulus and shear modulus, can be further calculated.
  • the B-mode ultrasound image with the region of interest identification and the shear wave elasticity image can be combined into one frame of image.
  • the B-mode ultrasound image with the region of interest identification obtained in the preparation stage of shear wave elastography and the result of the shear wave elastography image can be synthesized into one frame image, or alternately in the elastography scanning stage.
  • a first shear wave elasticity image corresponding to the target puncture slice is determined from at least one frame of shear wave elasticity images
  • a first shear wave elasticity image is obtained from at least one frame of B-mode
  • a first B-mode ultrasound image corresponding to the target puncture slice is determined in the ultrasound image.
  • the user can select the first shear wave elasticity image corresponding to the target puncture slice by referring to the shear wave elasticity image displayed on the display interface, or the system can automatically select the first shear wave elasticity image corresponding to the target puncture slice according to preset rules. Shear wave elasticity image.
  • the B-mode ultrasound image matching the first shear wave elasticity image is the first B-mode ultrasound image corresponding to the target puncture section. After the first B-mode ultrasound image is determined, the first B-mode ultrasound image corresponding to the target puncture slice can be stored for subsequent matching. Optionally, the first shear wave elasticity image and its corresponding first B-mode ultrasound image may be stored in the memory together.
  • Steps S240 and S250 are performed in real time during the puncture guidance stage. Specifically, when puncture guidance is required, the user may input an instruction through the input device or through the human-computer interaction interface of the display device to activate the B-mode imaging mode to acquire the second B-mode ultrasound image in real time.
  • the transmitting circuit 112 sends a properly delayed electrical signal to each transducer element in the ultrasonic probe 110 , and the electrical signal is converted into an ultrasonic wave by the transducer and transmitted to the receiver.
  • the target area of the object to be measured; the transducer in the ultrasonic probe 110 receives the ultrasonic echo of the first ultrasonic wave returned by the target area and converts it into an electrical signal to obtain the first ultrasonic echo signal, which is subjected to signal amplification and analog-to-digital conversion.
  • the first ultrasonic echo signal synthesized by the beam is sent to the processor 116, and the processor 116 can perform logarithmic compression and dynamic range on the first ultrasonic echo signal. Adjustment, digital scan conversion and other processing are performed to generate a second B-mode ultrasound image for reflecting the tissue morphological structure of the target area, and output the second B-mode ultrasound image to the display device 118 for display in real time.
  • the user can observe the second B-type ultrasound image in real time, and adjust the position and angle of the ultrasound probe with reference to the matching results of the first B-type ultrasound image and the second B-type ultrasound image, so as to find the second B-type ultrasound image corresponding to the target puncture section.
  • the system can automatically output prompt information according to the matching result of the first B-type ultrasound image and the second B-type ultrasound image, so as to guide the user to determine the target that needs to be punctured in the process of displaying the second B-type ultrasound image in real time. Puncture section.
  • step S250 the second B-mode ultrasound image and the above-mentioned first B-mode ultrasonic image are matched in real time, and the matching result is output in real time, and the matching result is used to guide the user to display the above-mentioned second B type in real time.
  • the target puncture slice was determined during the modal ultrasound image.
  • each frame of the second B-mode ultrasound image can be matched with the first B-mode ultrasound image in real time to obtain a more accurate match;
  • the first B-mode ultrasound image is matched in real time, thereby reducing the amount of computation.
  • the matching result between the second B-mode ultrasound image and the first B-mode ultrasound image can be displayed in real time, so as to guide The user determines the target puncture slice in the process of displaying the second B-mode ultrasound image in real time. It can also be that when the matching result of the real-time matching meets the preset requirements, the matching result of the second B-type ultrasound image and the first B-type ultrasound image is displayed in real time or prompt information is output in real time, and the prompt information includes but is not limited to voice prompts or A text prompt is displayed to prompt that the currently matched second B-mode ultrasound image meets the puncture requirements and can be punctured.
  • satisfying the preset requirements may include that the degree of matching, similarity or overlap between the second B-mode ultrasound image and the first B-mode ultrasound image satisfies a preset threshold, or the slice corresponding to the second B-mode ultrasound image and the first B-mode ultrasound image.
  • the matching degree, similarity or overlapping degree of the target puncture slice corresponding to the image meets a preset threshold; or other criteria that can indicate that the currently matched second B-mode ultrasound image meets the puncture requirement, etc.
  • the above matching result may reflect the degree of matching between the first B-type ultrasound image and the second B-type ultrasound image by the similarity.
  • the similarity between the first B-mode ultrasound image and the second B-mode ultrasound image may be determined in real time, so as to determine the matching degree of the two according to the similarity.
  • the similarity between the two can be displayed on the display interface, so as to guide the user to determine the target puncture slice during the process of displaying the second B-mode ultrasound image in real time.
  • the similarity meets the preset threshold
  • the similarity is displayed in real time or prompt information is output in real time.
  • the prompt information can prompt the currently matched second B-mode ultrasound image to meet the puncture requirements.
  • puncture can be performed, and the similarity may not be displayed at this time.
  • the similarity is low, it means that the matching degree between the first B-mode ultrasound image and the second B-mode ultrasound image is low, and when the similarity is high, it means that the first B-mode ultrasound image and the second B-mode ultrasound image match The degree is relatively high.
  • the similarity is higher than a preset threshold, it may be considered that the slice corresponding to the current second B-mode ultrasound image meets the puncture requirement, and may be used as the target puncture slice.
  • the similarity of the images can be determined by means of feature extraction. Specifically, the first image feature of the first B-mode ultrasound image is extracted in advance, the second image feature of the second B-mode ultrasound image is extracted in real time, and the first image feature and the second image feature are compared in real time to obtain the first image feature.
  • the similarity between a B-mode ultrasound image and a B-mode ultrasound image can be used to extract image features such as gradient features, Haar feature extraction, texture features, etc., or deep neural networks can be used for feature extraction.
  • a machine learning model can also be used to determine the similarity between the first B-type ultrasound image and the second B-type ultrasound image in real time, and the machine learning model can be a trained deep learning neural network model , which can be trained to directly output the similarity between the first B-mode ultrasound image and the second B-mode ultrasound image.
  • first B-mode ultrasound image and the second B-mode ultrasound image When there is no difference in displacement, rotation, amplitude difference, etc. between the first B-mode ultrasound image and the second B-mode ultrasound image, it can be determined whether the first B-mode ultrasound image and the second B-mode ultrasound image contain the similarity between the images. same aspect. However, when there are differences in displacement, rotation, amplitude difference, etc. between the first B-mode ultrasound image and the second B-mode ultrasound image, that is, if the positions and angles of the slices in the first B-mode ultrasound image and the second B-mode ultrasound image are different, then It may also be affected by the above difference, and both include the target puncture section, but the similarity between the images is not high.
  • the first B-mode ultrasound image and the second B-mode ultrasound image may be matched by means of slice matching, that is, the slice corresponding to the second B-mode ultrasound image and the first B-mode ultrasound image are determined in real time.
  • the similarity between the corresponding target puncture slices guides the user to determine the target puncture slice in the process of displaying the second B-mode ultrasound image in real time, thereby improving the matching success rate.
  • the matching of the slices can also be performed by feature comparison.
  • the extracted features are classified by classifiers such as support vector machines, random forests, and neural networks, so as to segment the slices.
  • the image features of the slice area are compared to obtain the similarity between the slice corresponding to the second B-mode ultrasound image and the target puncture slice corresponding to the first B-mode ultrasonic image.
  • the trained machine learning model may also be used to directly output the similarity between the slice corresponding to the second B-type ultrasound image and the target puncture slice corresponding to the first B-type ultrasound image.
  • the similarity obtained by matching can be displayed in real time while the second B-mode ultrasound image 301 is displayed in real time.
  • the current second B-mode ultrasound image 301 shown in FIG. The similarity of a B-mode ultrasound image was 30%.
  • the user can adjust the ultrasound probe, collect and display the current second B-mode ultrasound image in real time with the adjustment of the ultrasound probe, match the current second B-mode ultrasound image with the first B-mode ultrasound image in real time, and display the matching result.
  • the user observes the change of similarity in real time while adjusting the ultrasonic probe to find the position and angle of the ultrasonic probe with the highest similarity, and considers that the section of the second B-mode ultrasonic image collected at this time meets the puncture requirements , which can be used as the target puncture section for puncture.
  • the similarity may not be displayed in real time during the entire process of displaying the second B-mode ultrasound image, but only when the similarity is higher than a predetermined threshold.
  • the similarity in different ranges can also be displayed in different colors, so as to visually prompt the user about the current matching situation. Displaying the similarity in different ranges as different colors can be implemented by displaying the text of the similarity as different colors, or by displaying the background of the text as different colors. For example, if the similarity is higher than the preset threshold, the font is displayed in white, and when the similarity is lower than the preset threshold, the font is displayed in red, but the color configuration is not limited to this.
  • prompt information such as other texts, graphics, symbols, or sounds can be used to prompt the user that the current slice has a high degree of matching with the target puncture slice, so it can be used as the target puncture slice .
  • the static first B-mode ultrasound image 402 and the first shear wave elasticity image 403 can also be displayed side by side on the display interface, For user reference.
  • the first shear wave elasticity image 403 superimposed on the first B-mode ultrasound image and the separate first B-mode ultrasound image 402 marked with a region of interest frame are simultaneously displayed side by side in the display interface.
  • only the first B-mode ultrasound image 402 may be displayed side by side, only the first shear wave elasticity image 403 superimposed on the first B-mode ultrasound image may be displayed, or the first shear wave may be displayed alone.
  • Wave elasticity image 403 is a further embodiment, while the second B-mode ultrasound image 401 is displayed, the static first B-mode ultrasound image 402 and the first shear wave elasticity image 403 can also be displayed side by side on the display interface.
  • the first shear wave elasticity image 502 may also be superimposed on the second B-mode ultrasound image 501
  • the preset threshold is, for example, 90%, but not limited to this.
  • FIG. 5 also shows the position of the puncture needle 503. According to the second B-mode ultrasound image 501 superimposed with the first shear wave elasticity image 502, the user can observe the puncture needle 503 and the first shear wave during the puncture process. The location of the target puncture slice in the wave elasticity image 502 to better guide the puncture.
  • the first shear wave elasticity image 502 can be directly superimposed on the second B-mode ultrasound image 501 .
  • the matching feature points between slices can be used to determine the position transformation between the slice corresponding to the second B-mode ultrasound image and the target puncture slice corresponding to the first B-mode ultrasound image
  • the elastic image is transformed according to the transformation relationship, and then superimposed on the corresponding position of the second B-mode ultrasound image to ensure that the slice position corresponding to the first shear wave elastic image and the slice position corresponding to the second B-mode ultrasound image Corresponding.
  • the first B-mode ultrasonic image and the second B-mode ultrasonic image can be superimposed and displayed, so as to display the first B-mode ultrasonic image and the second B-mode ultrasonic image according to the
  • the overlapping degree of the second B-mode ultrasound image guides the user to determine the target puncture slice during the process of displaying the above-mentioned second B-mode ultrasound image in real time.
  • the user can observe the degree of overlap between the first B-mode ultrasound image and the second B-mode ultrasound image to determine a target puncture slice that meets the user's requirements.
  • the first B-mode ultrasound image superimposed on the second B-mode ultrasound image It can be adjusted, such as allowing the user to translate it, rotate it, etc.
  • the first B-mode ultrasound image may be transparentized first, and the transparentized first B-mode ultrasound image may be superimposed and displayed on the second B-mode ultrasound image. View the second B-mode ultrasound image under the ultrasound image.
  • the second B-mode ultrasound can be transparentized in real time, and the transparentized second B-mode ultrasound image is superimposed and displayed on the first B-mode ultrasound image, so that the first B-mode ultrasound can be displayed on the first B-mode ultrasound. View the second B-mode ultrasound image under the ultrasound image.
  • the first B-mode ultrasound image or the second B-mode ultrasound image may be colorized, and different colors are used to represent the amplitude values in the gray-scale B-mode ultrasound image.
  • the transparentized first B-mode ultrasonic image is superimposed and displayed on the second B-mode ultrasonic image, in addition to the transparent processing, the first B-mode ultrasonic image can also be colorized.
  • the transparentized second B-mode ultrasonic image is superimposed and displayed on the first B-mode ultrasonic image, in addition to the transparent processing, the second B-mode ultrasonic image can also be colorized.
  • the two can be easily distinguished from each other when superimposed, so that the user can compare the slice corresponding to the first B-mode ultrasound image and the second B-mode ultrasound image.
  • the slices corresponding to the B-mode ultrasound images are compared to find the target puncture slices that meet the puncture requirements.
  • the above-mentioned matching method by image overlay may also be combined with a matching method based on matching degree.
  • the similarity between the first B-mode ultrasound image and the second B-mode ultrasound image may be calculated at the same time as the images are superimposed, and the similarity may be displayed. While displaying the superimposed image, the first shear wave elasticity image can also be displayed side by side with the superimposed image.
  • puncture guidance can be performed according to the second B-mode ultrasound image corresponding to the target puncture section, so as to puncture the tissue in the target area.
  • the puncture needle is inserted into the body of the measured object at a certain angle, and the puncture needle is imaged in the second B-mode ultrasound image to reflect the specific position of the puncture needle, thereby realizing the accurate puncture process.
  • the position of the puncture needle 503 is shown in the second B-mode ultrasound image 501 superimposed with the elastic image.
  • the ultrasound imaging-based puncture guidance method 200 of the embodiment of the present application finds the target puncture slice in advance according to the shear wave elasticity image, and uses the first B-mode ultrasound image corresponding to the shear wave elasticity image as the image to be matched Real-time matching is performed with the second B-mode ultrasound image, and a matching result is output to guide the user to find the target puncture section in the process of displaying the second B-mode ultrasonic image in real time, so as to perform the puncture operation and improve the puncture success rate.
  • Embodiments of the present application further provide an ultrasound imaging system, which can be used to implement the above-mentioned ultrasound imaging-based puncture guidance method 200 .
  • the ultrasound imaging system 100 may include an ultrasound probe 110 , transmit circuitry 112 , receive circuitry 114 , processor 116 , display device 118 , transmit/receive selection switch 120 , beamforming circuitry 122 , and portions of memory 124 Or all components, the relevant description of each component can refer to the above. Only the main functions of the ultrasound imaging system 100 are described below, and the details that have been described above are omitted.
  • the transmitting circuit 112 is used to excite the ultrasonic probe 110 to transmit the first ultrasonic wave to the target area;
  • the receiving circuit 114 is used to control the ultrasonic probe 110 to receive the ultrasonic echo of the first ultrasonic wave to obtain the first ultrasonic echo signal;
  • the processor 116 is configured to: acquire at least one frame of B-mode ultrasound image and at least one frame of shear wave elasticity image of the target area obtained based on shear wave elasticity imaging; a first shear wave elasticity image corresponding to the puncture slice; determining a first B-mode ultrasound image corresponding to the target puncture slice from the at least one frame of B-mode ultrasonic image based on the first shear-wave elasticity image; based on the first B-mode ultrasonic image
  • the ultrasonic echo signal generates a second B-mode ultrasonic image of the target area in real time;
  • the display device 118 is controlled to display the second B-mode ultrasonic image in real time, and the first B-mode ultrasonic
  • acquiring at least one frame of B-mode ultrasound image and at least one frame of shear wave elasticity image of the target area based on shear wave elasticity imaging includes: transmitting a second ultrasonic wave to the target area, and receiving the second ultrasonic wave to the target area.
  • ultrasonic echoes of ultrasonic waves to obtain a second ultrasonic echo signal, and to obtain the at least one frame B-mode ultrasonic image based on the second ultrasonic echo signal;
  • the target area transmits a third ultrasonic wave to track the shear wave propagating in the target area, receives the ultrasonic echo of the third ultrasonic wave to obtain a third ultrasonic echo signal, and obtains the third ultrasonic echo signal based on the third ultrasonic echo signal.
  • at least one frame of shear wave elasticity image or, reading at least one frame of B-mode ultrasound image and at least one frame of shear wave elasticity image of the target region obtained based on shear wave elasticity imaging.
  • the memory 124 is used to store the first B-mode ultrasound image corresponding to the target puncture slice.
  • the processor 116 is configured to control the display device 118 to output the matching result in real time, including:
  • the display device 118 is controlled to display the matching result in real time or output prompt information in real time.
  • the processor 116 is configured to match the first B-mode ultrasound image and the second B-mode ultrasound image in real time, including: the processor 116 is configured to determine the first B-mode ultrasound image and the second B-mode ultrasound image in real time The similarity between the ultrasound images of the second B-mode ultrasound image and the target puncture section corresponding to the first B-mode ultrasound image is determined in real time.
  • the processor 116 is configured to control the display device 118 to output the matching result in real time, including:
  • the display device 118 is controlled to display the similarity in real time or output prompt information in real time.
  • the processor 116 is further configured to control the display device 118 to display the similarities in different ranges as different colors.
  • the processor 116 is configured to perform the determination of the similarity including: the processor 116 is configured to extract the first image feature of the first B-mode ultrasound image; extract the second image of the second B-mode ultrasound image in real time feature; compare the first image feature and the second image feature in real time to obtain the similarity between the first B-mode ultrasound image and the second B-mode ultrasound image or the cut plane of the target area corresponding to the second B-mode ultrasound image and the first B-mode ultrasound image.
  • a machine learning model may also be used to determine in real time the similarity between the first B-type ultrasound image and the second B-type ultrasound image or the cut plane of the target area corresponding to the second B-type ultrasound image and the first B-type ultrasound image. The similarity between the target puncture slices corresponding to the ultrasound images.
  • the processor 116 when the similarity is higher than a preset threshold, is further configured to control the display device 118 to superimpose and display the elastic image on the second B-mode ultrasound image.
  • the processor 116 being configured to match the first B-mode ultrasound image with the second B-mode ultrasound image in real time includes: the processor 116 being configured to match the first B-mode ultrasound image with the second B-mode ultrasound image The ultrasonic image is superimposed and displayed, and the processor 116 is configured to control the display device 118 to output the matching result in real time, including: controlling the display device 118 to display the superimposed display result of the first B-mode ultrasonic image and the second B-mode ultrasonic image in real time, The user is guided to determine the target puncture slice in the process of displaying the second B-mode ultrasonic image in real time according to the degree of overlap between the first B-mode ultrasonic image and the second B-mode ultrasonic image.
  • superimposing and displaying the first B-mode ultrasonic image and the second B-mode ultrasonic image includes performing transparent processing on the first B-mode ultrasonic image, and superimposing and displaying the transparentized first B-mode ultrasonic image on the first B-mode ultrasonic image.
  • the superimposed display includes performing transparent processing on the second B-mode ultrasound in real time, and superimposing and displaying the transparentized second B-mode ultrasound image on the first B-mode ultrasound image.
  • the first B-mode ultrasound image or the second B-mode ultrasound image may also be colorized during superimposed display.
  • the display device 118 is further configured to display at least one of the elasticity image and the first B-mode ultrasound image side by side with the second B-mode ultrasound image.
  • the processor 116 is further configured to: store the puncture image in the memory 124 in response to the image saving instruction after the user completes the puncture operation based on the target puncture slice.
  • the ultrasound imaging system of the embodiment of the present application finds the target puncture section according to the shear wave elasticity image in advance, and uses the first B-mode ultrasound image corresponding to the shear wave elasticity image as the to-be-matched image and the second B-mode
  • the ultrasound images are matched in real time, and the matching results are output, so as to guide the user to find the target puncture section in the process of displaying the second B-mode ultrasonic image in real time, so as to perform the puncture operation and improve the puncture success rate.
  • FIG. 6 is a schematic flowchart of a method 600 for puncture guidance based on ultrasound imaging according to an embodiment of the present application. As shown in FIG. 6 , the ultrasound imaging-based puncture guidance method 600 includes the following steps:
  • step S610 a first B-mode ultrasound image corresponding to the target puncture slice is obtained, wherein the first B-mode ultrasonic image is determined based on the first elasticity image obtained by elastography and corresponding to the target puncture slice;
  • step S620 transmitting ultrasonic waves to the target area, receiving ultrasonic echoes of the ultrasonic waves to obtain ultrasonic echo signals, and generating a second B-mode ultrasonic image of the target area in real time based on the ultrasonic echo signals;
  • step S630 the second B-mode ultrasound image is displayed in real time, the first B-mode ultrasound image and the second B-mode ultrasound image are matched in real time, and a matching result is output in real time, and the matching result is used to guide the user in The target puncture slice is determined in the process of displaying the second B-mode ultrasound image in real time.
  • the ultrasonic imaging-based puncture guidance method 600 is generally similar to the ultrasonic imaging-based puncture guidance method 200 described above, and the difference between the two mainly lies in: the first elastic image acquired in step S610 Not only the shear wave elasticity image described above, but also the strain elasticity image.
  • the realization method of shear wave elasticity image can be understood by referring to the above description; for strain elasticity image, it is realized by pressure elasticity imaging, and the specific method is mainly to apply pressure to the target tissue by hand-held ultrasonic probe, and obtain two frames before and after the target tissue is compressed.
  • Ultrasonic echo information and then calculate the displacement of the corresponding position before and after compression through a specific algorithm, which is the spatial position change information of the target tissue at two different times.
  • a specific algorithm which is the spatial position change information of the target tissue at two different times.
  • the strain value is displayed in the form of an image according to the strain value of each point in the target tissue area, that is, the strain elastic image.
  • the strain elasticity image can intuitively reflect the difference in softness and hardness or elasticity between different tissues. Under the same external force compression, the larger the strain, the softer the tissue, and the smaller the strain, the harder the tissue.
  • acquiring the first B-mode ultrasound image corresponding to the target puncture slice includes: acquiring at least one frame of B-mode ultrasound image and at least one frame of elasticity image of the target region obtained based on elastography; A first elastic image corresponding to the target puncture slice is determined in the image; and a first B-mode ultrasonic image corresponding to the target puncture slice is determined from the at least one frame of B-mode ultrasonic image based on the first elasticity image.
  • acquiring the first B-mode ultrasound image corresponding to the target puncture slice may also include: acquiring the saved first B-mode ultrasonic image corresponding to the target puncture slice.
  • steps S620 and S630 are generally similar to steps S240 and S250 in the puncture guidance method 200 , for details, please refer to the relevant description above. For brevity, the same details are not repeated here.
  • Embodiments of the present application further provide an ultrasound imaging system, which can be used to implement the above-mentioned ultrasound imaging-based puncture guidance method 600 .
  • the ultrasound imaging system 100 may include an ultrasound probe 110 , transmit circuitry 112 , receive circuitry 114 , processor 116 , display device 118 , transmit/receive selection switch 120 , beamforming circuitry 122 , and portions of memory 124 Or all components, the relevant description of each component can refer to the above. Only the main functions of the ultrasound imaging system 100 are described below, and the details that have been described above are omitted.
  • the transmitting circuit 112 is used to excite the ultrasonic probe 110 to transmit ultrasonic waves to the target area of the measured object;
  • the receiving circuit 114 is used to control the ultrasonic probe 110 to receive ultrasonic ultrasonic echoes to obtain ultrasonic echo signals;
  • the processor 116 is used for : acquiring a first B-mode ultrasound image corresponding to the target puncture section, wherein the first B-mode ultrasound image is determined based on the first elastic image obtained by elastography and corresponding to the target puncture section; based on the ultrasonic echo signal Generating a second B-mode ultrasonic image of the target area in real time; displaying the second B-mode ultrasonic image in real time, and performing real-time matching on the first B-mode ultrasonic image and the second B-mode ultrasonic image, so as to match the real-time matching As a result, the second B-mode ultrasound image corresponding to the target puncture slice is determined.
  • the elastic image includes a strain elastic image or a shear wave elastic
  • the ultrasonic imaging-based puncture guidance method 600 and the ultrasonic imaging system find the target puncture section in advance according to the shear wave elasticity image or the strain elasticity image, and according to the shear wave elasticity image or the strain elasticity image
  • the image determines that the first B-mode ultrasound image corresponding to the target puncture section is used as the image to be matched and the second B-mode ultrasound image is matched in real time, and the matching result is output to guide the user to find the second B-mode ultrasound image in the process of displaying the second B-mode ultrasound image in real time.
  • the target puncture cut surface can be used for puncture operation and the puncture success rate is improved.
  • FIG. 7 is a schematic flowchart of a method 700 for puncture guidance based on ultrasound imaging according to an embodiment of the present application. As shown in FIG. 7 , the ultrasound imaging-based puncture guidance method 700 includes the following steps:
  • step S710 a first B-mode ultrasound image corresponding to the target puncture slice is obtained, wherein the first B-mode ultrasonic image is determined based on the first elasticity image obtained by elastography and corresponding to the target puncture slice;
  • step S720 transmitting ultrasonic waves to the target area, and receiving ultrasonic echoes of the ultrasonic waves to obtain ultrasonic echo signals;
  • step S730 signal processing is performed on the ultrasonic echo signal to generate a color ultrasonic image of the target area in real time, where the color ultrasonic image includes a second B-mode ultrasonic image and a second B-mode ultrasonic image superimposed on the second B-mode ultrasonic image.
  • step S740 the color ultrasonic image is displayed in real time, the first B-mode ultrasonic image and the second B-mode ultrasonic image are matched in real time, and a matching result is output in real time, and the matching result is used to guide the user to display all the images in real time.
  • the target puncture slice is determined during the process of the color ultrasound image.
  • the ultrasound imaging-based puncture guidance method 700 is generally similar to the puncture guidance method 600 and the puncture guidance method 200 described above, and the main difference is that the puncture guidance method 700 is based on the color ultrasound images acquired in real time Real-time guided puncture.
  • elastography is performed on the target area in advance before puncturing. Since the tissue in the area where the lesion is located is relatively hard, the slice containing the suspicious lesion can be more accurately found through the elasticity image, so as to obtain a correlation with the target area.
  • the first elastic image corresponding to the puncture slice, and then the first B-mode ultrasound image corresponding to the target puncture slice can be determined based on the first elasticity image.
  • the color imaging mode ie, color mode
  • the color imaging mode may be a color Doppler imaging mode or other color imaging modes.
  • the color Doppler imaging mode calculates the dynamic information of blood cells in the blood flow according to the ultrasonic echo signal, and adjusts the three primary colors of red, blue and green according to the moving direction, speed and dispersion of the blood cells, and changes its color. Brightness, superimposed on the corresponding second B-mode ultrasound image.
  • the B-mode ultrasound image that is, the second B-mode ultrasound image
  • the second B-mode ultrasound image and the pre-obtained first B-mode ultrasound image corresponding to the target puncture slice can be used.
  • the ultrasound image is matched in real time, and the matching result is output in real time, so as to guide the user to determine the target puncture section during the process of displaying the color ultrasonic image in real time, and improve the puncture success rate of puncture guidance in the color imaging mode.
  • the real-time matching of the first B-mode ultrasound image and the second B-mode ultrasound image includes: determining, in real time, a similarity between the first B-mode ultrasound image and the second B-mode ultrasound image, or determining the second B-mode ultrasound image in real time.
  • the similarity between the slice corresponding to the B-mode ultrasound image and the target puncture slice corresponding to the first B-mode ultrasound image may also be displayed to guide the user to determine the target puncture slice according to the similarity.
  • the similarity may be displayed in real time during the real-time display of the color ultrasound image.
  • the similarity may not be displayed in real time during the entire process of displaying the color ultrasound image, but only when the similarity is higher than a predetermined threshold.
  • the similarity in different ranges can also be displayed in different colors, so as to visually prompt the user about the current matching situation.
  • the elasticity image may be displayed in a superimposed manner on the color ultrasound image. According to the color ultrasound image superimposed with the elastic image, the user can observe the position of the puncture needle and the target puncture section corresponding to the elastic image during the puncture process, so as to better guide the puncture.
  • the real-time matching of the first B-mode ultrasound image and the second B-mode ultrasound image includes: superimposing and displaying the first B-mode ultrasound image and the second B-mode ultrasound image, so as to display according to the first B-mode ultrasound image and the second B-mode ultrasound image.
  • the degree of overlap between a B-mode ultrasound image and the second B-mode ultrasound image guides the user to determine the target puncture slice during the process of displaying the second B-mode ultrasound image in real time.
  • the user can observe the degree of overlap between the first B-mode ultrasound image and the second B-mode ultrasound image to determine a target puncture slice that meets the user's requirements.
  • the elasticity image and the color ultrasound image can also be displayed side by side, or the first B-mode ultrasound image and the color B-type ultrasound image can be displayed side by side, so as to facilitate the user to compare and observe.
  • Embodiments of the present application further provide an ultrasound imaging system, which can be used to implement the above-mentioned ultrasound imaging-based puncture guidance method 700 .
  • the ultrasound imaging system 100 may include an ultrasound probe 110 , transmit circuitry 112 , receive circuitry 114 , processor 116 , display device 118 , transmit/receive selection switch 120 , beamforming circuitry 122 , and portions of memory 124 Or all components, the relevant description of each component can refer to the above. Only the main functions of the ultrasound imaging system 100 are described below, and the details that have been described above are omitted.
  • the transmitting circuit 112 is used to excite the ultrasonic probe 110 to transmit ultrasonic waves to the target area of the measured object;
  • the receiving circuit 114 is used to control the ultrasonic probe 110 to receive ultrasonic ultrasonic echoes to obtain ultrasonic echo signals;
  • the processor 116 is used for : acquiring a first B-mode ultrasound image corresponding to the target puncture section, wherein the first B-mode ultrasound image is determined based on the first elastic image obtained by elastography and corresponding to the target puncture section; real-time based on the ultrasonic echo signal generating a second B-mode ultrasound image of the target area; matching the first B-mode ultrasound image with the second B-mode ultrasound image in real time, and outputting a matching result in real time, and the matching result is used to guide the user to display the color ultrasound in real time
  • the target puncture slice is determined during the imaging process;
  • the display device 118 is used to display the color ultrasound image in real time.
  • the ultrasonic imaging-based puncture guidance method 700 and the ultrasonic imaging system find the target puncture section in advance according to the shear wave elasticity image or the strain elasticity image, and use the The first B-mode ultrasound image corresponding to the shear wave elasticity image or the strain elasticity image is used as the image to be matched and the second B-mode ultrasonic image of the color ultrasonic image is matched in real time, and the matching result is output in real time, so as to guide the user to display the image in real time.
  • the target puncture section is determined in the process of the color ultrasound image, which improves the puncture success rate.
  • FIG. 8 is a schematic flowchart of a method 800 for puncture guidance based on ultrasound imaging according to an embodiment of the present application. As shown in FIG. 8 , the ultrasound imaging-based puncture guidance method 800 includes the following steps:
  • step S810 a first B-mode ultrasound image corresponding to the target puncture slice is acquired, wherein the first B-mode ultrasonic image is a first color Doppler ultrasound obtained based on color ultrasonic imaging and corresponding to the target puncture slice image-determined;
  • step S820 transmitting ultrasonic waves to the target area, receiving ultrasonic echoes of the ultrasonic waves to obtain ultrasonic echo signals, and generating a second B-mode ultrasonic image of the target area in real time based on the ultrasonic echo signals;
  • step S830 the second B-mode ultrasonic image is displayed in real time, the first B-mode ultrasonic image and the second B-mode ultrasonic image are matched in real time, and a matching result is output in real time, and the matching result is used for guiding The user determines the target puncture slice in the process of displaying the second B-mode ultrasound image in real time.
  • the ultrasonic imaging-based puncture guidance method 800 of the embodiment of the present application also finds a color ultrasound image corresponding to the target puncture slice in advance, and according to the color ultrasound
  • the image finds the first B-mode ultrasonic image corresponding to the target puncture section as the image to be matched and performs real-time matching with the second B-mode ultrasonic image collected in real time, and outputs the matching result in real time, so as to guide the user to display the second B-mode ultrasonic image in real time.
  • the target puncture section is determined during the B-mode ultrasound image. The difference is that the pre-collected ultrasound image in the puncture guidance method 800 and the target puncture section is a color Doppler ultrasound image.
  • the user can determine the target according to the blood flow characteristics of the tumor.
  • the color Doppler ultrasound image corresponding to the puncture slice and then determine the first B-mode ultrasonic image corresponding to the target puncture slice, and use the first B-mode ultrasonic image as the image to be matched and the real-time acquisition of the second B-mode ultrasonic image.
  • Matching is performed in real time, and the matching result is output in real time, so as to guide the user to determine the target puncture slice during the process of displaying the second B-mode ultrasound image in real time.
  • acquiring the first B-mode ultrasound image corresponding to the target puncture section includes: acquiring at least one frame of B-mode ultrasound image and at least one frame of color Doppler ultrasound image of the target area based on color ultrasound imaging; A first color Doppler ultrasound image corresponding to the target puncture slice is determined from the at least one frame of color Doppler ultrasound image; and a first color Doppler ultrasound image corresponding to the target puncture slice is determined from the at least one frame of B-mode ultrasound image based on the first color Doppler ultrasound image.
  • the first B-mode ultrasound image corresponding to the target puncture slice may also be acquired.
  • the other steps of the puncture guide method 800 are generally similar to the puncture guide method 200 and the puncture guide method 600 , for details, please refer to the above-mentioned related descriptions, which will not be repeated here.
  • Embodiments of the present application further provide an ultrasound imaging system, which can be used to implement the above-mentioned ultrasound imaging-based puncture guidance method 800 .
  • the ultrasound imaging system 100 may include an ultrasound probe 110 , transmit circuitry 112 , receive circuitry 114 , processor 116 , display device 118 , transmit/receive selection switch 120 , beamforming circuitry 122 , and portions of memory 124 Or all components, the relevant description of each component can refer to the above. Only the main functions of the ultrasound imaging system 100 are described below, and the details that have been described above are omitted.
  • the transmitting circuit 112 is used to excite the ultrasonic probe 110 to transmit ultrasonic waves to the target area;
  • the receiving circuit 114 is used to control the ultrasonic probe 110 to receive ultrasonic ultrasonic echoes to obtain ultrasonic echo signals;
  • the processor 116 is used to: acquire and target A first B-mode ultrasound image corresponding to the puncture slice, wherein the first B-mode ultrasonic image is determined based on the first color Doppler ultrasonic image obtained by color ultrasonic imaging and corresponding to the target puncture slice; based on the ultrasonic echo
  • the signal generates a second B-mode ultrasonic image of the target area in real time;
  • the first B-mode ultrasonic image and the second B-mode ultrasonic image are matched in real time, and a matching result is output in real time, and the matching result is used to guide the user to display in real time
  • the target puncture slice is determined in the process of the second B-mode ultrasound image;
  • the display device 118 is used to display the
  • the ultrasonic imaging-based puncture guidance method 800 and the ultrasonic imaging system determine the first B-mode ultrasonic image corresponding to the target puncture slice in advance according to the color Doppler ultrasonic image corresponding to the target puncture slice , and in the process of collecting the second B-mode ultrasound image in real time, use the first B-mode ultrasound image as the image to be matched for real-time matching, and output the matching result in real time, so as to guide the user to display the second B-mode ultrasound image in real time
  • the target puncture section is determined in the process of puncturing, which improves the puncture success rate.
  • FIG. 9 is a schematic flowchart of a puncture guidance method 900 based on ultrasound imaging according to an embodiment of the present application. As shown in FIG. 9 , the ultrasound imaging-based puncture guidance method 900 includes the following steps:
  • step S910 a first B-mode ultrasound image corresponding to the target puncture slice is obtained, wherein the first B-mode ultrasonic image is determined based on the first elasticity image obtained by elastography and corresponding to the target puncture slice;
  • step S920 the ultrasonic probe is controlled to transmit ultrasonic waves to the target area along different positions or angles, and ultrasonic echoes of the ultrasonic waves are received to obtain ultrasonic echo signals, and based on the ultrasonic echo signals, the first ultrasonic wave of the target area is generated in real time based on the ultrasonic echo signals.
  • step S930 the second B-mode ultrasound image is displayed in real time, and the first B-mode ultrasound image and the second B-mode ultrasound image are matched in real time to obtain a matching result;
  • step S940 when the matching result meets the preset requirement, control the ultrasound probe to remain at the current position or angle, so as to guide the user to obtain the slice corresponding to the second B-mode ultrasound image based on the current position or angle Perform puncture.
  • the ultrasonic imaging-based puncture guidance method 900 of the embodiment of the present application also finds the first elastic image corresponding to the target puncture slice in advance, and finds the first elastic image according to the first elastic image.
  • the first B-mode ultrasonic image corresponding to the target puncture section is used as the image to be matched and the second B-mode ultrasonic image collected in real time is matched in real time to obtain a matching result.
  • the difference is that in the puncture guidance method 900, when the matching result meets the preset requirements, the ultrasonic probe is controlled by the system to remain at the current position or angle, so as to guide the user to obtain the second B based on the current position or angle.
  • the puncture was performed on the corresponding section of the ultrasound image.
  • whether to display the matching result in real time it may be displayed in real time or not, which is not limited in this embodiment.
  • Embodiments of the present application further provide an ultrasound imaging system, which can be used to implement the above-mentioned ultrasound imaging-based puncture guidance method 900 .
  • the ultrasound imaging system 100 may include an ultrasound probe 110 , transmit circuitry 112 , receive circuitry 114 , processor 116 , display device 118 , transmit/receive selection switch 120 , beamforming circuitry 122 , and portions of memory 124 Or all components, the relevant description of each component can refer to the above. Only the main functions of the ultrasound imaging system 100 are described below, and the details that have been described above are omitted.
  • the transmitting circuit 112 is used to excite the ultrasonic probe 110 to transmit ultrasonic waves to the target area;
  • the receiving circuit 114 is used to control the ultrasonic probe 110 to receive ultrasonic ultrasonic echoes to obtain ultrasonic echo signals;
  • the processor 116 is used to: acquire and target A first B-mode ultrasound image corresponding to the puncture slice, wherein the first B-mode ultrasonic image is determined based on the first elasticity image obtained by elastography and corresponding to the target puncture slice; the target is generated in real time based on the ultrasonic echo signal the second B-mode ultrasound image of the region; control the display device 118 to display the second B-mode ultrasound image in real time, and perform real-time matching between the first B-mode ultrasound image and the second B-mode ultrasound image to obtain a matching result; when the When the matching result meets the preset requirements, the ultrasonic probe 110 is controlled to remain at the current position or angle, so as to guide the user to perform puncture on the slice corresponding to the second B-mode
  • the ultrasonic imaging-based puncture guidance method 900 and the ultrasonic imaging system determine the first B-mode ultrasonic image corresponding to the target puncture slice in advance according to the first elasticity image corresponding to the target puncture slice, and During the real-time acquisition of the second B-mode ultrasound image, real-time matching is performed using the first B-mode ultrasound image as the image to be matched, and a matching result is obtained; when the matching result meets the preset requirements, the ultrasound probe 110 is controlled to keep at The current position or angle is used to guide the user to puncture the slice corresponding to the second B-mode ultrasound image obtained based on the current position or angle, thereby improving the success rate of puncturing.
  • a computer storage medium is also provided, where program instructions are stored on the computer storage medium, and when the program instructions are executed by a computer or a processor, the ultrasound imaging-based ultrasound imaging according to the embodiments of the present application is performed. Corresponding steps of the puncture guidance method 200, 600, 700, 800 or 900.
  • the storage medium may include, for example, a memory card of a smartphone, a storage unit of a tablet computer, a hard disk of a personal computer, a read only memory (ROM), an erasable programmable read only memory (EPROM), a portable compact disk read only memory ( CD-ROM), USB memory, or any combination of the above storage media.
  • the computer-readable storage medium can be any combination of one or more computer-readable storage media.
  • a computer program is also provided, and the computer program can be stored in the cloud or on a local storage medium.
  • the computer program is run by a computer or a processor, it is used to execute the corresponding steps of the ultrasound imaging-based puncture guidance method of the embodiments of the present application.
  • the ultrasonic imaging-based puncture guidance method and ultrasonic imaging system use the elasticity image or the color Doppler ultrasonic image to find the B-mode ultrasonic image corresponding to the target puncture section to guide the puncture in real time, thereby improving the puncture performance. Success rate.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or May be integrated into another device, or some features may be omitted, or not implemented.
  • Various component embodiments of the present application may be implemented in hardware, or in software modules running on one or more processors, or in a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all functions of some modules according to the embodiments of the present application.
  • DSP digital signal processor
  • the present application can also be implemented as a program of apparatus (eg, computer programs and computer program products) for performing part or all of the methods described herein.
  • Such a program implementing the present application may be stored on a computer-readable medium, or may be in the form of one or more signals. Such signals may be downloaded from Internet sites, or provided on carrier signals, or in any other form.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种基于超声成像的穿刺引导方法和超声成像系统,方法包括:获取基于剪切波弹性成像得到的目标区域的至少一帧B型超声图像和至少一帧剪切波弹性图像(S210);从至少一帧剪切波弹性图像中确定与目标穿刺切面对应的第一剪切波弹性图像(S220);基于第一剪切波弹性图像从至少一帧B型超声图像中确定与目标穿刺切面对应的第一B型超声图像(S230);向目标区域发射第一超声波,接收第一超声波的超声回波,以获得第一超声回波信号,并基于第一超声回波信号实时生成目标区域的第二B型超声图像(S240);实时显示第二B型超声图像,对第一B型超声图像与第二B型超声图像进行实时匹配,并实时输出引导用户确定目标穿刺切面的匹配结果(S250)。该方案能够提高穿刺成功率。

Description

基于超声成像的穿刺引导方法和超声成像系统
说明书
技术领域
本申请涉及超声成像技术领域,更具体地涉及一种基于超声成像的穿刺引导方法和超声成像系统。
背景技术
超声是临床上用于筛查组织病变最为常用的手段,而超声弹性成像技术能够定量的反映病灶及周围组织的软硬程度,在癌症诊断中有着独特的辅助诊断价值和优势,近年来已经越来越广泛的应用于前列腺疾病的临床诊断中。
前列腺癌是男性泌尿生殖系统最常见的恶性肿瘤之一,近年来其发病率和死亡率都呈明显上升趋势。前列腺癌的诊断手段通常是对PSA(Prostate Serum Antigen,前列腺血清抗原)升高或者指诊出前列腺硬块的病人进行系统穿刺,以获得组织标本进行对应的病理检查和病理学诊断。目前,前列腺系统穿刺是在超声引导下进行的。然而,对于类似前列腺癌的弥漫性肿瘤来说,由于其超声通常表现为包膜内分界模糊,因而难以从常规的B型超声图像上辨认出病灶所处的位置,导致穿刺成功率一直很低。从病理学上,前列腺癌所导致的前列腺组织胶原沉积会导致前列腺组织硬度变硬,因而弹性图像可以提示硬度较高的前列腺可疑区域;但弹性成像模式帧率过低,因而难以实时引导穿刺。
发明内容
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
本申请实施例第一方面提供了一种基于超声成像的穿刺引导方法,所述方法包括:
获取基于剪切波弹性成像得到的目标区域的至少一帧B型超声图像和至少一帧剪切波弹性图像;
从所述至少一帧剪切波弹性图像中确定与目标穿刺切面对应的第一剪切 波弹性图像;
基于所述第一剪切波弹性图像从所述至少一帧B型超声图像中确定与所述目标穿刺切面对应的第一B型超声图像;
向所述目标区域发射第一超声波,接收所述第一超声波的超声回波,以获得第一超声回波信号,并基于所述第一超声回波信号实时生成所述目标区域的第二B型超声图像;
实时显示所述第二B型超声图像,对所述第一B型超声图像与第二B型超声图像进行实时匹配,并实时输出匹配结果,所述匹配结果用于引导用户在实时显示所述第二B型超声图像的过程中确定所述目标穿刺切面。
本申请实施例第二方面提供了一种基于超声成像的穿刺引导方法,所述方法包括:
获取与目标穿刺切面对应的第一B型超声图像,其中,所述第一B型超声图像是基于弹性成像得到的与所述目标穿刺切面对应的第一弹性图像确定的;
向目标区域发射超声波,接收所述超声波的超声回波,以获得超声回波信号,并基于所述超声回波信号实时生成所述目标区域的第二B型超声图像;
实时显示所述第二B型超声图像,对所述第一B型超声图像与第二B型超声图像进行实时匹配,并实时输出匹配结果,所述匹配结果用于引导用户在实时显示所述第二B型超声图像的过程中确定所述目标穿刺切面。
本申请实施例第三方面提供了一种基于超声成像的穿刺引导方法,所述方法包括:
获取与目标穿刺切面对应的第一B型超声图像,其中,所述第一B型超声图像是基于弹性成像得到的与所述目标穿刺切面对应的第一弹性图像确定的;
控制超声探头沿不同位置或角度向目标区域发射超声波,接收所述超声波的超声回波,以获得超声回波信号,并基于所述超声回波信号实时生成所述目标区域的第二B型超声图像;
实时显示所述第二B型超声图像,并对所述第一B型超声图像与第二B型超声图像进行实时匹配,得到匹配结果;
当所述匹配结果满足预设要求时,控制所述超声探头保持在当前位置或角度,以引导用户基于所述当前位置或角度得到的所述第二B型超声图像对 应的切面进行穿刺。
本申请实施例第四方面提供了一种基于超声成像的穿刺引导方法,所述方法包括:
获取与目标穿刺切面对应的第一B型超声图像,其中,所述第一B型超声图像是基于弹性成像得到的与所述目标穿刺切面对应的第一弹性图像确定的;
向目标区域发射超声波,接收所述超声波的超声回波,以获得超声回波信号;
对所述超声回波信号进行信号处理,以实时生成所述目标区域的彩色超声图像,所述彩色超声图像包括第二B型超声图像和叠加在所述第二B型超声图像上的彩色多普勒超声图像;
实时显示所述彩色超声图像,对所述第一B型超声图像与第二B型超声图像进行实时匹配,并实时输出匹配结果,所述匹配结果用于引导用户在实时显示所述彩色超声图像的过程中确定所述目标穿刺切面。
本申请实施例第五方面提供了一种基于超声成像的穿刺引导方法,所述方法包括:
获取与目标穿刺切面对应的第一B型超声图像,其中,所述第一B型超声图像是基于彩色超声成像得到的与所述目标穿刺切面对应的第一彩色多普勒超声图像确定的;
向目标区域发射超声波,接收所述超声波的超声回波,以获得超声回波信号,并基于所述超声回波信号实时生成所述目标区域的第二B型超声图像;
实时显示所述第二B型超声图像,对所述第一B型超声图像与所述第二B型超声图像进行实时匹配,并实时输出匹配结果,所述匹配结果用于引导用户在实时显示所述第二B型超声图像的过程中确定所述目标穿刺切面。
本申请实施例第六方面提供了一种超声成像系统,所述超声成像系统包括超声探头、发射电路、接收电路、处理器和显示设备,其中:
所述发射电路用于激励所述超声探头向目标区域发射第一超声波;
所述接收电路用于控制所述超声探头接收所述第一超声波的超声回波,以获得第一超声回波信号;
所述处理器用于:
获取基于剪切波弹性成像得到的目标区域的至少一帧B型超声图像和至 少一帧剪切波弹性图像;
从所述至少一帧剪切波弹性图像中确定与目标穿刺切面对应的第一剪切波弹性图像;
基于所述第一剪切波弹性图像从所述至少一帧B型超声图像中确定与所述目标穿刺切面对应的第一B型超声图像;
基于所述第一超声回波信号实时生成所述目标区域的第二B型超声图像;
控制所述显示设备实时显示所述第二B型超声图像,以及对所述第一B型超声图像与第二B型超声图像进行实时匹配,并控制所述显示设备实时输出匹配结果,所述匹配结果用于引导用户在实时显示所述第二B型超声图像的过程中确定所述目标穿刺切面。
本申请实施例第七方面提供了一种超声成像系统,所述超声成像系统包括超声探头、发射电路、接收电路、处理器和显示设备,其中:
所述发射电路用于激励所述超声探头向目标区域发射超声波;
所述接收电路用于控制所述超声探头接收所述超声波的超声回波,以获得超声回波信号;
所述处理器用于:
获取与目标穿刺切面对应的第一B型超声图像,其中,所述第一B型超声图像是基于弹性成像得到的与所述目标穿刺切面对应的第一弹性图像确定的;
基于所述超声回波信号实时生成所述目标区域的第二B型超声图像;
控制所述显示设备实时显示所述第二B型超声图像,以及对所述第一B型超声图像与第二B型超声图像进行实时匹配,并控制所述显示设备实时输出匹配结果,所述匹配结果用于引导用户在实时显示所述第二B型超声图像的过程中确定所述目标穿刺切面。
本申请实施例第八方面提供了一种超声成像系统,所述超声成像系统包括超声探头、发射电路、接收电路、处理器和显示设备,其中:
所述发射电路用于激励所述超声探头沿不同位置或角度向被测对象的目标区域发射超声波;
所述接收电路用于控制所述超声探头接收所述超声波的超声回波,以获得超声回波信号;
所述处理器用于:
获取与目标穿刺切面对应的第一B型超声图像,其中,所述第一B型超声图像是基于弹性成像得到的与所述目标穿刺切面对应的第一弹性图像确定的;
基于所述超声回波信号实时生成所述目标区域的第二B型超声图像;
控制所述显示设备实时显示所述第二B型超声图像,并对所述第一B型超声图像与第二B型超声图像进行实时匹配,得到匹配结果;
当所述匹配结果满足预设要求时,控制所述超声探头保持在当前位置或角度,以引导用户基于所述当前位置或角度得到的所述第二B型超声图像对应的切面进行穿刺。
本申请实施例第九方面提供了一种超声成像系统,所述超声成像系统包括超声探头、发射电路、接收电路、处理器和显示设备,其中:
所述发射电路用于激励所述超声探头向目标区域发射超声波;
所述接收电路用于控制所述超声探头接收所述超声波的超声回波,以获得超声回波信号;
所述处理器用于:
获取与目标穿刺切面对应的第一B型超声图像,其中,所述第一B型超声图像是基于弹性成像得到的与所述目标穿刺切面对应的第一弹性图像确定的;
对所述超声回波信号进行信号处理,以实时生成所述目标区域的彩色超声图像,所述彩色超声图像包括第二B型超声图像和叠加在所述第二B型超声图像上的彩色多普勒超声图像;
控制所述显示设备实时显示所述彩色超声图像,对所述第一B型超声图像与第二B型超声图像进行实时匹配,并实时输出匹配结果,所述匹配结果用于引导用户在实时显示所述彩色超声图像的过程中确定所述目标穿刺切面。
本申请实施例第十方面提供了一种超声成像系统,所述超声成像系统包括超声探头、发射电路、接收电路、处理器和显示设备,其中:
所述发射电路用于激励所述超声探头向目标区域发射超声波;
所述接收电路用于控制所述超声探头接收所述超声波的超声回波,以获得超声回波信号;
所述处理器用于:
获取与目标穿刺切面对应的第一B型超声图像,其中,所述第一B型超 声图像是基于彩色超声成像得到的与所述目标穿刺切面对应的第一彩色多普勒超声图像确定的;
基于所述超声回波信号实时生成所述目标区域的第二B型超声图像;
控制所述显示设备实时显示所述第二B型超声图像,对所述第一B型超声图像与所述第二B型超声图像进行实时匹配,并实时输出匹配结果,所述匹配结果用于引导用户在实时显示所述第二B型超声图像的过程中确定所述目标穿刺切面。
根据本申请实施例的基于超声成像的穿刺引导方法和超声成像系统预先根据与目标穿刺切面对应的弹性图像确定与目标穿刺切面对应的第一B型超声图像,并在实时采集第二B型超声图像的过程中,以该与目标穿刺切面对应的第一B型超声图像作为待匹配图像进行实时匹配,并实时输出匹配结果,以引导用户在实时显示第二B型超声图像的过程中确定目标穿刺切面,提高了穿刺成功率。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
在附图中:
图1示出根据本申请实施例的超声成像系统的示意性框图;
图2示出根据本发明一实施例的基于超声成像的穿刺引导方法的示意性流程图;
图3示出根据本发明一实施例的显示界面的示意图;
图4示出根据本发明另一实施例的显示界面的示意图;
图5示出根据本发明又一实施例的显示界面的示意图;
图6示出根据本发明另一实施例的基于超声成像的穿刺引导方法的示意性流程图;
图7示出根据本发明又一实施例的基于超声成像的穿刺引导方法的示意性流程图;
图8示出根据本发明又一实施例的基于超声成像的穿刺引导方法的示意性流程图;
图9示出根据本发明又一实施例的基于超声成像的穿刺引导方法的示意性流程图。
具体实施方式
为了使得本申请的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。基于本申请中描述的本申请实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本申请的保护范围之内。
在下文的描述中,给出了大量具体的细节以便提供对本申请更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本申请可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本申请发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本申请能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本申请的范围完全地传递给本领域技术人员。
在此使用的术语的目的仅在于描述具体实施例并且不作为本申请的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本申请,将在下列的描述中提出详细的结构,以便阐释本申请提出的技术方案。本申请的可选实施例详细描述如下,然而除了这些详细描述外,本申请还可以具有其他实施方式。
下面,首先参考图1描述根据本申请一个实施例的超声成像系统,图1示出了根据本申请实施例的超声成像系统100的示意性结构框图。
如图1所示,超声成像系统100包括超声探头110、发射电路112、接收电路114、处理器116和显示设备118。进一步地,超声成像系统还可以包括发射/接收选择开关120和波束合成电路122,发射电路112和接收电路114 可以通过发射/接收选择开关120与超声探头110连接。
超声探头110包括多个换能器阵元,多个换能器阵元可以排列成一排构成线阵,或排布成二维矩阵构成面阵,多个换能器阵元也可以构成凸阵列。换能器用于根据激励电信号发射超声波,或将接收的超声波转换为电信号,因此每个阵元可用于实现电脉冲信号和超声波的相互转换,从而实现向被测对象的目标区域的组织发射超声波、也可用于接收经组织反射回的超声波回波。在进行超声检测时,可通过发射序列和接收序列控制哪些换能器阵元用于发射超声波,哪些换能器阵元用于接收超声波,或者控制换能器阵元分时隙用于发射超声波或接收超声波的回波。参与超声波发射的换能器阵元可以同时被电信号激励,从而同时发射超声波;或者,参与超声波束发射的换能器阵元也可以被具有一定时间间隔的若干电信号激励,从而持续发射具有一定时间间隔的超声波。
在一个实施例中,换能器既用于发射生成B型超声图像的超声波,又用于对被测对象的目标区域施加声辐射力脉冲以产生剪切波。在另一个实施例中,超声成像系统100还可以包括振动器。在进行瞬时弹性检测时,振动器在处理器116的控制下产生机械振动,从而在被测对象的目标区域产生在组织中传播的剪切波。振动器可以为设置在超声探头110内部的内置式振动器,也可以是单独设置的外置式振动器。
在超声成像过程中,发射电路112将经过延迟聚焦的发射脉冲通过发射/接收选择开关120发送到超声探头110。超声探头110受发射脉冲的激励而向被测对象的目标区域的组织发射超声波束,经一定延时后接收从目标区域的组织反射回来的带有组织信息的超声回波,并将此超声回波重新转换为电信号。接收电路114接收超声探头110转换生成的电信号,获得超声回波信号,并将这些超声回波信号送入波束合成电路122,波束合成电路122对超声回波数据进行聚焦延时、加权和通道求和等处理,然后送入处理器116。处理器116对超声回波信号进行信号检测、信号增强、数据转换、对数压缩等处理形成超声图像。具体地,处理器116可以对超声回波信号进行常规的B型超声图像处理,生成B型超声图像;处理器116也可以对超声回波信号进行彩色多普勒成像处理,获取彩色多普勒超声图像,或者对超声回波信号进行弹性成像处理,计算用于生成弹性图像的弹性参数,以根据该弹性参数生成相应的弹性图像。处理器116得到的超声图像(例如B型超声图像、彩色多 普勒超声图像、弹性图像等)可以在显示设备118上显示,也可以存储于存储器124中。
可选地,处理器116可以实现为软件、硬件、固件或其任意组合,并且可以使用单个或多个专用集成电路(Application Specific Integrated Circuit,ASIC)、单个或多个通用集成电路、单个或多个微处理器、单个或多个可编程逻辑器件、或者前述电路和/或器件的任意组合、或者其他适合的电路或器件。并且,处理器116可以控制所述超声成像系统100中的其它组件以执行本说明书中的各个实施例中的方法的相应步骤。
显示设备118与处理器116连接,显示设备118可以为触摸显示屏、液晶显示屏等;或者,显示设备118可以为独立于超声成像系统100之外的液晶显示器、电视机等独立显示设备;或者,显示设备118可以是智能手机、平板电脑等电子设备的显示屏,等等。其中,显示设备118的数量可以为一个或多个。例如,显示设备118可以包括主屏和触摸屏,主屏主要用于显示超声图像,触摸屏主要用于人机交互。
显示设备118可以显示处理器116得到的超声图像。此外,显示设备118在显示超声图像的同时还可以提供给用户进行人机交互的图形界面,在图形界面上设置一个或多个被控对象,提供给用户利用人机交互装置输入操作指令来控制这些被控对象,从而执行相应的控制操作。例如,在图形界面上显示图标,利用人机交互装置可以对该图标进行操作,用来执行特定的功能,例如在超声图像上绘制出感兴趣区域框等。
可选地,超声成像系统100还可以包括显示设备118之外的其他人机交互装置,其与处理器116连接,例如,处理器116可以通过外部输入/输出端口与人机交互装置连接,外部输入/输出端口可以是无线通信模块,也可以是有线通信模块,或者两者的组合。外部输入/输出端口也可基于USB、如CAN等总线协议、和/或有线网络协议等来实现。
其中,人机交互装置可以包括输入设备,用于检测用户的输入信息,该输入信息例如可以是对超声波发射/接收时序的控制指令,可以是在超声图像上绘制出点、线或框等的操作输入指令,或者还可以包括其他指令类型。输入设备可以包括键盘、鼠标、滚轮、轨迹球、移动式输入设备(比如带触摸显示屏的移动设备、手机等等)、多功能旋钮等等其中之一或者多个的结合。人机交互装置还可以包括诸如打印机之类的输出设备。
超声成像系统100还可以包括存储器124,用于存储处理器执行的指令、存储接收到的超声回波、存储超声图像,等等。存储器可以为闪存卡、固态存储器、硬盘等。其可以为易失性存储器和/或非易失性存储器,为可移除存储器和/或不可移除存储器等。
应理解,图1所示的超声成像系统100所包括的部件只是示意性的,其可以包括更多或更少的部件。本申请对此不限定。
下面,将参考图2描述根据本申请一个实施例的基于超声成像的穿刺引导方法。图2是本申请实施例的基于超声成像的穿刺引导方法200的一个示意性流程图。
如图2所示,所述基于超声成像的穿刺引导方法200包括如下步骤:
在步骤S210,获取基于剪切波弹性成像得到的目标区域的至少一帧B型超声图像和至少一帧剪切波弹性图像;
在步骤S220,从所述至少一帧剪切波弹性图像中确定与目标穿刺切面对应的第一剪切波弹性图像;
在步骤S230,基于所述第一剪切波弹性图像从所述至少一帧B型超声图像中确定与所述目标穿刺切面对应的第一B型超声图像;
在步骤S240,向所述目标区域发射第一超声波,接收所述第一超声波的超声回波,以获得第一超声回波信号,并基于所述第一超声回波信号实时生成所述目标区域的第二B型超声图像;
在步骤S250,实时显示所述第二B型超声图像,对所述第一B型超声图像与第二B型超声图像进行实时匹配,并实时输出匹配结果,所述匹配结果用于引导用户在实时显示所述第二B型超声图像的过程中确定所述目标穿刺切面。
本申请实施例的基于超声成像的穿刺引导方法200主要适用于诸如前列腺癌等弥漫性病灶的穿刺引导,其中被测对象的目标区域可以为前列腺病灶区域或其他待穿刺区域。本申请实施例在穿刺前预先对目标区域进行弹性成像,由于病灶所在区域组织硬度较高,通过弹性图像能够更为准确地寻找到包含可疑病灶的切面,从而得到与目标穿刺切面对应的第一剪切波弹性图像和与之对应的第一B型超声图像。之后,在穿刺过程中进入实时B型成像模式,实时采集第二B型超声图像,并将第一B型超声图像作为待匹配图像与 第二B型超声图像进行实时匹配,输出匹配结果,以引导用户在实时显示所述第二B型超声图像的过程中找到目标穿刺切面,从而进行穿刺操作,提高了病灶的阳性穿刺率。
示例性地,步骤S210可以在穿刺前进入剪切波弹性成像模式下进行,或者,也可以读取已存储的基于剪切波弹性成像得到的目标区域的至少一帧B型超声图像和至少一帧剪切波弹性图像。当在弹性成像模式下获取至少一帧B型超声图像和至少一帧剪切波弹性图像时,控制超声探头向目标区域发射第二超声波,接收第二超声波的超声回波,以获得第二超声回波信号,并基于该第二超声回波信号得到至少一帧B型超声图像;以及产生在该目标区域内传播的剪切波,并向该目标区域发射第三超声波,以追踪在该目标区域内传播的剪切波,接收该第三超声波的超声回波,以获得第三超声回波信号,并基于该第三超声回波信号得到至少一帧剪切波弹性图像。
具体地,用户可以通过输入设备或通过显示设备的人机交互界面输入指令以启动剪切波弹性成像模式,并首先进入剪切波弹性成像准备阶段。示例性地,结合图1,发射电路112向超声探头110中的每个换能器阵元发送经过适当延时的电信号,由换能器将电信号转化为第二超声波发射至被测对象的目标区域;超声探头110中的换能器接收目标区域返回的第二超声波的超声回波并转换为电信号,以获得第二超声回波信号,经过信号放大、模数变换等处理后传递给波束合成电路122进行波束合成处理,然后将该波束合成后的第二超声回波信号送入处理器116,处理器116可以对第二超声回波信号进行对数压缩、动态范围调整、数字扫描变换等处理,以形成用于体现目标区域组织形态结构的至少一帧B型超声图像,并输出实时的B型超声图像至显示设备118进行显示,用户可以实时观测B型超声图像,从而根据需要调节检查的范围、超声探头放置的角度等。
在生成并显示B型超声图像后,可以由用户手动框选出B型超声图像上的感兴趣区域(ROI)框,并根据检测到的用户输入指令确定感兴趣区域的位置。感兴趣区域框可以是矩形,也可以是圆形、椭圆、扇形等形状。在另一个示例中,用户也可以通过鼠标或触控屏等输入装置在B型超声图像上绘制感兴趣区域框。
作为另一种实现方式,可以基于相关的机器识别算法在B型超声图像上自动确定感兴趣区域的位置,即自动生成感兴趣区域框。在其他示例中,还 可以通过半自动检测的方式来获取感兴趣区域,例如,首先基于机器识别算法自动检测B型超声图像上的感兴趣区域的位置,并在超声图像上显示可编辑的感兴趣区域框,允许用户通过鼠标、触控屏等调节其高度、宽度和位置,以确定感兴趣区域的具体位置。
之后,显示设备118将已确定的感兴趣区域的坐标信息传输给处理器116,处理器116根据感兴趣区域的坐标信息确定出感兴趣区域在组织中的位置,从而在后续对感兴趣区域进行剪切波弹性成像。在一些实施例中,感兴趣区域也可以通过其它方式选择,例如默认超声探头的某个位置下方预定距离处设为感兴趣区域,根据显示的超声图像,用户可以通过移动超声探头的方式来调整感兴趣区域,从而改变剪切波弹性成像的位置。
当确定感兴趣区域的位置后,进入剪切波弹性成像模式的扫描阶段,在该阶段中对上文中确定的感兴趣区域进行剪切波弹性成像。在该阶段,首先生成在被测对象的目标区域内传播的剪切波。在一个实施例中,可以通过声辐射力聚焦冲击在感兴趣区域的组织内部产生剪切波。具体地,可以通过超声探头110向感兴趣区域的组织发射一系列超声推动脉冲,以在组织中基于声辐射力产生剪切波的传播。在另一个实施例中,也可以通过振动器对被测对象施加机械振动,从而在感兴趣区域的组织内部产生剪切波。该振动器可以设置在超声探头110内部,也可以是设置于超声探头110外部的独立的振动器。
之后,发射电路112激励超声探头110向确定的感兴趣区域发射追踪剪切波的第三超声波并接收第三超声波的回波,以获得第三超声回波信号。处理器116根据第三超声波信号计算感兴趣区域的弹性参数,例如剪切波传播速度、杨氏模量值或剪切模量值中的至少一个,之后,基于弹性参数的分布生成至少一帧剪切波弹性图像,在剪切波弹性图像中,可以通过不同的颜色、灰度或填充方式标识出不同属性硬度组织。例如,可以根据感兴趣区域多个位置处的弹性参数进行伪彩色映射叠加在B型超声图像的感兴趣区域框内,即可形成感兴趣区域的弹性图像。
示例性地,可以采用以下方法计算弹性参数:根据所接收的第三超声回波信号计算剪切波传播路径上某点的位移量,当该点的位移最大时,认为剪切波到达了该点。通过剪切波到达各点的时间可定位出剪切波的传播路径或传播轨迹,从而可绘制出剪切波轨迹图,根据剪切波的轨迹线可得到剪切波 传播路径上各点的斜率,斜率即为剪切波的传播速度。根据剪切波传播速度与杨氏模量、剪切模量之间的关系,当得到剪切波传播速度后,可进一步计算出其他弹性参数,比如杨氏模量、剪切模量等。
之后,可以将带有感兴趣区域标识的B型超声图像和剪切波弹性图像合并为一帧图像。在本申请实施例中,既可以将剪切波弹性成像准备阶段得到的带有感兴趣区域标识的B型超声图像和剪切波弹性图像结果合成为一帧图像,也可以在弹性扫描阶段交替进行目标区域的B型超声成像和感兴趣区域的剪切波弹性成像或基于同一组超声回波信号分别生成B型超声成像和剪切波弹性图像,之后根据弹性采集准备阶段获得的感兴趣区域的位置信息,将感兴趣区域标识添加到弹性扫描阶段实时生成的B型超声图像上,将实时生成的B型超声图像和剪切波弹性图像合并为一帧图像。之后,实时将合成后的图像数据输出到显示设备118,以便在显示设备118的显示界面上进行显示。用户可以移动超声探头以对目标区域的一个或多个切面进行剪切波弹性成像,从而获得多个切面的至少一帧剪切波弹性图像。
之后,在步骤S220,从至少一帧剪切波弹性图像中确定与目标穿刺切面对应的第一剪切波弹性图像,以及在步骤S230,基于第一剪切波弹性图像从至少一帧B型超声图像中确定与该目标穿刺切面对应的第一B型超声图像。示例性地,可以由用户参照显示界面上显示的剪切波弹性图像选择与目标穿刺切面对应的第一剪切波弹性图像,或者系统根据预设的规则自动选择与目标穿刺切面对应的第一剪切波弹性图像。与该第一剪切波弹性图像匹配的B型超声图像即为与目标穿刺切面对应的第一B型超声图像。确定第一B型超声图像之后,可以存储与该目标穿刺切面对应的第一B型超声图像以用于后续匹配。可选地,可以将第一剪切波弹性图像及其对应的第一B型超声图像一同保存在存储器中。
步骤S240和步骤S250是在穿刺引导阶段实时进行的。具体地,当需要进行穿刺引导时,用户可以通过输入设备或通过显示设备的人机交互界面输入指令以启动B型成像模式,以实时采集第二B型超声图像。
在B型成像模式下,结合图1,发射电路112向超声探头110中的每个换能器阵元发送经过适当延时的电信号,由换能器将电信号转化为一超声波发射至被测对象的目标区域;超声探头110中的换能器接收目标区域返回的第一超声波的超声回波并转换为电信号,以获得第一超声回波信号,对其经 过信号放大、模数变换等处理后传递给波束合成电路122进行波束合成处理,然后将该波束合成的第一超声回波信号送入处理器116,处理器116可以对第一超声回波信号进行对数压缩、动态范围调整、数字扫描变换等处理,以生成用于体现目标区域组织形态结构的第二B型超声图像,并实时输出第二B型超声图像至显示设备118进行显示。用户可以实时观测第二B型超声图像,并参照第一B型超声图像和第二B型超声图像的匹配结果调整超声探头的位置和角度等,以寻找与该目标穿刺切面对应的第二B型超声图像。或者,可以由系统自动根据第一B型超声图像和第二B型超声图像的匹配结果输出提示信息,以引导用户在实时显示所述第二B型超声图像的过程中确定需要穿刺的该目标穿刺切面。
具体地,在步骤S250中,对第二B型超声图像与如上所述的第一B型超声图像进行实时匹配,并实时输出匹配结果,该匹配结果用于引导用户在实时显示上述第二B型超声图像的过程中确定该目标穿刺切面。作为示例,可以将每帧第二B型超声图像与第一B型超声图像进行实时匹配以获得更为精确的匹配;或者,也可以每隔若干帧第二B型超声图像提取一帧以与第一B型超声图像进行实时匹配,从而降低计算量。
示例性地,可以在实时B成像模式下,也就是说在实时显示上述第二B型超声图像的过程中,实时显示第二B型超声图像与第一B型超声图像的匹配结果,以引导用户在实时显示上述第二B型超声图像的过程中确定该目标穿刺切面。也可以是当实时匹配的匹配结果满足预设要求时,再实时显示第二B型超声图像与第一B型超声图像的匹配结果或者实时输出提示信息,该提示信息包括但不限于语音提示或文字提示,以提示当前匹配的第二B型超声图像符合穿刺要求,可以进行穿刺。其中,满足预设要求可包括第二B型超声图像与第一B型超声图像的匹配度、相似度或者重叠程度满足预设阈值或者第二B型超声图像对应的切面与第一B型超声图像对应的该目标穿刺切面的匹配度、相似度或者重叠程度满足预设阈值;或者其他能够表示当前匹配的第二B型超声图像符合穿刺要求的衡量标准等。
作为一种实现方式,上述匹配结果可以通过相似度来体现第一B型超声图像与第二B型超声图像的匹配程度。具体地,可以实时确定第一B型超声图像与第二B型超声图像的相似度,以用于根据相似度确定二者的匹配程度。示例性地,可以在显示界面上显示二者的相似度,以引导用户在实时显示上 述第二B型超声图像的过程中确定该目标穿刺切面。或者,也可以是当相似度满足预设阈值时,再实时显示该相似度或者实时输出提示信息,在实时输出提示信息时,该提示信息能够提示当前匹配的第二B型超声图像符合穿刺要求,可以进行穿刺,此时可以不显示相似度。当相似度较低时,表示第一B型超声图像与第二B型超声图像的匹配程度较低,当相似度较高时,表示第一B型超声图像与第二B型超声图像的匹配程度较高,示例性地,可以在相似度高于某一预设阈值时认为当前第二B型超声图像对应的切面符合穿刺要求,可以作为该目标穿刺切面。
在一个示例中,可以通过特征提取的方式确定图像的相似度。具体地,预先提取第一B型超声图像的第一图像特征,并实时提取第二B型超声图像的第二图像特征,实时比对第一图像特征和所述第二图像特征,以得到第一B型超声图像与B型超声图像之间的相似度。其中,可以采用传统的特征提取算法提取梯度特征、哈尔特征提取、纹理特征等图像特征,也可以采用深度神经网络来进行特征提取。
在另一个示例中,也可以采用机器学习模型实时确定所述第一B型超声图像与第二B型超声图像之间的相似度,所述机器学习模型可以是训练好的深度学习神经网络模型,其可以被训练为直接输出第一B型超声图像与第二B型超声图像之间的相似度。
当第一B型超声图像和第二B型超声图像间不存在位移、旋转、幅度差等区别时,可以通过图像间的相似度判断第一B型超声图像和第二B型超声图像是否包含同一切面。但当第一B型超声图像和第二B型超声图像存在位移、旋转、幅度差等区别时,即若第一B型超声图像和第二B型超声图像中切面的位置和角度不同,则也可能受到上述区别的影响而出现二者均包括目标穿刺切面、但图像间相似度不高的情况。因此,在一个实施例中,可以采用切面匹配的方式对第一B型超声图像和第二B型超声图像进行匹配,即实时确定第二B型超声图像对应的切面与第一B型超声图像对应的目标穿刺切面之间的相似度,基于切面的相似度引导用户在实时显示上述第二B型超声图像的过程中确定该目标穿刺切面,从而提高匹配的成功率。
示例性地,切面的匹配也可以采用特征比对的方式,例如,在提取到图像特征后,利用支持向量机、随机森林、神经网络等分类器对提取到的特征进行分类,以分割出切面所在的区域,并对切面区域的图像特征进行比对, 以得到第二B型超声图像对应的切面与第一B型超声图像对应的目标穿刺切面之间的相似度。或者,也可以采用训练好的机器学习模型直接输出第二B型超声图像对应的切面与第一B型超声图像对应的目标穿刺切面之间的相似度。
在一些实施例中,参照图3,可以在实时显示第二B型超声图像301的同时实时显示匹配所得的相似度,例如,图3中所示的当前的第二B型超声图像301与第一B型超声图像的相似度为30%。用户可以调整超声探头,随着超声探头的调整实时采集和显示当前的第二B型超声图像,并实时将当前的第二B型超声图像与第一B型超声图像进行匹配并显示匹配所得的相似度,用户在调整超声探头的同时实时观察相似度的变化,以寻找到使相似度最高的超声探头所在位置和角度,并认为此时采集到的第二B型超声图像的切面符合穿刺要求,可以作为目标穿刺切面用于穿刺。
在其他实施例中,也可以无需在显示第二B型超声图像的全过程中实时显示相似度,而是仅在相似度高于某一预设阈值时对其进行显示。
在进一步的实施例中,还可以将不同范围内的相似度显示为不同的颜色,从而直观地提示用户当前的匹配情况。将不同范围内的相似度显示为不同的颜色既可以实现为将相似度的文字显示为不同的颜色,也可以实现为将文字的背景显示为不同的颜色。例如,若相似度高于预设阈值时,字体显示为白色,当相似度低于该预设阈值时,字体显示为红色,但其颜色配置方式不限于此。在其他实施例中,还可以在相似度高于某一预设阈值时采用其他文字、图形、符号或声音等提示信息提示用户当前切面与目标穿刺切面匹配程度较高,因而可作为目标穿刺切面。
在进一步的实施例中,参见图4,在显示第二B型超声图像401的同时,还可以在显示界面上并列显示静态的第一B型超声图像402和第一剪切波弹性图像403,以供用户参考。在图4的示例中,在显示界面中同时并列显示了叠加在第一B型超声图像上的第一剪切波弹性图像403和标识有感兴趣区域框的单独的第一B型超声图像402。但在其他实施例中,也可以只并列显示第一B型超声图像402、只显示叠加在第一B型超声图像上的第一剪切波弹性图像403、或者也可以单独显示第一剪切波弹性图像403。
在进一步的实施例中,参照图5,在图像间的相似度或切面间的相似度高于预设阈值时,还可以将第一剪切波弹性图像502叠加在第二B型超声图 像501上进行显示,该预设阈值例如为90%,但不限于此。图5中还示出了穿刺针503所在的位置,根据叠加有第一剪切波弹性图像502的第二B型超声图像501,用户可以在穿刺过程中观测到穿刺针503与第一剪切波弹性图像502中的目标穿刺切面所在的位置,从而更好地引导穿刺。
其中,若采用图像匹配的方式获得较高的相似度,则可以直接将第一剪切波弹性图像502叠加在第二B型超声图像501上。若采用切面匹配的方式获得较高的相似度,则可以利用切面间相匹配的特征点确定第二B型超声图像对应的切面与第一B型超声图像对应的目标穿刺切面之间的位置变换关系,根据该变换关系对弹性图像进行变换后,再叠加在第二B型超声图像的相应位置,以确保第一剪切波弹性图像对应的切面位置与第二B型超声图像对应的切面位置相对应。
作为对第一B型超声图像与第二B型超声图像的另一种实现方式,可以将第一B型超声图像与第二B型超声图像进行叠加显示,以根据第一B型超声图像与第二B型超声图像的重叠程度引导用户在实时显示上述第二B型超声图像的过程中确定该目标穿刺切面。在该实现方式下,可以由用户观察第一B型超声图像与第二B型超声图像的重叠程度,以确定满足用户要求的目标穿刺切面。示例性地,由于第一B型超声图像对应的切面与第二B型超声图像对应的切面所在的位置和角度等可能不同,因而叠加在第二B型超声图像上的第一B型超声图像可以调节,例如允许用户对其进行平移、旋转等。
作为一个示例,可以首先对该第一B型超声图像进行透明化处理,并将透明化处理后的第一B型超声图像叠加显示在第二B型超声图像上,由此可以在第一B型超声图像下查看第二B型超声图像。作为另一个示例,可以实时对第二B型超声进行透明化处理,并将透明化处理后的第二B型超声图像叠加显示在第一B型超声图像上,由此可以在第一B型超声图像下查看第二B型超声图像。
进一步地,在进行叠加显示时,可以对第一B型超声图像或第二B型超声图像进行彩色化处理,用不同的颜色代表灰阶B型超声图像中的幅度值。具体地,若将透明化处理后的第一B型超声图像叠加显示在第二B型超声图像上,则除了透明化处理以外,还可以对第一B型超声图像进行彩色化处理。类似地,若将透明化处理后的第二B型超声图像叠加显示在第一B型超声图像上,则除了透明化处理以外,还可以对第二B型超声图像进行彩色化处理。 通过对第一B型超声图像或第二B型超声图像进行彩色化处理,可以在叠加时将二者很容易地彼此区分开,以便于用户对第一B型超声图像对应的切面和第二B型超声图像对应的切面进行比对,以寻找到符合穿刺要求的该目标穿刺切面。
在一些实施例中,上述通过图像叠加的匹配方式也可以与基于匹配度的匹配方式相结合。例如,在图像叠加的同时也可以同时计算第一B型超声图像与第二B型超声图像的相似度,并对相似度进行显示。显示叠加图像的同时,也可以将第一剪切波弹性图像与叠加图像并列显示。
在寻找到符合穿刺要求的该目标穿刺切面之后,则可以根据该目标穿刺切面对应的第二B型超声图像进行穿刺引导,以对目标区域的组织进行穿刺。在穿刺过程中,将穿刺针以一定角度进入被测对象体内,同时在该第二B型超声图像中对穿刺针进行成像以体现穿刺针的具体位置,从而实现精确的穿刺过程。参见图5,其中在叠加有弹性图像的第二B型超声图像501中显示了穿刺针503所在的位置。完成穿刺操作后,可以响应用户基于该目标穿刺切面完成穿刺操作后的存图指令保存穿刺图像。
基于以上描述,本申请实施例的基于超声成像的穿刺引导方法200预先根据剪切波弹性图像寻找到目标穿刺切面,并以该剪切波弹性图像对应的第一B型超声图像作为待匹配图像与第二B型超声图像进行实时匹配,输出匹配结果,以引导用户在实时显示所述第二B型超声图像的过程中找到目标穿刺切面,从而进行穿刺操作,提高了穿刺成功率。
本申请实施例还提供了一种超声成像系统,该超声成像系统可以用于实现上述基于超声成像的穿刺引导方法200。现在重新参照图1,该超声成像系统100可以包括超声探头110、发射电路112、接收电路114、处理器116、显示设备118、发射/接收选择开关120、波束合成电路122以及存储器124中的部分或全部部件,各个部件的相关描述可以参照上文。以下仅对超声成像系统100的主要功能进行描述,而省略以上已经描述过的细节内容。
具体地,发射电路112用于激励该超声探头110向目标区域发射第一超声波;接收电路114用于控制该超声探头110接收该第一超声波的超声回波,以获得第一超声回波信号;该处理器116用于:获取基于剪切波弹性成像得到的目标区域的至少一帧B型超声图像和至少一帧剪切波弹性图像;从该至少一帧剪切波弹性图像中确定与目标穿刺切面对应的第一剪切波弹性图像; 基于该第一剪切波弹性图像从该至少一帧B型超声图像中确定与该目标穿刺切面对应的第一B型超声图像;基于该第一超声回波信号实时生成该目标区域的第二B型超声图像;控制该显示设备118实时显示该第二B型超声图像,以及对该第一B型超声图像与第二B型超声图像进行实时匹配,并实时输出匹配结果,该匹配结果用于引导用户在实时显示上述第二B型超声图像的过程中确定该目标穿刺切面。
在一个实施例中,上述获取基于剪切波弹性成像得到的目标区域的至少一帧B型超声图像和至少一帧剪切波弹性图像包括:向该目标区域发射第二超声波,接收该第二超声波的超声回波,以获得第二超声回波信号,并基于该第二超声回波信号得到该至少一帧B型超声图像;以及产生在该目标区域内传播的剪切波,并向该目标区域发射第三超声波,以追踪在该目标区域内传播的剪切波,接收该第三超声波的超声回波,以获得第三超声回波信号,并基于该第三超声回波信号得到该至少一帧剪切波弹性图像;或者,读取已存储的基于剪切波弹性成像得到的目标区域的至少一帧B型超声图像和至少一帧剪切波弹性图像。
在一个实施例中,存储器124用于存储与该目标穿刺切面对应的第一B型超声图像。
在一个实施例中,该处理器116用于控制该显示设备118实时输出匹配结果包括:
控制该显示设备118在实时显示该第二B型超声图像的过程中实时显示该匹配结果;或者,
当该匹配结果满足预设要求时,控制该显示设备118实时显示该匹配结果或实时输出提示信息。
作为一种实现方式,该处理器116用于对第一B型超声图像与第二B型超声图像进行实时匹配,包括:该处理器116用于实时确定第一B型超声图像与第二B型超声图像的相似度,或实时确定第二B型超声图像对应的目标区域的切面与第一B型超声图像对应的目标穿刺切面之间的相似度。
进一步地,该处理器116用于控制该显示设备118实时输出匹配结果包括:
控制该显示设备118在实时显示该第二B型超声图像的过程中实时显示该相似度;或者,
当该相似度满足预设阈值时,控制该显示设备118实时显示该相似度或实时输出提示信息。
在一个实施例中,该处理器116还用于控制该显示设备118将不同范围内的相似度显示为不同的颜色。
在一个实施例中,该处理器116用于实施确定该相似度包括:该处理器116用于提取第一B型超声图像的第一图像特征;实时提取第二B型超声图像的第二图像特征;实时比对第一图像特征和第二图像特征,以得到第一B型超声图像与第二B型超声图像之间的相似度或第二B型超声图像对应的目标区域的切面与第一B型超声图像对应的目标穿刺切面之间的相似度。在另一个实施例中,也可以采用机器学习模型实时确定第一B型超声图像与第二B型超声图像之间的相似度或第二B型超声图像对应的目标区域的切面与第一B型超声图像对应的目标穿刺切面之间的相似度。
在一个实施例中,当相似度高于预设阈值时,该处理器116还用于控制该显示设备118将弹性图像叠加显示在第二B型超声图像上。
作为另一种实现方式,该处理器116用于对第一B型超声图像与第二B型超声图像进行实时匹配包括:该处理器116用于将第一B型超声图像与第二B型超声图像进行叠加显示,该处理器116用于控制该显示设备118实时输出匹配结果包括:控制该显示设备118实时显示该第一B型超声图像与该第二B型超声图像的叠加显示结果,以根据该第一B型超声图像与该第二B型超声图像的重叠程度引导用户在实时显示该第二B型超声图像的过程中确定该目标穿刺切面。
进一步地,将第一B型超声图像与第二B型超声图像进行叠加显示包括对第一B型超声图像进行透明化处理,并将透明化处理后的第一B型超声图像叠加显示在第二B型超声图像上,或者,叠加显示包括实时对第二B型超声进行透明化处理,并将透明化处理后的第二B型超声图像叠加显示在第一B型超声图像上。进一步地,在叠加显示时还可以对第一B型超声图像或第二B型超声图像进行彩色化处理。
在一个实施例中,显示设备118还用于将弹性图像和第一B型超声图像中的至少一项与第二B型超声图像并列显示。
在一个实施例中,处理器116还用于:响应用户基于该目标穿刺切面完成穿刺操作后的存图指令,以将穿刺图像保存在存储器124中。
基于以上描述,本申请实施例的超声成像系统预先根据剪切波弹性图像寻找到目标穿刺切面,并以该剪切波弹性图像对应的第一B型超声图像作为待匹配图像与第二B型超声图像进行实时匹配,输出匹配结果,以引导用户在实时显示该第二B型超声图像的过程中找到目标穿刺切面,从而进行穿刺操作,提高了穿刺成功率。
下面,将参考图6描述根据本申请另一个实施例的基于超声成像的穿刺引导方法。图6是本申请实施例的基于超声成像的穿刺引导方法600的一个示意性流程图。如图6所示,基于超声成像的穿刺引导方法600包括如下步骤:
在步骤S610,获取与目标穿刺切面对应的第一B型超声图像,其中,所述第一B型超声图像是基于弹性成像得到的与所述目标穿刺切面对应的第一弹性图像确定的;
在步骤S620,向目标区域发射超声波,接收所述超声波的超声回波,以获得超声回波信号,并基于所述超声回波信号实时生成所述目标区域的第二B型超声图像;
在步骤S630,实时显示所述第二B型超声图像,对所述第一B型超声图像与第二B型超声图像进行实时匹配,并实时输出匹配结果,所述匹配结果用于引导用户在实时显示所述第二B型超声图像的过程中确定所述目标穿刺切面。
根据本申请实施例的基于超声成像的穿刺引导方法600与上文所述的基于超声成像的穿刺引导方法200大体上类似,二者的不同之处主要在于:步骤S610中获取的第一弹性图像不仅包括上文所述的剪切波弹性图像,也包括应变弹性图像。剪切波弹性图像的实现方式可参考前述描述内容进行理解;对于应变弹性图像,其通过压力弹性成像实现,具体方式主要是通过手持超声探头对目标组织施加压力,获取目标组织被压缩前后两帧超声回波信息,再通过特定的算法计算出压缩前后对应位置发生的位移,即为目标组织在两个不同时刻空间位置变化信息,通过对位移求轴向梯度,进而得到目标组织区域各点的应变值,根据目标组织区域各点的应变值以图像形式表现出来,即应变弹性图像。应变弹性图像可直观反映不同组织间的软硬差别或弹性差别,在相同外力压缩下,应变越大,表示组织越软,应变越小,则表示组织 越硬。
在一个实施例中,获取与目标穿刺切面对应的第一B型超声图像包括:获取基于弹性成像得到的目标区域的至少一帧B型超声图像和至少一帧弹性图像;从该至少一帧弹性图像中确定与目标穿刺切面对应的第一弹性图像;基于该第一弹性图像从该至少一帧B型超声图像中确定与该目标穿刺切面对应的第一B型超声图像。在另一个实施例中,获取与目标穿刺切面对应的第一B型超声图像也可以包括:获取已保存的与目标穿刺切面对应的第一B型超声图像。
除此之外,步骤S620和步骤S630与穿刺引导方法200中的步骤S240和步骤S250大体上类似,具体可以参阅上文中的相关描述,为了简洁,此处不再赘述相同的细节内容。
本申请实施例还提供了一种超声成像系统,该超声成像系统可以用于实现上述基于超声成像的穿刺引导方法600。现在重新参照图1,该超声成像系统100可以包括超声探头110、发射电路112、接收电路114、处理器116、显示设备118、发射/接收选择开关120、波束合成电路122以及存储器124中的部分或全部部件,各个部件的相关描述可以参照上文。以下仅对超声成像系统100的主要功能进行描述,而省略以上已经描述过的细节内容。
具体地,发射电路112用于激励超声探头110向被测对象的目标区域发射超声波;接收电路114用于控制超声探头110接收超声波的超声回波,以获得超声回波信号;处理器116用于:获取与目标穿刺切面对应的第一B型超声图像,其中,该第一B型超声图像是基于弹性成像得到的与该目标穿刺切面对应的第一弹性图像确定的;基于该超声回波信号实时生成该目标区域的第二B型超声图像;实时显示该第二B型超声图像,并对该第一B型超声图像与第二B型超声图像进行实时匹配,以根据该实时匹配的匹配结果确定与该目标穿刺切面对应的该第二B型超声图像。其中,该弹性图像包括应变弹性图像或剪切波弹性图像。
基于以上描述,根据本申请实施例的基于超声成像的穿刺引导方法600和超声成像系统预先根据剪切波弹性图像或应变弹性图像寻找到目标穿刺切面,并根据该剪切波弹性图像或应变弹性图像确定与目标穿刺切面对应的第一B型超声图像作为待匹配图像与第二B型超声图像进行实时匹配,输出匹配结果,以引导用户在实时显示该第二B型超声图像的过程中找到目标穿刺 切面,从而进行穿刺操作,提高了穿刺成功率。
下面,将参考图7描述根据本申请一个实施例的基于超声成像的穿刺引导方法。图7是本申请实施例的基于超声成像的穿刺引导方法700的一个示意性流程图。如图7所示,基于超声成像的穿刺引导方法700包括如下步骤:
在步骤S710,获取与目标穿刺切面对应的第一B型超声图像,其中,所述第一B型超声图像是基于弹性成像得到的与所述目标穿刺切面对应的第一弹性图像确定的;
在步骤S720,向目标区域发射超声波,接收所述超声波的超声回波,以获得超声回波信号;
在步骤S730,对所述超声回波信号进行信号处理,以实时生成所述目标区域的彩色超声图像,所述彩色超声图像包括第二B型超声图像和叠加在所述第二B型超声图像上的彩色多普勒超声图像;
在步骤S740,实时显示所述彩色超声图像,对所述第一B型超声图像与第二B型超声图像进行实时匹配,并实时输出匹配结果,所述匹配结果用于引导用户在实时显示所述彩色超声图像的过程中确定所述目标穿刺切面。
根据本申请实施例的基于超声成像的穿刺引导方法700与上文所述的穿刺引导方法600和穿刺引导方法200大体上类似,不同之处主要在于:穿刺引导方法700基于实时采集的彩色超声图像实时引导穿刺。根据本申请实施例的穿刺引导方法700在穿刺前预先对目标区域进行弹性成像,由于病灶所在区域组织硬度较高,通过弹性图像能够更为准确地寻找到包含可疑病灶的切面,从而得到与目标穿刺切面对应的第一弹性图像,进而基于该第一弹性图像可以确定与该目标穿刺切面对应的第一B型超声图像。
之后在穿刺引导过程中进入彩色成像模式(即color模式),实时采集彩色超声图像。其中,彩色成像模式可以是彩色多普勒成像模式或者是其他彩色成像模式。以彩色多普勒成像模式为例,其根据超声回波信号计算得出血流中的血细胞的动态信息,根据血细胞的移动方向、速度、分散情况,调配红、蓝、绿三基色,变化其亮度,叠加在对应的第二B型超声图像上。由于在彩色成像模式下的成像过程中也获得了B型超声图像,即第二B型超声图像,因而可以利用该第二B型超声图像与预先获得的与目标穿刺切面对应的第一B型超声图像进行实时匹配,并实时输出匹配结果,以引导用户在实时 显示该彩色超声图像的过程中确定该目标穿刺切面,提高了在彩色成像模式下进行穿刺引导的穿刺成功率。
在一个实施例中,对第一B型超声图像与第二B型超声图像进行实时匹配包括:实时确定第一B型超声图像与第二B型超声图像的相似度,或实时确定该第二B型超声图像对应的切面与该第一B型超声图像对应的该目标穿刺切面之间的相似度。在一些实施例中,还可以显示该相似度,以引导用户根据该相似度确定该目标穿刺切面。例如,可以在实时显示彩色超声图像的过程中,实时显示该相似度。或者,也可以无需在显示彩色超声图像的全过程中实时显示相似度,而是仅在相似度高于某一预设阈值时对其进行显示。在进一步的实施例中,还可以将不同范围内的相似度显示为不同的颜色,从而直观地提示用户当前的匹配情况。
在一个实施例中,可以在第一B型超声图像与第二B型超声图像的相似度高于预设阈值时,将该弹性图像叠加显示在该彩色超声图像上。根据叠加有弹性图像的彩色超声图像,用户可以在穿刺过程中观测到穿刺针与弹性图像对应的目标穿刺切面所在的位置,从而更好地引导穿刺。
在一个实施例中,对该第一B型超声图像与第二B型超声图像进行实时匹配,包括:将第一B型超声图像与该第二B型超声图像进行叠加显示,以根据该第一B型超声图像与该第二B型超声图像的重叠程度引导用户在实时显示该第二B型超声图像的过程中确定该目标穿刺切面。在该实现方式下,可以由用户观察第一B型超声图像与第二B型超声图像的重叠程度,以确定满足用户要求的目标穿刺切面。作为示例,还可以将弹性图像与该彩色超声图像并列显示,或者将第一B型超声图像与彩色B型超声图像并列显示,以便于用户对比观察。
本申请实施例还提供了一种超声成像系统,该超声成像系统可以用于实现上述基于超声成像的穿刺引导方法700。现在重新参照图1,该超声成像系统100可以包括超声探头110、发射电路112、接收电路114、处理器116、显示设备118、发射/接收选择开关120、波束合成电路122以及存储器124中的部分或全部部件,各个部件的相关描述可以参照上文。以下仅对超声成像系统100的主要功能进行描述,而省略以上已经描述过的细节内容。
具体地,发射电路112用于激励超声探头110向被测对象的目标区域发射超声波;接收电路114用于控制超声探头110接收超声波的超声回波,以 获得超声回波信号;处理器116用于:获取与目标穿刺切面对应的第一B型超声图像,其中,该第一B型超声图像是基于弹性成像得到的与目标穿刺切面对应的第一弹性图像确定的;基于该超声回波信号实时生成该目标区域的第二B型超声图像;对该第一B型超声图像与第二B型超声图像进行实时匹配,并实时输出匹配结果,该匹配结果用于引导用户在实时显示该彩色超声图像的过程中确定该目标穿刺切面;显示设备118用于实时显示彩色超声图像。
基于以上描述,根据本申请实施例的基于超声成像的穿刺引导方法700和超声成像系统预先根据剪切波弹性图像或应变弹性图像寻找到目标穿刺切面,并在实时采集彩色超声图像的过程中以该剪切波弹性图像或应变弹性图像对应的第一B型超声图像作为待匹配图像与彩色超声图像的第二B型超声图像进行实时匹配,并实时输出匹配结果,以引导用户在实时显示该彩色超声图像的过程中确定该目标穿刺切面,提高了穿刺成功率。
下面,将参考图8描述根据本申请一个实施例的基于超声成像的穿刺引导方法。图8是本申请实施例的基于超声成像的穿刺引导方法800的一个示意性流程图。如图8所示,基于超声成像的穿刺引导方法800包括如下步骤:
在步骤S810,获取与目标穿刺切面对应的第一B型超声图像,其中,所述第一B型超声图像是基于彩色超声成像得到的与所述目标穿刺切面对应的第一彩色多普勒超声图像确定的;
在步骤S820,向目标区域发射超声波,接收所述超声波的超声回波,以获得超声回波信号,并基于所述超声回波信号实时生成所述目标区域的第二B型超声图像;
在步骤S830,实时显示所述第二B型超声图像,对所述第一B型超声图像与所述第二B型超声图像进行实时匹配,并实时输出匹配结果,所述匹配结果用于引导用户在实时显示所述第二B型超声图像的过程中确定所述目标穿刺切面。
类似于上文所述的穿刺引导方法200和穿刺引导方法600,本申请实施例的基于超声成像的穿刺引导方法800同样是预先寻找到与目标穿刺切面对应的彩色超声图像,并根据该彩色超声图像寻找到与该目标穿刺切面对应的第一B型超声图像作为待匹配图像与在实时采集的第二B型超声图像进行实 时匹配,并实时输出匹配结果,以引导用户在实时显示该第二B型超声图像的过程中确定该目标穿刺切面。不同之处在于,在穿刺引导方法800中预先采集的与目标穿刺切面的超声图像为彩色多普勒超声图像,由于肿瘤所在的区域通常血流丰富,用户可以根据肿瘤的血流特性确定与目标穿刺切面对应的彩色多普勒超声图像,进而确定与目标穿刺切面对应的第一B型超声图像,并以该第一B型超声图像作为待匹配图像与实时采集的第二B型超声图像进行实时匹配,并实时输出匹配结果,以引导用户在实时显示该第二B型超声图像的过程中确定该目标穿刺切面。
在一个实施例中,获取与目标穿刺切面对应的第一B型超声图像包括:获取基于彩色超声成像得到的目标区域的至少一帧B型超声图像和至少一帧彩色多普勒超声图像;从该至少一帧彩色多普勒超声图像中确定与目标穿刺切面对应的第一彩色多普勒超声图像;基于该第一彩色多普勒超声图像从该至少一帧B型超声图像中确定与该目标穿刺切面对应的第一B型超声图像。在另一个实施例中,也可以获取已保存的与目标穿刺切面对应的第一B型超声图像。
除此之外,穿刺引导方法800的其他步骤与穿刺引导方法200和穿刺引导方法600大体相似,具体可参阅上述的相关描述,此处不再赘述。
本申请实施例还提供了一种超声成像系统,该超声成像系统可以用于实现上述基于超声成像的穿刺引导方法800。现在重新参照图1,该超声成像系统100可以包括超声探头110、发射电路112、接收电路114、处理器116、显示设备118、发射/接收选择开关120、波束合成电路122以及存储器124中的部分或全部部件,各个部件的相关描述可以参照上文。以下仅对超声成像系统100的主要功能进行描述,而省略以上已经描述过的细节内容。
具体地,发射电路112用于激励超声探头110向目标区域发射超声波;接收电路114用于控制超声探头110接收超声波的超声回波,以获得超声回波信号;处理器116用于:获取与目标穿刺切面对应的第一B型超声图像,其中,该第一B型超声图像是基于彩色超声成像得到的与该目标穿刺切面对应的第一彩色多普勒超声图像确定的;基于该超声回波信号实时生成该目标区域的第二B型超声图像;对该第一B型超声图像与该第二B型超声图像进行实时匹配,并实时输出匹配结果,该匹配结果用于引导用户在实时显示该第二B型超声图像的过程中确定该目标穿刺切面;显示设备118用于实时显 示第二B型超声图像。
基于以上描述,根据本申请实施例的基于超声成像的穿刺引导方法800和超声成像系统预先根据与目标穿刺切面对应的彩色多普勒超声图像确定与该目标穿刺切面对应的第一B型超声图像,并在实时采集第二B型超声图像的过程中,以该第一B型超声图像作为待匹配图像进行实时匹配,并实时输出匹配结果,以引导用户在实时显示该第二B型超声图像的过程中确定该目标穿刺切面,提高了穿刺成功率。
下面,将参考图9描述根据本申请一个实施例的基于超声成像的穿刺引导方法。图9是本申请实施例的基于超声成像的穿刺引导方法900的一个示意性流程图。如图9所示,基于超声成像的穿刺引导方法900包括如下步骤:
在步骤S910,获取与目标穿刺切面对应的第一B型超声图像,其中,所述第一B型超声图像是基于弹性成像得到的与所述目标穿刺切面对应的第一弹性图像确定的;
在步骤S920,控制超声探头沿不同位置或角度向目标区域发射超声波,接收所述超声波的超声回波,以获得超声回波信号,并基于所述超声回波信号实时生成所述目标区域的第二B型超声图像;
在步骤S930,实时显示所述第二B型超声图像,并对所述第一B型超声图像与第二B型超声图像进行实时匹配,得到匹配结果;
在步骤S940,当所述匹配结果满足预设要求时,控制所述超声探头保持在当前位置或角度,以引导用户基于所述当前位置或角度得到的所述第二B型超声图像对应的切面进行穿刺。
类似于上文所述的穿刺引导方法200,本申请实施例的基于超声成像的穿刺引导方法900同样是预先寻找到与目标穿刺切面对应的第一弹性图像,并根据该第一弹性图像寻找到与该目标穿刺切面对应的第一B型超声图像作为待匹配图像与在实时采集的第二B型超声图像进行实时匹配,得到匹配结果。不同之处在于,在穿刺引导方法900中,当该匹配结果满足预设要求时,通过系统控制该超声探头保持在当前位置或角度,以引导用户基于该当前位置或角度得到的该第二B型超声图像对应的切面进行穿刺。而对于是否实时显示匹配结果,可以实时显示,也可以不显示,该实施例中不做限制。
除此之外,穿刺引导方法900的其他步骤与穿刺引导方法200大体相似,具体可参阅上述的相关描述,此处不再赘述。
本申请实施例还提供了一种超声成像系统,该超声成像系统可以用于实现上述基于超声成像的穿刺引导方法900。现在重新参照图1,该超声成像系统100可以包括超声探头110、发射电路112、接收电路114、处理器116、显示设备118、发射/接收选择开关120、波束合成电路122以及存储器124中的部分或全部部件,各个部件的相关描述可以参照上文。以下仅对超声成像系统100的主要功能进行描述,而省略以上已经描述过的细节内容。
具体地,发射电路112用于激励超声探头110向目标区域发射超声波;接收电路114用于控制超声探头110接收超声波的超声回波,以获得超声回波信号;处理器116用于:获取与目标穿刺切面对应的第一B型超声图像,其中,该第一B型超声图像是基于弹性成像得到的与该目标穿刺切面对应的第一弹性图像确定的;基于该超声回波信号实时生成该目标区域的第二B型超声图像;控制该显示设备118实时显示该第二B型超声图像,并对该第一B型超声图像与第二B型超声图像进行实时匹配,得到匹配结果;当该匹配结果满足预设要求时,控制该超声探头110保持在当前位置或角度,以引导用户基于该当前位置或角度得到的该第二B型超声图像对应的切面进行穿刺。
基于以上描述,根据本申请实施例的基于超声成像的穿刺引导方法900和超声成像系统预先根据与目标穿刺切面对应的第一弹性图像确定与该目标穿刺切面对应的第一B型超声图像,并在实时采集第二B型超声图像的过程中,以该第一B型超声图像作为待匹配图像进行实时匹配,得到匹配结果;当该匹配结果满足预设要求时,控制该超声探头110保持在当前位置或角度,以引导用户基于该当前位置或角度得到的该第二B型超声图像对应的切面进行穿刺,提高了穿刺成功率。
此外,根据本申请实施例,还提供了一种计算机存储介质,在该计算机存储介质上存储了程序指令,在该程序指令被计算机或处理器运行时用于执行本申请实施例的基于超声成像的穿刺引导方法200、600、700、800或900的相应步骤。该存储介质例如可以包括智能电话的存储卡、平板电脑的存储部件、个人计算机的硬盘、只读存储器(ROM)、可擦除可编程只读存储器(EPROM)、便携式紧致盘只读存储器(CD-ROM)、USB存储器、或者上述存储介质的任意组合。该计算机可读存储介质可以是一个或多个计算机可读存储介质的任意组合。
此外,根据本申请实施例,还提供了一种计算机程序,该计算机程序可 以存储在云端或本地的存储介质上。在该计算机程序被计算机或处理器运行时用于执行本申请实施例的基于超声成像的穿刺引导方法的相应步骤。
基于以上描述,根据本实施例的基于超声成像的穿刺引导方法和超声成像系统利用弹性图像或彩色多普勒超声图像寻找到与目标穿刺切面对应的B型超声图像以实时引导穿刺,提高了穿刺成功率。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本申请的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本申请的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本申请的范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本申请并帮助理解各个发明方面中的一个或多个,在对本申请的示例性实施例的描述中,本申请的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本申请的方法解释成反映如下意图:即所要求保护的本申请要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本申请的单独实施例。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任 何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本申请的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本申请实施例的一些模块的一些或者全部功能。本申请还可以实现为用于执行这里所描述的方法的一部分或者全部的装置程序(例如,计算机程序和计算机程序产品)。这样的实现本申请的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本申请进行说明而不是对本申请进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
以上所述,仅为本申请的具体实施方式或对具体实施方式的说明,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以权利要求的保护范围为准。

Claims (43)

  1. 一种基于超声成像的穿刺引导方法,其特征在于,所述方法包括:
    获取基于剪切波弹性成像得到的目标区域的至少一帧B型超声图像和至少一帧剪切波弹性图像;
    从所述至少一帧剪切波弹性图像中确定与目标穿刺切面对应的第一剪切波弹性图像;
    基于所述第一剪切波弹性图像从所述至少一帧B型超声图像中确定与所述目标穿刺切面对应的第一B型超声图像;
    向所述目标区域发射第一超声波,接收所述第一超声波的超声回波,以获得第一超声回波信号,并基于所述第一超声回波信号实时生成所述目标区域的第二B型超声图像;
    实时显示所述第二B型超声图像,对所述第一B型超声图像与第二B型超声图像进行实时匹配,并实时输出匹配结果,所述匹配结果用于引导用户在实时显示所述第二B型超声图像的过程中确定所述目标穿刺切面。
  2. 根据权利要求1所述的方法,其特征在于,所述获取基于剪切波弹性成像得到的目标区域的至少一帧B型超声图像和至少一帧剪切波弹性图像包括:
    向所述目标区域发射第二超声波,接收所述第二超声波的超声回波,以获得第二超声回波信号,并基于所述第二超声回波信号得到所述至少一帧B型超声图像;以及产生在所述目标区域内传播的剪切波,并向所述目标区域发射第三超声波,以追踪在所述目标区域内传播的剪切波,接收所述第三超声波的超声回波,以获得第三超声回波信号,并基于所述第三超声回波信号得到所述至少一帧剪切波弹性图像;或者,
    读取已存储的基于剪切波弹性成像得到的目标区域的至少一帧B型超声图像和至少一帧剪切波弹性图像。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    存储所述与所述目标穿刺切面对应的第一B型超声图像。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述实时输出匹配结果包括:
    在实时显示所述第二B型超声图像的过程中实时显示所述匹配结果;或者,
    当所述匹配结果满足预设要求时,实时显示所述匹配结果或实时输出提示信息。
  5. 根据权利要求4所述的方法,其特征在于,所述对所述第一B型超声图像与第二B型超声图像进行实时匹配,包括:
    实时确定所述第一B型超声图像与所述第二B型超声图像的相似度,或者,实时确定所述第二B型超声图像对应的切面与所述第一B型超声图像对应的所述目标穿刺切面之间的相似度;
    所述实时输出匹配结果包括:
    在实时显示所述第二B型超声图像的过程中实时显示所述相似度;或者,
    当所述相似度满足预设阈值时,实时显示所述相似度或实时输出提示信息。
  6. 根据权利要求5所述的方法,其特征在于,实时确定所述相似度包括:
    提取所述第一B型超声图像的第一图像特征;
    实时提取所述第二B型超声图像的第二图像特征;
    实时比对所述第一图像特征和所述第二图像特征,以得到所述第一B型超声图像与第二B型超声图像之间的相似度或所述第二B型超声图像对应的切面与所述第一B型超声图像对应的所述目标穿刺切面之间的相似度。
  7. 根据权利要求5所述的方法,其特征在于,实时确定所述相似度包括:
    采用机器学习模型实时确定所述第一B型超声图像与第二B型超声图像之间的相似度或所述第二B型超声图像对应的切面与所述第一B型超声图像对应的所述目标穿刺切面之间的相似度。
  8. 根据权利要求5-7中任一项所述的方法,其特征在于,所述方法还包括:将不同范围内的所述相似度显示为不同的颜色。
  9. 根据权利要求5-8中任一项所述的方法,其特征在于,还包括:当所述相似度高于预设阈值时,将所述第一剪切波弹性图像叠加显示在当前的所述第二B型超声图像上。
  10. 根据权利要求4所述的方法,其特征在于,所述对所述第一B型超声图像与第二B型超声图像进行实时匹配,包括:
    将所述第一B型超声图像与所述第二B型超声图像进行叠加显示;
    所述实时输出匹配结果包括:
    实时显示所述第一B型超声图像与所述第二B型超声图像的叠加显示结 果,以根据所述第一B型超声图像与所述第二B型超声图像的重叠程度引导用户在实时显示所述第二B型超声图像的过程中确定所述目标穿刺切面。
  11. 根据权利要求10所述的方法,其特征在于,所述叠加显示包括对所述第一B型超声图像进行透明化处理,并将透明化处理后的第一B型超声图像叠加在所述第二B型超声图像上,或者,所述叠加显示包括实时对所述第二B型超声进行透明化处理,并将透明化处理后的第二B型超声图像叠加在所述第一B型超声图像上。
  12. 根据权利要求11所述的方法,其特征在于,所述叠加显示还包括:对所述第一B型超声图像或所述第二B型超声图像进行彩色化处理。
  13. 根据权利要求1所述的方法,其特征在于,还包括以下至少一项:
    将所述第一剪切波弹性图像与所述第二B型超声图像并列显示;和
    将所述第一B型超声图像与所述第二B型超声图像并列显示。
  14. 根据权利要求1-13中任一项所述的方法,其特征在于,用户在实时显示所述第二B型超声图像的过程中确定所述目标穿刺切面后,所述方法还包括:
    响应用户基于所述目标穿刺切面完成穿刺操作后的存图指令,以保存穿刺图像。
  15. 一种基于超声成像的穿刺引导方法,其特征在于,所述方法包括:
    获取与目标穿刺切面对应的第一B型超声图像,其中,所述第一B型超声图像是基于弹性成像得到的与所述目标穿刺切面对应的第一弹性图像确定的;
    向目标区域发射超声波,接收所述超声波的超声回波,以获得超声回波信号,并基于所述超声回波信号实时生成所述目标区域的第二B型超声图像;
    实时显示所述第二B型超声图像,对所述第一B型超声图像与第二B型超声图像进行实时匹配,并实时输出匹配结果,所述匹配结果用于引导用户在实时显示所述第二B型超声图像的过程中确定所述目标穿刺切面。
  16. 根据权利要求15所述的方法,其特征在于,所述获取与目标穿刺切面对应的第一B型超声图像包括:
    获取基于弹性成像得到的目标区域的至少一帧B型超声图像和至少一帧弹性图像;
    从所述至少一帧弹性图像中确定与目标穿刺切面对应的第一弹性图像;
    基于所述第一弹性图像从所述至少一帧B型超声图像中确定与所述目标穿刺切面对应的第一B型超声图像;或者,
    获取已保存的与目标穿刺切面对应的第一B型超声图像。
  17. 根据权利要求15或16所述的方法,其特征在于,所述弹性图像包括应变弹性图像或剪切波弹性图像。
  18. 一种基于超声成像的穿刺引导方法,其特征在于,所述方法包括:
    获取与目标穿刺切面对应的第一B型超声图像,其中,所述第一B型超声图像是基于弹性成像得到的与所述目标穿刺切面对应的第一弹性图像确定的;
    控制超声探头沿不同位置或角度向目标区域发射超声波,接收所述超声波的超声回波,以获得超声回波信号,并基于所述超声回波信号实时生成所述目标区域的第二B型超声图像;
    实时显示所述第二B型超声图像,并对所述第一B型超声图像与第二B型超声图像进行实时匹配,得到匹配结果;
    当所述匹配结果满足预设要求时,控制所述超声探头保持在当前位置或角度,以引导用户基于所述当前位置或角度得到的所述第二B型超声图像对应的切面进行穿刺。
  19. 一种基于超声成像的穿刺引导方法,其特征在于,所述方法包括:
    获取与目标穿刺切面对应的第一B型超声图像,其中,所述第一B型超声图像是基于弹性成像得到的与所述目标穿刺切面对应的第一弹性图像确定的;
    向目标区域发射超声波,接收所述超声波的超声回波,以获得超声回波信号;
    对所述超声回波信号进行信号处理,以实时生成所述目标区域的彩色超声图像,所述彩色超声图像包括第二B型超声图像和叠加在所述第二B型超声图像上的彩色多普勒超声图像;
    实时显示所述彩色超声图像,对所述第一B型超声图像与第二B型超声图像进行实时匹配,并实时输出匹配结果,所述匹配结果用于引导用户在实时显示所述彩色超声图像的过程中确定所述目标穿刺切面。
  20. 根据权利要求19所述的方法,其特征在于,所述获取与目标穿刺切面对应的第一B型超声图像包括:
    获取基于弹性成像得到的目标区域的至少一帧B型超声图像和至少一帧弹性图像;
    从所述至少一帧弹性图像中确定与目标穿刺切面对应的第一弹性图像;
    基于所述第一弹性图像从所述至少一帧B型超声图像中确定与所述目标穿刺切面对应的第一B型超声图像;或者,
    获取已保存的与目标穿刺切面对应的第一B型超声图像。
  21. 根据权利要求19或20所述的方法,其特征在于,所述实时输出匹配结果包括:
    在实时显示所述第二B型超声图像的过程中实时显示所述匹配结果;或者,
    当所述匹配结果满足预设要求时,实时显示所述匹配结果或实时输出提示信息。
  22. 根据权利要求19或20所述的方法,其特征在于,还包括以下至少一项:
    将所述第一弹性图像与所述彩色超声图像并列显示;和
    将所述第一B型超声图像与所述彩色超声图像并列显示。
  23. 一种基于超声成像的穿刺引导方法,其特征在于,所述方法包括:
    获取与目标穿刺切面对应的第一B型超声图像,其中,所述第一B型超声图像是基于彩色超声成像得到的与所述目标穿刺切面对应的第一彩色多普勒超声图像确定的;
    向目标区域发射超声波,接收所述超声波的超声回波,以获得超声回波信号,并基于所述超声回波信号实时生成所述目标区域的第二B型超声图像;
    实时显示所述第二B型超声图像,对所述第一B型超声图像与所述第二B型超声图像进行实时匹配,并实时输出匹配结果,所述匹配结果用于引导用户在实时显示所述第二B型超声图像的过程中确定所述目标穿刺切面。
  24. 根据权利要求23所述的方法,其特征在于,所述获取与目标穿刺切面对应的第一B型超声图像包括:
    获取基于彩色超声成像得到的目标区域的至少一帧B型超声图像和至少一帧彩色多普勒超声图像;
    从所述至少一帧彩色多普勒超声图像中确定与目标穿刺切面对应的第一彩色多普勒超声图像;
    基于所述第一彩色多普勒超声图像从所述至少一帧B型超声图像中确定与所述目标穿刺切面对应的第一B型超声图像;或者,
    获取已保存的与目标穿刺切面对应的第一B型超声图像。
  25. 一种超声成像系统,其特征在于,所述超声成像系统包括超声探头、发射电路、接收电路、处理器和显示设备,其中:
    所述发射电路用于激励所述超声探头向目标区域发射第一超声波;
    所述接收电路用于控制所述超声探头接收所述第一超声波的超声回波,以获得第一超声回波信号;
    所述处理器用于:
    获取基于剪切波弹性成像得到的目标区域的至少一帧B型超声图像和至少一帧剪切波弹性图像;
    从所述至少一帧剪切波弹性图像中确定与目标穿刺切面对应的第一剪切波弹性图像;
    基于所述第一剪切波弹性图像从所述至少一帧B型超声图像中确定与所述目标穿刺切面对应的第一B型超声图像;
    基于所述第一超声回波信号实时生成所述目标区域的第二B型超声图像;
    控制所述显示设备实时显示所述第二B型超声图像,以及对所述第一B型超声图像与第二B型超声图像进行实时匹配,并控制所述显示设备实时输出匹配结果,所述匹配结果用于引导用户在实时显示所述第二B型超声图像的过程中确定所述目标穿刺切面。
  26. 根据权利要求25所述的超声成像系统,其特征在于,所述处理器用于获取基于剪切波弹性成像得到的目标区域的至少一帧B型超声图像和至少一帧剪切波弹性图像包括:
    控制所述超声探头向所述目标区域发射第二超声波,接收所述第二超声波的超声回波,以获得第二超声回波信号,并基于所述第二超声回波信号得到所述至少一帧B型超声图像;以及产生在所述目标区域内传播的剪切波,并控制所述超声探头向所述目标区域发射第三超声波,以追踪在所述目标区域内传播的剪切波,接收所述第三超声波的超声回波,以获得第三超声回波信号,并基于所述第三超声回波信号得到所述至少一帧剪切波弹性图像;或者,
    读取已存储的基于剪切波弹性成像得到的目标区域的至少一帧B型超声 图像和至少一帧剪切波弹性图像。
  27. 根据权利要求25所述的超声成像系统,其特征在于,还包括存储器,用于存储所述与所述目标穿刺切面对应的第一B型超声图像。
  28. 根据权利要求25-27中任一项所述的超声成像系统,其特征在于,所述控制所述显示设备实时输出匹配结果包括:
    控制所述显示设备在实时显示所述第二B型超声图像的过程中实时显示所述匹配结果;或者,
    当所述匹配结果满足预设要求时,控制所述显示设备实时显示所述匹配结果或实时输出提示信息。
  29. 根据权利要求28所述的超声成像系统,其特征在于,所述处理器用于对所述第一B型超声图像与第二B型超声图像进行实时匹配,包括:
    所述处理器用于实时确定所述第一B型超声图像与所述第二B型超声图像的相似度,或实时确定所述第二B型超声图像对应的切面与所述第一B型超声图像对应的所述目标穿刺切面之间的相似度;
    所述控制所述显示设备实时输出匹配结果包括:
    控制所述显示设备在实时显示所述第二B型超声图像的过程中实时显示所述相似度;或者,
    当所述相似度满足预设阈值时,控制所述显示设备实时显示所述相似度或实时输出提示信息。
  30. 根据权利要求29所述的超声成像系统,其特征在于,所述处理器用于实时确定所述相似度包括:
    所述处理器用于提取所述第一B型超声图像的第一图像特征;
    实时提取所述第二B型超声图像的第二图像特征;
    实时比对所述第一图像特征和所述第二图像特征,以得到所述第一B型超声图像与第二B型超声图像之间的相似度或所述第二B型超声图像对应的切面与所述第一B型超声图像对应的所述目标穿刺切面之间的相似度。
  31. 根据权利要求29或30所述的超声成像系统,其特征在于,所述处理器还用于:控制所述显示设备将不同范围内的所述相似度显示为不同的颜色。
  32. 根据权利要求29-31中任一项所述的超声成像系统,其特征在于,当所述相似度高于预设阈值时,所述处理器还用于控制所述显示设备将所述 第一剪切波弹性图像叠加显示在当前的所述第二B型超声图像上。
  33. 根据权利要求28所述的超声成像系统,其特征在于,所述处理器用于对所述第一B型超声图像与第二B型超声图像进行实时匹配,包括:
    所述处理器用于将所述第一B型超声图像与所述第二B型超声图像进行叠加显示;
    所述控制所述显示设备实时输出匹配结果包括:
    控制所述显示设备实时显示所述第一B型超声图像与所述第二B型超声图像的叠加显示结果,以根据所述第一B型超声图像与所述第二B型超声图像的重叠程度引导用户在实时显示所述第二B型超声图像的过程中确定所述目标穿刺切面。
  34. 根据权利要求33所述的超声成像系统,其特征在于,所述叠加显示包括对所述第一B型超声图像进行透明化处理,并将透明化处理后的第一B型超声图像叠加显示在所述第二B型超声图像上,或者,所述叠加显示包括实时对所述第二B型超声进行透明化处理,并将透明化处理后的第二B型超声图像叠加显示在所述第一B型超声图像上。
  35. 根据权利要求34所述的超声成像系统,其特征在于,所述叠加显示还包括:对所述第一B型超声图像或所述第二B型超声图像进行彩色化处理。
  36. 根据权利要求25所述的超声成像系统,其特征在于,所述显示设备还用于将所述第一剪切波弹性图像和/或所述第一B型超声图像与所述第二B型超声图像并列显示。
  37. 根据权利要求25-36中任一项所述的超声成像系统,其特征在于,所述处理器还用于:
    响应用户基于所述目标穿刺切面完成穿刺操作后的存图指令,以将穿刺图像保存在存储器中。
  38. 一种超声成像系统,其特征在于,所述超声成像系统包括超声探头、发射电路、接收电路、处理器和显示设备,其中:
    所述发射电路用于激励所述超声探头向目标区域发射超声波;
    所述接收电路用于控制所述超声探头接收所述超声波的超声回波,以获得超声回波信号;
    所述处理器用于:
    获取与目标穿刺切面对应的第一B型超声图像,其中,所述第一B型超 声图像是基于弹性成像得到的与所述目标穿刺切面对应的第一弹性图像确定的;
    基于所述超声回波信号实时生成所述目标区域的第二B型超声图像;
    控制所述显示设备实时显示所述第二B型超声图像,以及对所述第一B型超声图像与第二B型超声图像进行实时匹配,并控制所述显示设备实时输出匹配结果,所述匹配结果用于引导用户在实时显示所述第二B型超声图像的过程中确定所述目标穿刺切面。
  39. 根据权利要求38所述的超声成像系统,其特征在于,所述处理器用于获取与目标穿刺切面对应的第一B型超声图像包括:
    获取基于弹性成像得到的目标区域的至少一帧B型超声图像和至少一帧弹性图像;
    从所述至少一帧弹性图像中确定与目标穿刺切面对应的第一弹性图像;
    基于所述第一弹性图像从所述至少一帧B型超声图像中确定与所述目标穿刺切面对应的第一B型超声图像;或者,
    获取已保存的与目标穿刺切面对应的第一B型超声图像。
  40. 根据权利要求38或39所述的超声成像系统,其特征在于,所述弹性图像包括应变弹性图像或剪切波弹性图像。
  41. 一种超声成像系统,其特征在于,所述超声成像系统包括超声探头、发射电路、接收电路、处理器和显示设备,其中:
    所述发射电路用于激励所述超声探头沿不同位置或角度向被测对象的目标区域发射超声波;
    所述接收电路用于控制所述超声探头接收所述超声波的超声回波,以获得超声回波信号;
    所述处理器用于:
    获取与目标穿刺切面对应的第一B型超声图像,其中,所述第一B型超声图像是基于弹性成像得到的与所述目标穿刺切面对应的第一弹性图像确定的;
    基于所述超声回波信号实时生成所述目标区域的第二B型超声图像;
    控制所述显示设备实时显示所述第二B型超声图像,并对所述第一B型超声图像与第二B型超声图像进行实时匹配,得到匹配结果;
    当所述匹配结果满足预设要求时,控制所述超声探头保持在当前位置或 角度,以引导用户基于所述当前位置或角度得到的所述第二B型超声图像对应的切面进行穿刺。
  42. 一种超声成像系统,其特征在于,所述超声成像系统包括超声探头、发射电路、接收电路、处理器和显示设备,其中:
    所述发射电路用于激励所述超声探头向被测对象的目标区域发射超声波;
    所述接收电路用于控制所述超声探头接收所述超声波的超声回波,以获得超声回波信号;
    所述处理器用于:
    获取与目标穿刺切面对应的第一B型超声图像,其中,所述第一B型超声图像是基于弹性成像得到的与所述目标穿刺切面对应的第一弹性图像确定的;
    对所述超声回波信号进行信号处理,以实时生成所述目标区域的彩色超声图像,所述彩色超声图像包括第二B型超声图像和叠加在所述第二B型超声图像上的彩色多普勒超声图像;
    控制所述显示设备实时显示所述彩色超声图像,对所述第一B型超声图像与第二B型超声图像进行实时匹配,并实时输出匹配结果,所述匹配结果用于引导用户在实时显示所述彩色超声图像的过程中确定所述目标穿刺切面。
  43. 一种超声成像系统,其特征在于,所述超声成像系统包括超声探头、发射电路、接收电路、处理器和显示设备,其中:
    所述发射电路用于激励所述超声探头向目标区域发射超声波;
    所述接收电路用于控制所述超声探头接收所述超声波的超声回波,以获得超声回波信号;
    所述处理器用于:
    获取与目标穿刺切面对应的第一B型超声图像,其中,所述第一B型超声图像是基于彩色超声成像得到的与所述目标穿刺切面对应的第一彩色多普勒超声图像确定的;
    基于所述超声回波信号实时生成所述目标区域的第二B型超声图像;
    控制所述显示设备实时显示所述第二B型超声图像,对所述第一B型超声图像与所述第二B型超声图像进行实时匹配,并实时输出匹配结果,所述匹配结果用于引导用户在实时显示所述第二B型超声图像的过程中确定所述目标穿刺切面。
PCT/CN2020/123707 2020-10-26 2020-10-26 基于超声成像的穿刺引导方法和超声成像系统 WO2022087787A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/123707 WO2022087787A1 (zh) 2020-10-26 2020-10-26 基于超声成像的穿刺引导方法和超声成像系统
CN202080104090.2A CN116096297A (zh) 2020-10-26 2020-10-26 基于超声成像的穿刺引导方法和超声成像系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/123707 WO2022087787A1 (zh) 2020-10-26 2020-10-26 基于超声成像的穿刺引导方法和超声成像系统

Publications (1)

Publication Number Publication Date
WO2022087787A1 true WO2022087787A1 (zh) 2022-05-05

Family

ID=81381572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123707 WO2022087787A1 (zh) 2020-10-26 2020-10-26 基于超声成像的穿刺引导方法和超声成像系统

Country Status (2)

Country Link
CN (1) CN116096297A (zh)
WO (1) WO2022087787A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130338477A1 (en) * 2012-06-14 2013-12-19 Neil Glossop System, method and device for prostate diagnosis and intervention
CN104771192A (zh) * 2015-04-20 2015-07-15 无锡海斯凯尔医学技术有限公司 组织形态和弹性信息的处理方法和弹性检测设备
JP2017118921A (ja) * 2015-12-28 2017-07-06 東芝メディカルシステムズ株式会社 超音波診断装置
US20180008236A1 (en) * 2015-10-08 2018-01-11 Zmk Medical Technologies Inc. 3d multi-parametric ultrasound imaging
CN108135572A (zh) * 2015-07-07 2018-06-08 Zmk医疗技术股份有限公司 经会阴的针引导
CN108577940A (zh) * 2018-02-11 2018-09-28 苏州融准医疗科技有限公司 一种基于多模态医学图像信息的靶向穿刺引导系统及方法
WO2018214806A1 (zh) * 2017-05-26 2018-11-29 北京龙慧珩医疗科技发展有限公司 一种前列腺术弹性配准方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130338477A1 (en) * 2012-06-14 2013-12-19 Neil Glossop System, method and device for prostate diagnosis and intervention
CN104771192A (zh) * 2015-04-20 2015-07-15 无锡海斯凯尔医学技术有限公司 组织形态和弹性信息的处理方法和弹性检测设备
CN108135572A (zh) * 2015-07-07 2018-06-08 Zmk医疗技术股份有限公司 经会阴的针引导
US20180008236A1 (en) * 2015-10-08 2018-01-11 Zmk Medical Technologies Inc. 3d multi-parametric ultrasound imaging
JP2017118921A (ja) * 2015-12-28 2017-07-06 東芝メディカルシステムズ株式会社 超音波診断装置
WO2018214806A1 (zh) * 2017-05-26 2018-11-29 北京龙慧珩医疗科技发展有限公司 一种前列腺术弹性配准方法及装置
CN108577940A (zh) * 2018-02-11 2018-09-28 苏州融准医疗科技有限公司 一种基于多模态医学图像信息的靶向穿刺引导系统及方法

Also Published As

Publication number Publication date
CN116096297A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
JP6367425B2 (ja) 超音波診断装置
US9420996B2 (en) Methods and systems for display of shear-wave elastography and strain elastography images
US20110255762A1 (en) Method and system for determining a region of interest in ultrasound data
US11464490B2 (en) Real-time feedback and semantic-rich guidance on quality ultrasound image acquisition
JP7022217B2 (ja) 超音波システムのためのエコー窓のアーチファクト分類及び視覚的インジケータ
WO2014002963A1 (ja) 超音波診断装置及び画像処理方法
US11432803B2 (en) Method and system for generating a visualization plane from 3D ultrasound data
US20160066888A1 (en) Ultrasonic diagnostic apparatus and image processing apparatus
WO2018205274A1 (zh) 一种超声设备及其三维超声图像的显示变换方法、系统
CN113017682B (zh) 一种超声成像设备及方法
JP7043193B2 (ja) 解析装置、超音波診断装置、及び解析プログラム
WO2007135884A1 (ja) 超音波診断装置及び超音波診断方法
JP2020103883A (ja) 超音波撮像システムおよび対象物体品質レベルを表示するための方法
JP2020509862A (ja) 臓器視認のための最適走査面選択
WO2022087787A1 (zh) 基于超声成像的穿刺引导方法和超声成像系统
EP3278738A1 (en) Acoustic wave image generation device and method
WO2021218077A1 (zh) 前列腺弹性测量方法和超声成像系统
US10492762B2 (en) Ultrasound diagnostic device, ultrasound diagnostic method, and program
WO2021109112A1 (zh) 一种超声成像方法以及超声成像系统
CN114144119A (zh) 瞬时弹性测量方法、声衰减参数测量方法和超声成像系统
CN114569153A (zh) 弹性测量方法、基于弹性图像的匹配方法和超声成像系统
JP5337446B2 (ja) 超音波画像診断装置、画像処理装置及び超音波画像診断支援プログラム
WO2021087765A1 (zh) 一种超声成像设备和子宫内膜蠕动的检测方法
EP4295780A1 (en) Ultrasound diagnostic apparatus and control method of ultrasound diagnostic apparatus
WO2022147690A1 (zh) 弹性成像方法和超声成像系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958952

Country of ref document: EP

Kind code of ref document: A1