WO2018214806A1 - 一种前列腺术弹性配准方法及装置 - Google Patents

一种前列腺术弹性配准方法及装置 Download PDF

Info

Publication number
WO2018214806A1
WO2018214806A1 PCT/CN2018/087395 CN2018087395W WO2018214806A1 WO 2018214806 A1 WO2018214806 A1 WO 2018214806A1 CN 2018087395 W CN2018087395 W CN 2018087395W WO 2018214806 A1 WO2018214806 A1 WO 2018214806A1
Authority
WO
WIPO (PCT)
Prior art keywords
puncture
point
image
position sensor
deformation
Prior art date
Application number
PCT/CN2018/087395
Other languages
English (en)
French (fr)
Inventor
叶慧
Original Assignee
北京龙慧珩医疗科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京龙慧珩医疗科技发展有限公司 filed Critical 北京龙慧珩医疗科技发展有限公司
Publication of WO2018214806A1 publication Critical patent/WO2018214806A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • A61B2017/3413Needle locating or guiding means guided by ultrasound

Definitions

  • the invention belongs to the field of medical instruments, and in particular relates to an elastic registration method for a two-dimensional ultrasonic sequence and a three-dimensional magnetic resonance image for prostate puncture.
  • Prostate cancer is one of the most common cancers in the male population, and its mortality rate ranks second in non-skin cancer.
  • the most popular prostate cancer screening method is serum prostate specific antigen screening, followed by six or more biopsies performed in real-time 2D transrectal ultrasound guidance. As part of this procedure, the prostate is typically divided into six equal volume regions. One or more biopsies are taken from each of these six regions in a systematic, but essentially non-directional manner. This procedure is called a sextant biopsy.
  • the sextant biopsy is low cost and relatively simple compared to other methods of detecting prostate cancer, it is widely used.
  • the sextant biopsy has shown a severe false negative rate and may be inaccurate with regard to the true location of the biopsy.
  • the results of the sextant biopsy are usually reported using the original standard map of the prostate, and the pathologist manually annotates the biopsy results on the original standard map of the prostate. This picture is intrinsically inaccurate because the pathologist who annotated does not know the real part of the biopsy.
  • Transrectal ultrasound (TRUS)-guided systemic biopsy seems to solve the above technical problems. Because of its real-time performance, imaging without radiation, low cost and simple operation, it has become an important indicator for the diagnosis and diagnosis of prostate cancer.
  • ultrasound imaging is fast, although it can be imaged in real time during surgery.
  • the discrimination between soft tissues in the image is not high.
  • the position of the sampling catheter can be tracked in real time, the lesion cannot be imaged. Accurate positioning of the tissue results in a pure ultrasound-based sampling method that is not sensitive to cancer detection, only 60% to 85%.
  • the object of the present invention is to use a high-precision electromagnetic locator to track the ultrasound transducer and the puncture needle to guide the prostate puncture in real time, and provide a real-time two-dimensional ultrasound and preoperative MRI image fusion guided prostate targeted puncture through multimodality.
  • Medical image registration and fusion techniques combine the diagnostic advantages of preoperative MRI images with the real-time guidance advantages of TRUS images to provide higher quality targeted guided punctures.
  • the method is mainly directed to the following technical problems existing in the prior art:
  • Prostate MRI-TRUS images require a lot of time for the MRI and the clinician to register for prostate MRI and ultrasound images, large deformation of the prostate by probe extrusion, and fewer features for registration in ultrasound images.
  • the TRUS data is manually segmented, and the instability of the segmentation result has a great influence on the registration effect.
  • the clinically practical one is the electromagnetic target-based prostate-targeted puncture system proposed by Xu S, Kruecker J.
  • Preoperative MRI and 3D TRUS images were manually rigid-body registration, and then the two-dimensional and three-dimensional transrectal ultrasound images were registered by electromagnetic positioning technique during the puncture. Finally, the intraoperative two-dimensional ultrasound images were calculated based on the preoperative rigid body registration results.
  • the invention is based on multi-modal medical image registration and fusion technology, combined with the diagnostic advantages of preoperative MRI images and the real-time guiding advantages of TRUS images, and developed a higher quality prostate targeting puncture guiding system to develop a higher quality prostate.
  • the sextant biopsy is usually divided into six parts from the top, middle and bottom of the prostate, and the left and right sides, respectively.
  • the biopsy is a prediction made when the cancer position is not accurately grasped, and the high detection rate of the cancer cannot be guaranteed.
  • the puncture method for selecting only the region of interest according to the present invention can be completely provided to the doctor through the preoperative image information. a three-dimensional area of prostate lesions, thereby increasing the detection rate of prostate cancer, and the present invention
  • An elastic registration method for prostate surgery solves the shortcomings of traditional image reconstruction methods, such as large computational complexity, long time spent, and deformation differences caused by ultrasonic probe extrusion of the prostate during reconstruction scanning, resulting in low accuracy of reconstruction, and improved accuracy of three-dimensional data. Sex.
  • the puncture set having an outer sheath, a puncture needle embedded in the outer sheath, and a hose, the outer edge of the outer sheath being connected to the first edge a position sensor having a handle tail end for the operator to hold and a remote front end contacting the examined portion; a contact force sensor at the remote front end portion, a transmitter, a receiver, and an ultrasound at the remote front end portion a transducer, and a second position sensor located at a rear side of the remote front end;
  • Sensing the position and orientation of the second position sensor according to an electromagnetic locator that utilizes a coil that generates a magnetic field to generate a magnetic field at a predetermined working volume and sense the signal;
  • the operator can adjust the spatial position of the tail end of the handle by observing the data given by the processor of the console in response to the above-mentioned sensing signal, in combination with the medical imaging modal signal pre-acquired by the subject before surgery.
  • the circuit is provided by receiving, amplifying, filtering and digitizing the signal from the first position sensor.
  • the outer edge of the outer end of the outer sheath is further connected with an angle indicating dial, wherein the angle indicates that the dial is arranged counterclockwise, and the direction of the zero scale in the dial coincides with the sagittal axis of the human coordinate system.
  • the medical imaging modality is one of: magnetic resonance (MRI) imaging; computed tomography (CT) imaging; positron emission tomography (PET) imaging; or single photon emission computed tomography (SPECT) imaging;
  • MRI magnetic resonance
  • CT computed tomography
  • PET positron emission tomography
  • SPECT single photon emission computed tomography
  • the puncture point is delineated, the medical imaging modality is pre-acquired before the operation, the path planning operation is performed according to the imaging modality, and the two-dimensional ultrasonic image corresponding to the first position sensor is recorded by the electromagnetic locator
  • the boundary extraction algorithm is used to extract the contour boundary of the scanned image in the ultrasound image sequence (US) and the magnetic resonance image (MRI), and uniformly extract one-fifth of the pixel points on the boundary as a point set;
  • the US point set and the MRI point set are registered by the Coherent Point Drift (Robust Point Matching, Iterative closest Point, etc.) to obtain the displacement vector of each point in the MRI point set.
  • Coherent Point Drift Robot Point Matching, Iterative closest Point, etc.
  • the fourth step is to define the deformation field ⁇ x of the prostate tissue deformation in the MRI image based on the B-spline free deformation model, that is, the displacement of each point of the gland tissue.
  • d i,j,k is the displacement of the i, j, k nodes in the grid u;
  • the three-dimensional MRI image is deformed by using the deformation field ⁇ x, and the magnetic resonance image finally registered with the ultrasonic image sequence is obtained by interpolation.
  • the third step includes
  • ⁇ x is defined as follows
  • the deformation of the boundary tissue of the examined part reflects the deformation trend of the whole prostate tissue. Therefore, the deformation of the boundary tissue can be used to fit the deformation of the entire prostate tissue, and the point set coordinate displacement vector.
  • the shape variable ⁇ x determined by the B-spline free deformation model at the boundary tissue of the examined site should be Equal, ie ⁇ x to The Euclidean distance is equal to zero.
  • the fourth step includes
  • Equation (2) Substituting equation (2) into equation (1), using the optimization method, minimize E(P(x); ⁇ x), and obtain the node displacement d i,j,k to determine the deformation field ⁇ x.
  • an apparatus comprising: a puncture kit, an electromagnetic locator, and an information processing unit,
  • the puncture set has an outer sheath, a puncture needle and a hose embedded in the outer sheath, and an outer edge of the outer end of the outer sheath is connected to the first position sensor, and the puncture needle has a handle end end for the operator to hold And a remote front end contacting the examined portion; a contact force sensor at the remote front end portion, a transmitter at the remote front end portion, a receiver and an ultrasonic transducer, and a second side at a rear side of the remote front end portion position sensor;
  • An information processing unit that establishes an ultrasound image in response to the processor and the ultrasound transducer echo signal
  • the electromagnetic locator senses a position and an orientation of a second position sensor that utilizes a coil that generates a magnetic field to generate a magnetic field at a predetermined working volume and sense the signal;
  • the operator can adjust the tail of the handle by observing the data given by the processor of the console in response to the sensing signal described above, in conjunction with the signal processing circuit by accepting, amplifying, filtering and digitizing the signal from the first position sensor.
  • the outer edge of the outer end of the outer sheath is further connected with an angle indicating dial, the angle indicating that the dial is arranged counterclockwise, and the direction of the 0 scale in the dial coincides with the sagittal axis of the human coordinate system.
  • the processor activates the ultrasonic transducer to derive a three-dimensional orientation of the ultrasonic transducer via a cable located at the remote front end via a cable to the console, and thereby derives the emission by the ultrasonic transducer The direction of the beam.
  • the processor derives acoustic pulses emitted by the ultrasonic transducer via the receiver and improves the ultrasonic transducer direction by calibrating the beam relative to the position sensor orientation.
  • FIG. 1 is a flow chart of a two-dimensional ultrasonic sequence-three-dimensional magnetic resonance image elastic registration method according to the present invention.
  • FIG. 2 is a schematic view of the schematic device of the angle dial of the present invention.
  • FIG. 3 is a flow chart of a calibration scheme for an ultrasound image and tracking system coordinate system calibration according to the present invention.
  • FIG. 4 is a partial elevational view of the distal front end of a puncture kit in accordance with an embodiment of the present invention.
  • the improvement of the two-dimensional ultrasonic sequence-three-dimensional magnetic resonance image elastic registration of the present invention further includes an ultrasonic image and tracking system coordinate system calibration calculation scheme as another embodiment of the present invention, which mainly includes two aspects:
  • the puncture kit structure is improved so that the rotation angle is accurately indicated during the operation; the other is to provide a personalized calculation method of the rotation angle.
  • the interventional physician passes the rectal puncture kit through the rectum into the prostate, and the ultrasound enters the prostate from the prostate side through the rectal wall, prostate, and rectal interface.
  • the working frequency is usually At around 6.5MHz, because the preoperative doctor has obtained the position of the lesion in the medical imaging modal device, the interventional doctor selects the region of interest for the needle by experience, and divides the traditional whole prostate into six parts (the top of the prostate, The middle and bottom, left and right sides are improved to select punctures only for the lesions of the above-mentioned regions of interest, and select the points in the upper-lower, left-right, anterior-posterior directions of the diseased tissue, as shown in Fig.
  • the puncture needle can only be performed in the rectum, and the puncture kit can only move up and down the rectum. Therefore, if it is necessary to reduce the number of puncture needles entering the prostate and the depth as much as possible, the puncture needs to be performed.
  • the needle advances in the direction of adjustment, that is, the tail end of the hand-held puncture needle handle rotates around the axis of the handle itself, so that In the case where the lancet diseased tissue into a six-point sampling needle and out through rotation.
  • the puncture needle handle end of the puncture kit contains a position sensor that provides a signal to a processor located in the console.
  • the processor can perform several processing functions as described below, introducing a contact force sensor and a position sensor in the puncture kit, and an angle indicating dial on the outer edge of the outer end of the outer sheath of the puncture kit.
  • the angle dial design is shown in Figure 2: the direction of the 0 scale in the dial coincides with the sagittal axis of the human coordinate system; the direction of the angle increase is counterclockwise; the hole in the center is the reserved hole for nesting in the puncture kit On the outer sheath.
  • the distal end of the puncture set 41 contacting the examined portion 47 is as shown in Figure 4: a contact force sensor 43 at the remote front end portion 42, a transmitter 48 at the remote front end portion 42, a receiver 44, and an ultrasonic transducer And a second position sensor 50 located at the rear side 49 of the remote front end;
  • a processor (not shown) that establishes a desired contact force between the distal front end 42 of the puncture needle 40 and the target exit pin point in response to the reading of the contact force sensor 43;
  • An information processing unit that establishes an ultrasound image in response to the processor and the ultrasound transducer 45 echo signal
  • the electromagnetic locator senses the position and orientation of the second position sensor 50, which utilizes a coil that generates a magnetic field to generate a magnetic field at a predetermined working volume and sense the signal;
  • the operator can adjust the tail of the handle by observing the data given by the processor of the console in response to the sensing signal described above, in conjunction with the signal processing circuit by accepting, amplifying, filtering and digitizing the signal from the first position sensor.
  • the second position sensor 50 including a spring 51 in the form of a double helix, is disposed in the rear side 49 of the distal front end and proximal to the contact force sensor 43.
  • the proximal portion 49 of the contact force sensor 43 is disposed about the longitudinal axis 52.
  • the longitudinal axis 52 need not be aligned with the axis of symmetry 46.
  • the contact force sensor 53 serves as a joint between the end 41 and the segment proximal to the contact force sensor 43.
  • the distal end and the proximal end of the spring 51 are aligned, and the axis of symmetry 46 is with the distal portion of the catheter (located near the contact force sensor 43)
  • the longitudinal axes 52 of the sides are aligned. If there is an asymmetrical force on the end 47, the two axes are misaligned. In all cases, the orientation of the ultrasound transducer 45 and the beam emitted by the ultrasound transducer 45 can be calculated; and the alignment or misalignment of the two axes can be determined.
  • the processor activates the ultrasonic transducer 45 to derive a three-dimensional orientation of the ultrasonic transducer 45 via a cable 48 at the remote front end via a cable to the console, and thereby derives the ultrasonic transduction The direction of the beam emitted by the device 45. Further, including
  • the processor derives acoustic pulses emitted by the ultrasonic transducer 45 via the receiver 44 and improves the ultrasonic transducer 45 direction by aligning the beam with respect to the orientation of the second position sensor 50.
  • the medical imaging modal device has a custom coordinate system, which is recorded as the tracking system coordinate system C T in the method , according to the voxel position parameter and the voxel size parameter in the DICOM file of the medical imaging modal image.
  • the layer spacing parameter obtains the coordinate information of the reference point;
  • the calibration container is filled with water or a coupling agent, the puncture kit is placed on the fixing bracket, attached to one side of the container and fixed, and the ultrasonic image in the calibration container is collected in real time, and the second position sensor is recorded at this time.
  • the metal probe locator is fixed on the probe clamping bracket, and the spatial position of the metal probe locator is moved.
  • the movement stops, and the metal probe locator is fixed, and the metal probe is fixed.
  • the needle tip is located in the ultrasound imaging area, and the coordinate P i of the metal probe locator in the tracking system coordinate system C T is recorded, and the coordinate I i of the bright spot on the ultrasonic image coordinate system Cus is recorded on the ultrasonic image;
  • ICP Iterative Closest
  • CPR coherent point drift
  • RP robust point match

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

为了利用高精度电磁定位仪实时跟踪超声换能器(45)和穿刺针(40)引导前列腺穿刺,提供一种实时二维超声和术前MRI图像融合引导下的前列腺靶向穿刺,通过多模态医学图像配准和融合技术,结合术前MRI图像的诊断优势与TRUS图像的实时引导优势来提供更高质量的靶向引导穿刺。

Description

一种前列腺术弹性配准方法及装置 技术领域
本发明属于医疗仪器领域,具体的涉及一种用于前列腺穿刺术的二维超声序列和三维磁共振图像的弹性配准方法。
背景技术
前列腺癌是男性人群中最常见的癌症之一,并且其致死率在非皮肤癌中排行第二。目前,最为流行的前列腺癌筛查方法是血清前列腺特异性抗原筛查,其次是在实时2D经直肠超声引导下进行的六次或更多次活检。作为这一程序的部分,通常将前列腺分为6个等体积的区域。以系统的、但本质上无方向性的方式从这六个区域中的每个获取一次或多次活检。这一程序称为六分仪活检。
由于六分仪活检成本低并且相对于检测前列腺癌的其他方法较为简单而被广泛使用。然而,六分仪活检已经表现出具有严重的假阴性率,并且可能关于活检的真实位置不准确。通常使用前列腺的原始标准图报告六分仪活检的结果,在前列腺的原始标准图上,病理医师手动地注解活检结果。这张图本质上是不准确的,因为进行注解的病理医师不知道活检的真实部位。经直肠超声(TRUS)引导的系统性穿刺活检似乎解决了上述的技术难题,因其实时性,成像无辐射,低成本和操作简单等性能已成为检查诊断前列腺癌的重要指标。但是,超声成像速度快,虽然可以在术中实时成像,但由于超声波图像的分辨率有限,图像中软组织间的区分度也不高,虽能实时追踪采样导管的位置,却无法通过图像对病变组织进行精确定位,导致单纯基于超声的采样方法,对癌症检测的灵敏度不高,只有60%至85%。
发明内容
本发明的目的是利用高精度电磁定位仪实时跟踪超声换能器和穿刺针引导前列腺穿刺,并提供一种实时二维超声和术前MRI图像融合引导下的前列腺靶向穿刺,通过多模态医学图像配准和融合技术,结合术前MRI图像的诊断优势与TRUS图像的实时引导优势来提供更高质量的靶向引导穿刺。该方法主要针对现有技术中存在的以下技术问题:
前列腺MRI和超声图像差异大、前列腺受探头挤压产生较大形变以及超声图像中可用于配准的特征较少等原因,前列腺MRI-TRUS图像的配准都需要临床医生花费大量时间对MRI和TRUS数据做手动分割,且分割结果的不稳定对配准效果的影响较大,较具临床实用性的为Xu S,Kruecker J提出的基于电磁定位器的前列腺靶向穿刺系统,该系统先对术前MRI和3D TRUS图像进行手动刚体配准,然后在穿刺过程中利用电磁定位技术进行二维和三维经直肠超声图像配准,最后根据术前刚体配准结果计算术中二维超声图像与术前MRI图像的空间转 换关系,然而,该系统中使用的3D TRUS数据是基于附在超声探头上的电磁定位传感器和系列二维图像数据重建得到,此方法计算量大、扫描时间长,且重建扫描过程探头易对前列腺造成不同程度的挤压、影响重建精度。
本发明基于多模态医学图像配准和融合技术,联合术前MRI图像的诊断优势和TRUS图像的实时引导优势,开发出质量更高的前列腺靶向穿刺引导系统,开发出质量更高的前列腺靶向穿刺引导装置,借助于电磁定位仪准确的定位超声探头和穿刺针,通过MRI与3D TRUS手动刚体配准,利用MRI图像对早期前列腺癌的高特异性,准确选择定位穿刺区域作为感性兴趣区,这种选择性的穿刺活检与以往的六分仪活检方法不同,六分仪活检通常分别从前列腺顶部、中部和底部、左右两侧平均分成六部分,进行代表性样品取出,这种随机的活检是在没有准确掌握癌症位置时所进行的预测,无法保证癌症的高检出率,采用本发明的只对感兴趣区域选点穿刺方法,通过术前影像信息完全能提供给医生清晰地、立体的前列腺病变区域,从而提高前列腺癌的检出率,而本发明所提出的一种前列腺术弹性配准方法解决了传统的图像重建方法计算量大、花费时间长以及重建扫描过程中由超声探头挤压前列腺引起的形变差异导致重建精度低等缺点,提高三维数据的精确性。
本发明的技术方案是:
将穿刺套件插入到位于受检者的身体中的腔中,所述穿刺套件具有外鞘、嵌在所述外鞘内的穿刺针及软管,所述外鞘的尾端外缘接第一位置传感器,所述穿刺针有供操作者手持的手柄尾端和接触受检部位的远程前端;位于所述远程前端部的接触力传感器、位于所述远程前端部的发射器、接收器和超声换能器,以及位于所述远程前端部后侧的第二位置传感器;
将所述穿刺针操纵成与位于所述腔的壁中的目标检测点接触;
响应于所述接触力传感器的读数来建立所述穿刺针远程前端前部和所述目标出针点之间的期望的接触力;以及
根据电磁定位仪感测第二位置传感器的位置和取向,该电磁定位仪利用生成磁场的线圈,通过以预定的工作容积生成磁场并感测信号;
操作者能够通过观察控制台的响应于上述感测信号的处理器给出的数据,结合受检者在术前预先获取的医学成像模态信号调控手柄尾端的空间位置,所述空间位置由处理电路经过接受、放大、过滤并数字化来自第一位置传感器的信号所提供。
进一步地,所述外鞘的尾端外缘还接一个角度提示刻度盘,所述角度提示刻度盘为逆时针方向布置,刻度盘中0刻度的方向与人体坐标系的矢状轴重合。
进一步地,所述医学成像模态是下列之一,磁共振(MRI)成像;计算机断层摄影(CT)成像;正电子发射光谱(PET)成像;或单光子发射计算机断层摄影(SPECT)成像;
进一步地,包括:
第一步,穿刺点勾画,对受检者在术前预先获取医学成像模态,根据所述成像模态上进行路径规划操作,以及利用电磁定位仪记录第一位置传感器对应的二维超声图像序列在电磁系统坐标系中的坐标;
第二步,采用边界提取算法分别提取超声图像序列(US)以及磁共振图像(MRI)中受检部位的轮廓边界,均匀抽取边界上五分之一的像素点作为点集;
第三步,采用点集弹性配准方法(Coherent Point Drift,Robust Point Matching,Iterative closest Point等)对US点集和MRI点集进行配准,获得MRI点集中每个点的位移向量
Figure PCTCN2018087395-appb-000001
第四步,定义基于B样条自由形变模型的表征MRI图像中前列腺组织形变的形变场Δx,即腺体组织每个点的位移量,根据B样条自由形变模型,图像中设置间距s=(s x,s y,s z)的均匀网格;d i,j,k为网格u中第i,j,k个节点的位移;
第五步,利用形变场Δx对三维MRI图像进行变形,经过插值得到最终与超声图像序列配准的磁共振图像。
进一步地,第三步包括,
Δx定义如下
Figure PCTCN2018087395-appb-000002
其中
Figure PCTCN2018087395-appb-000003
B 0,B 1,B 2,B 3是4个三次B样条基函数:B 0(t)=(-t 3+3t 2-3t+1)/6,B 1(t)=(3t 3-6t 2+4)/6,B 2(t)=(-3t 3+3t 2+3t+1)/6,B 3(t)=(t 3)/6,其中0≤t<1,
受检部位边界组织的形变情况反映了整个前列腺组织的形变趋势,因此可利用边界组织形变情况,拟合出整个前列腺组织的形变量,点集坐标位移向量
Figure PCTCN2018087395-appb-000004
反映的是受检部位边界组织的位移,在受检部位边界组织处由B样条自由形变模型确定的形变量Δx应该与
Figure PCTCN2018087395-appb-000005
相等,即Δx到
Figure PCTCN2018087395-appb-000006
的欧几里得距离等于0。
进一步地,第四步包括,
定义点集位移向量
Figure PCTCN2018087395-appb-000007
与Δx的欧氏距离平方和:
Figure PCTCN2018087395-appb-000008
将(2)式代入(1)式,使用最优化方法,最小化E(P(x);Δx),求得节点位移d i,j,k,从而确定形变场Δx。
作为本发明的一个实施例,还提供一种设备,其特征在于包括:穿刺套件、电磁定位仪和信息处理单元,
所述穿刺套件具有外鞘、嵌在所述外鞘内的穿刺针及软管,所述外鞘的尾端外缘接第一位置传感器,所述穿刺针有供操作者手持的手柄尾端和接触受检部位的远程前端;位于所述远程前端部的接触力传感器、位于所述远程前端部的发射器、接收器和超声换能器,以及位于所述远程前端部后侧的第二位置传感器;
响应于所述接触力传感器的读数来建立所述穿刺针远程前端前部和所述目标出针点之间的期望的接触力的处理器;以及
响应于所述处理器和所述超声换能器回波信号建立超声图像的信息处理单元,
所述电磁定位仪感测第二位置传感器的位置和取向,该电磁定位仪利用生成磁场的线圈,通过以预定的工作容积生成磁场并感测信号;
操作者能够通过观察控制台的响应于上述感测信号的处理器给出的数据,结合信号处理电路经过接受、放大、过滤并数字化来自第一位置传感器的信号,调控手柄尾端。
进一步地,包括,
所述外鞘的尾端外缘还接一个角度提示刻度盘,所述角度提示刻度盘为逆时针方向布置,刻度盘中0刻度的方向与人体坐标系的矢状轴重合。
进一步地,包括,
所述处理器经由通至所述控制台的电缆通过位于所述远程前端部的发射器激活所述超声换能器导出超声换能器的三维取向,并且由此导出由超声换能器发射的波束的方向。
进一步地,包括,
所述处理器经由所述接收器导出由超声换能器发射的声脉冲,且通过相对于位置传感器取向对波束进行校准来改善超声换能器方向。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明的二维超声序列-三维磁共振图像弹性配准方法流程图。
图2为本发明的角度刻度盘示意图装置的示意图。
图3为本发明的超声图像与跟踪系统坐标系校准计算方案流程图。
图4为根据本发明的实施方案的穿刺套件的远程前端的部分正视图。
具体实施方式
下面将参考附图并结合实施例,来详细说明本发明。
本发明在二维超声序列-三维磁共振图像弹性配准的方面进行的改进还包括作为本发明的另一个实施例的超声图像与跟踪系统坐标系校准计算方案,主要包括两个方面:
一个是穿刺套件结构改进使得在术中操作时精确提示旋转角度;另一个是配套地给出一种个性化的旋转角度计算方法。
1)穿刺套件结构改进
手术操作过程分析:
手术时,病人平躺,介入医师将经直肠的穿刺套件经过直肠进入前列腺,超声波经过直肠壁、前列腺、和直肠交界面从前列腺一侧进入前列腺,为了保证超声信号的穿透能力,工作频率通常在6.5MHz左右,由于术前医生已经获得病变区域在医学成像模态设备中的位置,介入医生凭经验选取感兴趣区域进行给针,将传统的对前列腺整体进行六部分均分(前列腺顶部、中部和底部、左右两侧)改进为只对上述感兴趣区域的病变组织选点穿刺,分别对所述病变组织的上-下、左-右、前-后六个方向选点,如图1;由于直肠与前列腺为不连通器官,穿刺针只能在直肠内进行,穿刺套件只能在直肠上下移动,因此如果需要尽可能减少穿刺针进入前列腺的刺点数以及深度的情况下,需对穿刺针前进方向进行调整,即手持穿刺针手柄尾端进行绕手柄所在轴自身旋转,使得穿刺针在对病变组织一次进针的情况下通过进出和旋转实现六点取样。
穿刺套件改进:
为了协助医生操作,穿刺套件的穿刺针手柄尾端包含向位于控制台中的处理器提供信号的位置传感器。处理器可履行如下描述的若干处理功能,在穿刺套件中引入接触力传感器和位置传感器,在穿刺套件外鞘的尾端外缘接一个角度提示刻度盘。角度刻度盘设计如图2:刻度盘中0刻度的方向与人体坐标系的矢状轴重合;角度增大的方向为逆时针方向;中央的孔洞为留出孔,用于嵌套在穿刺套件的外鞘上。手术前建立好受检部位的空间位置,并且根据接触力传感器的读数来建立穿刺针远程前端前部和目标出针点之间的期望的接触力,通常情况不同的受检部位的受力值不同,对于个性化手术导航而言,有经验的医生提前会建立起力值和空间位置之间的关系作为辅助,手术时将带刻度盘的外鞘固定,穿刺针及软管嵌在外鞘内进出直肠或旋转操作,穿刺针尾端的箭头留出在外鞘外,通过读箭头在刻度盘的指示和处理 器给出的受力参数来实时读取操作时的旋转角。
穿刺套件41的接触受检部位47的远程前端如图4所示:位于所述远程前端部42的接触力传感器43、位于所述远程前端部42的发射器48、接收器44和超声换能器45,以及位于所述远程前端部后侧49的第二位置传感器50;
响应于所述接触力传感器43的读数来建立所述穿刺针40远程前端前部42和所述目标出针点之间的期望的接触力的处理器(未示出);以及
响应于所述处理器和所述超声换能器45回波信号建立超声图像的信息处理单元,
所述电磁定位仪感测第二位置传感器50的位置和取向,该电磁定位仪利用生成磁场的线圈,通过以预定的工作容积生成磁场并感测信号;
操作者能够通过观察控制台的响应于上述感测信号的处理器给出的数据,结合信号处理电路经过接受、放大、过滤并数字化来自第一位置传感器的信号,调控手柄尾端。
所述第二位置传感器50,包括双螺旋形式的弹簧51,设置在远程前端部后侧49中以及接触力传感器43的近侧。接触力传感器43的近侧部分49围绕纵向轴线52进行设置。当弹簧51挠曲时,纵向轴线52不必与对称轴线46对准。换句话讲,接触力传感器53充当末端41和接触力传感器43近侧的节段之间的接头。如果末端47上不存在力或者如果力平行于对称轴线46,则弹簧51的远侧端部和近侧端部对准,并且对称轴线46与导管的远侧部分(位于接触力传感器43的近侧)的纵向轴线52对准。如果末端47上存在非对称力,则这两个轴线不对准。在所有情况下,可计算超声换能器45以及由超声换能器45发射的波束的取向;并且可确定这两个轴线的对准或不对准。
进一步地,包括,
所述处理器经由通至所述控制台的电缆通过位于所述远程前端部的发射器48激活所述超声换能器45导出超声换能器45的三维取向,并且由此导出由超声换能器45发射的波束的方向。进一步地,包括,
所述处理器经由所述接收器44导出由超声换能器45发射的声脉冲,且通过相对于第二位置传感器50取向对波束进行校准来改善超声换能器45方向。
2)个性化的超声图像与跟踪系统坐标系校准的计算
配套的超声图像与跟踪系统坐标系校准计算方案流程图如图3:
第一步,医学成像模态设备有自定义的坐标系,记为所述方法中的跟踪系统坐标系C T,根据医学成像模态图像DICOM文件中的体素位置参数、体素大小参数、层距参数,获得参考点的坐标信息;
第二步,将校准容器内注入水或耦合剂,将穿刺套件放于固定支架上,贴于容器一侧并固定, 实时采集校准容器内的超声图像,记录此时第二位置传感器给出的转换矩阵T2;
第三步,将金属探针定位器固定于探针夹持支架上,移动金属探针定位器空间位置,当超声图像上出现亮点时,停止移动,此时金属探针定位器固定,金属探针针尖位于超声成像区域内,记录此时金属探针定位器在跟踪系统坐标系C T中的坐标P i,并记录超声图像上此亮点在超声图像坐标系Cus上的坐标I i
第四步,重复上述操作n次,得到跟踪系统坐标系C T中的点集P i(i=1,2,…,n),这n个点的坐标均不相同,并得到与这n个点对应的超声图像坐标系Cus中的点集I i(i=1,2,…,n);由坐标关系,P i=T2·T1·I i,其中P i、I i、T2均为已知,T1待求。
令US坐标系(Cus)与跟踪系统坐标系(C T)之间的转换矩阵T=T2·T1,那么Pi=T·Ii;求解T采用下列刚性点集配准方法之一,ICP(Iterative Closest Points)算法、CPR(coherent point drift)算法、RP(robust point match)算法;求出T后,T1=(T2)-1·T。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种方法,其特征在于包括以下步骤:
    将穿刺套件插入到位于受检者的身体中的腔中,所述穿刺套件具有外鞘、嵌在所述外鞘内的穿刺针及软管,所述外鞘的尾端外缘接第一位置传感器,所述穿刺针有供操作者手持的手柄尾端和接触受检部位的远程前端;位于所述远程前端部的接触力传感器、位于所述远程前端部的发射器、接收器和超声换能器,以及位于所述远程前端部后侧的第二位置传感器;
    将所述穿刺针操纵成与位于所述腔的壁中的目标检测点接触;
    响应于所述接触力传感器的读数来建立所述穿刺针远程前端前部和所述目标出针点之间的期望的接触力;以及
    根据电磁定位仪感测第二位置传感器的位置和取向,该电磁定位仪利用生成磁场的线圈,通过以预定的工作容积生成磁场并感测信号;
    操作者能够通过观察控制台的响应于上述感测信号的处理器给出的数据,结合受检者在术前预先获取的医学成像模态信号调控手柄尾端的空间位置,所述空间位置由处理电路经过接受、放大、过滤并数字化来自第一位置传感器的信号所提供。
  2. 根据权利要求1所述的方法,其特征在于所述外鞘的尾端外缘还接一个角度提示刻度盘,所述角度提示刻度盘为逆时针方向布置,刻度盘中0刻度的方向与人体坐标系的矢状轴重合。
  3. 根据权利要求2所述的方法,其特征在于包括:
    所述医学成像模态是下列之一,磁共振(MRI)成像;计算机断层摄影(CT)成像;正电子发射光谱(PET)成像;或单光子发射计算机断层摄影(SPECT)成像。
  4. 根据权利要求3所述的方法,其特征在于包括,
    第一步,穿刺点勾画,对受检者在术前预先获取医学成像模态,根据所述成像模态上进行路径规划操作,以及利用电磁定位仪记录第一位置传感器对应的二维超声图像序列在电磁系统坐标系中的坐标;
    第二步,采用边界提取算法分别提取超声图像序列(US)以及磁共振图像(MRI)中受检部位的轮廓边界,均匀抽取边界上五分之一的像素点作为点集;
    第三步,采用点集弹性配准方法(Coherent Point Drift,Robust Point Matching,Iterative closest Point等)对US点集和MRI点集进行配准,获得MRI点集中每个点的位移向量
    Figure PCTCN2018087395-appb-100001
    第四步,定义基于B样条自由形变模型的表征MRI图像中前列腺组织形变的形变场Δx,即腺体组织每个点的位移量,根据B样条自由形变模型,图像中设置间距s=(s x,s y,s z)的均匀网格;d i,j,k为网格u中第i,j,k个节点的位移;
    第五步,利用形变场Δx对三维MRI图像进行变形,经过插值得到最终与超声图像序列配准 的磁共振图像。
  5. 根据权利要求4所述的方法,其特征在于第三步包括,
    Δx定义如下
    Figure PCTCN2018087395-appb-100002
    其中
    Figure PCTCN2018087395-appb-100003
    u=x/s-i-1,v=y/s-i-1,w=z/s-i-1,
    B 0,B 1,B 2,B 3是4个三次B样条基函数:B 0(t)=(-t 3+3t 2-3t+1)/6,B 1(t)=(3t 3-6t 2+4)/6,B 2(t)=(-3t 3+3t 2+3t+1)/6,B 3(t)=(t 3)/6,其中0≤t<1,
    受检部位边界组织的形变情况反映了整个前列腺组织的形变趋势,因此可利用边界组织形变情况,拟合出整个前列腺组织的形变量,点集坐标位移向量
    Figure PCTCN2018087395-appb-100004
    反映的是受检部位边界组织的位移,在受检部位边界组织处由B样条自由形变模型确定的形变量Δx应该与
    Figure PCTCN2018087395-appb-100005
    相等,即Δx到
    Figure PCTCN2018087395-appb-100006
    的欧几里得距离等于0。
  6. 根据权利要求5所述的方法,其特征在于第四步包括,
    定义点集位移向量
    Figure PCTCN2018087395-appb-100007
    与Δx的欧氏距离平方和:
    Figure PCTCN2018087395-appb-100008
    将(2)式代入(1)式,使用最优化方法,最小化E(P(x);Δx),求得节点位移d i,j,k,从而确定形变场Δx。
  7. 一种设备,其特征在于包括:穿刺套件、电磁定位仪和信息处理单元,
    所述穿刺套件具有外鞘、嵌在所述外鞘内的穿刺针及软管,所述外鞘的尾端外缘接第一位置传感器,所述穿刺针有供操作者手持的手柄尾端和接触受检部位的远程前端;位于所述远程前端部的接触力传感器、位于所述远程前端部的发射器、接收器和超声换能器,以及位于所述远程前端部后侧的第二位置传感器;
    响应于所述接触力传感器的读数来建立所述穿刺针远程前端前部和所述目标出针点之间的期望的接触力的处理器;以及
    响应于所述处理器和所述超声换能器回波信号建立超声图像的信息处理单元,
    所述电磁定位仪感测第二位置传感器的位置和取向,该电磁定位仪利用生成磁场的线圈,通过以预定的工作容积生成磁场并感测信号;
    操作者能够通过观察控制台的响应于上述感测信号的处理器给出的数据,结合受检者在术前预先获取的医学成像模态信号调控手柄尾端的空间位置,所述空间位置由处理电路经过接受、放大、过滤并数字化来自第一位置传感器的信号所提供。
  8. 根据权利要求7所述的设备,其特征在于包括,
    所述外鞘的尾端外缘还接一个角度提示刻度盘,所述角度提示刻度盘为逆时针方向布置,刻度盘中0刻度的方向与人体坐标系的矢状轴重合。
  9. 根据权利要求8所述的设备,其特征在于包括,
    所述处理器经由通至所述控制台的电缆通过位于所述远程前端部的发射器激活所述超声换能器导出超声换能器的三维取向,并且由此导出由超声换能器发射的波束的方向。
  10. 根据权利要求9所述的设备,其特征在于包括,
    所述处理器经由所述接收器导出由超声换能器发射的声脉冲,且通过相对于位置传感器取向对波束进行校准来改善超声换能器方向。
PCT/CN2018/087395 2017-05-26 2018-05-17 一种前列腺术弹性配准方法及装置 WO2018214806A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710371488.2 2017-05-26
CN201710371488.2A CN107028626B (zh) 2017-05-26 2017-05-26 一种前列腺术弹性配准方法及装置

Publications (1)

Publication Number Publication Date
WO2018214806A1 true WO2018214806A1 (zh) 2018-11-29

Family

ID=59539802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087395 WO2018214806A1 (zh) 2017-05-26 2018-05-17 一种前列腺术弹性配准方法及装置

Country Status (2)

Country Link
CN (1) CN107028626B (zh)
WO (1) WO2018214806A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109758213A (zh) * 2019-01-11 2019-05-17 宋刚 一种磁共振-超声融合前列腺穿刺针定位方法及系统
CN110200683A (zh) * 2019-07-03 2019-09-06 北京积水潭医院 超声引导下穿刺姿态监测方法及装置
WO2022087787A1 (zh) * 2020-10-26 2022-05-05 深圳迈瑞生物医疗电子股份有限公司 基于超声成像的穿刺引导方法和超声成像系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107028626B (zh) * 2017-05-26 2023-06-06 北京龙慧珩医疗科技发展有限公司 一种前列腺术弹性配准方法及装置
CN107657989B (zh) * 2017-09-11 2021-05-28 山东第一医科大学(山东省医学科学院) 基于稀疏学习与互信息的多模态医学图像平台
CN108577940A (zh) * 2018-02-11 2018-09-28 苏州融准医疗科技有限公司 一种基于多模态医学图像信息的靶向穿刺引导系统及方法
CN113573641A (zh) * 2019-04-04 2021-10-29 中心线生物医药股份有限公司 使用二维图像投影的跟踪系统与图像的空间配准
CN110279467A (zh) * 2019-06-19 2019-09-27 天津大学 光学定位下的超声图像与穿刺活检针的术中信息融合方法
CN111297448B (zh) * 2020-02-24 2021-06-01 东软医疗系统股份有限公司 穿刺定位方法、装置及系统
CN116096313B (zh) * 2021-12-17 2023-10-31 上海卓昕医疗科技有限公司 穿刺定位系统及其控制方法
CN115294124B (zh) * 2022-10-08 2023-01-06 卡本(深圳)医疗器械有限公司 基于多模态医学图像配准的超声穿刺引导规划系统
CN116128936A (zh) * 2023-02-15 2023-05-16 北京纳通医用机器人科技有限公司 配准方法、装置、设备及存储介质
CN117058135A (zh) * 2023-10-11 2023-11-14 卡本(深圳)医疗器械有限公司 基于系统模板的前列腺系统穿刺点分布方法、设备及介质
CN117224233B (zh) * 2023-11-09 2024-02-20 杭州微引科技有限公司 一种一体化透视ct及介入手术机器人系统及其使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130338477A1 (en) * 2012-06-14 2013-12-19 Neil Glossop System, method and device for prostate diagnosis and intervention
CN103971574A (zh) * 2014-04-14 2014-08-06 中国人民解放军总医院 超声引导肿瘤穿刺训练仿真系统
CN104248471A (zh) * 2013-06-27 2014-12-31 中国科学院沈阳自动化研究所 一种机器人辅助斜尖柔性针穿刺系统及方法
CN107028626A (zh) * 2017-05-26 2017-08-11 北京龙慧珩医疗科技发展有限公司 一种前列腺术弹性配准方法及装置
CN107049370A (zh) * 2017-05-26 2017-08-18 北京龙慧珩医疗科技发展有限公司 一种前列腺穿刺套件

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107260231A (zh) * 2008-10-20 2017-10-20 脊柱诊察公司 用于进入和察看脊柱的牵开器套管系统
US20140039314A1 (en) * 2010-11-11 2014-02-06 The Johns Hopkins University Remote Center of Motion Robot for Medical Image Scanning and Image-Guided Targeting
CN102178526B (zh) * 2011-05-12 2013-03-20 上海交通大学医学院附属新华医院 一种超声与核磁共振图像融合腔内配准装置及其方法
CN104068923B (zh) * 2014-07-08 2016-08-31 中国人民解放军第三军医大学第一附属医院 仿脉搏波超声穿刺套件
CN106063726B (zh) * 2016-05-24 2019-05-28 中国科学院苏州生物医学工程技术研究所 实时穿刺导航系统及其导航方法
CN207855723U (zh) * 2017-05-26 2018-09-14 北京龙慧珩医疗科技发展有限公司 一种前列腺穿刺术活检取出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130338477A1 (en) * 2012-06-14 2013-12-19 Neil Glossop System, method and device for prostate diagnosis and intervention
CN104248471A (zh) * 2013-06-27 2014-12-31 中国科学院沈阳自动化研究所 一种机器人辅助斜尖柔性针穿刺系统及方法
CN103971574A (zh) * 2014-04-14 2014-08-06 中国人民解放军总医院 超声引导肿瘤穿刺训练仿真系统
CN107028626A (zh) * 2017-05-26 2017-08-11 北京龙慧珩医疗科技发展有限公司 一种前列腺术弹性配准方法及装置
CN107049370A (zh) * 2017-05-26 2017-08-18 北京龙慧珩医疗科技发展有限公司 一种前列腺穿刺套件

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109758213A (zh) * 2019-01-11 2019-05-17 宋刚 一种磁共振-超声融合前列腺穿刺针定位方法及系统
CN110200683A (zh) * 2019-07-03 2019-09-06 北京积水潭医院 超声引导下穿刺姿态监测方法及装置
WO2022087787A1 (zh) * 2020-10-26 2022-05-05 深圳迈瑞生物医疗电子股份有限公司 基于超声成像的穿刺引导方法和超声成像系统

Also Published As

Publication number Publication date
CN107028626B (zh) 2023-06-06
CN107028626A (zh) 2017-08-11

Similar Documents

Publication Publication Date Title
WO2018214806A1 (zh) 一种前列腺术弹性配准方法及装置
US20200085412A1 (en) System and method for using medical image fusion
US10229496B2 (en) Method and a system for registering a 3D pre acquired image coordinates system with a medical positioning system coordinate system and with a 2D image coordinate system
EP2291136B1 (en) System for performing biopsies
Baumann et al. Prostate biopsy tracking with deformation estimation
EP3013244B1 (en) System and method for mapping ultrasound shear wave elastography measurements
US20140073907A1 (en) System and method for image guided medical procedures
US10441250B2 (en) 3D multi-parametric ultrasound imaging
US10716544B2 (en) System for 3D multi-parametric ultrasound imaging
WO2018214805A1 (zh) 一种前列腺穿刺套件
KR20090098842A (ko) 이미지 유도 중재 시술에서 수술중 움직임을 보상하는 개선된 이미지 정합 및 방법
Mauri et al. Virtual navigator automatic registration technology in abdominal application
US20180008236A1 (en) 3d multi-parametric ultrasound imaging
WO2014031531A1 (en) System and method for image guided medical procedures
WO2018214807A1 (zh) 一种前列腺穿刺术活检取出方法及装置
CN207855724U (zh) 一种跟踪系统坐标系校准装置
JP2018134197A (ja) 医用手技ナビゲーションシステムおよび方法
CN207855723U (zh) 一种前列腺穿刺术活检取出装置
CN107280737A (zh) 一种穿刺行进中旋转角度的计算方法
Kneif et al. Three-dimensional ultrasound in soft tissue tumor imaging
Tandon Design and simulation of an accurate breast biopsy system
Cool Development of Three-dimensional Transrectal Ultrasound for Biopsy of the Prostate
Bozzi et al. US Image Acquisition
Cool et al. Development of a 3D ultrasound-guided prostate biopsy system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18806782

Country of ref document: EP

Kind code of ref document: A1