WO2022085122A1 - 紫外光照射システム及び紫外光照射方法 - Google Patents

紫外光照射システム及び紫外光照射方法 Download PDF

Info

Publication number
WO2022085122A1
WO2022085122A1 PCT/JP2020/039580 JP2020039580W WO2022085122A1 WO 2022085122 A1 WO2022085122 A1 WO 2022085122A1 JP 2020039580 W JP2020039580 W JP 2020039580W WO 2022085122 A1 WO2022085122 A1 WO 2022085122A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
ultraviolet light
light
infrared light
wavelength conversion
Prior art date
Application number
PCT/JP2020/039580
Other languages
English (en)
French (fr)
Inventor
友宏 谷口
亜弥子 岩城
和秀 中島
信智 半澤
隆 松井
悠途 寒河江
千里 深井
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2022556301A priority Critical patent/JPWO2022085122A1/ja
Priority to PCT/JP2020/039580 priority patent/WO2022085122A1/ja
Priority to US18/032,495 priority patent/US20230302173A1/en
Publication of WO2022085122A1 publication Critical patent/WO2022085122A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02052Optical fibres with cladding with or without a coating comprising optical elements other than gratings, e.g. filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/24Apparatus using programmed or automatic operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/11Apparatus for generating biocidal substances, e.g. vaporisers, UV lamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/12Lighting means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02028Small effective area or mode field radius, e.g. for allowing nonlinear effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features

Definitions

  • the present disclosure relates to an ultraviolet light irradiation system in which a light source and an ultraviolet light irradiation unit are separated from each other, and an ultraviolet light irradiation method thereof.
  • the mobile sterilization robot is an autonomous mobile robot that irradiates ultraviolet light. In a building such as a hospital room, by irradiating ultraviolet rays while moving in the room, it is possible to automatically realize a wide range of sterilization without human intervention.
  • Stationary air purifier (see, for example, Non-Patent Document 2)
  • a stationary air purifier is a device that is installed on the ceiling or in a predetermined place in a room and sterilizes while circulating the air in the room. Since the space is not directly irradiated with ultraviolet light and has no effect on the human body, highly safe sterilization is possible.
  • Portable sterilizer (see, for example, Non-Patent Document 3) The portable sterilizer is a portable device equipped with an ultraviolet light source. The user can bring the device to an area to be sterilized or the like and irradiate the object to be sterilized or the like with ultraviolet light so that the device can be used in various places.
  • the ultraviolet light irradiation system using an optical fiber has a problem that long-distance transmission is difficult due to the influence of the fiber transmission characteristics in the ultraviolet region.
  • there are reports of large-diameter fibers in which cores are doped with OH groups see, for example, Non-Patent Documents 4 and 5) and hollow optical fibers (see, for example, Non-Patent Document 6).
  • a transmission loss of about 0.3 dB / m occurs in the wavelength range of 260 nm to 280 nm, which is effective for sterilization and the like.
  • This transmission loss is 1500 times the transmission loss in the communication wavelength band (0.0002 dB / m, 1.5 um band), and long-distance ultraviolet light transmission is unrealistic.
  • an object of the present invention to provide an ultraviolet light irradiation system and an ultraviolet light irradiation method having a small transmission loss in an optical fiber.
  • the ultraviolet light irradiation system transmits an optical fiber with light in the infrared region that can be transmitted with low loss, and the light received on the light irradiation side is transmitted to the ultraviolet region by a nonlinear optical effect. I decided to convert the wavelength.
  • the first ultraviolet light irradiation system is A light source unit that injects transmission infrared light of two orthogonal polarizations into an optical fiber, A wavelength conversion unit that converts the transmitted infrared light propagating through the optical fiber into ultraviolet light, and An irradiation unit that irradiates the desired location with ultraviolet light, To prepare for.
  • the first ultraviolet light irradiation method according to the present invention is Incident transmission infrared light of two orthogonal polarizations into an optical fiber, Converting the transmitted infrared light propagating through the optical fiber into ultraviolet light, and irradiating the desired portion with the ultraviolet light. I do.
  • High wavelength conversion efficiency can be obtained by using a pseudo-phase matching (QPM) wavelength conversion element such as PPLN (Periodically Poled LiNbO3) as a wavelength conversion unit having a non-linear optical effect.
  • QPM pseudo-phase matching
  • PPLN Periodically Poled LiNbO3
  • the optical fiber has the flexibility to irradiate the place where UV light is desired to be sterilized at a pinpoint, the economical efficiency due to the share of the light source, and the ultraviolet light by the optical fiber. It is possible to solve the problem of transmission loss and realize an ultraviolet light irradiation system capable of long-distance transmission.
  • the QPM wavelength conversion element has a polarization dependence. Normally, since the polarization of light fluctuates during transmission of an optical fiber, it is difficult to maintain the polarization at the time of input to the wavelength conversion element on the light irradiation side in a specific state. Therefore, the power of the ultraviolet light generated by the wavelength conversion fluctuates due to the polarization fluctuation during the optical fiber transmission, and it is difficult to obtain a stable sterilization effect.
  • this ultraviolet light irradiation system transmits infrared light through the optical fiber with two orthogonal polarizations. Even if the polarization fluctuates due to transmission with two polarizations, one of the polarizations can be wavelength-converted with high efficiency by the wavelength conversion element, so that the power of ultraviolet light generated by the wavelength conversion is stable. Therefore, this ultraviolet light irradiation system can obtain stable sterilization and other effects.
  • the present invention can provide an ultraviolet light irradiation system and an ultraviolet light irradiation method having a small transmission loss in an optical fiber.
  • the specific configuration in which infrared light of two orthogonal polarizations is incident on an optical fiber is as follows.
  • the first configuration is characterized in that the light source unit has a polarization scrambler, and the infrared light output by one infrared light source is used as the transmission infrared light by the polarization scrambler. That is, the light source unit is configured to perform polarization scrambling processing on the transmitted infrared light.
  • the light source unit has a polarization combiner, and infrared light output by two infrared light sources having different output wavelengths is combined by the polarization combiner and transmitted. It is characterized by using infrared light. That is, it is a configuration in which infrared light having two wavelengths is generated, these are combined in a state where the polarizations are orthogonal to each other, and then transmitted from the optical fiber.
  • the second ultraviolet light irradiation system is A light source unit that injects transmitted infrared light into an optical fiber, A wavelength conversion unit that converts the transmitted infrared light propagating through the optical fiber into ultraviolet light, and An irradiation unit that irradiates the desired location with ultraviolet light, Equipped with
  • the wavelength conversion unit is characterized by having a polarization diversity configuration that separates the transmitted infrared light into orthogonal polarizations and converts the transmitted infrared light into ultraviolet light.
  • the second ultraviolet light irradiation method according to the present invention is Infrared transmission incident on an optical fiber, Separating the transmitted infrared light propagating through the optical fiber into orthogonal polarizations, Converting each of the separated transmission infrared lights into ultraviolet light, and irradiating the desired portion with the ultraviolet light. I do.
  • this configuration also transmits infrared light through the optical fiber, it has the flexibility to irradiate ultraviolet light to the place where you want to sterilize with pinpoint like the first ultraviolet light irradiation system, and it is economical due to the share of the light source. It is possible to realize an ultraviolet light irradiation system capable of long-distance transmission by solving the problem of transmission loss of ultraviolet light due to an optical fiber.
  • the wavelength conversion unit on the light irradiation side has a polarization diversity configuration, so even if the polarization fluctuates during optical fiber transmission, any wavelength conversion element can be used. Since wavelength conversion can be performed with high efficiency, the power of ultraviolet light generated by wavelength conversion is stable. Therefore, this ultraviolet light irradiation system can also obtain stable sterilization and other effects.
  • the present invention can provide an ultraviolet light irradiation system and an ultraviolet light irradiation method having a small transmission loss in an optical fiber.
  • the wavelength conversion unit of the present ultraviolet light irradiation system is integrated with the irradiation unit, and the ultraviolet light may be directly supplied to the irradiation unit. Further, in the present ultraviolet light irradiation system, the wavelength conversion unit and the irradiation unit are physically separated from each other, and the wavelength conversion unit may supply the ultraviolet light to the irradiation unit via an optical fiber.
  • At least one of the optical fiber propagating the transmitted infrared light and the optical fiber that supplies the ultraviolet light from the wavelength conversion unit to the irradiation unit is Full core optical fiber, hole assisted optical fiber, hole structure optical fiber, hollow core optical fiber, coupled core type optical fiber, full core type multi-core optical fiber, hole assist type multi-core optical fiber, hole structure type multi-core optical fiber , Hollow core type multi-core optical fiber, and coupled core type multi-core optical fiber are preferable.
  • the present invention can provide an ultraviolet light irradiation system and an ultraviolet light irradiation method having a small transmission loss in an optical fiber. Further, the present invention can provide an ultraviolet light irradiation system and an ultraviolet light irradiation method that output ultraviolet rays having a stable power regardless of polarization fluctuations that occur during optical fiber transmission.
  • FIG. 1 is a diagram illustrating an ultraviolet light irradiation system 301 of the present embodiment.
  • the ultraviolet light irradiation system 301 is A light source unit 11 that incidents transmission infrared light on the optical fiber 50, A wavelength conversion unit 12 that converts the transmitted infrared light propagating through the optical fiber 50 into ultraviolet light, and The irradiation unit 13 that irradiates the desired portion with the ultraviolet light, and the irradiation unit 13. To prepare for.
  • the light source unit 11 has a light source in an infrared region such as 1064 nm, and the output light from the light source is incident on the optical fiber 50.
  • the output light from the light source is referred to as "infrared light”
  • the light transmitted by the optical fiber 50 is referred to as "transmission infrared light”.
  • the wavelength conversion unit 12 has a wavelength conversion device using a nonlinear optical crystal or the like.
  • the wavelength conversion unit 12 generates ultraviolet light by performing wavelength conversion of, for example, 4th harmonic generation or 5th harmonic generation with respect to the transmitted infrared light in the infrared region transmitted by the optical fiber 50.
  • the irradiation unit 13 irradiates the target portion Ar for sterilization or the like with the ultraviolet light output from the wavelength conversion unit 12.
  • the irradiation unit 13 is composed of an optical system such as a lens designed for wavelengths in the ultraviolet region. In this embodiment, the wavelength conversion unit 12 and the irradiation unit 13 are integrated.
  • the ultraviolet light irradiation system 301 transmits the optical fiber 50 with infrared light having a small transmission loss, the problem of the transmission loss of the ultraviolet light due to the optical fiber described above is solved, and long-distance transmission is possible.
  • FIG. 2 is a diagram illustrating a light source unit 11 that outputs transmission infrared light having two orthogonal polarizations.
  • the light source unit 11 has a polarization scrambler 11b, and is characterized in that the infrared light output by one infrared light source 11a is used as transmission infrared light by the polarization scrambler 11b.
  • the light source unit 11 in FIG. 2 has a configuration in which infrared light having a single wavelength is polarized and scrambled.
  • the infrared light source 11a outputs infrared light having a wavelength at which wavelength conversion is performed with high efficiency by the wavelength conversion unit 12.
  • the polarization scrambler 11b uses a configuration in which the infrared light from the infrared light source 11a is switched to a state in which the polarization states are orthogonal to each other at regular intervals using a polarization controller, lithium niobate (LN), or the like.
  • the configuration is such that the polarization state is switched at regular intervals by the polarization modulator.
  • the light source unit 11 By making the light source unit 11 have the structure as shown in FIG. 2, it can be configured with a single light source, and the structure can be simplified.
  • FIG. 3A is a diagram illustrating a light source unit 11 that outputs transmission infrared light having two orthogonal polarizations.
  • the light source unit 11 has a polarization combiner 11c, and the infrared light output by two infrared light sources (11a 1 , 11a 2 ) having different output wavelengths are combined by the polarization combiner 11c. It is characterized by using the transmitted infrared light.
  • the light source unit 11 of FIG. 3A has a configuration in which infrared light having two wavelengths is orthogonally polarized and synthesized.
  • the two infrared light sources (11a 1 , 11a 2 ) both output infrared light having a wavelength at which wavelength conversion is performed with high efficiency by the wavelength conversion unit 12.
  • the polarization combiner 11c in the polarization combiner 11c, the polarization state of the infrared light having a wavelength ⁇ 1 from the infrared light source 11a 1 and the infrared light having a wavelength ⁇ 2 from the infrared light source 11a 2 is different. Wavelengths are combined so as to be orthogonal to each other and output to the optical fiber 50.
  • the optical power transmitted to the optical fiber 50 can be increased, and as a result, the power of ultraviolet light output from the wavelength conversion unit 12 is also increased. Can be made larger.
  • FIG. 4 is a diagram illustrating a wavelength conversion unit 12 having a polarization diversity configuration.
  • the wavelength conversion unit 12 is characterized by having a polarization diversity configuration that separates the transmitted infrared light transmitted by the optical fiber 50 into orthogonal polarizations and converts each transmitted infrared light into ultraviolet light.
  • the wavelength conversion unit 12 in FIG. 4 has a configuration in which one of the polarizations is rotated.
  • the polarization separator 12a separates the transmitted infrared light from the optical fiber 50 into a vertically polarized wave component and a horizontally polarized wave component and outputs the light.
  • the polarization regulator 12b adjusts the light of one polarization (horizontal polarization in FIG. 4) to the other polarization (vertical polarization in FIG. 4).
  • the wavelength conversion device (12c 1 , 12c 2 ) is a nonlinear optical crystal having a polarization dependence, and high-efficiency wavelength conversion of infrared light of one polarization (vertical polarization in FIG. 4) into ultraviolet light. Can be done. In the example of FIG.
  • the wavelength conversion unit 12 directly inputs the vertically polarized infrared light separated by the polarization separator 12a to the wavelength conversion device 12c 2 , and adjusts the polarization of the horizontally polarized infrared light. After converting to vertical polarization with the device 12b, the light is input to the wavelength conversion device 12c 1 .
  • the two wavelength conversion devices can be made into a single type, which facilitates parts procurement and management.
  • FIG. 5 is a diagram illustrating another wavelength conversion unit 12 having a polarization diversity configuration.
  • the wavelength conversion unit 12 of FIG. 5 is configured to include a wavelength conversion device that matches the polarization.
  • the polarization separator 12a separates the transmitted infrared light from the optical fiber 50 into a vertically polarized wave component and a horizontally polarized wave component and outputs the light.
  • the wavelength conversion device (12c 1 , 12c 2 ) is a non-linear optical crystal having a polarization dependence, and one polarization (in FIG. 5, the wavelength conversion device 12c 1 is horizontally polarized and the wavelength conversion device 12c 2 is vertically polarized).
  • Infrared light can be wavelength-converted to ultraviolet light with high efficiency.
  • the wavelength conversion unit 12 directly inputs the vertically polarized infrared light separated by the polarization separator 12a to the wavelength conversion device 12c 2 , and directly wavelength-converts the horizontally polarized infrared light. Input to device 12c 1 .
  • the number of parts can be reduced without the need for the polarization regulator 12b as compared with the structure of FIG.
  • FIG. 6 is a diagram illustrating the ultraviolet light irradiation system 302 of the present embodiment.
  • the ultraviolet light irradiation system 302 is different from the ultraviolet light irradiation system 301 of FIG. 1 in that the wavelength conversion unit 12 and the irradiation unit 13 are separated and connected to each other by an optical fiber 51.
  • the optical fiber 51 is an optical fiber that transmits ultraviolet light, and transmits the ultraviolet light output from the wavelength conversion unit 12 to the irradiation unit 13.
  • the optical fiber 51 is, for example, a large-diameter optical fiber in which a core is doped with an OH group, or a hollow optical fiber in which a portion for guiding light is hollow.
  • the ultraviolet light irradiation system 302 does not need to install the wavelength conversion unit 12 near the irradiation unit 13, it is possible to irradiate the ultraviolet light to a fine place more flexibly than the ultraviolet light irradiation system 301 of FIG.
  • FIG. 7 is a diagram illustrating the ultraviolet light irradiation system 303 of the present embodiment.
  • the ultraviolet light irradiation system 303 is different from the ultraviolet light irradiation system 301 of FIG. 1 in that it has a plurality of wavelength conversion units 12 and irradiation units 13, and an infrared light distribution unit 14 is provided in the middle of the optical fiber 50.
  • the infrared light distribution unit 14 distributes the transmitted infrared light from the light source unit 11 to a plurality of outputs by using an optical splitter such as a PLC type or a fiber type.
  • the distributed transmission infrared light is input to each wavelength conversion unit 12.
  • the ultraviolet light irradiation system 303 shares a single light source unit 11 with a plurality of irradiation units 13, the system can be constructed over time. Further, since the ultraviolet light irradiation system 303 transmits light from the light source unit 11 to the wavelength conversion unit 12 (irradiation unit 13 integrated with the light source unit 11) in the infrared region where the transmission loss in the optical fiber is low, infrared light is emitted. The transmission distance between the distribution unit 14 and the irradiation unit 13 can be made long, and a flexible system design is possible.
  • FIG. 8 is a diagram illustrating the ultraviolet light irradiation system 304 of the present embodiment.
  • the ultraviolet light irradiation system 304 differs from the ultraviolet light irradiation system 302 of FIG. 6 in that it has a plurality of irradiation units 13 and an ultraviolet light distribution unit 15 is provided after the wavelength conversion unit 12.
  • the ultraviolet light distribution unit 15 distributes the ultraviolet light from the wavelength conversion unit 12 to a plurality of outputs using an optical splitter such as a PLC type or a fiber type.
  • the distributed ultraviolet light is input to each irradiation unit 13.
  • the ultraviolet light irradiation system 304 shares the single light source unit 11 and the wavelength conversion unit 12 among the plurality of irradiation units 13, the system can be constructed more economically than the ultraviolet light irradiation system 303 of FIG.
  • the ultraviolet light irradiation system 304 is effective in a system configuration in which the transmission distance between the ultraviolet light distribution unit 12 and the irradiation unit 13 is not so long and the transmission loss of ultraviolet light does not become a problem.
  • an optical fiber having a cross-sectional structure as shown in FIG. 9 can be used as the optical fiber (50, 51).
  • Solid core optical fiber This optical fiber has one solid core 52 in the clad 60, which has a higher refractive index than the clad 60. "Fulfillment” means "not hollow”. The solid core can also be realized by forming an annular low refractive index region in the clad.
  • Pore Assisted Optical Fiber This optical fiber has a solid core 52 in the clad 60 and a plurality of holes 53 arranged on the outer periphery thereof.
  • the medium of the pores 53 is air, and the refractive index of the air is sufficiently smaller than that of quartz glass. Therefore, the pore-assisted optical fiber has a function of returning the light leaked from the core 52 to the core 52 due to bending or the like, and has a feature that the bending loss is small.
  • This optical fiber has a plurality of holes 53 in the clad 60 and has a group of holes 53a, and has a lower refractive index than the host material (glass or the like). This structure is called a photonic crystal fiber.
  • a structure in which a high refractive index core having a changed refractive index does not exist can be adopted, and light can be confined by using the region 52a surrounded by the pores 53 as an effective core region.
  • photonic crystal fibers can reduce the effects of absorption and scattering loss due to core additives, as well as reduce bending loss and control non-linear effects. It is possible to realize optical characteristics that cannot be realized.
  • the core region is formed of air. Light can be confined in the core region by adopting a photonic bandgap structure with a plurality of pores in the clad region or an antiresonant structure with fine glass wires.
  • This optical fiber has a small non-linear effect and is capable of high power or high energy laser supply.
  • a plurality of solid cores 52 having a high refractive index are arranged in close proximity to each other in the clad 60.
  • This optical fiber guides light through a light wave coupling between the solid cores 52. Since the coupled core type optical fiber can disperse and send light by the number of cores, the power can be increased accordingly and efficient sterilization can be performed. In addition, the coupled core type optical fiber alleviates fiber deterioration due to ultraviolet rays and has a long life. There is a merit that it can be converted.
  • Solid core type multi-core optical fiber In this optical fiber, a plurality of solid cores 52 having a high refractive index are arranged apart from each other in the clad 60. This optical fiber guides light between the solid cores 52 in a state where the light wave coupling is sufficiently small and the influence of the light wave coupling can be ignored. Therefore, the full-core multi-core optical fiber has an advantage that each core can be treated as an independent waveguide.
  • Pore-assisted multi-core optical fiber This optical fiber has a structure in which a plurality of the hole structure and the core region of the above (2) are arranged in the clad 60.
  • Pore structure type multi-core optical fiber This optical fiber has a structure in which a plurality of the hole structures of the above (3) are arranged in a clad 60.
  • Hollow core type multi-core optical fiber This optical fiber has a structure in which a plurality of the pore structures of the above (4) are arranged in a clad 60.
  • Coupling Core Type Multi-Core Optical Fiber This optical fiber has a structure in which a plurality of the coupling core structures of the above (5) are arranged in a clad 60.
  • FIG. 10 is a flowchart illustrating an ultraviolet light irradiation method in an ultraviolet light irradiation system including the light source unit 11 of FIGS. 2 and 3.
  • the ultraviolet light irradiation method is Infrared transmission infrared light of two orthogonal polarizations is incident on the optical fiber 50 (step S11). Converting the transmitted infrared light propagating through the optical fiber 50 into ultraviolet light (step S12), and irradiating the desired location Ar with the ultraviolet light (step S13). I do.
  • FIG. 11 is a flowchart illustrating an ultraviolet light irradiation method in an ultraviolet light irradiation system including the wavelength conversion unit 12 of FIGS. 4 and 5.
  • the ultraviolet light irradiation method is Incident transmission infrared light onto the optical fiber 50 (step S11a), Separating the transmitted infrared light propagating through the optical fiber 50 into orthogonal polarizations (step S11b). Converting each of the separated transmission infrared lights into ultraviolet light (step S12), and irradiating the desired portion with the ultraviolet light (step S13). I do.
  • Wavelength conversion unit 12a Infrared light source 11b: Half-end scrambler 11c: Wavelength merging unit 12: Wavelength conversion unit 12a: Polarization separator 12b: Polarization regulator 12c: Wavelength conversion device 13: Irradiation unit 14: Red External light distribution unit 15: Ultraviolet light distribution unit 50: Optical fiber 51: Optical fiber for ultraviolet light transmission 301 to 304: Ultraviolet light irradiation system

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

本発明は、前記課題を解決するために、光ファイバでの伝送損失が少ない紫外光照射システム及び紫外光照射方法を提供することを目的とする。 紫外光照射システム301は、伝送赤外光を光ファイバ50に入射する光源部11と、光ファイバ50を伝搬した前記伝送赤外光を紫外光に変換する波長変換部12と、前記紫外光を所望箇所に照射する照射部13と、を備える。光源部11は、偏波スクランブラ11bを有し、1つの赤外光源11aが出力する赤外光を偏波スクランブラ11bで伝送赤外光とすることを特徴とする。

Description

紫外光照射システム及び紫外光照射方法
 本開示は、光源と紫外光の照射部とが離れている紫外光照射システム及びその紫外光照射方法に関する。
 感染症予防などの目的から、紫外光を用いた殺菌やウイルス不活性化のシステムの需要が高まっている。このようなシステムには、大きく3つのカテゴリがある。なお、以下の説明では、殺菌やウイルス不活性化を「殺菌等」と記載する。
(1)移動型殺菌ロボット(例えば、非特許文献1を参照。)
 移動型殺菌ロボットは、紫外光を照射する自律移動型のロボットである。病室などの建物内において、部屋の中を移動しながら紫外線を照射することで、人手を介さず、自動で広い範囲の殺菌等を実現できる。
(2)据え置き型空気清浄機(例えば、非特許文献2を参照。)
 据え置き型空気清浄機は、天井や室内の所定の場所に設置され、室内の空気を循環させながら殺菌等を行う装置である。空間に直接紫外光を照射せず、人体への影響がないため、安全性の高い殺菌等が可能である。
(3)ポータブル型殺菌装置(例えば、非特許文献3を参照。)
 ポータブル型殺菌装置は、紫外光源を搭載したポータブル型の装置である。ユーザが、当該装置を殺菌等の対象のエリアに持って行き、殺菌等の対象物に紫外光を照射することで、様々な場所で使用可能である。
 上述したようなシステムにはそれぞれ次のような課題がある。
(1)移動型殺菌ロボット
 高出力の紫外光を照射するため、装置が大掛かりで高価となり、経済的なシステムの実現が困難という課題がある。
(2)据え置き型空気清浄機
 循環させた室内の空気を殺菌等を行う方法のため、殺菌等したい場所に直接紫外光を照射することが困難という課題がある。
(3)ポータブル型殺菌装置
 ユーザが必ずしもスキルや知識を持ち合わせていないため、使用方法によっては、人体に影響が出るリスクがある他、対象箇所で十分な殺菌等の効果が得られるように操作したか不明であるという課題がある。
 つまり、従前より、ユーザのスキルの有無に関わらず、所望箇所に直接紫外光を照射できる経済性の高いシステムが求められていた。このようなシステムとして光ファイバで紫外光を伝送するシステムが考えられる。細くて曲げやすい光ファイバを用いて光源からの紫外光を伝送することで、光ファイバ先端から出力される紫外光をピンポイントで殺菌等したい場所へ照射できるという柔軟性が得られる。また、光通信システムのFTTH(Fiber To The Home)のようなポイントツーマルチポイント(P-MP)構成とすることで、単一の光源からの光を複数箇所でシェアすることにより経済化を図れる。
カンタム・ウシカタ株式会社ウェブサイト(https://www.kantum.co.jp/product/sakkin_robot/sakkinn_robot/UVD_robot) 岩崎電気株式会社ウェブサイト(https://www.iwasaki.co.jp/optics/sterilization/air/air03.html) フナコシ株式会社ウェブサイト(https://www.funakoshi.co.jp/contents/68182) 株式会社フジクラ社ウェブサイト(https://www.fujikura.co.jp/products/optical/appliedoptics/02/2051999_11309.html) 三菱電線工業株式会社ウェブサイト(http://www.mitsubishi-cable.co.jp/ja/products/group/optical-fiber/large.html) 高橋ら,「単一偏波ファイバレーザを用いた波長変換技術とその応用」, フジクラ技報,vol.1, no.126, pp.25-30, 2014年7月
 しかしながら、光ファイバを用いた紫外光照射システムでは、紫外領域のファイバ伝送特性の影響により長距離伝送が困難という課題がある。例えば、コアにOH基をドープした大口径ファイバ(例えば、非特許文献4、5を参照。)、中空光ファイバ(例えば、非特許文献6を参照。)の報告がある。当該報告によれば、殺菌等に効果的な260nm~280nmの波長域において約0.3dB/m程度の伝送損失が発生する。この伝送損失は、通信波長帯(0.0002dB/m、1.5um帯)での伝送損失の1500倍であり、長距離の紫外光の伝送は非現実的である。
 そこで、本発明は、前記課題を解決するために、光ファイバでの伝送損失が少ない紫外光照射システム及び紫外光照射方法を提供することを目的とする。
 上記目的を達成するために、本発明に係る紫外光照射システムは、光ファイバを低損失で伝送できる赤外領域の光で伝送し、光照射側で受光した光を非線形光学効果により紫外領域へ波長変換することとした。
 具体的には、本発明に係る第1の紫外光照射システムは、
 直交する2つの偏波の伝送赤外光を光ファイバに入射する光源部と、
 前記光ファイバを伝搬した前記伝送赤外光を紫外光に変換する波長変換部と、
 前記紫外光を所望箇所に照射する照射部と、
を備える。
 また、本発明に係る第1の紫外光照射方法は、
 直交する2つの偏波の伝送赤外光を光ファイバに入射すること、
 前記光ファイバを伝搬した前記伝送赤外光を紫外光に変換すること、及び
 前記紫外光を所望箇所に照射すること、
を行う。
 非線形光学効果を持つ波長変換部として、PPLN(Periodically Poled LiNbO3)などの疑似位相整合(QPM)波長変換素子を用いることで、高い波長変換効率が得られる。この構成によれば、前述の通り、光ファイバで、紫外光をピンポイントで殺菌等を行いたい場所へ照射する柔軟性、および、光源のシェアによる経済性を備え、かつ、光ファイバによる紫外光の伝送損失の課題を解決し、長距離伝送が可能な紫外光照射システムを実現できる。
 なお、QPM波長変換素子には偏波依存性がある。通常、光ファイバの伝送中に光の偏波が変動するため、光照射側で波長変換素子に入力する時点の偏波を特定の状態には保持することが困難である。このため、光ファイバ伝送中の偏波変動により波長変換により発生させる紫外光のパワーが変動し、安定した殺菌等の効果が得られにくい。
 このような光ファイバ伝送中の偏波変動に対し、本紫外光照射システムは、赤外光を直交する2つの偏波で光ファイバ中を伝送させることとしている。2つの偏波で伝送することで偏波が変動したとしても、いずれかの偏波を波長変換素子で高効率に波長変換できるので、波長変換により発生させる紫外光のパワーが安定する。このため、本紫外光照射システムは、安定した殺菌等の効果が得られる。
 従って、本発明は、光ファイバでの伝送損失が少ない紫外光照射システム及び紫外光照射方法を提供することができる。
 直交する2つの偏波の赤外光を光ファイバに入射する、具体的な構成は次の通りである。
 第1の構成は、前記光源部が、偏波スクランブラを有し、1つの赤外光源が出力する赤外光を前記偏波スクランブラで前記伝送赤外光とすることを特徴とする。つまり、光源部において、送信する赤外光に偏波スクランブル処理を施す構成である。
 第2の構成は、前記光源部が、偏波合波器を有し、互いに出力波長が異なる2つの赤外光源が出力する赤外光を前記偏波合波器で合波して前記伝送赤外光とすることを特徴とする。つまり、2波長の赤外光を発生させ、これらを互いに偏波が直交する状態で合波した上で光ファイバから送信する構成である。
 また、次のような構成であってもよい。
 本発明に係る第2の紫外光照射システムは、
 伝送赤外光を光ファイバに入射する光源部と、
 前記光ファイバを伝搬した前記伝送赤外光を紫外光に変換する波長変換部と、
 前記紫外光を所望箇所に照射する照射部と、
を備え、
 前記波長変換部は、前記伝送赤外光を直交する偏波に分離し、それぞれの前記伝送赤外光を紫外光に変換する偏波ダイバーシティ構成であることを特徴とする。
 また、本発明に係る第2の紫外光照射方法は、
 伝送赤外光を光ファイバに入射すること、
 前記光ファイバを伝搬した前記伝送赤外光を直交する偏波に分離すること、
 分離したそれぞれの前記伝送赤外光を紫外光に変換すること、及び
 前記紫外光を所望箇所に照射すること、
を行う。
 本構成も光ファイバ中を赤外光で伝送するので、第1の紫外光照射システム同様に紫外光をピンポイントで殺菌等を行いたい場所へ照射する柔軟性、および、光源のシェアによる経済性を備え、かつ、光ファイバによる紫外光の伝送損失の課題を解決し、長距離伝送が可能な紫外光照射システムを実現できる。
 また、光ファイバ伝送中の偏波変動に対しては、光照射側の波長変換部を偏波ダイバーシティ構成としたため、光ファイバ伝送中に偏波が変動したとしても、いずれかの波長変換素子で高効率に波長変換できるので、波長変換により発生させる紫外光のパワーが安定する。従って、本紫外光照射システムも、安定した殺菌等の効果が得られる。
 従って、本発明は、光ファイバでの伝送損失が少ない紫外光照射システム及び紫外光照射方法を提供することができる。
 本紫外光照射システムの前記波長変換部は、前記照射部と一体化されており、前記紫外光を直接前記照射部に供給してもよい。又、本紫外光照射システムは、前記波長変換部と前記照射部とが物理的に離れており、前記波長変換部は前記紫外光を光ファイバを介して前記照射部に供給してもよい。
 さらに、前記伝送赤外光を伝搬する前記光ファイバ、及び前記波長変換部から前記紫外光を前記照射部へ供給する光ファイバの少なくとも一方は、
 充実コア光ファイバ、空孔アシスト光ファイバ、空孔構造光ファイバ、中空コア光ファイバ、結合コア型光ファイバ、充実コア型マルチコア光ファイバ、空孔アシスト型マルチコア光ファイバ、空孔構造型マルチコア光ファイバ、中空コア型マルチコア光ファイバ、及び結合コア型マルチコア光ファイバのいずれかであることが好ましい。
 なお、上記各発明は、可能な限り組み合わせることができる。
 本発明は、光ファイバでの伝送損失が少ない紫外光照射システム及び紫外光照射方法を提供することができる。また、本発明は、光ファイバ伝送中に生じる偏波変動に依存せず安定したパワーの紫外線を出力する紫外光照射システム及び紫外光照射方法を提供することができる。
本発明に係る紫外光照射システムを説明する図である。 本発明に係る紫外光照射システムの光源部を説明する図である。 本発明に係る紫外光照射システムの光源部を説明する図である。 本発明に係る紫外光照射システムの波長変換部を説明する図である。 本発明に係る紫外光照射システムの波長変換部を説明する図である。 本発明に係る紫外光照射システムを説明する図である。 本発明に係る紫外光照射システムを説明する図である。 本発明に係る紫外光照射システムを説明する図である。 光ファイバの断面を説明する図である。 本発明に係る紫外光照射方法を説明する図である。 本発明に係る紫外光照射方法を説明する図である。
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(実施形態1)
 図1は、本実施形態の紫外光照射システム301を説明する図である。紫外光照射システム301は、
 伝送赤外光を光ファイバ50に入射する光源部11と、
 光ファイバ50を伝搬した前記伝送赤外光を紫外光に変換する波長変換部12と、
 前記紫外光を所望箇所に照射する照射部13と、
を備える。
 光源部11は、例えば、1064nmなどの赤外領域の光源を有し、光源からの出力光を光ファイバ50に入射する。なお、本明細書では、光源からの出力光を「赤外光」、光ファイバ50で伝送する光を「伝送赤外光」と記載する。
 波長変換部12は、非線形光学結晶などによる波長変換デバイスを有する。波長変換部12は、光ファイバ50で伝送された赤外領域の伝送赤外光に対して、例えば、4倍波発生や5倍波発生の波長変換を行って紫外光を発生させる。
 照射部13は、波長変換部12から出力された紫外光を所望の殺菌等の対象箇所Arに照射する。照射部13は、紫外領域の波長に対して設計されたレンズなどの光学系で構成される。なお、本実施形態では、波長変換部12と照射部13とが一体化されている。
 紫外光照射システム301は、伝送損失の少ない赤外光で光ファイバ50を伝送させるので、前述した光ファイバによる紫外光の伝送損失の課題を解決し、長距離伝送を可能とした。
(実施形態2)
 図1で説明した紫外光照射システム301において、光ファイバ50を伝送する伝送赤外光は、直交する2つの偏波で伝送することが好ましい。図2は、直交する2つの偏波の伝送赤外光を出力する光源部11を説明する図である。光源部11は、偏波スクランブラ11bを有し、1つの赤外光源11aが出力する赤外光を偏波スクランブラ11bで伝送赤外光とすることを特徴とする。
 図2の光源部11は、単一波長の赤外光を偏波スクランブラする構成である。赤外光源11aは、波長変換部12で高効率に波長変換が実施される波長の赤外光を出力する。偏波スクランブラ11bは、赤外光源11aからの赤外光を、偏波コントローラを用いて一定周期で偏波状態を互いに直交した状態に切り替える構成や、ニオブ酸リチウム(LN)などを用いた偏波変調器で一定周期で偏波状態を切り替える構成である。
 光源部11を図2のような構造とすることで、単一の光源で構成でき、構造を簡素化できる。
(実施形態3)
 図1で説明した紫外光照射システム301において、光ファイバ50を伝送する伝送赤外光は、直交する2つの偏波で伝送することが好ましい。図3(A)は、直交する2つの偏波の伝送赤外光を出力する光源部11を説明する図である。光源部11は、偏波合波器11cを有し、互いに出力波長が異なる2つの赤外光源(11a、11a)が出力する赤外光を偏波合波器11cで合波して前記伝送赤外光とすることを特徴とする。
 図3(A)の光源部11は、2つの波長の赤外光を直交偏波合成する構成である。2つの赤外光源(11a、11a)は、ともに波長変換部12で高効率に波長変換が実施される波長の赤外光を出力する。図3(B)のように、偏波合波器11cは、赤外光源11aからの波長λ1の赤外光と赤外光源11aからの波長λ2の赤外光との偏波状態が互いに直交するよう合波し、光ファイバ50へ出力する。
 光源部11を図3(A)のように2つの光源を用いる構造とすることで、光ファイバ50に送信する光パワーを大きくでき、結果として波長変換部12から出力される紫外光のパワーも大きくすることができる。
(実施形態4)
 図1で説明した紫外光照射システム301において、波長変換部12を高効率性が得られる偏波方向が直交した2つの波長変換デバイスを用いる偏波ダイバーシティ構成とすることが好ましい。図4は、偏波ダイバーシティ構成である波長変換部12を説明する図である。波長変換部12は、光ファイバ50で伝送された伝送赤外光を直交する偏波に分離し、それぞれの伝送赤外光を紫外光に変換する偏波ダイバーシティ構成であることを特徴とする。
 図4の波長変換部12は、一方の偏波を回転させる構成である。偏波分離器12aは光ファイバ50からの伝送赤外光を垂直偏波成分と水平偏波成分に分離して出力する。偏波調整器12bは一方の偏波(図4では水平偏波)の光を、他方の偏波(図4では垂直偏波)に調整する。波長変換デバイス(12c、12c)は偏波依存性のある非線形光学結晶であり、1つの偏波(図4では垂直偏波)の赤外光を紫外光へ高効率で波長変換することができる。図4の例では、波長変換部12は、偏波分離器12aで分離された垂直偏波の赤外光を直接波長変換デバイス12cに入力し、水平偏波の赤外光を偏波調整器12bで垂直偏波に変換した後に波長変換デバイス12cに入力する。
 波長変換部12を図4の構造とすることで、2つの波長変換デバイスを単一品種とすることができるため、部品調達や管理が容易となる。
(実施形態5)
 図5は、他の偏波ダイバーシティ構成である波長変換部12を説明する図である。図5の波長変換部12は、偏波に合わせた波長変換デバイスを備える構成である。偏波分離器12aは光ファイバ50からの伝送赤外光を垂直偏波成分と水平偏波成分に分離して出力する。波長変換デバイス(12c、12c)は偏波依存性のある非線形光学結晶であり、1つの偏波(図5では波長変換デバイス12cが水平偏波、波長変換デバイス12cが垂直偏波)の赤外光を紫外光へ高効率で波長変換することができる。図5の例では、波長変換部12は、偏波分離器12aで分離された垂直偏波の赤外光を直接波長変換デバイス12cに入力し、水平偏波の赤外光を直接波長変換デバイス12cに入力する。
 波長変換部12を図5の構造とすることで、図4の構造と比較して偏波調整器12bが不要で部品点数を低減できる。
(実施形態6)
 図6は、本実施形態の紫外光照射システム302を説明する図である。紫外光照射システム302は、図1の紫外光照射システム301に対し、波長変換部12と照射部13とを分離し、その間を光ファイバ51で接続したことが相違する。
 光ファイバ51は、紫外光を伝送する光ファイバで、波長変換部12から出力された紫外光を照射部13に伝送する。光ファイバ51は、例えば、コアにOH基をドープした大口径光ファイバや、光を導波する部分が空洞である中空光ファイバである。
 紫外光照射システム302は、照射部13付近に波長変換部12を設置する必要がないため、図1の紫外光照射システム301より一層柔軟に細かい場所などに紫外光を照射することができる。
(実施形態7)
 図7は、本実施形態の紫外光照射システム303を説明する図である。紫外光照射システム303は、図1の紫外光照射システム301に対し、波長変換部12と照射部13が複数あり、光ファイバ50の途中に赤外光分配部14が備わることが相違する。
 赤外光分配部14は、光源部11からの伝送赤外光を、PLC型やファイバ型などの光スプリッタなどを用いて複数の出力に分配する。分配された伝送赤外光はそれぞれの波長変換部12に入力される。
 紫外光照射システム303は、単一の光源部11を複数の照射部13でシェアするため、経時的にシステムを構築できる。また、紫外光照射システム303は、光ファイバでの伝送損失が低い赤外領域で光源部11から波長変換部12(これと一体化されている照射部13)まで光伝送するため、赤外光分配部14と照射部13との伝送距離を長くとることができ、柔軟なシステム設計が可能である。
(実施形態8)
 図8は、本実施形態の紫外光照射システム304を説明する図である。紫外光照射システム304は、図6の紫外光照射システム302に対し、照射部13が複数あり、波長変換部12の後段に紫外光分配部15が備わることが相違する。
 紫外光分配部15は、波長変換部12からの紫外光を、PLC型やファイバ型などの光スプリッタなどを用いて複数の出力に分配する。分配された紫外光はそれぞれの照射部13に入力される。
 紫外光照射システム304は、単一の光源部11および波長変換部12を複数の照射部13でシェアするため、図7の紫外光照射システム303に比べて一層経済的にシステムを構築できる。特に、紫外光照射システム304は、紫外光分配部12と照射部13までの伝送距離がそれほど長くなく、紫外光の伝送損失が問題にならないようなシステム構成で有効である。
(実施形態9)
 上述した紫外光照射システム(301~304)において、光ファイバ(50、51)には図9のような断面構造の光ファイバを用いることができる。
(1)充実コア光ファイバ
 この光ファイバは、クラッド60の中にクラッド60より高屈折率である1つの充実コア52を有する。「充実」とは「空洞ではない」という意味である。尚、充実コアは、クラッド内に円環状の低屈折率領域を形成することでも実現できる。
(2)空孔アシスト光ファイバ
 この光ファイバは、クラッド60の中に充実コア52とその外周に配置された複数の空孔53を有する。空孔53の媒質は空気であり、空気の屈折率は石英系ガラスに比べ十分小さい。このため、空孔アシスト光ファイバは、曲げなどでコア52から漏れた光を再びコア52に戻す機能があり、曲げ損失が小さいという特徴がある。
(3)空孔構造光ファイバ
この光ファイバは、クラッド60の中に複数の空孔53の空孔群53aを有し、ホスト材料(ガラス等)よりも実効的に屈折率が低い。本構造は、フォトニック結晶ファイバと呼ばれる。本構造には、屈折率を変化させた高屈折率コアが存在しない構造をとることができ、空孔53に取り囲まれた領域52aを実効的なコア領域として、光を閉じ込めることができる。充実コアを有する光ファイバに比べ、フォトニック結晶ファイバは、コアの添加剤による吸収や散乱損失の影響を低減することができるとともに、曲げ損失の低減や非線形効果の制御等、充実型光ファイバでは実現し得ない光学特性を実現できる。
(4)中空コア光ファイバ
この光ファイバは、コア領域が空気で形成される。クラッド領域に複数の空孔によるフォトニックバンドギャップ構造もしくはガラス細線によるアンチレゾナント構造をとることによって光をコア領域に閉じ込めることができる。この光ファイバは、非線形効果が小さく、高出力または高エネルギーレーザ供給が可能である。
(5)結合コア型光ファイバ
 この光ファイバは、クラッド60の中に複数の高屈折率である充実コア52が近接して配置される。この光ファイバは、充実コア52間で光波結合で光を導波する。結合コア型光ファイバは、コア数分だけ光を分散して送れるので、その分ハイパワー化して効率的な殺菌ができる、また、結合コア型光ファイバは、紫外線によるファイバ劣化を緩和し長寿命化できるというメリットがある。
(6)充実コア型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に複数の高屈折率である充実コア52が離れて配置される。この光ファイバは、充実コア52間で光波結合を十分小さくして光波結合の影響が無視できる状態で光を導波する。このため、充実コア型マルチコア光ファイバは、各コアを独立な導波路として扱えるというメリットがある。
(7)空孔アシスト型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に上記(2)の空孔構造およびコア領域が複数配置された構造である。
(8)空孔構造型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に上記(3)の空孔構造が複数配置された構造である。
(9)中空コア型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に上記(4)の空孔構造が複数配置された構造である。
(10)結合コア型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に上記(5)の結合コア構造が複数配置された構造である。
(紫外光照射方法)
 図10は、図2及び図3の光源部11を備える紫外光照射システムでの紫外光照射方法を説明するフローチャートである。当該紫外光照射方法は、
 直交する2つの偏波の伝送赤外光を光ファイバ50に入射すること(ステップS11)、
 光ファイバ50を伝搬した前記伝送赤外光を紫外光に変換すること(ステップS12)、及び
 前記紫外光を所望箇所Arに照射すること(ステップS13)、
を行う。
 図11は、図4及び図5の波長変換部12を備える紫外光照射システムでの紫外光照射方法を説明するフローチャートである。当該紫外光照射方法は、
 伝送赤外光を光ファイバ50に入射すること(ステップS11a)、
 光ファイバ50を伝搬した前記伝送赤外光を直交する偏波に分離すること(ステップS11b)、
 分離したそれぞれの前記伝送赤外光を紫外光に変換すること(ステップS12)、及び
 前記紫外光を所望箇所に照射すること(ステップS13)、
を行う。
11:光源部
11a:赤外光源
11b:半端スクランブラ
11c:偏波合波部
12:波長変換部
12a:偏波分離器
12b:偏波調整器
12c:波長変換デバイス
13:照射部
14:赤外光分配部
15:紫外光分配部
50:光ファイバ
51:紫外光伝送用光ファイバ
301~304:紫外光照射システム

Claims (8)

  1.  直交する2つの偏波の伝送赤外光を光ファイバに入射する光源部と、
     前記光ファイバを伝搬した前記伝送赤外光を紫外光に変換する波長変換部と、
     前記紫外光を所望箇所に照射する照射部と、
    を備える紫外光照射システム。
  2.  前記光源部は、偏波スクランブラを有し、1つの赤外光源が出力する赤外光を前記偏波スクランブラで前記伝送赤外光とすることを特徴とする請求項1に記載の紫外光照射システム。
  3.  前記光源部は、偏波合波器を有し、互いに出力波長が異なる2つの赤外光源が出力する赤外光を前記偏波合波器で合波して前記伝送赤外光とすることを特徴とする請求項1に記載の紫外光照射システム。
  4.  伝送赤外光を光ファイバに入射する光源部と、
     前記光ファイバを伝搬した前記伝送赤外光を紫外光に変換する波長変換部と、
     前記紫外光を所望箇所に照射する照射部と、
    を備え、
     前記波長変換部は、前記伝送赤外光を直交する偏波に分離し、それぞれの前記伝送赤外光を紫外光に変換する偏波ダイバーシティ構成であることを特徴とする紫外光照射システム。
  5.  前記波長変換部は、前記紫外光を直接又は光ファイバを介して前記照射部に供給することを特徴とする請求項1から4のいずれかに記載の紫外光照射システム。
  6.  前記伝送赤外光を伝搬する前記光ファイバ、及び前記波長変換部から前記紫外光を前記照射部へ供給する光ファイバの少なくとも一方は、
     充実コア光ファイバ、空孔アシスト光ファイバ、空孔構造光ファイバ、中空コア光ファイバ、結合コア型光ファイバ、充実コア型マルチコア光ファイバ、空孔アシスト型マルチコア光ファイバ、空孔構造型マルチコア光ファイバ、中空コア型マルチコア光ファイバ、及び結合コア型マルチコア光ファイバのいずれかであることを特徴とする請求項1から4のいずれかに記載の紫外光照射システム。
  7.  直交する2つの偏波の伝送赤外光を光ファイバに入射すること、
     前記光ファイバを伝搬した前記伝送赤外光を紫外光に変換すること、及び
     前記紫外光を所望箇所に照射すること、
    を行う紫外光照射方法。
  8.  伝送赤外光を光ファイバに入射すること、
     前記光ファイバを伝搬した前記伝送赤外光を直交する偏波に分離すること、
     分離したそれぞれの前記伝送赤外光を紫外光に変換すること、及び
     前記紫外光を所望箇所に照射すること、
    を行う紫外光照射方法。
PCT/JP2020/039580 2020-10-21 2020-10-21 紫外光照射システム及び紫外光照射方法 WO2022085122A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022556301A JPWO2022085122A1 (ja) 2020-10-21 2020-10-21
PCT/JP2020/039580 WO2022085122A1 (ja) 2020-10-21 2020-10-21 紫外光照射システム及び紫外光照射方法
US18/032,495 US20230302173A1 (en) 2020-10-21 2020-10-21 Ultraviolet light irradiation system and ultraviolet light irradiation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/039580 WO2022085122A1 (ja) 2020-10-21 2020-10-21 紫外光照射システム及び紫外光照射方法

Publications (1)

Publication Number Publication Date
WO2022085122A1 true WO2022085122A1 (ja) 2022-04-28

Family

ID=81289821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039580 WO2022085122A1 (ja) 2020-10-21 2020-10-21 紫外光照射システム及び紫外光照射方法

Country Status (3)

Country Link
US (1) US20230302173A1 (ja)
JP (1) JPWO2022085122A1 (ja)
WO (1) WO2022085122A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177705U (ja) * 1988-06-06 1989-12-19
JP2001085771A (ja) * 1999-09-10 2001-03-30 Nikon Corp レーザ装置
JP2001524354A (ja) * 1997-12-01 2001-12-04 トリベルスキー、ツァミール 液体およびガスを滅菌する方法およびそれを用いたデバイス
JP2003285187A (ja) * 2002-03-26 2003-10-07 Hoya Photonics Corp 光伝送方法,レーザ加工装置
JP2010060656A (ja) * 2008-09-01 2010-03-18 Fujitsu Ltd 偏光状態安定化方法及び装置、光信号処理システム
JP2011146787A (ja) * 2010-01-12 2011-07-28 Mitsubishi Electric Corp 光通信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177705U (ja) * 1988-06-06 1989-12-19
JP2001524354A (ja) * 1997-12-01 2001-12-04 トリベルスキー、ツァミール 液体およびガスを滅菌する方法およびそれを用いたデバイス
JP2001085771A (ja) * 1999-09-10 2001-03-30 Nikon Corp レーザ装置
JP2003285187A (ja) * 2002-03-26 2003-10-07 Hoya Photonics Corp 光伝送方法,レーザ加工装置
JP2010060656A (ja) * 2008-09-01 2010-03-18 Fujitsu Ltd 偏光状態安定化方法及び装置、光信号処理システム
JP2011146787A (ja) * 2010-01-12 2011-07-28 Mitsubishi Electric Corp 光通信装置

Also Published As

Publication number Publication date
US20230302173A1 (en) 2023-09-28
JPWO2022085122A1 (ja) 2022-04-28

Similar Documents

Publication Publication Date Title
HUP0301300A2 (en) Method and apparatus for photobiostimulation of biological tissue, biostimulation device and method for the treatment of tissue
JP2024059973A (ja) 紫外光照射システム
WO2019220430A3 (en) Laser beams methods and systems
WO2022085122A1 (ja) 紫外光照射システム及び紫外光照射方法
WO2022085123A1 (ja) 紫外光照射システム及び紫外光照射方法
WO2022024406A1 (ja) 紫外光照射システム
WO2023058144A1 (ja) 紫外光照射システム及び紫外光照射方法
WO2022085142A1 (ja) 紫外光照射システム及び方法
WO2022024405A1 (ja) 紫外光照射システム及び除染方法
WO2023084677A1 (ja) 紫外光照射システム
WO2022185458A1 (ja) 紫外光照射システム及び紫外光照射方法
US20230310674A1 (en) Light irradiation system
WO2024105873A1 (ja) 光スポット整形器及び光伝送システム
WO2023073771A1 (ja) 紫外光照射システム
US20240157003A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2023073885A1 (ja) 紫外光照射システム
WO2024100862A1 (ja) 光伝送システム
WO2024084561A1 (ja) 光伝送システムの設計方法及び設計装置
WO2023157281A1 (ja) 光伝送装置、光照射システム、及び光伝送方法
WO2023084668A1 (ja) 紫外光照射システム及び制御方法
WO2023073774A1 (ja) 紫外光照射システム
WO2023276148A1 (ja) 紫外光照射システム及び制御方法
WO2024105875A1 (ja) 光伝送システム及び光伝送方法
WO2024105874A1 (ja) 光伝送システム、光分岐部及び光伝送方法
WO2023084669A1 (ja) 紫外光照射システム及び照射方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022556301

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958674

Country of ref document: EP

Kind code of ref document: A1