WO2022085324A1 - 逐次比較型アナログ/デジタル変換器 - Google Patents
逐次比較型アナログ/デジタル変換器 Download PDFInfo
- Publication number
- WO2022085324A1 WO2022085324A1 PCT/JP2021/033045 JP2021033045W WO2022085324A1 WO 2022085324 A1 WO2022085324 A1 WO 2022085324A1 JP 2021033045 W JP2021033045 W JP 2021033045W WO 2022085324 A1 WO2022085324 A1 WO 2022085324A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- analog
- signal
- voltage
- circuit
- digital
- Prior art date
Links
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims abstract description 29
- 239000003990 capacitor Substances 0.000 description 49
- 230000000694 effects Effects 0.000 description 19
- 238000010586 diagram Methods 0.000 description 17
- 238000000034 method Methods 0.000 description 11
- 230000004048 modification Effects 0.000 description 11
- 238000012986 modification Methods 0.000 description 11
- 230000000630 rising effect Effects 0.000 description 10
- 230000003111 delayed effect Effects 0.000 description 8
- 101100191136 Arabidopsis thaliana PCMP-A2 gene Proteins 0.000 description 4
- 101100048260 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) UBX2 gene Proteins 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 2
- 101150105184 Selenos gene Proteins 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 101150105992 vimp gene Proteins 0.000 description 2
- 230000006378 damage Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000019439 ethyl acetate Nutrition 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/34—Analogue value compared with reference values
- H03M1/38—Analogue value compared with reference values sequentially only, e.g. successive approximation type
- H03M1/46—Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
Definitions
- the present disclosure (the present technology) relates to a successive approximation type analog / digital converter.
- AD converter an analog-to-digital (AD) converter that is realized with a relatively simple circuit configuration and has high consistency with a CMOS process that can be manufactured at a relatively low cost (for example,).
- Patent Document 1 a successive approximation type AD converter is known as an analog-to-digital (AD) converter that is realized with a relatively simple circuit configuration and has high consistency with a CMOS process that can be manufactured at a relatively low cost (for example,).
- the sequential comparison type AD converter generally includes a capacitive D / A converter as a component thereof.
- the capacitive D / A converter has a capacitance value obtained by multiplying C0, 2C0, 4C0, ..., 2 N-1 ⁇ C0 and 2 when the capacitance value of one capacitive element is C0. It consists of a capacitive array in which capacitive elements are connected in parallel, and uses the principle of charge redistribution to convert a digital signal into an analog signal.
- the settling time for obtaining the required accuracy is the on-resistance of the switch connecting the reference voltage and the capacitive D / A converter, and the capacitance. Gender It is determined by the time constant determined by the capacitance value of the D / A converter. Therefore, the settling time must be shorter than the delay time for generating the internal clock in the operation of the successive approximation type AD converter.
- the delay time is set uniformly, so if the time constant is large and there is no margin for settling time, it is necessary to lower the on resistance of the switch.
- As a means of lowering the on-resistance there is a means of increasing the switch.
- the electric power of the circuit for driving the switch increases, so that the electric power of the entire successive approximation type AD converter increases significantly.
- a means using the delay adjustment circuit of Patent Document 1 can be considered, but an amplifier is required for control, and the area for installing the amplifier and the area for installing the amplifier and It requires power. Further, in the means using the delay adjustment circuit of Patent Document 1, it is necessary to constantly pass a current in order to adjust the delay time in an analog manner. Therefore, it is difficult to control the delay time with low power consumption.
- the switches that connect the reference voltage and the capacitive D / A converter there is a switch that connects to the intermediate potential.
- the transistor used for the switch connected to this intermediate potential has a high on-resistance because the potential VGS between the gate and the source is not sufficiently applied. Therefore, as a means for lowering the on-resistance, there is a technique for lowering the on-resistance by sufficiently applying VGS by boosting. However, if a voltage higher than the power supply voltage is applied due to boosting, the transistor may be destroyed or deteriorated during operation, and reliability is not considered for the transistor.
- One aspect of the present disclosure is a capacitive digital / analog converter that accumulates charge according to the signal level of the input analog signal and samples two analog input voltages according to the signal level of the analog signal, and an internal structure.
- a comparator that determines whether one of the two analog input voltages is higher than the other based on the clock signal, and a holding unit that holds and outputs a bit corresponding to the determination result output from the comparator as a digital signal.
- a signal generation unit that generates the internal clock signal based on the output of the analog, a plurality of delay circuits that have different delay amounts and delay the internal clock signal output from the signal generation unit, and the above. It is a sequential comparison type analog / digital converter including a switching circuit for selectively deriving the output of a plurality of delay circuits to the comparator.
- Another aspect of the present disclosure is a capacitive digital / analog converter that accumulates charge according to the signal level of the input analog signal and samples two analog input voltages according to the signal level of the analog signal.
- a comparator that determines whether one of the two analog input voltages is higher than the other based on the internal clock signal, and a bit corresponding to the determination result output from the comparator is held and output as a digital signal.
- the holding unit the reference voltage generator that generates a potential intermediate between the high-voltage potential and the low-voltage potential applied to the capacitance of the capacitive digital / analog converter as the reference voltage, and the capacitive digital / analog converter.
- a sequential comparison analog / digital converter comprising a capacitance and a bootstrap switch connecting the reference voltage generator.
- Another aspect of the present disclosure is a capacitive digital / analog converter that accumulates charge according to the signal level of the input analog signal and samples two analog input voltages according to the signal level of the analog signal.
- a comparator that determines whether one of the two analog input voltages is higher than the other based on the internal clock signal, and a bit corresponding to the determination result output from the comparator is held and output as a digital signal.
- a holding unit a signal generation unit that generates the internal clock signal based on the output of the analog, and a plurality of delay circuits that delay the internal clock signal output from the signal generation unit with different delay amounts.
- the switching circuit that selectively derives the output of the delay circuit of the plurality of systems to the comparator and the potential intermediate between the high voltage potential and the low voltage potential applied to the capacitance of the capacitive digital / analog converter. It is a sequential comparison type analog / digital converter including a reference voltage generating unit generated as, a capacity of the capacitive digital / analog converter, and a bootstrap switch connecting the reference voltage generating unit.
- the sequential comparison type AD converter 1 includes a capacitive digital / analog converter (CDAC) 10, a comparator 20, and a sequential comparison register (SAR: Successive).
- CDAC capacitive digital / analog converter
- SAR sequential comparison register
- a logic unit 30 an internal timing path unit 40, a reference voltage circuit 50, and a plurality of drive circuits 60 for operating the CDAC 10 by the voltage output from the reference voltage circuit 50, and an analog signal Vin. Is converted into an N-bit (N is an arbitrary integer) digital signal.
- N is an arbitrary integer
- the CDAC 10 accumulates an electric charge corresponding to the signal level of the analog signal Vin, samples an analog voltage Vs corresponding to the signal level of the analog signal Vin, and inputs the analog voltage Vs to the comparator 20.
- the analog signal Vin is, for example, a differential signal, and includes a positive phase input voltage Vinp and a negative phase input voltage Vinm.
- the analog signal may be a single-ended signal instead of a differential signal. In this case, a single-ended signal and a reference voltage are input to the CDAC 10 instead of the differential signal.
- the comparator 20 compares the positive phase input voltage Vinp and the negative phase input voltage Vinm in synchronization with the internal clock signal, and determines whether one of them is higher than the other.
- the comparator 20 generates a determination result including a positive phase input voltage Vinp and a negative phase input voltage Vinm, and outputs the determination result to the SAR logic unit 30.
- the SAR logic unit 30 includes a switching signal generation unit 31, a NOR circuit 32, and a data holding unit 33. Then, the SAR logic unit 30 inputs the determination result output from the comparator 20 to the NOR circuit 32 and also inputs it to the data holding unit 33.
- the NOR circuit 32 generates a comparison end determination flag signal as an internal clock signal based on the output of the comparator 20, and outputs the signal to the switching signal generation unit 31 and the internal timing path unit 40.
- the data holding unit 33 generates and holds a bit indicating a determination result from the comparator 20 based on the signal from the switching signal generation unit 31.
- the data holding unit 33 outputs the held bits to the control unit 64 of the drive circuit 60 of a plurality of systems.
- the drive circuit 60 controls the positive phase input voltage Vinp and the negative phase input voltage Vinm by the voltage control signal generated by the control unit 64.
- FIG. 2 shows an example of the circuit configuration of the CDAC 10.
- the CDAC 10 includes a positive phase side switch 111 and a negative phase side switch 112, a positive phase side capacitors 131 to 13i, and a negative phase side capacitors 141 to 14i.
- i is the number of capacitors in parallel up to N-1 when the analog signal Vin is converted into an N-bit digital signal.
- the positive phase side switch 111 inputs the positive phase input voltage Vimp to the positive phase side capacitors 131 to 13i according to a sampling clock signal provided separately.
- One end of the positive phase side switch 111 is connected to the positive phase side capacitors 131 to 13i and the non-inverting input terminal of the comparator 20.
- the reverse phase side switch 112 inputs the reverse phase input voltage Vinm to the reverse phase side capacitors 141 to 14i according to a separately provided sampling clock signal.
- One end of the reverse phase side switch 112 is connected to the reverse phase side capacitors 141 to 14i and the inverting input terminal of the comparator 20.
- the positive phase side switch 111 and the negative phase side switch 112 open and close between terminals according to a sampling clock signal.
- the drive circuit 60 connects any of three different reference voltages to the positive phase side capacitors 131 to 13i according to the voltage control signal output from the control unit 64.
- the lower reference Bottom voltage VRB for example, a voltage equal to or higher than the ground voltage is referred to.
- the higher reference TOP voltage VRT for example, a voltage equal to or lower than the power supply voltage is referred to.
- each voltage control signal includes a 1-bit voltage control signal.
- the drive circuit 60 connects any of three different reference voltages to the reverse phase side capacitors 141 to 14i according to the voltage control signal output from the control unit 64.
- the capacitance values of the positive phase side capacitor 131 and the negative phase side capacitor 141 are, for example, 2 N-1 ⁇ C0.
- the capacitance values of the positive-phase side capacitor 131 and the negative-phase side capacitor 141 are 2048C0
- the positive-phase side capacitor 132 and the negative-phase side capacitor 142 have a capacitance value of 2048C0.
- the capacitance value is, for example, 1024C0
- the capacitance value of the positive phase side capacitor 133 and the negative phase side capacitor 143 is, for example, 512C0.
- the internal timing path unit 40 includes a delay circuit 411 provided in the system NL1, a delay circuit 412 provided in the system NL2, a delay circuit 413 provided in the system NL3, a switch 42, and a switching control unit 43.
- the delay circuit 411 connects one buffer having a predetermined delay amount and four inverters having a delay amount corresponding to the settling time of the upper bits of the CDAC 10 in series.
- the delay circuit 412 connects one buffer having a predetermined delay amount and two inverters having a delay amount corresponding to the settling time of the middle bit of the CDAC 10 in series.
- the delay circuit 413 connects one buffer having a predetermined delay amount. As a result, the delay circuits 411, 421, 413 have different delay amounts from each other.
- the switch 42 includes four NAND circuits 421 to 424.
- the output of the delay circuit 411 and the output of the switching control unit 43 are input to the NAND circuit 421.
- the output of the delay circuit 412 and the output of the switching control unit 43 are input to the NAND circuit 422.
- the output of the delay circuit 413 and the output of the switching control unit 43 are input to the NAND circuit 423.
- the outputs of the NAND circuits 421 to 423 are input to the NAND circuit 424.
- the switching control unit 43 sets the switching device 42 so as to selectively derive the outputs of the three systems NL1 to NL3 as internal clock signals based on the switching signal output from the switching signal generation unit 31 of the SAR logic unit 30. Switching control.
- the switching signal generation unit 31 of the SAR logic unit 30 outputs a switching signal to the switching control unit 43 when the number of conversions reaches the m-bit.
- the switching signal generation unit 31 connects two flip-flops FF01 to FFS1 and FF02 to FFS2 in cascade.
- the switching signal generation unit 31 outputs the internal clock signal output from the NOR circuit 32 to the clock terminals of the two flip-flops FF01 to FFS1 and FF02 to FFS2.
- An inverted signal of the internal clock signal is input to the clock terminals of the flip-flops FF02 to FFS2.
- the flip-flop FF01 is connected to a power supply in order to output an H (high) level signal in synchronization with the rising edge of the internal clock signal.
- the flip-flops FF11 to FFS1 are connected to the output terminal of the previous stage in order to output an H (high) level signal in synchronization with the rising edge of the internal clock signal.
- the H (high) level signal is held and output by the flip-flop in the subsequent stage.
- the output of the flip-flop FF31 is output to the switching control unit 43 as a switching signal SEL0.
- the input of the flip-flop FFS1 is output to the switching control unit 43 as a switching signal SEL1.
- the switching control unit 43 includes a NOT circuit 431 and a NOR circuit 432 and 433.
- the switching signal SEL0 is input to the NOR circuit 433, inverted by the NOT circuit 431, and input to the NOR circuit 432.
- the switching signal SEL1 is input to the NAND circuit 423 and is input to the NOR circuit 432.
- the output of the NOR circuit 432 is input to the NAND circuit 422 and the NOR circuit 433, respectively.
- the output of the NOR circuit 433 is input to the NAND circuit 421.
- the control unit 64 applies a reference intermediate voltage VRC to one end of the positive phase side capacitors 131 to 13i and the negative phase side capacitors 141 to 14i having a capacitance value of 32C0.
- the amount of charge corresponding to the positive phase input voltage Vinp and the negative phase input voltage Vinm is charged to the positive phase side capacitors 131 to 13i and the negative phase side capacitors 141 to 14i, and the positive phase input voltage Vinp and the negative phase input voltage Vinm are sampled. , Is input to the comparator 20.
- the positive phase input voltage Vinp and the negative phase input voltage Vinm input to the comparator 20 include a settling error as shown by the following equation (1).
- VREF is a convergent voltage value of the positive phase input voltage Vimp and the negative phase input voltage Vinm, and is the absolute value of the difference between the reference intermediate voltage VRC and the reference TOP voltage VRT, or the reference intermediate voltage VRC and the reference Bottom. It corresponds to the difference from the voltage VRB.
- C is a capacitance value of the positive phase side capacitors 131 to 13i and the negative phase side capacitors 141 to 14i.
- R is the resistance value of the on-resistance of the switch connecting the positive-phase side capacitors 131 to 13i and the negative-phase side capacitors 141 to 14i with the reference TOP voltage VRT, the reference intermediate voltage VRC, and the reference Bottom voltage VRB. In the case of the most significant bit B0, C becomes 2048C0.
- T is time.
- the settling time is the time from the start of charging the positive phase side capacitors 131 to 13i and the negative phase side capacitors 141 to 14i to the desired voltage value.
- the settling time must be shorter than the delay time for generating the internal clock in the operation of the successive approximation type AD converter 1.
- the capacitance value C cannot be changed due to the characteristics of the CDAC10, it is necessary to adjust the time t or the resistance value R of the on-resistance of the switch. Generally, since the time t is constant, the resistance value R of the on-resistance of the switch is adjusted. However, when the on-resistance of the switch of the least significant bit for settling at the settling time t is considered to be 1, the resistance value R required for the most significant bit B0 is 1/2048, so that the size of the switch becomes large. It becomes unrealistic.
- the delay circuit 411 that delays the internal clock so as to allocate the time that is surplus to the required settling accuracy of the low-order bits B8 to B11 having a small time constant to the time of the high-order bits B0 to B3.
- the delay time (delay amount) of is set in advance according to the most significant bit B0, which requires the most settling time.
- the delay time of the delay circuit 412 is set in advance according to the middle bit B4.
- the delay time of the delay circuit 413 is set in advance according to the lower bit B8.
- the settling time differs depending on the time constant RC of each bit B0 to B11.
- the time constant is the largest, 2048C0 ⁇ R, so it becomes long, and in the case of the middle bit B4, the time constant is 128C0. Since it is as small as ⁇ R, it becomes shorter, and in the case of the lower bit B8, it becomes even shorter because the time constant is as small as 8C0 ⁇ R.
- the internal clock signal input to the comparator 20 is delayed by a time corresponding to the settling time until the voltage applied to the positive phase side capacitor 131 and the negative phase side capacitor 141 converges to a desired voltage value, and is output to the comparator 20. There is a need to.
- the switching control unit 43 controls the switching device 42 so as to select the system NL1.
- the internal clock signal output from the NOR circuit 32 of the SAR logic unit 30 is delayed by the delay circuit 411 corresponding to the settling time, is derived by the switch 42, and is output to the comparator 20.
- the comparator 20 inputs an L (low) level signal to the two inputs of the NOR circuit 32 in synchronization with the falling edge of the internal clock signal.
- ⁇ Most significant bit B1 generation process> After the most significant bit B0 is generated, when the internal clock signal changes from the L (low) level to the H (high) level, the comparator 20 starts the comparison operation in synchronization with the rising edge, and the positive phase input voltage Vinp and the negative phase input are input. The magnitude relationship of the voltage Vinm is determined. This determination result is output to the data holding unit 33 and is held as the high-order bit B1.
- the control unit 64 switches the connection destination of the positive-phase capacitor 132 having a capacitance value of 1024C0 to the reference voltage voltage VRB, for example, on the positive-phase side where the input voltage is not higher than that of the negative-phase side.
- the connection destination of the side capacitor 142 is switched to the reference TOP voltage VRT.
- the internal clock signal output from the NOR circuit 32 of the SAR logic unit 30 is delayed by the delay circuit 411 corresponding to the settling time, is derived by the switch 42, and is output to the comparator 20.
- the comparator 20 inputs an L (low) level signal to the two inputs of the NOR circuit 32 in synchronization with the falling edge of the internal clock signal. After that, the same generation processing as that of the high-order bit B1 is executed for the high-order bit B2 and the high-order bit B3.
- the switching control unit 43 controls the switching device 42 so as to select the system NL2.
- the comparator 20 starts the comparison operation in synchronization with the rising edge, and the positive phase input voltage Vinp and the negative phase input voltage Determine the magnitude relationship of Vinm. This determination result is output to the data holding unit 33 and held as the middle bit B4.
- the control unit 64 switches the connection destination of the positive phase capacitor 135 having a capacitance value of 128C0 to the reference voltage voltage VRB on the positive phase side where the input voltage is not higher than that of the negative phase side, and reverse phase.
- the connection destination of the side capacitor 145 is switched to the reference TOP voltage VRT.
- the internal clock signal input to the comparator 20 is delayed by a time corresponding to the settling time until the voltage applied to the positive phase side capacitor 135 and the negative phase side capacitor 145 converges to a desired voltage value, and is output to the comparator 20.
- the time constant of the middle bit B4 is 128C0 ⁇ R
- the time constant of the most significant bit B0 is 2048C0 ⁇ R
- the time constant of the upper bit B1 is 1024C0 ⁇ R
- the time constant of the upper bit B2 is 512C0 ⁇ R
- the time constant of the upper bit B3 is B3.
- the internal clock signal output from the NOR circuit 32 of the SAR logic unit 30 is delayed by the delay circuit 412 corresponding to the settling time, is derived by the switch 42, and is output to the comparator 20.
- the comparator 20 inputs an L (low) level signal to both of the two inputs of the NOR circuit 32 in synchronization with the falling edge of the internal clock signal.
- the comparator 20 starts the comparison operation in synchronization with the rising edge when the internal clock signal changes from the L (low) level to the H (high) level, and the positive phase input voltage Vinp and the negative phase input are input. The magnitude relationship of the voltage Vinm is determined. This determination result is output to the data holding unit 33 and held as the middle bit B5.
- the control unit 64 switches the connection destination of the positive phase side capacitor 136 having a capacitance value of 64C0 to the reference voltage voltage VRB, for example, on the positive phase side where the input voltage is not higher than that on the negative phase side.
- the connection destination of the phase side capacitor 146 is switched to the reference TOP voltage VRT.
- the internal clock signal output from the NOR circuit 32 of the SAR logic unit 30 is delayed by the delay circuit 412 corresponding to the settling time, is derived by the switch 42, and is output to the comparator 20.
- the comparator 20 inputs an L (low) level signal to both of the two inputs of the NOR circuit 32 in synchronization with the falling edge of the internal clock signal. After that, the same generation processing as that of the middle bit B5 is executed for the middle bit B6 and the middle bit B7.
- the switching control unit 43 controls the switching device 42 so as to select the system NL3.
- the comparator 20 starts the comparison operation in synchronization with the rising edge, and the positive phase input voltage Vinp and the negative phase input are input.
- the magnitude relationship of the voltage Vinm is determined. This determination result is output to the data holding unit 33 and is held as the lower bit B8.
- control unit 64 switches the connection destination of the positive phase side capacitor 139 having a capacitance value of 8C0 to the reference voltage voltage VRB on the positive phase side where the input voltage is not higher than that on the negative phase side, and reverses.
- the connection destination of the phase side capacitor 149 is switched to the reference TOP voltage VRT.
- the internal clock signal output from the NOR circuit 32 of the SAR logic unit 30 is delayed by the delay circuit 413, derived by the switch 42, and output to the comparator 20.
- the time constant of the lower bit B8 is 8C0 ⁇ R, which is the smallest when compared with the time constant 2048C0 ⁇ R of the most significant bit B0 and the time constant 128C0 ⁇ R of the middle bit B4, and therefore, the delay circuit 413. Only need to have one buffer per.
- the comparator 20 inputs an L (low) level signal to both of the two inputs of the NOR circuit 32 in synchronization with the falling edge of the internal clock signal.
- the comparator 20 starts the comparison operation in synchronization with the rising edge when the internal clock signal changes from the L (low) level to the H (high) level, and the positive phase input voltage Vinp and the negative phase input voltage Determine the magnitude relationship of Vinm. This determination result is output to the data holding unit 33 and is held as the lower bit B9.
- the control unit 64 switches the connection destination of the positive phase capacitor 1310 having a capacitance value of 4C0 to the reference voltage voltage VRB on the positive phase side where the input voltage is not higher than that of the negative phase side, and reverse phase.
- the connection destination of the side capacitor 1410 is switched to the reference TOP voltage VRT.
- the internal clock signal output from the NOR circuit 32 of the SAR logic unit 30 is delayed by the delay circuit 413, derived by the switch 42, and output to the comparator 20.
- the comparator 20 inputs an L (low) level signal to both of the two inputs of the NOR circuit 32 in synchronization with the falling edge of the internal clock signal. After that, the same generation processing as that of the lower bit B9 is executed for the lower bit B10.
- the comparator 20 starts the comparison operation in synchronization with the rising edge when the internal clock signal changes from the L (low) level to the H (high) level, and the positive phase input voltage Vinp and the negative phase input voltage Determine the magnitude relationship of Vinm.
- This determination result is output to the data holding unit 33 and held as the least significant bit B11.
- the control unit 64 switches the connection destination of the positive phase side capacitor 1312 having a capacitance value of C0 to the reference voltage voltage VRB, for example, on the positive phase side where the input voltage is not higher than that of the negative phase side.
- the connection destination of the phase side capacitor 1412 is switched to the reference TOP voltage VRT.
- the drive circuit 60 of the plurality of systems includes a bootstrap switch circuit 61 for connecting the intermediate voltage of the reference voltage circuit 50 and the CDAC 10, a high voltage switch 62 for connecting the high voltage of the reference voltage circuit 50, and the CDAC 10. It includes a low voltage of the reference voltage circuit 50, a low switch 63 for connecting the CDAC 10, and a control unit 64.
- the control unit 64 comprehensively controls the entire drive circuit 60, and controls switching between the bootstrap switch circuit 61, the high-level switch 62, and the low-level switch 63, respectively.
- the high-level side switch 62 has a P-type MOS (MeOH) configuration.
- the low-level switch 63 has an N-type MOS (MOS FET) configuration.
- the high-level switch 62 and the low-level switch 63 may be a bootstrap switch circuit.
- CMOS switches have lower on-resistance than switches with only N-type MOS and P-type MOS when used at intermediate potentials, but when used with successive approximation AD converters, the on-resistance must be further reduced. It may not be.
- the CMOS switch it is necessary to increase the size of the switch in order to reduce the on-resistance, but as a result, the area and power consumption are significantly increased.
- the switch circuit shown in FIG. 4 is also considered.
- the capacity C2 in order to reduce the on-resistance of the switch element M2, the capacity C2 can be charged to increase the gate voltage of the switch element M2 to be higher than the power supply voltage, but the capacity C1 is required to charge the capacity C2. As a result, the area and power increase.
- the reference voltage circuit 50 includes a reference voltage source 51, a voltage dividing circuit 52, and buffer circuits 53 and 54.
- the voltage dividing circuit 52 has a configuration in which resistors Ra and Rb are connected in series, and outputs a divided voltage of a reference voltage generated from the reference voltage source 51.
- the buffer circuit 53 outputs the reference voltage generated from the reference voltage source 51 to the drive circuit 60 as the reference TOP voltage VRT.
- the buffer circuit 54 outputs the voltage divided by the voltage dividing circuit 52 to the drive circuit 60 as a reference intermediate voltage VRC which is a medium voltage.
- the reference TOP voltage VRT, the reference intermediate voltage VRC, and the reference Button voltage VRB are output from the reference voltage circuit 50.
- the bootstrap switch circuit 61 is composed of switch elements M1, M2, M4, M6, M7, M8, a capacitance Cb, and clamp circuits M3, M5, M9.
- the switch elements M1, M2, M4, M6, M7, and M8 are composed of, for example, MOSFETs.
- the clamp circuits M3, M5, and M9 are composed of, for example, MOSFETs.
- the clamp circuit M3 is a circuit for protecting the switch element M2 at the time of boosting.
- the clamp circuit M5 is a circuit for protecting the switch element M4 at the time of boosting.
- the clamp circuit M9 is a circuit for protecting the switch element M8 at the time of boosting.
- the reference intermediate voltage VRC output from the reference voltage circuit 50 is input to the CDAC10, and the positive phase side capacitors 131 to 13i and the negative phase side capacitors 141 to 14i of the CDAC 10 are connected with low impedance. be able to.
- CMOS switch As described above, according to the first embodiment, as a method of generating an internal clock signal, delay circuits 411, 421, 413 having different delay amounts are prepared for each system and individually selected to reduce the switch size. Because it can be done, the power can be reduced. Further, when using an intermediate potential as a reference intermediate voltage VRC, a method of using a CMOS switch having a lower on-resistance than a switch having only N-type MOS or only P-type MOS can be considered, but a CMOS switch is used. However, since the on-resistance is high, the power consumption and the area can be significantly reduced by lowering the on-resistance by boosting the voltage by the bootstrap switch circuit 61.
- the switching signal generation unit 31 can automatically switch the delay circuits 411, 421, 413 when the bits become predetermined bits. Further, according to the first embodiment, since the bootstrap switch circuit 61 boosts the voltage above the rating, there is a risk to the reliability of the circuit, and therefore, the clamp circuits M3, M5, M9. By adding the above, it is possible to prevent the destruction and deterioration of the transistor and improve the reliability.
- the delay circuit 411, 421, 413 may be a variable delay circuit in which the delay amount can be arbitrarily set. By doing so, the delay time can be adjusted for each individual system.
- FIG. 7 shows the circuit configuration of the switching signal generation unit 31A as a first modification of the first embodiment of the present disclosure.
- the same parts as those in FIG. 5 are designated by the same reference numerals, and detailed description thereof will be omitted.
- the flip-flops FF02 and FF12 are connected to a power source to output an H (high) level signal in synchronization with the falling edge of the internal clock signal.
- the flip-flops FF22 to FFS2 are connected to the output terminal of the previous stage in order to output an H (high) level signal in synchronization with the falling edge of the internal clock signal.
- the H (high) level signal is held and output by the flip-flop in the subsequent stage.
- the output of the flip-flop FF32 is output to the switching control unit 43 as a switching signal SEL0.
- the input of the flip-flop FFS2 is output to the switching control unit 43 as a switching signal SEL1.
- FIG. 8 shows the circuit configuration of the switching signal generation unit 31B as a second modification of the first embodiment of the present disclosure.
- the same parts as those in FIG. 5 are designated by the same reference numerals, and detailed description thereof will be omitted.
- the switching signal generation unit 31B connects only one system of flip-flops FF01 to FFS1 in cascade. Even in such a second modification, the same effect as that of the first embodiment can be obtained.
- FIG. 9 shows the circuit configuration of the switching signal generation unit 31C as a third modification of the first embodiment of the present disclosure.
- the switching signal generation unit 31C includes a counter 311 and AND circuits 312 and 313.
- a reset signal is input to the reset terminal of the counter 311 and the counter 311 is initialized to the count value “0” for each sample.
- the internal clock signal is input to the clock terminal of the counter 311.
- the counter 311 counts how many times the conversion has been performed in synchronization with the rising edge of the internal clock signal, and when the count value reaches “4”, the AND circuit 312 outputs the switching signal SEL0. Further, the counter 311 outputs the switching signal SEL1 from the AND circuit 313 when the count value reaches “9”. Even in such a third modification, the same effect as that of the first embodiment can be obtained.
- FIG. 10 shows the circuit configuration of the internal timing path unit 40A as the second embodiment of the present disclosure.
- the internal timing path unit 40A includes delay circuits 711,712,713 provided in two systems NL2 and NL3 among the three systems NL1 to NL3, a switch 72, and a switching control unit 73.
- the delay circuit 711 connects a buffer having a predetermined delay amount and four inverters having a delay amount corresponding to the settling time of the upper bits of the CDAC 10 in series.
- the delay circuit 712 connects a buffer having a predetermined delay amount and two inverters having a delay amount corresponding to the settling time of the middle bit of the CDAC 10 in series.
- the delay circuit 713 connects a buffer having a predetermined delay amount. As a result, the delay circuits 711, 712, 713 have different delay amounts from each other.
- the switching control unit 73 switches and controls the switching device 72 so as to selectively derive the outputs of the three systems NL1 to NL3 as internal clock signals based on the truth value table 731 shown in FIG.
- the system NL1 (timing path 1) is selected and switched.
- the switching signal 1 indicates "0” and the switching signal 2 indicates "1”
- the system NL2 (timing path 2) is selected
- the switching signal 1 indicates "1”
- the switching signal 2 indicates "1”.
- information for selecting the system NL3 (timing path 3) is stored.
- FIG. 12 shows the circuit configuration of the bootstrap switch circuit 61A as the third embodiment of the present disclosure.
- the bootstrap switch circuit 61A has a polyclonal configuration, and is composed of switch elements M11, M21, M41, M61, M71, M81, a capacitance Cb1, and clamp circuits M31, M51, M91.
- the clamp circuit M31 is a circuit that protects the switch element M21 at the time of boosting.
- the clamp circuit M51 is a circuit that protects the switch element M41.
- the clamp circuit M91 is a circuit that protects the switch element M81.
- FIG. 13 shows the circuit configuration of the bootstrap switch circuit 61B as the fourth embodiment of the present disclosure.
- the bootstrap switch circuit 61B further includes an OR circuit 91 to which a reset signal is input in an nanotube configuration.
- the OR circuit 91 outputs the logical sum of the inverted signal of the control signal output from the control unit 64 and the reset signal to the gate electrode of the switch element M8.
- the inverted signal of the control signal is output from the NOT circuit 614.
- FIG. 14 shows the circuit configuration of the bootstrap switch circuit 61C as the fifth embodiment of the present disclosure.
- the bootstrap switch circuit 61C is configured to include a NAND circuit 92 to which a reset signal is input.
- the NAND circuit 92 outputs the logical sum of the control signal output from the control unit 64 and the reset signal to the gate electrode of the switch element M81.
- FIG. 15 shows the circuit configuration of the bootstrap switch circuit 61D as the sixth embodiment of the present disclosure.
- the bootstrap switch circuit 61D has an MFP configuration and does not include clamp circuits M3, M5, and M9.
- the number of parts can be reduced because the clamp circuits M3, M5, and M9 are not provided.
- FIG. 16 shows the circuit configuration of the bootstrap switch circuit 61E as the seventh embodiment of the present disclosure.
- the bootstrap switch circuit 61E has a polyclonal configuration and does not include clamp circuits M31, M51, and M91.
- ⁇ Action and effect of the seventh embodiment> As described above, in the seventh embodiment, the number of parts can be reduced because the clamp circuits M31, M51, and M91 are not provided.
- FIG. 17 shows the circuit configuration of the bootstrap switch circuit 61F as the eighth embodiment of the present disclosure.
- the bootstrap switch circuit 61F has an EtOAc configuration, does not include the clamp circuits M3, M5, and M9, but provides an OR circuit 91.
- FIG. 18 shows the circuit configuration of the bootstrap switch circuit 61G as the ninth embodiment of the present disclosure.
- the bootstrap switch circuit 61G has a polyclonal configuration, and does not include the clamp circuits M31, M51, and M91, but provides a NAND circuit 92.
- ⁇ Action and effect of the ninth embodiment> As described above, even in the ninth embodiment, the same effect as that of the seventh embodiment can be obtained.
- the present disclosure may also have the following structure.
- a capacitive digital / analog converter that stores charges according to the signal level of the input analog signal and samples two analog input voltages according to the signal level of the analog signal.
- a comparator that determines whether one of the two analog input voltages is higher than the other based on the internal clock signal.
- a holding unit that holds and outputs a bit corresponding to the determination result output from the comparator as a digital signal, and a holding unit.
- a signal generator that generates the internal clock signal based on the output of the comparator, A plurality of delay circuits that have different delay amounts and delay the internal clock signal output from the signal generation unit, and A successive approximation analog / digital converter including a switching circuit for selectively deriving the outputs of the plurality of delay circuits to the comparator.
- the sequential comparison type analog / digital converter according to (1) above further comprising a switching signal generator that outputs a switching signal for switching the delay circuit to the switching circuit when the number of bits reaches a predetermined number. ..
- a capacitive digital / analog converter that stores charges according to the signal level of the input analog signal and samples two analog input voltages according to the signal level of the analog signal.
- a comparator that determines whether one of the two analog input voltages is higher than the other based on the internal clock signal.
- a holding unit that holds and outputs a bit corresponding to the determination result output from the comparator as a digital signal, and a holding unit.
- a reference voltage generator that generates a potential intermediate between the high-voltage potential and the low-voltage potential applied to the capacitance of the capacitive digital / analog converter as the reference voltage.
- a sequential comparison analog / digital converter comprising the capacitance of the capacitive digital / analog converter and a bootstrap switch connecting the reference voltage generator.
- the high-voltage potential generator that generates the high-voltage potential Further, a high-voltage side switch for connecting the capacitance of the capacitive digital / analog converter and the high-voltage potential generating unit is provided.
- the low-voltage potential generator that generates the low-voltage potential, Further, a low-voltage side switch for connecting the capacitance of the capacitive digital / analog converter and the low-voltage potential generating unit is provided.
- the bootstrap switch is the sequential comparison type analog / digital converter according to (6) above, which includes a clamp circuit.
- a capacitive digital / analog converter that stores charges according to the signal level of the input analog signal and samples two analog input voltages according to the signal level of the analog signal.
- a comparator that determines whether one of the two analog input voltages is higher than the other based on the internal clock signal.
- a holding unit that holds and outputs a bit corresponding to the determination result output from the comparator as a digital signal, and a holding unit.
- a signal generator that generates the internal clock signal based on the output of the comparator, A plurality of delay circuits that have different delay amounts and delay the internal clock signal output from the signal generation unit, and A switching circuit that selectively derives the outputs of the plurality of delay circuits to the comparator, and A reference voltage generator that generates a potential intermediate between the high-voltage potential and the low-voltage potential applied to the capacitance of the capacitive digital / analog converter as the reference voltage.
- a sequential comparison analog / digital converter comprising the capacitance of the capacitive digital / analog converter and a bootstrap switch connecting the reference voltage generator.
- each of the plurality of delay circuits is a variable delay circuit in which the delay amount can be arbitrarily set.
- the high-voltage potential generator that generates the high-voltage potential, Further, a high-voltage side switch for connecting the capacitance of the capacitive digital / analog converter and the high-voltage potential generating unit is provided.
- the bootstrap switch is the successive approximation analog / digital converter according to (12) above, which comprises a clamp circuit.
- Sequential comparison type analog / digital converter 10 ... Capacitive digital / analog converter (CDAC), 20 ... Comparator, 30 ... SAR logic unit, 31, 31A, 31B, 31C ... Switching signal generator, 32 ... NOR Circuit, 40, 40A ... Internal timing path unit, 42, 72 ... Switch, 43, 73 ... Switching control unit, 50 ... Reference voltage circuit, 51 ... Reference voltage source, 52 ... Voltage division circuit, 53, 54 ... Buffer circuit , 60 ... Drive circuit, 61, 61A, 61B, 61C, 61D, 61E, 61F, 61G ... Bootstrap switch circuit, 62 ... Higher side switch, 63 ... Lower side switch, 64 ...
- Control unit M3, M5, M9, M31, M51, M91 ... Clamp circuit, 84,85,431,614 ... NOT circuit, 91 ... OR circuit, 92,421,422,423,424 ... NAND circuit, 111 ... Positive phase side switch, 112 ... Reverse phase side Switch, 131 ⁇ 13i ... Positive phase side capacitor, 141 ⁇ 14i ... Reverse phase side capacitor, 311 ... Counter, 312, 313 ... AND circuit, 411, 421, 413, 711, 712, 713 ... Delay circuit, 432, 433 ... NOR circuit, 731 ... truth table, M1, M2, M4, M6, M7, M8, M11, M21, M41, M61, M71, M81 ... switch element
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Analogue/Digital Conversion (AREA)
Abstract
比較的簡易な回路構成で、遅延時間の調整を行うことができ、しかもスイッチのオン抵抗を下げ、消費電力、面積の大幅な低減が可能な逐次比較型アナログ/デジタル変換器を提供する。逐次比較型アナログ/デジタル変換器は、入力されるアナログ信号の信号レベルに応じた2つのアナログ入力電圧をサンプリングする容量性デジタル/アナログ変換器と、内部クロック信号に基づいて、2つのアナログ入力電圧の一方が他方より高いか否かを判定するコンパレータと、判定結果に応じたビットを保持する保持部と、コンパレータの出力に基づいて、内部クロック信号を生成する信号生成部と、内部クロック信号を遅延する複数系統の遅延回路と、複数系統の遅延回路の出力をコンパレータへ選択的に導出する切替回路と、容量性デジタル/アナログ変換器の容量と、参照電圧発生部とを接続するブートストラップスイッチとを備える。
Description
本開示(本技術)は、逐次比較型アナログ/デジタル変換器に関する。
現在、比較的簡素な回路構成で実現され、比較的安価に製造できるCMOSプロセスとの整合性が高いアナログ/デジタル(AD)変換器として、逐次比較型AD変換器が知られている(例えば、特許文献1)。
逐次比較型AD変換器は、その構成要素に、容量性D/A変換器を含んでいるのが一般的である。容量性D/A変換器は、1個の容量素子の容量値をC0とした場合、C0、2C0、4C0、・・・、2N-1×C0と2の累乗倍した容量値を持った容量素子が並列接続された容量アレイから構成され、電荷再配分の原理を利用して、デジタル信号をアナログ信号に変換する。
ところで、容量性D/A変換器は、セトリング精度が要求されるため、必要精度を得るためのセトリング時間は、参照電圧と容量性D/A変換器とを接続するスイッチのオン抵抗と、容量性D/A変換器の容量値で決まる時定数で決まる。よって、セトリング時間は、逐次比較型AD変換器の動作において、内部クロックを生成するための遅延時間より短くなくてはならない。
一般的には遅延時間は一律に設定されるため、時定数が大きくセトリング時間の余裕のない場合はスイッチのオン抵抗を下げる必要がある。オン抵抗を下げる手段として、スイッチを大きくする手段がある。
スイッチを大きくする手段では、スイッチを駆動する回路の電力が増えるため、逐次比較型AD変換器全体で電力が大幅に増加してしまう。
スイッチを大きくする手段では、スイッチを駆動する回路の電力が増えるため、逐次比較型AD変換器全体で電力が大幅に増加してしまう。
ところで、内部クロックを生成するための遅延時間を制御する手段として、上記特許文献1の遅延調整回路を用いる手段も考えられるが、制御のためにアンプが必要となり、アンプを設置する分の面積及び電力を必要としてしまう。また、上記特許文献1の遅延調整回路を用いる手段は、アナログ的に遅延時間を調整するため定常的に電流を流す必要がある。このため、遅延時間の制御を低電力で行うことが困難である。
さらに、参照電圧と容量性D/A変換器とを接続するスイッチのうち、中間電位と接続するスイッチがある。この中間電位と接続するスイッチに使用されるトランジスタは、ゲート-ソース間の電位VGSが十分にかけられないが故にオン抵抗が高い。そこで、オン抵抗を下げる手段として、昇圧によってVGSを十分にかけてオン抵抗を下げる技術が存在する。しかし、昇圧により電源電圧以上の電圧が掛かると、動作時にトランジスタの破壊や劣化が起こる可能性があり、トランジスタに対して信頼性が考慮されていない。
本開示はこのような事情に鑑みてなされたもので、比較的簡易な回路構成で、遅延時間の調整を行うことができ、しかもスイッチのオン抵抗を下げ、消費電力、面積の大幅な低減が可能な逐次比較型アナログ/デジタル変換器を提供することを目的とする。
本開示の一態様は、入力されるアナログ信号の信号レベルに応じた電荷を蓄積して当該アナログ信号の信号レベルに応じた2つのアナログ入力電圧をサンプリングする容量性デジタル/アナログ変換器と、内部クロック信号に基づいて、前記2つのアナログ入力電圧の一方が他方より高いか否かを判定するコンパレータと、前記コンパレータから出力される判定結果に応じたビットをデジタル信号として保持して出力する保持部と、前記コンパレータの出力に基づいて、前記内部クロック信号を生成する信号生成部と、互いに遅延量が異なり、前記信号生成部から出力される内部クロック信号を遅延する複数系統の遅延回路と、前記複数系統の遅延回路の出力を前記コンパレータへ選択的に導出する切替回路とを備える逐次比較型アナログ/デジタル変換器である。
本開示の他の一態様は、入力されるアナログ信号の信号レベルに応じた電荷を蓄積して当該アナログ信号の信号レベルに応じた2つのアナログ入力電圧をサンプリングする容量性デジタル/アナログ変換器と、内部クロック信号に基づいて、前記2つのアナログ入力電圧の一方が他方より高いか否かを判定するコンパレータと、前記コンパレータから出力される判定結果に応じたビットをデジタル信号として保持して出力する保持部と、前記容量性デジタル/アナログ変換器の容量に印加する高圧の電位と低圧の電位との中間の電位を参照電圧として発生する参照電圧発生部と、前記容量性デジタル/アナログ変換器の容量と、前記参照電圧発生部とを接続するブートストラップスイッチとを備える逐次比較型アナログ/デジタル変換器である。
本開示の他の一態様は、入力されるアナログ信号の信号レベルに応じた電荷を蓄積して当該アナログ信号の信号レベルに応じた2つのアナログ入力電圧をサンプリングする容量性デジタル/アナログ変換器と、内部クロック信号に基づいて、前記2つのアナログ入力電圧の一方が他方より高いか否かを判定するコンパレータと、前記コンパレータから出力される判定結果に応じたビットをデジタル信号として保持して出力する保持部と、前記コンパレータの出力に基づいて、前記内部クロック信号を生成する信号生成部と、互いに遅延量が異なり、前記信号生成部から出力される内部クロック信号を遅延する複数系統の遅延回路と、前記複数系統の遅延回路の出力を前記コンパレータへ選択的に導出する切替回路と、前記容量性デジタル/アナログ変換器の容量に印加する高圧の電位と低圧の電位との中間の電位を参照電圧として発生する参照電圧発生部と、前記容量性デジタル/アナログ変換器の容量と、前記参照電圧発生部とを接続するブートストラップスイッチとを備える逐次比較型アナログ/デジタル変換器である。
以下において、図面を参照して本開示の実施形態を説明する。以下の説明で参照する図面の記載において、同一又は類似の部分には同一又は類似の符号を付し、重複する説明を省略する。
なお、本明細書中に記載される効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
なお、本明細書中に記載される効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
<第1の実施形態>
<逐次比較型AD変換器の全体構成>
本開示の第1の実施形態に係る逐次比較型AD変換器1は、図1に示すように、容量性デジタル/アナログ変換器(CDAC)10と、コンパレータ20と、逐次比較レジスタ(SAR:Successive Approximation Register)ロジック部30と、内部タイミングパス部40と、参照電圧回路50と、参照電圧回路50から出力される電圧によってCDAC10を動作させるための複数系統の駆動回路60とを備え、アナログ信号VinをNビット(Nは任意の整数)のデジタル信号に変換するものである。
<逐次比較型AD変換器の全体構成>
本開示の第1の実施形態に係る逐次比較型AD変換器1は、図1に示すように、容量性デジタル/アナログ変換器(CDAC)10と、コンパレータ20と、逐次比較レジスタ(SAR:Successive Approximation Register)ロジック部30と、内部タイミングパス部40と、参照電圧回路50と、参照電圧回路50から出力される電圧によってCDAC10を動作させるための複数系統の駆動回路60とを備え、アナログ信号VinをNビット(Nは任意の整数)のデジタル信号に変換するものである。
CDAC10は、アナログ信号Vinの信号レベルに応じた電荷を蓄積してアナログ信号Vinの信号レベルに応じたアナログ電圧Vsをサンプリングしてコンパレータ20に入力する。ここで、アナログ信号Vinは、例えば差動信号であり、正相入力電圧Vinpと逆相入力電圧Vinmとを含む。なお、アナログ信号は、差動信号でなくシングルエンド信号でもよい。この場合、CDAC10には、差動信号の代わりに、シングルエンド信号と参照電圧とが入力される。コンパレータ20は、内部クロック信号に同期して、正相入力電圧Vinp及び逆相入力電圧Vinmを比較し、それらの一方が他方より高いか否かを判定するものである。このコンパレータ20は、正相入力電圧Vinp及び逆相入力電圧Vinmからなる判定結果を生成してSARロジック部30に出力する。
SARロジック部30は、切替信号生成部31と、NOR回路32と、データ保持部33とを備えている。そして、SARロジック部30は、コンパレータ20から出力される判定結果をNOR回路32に入力するとともに、データ保持部33に入力する。NOR回路32は、コンパレータ20の出力を基に比較終了判定フラグ信号を内部クロック信号として生成して切替信号生成部31及び内部タイミングパス部40に出力する。データ保持部33は、切替信号生成部31からの信号に基づいて、コンパレータ20からの判定結果を示すビットを生成して保持するものである。データ保持部33は、保持したビットを、複数系統の駆動回路60の制御部64に出力する。
駆動回路60は、制御部64により生成される電圧制御信号により正相入力電圧Vinp及び逆相入力電圧Vinmを制御するものである。
駆動回路60は、制御部64により生成される電圧制御信号により正相入力電圧Vinp及び逆相入力電圧Vinmを制御するものである。
<CDACの構成>
図2は、CDAC10の回路構成の一例を示している。CDAC10は、正相側スイッチ111及び逆相側スイッチ112と、正相側コンデンサ131乃至13iと、逆相側コンデンサ141乃至14iとを備える。なお、iは、アナログ信号VinをNビットのデジタル信号に変換する場合、N-1までのコンデンサの並列数となる。
正相側スイッチ111は、別途提供されるサンプリングクロック信号に従って、正相入力電圧Vinpを正相側コンデンサ131乃至13iに入力するものである。正相側スイッチ111の一端は、正相側コンデンサ131乃至13iとコンパレータ20の非反転入力端子とに接続される。
図2は、CDAC10の回路構成の一例を示している。CDAC10は、正相側スイッチ111及び逆相側スイッチ112と、正相側コンデンサ131乃至13iと、逆相側コンデンサ141乃至14iとを備える。なお、iは、アナログ信号VinをNビットのデジタル信号に変換する場合、N-1までのコンデンサの並列数となる。
正相側スイッチ111は、別途提供されるサンプリングクロック信号に従って、正相入力電圧Vinpを正相側コンデンサ131乃至13iに入力するものである。正相側スイッチ111の一端は、正相側コンデンサ131乃至13iとコンパレータ20の非反転入力端子とに接続される。
逆相側スイッチ112は、別途提供されるサンプリングクロック信号に従って、逆相入力電圧Vinmを逆相側コンデンサ141乃至14iに入力するものである。逆相側スイッチ112の一端は、逆相側コンデンサ141乃至14iとコンパレータ20の反転入力端子とに接続される。
正相側スイッチ111及び逆相側スイッチ112は、サンプリングクロック信号に従って、端子間を開閉する。
正相側スイッチ111及び逆相側スイッチ112は、サンプリングクロック信号に従って、端子間を開閉する。
駆動回路60は、制御部64から出力される電圧制御信号に従って正相側コンデンサ131乃至13iに、異なる3つの参照電圧のいずれかを接続するものである。低い方のリファレンスBottom電圧VRBとして、例えば、接地電圧と同じまたは接地電圧より高い電圧が参照される。高い方のリファレンスTOP電圧VRTとして、例えば、電源電圧と同じまたは電源電圧より低い電圧が参照される。また、電圧制御信号は、それぞれ1ビットの電圧制御信号を含む。
また、駆動回路60は、制御部64から出力される電圧制御信号に従って逆相側コンデンサ141乃至14iに、異なる3つの参照電圧のいずれかを接続するものである。
また、駆動回路60は、制御部64から出力される電圧制御信号に従って逆相側コンデンサ141乃至14iに、異なる3つの参照電圧のいずれかを接続するものである。
所定の単位容量をC0とした場合、正相側コンデンサ131及び逆相側コンデンサ141の容量値は、例えば、2N-1×C0である。ここで、例えば、アナログ信号を12ビットのデジタル信号に変換する場合、正相側コンデンサ131及び逆相側コンデンサ141の容量値は、2048C0であり、正相側コンデンサ132及び逆相側コンデンサ142の容量値は、例えば、1024C0であり、正相側コンデンサ133及び逆相側コンデンサ143の容量値は、例えば、512C0である。
<内部タイミングパス部の構成>
内部タイミングパス部40は、系統NL1に設けられる遅延回路411と、系統NL2に設けられる遅延回路412と、系統NL3に設けられる遅延回路413と、切替器42と、切替制御部43とを備えている。遅延回路411は、所定の遅延量を有する1個のバッファと、CDAC10の上位ビットのセトリング時間相当の遅延量を有する4個のインバータを直列接続している。遅延回路412は、所定の遅延量を有する1個のバッファと、CDAC10の中位ビットのセトリング時間相当の遅延量を有する2個のインバータとを直列接続している。遅延回路413は、所定の遅延量を有する1個のバッファを接続している。これにより、遅延回路411,412,413は、互いに遅延量が異なる。
内部タイミングパス部40は、系統NL1に設けられる遅延回路411と、系統NL2に設けられる遅延回路412と、系統NL3に設けられる遅延回路413と、切替器42と、切替制御部43とを備えている。遅延回路411は、所定の遅延量を有する1個のバッファと、CDAC10の上位ビットのセトリング時間相当の遅延量を有する4個のインバータを直列接続している。遅延回路412は、所定の遅延量を有する1個のバッファと、CDAC10の中位ビットのセトリング時間相当の遅延量を有する2個のインバータとを直列接続している。遅延回路413は、所定の遅延量を有する1個のバッファを接続している。これにより、遅延回路411,412,413は、互いに遅延量が異なる。
切替器42は、4個のNAND回路421~424を備えている。NAND回路421には、遅延回路411の出力と、切替制御部43の出力とが入力される。NAND回路422には、遅延回路412の出力と、切替制御部43の出力とが入力される。NAND回路423には、遅延回路413の出力と、切替制御部43の出力とが入力される。NAND回路424には、NAND回路421~423それぞれの出力が入力される。
切替制御部43は、SARロジック部30の切替信号生成部31から出力される切替信号に基づいて、3系統NL1~NL3の出力を内部クロック信号として選択的に導出するように、切替器42を切替制御する。
SARロジック部30の切替信号生成部31は、変換回数がmビット目になった時点で、上記切替制御部43へ切替信号を出力する。
SARロジック部30の切替信号生成部31は、変換回数がmビット目になった時点で、上記切替制御部43へ切替信号を出力する。
<切替信号生成部の構成>
切替信号生成部31は、図5に示すように、2系統のフリップフロップFF01~FFS1,FF02~FFS2を縦続接続している。切替信号生成部31は、NOR回路32から出力される内部クロック信号を2系統のフリップフロップFF01~FFS1,FF02~FFS2のクロック端子に出力する。なお、フリップフロップFF02~FFS2のクロック端子には、内部クロック信号の反転信号が入力される。
切替信号生成部31は、図5に示すように、2系統のフリップフロップFF01~FFS1,FF02~FFS2を縦続接続している。切替信号生成部31は、NOR回路32から出力される内部クロック信号を2系統のフリップフロップFF01~FFS1,FF02~FFS2のクロック端子に出力する。なお、フリップフロップFF02~FFS2のクロック端子には、内部クロック信号の反転信号が入力される。
フリップフロップFF01は、内部クロック信号の立ち上がりエッジに同期して、H(ハイ)レベルの信号を出力するために、電源に接続される。フリップフロップFF11~FFS1は、内部クロック信号の立ち上がりエッジに同期して、H(ハイ)レベルの信号を出力するために、前段の出力端子に接続される。H(ハイ)レベルの信号は、後段のフリップフロップで保持されて出力される。そして、フリップフロップFF31の出力は、切替信号SEL0として切替制御部43に出力される。また、フリップフロップFFS1の入力は、切替信号SEL1として切替制御部43に出力される。
<切替制御部の構成>
切替制御部43は、図6に示すように、NOT回路431と、NOR回路432,433とを備えている。切替信号SEL0は、NOR回路433に入力されるとともに、NOT回路431で反転されてNOR回路432に入力される。切替信号SEL1は、NAND回路423に入力されるとともに、NOR回路432に入力される。NOR回路432の出力は、NAND回路422及びNOR回路433にそれぞれ入力される。NOR回路433の出力は、NAND回路421に入力される。
切替制御部43は、図6に示すように、NOT回路431と、NOR回路432,433とを備えている。切替信号SEL0は、NOR回路433に入力されるとともに、NOT回路431で反転されてNOR回路432に入力される。切替信号SEL1は、NAND回路423に入力されるとともに、NOR回路432に入力される。NOR回路432の出力は、NAND回路422及びNOR回路433にそれぞれ入力される。NOR回路433の出力は、NAND回路421に入力される。
<最上位ビットB0の生成処理>
(CDACの動作)
制御部64は、容量値が32C0の正相側コンデンサ131乃至13i及び逆相側コンデンサ141乃至14iの一端にリファレンス中間電圧VRCを印加する。正相入力電圧Vinp及び逆相入力電圧Vinmに応じた電荷量が正相側コンデンサ131乃至13i及び逆相側コンデンサ141乃至14iに充電され、正相入力電圧Vinp及び逆相入力電圧Vinmがサンプリングされ、コンパレータ20に入力される。
(CDACの動作)
制御部64は、容量値が32C0の正相側コンデンサ131乃至13i及び逆相側コンデンサ141乃至14iの一端にリファレンス中間電圧VRCを印加する。正相入力電圧Vinp及び逆相入力電圧Vinmに応じた電荷量が正相側コンデンサ131乃至13i及び逆相側コンデンサ141乃至14iに充電され、正相入力電圧Vinp及び逆相入力電圧Vinmがサンプリングされ、コンパレータ20に入力される。
コンパレータ20に入力される正相入力電圧Vinp及び逆相入力電圧Vinmには、次式(1)で示すように、セトリング誤差が含まれる。
式(1)において、VREFは正相入力電圧Vinp及び逆相入力電圧Vinmの収束電圧値であり、リファレンス中間電圧VRCとリファレンスTOP電圧VRTとの差の絶対値、もしくはリファレンス中間電圧VRCとリファレンスBottom電圧VRBとの差に相当する。Cは、正相側コンデンサ131乃至13i及び逆相側コンデンサ141乃至14iの容量値である。Rは、正相側コンデンサ131乃至13i及び逆相側コンデンサ141乃至14iと、リファレンスTOP電圧VRT、リファレンス中間電圧VRC及びリファレンスBottom電圧VRBとを接続するスイッチのオン抵抗の抵抗値である。最上位ビットB0の場合、Cは2048C0になる。
tは、時間である。時間tのうち、正相側コンデンサ131乃至13i及び逆相側コンデンサ141乃至14iへの充電開始時から所望の電圧値になるまでの時間がセトリング時間となる。セトリング時間は、逐次比較型AD変換器1の動作において、内部クロックを生成するための遅延時間より短くなくてはならない。
容量値Cは、CDAC10の特性上変更ができないため、時間tまたはスイッチのオン抵抗の抵抗値Rを調整する必要がある。一般的には、時間tは一定であるため、スイッチのオン抵抗の抵抗値Rを調整することになる。しかし、セトリング時間tでセトリングするための最下位ビットのスイッチのオン抵抗を1と考えた場合、最上位ビットB0に必要な抵抗値Rが1/2048となるため、スイッチのサイズが大きくなり、非現実的となる。そこで、第1の実施形態では、時定数が小さい下位ビットB8~B11の必要セトリング精度に対して余剰となる時間を上位ビットB0~B3の時間に振り分けるように、内部クロックを遅延する遅延回路411の遅延時間(遅延量)を、最もセトリング時間を要する最上位ビットB0に合わせて予め設定するようにしている。また、遅延回路412の遅延時間を、中位ビットB4に合わせて予め設定するようにしている。さらに、遅延回路413の遅延時間を、下位ビットB8に合わせて予め設定するようにしている。セトリング時間は、各ビットB0~B11の時定数RCに応じて異なり、最上位ビットB0の場合、時定数が2048C0×Rと最も大きいため、長くなり、中位ビットB4の場合、時定数が128C0×Rと小さいため、短くなり、下位ビットB8の場合、時定数が8C0×Rとさらに小さいため、さらに短くなる。
(内部クロック信号のL(ロー)レベル期間)
コンパレータ20は、内部クロック信号がL(ロー)レベルである場合、NOR回路32の2入力の両方にL(ロー)レベルの信号を入力する。
コンパレータ20は、内部クロック信号がL(ロー)レベルである場合、NOR回路32の2入力の両方にL(ロー)レベルの信号を入力する。
(内部クロック信号のH(ハイ)レベル期間)
コンパレータ20は、内部クロック信号がL(ロー)レベルからH(ハイ)レベルに変化すると、立ち上がりに同期して比較動作を開始し、正相入力電圧Vinp及び逆相入力電圧Vinmの大小関係を判定する。この判定結果は、データ保持部33に出力され、最上位ビットB0として保持される。最上位ビットB0生成後に制御部64は、例えば、正相側よりも入力電圧が高くない逆相側において、容量値が2048C0の逆相側コンデンサ141の接続先をリファレンスBottom電圧VRBに切り替えさせ、正相側コンデンサ131の接続先をリファレンスTOP電圧VRTに切り替えさせる。ここで、コンパレータ20に入力する内部クロック信号を、正相側コンデンサ131及び逆相側コンデンサ141にかかる電圧が所望の電圧値に収束するまでのセトリング時間に相当する時間遅延させてコンパレータ20に出力する必要がある。
コンパレータ20は、内部クロック信号がL(ロー)レベルからH(ハイ)レベルに変化すると、立ち上がりに同期して比較動作を開始し、正相入力電圧Vinp及び逆相入力電圧Vinmの大小関係を判定する。この判定結果は、データ保持部33に出力され、最上位ビットB0として保持される。最上位ビットB0生成後に制御部64は、例えば、正相側よりも入力電圧が高くない逆相側において、容量値が2048C0の逆相側コンデンサ141の接続先をリファレンスBottom電圧VRBに切り替えさせ、正相側コンデンサ131の接続先をリファレンスTOP電圧VRTに切り替えさせる。ここで、コンパレータ20に入力する内部クロック信号を、正相側コンデンサ131及び逆相側コンデンサ141にかかる電圧が所望の電圧値に収束するまでのセトリング時間に相当する時間遅延させてコンパレータ20に出力する必要がある。
そこで、切替制御部43は、系統NL1を選択するように切替器42を制御する。
SARロジック部30のNOR回路32から出力される内部クロック信号は、遅延回路411によりセトリング時間相当に遅延され、切替器42により導出されて、コンパレータ20に出力される。
コンパレータ20は、内部クロック信号がH(ハイ)レベルからL(ロー)レベルに変化すると、その立下りに同期してNOR回路32の2入力にL(ロー)レベルの信号を入力する。
SARロジック部30のNOR回路32から出力される内部クロック信号は、遅延回路411によりセトリング時間相当に遅延され、切替器42により導出されて、コンパレータ20に出力される。
コンパレータ20は、内部クロック信号がH(ハイ)レベルからL(ロー)レベルに変化すると、その立下りに同期してNOR回路32の2入力にL(ロー)レベルの信号を入力する。
<上位ビットB1の生成処理>
最上位ビットB0生成後に、コンパレータ20は、内部クロック信号がL(ロー)レベルからH(ハイ)レベルに変化すると、立ち上がりに同期して比較動作を開始し、正相入力電圧Vinp及び逆相入力電圧Vinmの大小関係を判定する。この判定結果は、データ保持部33に出力され、上位ビットB1として保持される。上位ビットB1生成後に制御部64は、例えば、逆相側よりも入力電圧が高くない正相側において、容量値が1024C0の正相側コンデンサ132の接続先をリファレンスBottom電圧VRBに切り替え、逆相側コンデンサ142の接続先をリファレンスTOP電圧VRTに切り替えさせる。
最上位ビットB0生成後に、コンパレータ20は、内部クロック信号がL(ロー)レベルからH(ハイ)レベルに変化すると、立ち上がりに同期して比較動作を開始し、正相入力電圧Vinp及び逆相入力電圧Vinmの大小関係を判定する。この判定結果は、データ保持部33に出力され、上位ビットB1として保持される。上位ビットB1生成後に制御部64は、例えば、逆相側よりも入力電圧が高くない正相側において、容量値が1024C0の正相側コンデンサ132の接続先をリファレンスBottom電圧VRBに切り替え、逆相側コンデンサ142の接続先をリファレンスTOP電圧VRTに切り替えさせる。
SARロジック部30のNOR回路32から出力される内部クロック信号は、遅延回路411によりセトリング時間相当に遅延され、切替器42により導出されて、コンパレータ20に出力される。
コンパレータ20は、内部クロック信号がH(ハイ)レベルからL(ロー)レベルに変化すると、その立下りに同期してNOR回路32の2入力にL(ロー)レベルの信号を入力する。
以後、上位ビットB2及び上位ビットB3についても、上位ビットB1と同様の生成処理が実行される。
コンパレータ20は、内部クロック信号がH(ハイ)レベルからL(ロー)レベルに変化すると、その立下りに同期してNOR回路32の2入力にL(ロー)レベルの信号を入力する。
以後、上位ビットB2及び上位ビットB3についても、上位ビットB1と同様の生成処理が実行される。
<中位ビットB4の生成処理>
上位ビットB3生成後、切替制御部43は、系統NL2を選択するように切替器42を制御する。
上位ビットB3生成後に、コンパレータ20は、内部クロック信号がL(ロー)レベルからH(ハイ)レベルに変化すると、立ち上がりに同期して比較動作を開始し、正相入力電圧Vinp及び逆相入力電圧Vinmの大小関係を判定する。この判定結果は、データ保持部33に出力され、中位ビットB4として保持される。中位ビットB4生成後に制御部64は、逆相側よりも入力電圧が高くない正相側において、容量値が128C0の正相側コンデンサ135の接続先をリファレンスBottom電圧VRBに切り替えさせ、逆相側コンデンサ145の接続先をリファレンスTOP電圧VRTに切り替えさせる。
上位ビットB3生成後、切替制御部43は、系統NL2を選択するように切替器42を制御する。
上位ビットB3生成後に、コンパレータ20は、内部クロック信号がL(ロー)レベルからH(ハイ)レベルに変化すると、立ち上がりに同期して比較動作を開始し、正相入力電圧Vinp及び逆相入力電圧Vinmの大小関係を判定する。この判定結果は、データ保持部33に出力され、中位ビットB4として保持される。中位ビットB4生成後に制御部64は、逆相側よりも入力電圧が高くない正相側において、容量値が128C0の正相側コンデンサ135の接続先をリファレンスBottom電圧VRBに切り替えさせ、逆相側コンデンサ145の接続先をリファレンスTOP電圧VRTに切り替えさせる。
ここで、コンパレータ20に入力する内部クロック信号を、正相側コンデンサ135及び逆相側コンデンサ145にかかる電圧が所望の電圧値に収束するまでのセトリング時間に相当する時間遅延させてコンパレータ20に出力する必要がある。中位ビットB4の時定数は128C0×Rであり、最上位ビットB0の時定数2048C0×R、上位ビットB1の時定数1024C0×R、上位ビットB2の時定数512C0×R、上位ビットB3の時定数256C0×Rと比較すると、小さくなり、セトリング時間は短くてすむ。
SARロジック部30のNOR回路32から出力される内部クロック信号は、遅延回路412によりセトリング時間相当に遅延され、切替器42により導出されて、コンパレータ20に出力される。
コンパレータ20は、内部クロック信号がH(ハイ)レベルからL(ロー)レベルに変化すると、その立下りに同期してNOR回路32の2入力の両方にL(ロー)レベルの信号を入力する。
コンパレータ20は、内部クロック信号がH(ハイ)レベルからL(ロー)レベルに変化すると、その立下りに同期してNOR回路32の2入力の両方にL(ロー)レベルの信号を入力する。
<中位ビットB5の生成処理>
中位ビットB4生成後に、コンパレータ20は、内部クロック信号がL(ロー)レベルからH(ハイ)レベルに変化すると、立ち上がりに同期して比較動作を開始し、正相入力電圧Vinp及び逆相入力電圧Vinmの大小関係を判定する。この判定結果は、データ保持部33に出力され、中位ビットB5として保持される。中位ビットB5生成後に制御部64は、例えば、逆相側よりも入力電圧が高くない正相側において、容量値が64C0の正相側コンデンサ136の接続先をリファレンスBottom電圧VRBに切り替え、逆相側コンデンサ146の接続先をリファレンスTOP電圧VRTに切り替えさせる。
中位ビットB4生成後に、コンパレータ20は、内部クロック信号がL(ロー)レベルからH(ハイ)レベルに変化すると、立ち上がりに同期して比較動作を開始し、正相入力電圧Vinp及び逆相入力電圧Vinmの大小関係を判定する。この判定結果は、データ保持部33に出力され、中位ビットB5として保持される。中位ビットB5生成後に制御部64は、例えば、逆相側よりも入力電圧が高くない正相側において、容量値が64C0の正相側コンデンサ136の接続先をリファレンスBottom電圧VRBに切り替え、逆相側コンデンサ146の接続先をリファレンスTOP電圧VRTに切り替えさせる。
SARロジック部30のNOR回路32から出力される内部クロック信号は、遅延回路412によりセトリング時間相当に遅延され、切替器42により導出されて、コンパレータ20に出力される。
コンパレータ20は、内部クロック信号がH(ハイ)レベルからL(ロー)レベルに変化すると、その立下りに同期してNOR回路32の2入力の両方にL(ロー)レベルの信号を入力する。
以後、中位ビットB6及び中位ビットB7についても、中位ビットB5と同様の生成処理が実行される。
コンパレータ20は、内部クロック信号がH(ハイ)レベルからL(ロー)レベルに変化すると、その立下りに同期してNOR回路32の2入力の両方にL(ロー)レベルの信号を入力する。
以後、中位ビットB6及び中位ビットB7についても、中位ビットB5と同様の生成処理が実行される。
<下位ビットB8の生成処理>
中位ビットB7生成後、切替制御部43は、系統NL3を選択するように切替器42を制御する。
中位ビットB7生成後に、コンパレータ20は、内部クロック信号がL(ロー)レベルからH(ハイ)レベルに変化すると、立ち上がりに同期して比較動作を開始し、正相入力電圧Vinp及び逆相入力電圧Vinmの大小関係を判定する。この判定結果は、データ保持部33に出力され、下位ビットB8として保持される。また、下位ビットB8生成後に制御部64は、逆相側よりも入力電圧が高くない正相側において、容量値が8C0の正相側コンデンサ139の接続先をリファレンスBottom電圧VRBに切り替えさせ、逆相側コンデンサ149の接続先をリファレンスTOP電圧VRTに切り替えさせる。
中位ビットB7生成後、切替制御部43は、系統NL3を選択するように切替器42を制御する。
中位ビットB7生成後に、コンパレータ20は、内部クロック信号がL(ロー)レベルからH(ハイ)レベルに変化すると、立ち上がりに同期して比較動作を開始し、正相入力電圧Vinp及び逆相入力電圧Vinmの大小関係を判定する。この判定結果は、データ保持部33に出力され、下位ビットB8として保持される。また、下位ビットB8生成後に制御部64は、逆相側よりも入力電圧が高くない正相側において、容量値が8C0の正相側コンデンサ139の接続先をリファレンスBottom電圧VRBに切り替えさせ、逆相側コンデンサ149の接続先をリファレンスTOP電圧VRTに切り替えさせる。
SARロジック部30のNOR回路32から出力される内部クロック信号は、遅延回路413により遅延され、切替器42により導出されて、コンパレータ20に出力される。なお、下位ビットB8の時定数は8C0×Rであり、最上位ビットB0の時定数2048C0×R、中位ビットB4の時定数128C0×Rと比較すると、最も小さくなり、このため、遅延回路413に1個のバッファを備えるだけでよい。
コンパレータ20は、内部クロック信号がH(ハイ)レベルからL(ロー)レベルに変化すると、その立下りに同期してNOR回路32の2入力の両方にL(ロー)レベルの信号を入力する。
コンパレータ20は、内部クロック信号がH(ハイ)レベルからL(ロー)レベルに変化すると、その立下りに同期してNOR回路32の2入力の両方にL(ロー)レベルの信号を入力する。
<下位ビットB9の生成処理>
下位ビットB8生成後に、コンパレータ20は、内部クロック信号がL(ロー)レベルからH(ハイ)レベルに変化すると、立ち上がりに同期して比較動作を開始し、正相入力電圧Vinp及び逆相入力電圧Vinmの大小関係を判定する。この判定結果は、データ保持部33に出力され、下位ビットB9として保持される。下位ビットB9生成後に制御部64は、例えば、逆相側よりも入力電圧が高くない正相側において、容量値が4C0の正相側コンデンサ1310の接続先をリファレンスBottom電圧VRBに切り替え、逆相側コンデンサ1410の接続先をリファレンスTOP電圧VRTに切り替えさせる。
下位ビットB8生成後に、コンパレータ20は、内部クロック信号がL(ロー)レベルからH(ハイ)レベルに変化すると、立ち上がりに同期して比較動作を開始し、正相入力電圧Vinp及び逆相入力電圧Vinmの大小関係を判定する。この判定結果は、データ保持部33に出力され、下位ビットB9として保持される。下位ビットB9生成後に制御部64は、例えば、逆相側よりも入力電圧が高くない正相側において、容量値が4C0の正相側コンデンサ1310の接続先をリファレンスBottom電圧VRBに切り替え、逆相側コンデンサ1410の接続先をリファレンスTOP電圧VRTに切り替えさせる。
SARロジック部30のNOR回路32から出力される内部クロック信号は、遅延回路413により遅延され、切替器42により導出されて、コンパレータ20に出力される。
コンパレータ20は、内部クロック信号がH(ハイ)レベルからL(ロー)レベルに変化すると、その立下りに同期してNOR回路32の2入力の両方にL(ロー)レベルの信号を入力する。
以後、下位ビットB10についても、下位ビットB9と同様の生成処理が実行される。
コンパレータ20は、内部クロック信号がH(ハイ)レベルからL(ロー)レベルに変化すると、その立下りに同期してNOR回路32の2入力の両方にL(ロー)レベルの信号を入力する。
以後、下位ビットB10についても、下位ビットB9と同様の生成処理が実行される。
<最下位ビットB11の生成処理>
下位ビットB10生成後に、コンパレータ20は、内部クロック信号がL(ロー)レベルからH(ハイ)レベルに変化すると、立ち上がりに同期して比較動作を開始し、正相入力電圧Vinp及び逆相入力電圧Vinmの大小関係を判定する。この判定結果は、データ保持部33に出力され、最下位ビットB11として保持される。最下位ビットB11生成後に制御部64は、例えば、逆相側よりも入力電圧が高くない正相側において、容量値がC0の正相側コンデンサ1312の接続先をリファレンスBottom電圧VRBに切り替え、逆相側コンデンサ1412の接続先をリファレンスTOP電圧VRTに切り替えさせる。
なお、AD変換の分解能を12ビットとして説明したが、分解能は12ビットに限定されない。
下位ビットB10生成後に、コンパレータ20は、内部クロック信号がL(ロー)レベルからH(ハイ)レベルに変化すると、立ち上がりに同期して比較動作を開始し、正相入力電圧Vinp及び逆相入力電圧Vinmの大小関係を判定する。この判定結果は、データ保持部33に出力され、最下位ビットB11として保持される。最下位ビットB11生成後に制御部64は、例えば、逆相側よりも入力電圧が高くない正相側において、容量値がC0の正相側コンデンサ1312の接続先をリファレンスBottom電圧VRBに切り替え、逆相側コンデンサ1412の接続先をリファレンスTOP電圧VRTに切り替えさせる。
なお、AD変換の分解能を12ビットとして説明したが、分解能は12ビットに限定されない。
<駆動回路のスイッチの構成>
複数系統の駆動回路60には、参照電圧回路50の中間電圧と、CDAC10とを接続するブートストラップスイッチ回路61と、参照電圧回路50の高位電圧と、CDAC10とを接続する高位側スイッチ62と、参照電圧回路50の低位電圧と、CDAC10とを接続する低位側スイッチ63と、制御部64とを備えている。制御部64は、駆動回路60全体を統括的に制御するもので、ブートストラップスイッチ回路61、高位側スイッチ62、及び低位側スイッチ63それぞれの切替制御を行う。
複数系統の駆動回路60には、参照電圧回路50の中間電圧と、CDAC10とを接続するブートストラップスイッチ回路61と、参照電圧回路50の高位電圧と、CDAC10とを接続する高位側スイッチ62と、参照電圧回路50の低位電圧と、CDAC10とを接続する低位側スイッチ63と、制御部64とを備えている。制御部64は、駆動回路60全体を統括的に制御するもので、ブートストラップスイッチ回路61、高位側スイッチ62、及び低位側スイッチ63それぞれの切替制御を行う。
高位側スイッチ62は、P型MOS(PMOS)構成である。低位側スイッチ63は、N型MOS(NMOS)構成である。なお、高位側スイッチ62及び低位側スイッチ63は、ブートストラップスイッチ回路であってもよい。
<比較例>
以前では、図3に示すように、中間電位にCMOSスイッチが用いられていた。CMOSスイッチは、中間電位で使用する場合、N型MOSのみ、P型MOSのみのスイッチよりもオン抵抗が低いが、逐次比較型AD変換器で使用する場合には、さらにオン抵抗を下げなければならない場合がある。この場合、CMOSスイッチでは、オン抵抗を下げるために、スイッチのサイズを大きくする必要がある一方で、その結果、面積と消費電力が大幅に増加してしまう。
以前では、図3に示すように、中間電位にCMOSスイッチが用いられていた。CMOSスイッチは、中間電位で使用する場合、N型MOSのみ、P型MOSのみのスイッチよりもオン抵抗が低いが、逐次比較型AD変換器で使用する場合には、さらにオン抵抗を下げなければならない場合がある。この場合、CMOSスイッチでは、オン抵抗を下げるために、スイッチのサイズを大きくする必要がある一方で、その結果、面積と消費電力が大幅に増加してしまう。
一方、図4に示すスイッチ回路も考えられている。このスイッチ回路は、スイッチ素子M2のオン抵抗を下げるために、容量C2を充電してスイッチ素子M2のゲート電圧を電源電圧以上に大きくできるが、容量C2に充電するためには容量C1が必要となり、結果、面積と電力が大きくなる。
<第1の実施形態による対策>
図1に戻って、参照電圧回路50は、基準電圧源51と、分圧回路52と、バッファ回路53,54とを備える。分圧回路52は、抵抗Ra,Rbを直列接続した構成であり、基準電圧源51から発生する基準電圧を分圧出力する。バッファ回路53は、基準電圧源51から発生する基準電圧をリファレンスTOP電圧VRTとして駆動回路60に出力する。バッファ回路54は、分圧回路52で分圧された電圧を中位の電圧となるリファレンス中間電圧VRCとして駆動回路60に出力する。これにより、参照電圧回路50からリファレンスTOP電圧VRT、リファレンス中間電圧VRC及びリファレンスBottom電圧VRBが出力されることになる。
図1に戻って、参照電圧回路50は、基準電圧源51と、分圧回路52と、バッファ回路53,54とを備える。分圧回路52は、抵抗Ra,Rbを直列接続した構成であり、基準電圧源51から発生する基準電圧を分圧出力する。バッファ回路53は、基準電圧源51から発生する基準電圧をリファレンスTOP電圧VRTとして駆動回路60に出力する。バッファ回路54は、分圧回路52で分圧された電圧を中位の電圧となるリファレンス中間電圧VRCとして駆動回路60に出力する。これにより、参照電圧回路50からリファレンスTOP電圧VRT、リファレンス中間電圧VRC及びリファレンスBottom電圧VRBが出力されることになる。
ブートストラップスイッチ回路61は、スイッチ素子M1,M2,M4,M6,M7,M8と、容量Cbと、クランプ回路M3,M5,M9により構成されている。スイッチ素子M1,M2,M4,M6,M7,M8は、例えばMOSFETにより構成される。クランプ回路M3,M5,M9は、例えばMOSFETにより構成される。クランプ回路M3は、昇圧時にスイッチ素子M2を保護するための回路である。クランプ回路M5は、昇圧時にスイッチ素子M4を保護するための回路である。クランプ回路M9は、昇圧時にスイッチ素子M8を保護するための回路である。
制御部64から出力される制御信号がL(ロー)レベルの時に、NOT回路614の出力がH(ハイ)レベルになり、スイッチ素子M2,M7,M8がオンになり、容量Cbに充電が行われる。なお、制御部64から出力される制御信号がL(ロー)レベルの時、スイッチ素子M1,M4,M6はオフである。制御部64から出力される制御信号がH(ハイ)レベルの時に、スイッチ素子M4,M6がオンになる。このとき、容量Cbに充電された電圧分VRCを上乗せした電圧がスイッチ素子M1のゲート電極にかかるため、スイッチ素子M1のVGSが電源電圧VDDとなりオン抵抗が下がる。これにより、参照電圧回路50から出力されるリファレンンス中間電圧VRCが、CDAC10に入力されることになり、CDAC10の正相側コンデンサ131乃至13i及び逆相側コンデンサ141乃至14iを低インピーダンスで接続することができる。
<第1の実施形態による作用効果>
以上のように第1の実施形態によれば、内部クロック信号の生成方法として、遅延量の異なる遅延回路411,412,413を系統ごとに用意して個別に選択したことで、スイッチサイズを小さくすることができるので低電力化が図れる。また、中間の電位をリファレンス中間電圧VRCとして使用する場合に、N型MOSのみ、P型MOSのみのスイッチよりもオン抵抗が低いCMOSスイッチを使用する方法が考えられるが、CMOSスイッチを使用してもオン抵抗が高いため、ブートストラップスイッチ回路61による昇圧でオン抵抗を下げることで、消費電力及び面積の大幅な低減が可能となる。
以上のように第1の実施形態によれば、内部クロック信号の生成方法として、遅延量の異なる遅延回路411,412,413を系統ごとに用意して個別に選択したことで、スイッチサイズを小さくすることができるので低電力化が図れる。また、中間の電位をリファレンス中間電圧VRCとして使用する場合に、N型MOSのみ、P型MOSのみのスイッチよりもオン抵抗が低いCMOSスイッチを使用する方法が考えられるが、CMOSスイッチを使用してもオン抵抗が高いため、ブートストラップスイッチ回路61による昇圧でオン抵抗を下げることで、消費電力及び面積の大幅な低減が可能となる。
また、第1の実施形態によれば、切替信号生成部31によって、予め定められたビットになった時点で、自動的に遅延回路411,412,413を切り替えることができる。
さらに、第1の実施形態によれば、ブートストラップスイッチ回路61は電圧を定格以上に昇圧するので、回路の信頼性に対しリスクが存在することになり、このため、クランプ回路M3,M5,M9を追加することで、トランジスタの破壊や劣化を防ぎ、信頼性の向上を図ることができる。
さらに、第1の実施形態によれば、ブートストラップスイッチ回路61は電圧を定格以上に昇圧するので、回路の信頼性に対しリスクが存在することになり、このため、クランプ回路M3,M5,M9を追加することで、トランジスタの破壊や劣化を防ぎ、信頼性の向上を図ることができる。
なお、第1の実施形態において、遅延回路411,412,413を、遅延量を任意に設定可能な可変遅延回路としてもよい。このようにすれば、個別の系統ごとに遅延時間調整を行うことができる。
<第1の実施形態の第1の変形例>
図7は、本開示の第1の実施形態の第1の変形例として、切替信号生成部31Aの回路構成を示している。図7において、上記図5と同一部分には、同一符号を付して詳細な説明を省略する。
図7は、本開示の第1の実施形態の第1の変形例として、切替信号生成部31Aの回路構成を示している。図7において、上記図5と同一部分には、同一符号を付して詳細な説明を省略する。
フリップフロップFF02,FF12は、内部クロック信号の立ち下がりエッジに同期して、H(ハイ)レベルの信号を出力するために、電源に接続される。フリップフロップFF22~FFS2は、内部クロック信号の立ち下がりエッジに同期して、H(ハイ)レベルの信号を出力するために、前段の出力端子に接続される。H(ハイ)レベルの信号は、後段のフリップフロップで保持されて出力される。そして、フリップフロップFF32の出力は、切替信号SEL0として切替制御部43に出力される。また、フリップフロップFFS2の入力は、切替信号SEL1として切替制御部43に出力される。
このような第1の変形例であっても、上記第1の実施形態と同様の作用効果が得られる。
このような第1の変形例であっても、上記第1の実施形態と同様の作用効果が得られる。
<第1の実施形態の第2の変形例>
図8は、本開示の第1の実施形態の第2の変形例として、切替信号生成部31Bの回路構成を示している。図8において、上記図5と同一部分には、同一符号を付して詳細な説明を省略する。
切替信号生成部31Bは、1系統のフリップフロップFF01~FFS1のみを縦続接続している。
このような第2の変形例であっても、上記第1の実施形態と同様の作用効果が得られる。
図8は、本開示の第1の実施形態の第2の変形例として、切替信号生成部31Bの回路構成を示している。図8において、上記図5と同一部分には、同一符号を付して詳細な説明を省略する。
切替信号生成部31Bは、1系統のフリップフロップFF01~FFS1のみを縦続接続している。
このような第2の変形例であっても、上記第1の実施形態と同様の作用効果が得られる。
<第1の実施形態の第3の変形例>
図9は、本開示の第1の実施形態の第3の変形例として、切替信号生成部31Cの回路構成を示している。
切替信号生成部31Cは、カウンタ311と、AND回路312,313とを備えている。カウンタ311は、サンプル毎に、リセット信号がカウンタ311のリセット端子に入力されてカウント値「0」に初期化される。内部クロック信号は、カウンタ311のクロック端子に入力される。
図9は、本開示の第1の実施形態の第3の変形例として、切替信号生成部31Cの回路構成を示している。
切替信号生成部31Cは、カウンタ311と、AND回路312,313とを備えている。カウンタ311は、サンプル毎に、リセット信号がカウンタ311のリセット端子に入力されてカウント値「0」に初期化される。内部クロック信号は、カウンタ311のクロック端子に入力される。
カウンタ311は、内部クロック信号の立ち上がりエッジに同期して、何回変換を行ったかをカウントし、カウント値「4」になった時点で、AND回路312から切替信号SEL0を出力させる。また、カウンタ311は、カウント値「9」になった時点で、AND回路313から切替信号SEL1を出力させる。
このような第3の変形例であっても、上記第1の実施形態と同様の作用効果が得られる。
このような第3の変形例であっても、上記第1の実施形態と同様の作用効果が得られる。
<第2の実施形態>
図10は、本開示の第2の実施形態として、内部タイミングパス部40Aの回路構成を示している。
内部タイミングパス部40Aは、3系統NL1~NL3のうち2系統NL2,NL3に設けられる遅延回路711,712,713と、切替器72と、切替制御部73とを備えている。遅延回路711は、所定の遅延量を有するバッファと、CDAC10の上位ビットのセトリング時間相当の遅延量を有する4個のインバータを直列接続している。遅延回路712は、所定の遅延量を有するバッファと、CDAC10の中位ビットのセトリング時間相当の遅延量を有する2個のインバータを直列接続している。遅延回路713は、所定の遅延量を有するバッファを接続している。これにより、遅延回路711,712,713は、互いに遅延量が異なる。
図10は、本開示の第2の実施形態として、内部タイミングパス部40Aの回路構成を示している。
内部タイミングパス部40Aは、3系統NL1~NL3のうち2系統NL2,NL3に設けられる遅延回路711,712,713と、切替器72と、切替制御部73とを備えている。遅延回路711は、所定の遅延量を有するバッファと、CDAC10の上位ビットのセトリング時間相当の遅延量を有する4個のインバータを直列接続している。遅延回路712は、所定の遅延量を有するバッファと、CDAC10の中位ビットのセトリング時間相当の遅延量を有する2個のインバータを直列接続している。遅延回路713は、所定の遅延量を有するバッファを接続している。これにより、遅延回路711,712,713は、互いに遅延量が異なる。
切替制御部73は、図11に示す真理値テーブル731に基づいて、3系統NL1~NL3の出力を内部クロック信号として選択的に導出するように、切替器72を切替制御する。真理値テーブル731には、切替信号生成部31から出力される切替信号1が「0」を示し、切替信号2が「0」を示す場合に、系統NL1(タイミングパス1)を選択させ、切替信号1が「0」を示し、切替信号2が「1」を示す場合に、系統NL2(タイミングパス2)を選択させ、切替信号1が「1」を示し、切替信号2が「1」を示す場合に、系統NL3(タイミングパス3)を選択させる情報が記憶されている。
<第2の実施形態の作用効果>
以上のように第2の実施形態であっても、上記第1の実施形態と同様の作用効果が得られる。
以上のように第2の実施形態であっても、上記第1の実施形態と同様の作用効果が得られる。
<第3の実施形態>
図12は、本開示の第3の実施形態として、ブートストラップスイッチ回路61Aの回路構成を示している。
ブートストラップスイッチ回路61Aは、PMOS構成で、スイッチ素子M11,M21,M41,M61,M71,M81と、容量Cb1と、クランプ回路M31,M51,M91とにより構成されている。クランプ回路M31は、昇圧時にスイッチ素子M21を保護する回路である。また、クランプ回路M51は、スイッチ素子M41を保護する回路である。さらに、クランプ回路M91は、スイッチ素子M81を保護する回路である。
図12は、本開示の第3の実施形態として、ブートストラップスイッチ回路61Aの回路構成を示している。
ブートストラップスイッチ回路61Aは、PMOS構成で、スイッチ素子M11,M21,M41,M61,M71,M81と、容量Cb1と、クランプ回路M31,M51,M91とにより構成されている。クランプ回路M31は、昇圧時にスイッチ素子M21を保護する回路である。また、クランプ回路M51は、スイッチ素子M41を保護する回路である。さらに、クランプ回路M91は、スイッチ素子M81を保護する回路である。
制御部64から出力される制御信号がH(ハイ)レベルの時に、NOT回路84,85の出力がL(ロー)レベルになり、スイッチ素子M21,M71,M81がオンになり、容量Cb1に充電が行われる。なお、制御部64から出力される制御信号がH(ハイ)レベルの時、スイッチ素子M11,M41,M61はオフである。制御部64から出力される制御信号がL(ロー)レベルの時に、スイッチ素子M11,M41,M61がオンになる。このとき、容量Cb1に充電された電圧分VRCを上乗せした電圧がスイッチ素子M11のゲート電極にかかるため、スイッチ素子M11のVSGが電源電圧VDDとなりオン抵抗が下がる。
<第3の実施形態の作用効果>
以上のように第3の実施形態であっても、上記第1の実施形態と同様の作用効果が得られる。
以上のように第3の実施形態であっても、上記第1の実施形態と同様の作用効果が得られる。
<第4の実施形態>
図13は、本開示の第4の実施形態として、ブートストラップスイッチ回路61Bの回路構成を示している。図13において、上記図1と同一部分には、同一符号を付して詳細な説明を省略する。
ブートストラップスイッチ回路61Bは、NMOS構成で、リセット信号が入力されるOR回路91をさらに備えている。OR回路91は、初期時に、制御部64から出力される制御信号の反転信号と、リセット信号との論理和をスイッチ素子M8のゲート電極に出力する。なお、制御信号の反転信号は、NOT回路614から出力される。
図13は、本開示の第4の実施形態として、ブートストラップスイッチ回路61Bの回路構成を示している。図13において、上記図1と同一部分には、同一符号を付して詳細な説明を省略する。
ブートストラップスイッチ回路61Bは、NMOS構成で、リセット信号が入力されるOR回路91をさらに備えている。OR回路91は、初期時に、制御部64から出力される制御信号の反転信号と、リセット信号との論理和をスイッチ素子M8のゲート電極に出力する。なお、制御信号の反転信号は、NOT回路614から出力される。
<第4の実施形態の作用効果>
以上のように第4の実施形態であっても、上記第1の実施形態と同様の作用効果が得られる。
以上のように第4の実施形態であっても、上記第1の実施形態と同様の作用効果が得られる。
<第5の実施形態>
図14は、本開示の第5の実施形態として、ブートストラップスイッチ回路61Cの回路構成を示している。図14において、上記図12と同一部分には、同一符号を付して詳細な説明を省略する。
ブートストラップスイッチ回路61Cは、PMOS構成で、リセット信号が入力されるNAND回路92をさらに備えている。NAND回路92は、初期時に、制御部64から出力される制御信号と、リセット信号との論理和をスイッチ素子M81のゲート電極に出力する。
<第5の実施形態の作用効果>
以上のように第5の実施形態であっても、上記第1の実施形態と同様の作用効果が得られる。
図14は、本開示の第5の実施形態として、ブートストラップスイッチ回路61Cの回路構成を示している。図14において、上記図12と同一部分には、同一符号を付して詳細な説明を省略する。
ブートストラップスイッチ回路61Cは、PMOS構成で、リセット信号が入力されるNAND回路92をさらに備えている。NAND回路92は、初期時に、制御部64から出力される制御信号と、リセット信号との論理和をスイッチ素子M81のゲート電極に出力する。
<第5の実施形態の作用効果>
以上のように第5の実施形態であっても、上記第1の実施形態と同様の作用効果が得られる。
<第6の実施形態>
図15は、本開示の第6の実施形態として、ブートストラップスイッチ回路61Dの回路構成を示している。図15において、上記図1と同一部分には、同一符号を付して詳細な説明を省略する。
ブートストラップスイッチ回路61Dは、NMOS構成で、クランプ回路M3,M5,M9を設けていない。
<第6の実施形態の作用効果>
以上のように第6の実施形態であれば、クランプ回路M3,M5,M9が無い分、部品点数を削減できる。
図15は、本開示の第6の実施形態として、ブートストラップスイッチ回路61Dの回路構成を示している。図15において、上記図1と同一部分には、同一符号を付して詳細な説明を省略する。
ブートストラップスイッチ回路61Dは、NMOS構成で、クランプ回路M3,M5,M9を設けていない。
<第6の実施形態の作用効果>
以上のように第6の実施形態であれば、クランプ回路M3,M5,M9が無い分、部品点数を削減できる。
<第7の実施形態>
図16は、本開示の第7の実施形態として、ブートストラップスイッチ回路61Eの回路構成を示している。図16において、上記図12と同一部分には、同一符号を付して詳細な説明を省略する。
ブートストラップスイッチ回路61Eは、PMOS構成で、クランプ回路M31,M51,M91を設けていない。
<第7の実施形態の作用効果>
以上のように第7の実施形態であれば、クランプ回路M31,M51,M91が無い分、部品点数を削減できる。
図16は、本開示の第7の実施形態として、ブートストラップスイッチ回路61Eの回路構成を示している。図16において、上記図12と同一部分には、同一符号を付して詳細な説明を省略する。
ブートストラップスイッチ回路61Eは、PMOS構成で、クランプ回路M31,M51,M91を設けていない。
<第7の実施形態の作用効果>
以上のように第7の実施形態であれば、クランプ回路M31,M51,M91が無い分、部品点数を削減できる。
<第8の実施形態>
図17は、本開示の第8の実施形態として、ブートストラップスイッチ回路61Fの回路構成を示している。図17において、上記図13と同一部分には、同一符号を付して詳細な説明を省略する。
ブートストラップスイッチ回路61Fは、NMOS構成で、クランプ回路M3,M5,M9を設けず、OR回路91を設けている。
<第8の実施形態の作用効果>
以上のように第8の実施形態であっても、上記第6の実施形態と同様の作用効果が得られる。
図17は、本開示の第8の実施形態として、ブートストラップスイッチ回路61Fの回路構成を示している。図17において、上記図13と同一部分には、同一符号を付して詳細な説明を省略する。
ブートストラップスイッチ回路61Fは、NMOS構成で、クランプ回路M3,M5,M9を設けず、OR回路91を設けている。
<第8の実施形態の作用効果>
以上のように第8の実施形態であっても、上記第6の実施形態と同様の作用効果が得られる。
<第9の実施形態>
図18は、本開示の第9の実施形態として、ブートストラップスイッチ回路61Gの回路構成を示している。図18において、上記図14と同一部分には、同一符号を付して詳細な説明を省略する。
ブートストラップスイッチ回路61Gは、PMOS構成で、クランプ回路M31,M51,M91を設けず、NAND回路92を設けている。
<第9の実施形態の作用効果>
以上のように第9の実施形態であっても、上記第7の実施形態と同様の作用効果が得られる。
図18は、本開示の第9の実施形態として、ブートストラップスイッチ回路61Gの回路構成を示している。図18において、上記図14と同一部分には、同一符号を付して詳細な説明を省略する。
ブートストラップスイッチ回路61Gは、PMOS構成で、クランプ回路M31,M51,M91を設けず、NAND回路92を設けている。
<第9の実施形態の作用効果>
以上のように第9の実施形態であっても、上記第7の実施形態と同様の作用効果が得られる。
<その他の実施形態>
上記のように、本技術は第1から第9の実施形態及び第1の実施形態の第1の変形例から第3の変形例によって記載したが、この開示の一部をなす論述及び図面は本技術を限定するものであると理解すべきではない。上記の実施形態が開示する技術内容の趣旨を理解すれば、当業者には様々な代替実施形態、実施例及び運用技術が本技術に含まれ得ることが明らかとなろう。また、第1から第9の実施形態及び第1の実施形態の第1の変形例から第3の変形例がそれぞれ開示する構成を、矛盾の生じない範囲で適宜組み合わせることができる。例えば、複数の異なる実施形態がそれぞれ開示する構成を組み合わせてもよく、同一の実施形態の複数の異なる変形例がそれぞれ開示する構成を組み合わせてもよい。
上記のように、本技術は第1から第9の実施形態及び第1の実施形態の第1の変形例から第3の変形例によって記載したが、この開示の一部をなす論述及び図面は本技術を限定するものであると理解すべきではない。上記の実施形態が開示する技術内容の趣旨を理解すれば、当業者には様々な代替実施形態、実施例及び運用技術が本技術に含まれ得ることが明らかとなろう。また、第1から第9の実施形態及び第1の実施形態の第1の変形例から第3の変形例がそれぞれ開示する構成を、矛盾の生じない範囲で適宜組み合わせることができる。例えば、複数の異なる実施形態がそれぞれ開示する構成を組み合わせてもよく、同一の実施形態の複数の異なる変形例がそれぞれ開示する構成を組み合わせてもよい。
なお、本開示は以下のような構成も取ることができる。
(1)
入力されるアナログ信号の信号レベルに応じた電荷を蓄積して当該アナログ信号の信号レベルに応じた2つのアナログ入力電圧をサンプリングする容量性デジタル/アナログ変換器と、
内部クロック信号に基づいて、前記2つのアナログ入力電圧の一方が他方より高いか否かを判定するコンパレータと、
前記コンパレータから出力される判定結果に応じたビットをデジタル信号として保持して出力する保持部と、
前記コンパレータの出力に基づいて、前記内部クロック信号を生成する信号生成部と、
互いに遅延量が異なり、前記信号生成部から出力される内部クロック信号を遅延する複数系統の遅延回路と、
前記複数系統の遅延回路の出力を前記コンパレータへ選択的に導出する切替回路と
を備える逐次比較型アナログ/デジタル変換器。
(2)
予め定められたビット数になった時点で、前記遅延回路を切り替えるための切替信号を前記切替回路に出力する切替信号生成部をさらに備える
前記(1)に記載の逐次比較型アナログ/デジタル変換器。
(3)
前記複数系統の遅延回路のそれぞれは、遅延量を任意に設定可能な可変遅延回路である前記(2)に記載の逐次比較型アナログ/デジタル変換器。
(4)
入力されるアナログ信号の信号レベルに応じた電荷を蓄積して当該アナログ信号の信号レベルに応じた2つのアナログ入力電圧をサンプリングする容量性デジタル/アナログ変換器と、
内部クロック信号に基づいて、前記2つのアナログ入力電圧の一方が他方より高いか否かを判定するコンパレータと、
前記コンパレータから出力される判定結果に応じたビットをデジタル信号として保持して出力する保持部と、
前記容量性デジタル/アナログ変換器の容量に印加する高圧の電位と低圧の電位との中間の電位を参照電圧として発生する参照電圧発生部と、
前記容量性デジタル/アナログ変換器の容量と、前記参照電圧発生部とを接続するブートストラップスイッチと
を備える逐次比較型アナログ/デジタル変換器。
(5)
前記高圧の電位を発生する高圧電位発生部と、
前記前記容量性デジタル/アナログ変換器の容量と、前記高圧電位発生部とを接続する高圧側スイッチと
をさらに備え、
前記高圧側スイッチには、P型MOSまたはブートストラップスイッチを用いる
前記(4)に記載の逐次比較型アナログ/デジタル変換器。
(6)
前記低圧の電位を発生する低圧電位発生部と、
前記前記容量性デジタル/アナログ変換器の容量と、前記低圧電位発生部とを接続する低圧側スイッチと
をさらに備え、
前記低圧側スイッチには、N型MOSまたはブートストラップスイッチを用いる
前記(5)に記載の逐次比較型アナログ/デジタル変換器。
(7)
前記ブートストラップスイッチは、クランプ回路を備える
前記(6)に記載の逐次比較型アナログ/デジタル変換器。
(8)
入力されるアナログ信号の信号レベルに応じた電荷を蓄積して当該アナログ信号の信号レベルに応じた2つのアナログ入力電圧をサンプリングする容量性デジタル/アナログ変換器と、
内部クロック信号に基づいて、前記2つのアナログ入力電圧の一方が他方より高いか否かを判定するコンパレータと、
前記コンパレータから出力される判定結果に応じたビットをデジタル信号として保持して出力する保持部と、
前記コンパレータの出力に基づいて、前記内部クロック信号を生成する信号生成部と、
互いに遅延量が異なり、前記信号生成部から出力される内部クロック信号を遅延する複数系統の遅延回路と、
前記複数系統の遅延回路の出力を前記コンパレータへ選択的に導出する切替回路と、
前記容量性デジタル/アナログ変換器の容量に印加する高圧の電位と低圧の電位との中間の電位を参照電圧として発生する参照電圧発生部と、
前記容量性デジタル/アナログ変換器の容量と、前記参照電圧発生部とを接続するブートストラップスイッチと
を備える逐次比較型アナログ/デジタル変換器。
(9)
予め定められたビット数になった時点で、前記遅延回路を切り替えるための切替信号を前記切替回路に出力する切替信号生成部をさらに備える
前記(8)に記載の逐次比較型アナログ/デジタル変換器。
(10)
前記複数系統の遅延回路のそれぞれは、遅延量を任意に設定可能な可変遅延回路である前記(9)に記載の逐次比較型アナログ/デジタル変換器。
(11)
前記高圧の電位を発生する高圧電位発生部と、
前記前記容量性デジタル/アナログ変換器の容量と、前記高圧電位発生部とを接続する高圧側スイッチと
をさらに備え、
前記高圧側スイッチには、P型MOSまたはブートストラップスイッチを用いる
前記(10)に記載の逐次比較型アナログ/デジタル変換器。
(12)
前記低圧の電位を発生する低圧電位発生部と、
前記前記容量性デジタル/アナログ変換器の容量と、前記低圧電位発生部とを接続する低圧側スイッチと
をさらに備え、
前記低圧側スイッチには、N型MOSまたはブートストラップスイッチを用いる
前記(11)に記載の逐次比較型アナログ/デジタル変換器。
(13)
前記ブートストラップスイッチは、クランプ回路を備える
前記(12)に記載の逐次比較型アナログ/デジタル変換器。
(1)
入力されるアナログ信号の信号レベルに応じた電荷を蓄積して当該アナログ信号の信号レベルに応じた2つのアナログ入力電圧をサンプリングする容量性デジタル/アナログ変換器と、
内部クロック信号に基づいて、前記2つのアナログ入力電圧の一方が他方より高いか否かを判定するコンパレータと、
前記コンパレータから出力される判定結果に応じたビットをデジタル信号として保持して出力する保持部と、
前記コンパレータの出力に基づいて、前記内部クロック信号を生成する信号生成部と、
互いに遅延量が異なり、前記信号生成部から出力される内部クロック信号を遅延する複数系統の遅延回路と、
前記複数系統の遅延回路の出力を前記コンパレータへ選択的に導出する切替回路と
を備える逐次比較型アナログ/デジタル変換器。
(2)
予め定められたビット数になった時点で、前記遅延回路を切り替えるための切替信号を前記切替回路に出力する切替信号生成部をさらに備える
前記(1)に記載の逐次比較型アナログ/デジタル変換器。
(3)
前記複数系統の遅延回路のそれぞれは、遅延量を任意に設定可能な可変遅延回路である前記(2)に記載の逐次比較型アナログ/デジタル変換器。
(4)
入力されるアナログ信号の信号レベルに応じた電荷を蓄積して当該アナログ信号の信号レベルに応じた2つのアナログ入力電圧をサンプリングする容量性デジタル/アナログ変換器と、
内部クロック信号に基づいて、前記2つのアナログ入力電圧の一方が他方より高いか否かを判定するコンパレータと、
前記コンパレータから出力される判定結果に応じたビットをデジタル信号として保持して出力する保持部と、
前記容量性デジタル/アナログ変換器の容量に印加する高圧の電位と低圧の電位との中間の電位を参照電圧として発生する参照電圧発生部と、
前記容量性デジタル/アナログ変換器の容量と、前記参照電圧発生部とを接続するブートストラップスイッチと
を備える逐次比較型アナログ/デジタル変換器。
(5)
前記高圧の電位を発生する高圧電位発生部と、
前記前記容量性デジタル/アナログ変換器の容量と、前記高圧電位発生部とを接続する高圧側スイッチと
をさらに備え、
前記高圧側スイッチには、P型MOSまたはブートストラップスイッチを用いる
前記(4)に記載の逐次比較型アナログ/デジタル変換器。
(6)
前記低圧の電位を発生する低圧電位発生部と、
前記前記容量性デジタル/アナログ変換器の容量と、前記低圧電位発生部とを接続する低圧側スイッチと
をさらに備え、
前記低圧側スイッチには、N型MOSまたはブートストラップスイッチを用いる
前記(5)に記載の逐次比較型アナログ/デジタル変換器。
(7)
前記ブートストラップスイッチは、クランプ回路を備える
前記(6)に記載の逐次比較型アナログ/デジタル変換器。
(8)
入力されるアナログ信号の信号レベルに応じた電荷を蓄積して当該アナログ信号の信号レベルに応じた2つのアナログ入力電圧をサンプリングする容量性デジタル/アナログ変換器と、
内部クロック信号に基づいて、前記2つのアナログ入力電圧の一方が他方より高いか否かを判定するコンパレータと、
前記コンパレータから出力される判定結果に応じたビットをデジタル信号として保持して出力する保持部と、
前記コンパレータの出力に基づいて、前記内部クロック信号を生成する信号生成部と、
互いに遅延量が異なり、前記信号生成部から出力される内部クロック信号を遅延する複数系統の遅延回路と、
前記複数系統の遅延回路の出力を前記コンパレータへ選択的に導出する切替回路と、
前記容量性デジタル/アナログ変換器の容量に印加する高圧の電位と低圧の電位との中間の電位を参照電圧として発生する参照電圧発生部と、
前記容量性デジタル/アナログ変換器の容量と、前記参照電圧発生部とを接続するブートストラップスイッチと
を備える逐次比較型アナログ/デジタル変換器。
(9)
予め定められたビット数になった時点で、前記遅延回路を切り替えるための切替信号を前記切替回路に出力する切替信号生成部をさらに備える
前記(8)に記載の逐次比較型アナログ/デジタル変換器。
(10)
前記複数系統の遅延回路のそれぞれは、遅延量を任意に設定可能な可変遅延回路である前記(9)に記載の逐次比較型アナログ/デジタル変換器。
(11)
前記高圧の電位を発生する高圧電位発生部と、
前記前記容量性デジタル/アナログ変換器の容量と、前記高圧電位発生部とを接続する高圧側スイッチと
をさらに備え、
前記高圧側スイッチには、P型MOSまたはブートストラップスイッチを用いる
前記(10)に記載の逐次比較型アナログ/デジタル変換器。
(12)
前記低圧の電位を発生する低圧電位発生部と、
前記前記容量性デジタル/アナログ変換器の容量と、前記低圧電位発生部とを接続する低圧側スイッチと
をさらに備え、
前記低圧側スイッチには、N型MOSまたはブートストラップスイッチを用いる
前記(11)に記載の逐次比較型アナログ/デジタル変換器。
(13)
前記ブートストラップスイッチは、クランプ回路を備える
前記(12)に記載の逐次比較型アナログ/デジタル変換器。
1…逐次比較型アナログ/デジタル変換器、10…容量性デジタル/アナログ変換器(CDAC)、20…コンパレータ、30…SARロジック部、31,31A,31B,31C…切替信号生成部、32…NOR回路、40,40A…内部タイミングパス部、42,72…切替器、43,73…切替制御部、50…参照電圧回路、51…基準電圧源、52…分圧回路、53,54…バッファ回路、60…駆動回路、61,61A,61B,61C,61D,61E,61F,61G…ブートストラップスイッチ回路、62…高位側スイッチ、63…低位側スイッチ、64…制御部、M3,M5,M9,M31,M51,M91…クランプ回路、84,85,431,614…NOT回路、91…OR回路、92,421,422,423,424…NAND回路、111…正相側スイッチ、112…逆相側スイッチ、131~13i…正相側コンデンサ、141~14i…逆相側コンデンサ、311…カウンタ、312,313…AND回路、411,412,413,711,712,713…遅延回路、432,433…NOR回路、731…真理値テーブル、M1,M2,M4,M6,M7,M8,M11,M21,M41,M61,M71,M81…スイッチ素子
Claims (13)
- 入力されるアナログ信号の信号レベルに応じた電荷を蓄積して当該アナログ信号の信号レベルに応じた2つのアナログ入力電圧をサンプリングする容量性デジタル/アナログ変換器と、
内部クロック信号に基づいて、前記2つのアナログ入力電圧の一方が他方より高いか否かを判定するコンパレータと、
前記コンパレータから出力される判定結果に応じたビットをデジタル信号として保持して出力する保持部と、
前記コンパレータの出力に基づいて、前記内部クロック信号を生成する信号生成部と、
互いに遅延量が異なり、前記信号生成部から出力される内部クロック信号を遅延する複数系統の遅延回路と、
前記複数系統の遅延回路の出力を前記コンパレータへ選択的に導出する切替回路と
を備える逐次比較型アナログ/デジタル変換器。 - 予め定められたビット数になった時点で、前記遅延回路を切り替えるための切替信号を前記切替回路に出力する切替信号生成部をさらに備える
請求項1に記載の逐次比較型アナログ/デジタル変換器。 - 前記複数系統の遅延回路のそれぞれは、遅延量を任意に設定可能な可変遅延回路である請求項2に記載の逐次比較型アナログ/デジタル変換器。
- 入力されるアナログ信号の信号レベルに応じた電荷を蓄積して当該アナログ信号の信号レベルに応じた2つのアナログ入力電圧をサンプリングする容量性デジタル/アナログ変換器と、
内部クロック信号に基づいて、前記2つのアナログ入力電圧の一方が他方より高いか否かを判定するコンパレータと、
前記コンパレータから出力される判定結果に応じたビットをデジタル信号として保持して出力する保持部と、
前記容量性デジタル/アナログ変換器の容量に印加する高圧の電位と低圧の電位との中間の電位を参照電圧として発生する参照電圧発生部と、
前記容量性デジタル/アナログ変換器の容量と、前記参照電圧発生部とを接続するブートストラップスイッチと
を備える逐次比較型アナログ/デジタル変換器。 - 前記高圧の電位を発生する高圧電位発生部と、
前記前記容量性デジタル/アナログ変換器の容量と、前記高圧電位発生部とを接続する高圧側スイッチと
をさらに備え、
前記高圧側スイッチには、P型MOSまたはブートストラップスイッチを用いる
請求項4に記載の逐次比較型アナログ/デジタル変換器。 - 前記低圧の電位を発生する低圧電位発生部と、
前記前記容量性デジタル/アナログ変換器の容量と、前記低圧電位発生部とを接続する低圧側スイッチと
をさらに備え、
前記低圧側スイッチには、N型MOSまたはブートストラップスイッチを用いる
請求項5に記載の逐次比較型アナログ/デジタル変換器。 - 前記ブートストラップスイッチは、クランプ回路を備える
請求項6に記載の逐次比較型アナログ/デジタル変換器。 - 入力されるアナログ信号の信号レベルに応じた電荷を蓄積して当該アナログ信号の信号レベルに応じた2つのアナログ入力電圧をサンプリングする容量性デジタル/アナログ変換器と、
内部クロック信号に基づいて、前記2つのアナログ入力電圧の一方が他方より高いか否かを判定するコンパレータと、
前記コンパレータから出力される判定結果に応じたビットをデジタル信号として保持して出力する保持部と、
前記コンパレータの出力に基づいて、前記内部クロック信号を生成する信号生成部と、
互いに遅延量が異なり、前記信号生成部から出力される内部クロック信号を遅延する複数系統の遅延回路と、
前記複数系統の遅延回路の出力を前記コンパレータへ選択的に導出する切替回路と、
前記容量性デジタル/アナログ変換器の容量に印加する高圧の電位と低圧の電位との中間の電位を参照電圧として発生する参照電圧発生部と、
前記容量性デジタル/アナログ変換器の容量と、前記参照電圧発生部とを接続するブートストラップスイッチと
を備える逐次比較型アナログ/デジタル変換器。 - 予め定められたビット数になった時点で、前記遅延回路を切り替えるための切替信号を前記切替回路に出力する切替信号生成部をさらに備える
請求項8に記載の逐次比較型アナログ/デジタル変換器。 - 前記複数系統の遅延回路のそれぞれは、遅延量を任意に設定可能な可変遅延回路である請求項9に記載の逐次比較型アナログ/デジタル変換器。
- 前記高圧の電位を発生する高圧電位発生部と、
前記前記容量性デジタル/アナログ変換器の容量と、前記高圧電位発生部とを接続する高圧側スイッチと
をさらに備え、
前記高圧側スイッチには、P型MOSまたはブートストラップスイッチを用いる
請求項10に記載の逐次比較型アナログ/デジタル変換器。 - 前記低圧の電位を発生する低圧電位発生部と、
前記前記容量性デジタル/アナログ変換器の容量と、前記低圧電位発生部とを接続する低圧側スイッチと
をさらに備え、
前記低圧側スイッチには、N型MOSまたはブートストラップスイッチを用いる
請求項11に記載の逐次比較型アナログ/デジタル変換器。 - 前記ブートストラップスイッチは、クランプ回路を備える
請求項12に記載の逐次比較型アナログ/デジタル変換器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020178344 | 2020-10-23 | ||
JP2020-178344 | 2020-10-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022085324A1 true WO2022085324A1 (ja) | 2022-04-28 |
Family
ID=81290429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/033045 WO2022085324A1 (ja) | 2020-10-23 | 2021-09-08 | 逐次比較型アナログ/デジタル変換器 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022085324A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010010661A1 (ja) * | 2008-07-21 | 2010-01-28 | 株式会社アドバンテスト | Ad変換装置 |
JP2011147247A (ja) * | 2010-01-13 | 2011-07-28 | Oki Semiconductor Co Ltd | ブートストラップ回路及び集積回路 |
US10097198B1 (en) * | 2017-05-02 | 2018-10-09 | SK Hynix Inc. | Sar adc |
-
2021
- 2021-09-08 WO PCT/JP2021/033045 patent/WO2022085324A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010010661A1 (ja) * | 2008-07-21 | 2010-01-28 | 株式会社アドバンテスト | Ad変換装置 |
JP2011147247A (ja) * | 2010-01-13 | 2011-07-28 | Oki Semiconductor Co Ltd | ブートストラップ回路及び集積回路 |
US10097198B1 (en) * | 2017-05-02 | 2018-10-09 | SK Hynix Inc. | Sar adc |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10135457B2 (en) | Successive approximation register analog-digital converter having a split-capacitor based digital-analog converter | |
US6784824B1 (en) | Analog-to-digital converter which is substantially independent of capacitor mismatch | |
US9385740B2 (en) | SAR ADC and method thereof | |
US5710563A (en) | Pipeline analog to digital converter architecture with reduced mismatch error | |
US7307572B2 (en) | Programmable dual input switched-capacitor gain stage | |
US6972701B2 (en) | A/D converter calibration | |
US9362931B2 (en) | Semiconductor device | |
CN105281773B (zh) | 用于多信道取样sar adc的系统及方法 | |
US20070024484A1 (en) | Reference voltage pre-charge in a multi-step sub-ranging analog-to-digital converter | |
US20100060500A1 (en) | Analog/Digital Converter Assembly and Corresponding Method | |
US7986257B2 (en) | Comparator circuit and analog digital converter having the same | |
CN111585576B (zh) | 模数转换电路与电子装置 | |
US8497795B2 (en) | Differential successive approximation analog to digital converter | |
US7425913B2 (en) | Bit-adjacency capacitor-switched DAC, method, driver and display device | |
US6229472B1 (en) | A/D converter | |
JP2560478B2 (ja) | アナログ・ディジタル変換器 | |
KR101878593B1 (ko) | 아날로그 디지털 변환기 및 그 동작 방법 | |
US6563449B2 (en) | Successive comparison analog-to-digital converter | |
TWI698091B (zh) | 連續逼近式類比數位轉換器及其操作方法 | |
EP1540565B1 (en) | Switched capacitor system, method, and use | |
US10476513B1 (en) | SAR ADC with high linearity | |
WO2022085324A1 (ja) | 逐次比較型アナログ/デジタル変換器 | |
Xin et al. | 99.83% Switching energy reduction over conventional scheme for SAR ADC without reset energy | |
CN109802680B (zh) | 一种基于分数基准的电容阵列及模数转换器 | |
US11689211B2 (en) | Analog-to-digital converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21882465 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21882465 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |