WO2022083791A1 - 一种全彩硅基oled显示器件和全彩硅基oled显示方法 - Google Patents

一种全彩硅基oled显示器件和全彩硅基oled显示方法 Download PDF

Info

Publication number
WO2022083791A1
WO2022083791A1 PCT/CN2021/136459 CN2021136459W WO2022083791A1 WO 2022083791 A1 WO2022083791 A1 WO 2022083791A1 CN 2021136459 W CN2021136459 W CN 2021136459W WO 2022083791 A1 WO2022083791 A1 WO 2022083791A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
oled display
light
full
display device
Prior art date
Application number
PCT/CN2021/136459
Other languages
English (en)
French (fr)
Inventor
赵铮涛
刘胜芳
李维维
刘晓佳
吕磊
许嵩
Original Assignee
安徽熙泰智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽熙泰智能科技有限公司 filed Critical 安徽熙泰智能科技有限公司
Priority to US18/013,944 priority Critical patent/US20230329029A1/en
Publication of WO2022083791A1 publication Critical patent/WO2022083791A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • the invention relates to the technical field of full-color silicon-based OLEDs, in particular to a full-color silicon-based OLED display device and a full-color silicon-based OLED display method.
  • the silicon-based OLED microdisplay is based on a single crystal silicon chip and uses a mature CMOS process to make the pixel size smaller and the integration higher, and can be made into a near-eye display comparable to a large-screen display. products have received extensive attention. Based on its technical advantages and broad market, in the fields of military and consumer electronics, silicon-based OLED microdisplays will set off a new wave of near-eye displays, bringing users an unprecedented visual experience.
  • the purpose of the present invention is to overcome the problem that in the full-color silicon-based OLED display in the prior art, since the three colors of RGB light correspond to optical microcavities of different thicknesses, the white light of the top-emission structure with a single optical thickness is reduced.
  • OLED is prone to the problem of color drift, so as to provide a full-color silicon-based OLED that can effectively overcome the above technical problems, narrow the spectrum, improve the color gamut effect, and improve the efficiency of white light devices to meet the needs of high-brightness products.
  • a display device and a full-color silicon-based OLED display method is to overcome the problem that in the full-color silicon-based OLED display in the prior art, since the three colors of RGB light correspond to optical microcavities of different thicknesses, the white light of the top-emission structure with a single optical thickness is reduced.
  • OLED is prone to the problem of color drift, so as to provide a full-color silicon-based OLED that can effectively overcome the above technical problems, narrow the spectrum
  • the present invention provides a full-color silicon-based OLED display device
  • the full-color silicon-based OLED display device includes: a substrate, a metal anode, an organic functional layer, a metal cathode, and a TFE package stacked in sequence from bottom to top layer and filter layer; wherein,
  • the metal anode includes: a first ITO anode layer and a second ITO anode layer with two different thicknesses; the filter layer includes: a red filter and a blue filter, the red filter and all The blue color filters are respectively coated on the light-emitting regions corresponding to the first ITO anode layer on the TFE encapsulation layer.
  • the organic functional layer comprises: a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer and an electron injection layer arranged in order from bottom to top;
  • the light-emitting layer includes: a red light-emitting unit, a blue light-emitting unit and a green light-emitting unit.
  • the substrate is a single crystal silicon chip.
  • the present invention also provides a full-color silicon-based OLED display method, the method comprising:
  • a filter layer is coated on the TFE encapsulation layer in the light emitting area corresponding to the first ITO anode layer to obtain two primary colors of RB (red light and blue light).
  • the method further includes:
  • the formula for calculating the thickness of the organic layer of the OLED display device is:
  • n is the refractive index of the organic functional layer in the OLED display device
  • d i is the thickness of the organic functional layer
  • ⁇ i is the resonance enhancement wavelength of the microcavity in the OLED display device
  • i is the type of light-emitting unit
  • is the The phase shift of the reflection of light on the surface of the metal anode and the metal cathode in the OLED display device
  • m is the order of the emission mode, also called the order of the microcavity, and is a positive integer.
  • n 1.75;
  • ⁇ R is 618 nm
  • ⁇ G is 530 nm
  • ⁇ B is 460 nm
  • d RB is 530nm
  • dG is 454nm or 605nm.
  • the filter layer includes: a red filter and a blue filter.
  • the coating of the filter layer on the TFE encapsulation layer in the light-emitting area corresponding to the first ITO anode layer is achieved by a yellow light process.
  • the method further includes:
  • the display driver IC is designed to enable the OLED display device to realize full-color display.
  • the beneficial effects of the full-color silicon-based OLED display device and the full-color silicon-based OLED display method provided by the present invention are: according to the use of the first ITO anode layer and the first ITO anode layer with different thicknesses in the OLED display device.
  • the RB two primary colors are obtained, and the G spectrum does not require the CF process, so that a full-color display can be obtained.
  • the structure and method provided by the present invention can achieve the purpose of narrowing the spectrum and improving the color gamut effect, and at the same time improve the efficiency of the organic functional layer by utilizing the microcavity effect, so as to meet the requirements of high-brightness products.
  • FIG. 1 is a schematic structural diagram of a full-color silicon-based OLED display device provided in a preferred embodiment of the present invention
  • FIG. 2 is a spectral diagram corresponding to a light-emitting region of the first ITO anode layer provided in a preferred embodiment of the present invention
  • FIG. 3 is a spectral diagram corresponding to the light-emitting region of the second ITO anode layer provided in a preferred embodiment of the present invention.
  • FIG. 4 is a flowchart of a full-color silicon-based OLED display method provided in a preferred embodiment of the present invention.
  • FIG. 5 is a flowchart of a full-color silicon-based OLED display method provided in a preferred embodiment of the present invention.
  • the first ITO anode layer 202 The second ITO anode layer
  • orientation words such as "upper, lower” included in terms only represent the orientation of the term under normal usage, or are common names understood by those skilled in the art, and This term should not be considered a limitation.
  • R is the red spectrum
  • G is the green spectrum
  • B is the blue spectrum.
  • the present invention provides a full-color silicon-based OLED display device
  • the full-color silicon-based OLED display device includes: a substrate 1, a metal anode 2, an organic functional layer 3, a metal The cathode 4, the TFE encapsulation layer 5 and the filter layer 6; wherein, the metal anode 2 includes: a first ITO anode layer 201 and a second ITO anode layer 202 with two different thicknesses; the filter layer includes: A red filter 601 and a blue filter 602, the red filter 601 and the blue filter 602 are respectively coated on the TFE packaging layer corresponding to the first ITO anode layer 201 luminous area.
  • the first ITO anode layer and the second ITO anode layer with different thicknesses are used to realize the shared microcavity of the BR and the individual microcavity of G, and then the coating is applied to the
  • the filter layer of the light-emitting region corresponding to the first ITO anode layer on the TFE encapsulation layer obtains two primary colors of RB, and the G spectrum does not require a CF (color filter) process, thereby obtaining a full-color display.
  • the structure and method provided by the present invention can achieve the purpose of narrowing the spectrum and improving the color gamut effect, and at the same time improve the efficiency of the organic functional layer by utilizing the microcavity effect, so as to meet the requirements of high-brightness products.
  • the organic functional layer includes: a hole injection layer 301, a hole transport layer 302, a light emitting layer 303, an electron transport layer 304 and an electron injection layer arranged in order from bottom to top 305;
  • the light-emitting layer includes: a red light-emitting unit 3031, a blue light-emitting unit 3032 and a green light-emitting unit 3033 to form a white light (RGB) Tandem structure.
  • the substrate is a single crystal silicon chip.
  • the first ITO anode layer and the second ITO anode layer with different thicknesses are mainly used to realize the shared microcavity of BR and the independent microcavity of G, and then use the filter layer to obtain the two primary colors of RB.
  • the color display structure can overcome the problem that the white light Tandem structure of the top emission structure in the current OLED structure is prone to color drift.
  • the present invention also provides a full-color silicon-based OLED display method, which includes:
  • the BR shared microcavity and the G separate microcavity are realized by the first ITO anode layer 201 and the second ITO anode layer 202 with different thicknesses, and then the two primary colors of RB are obtained by using the filter layer, and the second ITO anode
  • the light-emitting area corresponding to the layer 202 directly obtains the primary color of G, thereby realizing a full-color display effect, and the display method overcomes the problem that the white light Tandem structure of the top emission structure in the current OLED structure is prone to color drift.
  • the method includes:
  • the formula for calculating the thickness of the organic layer of the OLED display device is:
  • n is the refractive index of the organic functional layer in the OLED display device
  • d i is the thickness of the organic functional layer
  • ⁇ i is the resonance enhancement wavelength of the microcavity in the OLED display device
  • i is the type of light-emitting unit
  • is the The phase shift of the reflection of light on the surface of the metal anode and the metal cathode in the OLED display device
  • m is the order of the emission mode, also called the order of the microcavity, and is a positive integer.
  • the organic layer thickness d RB of the OLED display device corresponding to the red light-emitting unit and the blue light-emitting unit and the organic layer thickness d G of the corresponding OLED display device are first obtained by calculation, and then the thickness d G of the OLED display device is obtained.
  • the method simplifies the fabrication process of the OLED display device, narrows the spectrum, improves the color gamut effect, and at the same time utilizes the microcavity effect, improves the efficiency of the white light device, and meets the requirements of high-brightness products.
  • the R peak + B peak spectrum can be obtained in the light-emitting area corresponding to the first ITO anode layer; the red filter and the blue filter are coated in the corresponding light-emitting area of the first ITO anode layer through the yellow light process , can get R and B two base light;
  • a G-peak spectrum can be obtained corresponding to the light-emitting region of the second ITO anode layer, and G-based light can be obtained without a color-filter process.
  • n 1.75;
  • ⁇ R is 618 nm
  • ⁇ G is 530 nm
  • ⁇ B is 460 nm
  • d RB is 530nm
  • dG is 454nm or 605nm.
  • the method for selecting the thickness of the first ITO anode layer and the second ITO anode layer is exemplified below:
  • n is the refractive index of the organic functional layer in the OLED display device
  • d i is the thickness of the organic functional layer
  • ⁇ i is the resonance enhancement wavelength of the microcavity in the OLED display device
  • i is the type of light-emitting unit
  • is the The phase shift of the reflection of light on the surface of the metal anode and the metal cathode in the OLED display device
  • m is the order of the emission mode, also called the order of the microcavity, and is a positive integer.
  • the following is an example to deduce the thickness selection of the first ITO anode layer and the second ITO anode layer according to the above table: when the R 3 order/B 4 order/G 3 order, the total thickness of the R and B devices is 530nm, and the G device has a total thickness of 530nm.
  • the thickness is 454nm, and the thickness of the first ITO anode layer is set to be 100nm, then the thickness of the second ITO anode layer is calculated to be 20nm; when the R 3 order/B 4 order/G 4 order: the total thickness of the R and B devices is 530nm, At this time, the total thickness of the G device is 605 nm, and the thickness of the first ITO anode layer is set to be 20 nm, then the calculated thickness of the second ITO anode layer is 95 nm.
  • the total thickness of RB is 530nm, which can cover the R-3 order and B-4 order, and the corresponding green light preferably has a total thickness of 454nm (3rd order) or 605nm (4th order), which can theoretically be any order.
  • the full-color silicon-based OLED display device and the full-color silicon-based OLED display method provided by the present invention overcome the problems in the full-color silicon-based OLED display in the prior art, because the three colors of RGB light correspond to different thicknesses.
  • the optical microcavity makes the white light OLED with a single optical thickness top emission structure prone to the problem of color drift.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开了一种全彩硅基OLED显示器件和全彩硅基OLED显示方法,其中,所述全彩硅基OLED显示器件包括:从下至上依次叠加的基板、金属阳极、有机功能层、金属阴极、TFE封装层以及滤光片层;所述金属阳极包括:两种不同厚度的第一ITO阳极层和第二ITO阳极层;所述滤光片层包括:红色滤光片和蓝色滤光片,所述红色滤光片和所述蓝色滤光片分别涂覆在所述TFE封装层上与所述第一ITO阳极层所对应的发光区域。该显示器件克服现有技术中的全彩硅基OLED显示中,由于RGB三种颜色的光对应不同的厚度的光学微腔,使得单一光学厚度的顶发射结构的白光OLED容易出现颜色漂移现象的问题。

Description

一种全彩硅基OLED显示器件和全彩硅基OLED显示方法 技术领域
本发明涉及全彩硅基OLED技术领域,具体地,涉及一种全彩硅基OLED显示器件和全彩硅基OLED显示方法。
背景技术
与传统的AMOLED显示技术相比,硅基OLED微显示以单晶硅芯片为基底并借助于成熟的CMOS工艺使其像素尺寸更小、集成度更高,可制作成媲美大屏显示的近眼显示产品而受到广泛关注。基于其技术优势和广阔的市场,在军事以及消费电子领域,硅基OLED微显示都将掀起近眼显示的新浪潮,为用户带来前所未有的视觉体验。
受限于金属掩膜版的制作技术,现有的高ppi硅基OLED全彩产品大多数采用WOLED(白光OLED)加CF(彩色滤光片)技术,为了实现彩色显示,WOLED的光谱通常要包含RGB 3个peak。由于RGB三种颜色的光对应不同的厚度的光学微腔,所以目前这种单一光学厚度的顶发射结构的WOLED容易出现颜色漂移的现象。
因此,提供一种可以有效地克服以上技术问题,达到窄化光谱,提高色域效果,而且还能提高白光器件效率,满足高亮产品需求的全彩硅基OLED显示器件和全彩硅基OLED显示方法是本发明亟需解决的问题。
发明内容
针对上述技术问题,本发明的目的是克服现有技术中的全彩硅基OLED显示中,由于RGB三种颜色的光对应不同的厚度的光学微腔,使得单一光学厚度的顶发射结构的白光OLED容易出现颜色漂移现象的问题,从而提供一种可以有效地克服以上技术问题,达到窄化光谱,提高色域效果,而且还能提高白光器件效率,满足高亮产品需求的全彩硅基OLED显示器件和全彩硅基OLED显示方法。
为了实现上述目的,本发明提供了一种全彩硅基OLED显示器件,所述全彩硅基OLED显示器件包括:从下至上依次叠加的基板、金属阳极、有机功能层、金属阴极、TFE封装层以及滤光片层;其中,
所述金属阳极包括:两种不同厚度的第一ITO阳极层和第二ITO阳极层;所述滤光片层包括:红色滤光片和蓝色滤光片,所述红色滤光片和所述蓝色滤光片分别涂覆在所述TFE封装层上与所述第一ITO阳极层所对应的发光区域。
优选地,所述有机功能层包括:从下到上依次排列的空穴注入层、空穴传输层、发光层、电子传输层和电子注入层;
所述发光层包括:红色发光单元、蓝色发光单元和绿色发光单元。
优选地,所述基板为单晶硅芯片。
本发明还提供了一种全彩硅基OLED显示方法,所述方法包括:
选用不同厚度的第一ITO阳极层和第二ITO阳极层;
将滤光片层涂覆在所述TFE封装层上与所述第一ITO阳极层所对应的发光区域内以获取RB(红光和蓝光)两基色。
优选地,所述方法还包括:
通过计算公式分别计算红色发光单元和蓝色发光单元所对应的OLED显示器件的有机层厚度d RB和绿色发光单元所对应的OLED显示器件的有机层厚度 d G
通过获取的两种OLED显示器件的有机层厚度推导出所述第一ITO阳极层的厚度和第二ITO阳极层的厚度关系;其中,
所述OLED显示器件的有机层厚度的计算公式为:
Figure PCTCN2021136459-appb-000001
其中,所述其中n为OLED显示器件中有机功能层的折射率,d i为所述有机功能层的厚度,λ i为OLED显示器件中微腔谐振加强波长,i为发光单元种类,φ为光在OLED显示器件中金属阳极和金属阴极表面反射相移,m为发射模的级数,也称为微腔的阶数,为正整数。
优选地,在所述OLED显示器件的有机层厚度的计算公式中:
n为1.75;
λ R为618nm、λ G为530nm、λ B为460nm;
d RB为530nm;
d G为454nm或605nm。
优选地,所述滤光片层包括:红色滤光片和蓝色滤光片。
优选地,所述将滤光片层涂覆在所述TFE封装层上与所述第一ITO阳极层所对应的发光区域内是通过黄光工艺实现的。
优选地,在所述将滤光片层涂覆在所述TFE封装层上与所述第一ITO阳极层所对应的发光区域内之后,所述方法还包括:
设计显示驱动IC以使得所述OLED显示器件实现全彩化显示。
根据上述技术方案,本发明提供的全彩硅基OLED显示器件和全彩硅基OLED显示方法在使用时的有益效果为:根据所述OLED显示器件中使用不同 厚度的第一ITO阳极层和第二ITO阳极层,以实现所述BR共用微腔,G单独微腔,然后通过所述涂覆在所述TFE封装层上与所述第一ITO阳极层所对应的发光区域的滤光片层得到RB两基色,G光谱不需要CF制程,从而得到全彩显示。而且本发明提供的结构和方法可以达到窄化光谱,提高色域效果的目的,同时利用微腔效应提高有机功能层效率,满足高亮产品需求。
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说明;而且本发明中未涉及部分均与现有技术相同或可采用现有技术加以实现。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是本发明的一种优选的实施方式中提供的全彩硅基OLED显示器件的结构示意图;
图2是本发明的一种优选的实施方式中提供的第一ITO阳极层对应发光区光谱图;
图3是本发明的一种优选的实施方式中提供的第二ITO阳极层对应发光区光谱图;
图4是本发明的一种优选的实施方式中提供的全彩硅基OLED显示方法的流程图;
图5是本发明的一种优选的实施方式中提供的全彩硅基OLED显示方法的流程图。
附图标记说明
1基板               2金属阳极
3有机功能层         4金属阴极
5 TFE封装层         6滤光片层
201第一ITO阳极层    202第二ITO阳极层
301空穴注入层       302空穴传输层
303发光层           304电子传输层
305电子注入层       601红色滤光片
602蓝色滤光片       3031红色发光单元
3032蓝色发光单元    3033绿色发光单元
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本发明中,在未作相反说明的情况下,“上、下”等包含在术语中的方位词仅代表该术语在常规使用状态下的方位,或为本领域技术人员理解的俗称,而不应视为对该术语的限制。其中,R为红色光谱、G为绿色光谱、B为蓝色光谱。
如图1所示,本发明提供了一种全彩硅基OLED显示器件,所述全彩硅基OLED显示器件包括:从下至上依次叠加的基板1、金属阳极2、有机功能层3、金属阴极4、TFE封装层5以及滤光片层6;其中,所述金属阳极2包括:两种不同厚度的第一ITO阳极层201和第二ITO阳极层202;所述滤光片层包括: 红色滤光片601和蓝色滤光片602,所述红色滤光片601和所述蓝色滤光片602分别涂覆在所述TFE封装层上与所述第一ITO阳极层201所对应的发光区域。
在上述方案中,根据所述OLED显示器件中使用不同厚度的第一ITO阳极层和第二ITO阳极层,以实现所述BR共用微腔,G单独微腔,然后通过所述涂覆在所述TFE封装层上与所述第一ITO阳极层所对应的发光区域的滤光片层得到RB两基色,G光谱不需要CF(彩色滤光片)制程,从而得到全彩显示。而且本发明提供的结构和方法可以达到窄化光谱,提高色域效果的目的,同时利用微腔效应提高有机功能层效率,满足高亮产品需求。
在本发明的一种优选的实施方式中,所述有机功能层包括:从下到上依次排列的空穴注入层301、空穴传输层302、发光层303、电子传输层304和电子注入层305;所述发光层包括:红色发光单元3031、蓝色发光单元3032和绿色发光单元3033,以组成白光(RGB)Tandem结构。
在本发明的一种优选的实施方式中,所述基板为单晶硅芯片。
根据上述内容,主要是利用不同厚度的第一ITO阳极层和第二ITO阳极层,以实现所述BR共用微腔,G单独微腔,然后利用滤光片层得到RB两基色,这样的全彩显示结构可以克服目前OLED结构中的顶发射结构的白光Tandem结构容易出现颜色漂移现象的问题。
如图4和图5所示,本发明还提供了一种全彩硅基OLED显示方法,所述方法包括:
S101,选用不同厚度的第一ITO阳极层201和第二ITO阳极层202;
S102,将滤光片层涂覆在所述TFE封装层上与所述第一ITO阳极层201所对应的发光区域内以获取RB(红光和蓝光)两基色。
在上述方案中,通过不同厚度的第一ITO阳极层201和第二ITO阳极层202 实现所述BR共用微腔,G单独微腔,然后利用滤光片层得到RB两基色,第二ITO阳极层202对应的发光区域直接得到G基色,从而实现全彩显示效果,而且该显示方法克服目前OLED结构中的顶发射结构的白光Tandem结构容易出现颜色漂移现象的问题。
在本发明的一种优选的实施方式中,所述方法包括:
S201,通过计算公式分别计算红色发光单元和蓝色发光单元所对应的OLED显示器件的有机层厚度d RB和绿色发光单元所所对应的OLED显示器件的有机层厚度d G
S202,通过获取的两种OLED显示器件的有机层厚度推导出所述第一ITO阳极层201的厚度和第二ITO阳极层202的厚度关系;
S203,选用不同厚度的第一ITO阳极层201和第二ITO阳极层202;
S204,将滤光片层涂覆在所述TFE封装层5上与所述第一ITO阳极层201所对应的发光区域内以获取RB(红光和蓝光)两基色。
S205,设计显示驱动IC以使得所述OLED显示器件实现全彩化显示;
其中,
所述OLED显示器件的有机层厚度的计算公式为:
Figure PCTCN2021136459-appb-000002
其中,所述其中n为OLED显示器件中有机功能层的折射率,d i为所述有机功能层的厚度,λ i为OLED显示器件中微腔谐振加强波长,i为发光单元种类,φ为光在OLED显示器件中金属阳极和金属阴极表面反射相移,m为发射模的级数,也称为微腔的阶数,为正整数。
在上述方案中,首先通过计算获取红色发光单元和蓝色发光单元所对应的 OLED显示器件的有机层厚度d RB和所对应的OLED显示器件的有机层厚度d G,然后通过厚度获得所述第一ITO阳极层的厚度和第二ITO阳极层的厚度关系,这样根据该厚度选择所述第一ITO阳极层和所述第二ITO阳极层,利用该结构实现BR共用微腔,G单独微腔,所述BR共用微腔后产生的光谱包括红光和蓝光,再利用滤光片层得到RB两基色,而G单独微腔直接获得G基色,最后设计显示驱动IC以使得所述OLED显示器件实现全彩化显示。该方法简化了OLED显示器件的制作工艺,达到窄化光谱,提高色域效果,同时利用微腔效应,提高白光器件效率,满足高亮产品需求。其中,
如图2所示,第一ITO阳极层对应发光区可得到R峰+B峰光谱;通过黄光工艺将红色滤光片和蓝色滤光片涂覆在第一ITO阳极层对应发光区域内,可得到R及B两基光;
如图3所示,第二ITO阳极层对应发光区可得到G峰光谱,无需color-filter工艺便可得到G基光。
在本发明的一种优选的实施方式中,在所述OLED显示器件的有机层厚度的计算公式中:
n为1.75;
λ R为618nm、λ G为530nm、λ B为460nm;
d RB为530nm;
d G为454nm或605nm。
以下举例说明所述第一ITO阳极层和第二ITO阳极层的厚度选择方法:
根据所述OLED显示器件的有机层厚度的计算公式为:
Figure PCTCN2021136459-appb-000003
其中,所述其中n为OLED显示器件中有机功能层的折射率,d i为所述有机功能层的厚度,λ i为OLED显示器件中微腔谐振加强波长,i为发光单元种类,φ为光在OLED显示器件中金属阳极和金属阴极表面反射相移,m为发射模的级数,也称为微腔的阶数,为正整数。
在本案例中,为了简化计算和进行理论模拟,该器件结构中:令有机层的折射率n=1.75,令R的波长λ R=618nm,令G的波长λ G=530nm,令B的波长λ B=460nm,忽略光在阴极和阳极的相移,此时令m=1,2,3,……,N;分别得到RGB对应的OLED的器件厚度如下表1所示。
  m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 …… m=N
R 176.6 353.2 529.8 706.4 883 1059.6 1236.2 1412.8 1589.4 …… 176.6N
G 151.4 302.8 454.2 605.6 757 908.4 1059.8 1211.2 1362.6 …… 151.4N
B 131.4 262.8 394.2 525.6 657 788.4 919.8 1051.2 1182.6 …… 131.4N
以下根据上表举例推导所述第一ITO阳极层和第二ITO阳极层的厚度选择:当R 3阶/B 4阶/G 3阶,R和B器件总厚度为530nm,此时G器件总厚度454nm,设定第一ITO阳极层的厚度为100nm,则计算得第二ITO阳极层的厚度为20nm;当R 3阶/B 4阶/G 4阶:R和B器件总厚度为530nm,此时G器件总厚度605nm,设定第一ITO阳极层的厚度为20nm,则计算得第二ITO阳极层的厚度为95nm。
需要说明的是:RB总厚度为530nm,能够涵盖R-3阶、B-4阶,其对应绿光优选总厚度为454nm(3阶)或605nm(4阶),理论上可为任意阶。延伸:选取R-3N阶与B-4N阶处于同步微腔(N=1,2,3...),此时G可选任意阶(优选3N~4N阶)。
综上所述,本发明提供的全彩硅基OLED显示器件和全彩硅基OLED显示方法克服现有技术中的全彩硅基OLED显示中,由于RGB三种颜色的光对应不同的厚度的光学微腔,使得单一光学厚度的顶发射结构的白光OLED容易出现 颜色漂移现象的问题。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (9)

  1. 一种全彩硅基OLED显示器件,其特征在于,所述全彩硅基OLED显示器件包括:从下至上依次叠加的基板、金属阳极、有机功能层、金属阴极、TFE封装层以及滤光片层;其中,
    所述金属阳极包括:两种不同厚度的第一ITO阳极层和第二ITO阳极层;所述滤光片层包括:红色滤光片和蓝色滤光片,所述红色滤光片和所述蓝色滤光片分别涂覆在所述TFE封装层上与所述第一ITO阳极层所对应的发光区域。
  2. 根据权利要求1所述的全彩硅基OLED显示器件,其特征在于,所述有机功能层包括:从下到上依次排列的空穴注入层、空穴传输层、发光层、电子传输层和电子注入层;
    所述发光层包括:红色发光单元、蓝色发光单元和绿色发光单元。
  3. 根据权利要求1所述的全彩硅基OLED显示器件,其特征在于,所述基板为单晶硅芯片。
  4. 一种全彩硅基OLED显示方法,其特征在于,所述方法包括:
    选用不同厚度的第一ITO阳极层和第二ITO阳极层;
    将滤光片层涂覆在所述TFE封装层上与所述第一ITO阳极层所对应的发光区域内以获取RB(红光和蓝光)两基色。
  5. 根据权利要求4所述的全彩硅基OLED显示方法,其特征在于,所述方法还包括:
    通过计算公式分别计算红色发光单元和蓝色发光单元所对应的OLED显示器件的有机层厚度d RB和绿色发光单元所对应的OLED显示器件的有机层厚度d G
    通过获取的两种OLED显示器件的有机层厚度推导出所述第一ITO阳极层的厚度和第二ITO阳极层的厚度关系;其中,
    所述OLED显示器件的有机层厚度的计算公式为:
    Figure PCTCN2021136459-appb-100001
    其中,所述其中n为OLED显示器件中有机功能层的折射率,d i为所述有机功能层的厚度,λ i为OLED显示器件中微腔谐振加强波长,i为发光单元种类,φ为光在OLED显示器件中金属阳极和金属阴极表面反射相移,m为发射模的级数,也称为微腔的阶数,为正整数。
  6. 根据权利要求5所述的全彩硅基OLED显示方法,其特征在于,在所述OLED显示器件的有机层厚度的计算公式中:
    n为1.75;
    λ R为618nm、λ G为530nm、λ B为460nm;
    d RB为530nm;
    d G为454nm或605nm。
  7. 根据权利要求4所述的全彩硅基OLED显示方法,其特征在于,所述滤光片层包括:红色滤光片和蓝色滤光片。
  8. 根据权利要求4所述的全彩硅基OLED显示方法,其特征在于,所述将滤光片层涂覆在所述TFE封装层上与所述第一ITO阳极层所对应的发光区域内是通过黄光工艺实现的。
  9. 根据权利要求4所述的全彩硅基OLED显示方法,其特征在于,在所述将滤光片层涂覆在所述TFE封装层上与所述第一ITO阳极层所对应的发光区域内之后,所述方法还包括:
    设计显示驱动IC以使得所述OLED显示器件实现全彩化显示。
PCT/CN2021/136459 2020-10-20 2021-12-08 一种全彩硅基oled显示器件和全彩硅基oled显示方法 WO2022083791A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/013,944 US20230329029A1 (en) 2020-10-20 2021-12-08 Full-color silicon-based organic light-emitting diode (OLED) display device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011122344.1 2020-10-20
CN202011122344.1A CN112242496B (zh) 2020-10-20 2020-10-20 一种全彩硅基oled显示器件和全彩硅基oled显示方法

Publications (1)

Publication Number Publication Date
WO2022083791A1 true WO2022083791A1 (zh) 2022-04-28

Family

ID=74169129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136459 WO2022083791A1 (zh) 2020-10-20 2021-12-08 一种全彩硅基oled显示器件和全彩硅基oled显示方法

Country Status (3)

Country Link
US (1) US20230329029A1 (zh)
CN (1) CN112242496B (zh)
WO (1) WO2022083791A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112242496B (zh) * 2020-10-20 2023-06-23 安徽熙泰智能科技有限公司 一种全彩硅基oled显示器件和全彩硅基oled显示方法
CN114284457A (zh) * 2021-12-29 2022-04-05 云南北方奥雷德光电科技股份有限公司 一种硅基oled微型显示器全彩显示结构
CN114420875A (zh) * 2022-01-28 2022-04-29 南京国兆光电科技有限公司 一种高色域的硅基oled微显示器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153748A (ja) * 2014-02-13 2015-08-24 上海和輝光電有限公司Everdisplay Optronics (Shanghai) Limited フルカラー有機発光ダイオードの構造
CN107958963A (zh) * 2017-12-14 2018-04-24 安徽熙泰智能科技有限公司 全彩化oled微显示器件及其制备方法
CN109148725A (zh) * 2018-08-30 2019-01-04 京东方科技集团股份有限公司 发光器件、像素单元、像素单元的制备方法和显示装置
CN109742266A (zh) * 2019-01-11 2019-05-10 京东方科技集团股份有限公司 一种oled微腔结构的制作方法
US20190157352A1 (en) * 2016-12-26 2019-05-23 Wuhan China Star Optoelectronics Technology Co., Ltd. Oled display
CN112242496A (zh) * 2020-10-20 2021-01-19 安徽熙泰智能科技有限公司 一种全彩硅基oled显示器件和全彩硅基oled显示方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103107288B (zh) * 2011-11-10 2016-02-03 乐金显示有限公司 白光有机发光器件和使用白光有机发光器件的显示装置
KR101954973B1 (ko) * 2012-09-19 2019-03-08 삼성디스플레이 주식회사 유기 발광 표시 장치
KR20150006605A (ko) * 2013-07-09 2015-01-19 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
CN107154415A (zh) * 2016-03-03 2017-09-12 上海和辉光电有限公司 一种oled显示装置
CN106449700A (zh) * 2016-08-18 2017-02-22 深圳市华星光电技术有限公司 一种顶发射woled显示器
CN107564944B (zh) * 2017-08-29 2020-06-05 上海天马有机发光显示技术有限公司 有机发光显示面板及显示装置
CN108717941B (zh) * 2018-05-28 2020-11-06 上海天马有机发光显示技术有限公司 有机发光显示面板及有机发光显示装置
CN109103236B (zh) * 2018-09-25 2021-03-02 京东方科技集团股份有限公司 一种有机发光显示基板、显示装置及其制作方法
CN109461841B (zh) * 2018-11-02 2021-11-09 京东方科技集团股份有限公司 Oled显示基板及其制作方法、显示装置
CN110783392B (zh) * 2019-11-06 2023-04-14 京东方科技集团股份有限公司 发光器件及其制造方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153748A (ja) * 2014-02-13 2015-08-24 上海和輝光電有限公司Everdisplay Optronics (Shanghai) Limited フルカラー有機発光ダイオードの構造
US20190157352A1 (en) * 2016-12-26 2019-05-23 Wuhan China Star Optoelectronics Technology Co., Ltd. Oled display
CN107958963A (zh) * 2017-12-14 2018-04-24 安徽熙泰智能科技有限公司 全彩化oled微显示器件及其制备方法
CN109148725A (zh) * 2018-08-30 2019-01-04 京东方科技集团股份有限公司 发光器件、像素单元、像素单元的制备方法和显示装置
CN109742266A (zh) * 2019-01-11 2019-05-10 京东方科技集团股份有限公司 一种oled微腔结构的制作方法
CN112242496A (zh) * 2020-10-20 2021-01-19 安徽熙泰智能科技有限公司 一种全彩硅基oled显示器件和全彩硅基oled显示方法

Also Published As

Publication number Publication date
US20230329029A1 (en) 2023-10-12
CN112242496A (zh) 2021-01-19
CN112242496B (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
WO2022083791A1 (zh) 一种全彩硅基oled显示器件和全彩硅基oled显示方法
CN107195584B (zh) 一种显示面板的制备方法、显示面板及显示装置
CN110164911B (zh) 一种顶发射式微腔oled显示装置
US10026915B2 (en) White organic light emitting device
KR102130648B1 (ko) 백색 유기 발광 소자
US7304426B2 (en) Organic electroluminescent display having a light emitting layer producing the wavelengths of red, green and blue
US10535719B2 (en) Color film substrate for WOLED display and WOLED display
US10756144B2 (en) Electroluminescent device having stacked micro light emitting diode unit and organic light emitting diode unit, display device and manufacturing method thereof
TWI706560B (zh) 有機發光二極體顯示裝置
WO2020233284A1 (zh) 显示面板及其制作方法、显示装置
JP2007234241A (ja) 有機el素子
US20210225956A1 (en) Array substrate, manufacturing method thereof, display panel, and display apparatus
KR20150095543A (ko) 풀컬러 유기발광다이오드 구조
US20210359008A1 (en) Color filter substrate and fabricating method thereof
Li et al. Monolithic full‐color microdisplay using patterned quantum dot photoresist on dual‐wavelength LED epilayers
CN113272990A (zh) 具有多个蓝光发射层的多模微腔oled
CN112864207B (zh) 显示面板及显示装置
WO2022083790A1 (zh) 一种全彩硅基oled结构以及制备方法
WO2022134823A1 (zh) 显示面板及其显示装置
US10916733B2 (en) Display device and method of manufacturing same
CN112242429A (zh) 一种顶发射硅基oled器件结构以及显示方法
CN111370590A (zh) 一种显示面板及其制备方法、显示装置
WO2021007948A1 (zh) 有机发光二极管显示面板及其制作方法和显示装置
CN111261790A (zh) 显示面板和显示装置
KR20140086322A (ko) 유기 발광 표시 장치 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882203

Country of ref document: EP

Kind code of ref document: A1