WO2007135884A1 - 超音波診断装置及び超音波診断方法 - Google Patents

超音波診断装置及び超音波診断方法 Download PDF

Info

Publication number
WO2007135884A1
WO2007135884A1 PCT/JP2007/059848 JP2007059848W WO2007135884A1 WO 2007135884 A1 WO2007135884 A1 WO 2007135884A1 JP 2007059848 W JP2007059848 W JP 2007059848W WO 2007135884 A1 WO2007135884 A1 WO 2007135884A1
Authority
WO
WIPO (PCT)
Prior art keywords
boundary
ultrasonic
image
diagnostic apparatus
ultrasonic diagnostic
Prior art date
Application number
PCT/JP2007/059848
Other languages
English (en)
French (fr)
Inventor
Tomoaki Chouno
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to US12/301,350 priority Critical patent/US8300909B2/en
Priority to CN2007800182328A priority patent/CN101448461B/zh
Priority to EP07743283.9A priority patent/EP2047803A4/en
Priority to JP2008516604A priority patent/JP4879263B2/ja
Publication of WO2007135884A1 publication Critical patent/WO2007135884A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0883Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B8/469Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means for selection of a region of interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/486Diagnostic techniques involving arbitrary m-mode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30048Heart; Cardiac

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus and an ultrasonic diagnostic method, and more particularly to an ultrasonic diagnostic apparatus and an ultrasonic diagnostic method that can accurately depict a boundary (contour) of a target tissue such as an organ. .
  • boundary (contour) information of a focused organ or the like is useful diagnostic information.
  • the boundary (contour) of the left ventricle is drawn, the area of the region surrounded by the boundary (contour) is obtained, or the volume of the left ventricle is estimated from the boundary (contour). It is considered useful for diagnosis.
  • Patent Document 1 JP-A-8-206117.
  • speckle noise is mixed in the ultrasonic image.
  • This speckle noise is sufficiently small compared to the ultrasonic wavelength! (As known techniques for the scan Pekkurunoizu, see Patent Document 2.) Which are believed to emerge by scattering waves by reflector group in ⁇ living tissue interference occurs in various phases 0
  • Patent Document 2 JP-A-9 94248.
  • the boundary (contour) of the organ is defined by the gradient. Therefore, the effect of blur caused by speckle noise is not taken into account. For this reason, when the boundary (outline) of the organ is extracted by the blur width, the pixel density is high, and the region extends to the low pixel density region, the problem arises. For example, when trying to extract the boundary (contour) of the left ventricle of the heart, the heart wall is extracted inward by the blur width, which causes a problem that the size of the left ventricle is smaller than the actual size.
  • an ultrasonic probe that transmits / receives ultrasonic waves to / from a subject, and an ultrasonic signal that is connected to the ultrasonic probe and obtained by the ultrasonic probe is used.
  • An image generation unit that generates an ultrasonic image
  • a control unit that is connected to and controls the ultrasonic probe and the image generation unit, and is connected to the image generation unit and the control unit.
  • the ultrasonic diagnostic apparatus including the display unit that displays the ultrasonic image generated by the image generation unit based on the control by the unit,
  • a selection means for selecting a part for detecting the position of the boundary of the organ of the subject, and two regions spaced by a predetermined interval on the ultrasound image
  • a boundary extraction filter setting means for setting a boundary extraction filter comprising: and analyzing the pixel data in the boundary extraction filter set by the boundary extraction filter setting means in the vicinity of the part selected by the selection means.
  • a boundary position detecting means for detecting the position of the boundary, and the boundary position detected by the boundary position detecting means is displayed on the display means under the control of the control means.
  • An ultrasound diagnostic apparatus is provided.
  • an ultrasonic diagnostic method capable of extracting the position of an organ boundary appearing on an ultrasonic image!
  • step (3) a step of setting two regions having an interval according to the blur width calculated in step (2) as a boundary extraction filter
  • step (4) a step of extracting the position of the boundary by obtaining the position and / or inclination at which the boundary strength becomes maximum or a predetermined value or more;
  • the method includes a step of calculating the area of the region surrounded by the boundary or the volume of the organ representing the region surrounded by the boundary based on the boundary position obtained in the step (5).
  • An ultrasonic diagnostic method featuring the above is provided.
  • An object of the present invention is to extract a contour with high accuracy in consideration of a blur width appearing on an image in an ultrasonic diagnostic apparatus that extracts an organ boundary (contour) using an ultrasonic image.
  • FIG. 1 is a block diagram showing the overall configuration of an ultrasound diagnostic apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing the inside of the control unit 3.
  • FIG. 3 is a diagram illustrating an example of image data to be subjected to boundary extraction processing according to the first embodiment.
  • FIG. 5 is a flowchart of boundary extraction processing according to the first embodiment.
  • FIG. 6 is a diagram showing what speckles are generated depending on the type of ultrasonic probe used.
  • FIG. 8 A diagram explaining how the boundary between the two regions 28-1 and 28-2 is blurred by speckle appearing on the image.
  • FIG. 9 A diagram showing a boundary extraction filter created when a boundary formed in a closed region is accurately extracted.
  • FIG. 10 A diagram for calculating the statistical value for calculating the boundary strength using the degree of separation.
  • FIG. 11 is a diagram showing a boundary extraction filter that is set by bending an area of a gap sandwiched between two areas according to an assumed boundary being bent.
  • FIG. 13 is a flowchart of boundary extraction processing according to the second embodiment.
  • FIG. 14 is a diagram showing an example of changing the interval between filter regions without changing the shape of two filter regions.
  • FIG. 15 is a diagram showing an example of changing the shape of two filter regions.
  • Example 1 An ultrasonic diagnostic apparatus according to an embodiment of the present invention will be described with reference to the drawings.
  • Example 1 An ultrasonic diagnostic apparatus according to an embodiment of the present invention will be described with reference to the drawings.
  • FIG. 1 is a block diagram showing an overall configuration of an ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • the ultrasonic diagnostic apparatus includes an ultrasonic probe 1 that transmits and receives ultrasonic waves, and an ultrasonic wave that is connected to the ultrasonic probe 1 and is based on an ultrasonic signal received by the ultrasonic probe.
  • An image generation unit 2 that generates an image
  • a control unit 3 such as a CPlXCentral Processing Unit (central processing unit) that is connected to each component of the ultrasound diagnostic apparatus and controls the operation of each component and arithmetic processing
  • An operation unit 4 that is connected to each component of the ultrasonic diagnostic apparatus and that allows an operator such as a medical staff to operate the ultrasonic diagnostic apparatus using input devices (keyboard, mouse, trackball, touch panel, etc.)
  • Storage unit 5 connected to each component of the ultrasound diagnostic device and storing image data, programs, etc., CRT and liquid crystal display device etc. connected to each component of the ultrasound diagnostic device and displaying images, measurement results, etc. Display unit 6 and .
  • the ultrasonic probe 1 transmits and receives ultrasonic waves to and from the living body of a subject, and is a linear type in which vibrators are linearly arranged, and drives the vibrator with a time difference. This is a sector type that can change the angle of the beam. For example, there is a convex type that scans while moving.
  • the ultrasonic probe 1 converts the ultrasonic wave (ultrasonic echo) reflected and returned from the living body of the subject into an electrical signal and sends it to the image generation unit 2.
  • the image generation unit 2 generates a B-mode image using the signal received by the ultrasonic probe 1 and converted into an electrical signal as an input signal.
  • the input signal is converted into a B-mode image through a phasing adder, a logarithmic amplifier, an envelope detector, an A / D converter, and a scan converter in the image generation unit 2.
  • the control unit 3 is executed by loading a control program for the ultrasonic diagnostic apparatus stored in the storage unit 5 or the like.
  • the control unit 3 gives an operation instruction to each component of the ultrasonic diagnostic apparatus, and performs timing control and arithmetic processing.
  • the operation unit 4 is an input device such as a keyboard, a mouse, a trackball, and a touch panel on the ultrasonic diagnostic apparatus, and a diagnostician such as a medical staff adjusts image quality, gives instructions for measurement, inputs information, etc. Used for.
  • the storage unit 5 is a device that stores image data, a control program, and the like, and is a hard disk, a general-purpose memory, a frame memory, or the like.
  • the image data stored in the storage unit 5 is an acquired B-mode image or an image format file that can be displayed on a general PC.
  • the display unit 6 is a CRT, a liquid crystal display device, or the like that displays image data, measurement values, and an image obtained by graphing the measurement values on a screen.
  • FIG. 2 shows the inside of the control unit 3 according to the first embodiment of the present invention.
  • the boundary extraction part designating means 7 for designating which part on the ultrasonic image the boundary of the organ is extracted
  • the boundary extraction part Based on the boundary extraction calculation means 8 that extracts the boundary of the organ in the vicinity of the part specified by the specification means 7, and the boundary extracted by the boundary extraction calculation means 8, various physical quantities, that is, organs
  • An organ measuring means 9 for calculating a distance such as a size, an area on an organ image, an estimated value of an organ volume, and the like is provided.
  • the boundary extraction part designating means 7 is a means for the operator to designate the vicinity near the boundary extraction target on the image displayed on the screen of the display unit 6 by the input device.
  • the boundary extraction part designating means 7 automatically processes the pixel values of the acquired image data by performing signal processing.
  • the extraction part may be determined.
  • the boundary extraction calculation means 8 calculates the image blur width of the portion of the image to be extracted by the indexing by the boundary extraction part designating means 7, and considers the image blur width and performs an appropriate filter.
  • the image blur width calculating means 10, the filter shape creating / deforming means 11, the boundary strength calculating means 12, and the boundary position detecting means 13 are selected.
  • the image blur width calculating means 10 is a means for calculating the speckle size using the pixel values in the vicinity of the boundary extraction part designated by the boundary extraction part designation means 7.
  • a concentration co-occurrence matrix or an autocorrelation function is used as a method for calculating the size of the spectrum.
  • the filter shape creation / deformation means 11 creates and transforms the boundary extraction filter.
  • the filter shape creation / deformation means 11 creates a filter having a two-region force spaced by a distance based on the speckle size calculated by the image blur width calculation means 10.
  • the filter shape creation / deformation means 11 can also deform the shape of the filter according to the shape of the boundary of this shape.
  • the boundary strength calculation means 12 applies the boundary extraction filter created by the filter shape 'deformation means 11 to 2 at each position and / or inclination while being driven by an arbitrary position and / or inclination. Using the pixel values in the region, for example, the boundary strength is calculated by calculating the degree of separation described later.
  • the boundary position detection means 13 has the boundary strength calculated by the boundary strength calculation means 12 while the position and / or inclination of the boundary extraction filter is moved and scanned to the maximum value or a predetermined value or more. Detect the position and / or inclination of the boundary extraction filter. Based on the detected position of the boundary extraction filter, the coordinate value of the target boundary position can be obtained.
  • the organ measuring means 9 calculates various physical quantities related to the organ from which the boundary is extracted, for example, distance, area, volume, and the like, using the coordinate value of the extracted boundary position.
  • the visceral measuring means 9 calculates a physical quantity such as the size of the tumor of the affected area that is the target region with high accuracy.
  • FIG. 3 shows an example of image data to be subjected to boundary extraction processing in the first embodiment.
  • Figure 3 14 is image data
  • 15 is a beam direction
  • 16 is a beam depth
  • 17-1 to 17-3 are speckles
  • 18 is a boundary position.
  • 17-1 to 17-3 speckle is 17-1 ⁇ 17-2
  • FIG. 4 shows a comparison between the boundary position 18 calculated by the conventional method and the true boundary position 19. According to this, it can be seen that there is a large error between the boundary position 18 calculated by the conventional method and the true boundary position 19.
  • the ultrasonic probe 1 and the image generation unit 2 acquire image data 14 obtained by imaging a patient's organ and the like, and start boundary extraction for a target region such as the organ.
  • the ultrasonic diagnostic apparatus selects and inputs a part to be subjected to boundary extraction manually or automatically by the boundary extraction part designating means 7.
  • the ultrasonic diagnostic apparatus calculates the blur width on the image at the boundary extraction site specified in step 20 by the image blur width calculation means 10. Specifically, texture analysis is performed on the pixel value data in the vicinity of the boundary extraction region, and the speckle that appears on the image is approximated by an ellipse shape, and the width of the approximated ellipse (long axis or short axis) The distance half the length is calculated as the blur width.
  • FIG. 6 shows what kind of speckle is generated depending on the type of the ultrasonic probe to be used.
  • Figure 6 (a) shows an example of a linear ultrasonic probe 25-1.Speckle 17 when approximated by an ellipse has its major and minor axes in the horizontal and vertical directions on the screen. Match. Therefore, when extracting the speckle size by approximating it with an ellipse, the blur width is calculated so that the major and minor axes are aligned with the horizontal and vertical directions on the screen.
  • FIG. 6 (b) is an example of the sector-type ultrasonic probe 25-2, and the speckle 17 when approximated by an ellipse has one of its long axis and short axis slanted on the screen.
  • the direction is the direction of transmitting and receiving ultrasonic waves. Therefore, when extracting the size of speckles by approximating with an ellipse, either the major axis or the minor axis is made to coincide with the oblique direction on the screen, that is, the direction in which ultrasonic waves are transmitted and received. Calculate the blur width.
  • the filter shape / deformation means 11 creates a boundary extraction filter having two regions as shown in 26-1 and 26-2 of 07 (a) and (b).
  • the boundary extraction filters (27-1 and 27-2) in this step consist of two areas 26-1 and 26-2, and the two sides 28-1 and 28-2 facing each other. Distance between 29 forces is equal to the blur width obtained in step 21
  • FIG. 8 (a) shows two regions and a true boundary position 19 located between them.
  • Fig. 8 (b) shows one of the speckles 17 appearing on the image, and 17-4 is the width of the speckle in the horizontal direction of the drawing.
  • Fig. 8 (c) shows the profile of the ultrasound image and shows the pixel distribution on the line segment that crosses the true boundary position. According to this, it can be seen that a region (30-2) having a high pixel value protrudes to the left side of the drawing because the speckle has a width in the horizontal direction of the drawing.
  • Fig. 7 (a) and (b) the lower side is shown in Fig. 7 (a) where the lower side is the drawing direction and the right side is high in pixel value.
  • the boundary extraction filter created in this step has the same profile as shown in Fig. 8 (c) when the pixel value on the left side is high.
  • the distance between the opposite sides 28-1 and 28-2 in -2 is equal to the blur width of the profile on the lower side of Figs. 7 (a) and (b).
  • This blur width is obtained in step 21 and is set to, for example, 1/2 of the speckle width in FIG. 8 (b).
  • FIG. 9 is a boundary extraction filter created when the boundary formed in the closed region is accurately extracted. More specifically, as shown in the lower pixel value profile in FIG. 9, the surrounding high pixel value regions (31-1 and 31-2) and the high pixel value region (31-1 And the boundary position with the low pixel value region (31-3) surrounded by 31-2).
  • the inner circular area 32-1 and the outer ring-shaped area 32-2 are separated from each other by the gap width calculated in step 21. Create a boundary extraction filter with space 33.
  • the boundary strength calculation means 12 performs boundary strength calculation by scanning the boundary creation filter created in step 22 within the image.
  • the boundary strength calculation will be described in the case of using a degree of separation that is a ratio of the inter-class variance and the total variance of two regions described later.
  • the inter-class variance and total variance in the two regions are as described in IEICE Transactions Vol. J63-D No.4, p349-p356, and the inter-class variance is the pixel in the two regions.
  • the variance value is obtained.
  • the total variance is obtained by using the pixel data in the two areas as they are.
  • FIG. 10 is a diagram for calculating the statistical value for calculating the boundary strength using the degree of separation, and shows two regions 26-1 and 26-2 and a blur width 29. .
  • the numbers of pixels in regions 26-1 and 26-2 are N and N, respectively.
  • the boundary extraction filters as shown by 26-1 and 26-2 in Fig. 7 are scanned on the image by moving them to different positions and / or inclinations, and then using the sequential equations (1) to (3) Calculate the force that changes the degree of separation (boundary strength). Then, the distribution of the boundary strength as shown in FIG. 8 (d) is obtained, and the position where the boundary strength is maximum is obtained as the true boundary position 19 and detected.
  • the boundary extraction filters shown in FIGS. 7 (a) and (b) have the same shape, the direction of the region with a high force pixel value differs between FIGS. 7 (a) and 7 (b).
  • the boundary position to be extracted is changed according to each case. For example, in the case of Fig. 7 (a), the pixel value is high on the right side in the drawing direction, so the region 26-2 set on the higher pixel value side of the two regions constituting the boundary extraction filter At the edge, near the other area (26-1), the side position is used to detect the boundary position. Extracted as a reference point (33). In the case of Fig.
  • the region with the higher pixel value in FIG. 9
  • the position inside the outer ring-shaped area 32-2) is extracted as a reference point (35) for detecting the true boundary position 19.
  • the obtained boundary position (boundary information) is displayed on the display unit 6, and the organ measuring means 9 Using the boundary information of the target region from which the boundary is extracted, a physical quantity such as the size of the target region is calculated, and the calculated value is displayed and recorded.
  • the blur width is calculated from the ultrasound image, the shape and size of the boundary extraction filter are set based on the blur width, and the boundary of the target region is set. Since the position is extracted, the boundary of the target region can be extracted with high accuracy. More specifically, the boundary extraction filter used in the above embodiment has two region forces, and the width of the gap sandwiched between the two regions is equal to the blur width calculated by the ultrasonic image force. The true boundary position can be extracted with high accuracy in consideration of the blur width (that is, a distance corresponding to, for example, half of the size of speckle appearing on the ultrasonic image).
  • boundary extraction is performed assuming that the pixel value changes stepwise at the boundary, so the boundary position detection accuracy increases as the boundary appearing on the actual image becomes dull due to the influence of speckle or the like. Was getting worse.
  • the boundary is extracted on the assumption that the boundary is dull due to the influence of speckle or the like. Therefore, the boundary position can always be extracted with the same accuracy as when the boundary is not dull on the image. It becomes possible. Then, by using the calculated coordinates of the true boundary position, a physical quantity such as the size of the target region can be accurately calculated, and accurate ultrasonic diagnosis can be performed using the value.
  • the boundary extraction filter is set according to the image acquisition depth. It may be desirable to change the distance between the two regions that make up the structure.
  • the boundary extraction filter it is considered desirable to set the boundary extraction filter to be set so as to reflect the boundary shape of the target part.
  • a boundary extraction filter with the shape shown in Fig. 7 or Fig. 9 may be used. However, if the presumed boundary is bent or if a specific part of the heart is to be extracted, adjust it accordingly. If you use a boundary extraction filter with the shape shown in Fig. 11 and Fig. 12. In Fig. 11, 36-1 and 36-2 are forces that are two regions constituting the boundary extraction filter, respectively. In the region of the gap sandwiched between the two regions, the assumed boundary is bent. It is set according to the bending.
  • FIG. 12 (a) shows the four-chamber disconnection image of the heart.
  • Each filter indicated by the forces 37-1 to 37-5 represents the four-chamber disconnection image of the heart. This is for suitably extracting the boundary positions of the locations 38-1 to 38-5.
  • the diagram shown in Fig. 12 (b) shows that each of the filters indicated by the forces 39-1 to 39-2, which are short-axis images of the heart, is located at each location of the short-axis image of the heart. This is for suitably extracting the boundary positions for -1 to 40-2.
  • the contour of the heart is blurred inward when measuring the volume of the heart cavity. It is possible to prevent underestimation of the value of the cavity volume.
  • Example 2 of the present invention will be described with reference to FIGS.
  • the boundary extraction filter according to the present invention may be used.
  • the boundary position is extracted in a search using.
  • Step 40 For example, if the speckle distribution in the target area of the acquired image is not uniform, the statistical properties of the speckle itself are not reflected in the concentration co-occurrence matrix or autocorrelation function. It cannot be calculated correctly. In such a case, the boundary position can be searched according to the flow chart shown in FIG. Hereinafter, each step of the flowchart of FIG. 13 will be described in order. (Step 40)
  • the ultrasonic diagnostic apparatus designates the boundary extraction part manually or automatically by the boundary extraction part designation means 7.
  • the filter shape creation 'deforming means 11 creates a boundary extraction filter having an appropriate initial shape composed of two regions.
  • the boundary strength is calculated sequentially by the method described in step 23. Find the distribution.
  • FIG. 14 is a diagram illustrating an example of changing the interval between the filter regions without changing the shape of the two filter regions.
  • the filter area interval is changed from 44-1 to 44-2. Change it as shown in 45-2.
  • FIG. 15 is a diagram illustrating an example in which the shapes of the two filter regions are changed.
  • the boundary strength is calculated while changing any of the filter region interval, shape, position, or inclination of the boundary extraction filter, and the filter region interval, shape, and position that maximize the boundary strength are obtained.
  • the filter area interval matches the blur width of the target area of the ultrasound image
  • the shape matches the shape of the boundary to be extracted
  • the boundary strength becomes maximum.
  • the filter The true boundary position can be detected by scanning the image while changing any of the region spacing, shape, and position, and searching for the position where the boundary strength is maximized.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.
  • the present invention can also be applied to image measurement performed off-line on an electronic computer such as a personal computer that is connected only by an ultrasonic diagnostic apparatus.
  • the boundary extraction filter may be a force circular region having two rectangular region forces. If the size of the two areas is arbitrary, it may be an area consisting of a small number of pixels. Also, the half distance of the ellipse width (long axis or short axis length) approximating the speckle obtained in step 21 was used as the blur width, and it was used in step 22 to create the boundary extraction filter.
  • any distance other than half may be calculated as the blur width depending on the nature of the speckle.
  • the parameter used as the boundary strength may be the degree of separation specified by Equations (1) to (3), but how much the value differs between the image data contained in the two regions. Needless to say, it can be any index that represents, but it can also be an index based on another calculation method.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physiology (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

 超音診断装置において、表示手段に表示された超音波画像上に、被検体の臓器の境界の位置を検出するための部位を選択する選択手段と、前記超音波画像上に所定の間隔が空けられた2つの領域から成る境界抽出フィルタを設定する境界抽出フィルタ設定手段と、前記選択手段により選択された部位近傍で、境界抽出フィルタ設定手段により設定された境界抽出フィルタ内の画素データを解析することにより、前記境界の位置を検出する境界位置検出手段を備え、前記境界位置検出手段により検出された境界位置は、制御手段による制御の基に前記表示手段に表示される。

Description

明 細 書
超音波診断装置及び超音波診断方法
技術分野
[0001] 本発明は、超音波診断装置及び超音波診断方法に係わり、特に、臓器等の対象 組織の境界 (輪郭)を正確に描出することが可能な超音波診断装置及び超音波診断 方法に関する。
背景技術
[0002] 超音波診断装置を用いた超音波診断にお!ヽては、注目する臓器等の境界 (輪郭) 情報が有用な診断情報となる。例えば、心臓のような臓器では、左心室の境界 (輪郭) を描出して、該境界 (輪郭)に囲まれた領域の面積を求めたり、境界 (輪郭)より左心室 の体積を推定することが診断にぉ 、て有用とされて 、る。
[0003] 組織の境界 (輪郭)を抽出して表示する技術として、例えば特許文献 1記載の従来技 了 ある。
[0004] 特許文献 1 :特開平 8— 206117号公報。
[0005] 特許文献 1記載の従来技術によれば、例えば断層像に各点の画像信号のグラジ ントを表すスカラ量の極大点を求め、その極大点力 組織の境界 (輪郭)を描出してい る。
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、本発明者らは上記従来技術を検討した結果以下の問題点を見出し た。
すなわち、超音波画像にはスペックルノイズと呼ばれる雑音が混入している。このス ペックルノイズは、超音波の波長に比べて十分小さ!ヽ生体組織内の反射体群による 散乱波がさまざまな位相で発生して干渉することにより出現すると考えられている (ス ペックルノイズに関する公知技術として、特許文献 2参照。 )0
[0007] 特許文献 2:特開平 9 94248号公報。
[0008] 上記特許文献 1記載の従来技術によれば、臓器の境界 (輪郭)を、前記グラジェント を表すスカラ量の極大点を基に抽出して 、るため、スペックルノイズのより生じるぼけ の影響が考慮されていな力つた。そのため、臓器の境界 (輪郭)ではぼけ幅分、画素 濃度の高 、領域が画素濃度の低 ヽ領域まではみ出して境界が抽出されてしまうと 、 う問題が生じていた。例えば、心臓の左心室の境界 (輪郭)を抽出しようとすると、心壁 がぼけ幅分内側に抽出されるため、実際より左心室の大きさが小さくなるという問題 が生じていた。
課題を解決するための手段
[0009] 本発明によれば、被検体に超音波を送受信する超音波探触子と、前記超音波探 触子に接続され、前記超音波探触子により得られた超音波信号を基に超音波画像 を生成する画像生成手段と、前記超音波探触子及び前記画像生成手段に接続され 、それらの制御を行う制御部と、前記画像生成手段及び前記制御部に接続され、前 記制御部による制御の基に前記画像生成手段で生成された超音波画像を表示する 表示手段を備えた超音診断装置において、
前記表示手段に表示された画像上に、前記被検体の臓器の境界の位置を検出す るための部位を選択する選択手段と、前記超音波画像上に所定の間隔が空けられ た 2つの領域から成る境界抽出フィルタを設定する境界抽出フィルタ設定手段と、前 記選択手段により選択された部位近傍で、前記境界抽出フィルタ設定手段により設 定された境界抽出フィルタ内の画素データを解析することにより、前記境界の位置を 検出する境界位置検出手段を備え、前記境界位置検出手段により検出された境界 位置は、前記制御手段による制御の基に前記表示手段に表示されることを特徴とす る超音波診断装置が提供される。
[0010] また、本発明によれば、超音波画像上に表れる臓器の境界の位置を抽出すること が可能な超音波診断方法にお!、て、
(1)前記超音波画像上に、前記境界を抽出するための部位を指定する工程と、
(2)前記工程 (1)により設定された部位近傍の画像のぼけ幅を計算する工程と、
(3)前記工程 (2)により計算されたぼけ幅に応じた間隔を持つ 2つの領域を境界抽出 フィルタとして設定する工程と、
(4)前記工程 (3)により設定された境界抽出フィルタの位置及び/あるいは傾きを変化 させながら、前記 2つの領域内の画素値を解析して境界強度を求める工程と、
(5)前記工程 (4)において、前記境界強度が最大あるいは所定の値以上となる前記 位置及び/あるいは傾きを求めることにより、前記境界の位置を抽出する工程と、
(6)前記工程 (5)により求めた境界位置を基に、前記境界で囲まれた領域の面積ある いは、前記境界で囲まれた領域を表す臓器の体積を算出する工程を備えたことを特 徴とする超音波診断方法が提供される。
発明の効果
[0011] 本発明の目的は、超音波画像を用いて臓器の境界 (輪郭)抽出をする超音波診断 装置において、画像上に現れるぼけ幅を考慮して高精度に輪郭抽出することにある 図面の簡単な説明
[0012] [図 1]本発明の実施例 1に係る超音波診断装置の全体構成を示すブロック図。
[図 2]制御部 3の内部を示した図。
[図 3]実施例 1の境界抽出処理の対象とする画像データの例を示す図。
[図 4]従来の方法により算出した境界位置 18と真の境界位置 19とを比較して示した図
[図 5]実施例 1の境界抽出処理のフローチャート。
[図 6]使用する超音波プローブの種類に応じてどのようなスペックルが生じるかを示す 図。
[図 7]2つの領域を持つ境界抽出フィルタのフィルタ形状。
[図 8]画像上に現れるスペックルによって、 2つの領域 28-1、 28-2の境界がどのように ぼけるかを説明する図。
[図 9]閉領域で形成された境界を正確に抽出する場合に作成される境界抽出フィル タを示す図。
[図 10]分離度を用い境界強度を計算するための統計値を計算するための図。
[図 11]想定される境界が曲がっているのに応じて、 2つの領域に挟まれた空隙の領域 曲げられて設定されている境界抽出フィルタを示す図。
[図 12]心臓の四腔断画像あるいは短軸断画像より、境界位置を好適に抽出するため の境界抽出フィルタを示す図。
[図 13]実施例 2の境界抽出処理のフローチャート。
[図 14]2つのフィルタ領域の形状を変えずに、フィルタ領域の間隔を変化させる場合 の例を示す図。
[図 15]2つのフィルタ領域の形状を変化させる場合の例を示す図。
符号の説明
[0013] 7 境界抽出部位指定手段、 8 境界抽出演算手段、 9 臓器演算手段、 10 画像ぼ け幅計算手段、 11 フィルタ形状作成 ·変形手段、 12 境界強度計算手段、 13 境界 位置検出手段
発明を実施するための最良の形態
[0014] 以下に、図面に基づいて本発明の実施の形態に係る超音波診断装置を説明する 実施例 1
[0015] 図 1は、本発明の実施例 1に係る超音波診断装置の全体構成を示すブロック図であ る。
[0016] 図 1によれば、超音波診断装置は、超音波の送受信を行う超音波プローブ 1と、超 音波プローブ 1に接続され、超音波プローブにより受信した超音波信号を基に超音 波画像を生成する画像生成部 2と、超音波診断装置の各構成要素に接続され、各構 成要素の動作の制御や演算処理を行う CPlXCentral Processing Unit:中央処理装置 )等の制御部 3と、超音波診断装置の各構成要素に接続され、医療従事者等の操作 者が入力機器 (キーボード、マウス、トラックボール、タツチパネル等)を用いて超音波 診断装置の操作を行う操作部 4と、超音波診断装置の各構成要素に接続され、画像 データやプログラム等を保存する記憶部 5と、超音波診断装置の各構成要素に接続 され、画像や計測結果等を表示する CRTや液晶表示装置等の表示部 6とから構成さ れる。
[0017] 超音波プローブ 1は、被検体の生体内に対して超音波を送受信するものであり、振 動子が直線状に配列されているリニア型、時間差をつけて振動子を駆動することによ りビームの角度を変えることができるセクタ型、振動子を凸状に配列し振動子群をシ フトさせながらスキャンを行うコンベックス型等がある。超音波プローブ 1は被検体の 生体内から反射して戻ってきた超音波 (超音波エコー)を電気信号に変換して画像生 成部 2に送る。
[0018] 画像生成部 2は、超音波プローブ 1が受信し電気信号に変換した信号を入力信号と して、 Bモード画像を生成する。当該入力信号は、画像生成部 2内の整相加算器、対 数増幅器、包絡線検波器、 A/D変換器、スキャンコンバータを経て Bモード画像に変 換される。
[0019] 制御部 3は、記憶部 5等に格納される超音波診断装置の制御プログラムをロードし て実行される。制御部 3は、超音波診断装置の各構成要素に動作の指示を行い、タ イミング制御や演算処理を行う。
[0020] 操作部 4は、超音波診断装置上にキーボード、マウス、トラックボール、タツチパネル 等の入力機器であり、医療従事者等の診断者が、画質の調整、計測の指示、情報の 入力等に用いる。
[0021] 記憶部 5は、画像データや制御プログラム等を保存する装置であり、ハードディスク や汎用メモリやフレームメモリ等である。記憶部 5が保存する画像データは、取得した Bモード画像や一般の PCで表示可能な画像形式のファイルである。
[0022] 表示部 6は、画面上に画像データや計測値、当該計測値をグラフ化した画像を表 示する CRTや液晶表示装置等である。
[0023] また、図 2は、本発明の実施例 1に係る制御部 3の内部を示したものである。図 2によ れば、本発明の制御部 3内には、超音波画像上のどの部分近傍について臓器の境 界を抽出するかを指定するための境界抽出部位指定手段 7と、境界抽出部位指定手 段 7により指定された部分近傍における臓器の境界を、演算により抽出する境界抽出 演算手段 8と、境界抽出演算手段 8により抽出された境界を基に、種々の物理量、す なわち臓器の大きさ等の距離、臓器の画像上での面積、臓器の容積の推定値等を 計算する臓器計測手段 9が備えられて ヽる。
[0024] 境界抽出部位指定手段 7は、操作者が表示部 6の画面に表示されている画像上に 境界抽出の対象とする付近近傍を入力機器によって指定する手段である。尚、境界 抽出部位指定手段 7は取得した画像データの画素値を信号処理して自動的に境界 抽出部位を決定するようにしても良 、。
[0025] 境界抽出演算手段 8は、境界抽出部位指定手段 7で指標化して抽出の抽出の対象 となる画像の部分の画像ぼけ幅を計算し、当該画像ぼけ幅を考慮して適切なフィル タを選択し境界位置を検出するための手段であり、画像ぼけ幅計算手段 10と、フィル タ形状作成 ·変形手段 11と、境界強度計算手段 12と、境界位置検出手段 13とからな る。
[0026] この内まず、画像ぼけ幅計算手段 10は、境界抽出部位指定手段 7で指定された境 界抽出部位近傍の画素値を用いてスペックルの大きさを算出する手段である。スぺッ クルの大きさの計算方法には、濃度共起行列や自己相関関数が用いられる。
[0027] 次に、フィルタ形状作成'変形手段 11は、境界抽出フィルタの作成及び変形を行う 。例えば、フィルタ形状作成'変形手段 11は、画像ぼけ幅計算手段 10で算出されたス ペックルの大きさに基づいた距離の間隔だけ空けられた 2領域力 成るフィルタを作 成する。また、フィルタ形状作成'変形手段 11は、抽出する境界の形状が既知であれ ば、フィルタの形状をこの形状の境界の形状に合わせて変形させることもできる。
[0028] 次に、境界強度計算手段 12は、フィルタ形状'変形手段 11により作成され境界抽出 フィルタを、任意の位置及び/または傾きを動力されながら、それぞれの位置及び/ま たは傾きにおける 2領域内の画素値を用いて、例えば後述する分離度等を算出する ことにより境界強度を算出する。
[0029] 次に、境界位置検出手段は 13は、境界抽出フィルタの位置及び/または傾きを動か せて走査させながら境界強度計算手段 12により算出した境界強度が最大値あるいは 所定の値以上となる境界抽出フィルタの位置及び/または傾きを検出する。検出され た境界抽出フィルタの位置を基に、抽出の対象とする境界位置の座標値が得られる
[0030] また、臓器計測手段 9は、抽出された境界位置の座標値を用いて、境界を抽出した 臓器に関する種々の物理量、例えば、距離、面積、容積等を計算する。例えば、臓 器計測手段 9は、対象領域である患部の腫瘍の大きさ等の物理量を高精度に算出す る。
[0031] 次に、実施例 1の境界抽出処理の対象とする画像データの例を図 3に示す。図 3に おいて、 14は画像データ、 15はビーム方向、 16はビーム深度、 17— 1〜17— 3はスぺ ックル、 18は境界位置である。 17— 1〜17— 3においてスペックルは、 17— 1→17— 2
→17— 3の順に大きさが小さくなり、深度は浅くなつている。すなわち、深度が深い方 がスペックルの大きさは大きくなつている。
[0032] 次に、図 4は従来の方法により算出した境界位置 18と真の境界位置 19とを比較して 示したものである。これによれば、従来の方法により算出した境界位置 18と真の境界 位置 19との間で、大きな誤差が生じていることがわかる。
[0033] 次に、実施例 1の境界抽出処理のフローチャートを、図 5を用い説明する。
先ず、超音波診断装置は、超音波プローブ 1及び画像生成部 2により、患者の臓器な どを撮像した画像データ 14を取得し、当該臓器などの対象領域にっ 、て境界抽出を 開始する。
(ステップ 20)
先ず、超音波診断装置は、境界抽出部位指定手段 7により、手動あるいは自動によ り境界抽出の対象とすべき部位を選択して入力する。
(ステップ 21)
次に、超音波診断装置は、画像ぼけ幅計算手段 10により、ステップ 20で指定された 境界抽出部位における画像上におけるぼけ幅を計算する。具体的には、境界抽出 部位近傍の画素値データに対してテクスチャ解析を行 ヽ、画像上に現れるスペック ルを楕円形状で近似して、該近似された楕円の幅 (長軸あるいは短軸の長さ)の半分 の距離をぼけ幅として算出する。
[0034] ここでのテキスチャ解析の例としては、濃度共起行列や自己相関関数を求める方 法がある。(例えば、 O.Bassel, et al: "TEXTURE ANALYSIS OF ULTRASONIC IM AGES OF THE PROSTATE BY MEANS OF CO- OCCURRENCA MATRICS." ULT RAONIC IMAGING 15, 218—237(1993)、 B.J.Oosterveld et al: "TEXTURE OF B— M ODE ECHOGRAMS: 3-D SIMULATIONS AND EXPERIMENTS OF THE EFFECTS OF DIFFRACTION AND SCATTERER DENSITY" ULTRASONIC IMAGING 7,142 -160(1985)参照)このようなテキスチャ解析を行うことにより、超音波画像におけるぼけ 幅 (あるいはスペックルの幅の例えば半分の距離)に影響を与える超音波の音場に関 するパラメータが不明の場合にも、受信信号力も得られる情報のみを用いてぼけ幅を 算出することができる。
[0035] ここで、使用する超音波プローブの種類に応じてどのようなスペックルが生じるかを 示したものを図 6に示す。図 6(a)はリニア型超音波プローブ 25-1の例であり、楕円で 近似された場合のスペックル 17は、その長軸と短軸の方向が画面上の水平方向と垂 直方向に一致している。そのため、楕円で近似してスペックルの大きさを抽出する場 合にも、長軸と短軸の方向を画面上の水平方向と垂直方向に一致させるようにして ぼけ幅を計算する。
[0036] 一方、図 6(b)はセクタ型超音波プローブ 25-2の例であり、楕円で近似された場合の スペックル 17は、その長軸あるいは短軸の一方が、画面上斜めの方向を向いていて 、超音波を送受信する方向となっている。そのため、楕円で近似してスペックルの大 きさを抽出する場合にも、長軸あるいは短軸の一方を画面上の斜めの方向、すなわ ち超音波を送受信する方向に一致するようにしてぼけ幅を計算する。
(ステップ 22)
次に、フィルタ形状 ·変形手段 11により、 07(a), (b)の 26-1、 26-2に示されたような 2 つの領域を持つ境界抽出フィルタを作成する。本ステップにおける境界抽出フィルタ (27-1、 27-2)は 26-1及び 26-2の 2つの領域より成っていて、 2つの領域の互いに向か い合った辺 28-1と 28-2間の距離 29力 ステップ 21で求めたぼけ幅と等しくなつている
[0037] ここで図 8を用い、画像上に現れるスペックルによって、 2つの領域 30-1、 30_2の境 界がどのようにぼけるかを説明する。先ず図 8(a)は、 2つの領域と、その間に位置する 真の境界位置 19を示している。次に図 8(b)は、画像上に現れるスペックル 17の一つを 示していて、 17-4は、スペックルの図面横方向への幅である。次に図 8(c)は、超音波 画像のプロファイルであり、真の境界位置を横切る線分上の画素分布を示したもので ある。これによれば、スペックルが図面横方向への幅を持つ分、画素値の高い領域 (3 0-2)が図面上左側へはみ出していることがわかる。図 8(c)で示されたようなプロフアイ ルを用いてそのまま特許文献 1記載の境界抽出を行うと、 18で示されたように、本来 の位置と異なる位置に境界位置が抽出される。そこで、本ステップで真の境界位置を 検出するためには、境界位置を検出するためのパラメータ (後述する強度強度)が最 大となる位置力 真の境界位置 19となるような境界抽出フィルタを作成しなければな らない。
[0038] 07(a), (b)において下側にしめされたものは、それぞれ図 7(a)下側が図面向力つて 右側が画素値が高い場合、図 7(b)下側が図面向力つて左側が画素値が高い場合に おける、図 8(c)に示されたものと同じようなプロファイルであり、本ステップにおいて作 成する境界抽出フィルタは、その 2つの領域 26-1及び 26-2における互いに向かい合 つた辺 28-1と 28-2間の距離は、図 7(a)、(b)下側におけるプロファイルのぼけ幅に等し くなつている。このぼけ幅は、ステップ 21によって求められたものであり、図 8(b)におけ るスペックルの幅の例えば 1/2に設定されている。
[0039] また図 9は、閉領域で形成された境界を正確に抽出する場合に作成される境界抽 出フィルタである。より具体的には、図 9の下側の画素値のプロファイルで示したよう に、周囲の高い画素値の領域 (31-1と 31-2)と、該高い画素値の領域 (31-1と 31-2)で 囲まれた低い画素値の領域 (31-3)との境界位置を検出する。
[0040] この場合には、図 9の上側で示されたように、内側の円形の領域 32-1と外側のリング 状の領域 32-2を、互いにステップ 21で計算したぼけ幅だけの空隙 33を空けて、境界 抽出フィルタを作成する。
(ステップ 23)
次に、境界強度計算手段 12により、ステップ 22の処理で作成した境界作成フィルタ を画像内で走査して境界強度計算を行う。境界強度計算は、本実施例では例えば、 後述する 2領域のクラス間分散と全分散との比である分離度を利用する場合につい て説明する。ただし、 2領域のクラス間分散及び全分散は、電子通信学会論文誌 Vol. J63-D No.4、 p349-p356に記載されているようなものであり、クラス間分散は 2領域内 の画素データをそれぞれの領域で平均化した後に、分散値を求めるものであり、全 分散は 2領域内の画素データをそのまま用いて分散値を求めるものである。以下本 実施例における分離度の計算の詳細を図 10及び式 (1)〜(3)を用いて説明する。
[0041] 図 10は、分離度を用い境界強度を計算するための統計値を計算するための図であ り、 2つの領域 26-1及び 26-2と、ぼけ幅 29が示されている。 [0042] 図 10に示されたように、領域 26-1及び 26-2の画素数をそれぞれ N及び N、各領域
1 2 の輝度平均を 、 μ 、領域 26-1及び 26-2を合わせた領域の輝度平均値を 、各画
1 2
素の輝度値を Pi(l≤i≤N、 l≤i≤N )と定義すると、分離度 7?は、次式 (1)〜(3)で表
1 2
される。
[0043] 式 (1) η = σ g / σ ·…- ' d ) 式 (2)
Figure imgf000012_0001
式 (3)
N i + N 2
σ τ 2 = ∑ ( Pt ― μ ) 2 .… (3)
f = i
(ステップ 24)
図 7の 26-1、 26-2で示されたような境界抽出フィルタを画像上で 、ろ 、ろな位置及 び/あるいは傾きに動かせて走査させながら、逐次式 (1)〜(3)を計算して、分離度 (境 界強度)がどのように変化する力を計算する。そして、図 8(d)で示されたような境界強 度の分布を求めて、境界強度が最大となる位置を真の境界位置 19として求めて検出 する。
[0044] ただし、図 7(a)及び (b)で示された境界抽出フィルタは同じ形状である力 画素値の 高い領域の方向が図 7(a)と図 7(b)で異なるので、それぞれの場合に応じて抽出する 境界位置を異ならせる。例えば、図 7(a)の場合には図面向力つて右側が画素値が高 いので、境界抽出フィルタを構成する 2つの領域の内、画素値の高い側に設定され た領域 26-2のエッジで、もう一方の領域 (26-1)に近 、側の位置を境界位置検出のた めの基準点 (33)として抽出する。また、図 7(b)の場合には図面向かって左側が画素値 が高いので、境界抽出フィルタを構成する 2つの領域の内、画素値の高い側に設定 された領域 26-1のエッジで、もう一方の領域 (26-2)に近 、側の位置を真の境界位置 1 9の検出のための基準点 (34)として抽出する。
[0045] また、図 9で示されたように閉領域で形成された境界を正確に抽出する場合に作成 された境界抽出フィルタを用いる場合には、画素値の高い側の領域 (図 9の例では、 外側のリング状の領域 32- 2)の内側の位置を真の境界位置 19の検出のための基準 点 (35)として抽出する。
[0046] 以上のステップ 20から 24の処理を経て、対象領域の境界抽出処理が終了すると、 求められた境界位置 (境界情報)を表示部 6に表示するとともに、臓器計測手段 9によ り、境界を抽出した対象領域の境界情報を用いて、対象領域の大きさ等の物理量の 算出して、該算出値を表示及び記録する。
[0047] 上記実施例 1に係る超音波診断装置によれば、超音波画像からぼけ幅を算出し、 ぼけ幅に基づ 、て境界抽出フィルタの形状や大きさを設定し、対象領域の境界位置 を抽出するので、高精度に対象領域の境界抽出を行うことができる。より具体的には 、上記実施例で用いる境界抽出フィルタは 2つの領域力 成り、その 2つの領域によ つて挟まれた空隙の幅が超音波画像力 算出したぼけ幅に等しくなつているので、 ぼけ幅 (すなわち、超音波画像上に現れるスペックルの大きさの例えば 1/2に相当す る距離)を考慮して、真の境界位置を高精度に抽出することができる。従来の境界抽 出方法では画素値が境界でステップ的に変化する場合を想定して境界抽出してい たので、実際の画像上に現れる境界がスペックル等の影響により鈍るに従って境界 位置の検出精度が悪化していた。本発明では、スペックル等の影響により境界が鈍 ることを想定して境界の抽出を行うので、常に境界が画像上で鈍っていない場合と同 等の正確さで境界位置を抽出することが可能となる。そして、算出した真の境界位置 の座標を利用して、対象領域の大きさ等の物理量を正確に算出して、その値を用い て正確な超音波診断を行うことができる。
[0048] なお、被検体内の画像取得深度が深くなるに従 、、スペックルの大きさ (例えば、ぼ け幅に相当する量)が大きくなる。従って、画像取得深度に応じて境界抽出フィルタを 構成する 2つの領域の間隔を変化させることが望ましいと考えられる。
[0049] また、設定する境界抽出フィルタは対象部位の境界形状を反映するように設定する ことが望ましいと考えられる。図 7あるいは図 9で示されたような形状の境界抽出フィル タでも良いが、予め想定される境界が曲がっている場合や、心臓の特定の部分等を 抽出しようとする場合には、それに合わせて図 11や図 12に示されたような形状を持つ 境界抽出フィルタを用いればょ 、。図 11にお 、て 36-1及び 36-2はそれぞれ境界抽 出フィルタを構成する 2つの領域である力 該 2つの領域に挟まれた空隙の領域は、 想定される境界が曲がって 、るのに応じて曲げられて設定されて 、る。
[0050] また、図 12(a)に示された図は、心臓の四腔断画像である力 37-1〜37-5で示され たそれぞれのフィルタは、心臓の四腔断画像のそれぞれの場所 38-1〜38-5につい ての境界位置を好適に抽出するためのものである。また、図 12(b)に示された図は、 心臓の短軸断画像である力 39-1〜39-2で示されたそれぞれのフィルタは、心臓の 短軸断画像のそれぞれの場所 40-1〜40-2についての境界位置を好適に抽出する ためのものである。このように、心臓の特徴部分を抽出する場合には、形状に特徴の ある弁輪部や乳頭部のような構造物の形状を持つフィルタを作成すれば良 、。図 12 に示されたような境界抽出フィルタを用いて心臓の輪郭等を好適に抽出することがで きれば、心臓の腔の容積を計測する場合等に、内腔の輪郭が内側にぼけて腔の容 積の値を過小評価してしまうことを防ぐことができる。
実施例 2
[0051] 次に、図 13〜15を参照しながら本発明の実施例 2を説明する。実施例 2は、画像の ぼけ幅あるいは、抽出の対象とする境界の形状に関する情報が未知の場合、あるい は何らかの理由で計算ができな 、場合にぉ 、て、本発明に係る境界抽出フィルタを 用いて探索的に境界位置を抽出する例である。
[0052] 例えば、取得画像の対象領域のスペックルの分布が均等でな 、場合、スペックル そのものの持つ統計的性質が濃度共起行列や自己相関関数に反映されないため、 スペックルの大きさを正しく計算できない。そのような場合には、図 13に示すフローチ ヤートに従って境界位置を探索することができる。以下、図 13のフローチャートの各ス テツプを順に説明する。 (ステップ 40)
先ず、超音波診断装置は、境界抽出部位指定手段 7により、手動あるいは自動によ り境界抽出部位を指定する。
(ステップ 41)
次に、本実施例では超音波画像上のぼけ幅あるいは形状が未知のため、フィルタ 形状作成'変形手段 11により、 2領域から成る適当な初期の形状の境界抽出フィルタ を作成する。
(ステップ 42)
次に、ステップ 41により設定した 2領域力も成る境界抽出フィルタのフィルタ領域間 隔、形状、位置あるいは傾きのどれかを変化させながら、ステップ 23で説明した手法 により、境界強度を逐次計算してその分布を求める。
[0053] 例えば図 14は、 2つのフィルタ領域の形状を変えずに、フィルタ領域の間隔を変化 させる場合の例を示す図である。本ステップにお 、てフィルタ領域の間隔を変化させ ながら境界強度を逐次計算する場合には、フィルタ領域間隔を 44-1から 44-2のよう に変化させて、境界抽出フィルタも 45-1力も 45-2のように変化させる。
[0054] また図 15は、 2つのフィルタ領域の形状を変化する場合の例を示す図である。図 15 の例では、 46-1から 46-2、 46-3の順に 2つのフィルタ領域の相対する辺の形状を変 形させ、抽出の対象とする境界線の屈曲の具合に最も適した境界抽出フィルタを探 索することができるようになって!/ヽる。
(ステップ 43)
ステップ 40において境界抽出フィルタのフィルタ領域間隔、形状、位置あるいは傾 きのどれかを変化させながら境界強度を計算して、境界強度が最大となるようなフィ ルタ領域間隔、形状、位置を求める。フィルタ領域間隔が超音波画像の対象領域の ぼけ幅に一致して、形状が抽出すべき境界の形状に一致し、位置が抽出すべき境 界の位置に一致した時境界強度が最大となり、これにより境界の位置を抽出する。
[0055] なお、フィルタ領域間隔を変化させる場合は、フィルタ領域間隔が小さ 、方から大 き 、方へ変化させると、フィルタ領域間隔の大きさがぼけ幅に一致するまでは境界強 度が次第に上昇するが、ある程度以上大きくなるとそれ以上境界強度が増カロしなくな る。従って、フィルタ領域間隔を変化させながら境界強度を計算する場合には、小さ い方力 大きい方へ変化させ、境界強度の値が最大値で飽和し始める間隔を探索し て、それにより境界位置を検出するようにすれば良いと考えられる。
[0056] 本実施例によれば、画像のぼけ幅あるいは、抽出の対象とする境界の形状に関す る情報が未知の場合、あるいは何らかの理由で計算ができない場合においても、境 界抽出フィルタ、フィルタ領域間隔、形状、位置のどれかを変化させながら、画像中 を走査させ、境界強度が最大となる位置を探索することにより真の境界位置を検出す ることがでさる。
[0057] また、算出した真の境界位置の座標を利用して、対象領域の大きさ等の物理量を 正確に算出して、その値を用いて正確な超音波診断を行うことができる。
[0058] 本発明は上記実施例に限定されるものではなぐ本発明の要旨を逸脱しない範囲 で種々に変形して実施できる。例えば、本発明は超音波診断装置だけでなぐパー ソナルコンピュータ等の電子計算機上でオフラインで行う画像計測にも適用可能であ る。また、図 7において境界抽出フィルタは 2つの矩形領域力も成る力 円形の形状の 領域でも良い。また 2つの領域の大きさは任意であれば良ぐ少ない画素数から成る 領域でも良い。また、ステップ 21で求めたスペックルを近似した楕円の幅 (長軸あるい は短軸の長さ)の半分の距離をぼけ幅として、ステップ 22で境界抽出フィルタの作成 のために用いたが、当該スペックルの性質等に応じて、半分以外の任意の距離を、 ぼけ幅として計算しても良いことは言うまでもない。また、境界強度として用いるパラメ 一タは式 (1)〜(3)で指定された分離度でも良いが、 2つの領域内に含まれる画像デー タ間にどの程度の値の差があるのかを表す任意の指標であっても良ぐ他の計算方 法による指標であっても良 、ことは言うまでもな 、。

Claims

請求の範囲
[1] 被検体に超音波を送受信する超音波探触子と、前記超音波探触子に接続され、 前記超音波探触子により得られた超音波信号を基に超音波画像を生成する画像生 成手段と、前記超音波探触子及び前記画像生成手段に接続され、それらの制御を 行う制御部と、前記画像生成手段及び前記制御部に接続され、前記制御部による制 御の基に前記画像生成手段で生成された超音波画像を表示する表示手段を備えた 超音診断装置において、
前記表示手段に表示された画像上に、前記被検体の臓器の境界の位置を検出す るための部位を選択する選択手段と、前記超音波画像上に所定の間隔が空けられ た 2つの領域から成る境界抽出フィルタを設定する境界抽出フィルタ設定手段と、前 記選択手段により選択された部位近傍で、前記境界抽出フィルタ設定手段により設 定された境界抽出フィルタ内の画素データを解析することにより、前記境界の位置を 検出する境界位置検出手段を備え、前記境界位置検出手段により検出された境界 位置は、前記制御手段による制御の基に前記表示手段に表示されることを特徴とす る超音波診断装置。
[2] 前記境界抽出フィルタ設定手段により設定された境界抽出フィルタを、前記選択手 段により選択された部位近傍で位置及び/あるいは傾きを変えながら、前記 2つの領 域内の画素値を解析して境界強度を求める境界強度計算手段を備え、境界位置検 出手段は、前記境界強度が最大あるいは所定の値以上となる前記境界抽出フィルタ の位置及び/あるいは傾きを求めることにより、前記境界の位置を検出することを特徴 とする請求の範囲 1記載の超音波診断装置。
[3] 前記境界強度として、 2つの領域内に含まれる画像データ間にどの程度の値の差が あ
るかを表す指標を用いることを特徴とする請求の範囲 2記載の超音波診断装置。
[4] 前記境界強度は、前記 2つの領域内の画素データをそれぞれの領域で平均化した 後に、分散値を計算して得られるクラス間分散を、前記 2つの領域内の画素データを そのまま用いて分散値を計算して得られる全分散で除して得られる分離度であること を特徴とする請求の範囲 2記載の超音波診断装置。
[5] 前記境界抽出フィルタ設定手段により設定される境界抽出フィルタは、前記 2つの 領域の間隔、形状、位置あるいは傾きが変えられるものであり、前記境界強度計算手 段は前記 2つの領域の間隔、形状、位置あるいは傾きを変化させながら、境界強度を 逐次計算し、境界位置検出手段は、前記境界強度が最大となる前記 2つの領域の間 隔、形状、位置あるいは傾きを基に、前記境界の位置を検出することを特徴とする請 求の範囲 2記載の超音波診断装置。
[6] 前記 2つの領域は、画素値の高!、側と画素値の低!、側の 2つの領域力 成り、前記 境界位置検出手段は、前記境界強度が最大となる前記境界抽出フィルタの位置及 び/あるいは傾きの情報を基に、前記位置において、前記画素値の高い側の領域を 囲む周囲の内、前記画素値の低い側に面するエッジを、前記境界の位置とすること を特徴とする請求の範囲 1記載の超音波診断装置。
[7] 前記境界位置抽出手段により求めた境界位置を基に、前記境界で囲まれた領域 の面積あるいは、前記境界で囲まれた領域を表す臓器の体積を算出する臓器計測 手段を供えたことを特徴とする請求の範囲 1記載の超音波診断装置。
[8] 前記選択手段により選択された部位における前記超音波画像上のぼけ幅を計算 するぼけ幅計算手段を備え、前記境界抽出フィルタ設定手段は、前記 2つの領域間 の間隔を、前記ぼけ幅計算手段により計算したぼけ幅に基づいて決定することを特 徴とする請求の範囲 1記載の超音波診断装置。
[9] 前記 2つの領域は、形状が矩形であり、前記境界抽出フィルタ設定手段は、前記 2 つの領域の相対する辺間の距離を、前記ぼけ幅に等しくなるように設定することを特 徴とする請求の範囲 8記載の超音波診断装置。
[10] 前記 2つの領域は、外側のリングの形状と内側の円形の形状の 2つの領域力 成り 、前記境界抽出フィルタ設定手段は、該 2つの領域の挟まれた空隙の幅を、前記ぼ け幅に等しくなるように設定することを特徴とする請求の範囲 8記載の超音波診断装 置。
[11] 前記境界抽出フィルタ設定手段による前記 2つの領域の形状の形状は、境界を抽 出しようとする対象部位の境界形状を反映させたものであることを特徴とする請求の 範囲 8記載の超音波診断装置。
[12] 前記ぼけ幅計算手段は、前記超音波画像上の前記超音波送受信方向の深度によ つて、前記スペックルの大きさが異なるのに合わせて、それぞれの深度において、前 記楕円の大きさを求めてぼけ幅を計算し、前記境界抽出フィルタ設定手段は、前記 深度によるスペックルの大きさの変化に応じて、前記間隔の異なる境界抽出フィルタ を設定することを特徴とする請求の範囲 8記載の超音波診断装置。
[13] 前記 2つの領域は、それぞれ形状が円形であり、前記ぼけ幅に相当する距離だけ 間隔を空けられて、設定されていることを特徴とする請求の範囲 8記載の超音波診断 装置。
[14] 前記ぼけ幅計算手段は、テキスチャ解析により前記画像上のぼけ幅を計算すること を特徴とする請求の範囲 8記載の超音波診断装置。
[15] 前記テキスチャ解析は、前記超音波画像の画像データを用いて、濃度共起行列や 自己相関関数を計算することにより行うことを特徴とする請求の範囲 14記載の超音波 診断装置。
[16] 前記ぼけ幅計算手段は、前記超音波画像上に現れるスペックルを楕円の形状で近 似し、前記楕円の大きさを求めることによりぼけ幅を計算することを特徴とする請求の 範囲 14記載の超音波診断装置。
[17] 前記スペックルを近似した楕円の短軸あるいは長軸の長さの半分の距離を、前記 ぼけ幅として計算することを特徴とする請求の範囲 16記載の超音波診断装置。
[18] 前記ぼけ幅計算手段は、前記超音波探触子の種類によって変化する前記スペック ルの前記超音波画像上での向きを考慮に入れて、前記テキスチャ解析を行うことを 特徴とする請求の範囲 14記載の超音波診断装置。
[19] 前記ぼけ幅計算手段は、前記超音波探触子がリニア型の場合には、前記スペック ルを近似するための楕円の短軸ある 、は長軸の向きを前記表示手段の画面上の縦 方向あるいは横方向とし、前記超音波探触子がセクタ型の場合には、前記超音波の ビームの方向を前記楕円の短軸あるいは長軸とすることを特徴とする請求の範囲 16 記載の超音波診断装置。
[20] 超音波画像上に表れる臓器の境界の位置を抽出することが可能な超音波診断方 法において、 (1)前記超音波画像上、前記境界を抽出するための部位を指定する工程と、
(2)前記工程 (1)により設定された部位近傍の画像のぼけ幅を計算する工程と、
(3)前記工程 (2)により計算されたぼけ幅に応じた間隔を持つ 2つの領域を境界抽出 フィルタとして設定する工程と、
(4)前記工程 (3)により設定された境界抽出フィルタの位置及び/あるいは傾きを変化 させながら、前記 2つの領域内の画素値を解析して境界強度を求める工程と、
(5)前記工程 (4)にお ヽて、前記境界強度が最大となる前記位置及び/あるいは傾き を求めることにより、前記境界の位置を抽出する工程と、
(6)前記工程 (5)により求めた境界位置を基に、前記境界で囲まれた領域の面積ある いは、前記境界で囲まれた領域を表す臓器の体積を算出する工程を備えたことを特 徴とする超音波診断方法。
PCT/JP2007/059848 2006-05-19 2007-05-14 超音波診断装置及び超音波診断方法 WO2007135884A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/301,350 US8300909B2 (en) 2006-05-19 2007-05-14 Ultrasonographic device and ultrasonographic method
CN2007800182328A CN101448461B (zh) 2006-05-19 2007-05-14 超声波诊断装置及边界提取方法
EP07743283.9A EP2047803A4 (en) 2006-05-19 2007-05-14 ULTRASONIC DEVICE AND METHOD
JP2008516604A JP4879263B2 (ja) 2006-05-19 2007-05-14 超音波診断装置及び超音波診断方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-139865 2006-05-19
JP2006139865 2006-05-19

Publications (1)

Publication Number Publication Date
WO2007135884A1 true WO2007135884A1 (ja) 2007-11-29

Family

ID=38723197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059848 WO2007135884A1 (ja) 2006-05-19 2007-05-14 超音波診断装置及び超音波診断方法

Country Status (5)

Country Link
US (1) US8300909B2 (ja)
EP (1) EP2047803A4 (ja)
JP (1) JP4879263B2 (ja)
CN (1) CN101448461B (ja)
WO (1) WO2007135884A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009125592A (ja) * 2007-11-20 2009-06-11 Medison Co Ltd 適応的フィルタを用いて3次元超音波映像を形成する超音波映像装置及び方法
JP2010063495A (ja) * 2008-09-08 2010-03-25 Aloka Co Ltd 超音波データ処理装置
WO2015198757A1 (ja) * 2014-06-24 2015-12-30 オリンパス株式会社 画像処理装置、内視鏡システム及び画像処理方法
KR20170041879A (ko) * 2014-10-21 2017-04-17 우시 히스키 메디칼 테크놀로지스 컴퍼니., 리미티드. 검출영역을 선택하는 방법 및 장치 및 탄성 검출 시스템
KR20170042677A (ko) * 2014-10-21 2017-04-19 우시 히스키 메디칼 테크놀로지스 컴퍼니., 리미티드. 간 경계 식별방법 및 시스템
WO2018110089A1 (ja) * 2016-12-15 2018-06-21 オムロン株式会社 スジ状領域検出装置、スジ状領域検出方法、プログラム
JP2020003234A (ja) * 2018-06-25 2020-01-09 株式会社島津製作所 変位量測定装置、変位量測定方法および変位量測定プログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014155825A1 (ja) * 2013-03-29 2014-10-02 日立アロカメディカル株式会社 医療用診断装置およびその計測方法
US10579879B2 (en) 2016-08-10 2020-03-03 Vivint, Inc. Sonic sensing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08206117A (ja) 1994-05-27 1996-08-13 Fujitsu Ltd 超音波診断装置
JPH0994248A (ja) 1995-09-29 1997-04-08 Hitachi Medical Corp 超音波診断装置におけるスペックルノイズ判定方法及びスペックルノイズ判定除去回路を備えた超音波診断装置
JP2005205199A (ja) * 2003-12-26 2005-08-04 Fuji Photo Film Co Ltd 超音波画像処理方法及び超音波画像処理装置、並びに、超音波画像処理プログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5457754A (en) * 1990-08-02 1995-10-10 University Of Cincinnati Method for automatic contour extraction of a cardiac image
US8021301B2 (en) * 2003-12-26 2011-09-20 Fujifilm Corporation Ultrasonic image processing apparatus, ultrasonic image processing method and ultrasonic image processing program
US8031978B2 (en) * 2004-06-30 2011-10-04 Hitachi Aloka Medical, Ltd. Method and apparatus of image processing to detect edges

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08206117A (ja) 1994-05-27 1996-08-13 Fujitsu Ltd 超音波診断装置
JPH0994248A (ja) 1995-09-29 1997-04-08 Hitachi Medical Corp 超音波診断装置におけるスペックルノイズ判定方法及びスペックルノイズ判定除去回路を備えた超音波診断装置
JP2005205199A (ja) * 2003-12-26 2005-08-04 Fuji Photo Film Co Ltd 超音波画像処理方法及び超音波画像処理装置、並びに、超音波画像処理プログラム

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
B.J. OOSTERVELD ET AL.: "TEXTURE OF B-MODE ECHOGRAMS: 3-D SIMULATIONS AND EXPERIMENTS OF THE EFFECTS OF DIFFRACTION AND SCATTERER DENSITY", ULTRASONIC IMAGING, vol. 7, 1985, pages 142 - 160
ITO M. ET AL.: "Choonpa Gazo no Kyokai Kyocho o Mokuteki to Shita Tekioteki Morphology Kahen Kazo Yoso no Seigyo", IMAGE LAB., vol. 15, no. 6, 1 June 2004 (2004-06-01), pages 9 - 13, XP008088167 *
MAGAZINE OF PAPERS OF INSTITUTE OF ELECTRONICS AND COMMUNICATION ENGINEERS OF JAPAN, vol. J63-D, no. 4, pages 349 - 356
NAGANO T. ET AL.: "Morphology Ensan o Mochiita Kahen Burokku Ho ni Yoru Iyo Choonpa Gazo no Ryoiki Bunkatsu", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, vol. J84-A, no. 12, December 2001 (2001-12-01), pages 1444 - 1451, XP008088170 *
O. BASSEL ET AL.: "TEXTURE ANALYSIS OF ULTRASONIC IMAGES OF THE PROSTATE BY MEANS OF CO-OCCURRENCE MATRICS", ULTRASONIC IMAGING, vol. 15, 1993, pages 218 - 237
See also references of EP2047803A4
YAMAUCHI M. ET AL.: "Doteki Rinkaku Model ni Yoru Choonpa Shinsashitsu Yoseki Keisoku Ho", IEICE TECHNICAL REPORT, vol. 102, no. 137, 14 June 2002 (2002-06-14), pages 29 - 32, XP008088169 *
ZAMA T. ET AL.: "Hanbetsu Kijun ni Motozuku Level Set Ho o Mochiita Kyobu MR Gazo no Ryoiki Chushutsu", IEICE TECHNICAL REPORT, vol. 106, no. 343, 6 November 2006 (2006-11-06), pages 49 - 53, XP008088168 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009125592A (ja) * 2007-11-20 2009-06-11 Medison Co Ltd 適応的フィルタを用いて3次元超音波映像を形成する超音波映像装置及び方法
JP2010063495A (ja) * 2008-09-08 2010-03-25 Aloka Co Ltd 超音波データ処理装置
WO2015198757A1 (ja) * 2014-06-24 2015-12-30 オリンパス株式会社 画像処理装置、内視鏡システム及び画像処理方法
JP2016009984A (ja) * 2014-06-24 2016-01-18 オリンパス株式会社 画像処理装置、内視鏡システム及び画像処理方法
US10360474B2 (en) 2014-06-24 2019-07-23 Olympus Corporation Image processing device, endoscope system, and image processing method
US10354390B2 (en) 2014-10-21 2019-07-16 Wuxi Hisky Medical Technologies Co., Ltd. Liver boundary identification method and system
KR20180058228A (ko) * 2014-10-21 2018-05-31 우시 히스키 메디칼 테크놀로지스 컴퍼니., 리미티드. 간 경계 식별방법 및 시스템
KR101894212B1 (ko) 2014-10-21 2018-08-31 우시 히스키 메디칼 테크놀로지스 컴퍼니., 리미티드. 간 경계 식별방법 및 시스템
KR101913976B1 (ko) * 2014-10-21 2018-10-31 우시 히스키 메디칼 테크놀로지스 컴퍼니., 리미티드. 검출영역을 선택하는 방법 및 장치 및 탄성 검출 시스템
KR101913977B1 (ko) 2014-10-21 2018-10-31 우시 히스키 메디칼 테크놀로지스 컴퍼니., 리미티드. 간 경계 식별방법 및 시스템
KR20170042677A (ko) * 2014-10-21 2017-04-19 우시 히스키 메디칼 테크놀로지스 컴퍼니., 리미티드. 간 경계 식별방법 및 시스템
KR20170041879A (ko) * 2014-10-21 2017-04-17 우시 히스키 메디칼 테크놀로지스 컴퍼니., 리미티드. 검출영역을 선택하는 방법 및 장치 및 탄성 검출 시스템
US10748291B2 (en) 2014-10-21 2020-08-18 Wuxi Hisky Medical Technologies Co., Ltd. Liver boundary identification method and system
US10925582B2 (en) 2014-10-21 2021-02-23 Wuxi Hisky Medical Technologies Co., Ltd. Method and device for selecting detection area, and elasticity detection system
WO2018110089A1 (ja) * 2016-12-15 2018-06-21 オムロン株式会社 スジ状領域検出装置、スジ状領域検出方法、プログラム
JP2018097717A (ja) * 2016-12-15 2018-06-21 オムロン株式会社 スジ状領域検出装置およびスジ状領域検出方法
US10846869B2 (en) 2016-12-15 2020-11-24 Omron Corporation Streak-like region detecting device, streak-like region detecting method, and program
JP2020003234A (ja) * 2018-06-25 2020-01-09 株式会社島津製作所 変位量測定装置、変位量測定方法および変位量測定プログラム

Also Published As

Publication number Publication date
US8300909B2 (en) 2012-10-30
US20090163812A1 (en) 2009-06-25
EP2047803A1 (en) 2009-04-15
JP4879263B2 (ja) 2012-02-22
JPWO2007135884A1 (ja) 2009-10-01
CN101448461B (zh) 2011-04-06
CN101448461A (zh) 2009-06-03
EP2047803A4 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP6367425B2 (ja) 超音波診断装置
JP4745133B2 (ja) 超音波診断装置、医用画像処理装置及び医用画像処理プログラム
JP5645811B2 (ja) 医用画像診断装置、関心領域設定方法、医用画像処理装置、及び関心領域設定プログラム
JP4879263B2 (ja) 超音波診断装置及び超音波診断方法
CN109310399B (zh) 医学超声图像处理设备
US20190244352A1 (en) Analyzing apparatus and analyzing method
CN104093363B (zh) 医学图像诊断装置及其设定感兴趣区域的方法
US20060034513A1 (en) View assistance in three-dimensional ultrasound imaging
JP7239275B2 (ja) 超音波診断装置及び穿刺支援プログラム
CN104797199A (zh) 用于实时胎儿心脏评估的标准平面的自动定位
JP7010948B2 (ja) 胎児超音波撮像
JP2023053346A (ja) 解析装置及び解析プログラム
BR112020014733A2 (pt) Método implementado por computador para a obtenção de medições anatômicas em uma imagem de ultrassom, meios de programa de computador, dispositivo de análise de imagem e método de imageamento por ultrassom
JP2008073423A (ja) 超音波診断装置、診断パラメータ計測装置及び診断パラメータ計測方法
JP6358192B2 (ja) 超音波診断装置、及び超音波診断装置の制御方法
US11484286B2 (en) Ultrasound evaluation of anatomical features
CN115279275A (zh) 超声诊断设备及其操作方法
RU2778840C2 (ru) Ультразвуковая диагностика анатомических особенностей
JP3534667B2 (ja) 超音波計測装置
US11382595B2 (en) Methods and systems for automated heart rate measurement for ultrasound motion modes
JP7299100B2 (ja) 超音波診断装置及び超音波画像処理方法
KR20160086126A (ko) 초음파 진단 방법 및 장치
CN116650006A (zh) 用于自动超声检查的系统和方法
EP3178401A1 (en) Ultrasonic diagnostic apparatus and method for controlling the same
WO2009031078A1 (en) Spectral and color doppler imaging system and method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780018232.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743283

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008516604

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007743283

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12301350

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE