WO2022083662A1 - 无线通信系统中的电子设备和方法 - Google Patents

无线通信系统中的电子设备和方法 Download PDF

Info

Publication number
WO2022083662A1
WO2022083662A1 PCT/CN2021/125119 CN2021125119W WO2022083662A1 WO 2022083662 A1 WO2022083662 A1 WO 2022083662A1 CN 2021125119 W CN2021125119 W CN 2021125119W WO 2022083662 A1 WO2022083662 A1 WO 2022083662A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
terminal device
shared
terminal
electronic device
Prior art date
Application number
PCT/CN2021/125119
Other languages
English (en)
French (fr)
Inventor
曹建飞
刘敏
Original Assignee
索尼集团公司
曹建飞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 曹建飞 filed Critical 索尼集团公司
Priority to CN202180071088.4A priority Critical patent/CN116326099A/zh
Priority to US18/245,898 priority patent/US20240015718A1/en
Publication of WO2022083662A1 publication Critical patent/WO2022083662A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • H04W4/08User group management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • H04W8/186Processing of subscriber group data

Definitions

  • the present disclosure relates to an electronic device and method in a wireless communication system, and in particular, to an electronic device and method for information transmission in a wireless communication system.
  • wireless communication has unprecedentedly met people's voice and data communication needs.
  • the frequency band used such as 26GHz, 60GHz or higher frequency bands
  • the wireless channel will inevitably suffer from negative effects such as larger path loss and atmospheric absorption loss than the low frequency band (such as 2GHz).
  • the low frequency band such as 2GHz
  • MIMO Massive Multi-Input Multi-Output
  • Millimeter Wave Millimeter Wave
  • the millimeter-wave frequency band has a large amount of available spectrum resources, which can meet the increasing traffic demand of mobile communications.
  • the antenna size of the millimeter wave system is also small, enabling hundreds or even thousands of antennas to be placed in a small space, which is more conducive to large-scale antenna technology in real systems. applications in .
  • Beamforming technology can effectively make up for the shortcomings of millimeter-wave channel path fading, which provides the possibility for millimeter-wave technology to be applied to mobile communications.
  • Beamforming can provide beamforming gain to compensate for the loss of wireless signals by increasing the directivity of an antenna's transmit and/or receive.
  • 3GPP introduced the concept of beam management (Beam Management) in the standard formulation of 5G, which introduced the determination and application of beams used for communication.
  • the present disclosure proposes an improved beam communication scheme, and particularly proposes beam management based on terminal device grouping, in which the transmitting-side electronic device can use group-shared communication beams for terminal device groups to communicate subsequent channels and signals, so as to meet the reliability requirements On the premise of flexibility, unnecessary signaling overhead and delay are reduced.
  • One aspect of the present disclosure relates to a transmit-side electronic device in a wireless communication system, the transmit-side electronic device including a processing circuit configured to determine a group for communicating with a group of terminal devices in the wireless communication system sharing beams, the terminal equipment group includes one or more terminal equipments; and using the determined group sharing beams to send group shared beam information to at least one terminal equipment among the terminal equipments.
  • Yet another aspect of the present disclosure relates to a method for a transmit side in a wireless communication system, the method comprising determining a group shared beam for communicating with a group of terminal equipment in the wireless communication system, the group of terminal equipment including a or multiple terminal devices; and sending group shared beam information to at least one of the terminal devices using the determined group shared beam.
  • An aspect of the present disclosure relates to a receiving-side electronic device in a wireless communication system, the receiving-side electronic device including a processing circuit configured to acquire information about group shared beams from the transmitting-side electronic device in the wireless communication system and determining a receiving beam based on the acquired beam information for communication with the transmitting-side electronic device.
  • Yet another aspect of the present disclosure relates to a method for a receiving side in a wireless communication system, the method comprising acquiring beam information about a group shared beam from a transmitting side electronic device in the wireless communication system; and based on the acquired beam information Identify receive beams for communication with transmit-side electronics.
  • Another aspect of the present disclosure relates to a non-transitory computer-readable storage medium storing executable instructions that, when executed, implement a method as previously described.
  • the wireless communication apparatus includes a processor and a storage device storing executable instructions that, when executed, implement the method as previously described.
  • Another aspect of the present disclosure relates to a wireless communication apparatus including means for implementing the method as previously described.
  • FIG. 1 shows an exemplary application scenario according to an embodiment of the present disclosure.
  • FIG. 2A shows a conceptual flowchart of packet-based beam management according to an embodiment of the present disclosure
  • FIG. 2B shows an exemplary beam scan between a transmit-side device and a terminal-side device according to an embodiment of the present disclosure
  • FIG. 2C shows a schematic diagram of the result of packet-based beam management according to an embodiment of the present disclosure.
  • FIG. 3 shows a block diagram of a transmit-side electronic device according to an embodiment of the present disclosure.
  • FIG. 4 shows a schematic diagram of beam management in the case of a mobile terminal device according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram illustrating beam management between a base station and a terminal device group by employing beam scanning according to an embodiment of the present disclosure.
  • FIG. 6 shows a schematic diagram of group shared beam indication based on group shared PDCCH according to an embodiment of the present disclosure.
  • FIG. 7 shows a schematic diagram of the format of a MAC-CE according to an embodiment of the present disclosure.
  • FIG. 8 shows a schematic diagram of group shared beam indication based on medium access control layer signaling of a terminal device-specific PDSCH according to an embodiment of the present disclosure.
  • FIG. 9 shows a schematic diagram of group shared beam indication based on medium access control layer signaling of group shared PDSCH according to an embodiment of the present disclosure.
  • FIG. 10 shows a schematic diagram of group sharing beam information transmission between a key terminal device and other terminal devices according to an embodiment of the present disclosure.
  • FIG. 11 illustrates a conceptual flow diagram of packet-based beam management in accordance with an embodiment of the present disclosure.
  • FIG. 12 shows an example of a grouping of terminal devices without beam management according to an embodiment of the present disclosure.
  • FIG. 13 shows a flowchart of a method for the transmit side according to an embodiment of the present disclosure.
  • FIG. 14 shows a block diagram of a terminal-side electronic device according to an embodiment of the present disclosure.
  • FIG. 15 shows a flowchart of a method for a terminal side according to an embodiment of the present disclosure.
  • 16 is a block diagram schematically showing an example structure of a personal computer of an information processing apparatus that can be employed in an embodiment of the present disclosure
  • 17 is a block diagram illustrating a first example of a schematic configuration of an eNB to which techniques of the present disclosure may be applied;
  • FIG. 18 is a block diagram illustrating a second example of a schematic configuration of an eNB to which techniques of the present disclosure may be applied;
  • FIG. 19 is a block diagram showing an example of a schematic configuration of a communication device to which the technology of the present disclosure can be applied.
  • FIG. 20 is a block diagram showing an example of a schematic configuration of a car navigation apparatus to which the technology of the present disclosure can be applied.
  • a wireless communication system or radio system includes at least a transmitting side and a receiving side, and devices on the transmitting side and devices on the receiving side communicate through transmission and reception of signal streams.
  • the "transmitting side” of a wireless communication system or radio system has the full breadth of its usual meaning and generally refers to the side of the system that transmits a signal flow for communication and/or control, which may also be referred to as the The signal "control side” and is used interchangeably in the context of this disclosure.
  • receiving side has the full breadth of its usual meaning, and accordingly may indicate the side of the system that receives a signal stream for communications and operations, which may also be referred to as the signal “terminal side” of the system, and are used interchangeably in the context of this disclosure.
  • the "transmitting side” and “receiving side” may encompass different devices in the communication system, depending on the direction of signal flow in the communication system and/or operational controls in the communication system.
  • “transmitting side” equipment may include base stations, control equipment, servers or MECs, repeaters or roadside units (RSUs), etc. in a wireless communication system (such as a cellular communication system, V2X system, etc.) , and the “receiving side” equipment may accordingly include terminal equipment in the communication system.
  • the "transmitting side” equipment may include terminal equipment in the communication system
  • the “receiving side” equipment may correspondingly include the base station and so on in the communication system.
  • a base station has the full breadth of its usual meaning, and by way of example, a base station may be, for example, a 4G communication standard compliant eNB, a 5G communication standard compliant gNB, a remote radio head, a wireless access point, an aircraft A control tower or a communication device that performs a similar function.
  • terminal device has the full breadth of its usual meaning and includes at least a terminal device that receives signals from a transmitting-side device to facilitate communication as part of a wireless communication system or radio system.
  • the terminal device may be, for example, a terminal device such as a wireless relay, a micro base station, a router, a user equipment, etc., or a communication device that performs similar functions.
  • terminal equipment and “user equipment (UE)” may be used interchangeably, or “terminal equipment” may be combined with or implemented as part of "user equipment”.
  • a User Equipment has the full breadth of its usual meaning, and by way of example, a User Equipment may be a terminal device such as a mobile phone, laptop, tablet, in-vehicle communication device, etc. Or a communication device that performs a similar function.
  • transmitting-side devices such as base stations
  • receiving-side devices such as terminal devices
  • each radio frequency link is usually used to connect a plurality of phase shifters and antennas to form a directional beam with as few as one radio frequency link, and through the beam forming
  • a shaped scheme is used to find a matching beam pair between the transmitting-side device and the receiving-side device for subsequent wireless communication.
  • the downlink beamforming training is performed by beam scanning between the transmit beam of the base station and the receive beam of the user equipment to obtain the beam pair for the downlink, that is, to find the optimal beam pair for the downlink.
  • a set of optimal beam pairs formed by the base station transmit beam and the optimal user equipment receive beam.
  • the receiving beam of the base station and the transmitting beam of the user equipment also form a set of beam pairs.
  • the overhead of beam communication between the transmitting-side device and the terminal device is worth paying attention to, especially when the transmitting-side device (such as a base station) tends to serve multiple terminal devices (such as mobile user equipment).
  • the signaling overhead of beam management for communication between the base station and multiple user equipments is of particular concern.
  • beam management between the base station and each user equipment is carried out through separate signaling interaction between the two, so the base station often needs to perform multiple repetitive signaling operations. make the cost high.
  • the present disclosure studies reducing signaling overhead in beam management by grouping terminal devices in a 5G communication system.
  • the present disclosure proposes beam management based on terminal equipment grouping, in which one or more terminal equipments are grouped into the same terminal equipment group, and for each terminal equipment group, one beam is used to carry out the communication between the transmitting side equipment and the terminal equipment.
  • Communication operations between each terminal device in the device group such as beam scanning, group identification information transmission, group shared beam information transmission, determination of the terminal device's receiving beam, etc., and providing services for each terminal device in the terminal device group .
  • the same beam can be used through multiple channels or signals, which can reduce unnecessary signaling overhead and delay under the premise of satisfying reliability.
  • the overhead of beam management between the base station and the UE can be reduced with less beam operations and signaling transmissions.
  • the technical solution according to the present disclosure will be described in the downlink communication scenario between the base station and the user equipment, mainly taking the base station as an example of the transmitting-side device/control-side device and the user equipment as an example of the receiving-side device/terminal-side device .
  • the embodiments of the present disclosure are mainly described below based on a communication system including a base station and user equipment, these descriptions can be extended accordingly to the case including any other type of communication system at the control side and the terminal side.
  • these described operations are equally applicable to uplink communication scenarios.
  • the base station can use the same downlink beam to serve these user equipments constituting the user equipment group.
  • the base station can use the same downlink beam to serve the group of users in the train or train car equipment.
  • FIG. 1 shows a communication scenario between a transmitting side/control side device and a receiving side/terminal side device in a train environment.
  • the transmitting-side device may include at least one of the BBU (Baseband Processing Unit), RRU (Remote Radio Unit), etc. shown in the figure, which is used to control communication with the devices in the train
  • the terminal device may include the figure At least one of the CPE (front-end equipment) shown in and the user equipment on the train, etc.
  • a terminal device in a train or even a carriage can communicate with the transmitting-side device as a terminal device group.
  • information can be shared between cars in a train, between adjacent vehicles in a fleet, and between a vehicle and the lead car. For example, information can be shared among fleets through multicast through the use of cut-through links.
  • the above communication scenarios are also applicable to other various wireless communication scenarios using sidelink multicast communication, such as robot formation operations in smart factories and the like.
  • 2A illustrates a conceptual flow diagram of a packet-based beam management process 200 in accordance with an embodiment of the present disclosure.
  • step 201 grouping of user equipment is implemented.
  • the user equipments can be grouped according to the location information of the user equipments in the wireless communication system.
  • user equipments located close to each other may be grouped into a group, for example, the distance between the grouped user equipments tends to be less than a certain threshold.
  • the grouping of the user equipment may be performed by a base station that communicates with the user equipment.
  • the base station can acquire the respective location information of the user equipments it serves, and group the users according to the location information.
  • the location information of the user equipment can be reported by the user equipment to the base station, for example, through a GPS system; or the user equipment can send information related to positioning to the base station so that the base station can estimate the position of the user equipment according to the information, for example, by sending an uplink to the base station.
  • Positioning the target SRS so that the base station can estimate the position of the user equipment; or the position information of the user equipment can be known by other devices in the system, and the base station can obtain the position information of the user equipment from the other devices, so that it can be based on the position. information to implement grouping of user equipment.
  • the grouping of the user equipment may be implemented by other devices in the system, and the base station may learn the grouping information of the user equipment from the other devices.
  • other control devices, access points, etc. in the wireless communication system may obtain the location of the user equipment and perform grouping, and then inform the base station of the grouping information.
  • the roadside unit may participate in the grouping of vehicles and inform the base station of the vehicle grouping information.
  • the grouping information of the user equipment may be known by the base station and notified to the user equipment, or may be notified to the user equipment by other devices in the system that implement user equipment grouping, so that the user equipment can know its own grouping status.
  • a group shared beam used for communication between a base station and a group of user equipments is acquired.
  • the group shared beam refers to a common beam used by the base station to communicate with each user equipment in the user equipment group, so that the base station can use one common beam for multiple user equipments included in the user equipment group, Thus, the communication overhead is effectively saved.
  • group shared beams are acquired through beam scanning between a base station and a specific user equipment in a user equipment group.
  • Beam scanning can be implemented in various ways.
  • 2B shows a schematic diagram of a beam scanning operation according to an embodiment of the present disclosure, wherein the base station uses several transmit beams with directivity to communicate with several receive beams with multiple directivity of the user equipment to form multiple Beam pair, as shown in (a). Then, the beam pair with the best communication quality among these beam pairs is selected as the desired pair of transmit beam and receive beam, as shown in (b), for subsequent communication between the base station and the user equipment.
  • the beam pairing between the base station and the user equipment can be performed in various appropriate ways.
  • one of the base station and the user equipment may use an omnidirectional antenna for beam pairing; the base station and the user equipment may use horizontal beams and vertical beams respectively for beam pairing, etc., which will not be described in detail here.
  • step 203 the communication beams between the base station and each user equipment in the user equipment group are acquired.
  • the base station can use the same downlink beam to send the data channel, control channel and downlink reference signal to the user equipment, the user equipment's location and device attitude are inconsistent, and each receiving beam needs to be used for reception.
  • the base station may use the previously acquired group shared beams to perform beam scanning operations with each user equipment respectively, and then further acquire beam pairs for communication between the base station and each user equipment, especially the receiving beams of the user equipment.
  • the base station only needs to use one common beam for beam scanning, which effectively reduces the operation overhead.
  • the beam scanning operation may be performed in the manner of the beam scanning operation described above.
  • 2C shows a schematic diagram of the results of packet-based beam management on the control side and the terminal side according to an embodiment of the present disclosure.
  • the user equipments in the small area served by the base station are divided into two groups, UE group 1 and UE group 2.
  • the base station uses a common downlink transmit (Tx) beam (ie, group shared beam) to transmit data channels, control channels and downlink reference signals to groups of user equipments, and the user equipments use their respective receive beams for reception.
  • Tx downlink transmit
  • the beam operation overhead on the base station side during operation can be reduced, thereby effectively reducing the operation overhead and signaling interaction overhead, and improving system communication performance.
  • transmit-side electronics has the full breadth of its usual meaning, and may include, for example, devices that are part of a wireless communication system or radio system for transmitting signals for communication and control, and may be associated with “control-side electronics” used interchangeably.
  • the transmit-side electronic device may be the transmit-side device or a part of the transmit-side device.
  • the term "receiving-side electronic device” has the full breadth of its ordinary meaning, and includes at least a device that is used to communicate or operate as a wireless communication system or part of a radio system to receive signals, and that can communicate with a "terminal" side electronics" is used interchangeably.
  • the receiving-side electronic device may be a receiving-side device (ie, a terminal device) or a part of the receiving-side device.
  • FIG. 3 shows a schematic block diagram of a transmit-side electronic device 300 according to an embodiment of the present disclosure.
  • the transmitting-side electronic device 300 can communicate with the receiving-side electronic device in the wireless communication system, especially beam communication.
  • the transmit-side electronic device 300 may include a processing circuit 320 .
  • the processing circuit 320 may be configured to: determine a group shared beam for communicating with a group of terminal devices in a wireless communication system, the terminal device group including a plurality of terminal devices; and use the determined The group shared beam sends relevant information of the group shared beam to at least one terminal device among the terminal devices.
  • the grouping of end devices may be implemented by appropriate devices in the system based on the location of the end devices.
  • the grouping of the terminal device may be performed by the transmitting-side device, in particular, the processing circuit of the transmitting-side electronic device may perform the terminal device based on the acquired location information of the terminal device in the wireless communication system. grouping.
  • the location information of the terminal device may be directly obtained or estimated.
  • the processing circuit of the electronic device on the transmitting side can notify the terminal device of the grouping information through signaling, for example, the information in the wireless communication system can be sent to the wireless communication system through radio resource control (RRC) or medium access control (MAC) signaling.
  • RRC radio resource control
  • MAC medium access control
  • the grouping information of each terminal device is informed to the terminal device. In this way, for a terminal device, the terminal device can know which group it is in.
  • the grouping status according to the present disclosure may be indicated with appropriate information.
  • the grouping information may be an identifier indicating a terminal device group, and in particular, the grouping information may include a Radio Network Temporary Identifier (RNTI, Radio Network Temporary Identifier) of the device group to which the terminal device belongs. .
  • RNTI Radio Network Temporary Identifier
  • the transmitting-side device may transmit an RNTI via signaling at the RRC (Radio Resource Control, Radio Resource Control) layer to inform the terminal device which group it belongs to. This applies in particular when the end devices belong to a group.
  • RRC Radio Resource Control, Radio Resource Control
  • a terminal device may belong to more than one group.
  • a terminal device may belong to two groups at the same time, or may belong to different groups successively by moving.
  • the transmitting-side device may use lower-layer MAC (Media Access Control, Media Access Control) signaling or physical layer signaling, such as MAC CE (Media Access Control- Control Element, media access control-control element) or DCI (Downlink control information, downlink control information) to transmit RNTI to inform the terminal equipment of the grouping it belongs to, and/or can also notify the terminal equipment to adjust the grouping.
  • the transmitting-side device can notify the terminal device of the packet change through MAC-CE or DCI.
  • Figure 4 shows a scenario where a UE may belong to two groups and move.
  • the base station can assign it into two groups, namely group 1 and group 2, and allocate group shared (GC, GroupCommon) RNTIs, namely GC-RNTI 1 and GC-RNTI respectively 2.
  • group shared (GC, GroupCommon) RNTIs namely GC-RNTI 1 and GC-RNTI respectively 2.
  • the state of the GC-RNTI allocated to the UE can be changed according to the conditions of the UE and the base station.
  • the base station can change the grouping of the UE through MAC CE, that is, deactivate GC-RNTI 1 and activate GC-RNTI 2.
  • the UE has strong beamforming capability, it can be served by group 1 and group 2 at the same time, that is, the allocated GC-RNTI 1 and GC-RNTI 2 are both active. This depends on the reporting capability of the UE and the corresponding configuration of the base station.
  • beam management between the base station and the user equipment may be performed based on the grouping, so as to determine a beam used for communication between the base station and the user equipment.
  • a group shared beam used for communicating with the user equipment group is determined, so that the base station uses the group shared beam as a transmit beam to communicate with each user equipment in the user equipment group, and each user equipment can use the corresponding receive beam for communication Receive communications.
  • the processing circuit of the transmitting-side electronic device is further configured to determine the group shared beam by performing beam scanning between the control-side device and key terminal devices in the terminal device group.
  • the key terminal device indicates a specific device that communicates with the transmitting-side electronic device as a representative of the terminal device group, and the key terminal device may be a terminal device in the terminal device group, or may be associated with the terminal device group , such as the CPE of a train in the case of a terminal device in a train as a terminal device group, and so on.
  • key terminal devices may be appropriately determined in various ways.
  • the key terminal devices are selected based on the communication capabilities of the terminal-side devices.
  • the terminal equipment with optimal power, antenna size, and channel condition in the terminal equipment group may be used as the key terminal equipment.
  • one device associated with the terminal device group is a key terminal device due to its better communication capabilities.
  • the CPE installed on the roof often has advantages in power, antenna size, and channel conditions than the general UE in the train, and can be used as the key equipment responsible for the communication between the user equipment group and the base station in the train. communication.
  • the key terminal devices may be determined statically or semi-statically. For example, key terminal equipment is identified and the means of communication between the base station and the terminal equipment remain unchanged.
  • critical end devices are determined dynamically.
  • the key terminal equipment is determined by polling among a plurality of terminal equipments in the terminal equipment group. This polling can be performed in various ways. As an example, the terminal device with the best performance is selected as the key terminal device by comparing the performance among the respective terminal devices, such as power, channel conditions, etc., among the plurality of terminal devices.
  • the polling of the terminal device may also be performed with reference to other performance conditions. As an example, polling may be performed periodically, or event-triggered, such as when a new user equipment joins or an existing user equipment leaves. In this way, the key terminal equipment can be changed dynamically, and it can be ensured that each terminal equipment will not pay an excessive price due to the grouped beam management.
  • the group shared beam used by the base station to communicate with the user equipment group may be determined via beam scanning between the determined key terminal equipment and the base station.
  • the role of the key terminal equipment is to represent the entire terminal equipment group to find the common downlink transmit beam of the base station for the terminal equipment group as a group shared beam.
  • the key terminal equipment informs the base station of the group shared beam through the beam reporting mechanism.
  • the determination of the group of shared beams may be performed using a beam scanning method known in the art, for example, the beam pair determination method described above with reference to FIG. 2B , or other methods known in the art.
  • a base station selects a beam suitable for communication with key terminal devices based on a downlink beamforming reference signal.
  • Such downlink reference signals are also referred to as channel state information reference signals (CSI-RS).
  • the base station transmits multiple CSI-RSs using multiple beams.
  • the key terminal equipment uses a plurality of receiving beams for reception, and selects an appropriate beam as the group of shared beams among the plurality of beams used for transmitting the CSI-RS based on the reception results for the plurality of CSI-RSs.
  • the terminal device selects the downlink transmit beam corresponding to the maximum received signal strength as the group of shared beams, or may select the downlink transmit beam with the best communication quality as the group of shared beams.
  • the user equipment reports information indicating the selection result to the base station, for example, the information may include identification information (eg, beam number) of the desired beam, so that the base station can use the selected transmit beam as a group shared transmit beam with the terminal equipment group to communicate.
  • identification information eg, beam number
  • the base station can indicate the downlink transmission beam to the UE through the TCI state (Transmission Configuration Info state), and the UE can use the corresponding downlink transmission beam when receiving downlink.
  • the downlink receive beam of the corresponding downlink can be sent using the uplink transmit spatial filter corresponding to the downlink corresponding receive beam during uplink transmission.
  • the base station may use the group of shared beams to communicate with the terminal equipment group.
  • the processing circuit of the transmitting-side electronic device is further configured to perform beam scanning with each terminal device in the terminal device group by using the group shared beam, so as to determine a beam for each terminal device to communicate with the transmitting-side electronic device .
  • the beam scanning and beam determination can be performed by using a beam determination method known in the art, such as the CSI-RS-based uplink and downlink beam pair determination method described above.
  • the base station uses the determined group of shared beams to perform beam scanning for other terminal equipments in the terminal equipment group, and for the group of shared beams, each terminal equipment uses its own available receiving beams for reception, and determines the communication quality among them.
  • the best receive beam is used as the corresponding receive beam of the terminal equipment.
  • the base station may configure the same beam scanning resources to other UEs in the group except key UEs. As an example, the receiving beam determined by the terminal device may not be reported to the base station.
  • FIG. 5 is a schematic diagram illustrating a result of group-based beam management between a base station and a terminal device group according to an embodiment of the present disclosure, wherein the downlink transmit beam of the base station is determined through downlink beam scanning between the base station and key UEs, and the key The UE reports the determined downlink transmit beam to the base station, and the base station can use the downlink transmit beam as a group shared downlink transmit beam to perform beam scanning with other UEs in the group, so as to determine the receive beam of each terminal device in the terminal device group .
  • a group sharing beam indication scheme based on terminal device grouping is proposed.
  • the determined related information of the group shared beam can be provided to each terminal device in the terminal device group, especially other terminal devices except key terminal devices.
  • this beam indication scheme can be used for the determination of the receiving beams of other devices except key devices in the terminal device group.
  • the group transmits the beam indication information, so that the terminal device can receive and decode the group shared beam information contained in the beam indication information, thereby preparing a corresponding receive beam based on the information.
  • the indication of the relevant information of the group shared beam may be performed alternately with the scanning of the beam between the base station and the terminal device.
  • general beam scanning can be performed periodically or aperiodically. For example, beam scanning is triggered due to changes in grouping caused by terminal device access or movement, while beam indication is often aperiodic, for example, grouping changes may cause grouping changes.
  • the shared beam changes, so the terminal device needs to be informed of the changed group shared beam.
  • the indication of the relevant information of the group shared beams may be performed after the beam scanning. It should be noted that this beam indication scheme may be performed after the beam pair determination between the base station and each terminal device in the terminal device group as previously described.
  • the related information of the group shared beam may be provided to the terminal device by various devices in various appropriate manners.
  • the relevant information of the group shared beams may be provided by the base station or other suitable equipment.
  • the relevant information of the group shared beam may be transmitted via an appropriate channel.
  • the related information of the group shared beam is provided to the terminal device by the base station, in particular, the related information of the group shared beam is provided to the terminal device group through the determined group shared beam using an appropriate channel each terminal device in the .
  • the relevant information of the group shared beams can also be provided to the terminal equipment through the beams of the base station that are specifically aimed at the terminal equipment. For example, when the terminal device has just completed the initial access with the base station and has not configured the group shared beam for the transmission channel of the terminal device, the dedicated beam of the terminal device can be used to transmit the relevant information of the group shared beam to the terminal device.
  • the related information of the group shared beam may include direction information of the group shared beam, for example, the direction of the group shared downlink beam.
  • TCI status is often used in the standard to identify.
  • the TCI state includes a downlink reference signal (CSI-RS or SSB) or an uplink reference signal (SRS).
  • CSI-RS downlink reference signal
  • SRS uplink reference signal
  • the processing circuit transmits the related information of the group shared beam to the corresponding terminal equipment group via the group shared physical downlink control channel (PDCCH) using the group shared (GC) beam.
  • the group shared physical downlink control channel (PDCCH) may refer to using a common PDCCH for each terminal device in the terminal device group, thereby indicating the related information of the group shared beam.
  • FIG. 6 shows a schematic diagram of group shared beam indication based on group shared PDCCH according to an embodiment of the present disclosure, wherein the related information of the group shared beam is included in the content carried by the GC-PDCCH.
  • UE group 1 and group 2 There are two groups here, namely UE group 1 and group 2, for which the corresponding group shared beam information is provided via the GC-PDCCH via the respective corresponding group shared beams, and each UE group is shared by the respective corresponding group Beams indicate dedicated GC-RNTIs for identification.
  • the GC-RNTI may be transmitted with information about the group shared beam.
  • the UE in group 1 If the UE in group 1 is provided with GC-RNTI 1, it can decode the content in GC-PDCCH 1 (because the CRC of GC-PDCCH 1 is scrambled by GC-RNTI 1, the decoding process needs to use GC-RNTI 1 performs a reverse descrambling operation), thereby obtaining the group-shared downlink beam direction, which is often identified by the TCI state.
  • the TCI state includes a downlink reference signal (CSI-RS or SSB) or an uplink reference signal (SRS).
  • CSI-RS or SSB downlink reference signal
  • SRS uplink reference signal
  • the GC-PDCCH may take various suitable formats.
  • the related information of the group shared beam such as TCI status, etc.
  • a completely new format of GC PDCCH may be introduced.
  • embodiments of the present disclosure propose DCI format 2, which is used to inform the common downlink of the common TCI status (beam), where the UE assumes that no transmission is expected for the UE.
  • the following information can be transmitted using this DCI format 2 with the CRC scrambled by the GC-RNTI: ⁇ UE group 1, UE group 2, ..., UE group N, TCI state 1, TCI state 2, ..., TCI State N ⁇ , where N represents a total of N UE groups. That is, the related information of the group shared beam for each UE group is formed into one common information, and the common information is provided to the respective groups via the group shared beam and the GC-PDCCH, so that the respective groups can acquire the corresponding information based on the common information groups of shared beams.
  • the processing circuit may also use the group shared beam to send the group shared beam information to the corresponding terminal equipment via a dedicated physical downlink control channel (PDCCH) of each terminal equipment in the terminal equipment group.
  • group shared beams can be used to transmit group shared beam information via the PDCCH dedicated to each terminal device, so that the terminal device can directly decode the content in the corresponding PDCCH after receiving the information to obtain group shared beam information, thereby preparing corresponding receive beams for subsequent channel and signal reception.
  • the channel overhead may be relatively large.
  • the processing circuit of the transmitting-side electronic device can use the group shared beam to send the related information of the group shared beam to the corresponding terminal device via the medium access control-control element (MAC CE) of the group sharing.
  • MAC CE medium access control-control element
  • MAC CE is generally a signaling method dedicated to the UE. It is proposed to use the concept of GC-MAC CE for beam management.
  • the base station assigns a group-specific group identifier, such as LCID (regional setting identifier) or eLCID, to the MAC CE to identify, and explicitly indicates the terminal equipment group corresponding to the MAC-CE.
  • FIG. 7 shows the format of a MACCE according to an embodiment of the present disclosure.
  • FIG. 8 shows a schematic diagram of GC-MAC CE transmission according to an embodiment of the present disclosure, wherein the related information of the group shared beam is indicated to each terminal device via the terminal device-specific physical downlink shared channel (PDSCH) using the group shared beam , the relevant information of the group shared beam is included in the GC-MAC CE.
  • PDSCH terminal device-specific physical downlink shared channel
  • the GC-MAC CE is carried by the UE-specific PDSCH at the physical layer, and the same MAC CE content is placed in the dedicated PDSCH for each UE.
  • FIG. 9 shows a schematic diagram of GC-MAC CE transmission according to another embodiment of the present disclosure, wherein the processing circuit uses the group shared beam to send related information of the group shared beam via the group shared physical downlink shared channel (PDSCH).
  • PDSCH group shared physical downlink shared channel
  • the base station can put the GC-MAC CE in the GC-PDSCH to carry it.
  • the terminal device decodes the GC-PDSCH, it can obtain the group shared beam indication carried by the GC-MAC CE.
  • the terminal device can decode the content of the corresponding GC-PDSCH or the corresponding part of the common PDSCH according to the group identification information sent to it, such as RNTI, so as to obtain the content carried by the GC-MAC CE. content.
  • the GC-PDSCH only occupies one PDSCH resource at the physical layer, thereby reducing the overhead of radio resources.
  • a HARQ mechanism can be introduced to protect erroneous transmissions.
  • the UE After decoding the GC-MAC CE of the group, the UE can obtain the shared beam of the group, and prepare the corresponding receive beam to receive subsequent channels and signals. In addition, in the uplink direction, the UE may prepare corresponding uplink channels and signal transmission directions.
  • the related information of the group shared beam may also be provided to the terminal device in the terminal device group by other devices.
  • the key device may notify other terminal devices in the terminal device group to which the key device belongs to the relevant information of the group of shared beams.
  • the key equipment has learned the relevant information of the group shared beam to be used by the base station, and notifies the terminal equipment in the terminal equipment group of the information.
  • FIG. 10 shows a schematic diagram of group sharing beam information transmission between a key terminal device and other terminal devices according to an embodiment of the present disclosure.
  • the base station notifies the key UE of the relevant information of the uplink and downlink group shared beams through the control channel or data channel dedicated to the UE.
  • the key UE notifies other UEs in the group of the relevant information of the group shared beam.
  • the key UE may use various appropriate ways for information notification. For example, a downlink (Downlink) or a through link (Sidelink) can be used. This depends on the role and/or role played by the key UE.
  • Downlink Downlink
  • Sidelink through link
  • the UE If the UE is a non-IAB node UE, it can notify other UEs in the group of the beam indication information based on MAC CE or DCI through Sidelink, that is, SCI or PSSCH. If the UE acts as an IAB node, then the link between it and other UEs can be through DL.
  • Sidelink that is, SCI or PSSCH.
  • the key UE may acquire related information of other UEs in the group, such as IDs of other UEs, location information, and the like, in various appropriate manners.
  • the network side can provide a pre-configuration, so that the UE can calculate the zone ID (ZoneID) according to its own location, that is, a pre-planned location zone.
  • the key UE only needs to broadcast Sidelink control information, namely SCI (Sidelink Control Info.) to the area to convey the downlink co-beam information.
  • SCI Segmentlink Control Info.
  • the base station additionally provides the key UE with other UE information in the group in the previous UE grouping phase, the key UE can find other UEs more precisely by broadcasting the SCI.
  • FIG. 11 illustrates a conceptual flow diagram of packet-based beam management in accordance with an embodiment of the present disclosure.
  • the grouping between the base station and the user equipment, the group sharing beam determination, the receiving beam determination of each terminal equipment, etc. can be performed in the manner shown above, which will not be described in detail here.
  • the terminal device grouping-based beam management according to the embodiments of the present disclosure is described above.
  • the terminal equipment is grouped and a common group shared beam for the terminal equipment group is determined by the base station, so that the common group shared beam is used for communication between the transmitting side equipment and each terminal equipment, thereby using multiple channels or signals.
  • the same beam can reduce unnecessary signaling overhead and delay under the premise of satisfying reliability, which is especially beneficial when the 5G system operates in the millimeter wave frequency band.
  • the grouping-based beam management is mainly described above, wherein the grouping of UEs is performed based on the positions of the UEs, and the group shared beams used by the base station and the corresponding receiving beams of the UEs are determined based on beam scanning.
  • the grouping of UEs can be performed under the premise of no beam scanning and no beam management, and the group shared beams and the corresponding receiving beams of the UEs are determined by calculation without passing beams scanning.
  • this embodiment is especially suitable for the case where the distance between the UE and the beam transmission position is too far.
  • FIG. 12 shows an example of terminal device grouping without beam management according to an embodiment of the present disclosure, which is depicted by taking a satellite communication scenario as an example.
  • the user equipment can be grouped without beam management, and the beam management between the base station and the user equipment is no longer performed.
  • the network side can inform the UE it serves through RRC or MAC CE signaling, the center angle of the beam used by the satellite, that is, the center direction of a certain beam.
  • the UE calculates the included angle between the UE and the satellite by calculating the ephemeris and its own position. By comparing the relative positions of the UE and the satellite, which beam is more suitable for the UE as the downlink transmit beam. Therefore, in the NTN scenario, the conventional beam scanning and reporting process is an unnecessary means.
  • a downlink beam can cover a very large area on the ground, such as an area with a radius of 60km. Therefore, the UEs naturally form a UE group within the area covered by one beam, as shown in Figure 12(b).
  • the processing circuit 320 may be in the form of a general-purpose processor, or may be a special-purpose processing circuit, such as an ASIC.
  • the processing circuit 230 can be configured by a circuit (hardware) or a central processing device such as a central processing unit (CPU).
  • a program (software) for operating the circuit (hardware) or a central processing device may be carried on the processing circuit 320 .
  • the program can be stored in a memory such as arranged in a memory or an external storage medium connected from the outside, and downloaded via a network such as the Internet.
  • the processing circuit 320 may include various units for implementing the above operations accordingly.
  • the beam determination unit 324 is configured to determine a group shared beam for communicating with a group of terminal devices in the wireless communication system, so The terminal device group includes a plurality of terminal devices; and an information sending unit 326 is configured to send group shared beam information to at least one of the terminal devices by using the determined group shared beam.
  • the processing circuit 320 may further include a unit configured to perform beam scanning with each terminal device in the terminal device group using the group shared beam, so as to determine a beam for each terminal device to communicate with the transmitting-side electronic device, the The unit may be included in the beam determination unit 324, or separate from the beam determination unit 324.
  • the processing circuit 320 may further include a unit configured to inform the terminal device of the grouping information of each terminal device in the wireless communication system through radio resource control (RRC) or medium access control (MAC) signaling, the unit It may be included in the information sending unit 326 or separate from the information sending unit 326 .
  • RRC radio resource control
  • MAC medium access control
  • the processing unit 320 may further comprise a unit configured to transmit the relevant information of the group shared beam to the corresponding terminal device group.
  • it may comprise a unit configured to transmit the relevant information of the group shared beam to the corresponding terminal equipment group via the group shared physical downlink control channel (PDCCH) using the group shared beam; configured to use the group shared beam to share the medium via the group
  • the unit of the Access Control-Control Element (MAC CE) that transmits the relevant information of the group shared beam to the corresponding terminal equipment.
  • These units may be in the information sending unit 326, or separate from the information sending unit 326.
  • the processing circuit 320 may include a grouping unit 328 configured to group the terminal devices based on the acquired location information of the terminal devices in the wireless communication system. It should be noted that the grouping unit can also be located outside the processing circuit, even outside the transmit-side electronics.
  • each of the above-mentioned units can operate as described above, and will not be described in detail here. It should be noted that the above-mentioned units are only logical modules divided according to the specific functions implemented by them, and are not used to limit the specific implementation manner, for example, they may be implemented in software, hardware, or a combination of software and hardware. In actual implementation, each of the above-mentioned units may be implemented as independent physical entities, or may also be implemented by a single entity (eg, a processor (CPU or DSP, etc.), an integrated circuit, etc.). It should be noted that although each unit is shown as a separate unit in FIG. 3 , one or more of these units may also be combined into one unit, or split into multiple units. In addition, the above-mentioned respective units are shown with dotted lines in the drawings to indicate that these units may not actually exist, and the operations/functions implemented by them may be implemented by the processing circuit itself.
  • FIG. 3 is only a schematic structural configuration of the transmitting-side electronic device.
  • the transmitting-side electronic device 300 may also include other components not shown, such as a memory, a radio frequency link, a baseband processing unit, a network interface, controller etc.
  • the processing circuit may be associated with the memory and/or the antenna.
  • processing circuitry may be connected directly or indirectly (eg, with other components interposed therebetween) to memory for access to data.
  • the memory can store various information acquired and generated by the processing circuit 320 (for example, vehicle interior condition information and analysis results thereof, etc.), programs and data for the operation of the transmitting-side electronic device, data to be transmitted by the transmitting-side electronic device, and the like .
  • the memory may also be located within the transmit-side electronics but outside the processing circuitry, or even outside the transmit-side electronics.
  • the memory may be volatile memory and/or non-volatile memory.
  • memory may include, but is not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read only memory (ROM), flash memory.
  • the processing circuit may be directly or indirectly connected to the antenna to transmit information and receive requests/instructions via the transmission unit.
  • the antenna may be an omnidirectional antenna and/or a directional antenna, which may be implemented in various ways, such as an antenna array such as both an omnidirectional antenna and a directional antenna, or capable of implementing both an omnidirectional antenna and a directional antenna. Communication components such as a single antenna array) and/or a radio frequency link for the function of the user will not be described in detail here.
  • the antenna may also be included in the processing circuit, or external to the processing circuit. It may even be coupled/attached to the electronic device 300 without being included in the electronic device 300 .
  • FIG. 13 shows a flowchart of the method for the transmitting side of the wireless communication system according to the embodiment of the present disclosure.
  • step S1301 a group shared beam for communicating with a terminal equipment group in the wireless communication system is determined, and the terminal equipment group includes a plurality of terminal equipments.
  • step S1302 the group shared beam information is sent to at least one terminal device among the terminal devices by using the determined group shared beam.
  • the method may further include corresponding steps for implementing the operations performed by the transmitting-side electronic device described above, and the description will not be repeated here.
  • FIG. 14 is a block diagram of the receiving-side electronic device of the wireless communication device according to the embodiment of the present disclosure.
  • the receiving-side electronic device 1400 may belong to one or more receiving-side electronic device groups, and the electronic device 1400 includes a processing circuit 1420 configured to obtain beam information about a group-shared beam from a transmitting-side electronic device in a wireless communication system ; and determining a receive beam for communication with the transmit-side electronic device based on the acquired beam information.
  • the processing circuit of the electronic device on the receiving side and then the electronic device on the receiving side can also be implemented in various suitable forms, which will not be described in detail here.
  • the structure/composition of the receive-side electronics is merely exemplary.
  • the processing circuit 1420 may include an information acquisition unit 1424 configured to acquire beam information about a group shared beam from a transmitting-side electronic device in the wireless communication system; and a beam determination unit 1426 configured to acquire based on the acquired beam information The beam information is used to determine the receive beam for communication with the transmit-side electronics.
  • processing circuit 1420 may further include a unit configured to determine the group of shared beams by performing initial beam scanning with the control-side device, which unit may be included in the beam determination unit 1426 or separate from the beam determination unit 1426 .
  • processing circuit 1420 may further include a sending unit 1428, which may be configured to report the information of the group of shared beams to the transmitting-side electronic device.
  • the processing circuit 1420 may further include a unit configured to inform other terminal devices in the terminal device group of the relevant information of the set of shared beams, which unit may be included in the transmitting unit 1428 or separate from the transmitting unit 1428 .
  • the above-mentioned units are only logical modules divided according to the specific functions implemented by them, rather than being used to limit the specific implementation manner, which is similar to the description on the aforementioned resource purchasing side, and will not be described in detail here.
  • the electronic device on the resource selling side may also include additional or additional units/devices, such as memory, communication interfaces, etc., which will not be described in detail here.
  • FIG. 15 shows a flowchart of the method for the receiving side of the wireless communication system according to the embodiment of the present disclosure.
  • step S1501 beam information about a group shared beam from a transmitting-side electronic device in a wireless communication system is acquired.
  • step S1502 a receive beam is determined based on the acquired beam information for communication with the transmit-side electronic device.
  • the method may further include corresponding steps for implementing the operations performed by the electronic device on the receiving side described above, and the description will not be repeated here.
  • these steps may be performed by the aforementioned receiving-side electronic device according to the present disclosure, in particular by corresponding units of the aforementioned receiving-side electronic device according to the present disclosure, or by a suitable receiving-side device to execute.
  • machine-executable instructions in a machine-readable storage medium or program product may be configured to perform operations corresponding to the above-described apparatus and method embodiments.
  • the embodiments of the machine-readable storage medium or program product will be apparent to those skilled in the art, and thus the description will not be repeated.
  • Machine-readable storage media and program products for carrying or including the above-described machine-executable instructions are also within the scope of the present disclosure.
  • Such storage media may include, but are not limited to, floppy disks, optical disks, magneto-optical disks, memory cards, memory sticks, and the like.
  • the above-described series of processes and devices may also be implemented by software and/or firmware.
  • the program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware configuration, such as a general-purpose personal computer 1300 shown in FIG. 16, in which various programs are installed. can perform various functions and so on.
  • 16 is a block diagram showing an example structure of a personal computer of an information processing apparatus that can be employed in an embodiment of the present disclosure.
  • the personal computer may correspond to the above-described exemplary transmit-side electronic device or receive-side electronic device according to the present disclosure.
  • a central processing unit (CPU) 1301 executes various processes according to a program stored in a read only memory (ROM) 1302 or a program loaded from a storage section 1308 to a random access memory (RAM) 1303.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1301 executes various processes and the like is also stored as needed.
  • the CPU 1301, the ROM 1302, and the RAM 1303 are connected to each other via a bus 1304.
  • Input/output interface 1305 is also connected to bus 1304 .
  • the following components are connected to the input/output interface 1305: an input section 1306, including a keyboard, a mouse, etc.; an output section 1307, including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.; a storage section 1308 , including a hard disk, etc.; and a communication section 1309, including a network interface card such as a LAN card, a modem, and the like.
  • the communication section 1309 performs communication processing via a network such as the Internet.
  • a driver 1310 is also connected to the input/output interface 1305 as required.
  • a removable medium 1311 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, etc. is mounted on the drive 1310 as needed, so that a computer program read therefrom is installed into the storage section 1308 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as a removable medium 1311.
  • such a storage medium is not limited to the removable medium 1311 shown in FIG. 16 in which the program is stored and distributed separately from the device to provide the program to the user.
  • the removable medium 1311 include magnetic disks (including floppy disks (registered trademark)), optical disks (including compact disk read only memory (CD-ROM) and digital versatile disks (DVD)), magneto-optical disks (including minidiscs (MD) (registered trademark) )) and semiconductor memory.
  • the storage medium may be the ROM 1302, a hard disk contained in the storage section 1308, or the like, in which programs are stored and distributed to users together with the devices containing them.
  • the transmitting-side electronic device may be implemented as or included in various control devices/base stations.
  • the transmitting apparatus and the terminal apparatus according to the embodiments of the present disclosure may be implemented as or included in various terminal apparatuses.
  • control device/base station mentioned in the present disclosure may be implemented as any type of base station, eg eNB, such as macro eNB and small eNB.
  • Small eNBs may be eNBs covering cells smaller than macro cells, such as pico eNBs, micro eNBs, and home (femto) eNBs.
  • gNBs such as macro gNBs and small gNBs.
  • Small gNBs may be gNBs covering cells smaller than macro cells, such as pico gNBs, micro gNBs, and home (femto) gNBs.
  • the base station may be implemented as any other type of base station, such as a NodeB and a Base Transceiver Station (BTS).
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote radio heads (Remote Radio Heads, RRHs) disposed at a place different from the main body.
  • RRHs Remote Radio Heads
  • various types of terminals to be described below can each operate as a base station by temporarily or semi-persistently performing a base station function.
  • the terminal devices mentioned in this disclosure may in some embodiments be implemented as mobile terminals such as smartphones, tablet personal computers (PCs), notebook PCs, portable game terminals, portable/dongle-type mobile routers, and digital camera) or in-vehicle terminals (such as car navigation devices).
  • the terminal device may also be implemented as a terminal that performs machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the terminal device may be a wireless communication module (such as an integrated circuit module including a single die) mounted on each of the above-mentioned terminals.
  • base station in this disclosure has the full breadth of its ordinary meaning and includes at least a wireless communication station used as a wireless communication system or part of a radio system to facilitate communication.
  • Examples of base stations may be, for example, but not limited to the following:
  • a base station may be one or both of a base transceiver station (BTS) and a base station controller (BSC) in a GSM system, or a radio network controller in a WCDMA system
  • BTS base transceiver station
  • BSC base station controller
  • RNC radio network controller
  • Node B which may be eNBs in LTE and LTE-Advanced systems, or may be corresponding network nodes in future communication systems (such as gNB, eLTE that may appear in 5G communication systems) eNB, etc.).
  • Some functions in the base station of the present disclosure may also be implemented as entities with control functions for communication in D2D, M2M and V2V communication scenarios, or as entities with spectrum coordination functions in cognitive radio communication scenarios.
  • FIG. 17 is a block diagram showing a first example of a schematic configuration of a gNB to which the techniques of this disclosure may be applied.
  • gNB 1700 includes multiple antennas 1710 and base station equipment 1720.
  • the base station apparatus 1720 and each antenna 1710 may be connected to each other via an RF cable.
  • the gNB 1700 (or the base station device 1720) here may correspond to the above-mentioned transmitting-side electronic device.
  • Each of the antennas 1710 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna), and is used by the base station apparatus 1720 to transmit and receive wireless signals.
  • gNB 1700 may include multiple antennas 1710.
  • multiple antennas 1710 may be compatible with multiple frequency bands used by gNB 1700.
  • the base station apparatus 1720 includes a controller 1721 , a memory 1722 , a network interface 1717 , and a wireless communication interface 1725 .
  • the controller 1721 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 1720 . For example, the controller 1721 determines the location of the target terminal device in the at least one terminal device according to the positioning information of the at least one terminal device on the terminal side in the wireless communication system and the specific location configuration information of the at least one terminal device acquired by the wireless communication interface 1725. location information.
  • the controller 1721 may have logical functions to perform controls such as radio resource control, radio bearer control, mobility management, access control, and scheduling. This control can be performed in conjunction with nearby gNBs or critical network nodes.
  • the memory 1722 includes RAM and ROM, and stores programs executed by the controller 1721 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 1723 is a communication interface for connecting the base station device 1720 to the critical network 1724 .
  • Controller 1721 may communicate with critical network nodes or additional gNBs via network interface 1717 .
  • gNB 1700 and critical network nodes or other gNBs may be connected to each other through logical interfaces such as S1 interface and X2 interface.
  • the network interface 1723 may also be a wired communication interface or a wireless communication interface for wireless backhaul. If the network interface 1723 is a wireless communication interface, the network interface 1723 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 1725.
  • Wireless communication interface 1725 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in the cell of gNB 1700 via antenna 1710.
  • the wireless communication interface 1725 may generally include, for example, a baseband (BB) processor 1726 and RF circuitry 1727 .
  • the BB processor 1726 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) various types of signal processing.
  • the BB processor 1726 may have some or all of the above-described logical functions.
  • the BB processor 1726 may be a memory storing a communication control program, or a module including a processor and associated circuitry configured to execute the program.
  • the update procedure may cause the functionality of the BB processor 1726 to change.
  • the module may be a card or blade that is inserted into a slot in the base station device 1720. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1727 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1710 .
  • FIG. 17 shows an example in which one RF circuit 1727 is connected to one antenna 1710, the present disclosure is not limited to this illustration, but one RF circuit 1727 may connect multiple antennas 1710 at the same time.
  • the wireless communication interface 1725 may include a plurality of BB processors 1726.
  • multiple BB processors 1726 may be compatible with multiple frequency bands used by gNB 1700.
  • the wireless communication interface 1725 may include a plurality of RF circuits 1727 .
  • multiple RF circuits 1727 may be compatible with multiple antenna elements.
  • FIG. 17 shows an example in which the wireless communication interface 1725 includes multiple BB processors 1726 and multiple RF circuits 1727 , the wireless communication interface 1725 may also include a single BB processor 1726 or a single RF circuit 1727 .
  • gNB 1800 is a block diagram showing a second example of a schematic configuration of a gNB to which the techniques of the present disclosure may be applied.
  • gNB 1800 includes multiple antennas 1810, RRH 1820 and base station equipment 1830.
  • the RRH 1820 and each antenna 1810 may be connected to each other via RF cables.
  • the base station apparatus 1830 and the RRH 1820 may be connected to each other via high-speed lines such as fiber optic cables.
  • the gNB 1800 (or the base station device 1830) here may correspond to the above-mentioned transmitting-side electronic device.
  • Each of the antennas 1810 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 1820 to transmit and receive wireless signals.
  • gNB 1800 may include multiple antennas 1810.
  • multiple antennas 1810 may be compatible with multiple frequency bands used by gNB 1800.
  • the base station apparatus 1830 includes a controller 1831 , a memory 1832 , a network interface 1833 , a wireless communication interface 1834 , and a connection interface 1836 .
  • the controller 1831, the memory 1832, and the network interface 1833 are the same as the controller 1721, the memory 1722, and the network interface 1723 described with reference to Fig. 17 .
  • Wireless communication interface 1834 supports any cellular communication scheme, such as LTE and LTE-Advanced, and provides wireless communication via RRH 1820 and antenna 1810 to terminals located in a sector corresponding to RRH 1820.
  • the wireless communication interface 1834 may generally include, for example, a BB processor 1835.
  • the BB processor 1835 is the same as the BB processor 1726 described with reference to FIG. 17, except that the BB processor 1835 is connected to the RF circuit 1822 of the RRH 1820 via the connection interface 1836.
  • the wireless communication interface 1834 may include multiple BB processors 1835 .
  • multiple BB processors 1835 may be compatible with multiple frequency bands used by gNB 1800.
  • FIG. 18 shows an example in which the wireless communication interface 1834 includes multiple BB processors 1835
  • the wireless communication interface 1834 may include a single BB processor 1835 .
  • connection interface 1836 is an interface for connecting the base station apparatus 1830 (the wireless communication interface 1834) to the RRH 1820.
  • the connection interface 1836 may also be a communication module for communication in the above-mentioned high-speed line connecting the base station device 1830 (the wireless communication interface 1834) to the RRH 1820.
  • RRH 1820 includes connection interface 1823 and wireless communication interface 1821.
  • connection interface 1823 is an interface for connecting the RRH 1820 (the wireless communication interface 1821) to the base station apparatus 1830.
  • the connection interface 1823 may also be a communication module for communication in the above-mentioned high-speed line.
  • the wireless communication interface 1821 transmits and receives wireless signals via the antenna 1810 .
  • Wireless communication interface 1821 may typically include RF circuitry 1822, for example.
  • RF circuitry 1822 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 1810 .
  • FIG. 18 shows an example in which one RF circuit 1822 is connected to one antenna 1810 , the present disclosure is not limited to this illustration, but one RF circuit 1822 may be connected to a plurality of antennas 1810 at the same time.
  • the wireless communication interface 1821 may include a plurality of RF circuits 1822 .
  • multiple RF circuits 1822 may support multiple antenna elements.
  • FIG. 18 shows an example in which the wireless communication interface 1821 includes a plurality of RF circuits 1822 , the wireless communication interface 1821 may include a single RF circuit 1822 .
  • the communication device 1900 includes a processor 1901, a memory 1902, a storage device 1903, an external connection interface 1904, a camera device 1906, a sensor 1907, a microphone 1908, an input device 1909, a display device 1910, a speaker 1911, a wireless communication interface 1912, one or more Antenna switch 1915, one or more antennas 1916, bus 1917, battery 1918, and auxiliary controller 1919.
  • the communication device 1900 (or the processor 1901) here may correspond to the above-mentioned transmitting-side electronic device or receiving-side electronic device.
  • the processor 1901 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and other layers of the communication device 1900 .
  • the memory 1902 includes RAM and ROM, and stores data and programs executed by the processor 1901 .
  • the storage device 1903 may include storage media such as semiconductor memories and hard disks.
  • the external connection interface 1904 is an interface for connecting an external device such as a memory card and a Universal Serial Bus (USB) device to the communication apparatus 1900 .
  • USB Universal Serial Bus
  • the camera 1906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensors 1907 may include a set of sensors such as measurement sensors, gyroscope sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 1908 converts the sound input to the communication device 1900 into an audio signal.
  • the input device 1909 includes, for example, a touch sensor, a keypad, a keyboard, buttons, or switches configured to detect touches on the screen of the display device 1910, and receives operations or information input from a user.
  • the display device 1910 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the communication device 1900 .
  • the speaker 1911 converts the audio signal output from the communication device 1900 into sound.
  • the wireless communication interface 1912 supports any cellular communication scheme, such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 1912 may typically include, for example, BB processor 1913 and RF circuitry 1914.
  • the BB processor 1913 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 1914 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 1916 .
  • the wireless communication interface 1912 may be a chip module on which the BB processor 1913 and the RF circuit 1914 are integrated. As shown in FIG.
  • the wireless communication interface 1912 may include a plurality of BB processors 1913 and a plurality of RF circuits 1914 .
  • FIG. 19 shows an example in which the wireless communication interface 1912 includes multiple BB processors 1913 and multiple RF circuits 1914 , the wireless communication interface 1912 may include a single BB processor 1913 or a single RF circuit 1914 .
  • the wireless communication interface 1912 may support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 1912 may include a BB processor 1913 and an RF circuit 1914 for each wireless communication scheme.
  • Each of the antenna switches 1915 switches the connection destination of the antenna 1916 among a plurality of circuits included in the wireless communication interface 1912 (eg, circuits for different wireless communication schemes).
  • Each of the antennas 1916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 1912 to transmit and receive wireless signals.
  • the communication device 1900 may include a plurality of antennas 1916.
  • FIG. 19 shows an example in which the communication device 1900 includes multiple antennas 1916 , the communication device 1900 may also include a single antenna 1916 .
  • the communication device 1900 may include an antenna 1916 for each wireless communication scheme.
  • the antenna switch 1915 may be omitted from the configuration of the communication device 1900.
  • the bus 1917 connects the processor 1901, the memory 1902, the storage device 1903, the external connection interface 1904, the camera 1906, the sensor 1907, the microphone 1908, the input device 1909, the display device 1910, the speaker 1911, the wireless communication interface 1912, and the auxiliary controller 1919 to each other connect.
  • the battery 1918 provides power to the various blocks of the communication device 1900 shown in FIG. 19 via feeders, which are partially shown in phantom in the figure.
  • the auxiliary controller 1919 operates the minimum necessary functions of the communication device 1900, eg, in sleep mode.
  • FIG. 20 is a block diagram showing an example of a schematic configuration of a car navigation apparatus 2000 to which the technology of the present disclosure can be applied.
  • the car navigation device 2000 includes a processor 2001, a memory 2002, a global positioning system (GPS) module 2004, a sensor 2005, a data interface 2006, a content player 2007, a storage medium interface 2008, an input device 2009, a display device 2010, a speaker 2011, a wireless A communication interface 2013 , one or more antenna switches 2016 , one or more antennas 2017 , and a battery 2018 .
  • the car navigation device 2000 (or the processor 2001 ) here may correspond to a transmitting-side electronic device or a receiving-side electronic device.
  • the processor 2001 may be, for example, a CPU or a SoC, and controls the navigation function and other functions of the car navigation device 2000 .
  • the memory 2002 includes RAM and ROM, and stores data and programs executed by the processor 2001 .
  • the GPS module 2004 measures the position (such as latitude, longitude, and altitude) of the car navigation device 2000 using GPS signals received from GPS satellites.
  • Sensors 2005 may include a set of sensors such as gyroscope sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 2006 is connected to, for example, the in-vehicle network 2021 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 2007 reproduces content stored in storage media such as CDs and DVDs, which are inserted into the storage media interface 2008 .
  • the input device 2009 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 2010, and receives operations or information input from a user.
  • the display device 2010 includes a screen such as an LCD or OLED display, and displays images or reproduced content of a navigation function.
  • the speaker 2011 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 2013 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 2013 may generally include, for example, BB processor 2014 and RF circuitry 2015.
  • the BB processor 2014 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 2015 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 2017 .
  • the wireless communication interface 2013 may also be a chip module on which the BB processor 2014 and the RF circuit 2015 are integrated. As shown in FIG. 20 , the wireless communication interface 2013 may include multiple BB processors 2014 and multiple RF circuits 2015 .
  • FIG. 20 shows an example in which the wireless communication interface 2013 includes multiple BB processors 2014 and multiple RF circuits 2015
  • the wireless communication interface 2013 may include a single BB processor 2014 or a single RF circuit 2015 .
  • the wireless communication interface 2013 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 2013 may include the BB processor 2014 and the RF circuit 2015 for each wireless communication scheme.
  • Each of the antenna switches 2016 switches the connection destination of the antenna 2017 among a plurality of circuits included in the wireless communication interface 2013, such as circuits for different wireless communication schemes.
  • Each of the antennas 2017 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 2013 to transmit and receive wireless signals.
  • the car navigation device 2000 may include a plurality of antennas 2017 .
  • FIG. 20 shows an example in which the car navigation device 2000 includes a plurality of antennas 2017
  • the car navigation device 2000 may also include a single antenna 2017 .
  • the car navigation apparatus 2000 may include an antenna 2017 for each wireless communication scheme.
  • the antenna switch 2016 may be omitted from the configuration of the car navigation apparatus 2000 .
  • the battery 2018 provides power to the various blocks of the car navigation device 2000 shown in FIG. 20 via feeders, which are partially shown in the figure as dashed lines.
  • the battery 2018 accumulates power supplied from the vehicle.
  • the techniques of this disclosure may also be implemented as an in-vehicle system (or vehicle) 2020 that includes one or more blocks of a car navigation device 2000 , an in-vehicle network 2021 , and a vehicle module 2022 .
  • the vehicle module 2022 generates vehicle data such as vehicle speed, engine speed, and failure information, and outputs the generated data to the in-vehicle network 2021 .
  • the present disclosure utilizes both the omnidirectional antenna and the directional antenna of the transmitting device and the terminal-side electronic device, wherein data communication is performed between the transmitting device and the terminal-side electronic device using the highly directional beam emitted by the directional antenna , improve the road capacity and energy efficiency, and use the omnidirectional antenna communication between the transmitting device and the terminal-side electronic device to more appropriately and accurately judge the communication status, so that after the communication via the directional antenna is affected, the omnidirectional antenna can be used.
  • the antenna determines the type of events affecting the communication and adjusts the communication configuration accordingly, so that the communication between the transmitting device and the terminal-side electronic device can be improved so that the communication can remain robust and robust.
  • machine-executable instructions in a machine-readable storage medium or program product may be configured to perform operations corresponding to the above-described apparatus and method embodiments.
  • the embodiments of the machine-readable storage medium or program product will be apparent to those skilled in the art, and thus the description will not be repeated.
  • Machine-readable storage media and program products for carrying or including the above-described machine-executable instructions are also within the scope of the present disclosure.
  • Such storage media may include, but are not limited to, floppy disks, optical disks, magneto-optical disks, memory cards, memory sticks, and the like.
  • a plurality of functions included in one unit in the above embodiments may be implemented by separate devices.
  • multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions may be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowcharts include not only processing performed in time series in the stated order, but also processing performed in parallel or individually rather than necessarily in time series. Furthermore, even in the steps processed in time series, needless to say, the order can be appropriately changed.
  • a transmitting-side electronic device in a wireless communication system comprising a processing circuit configured to:
  • the group of end devices including one or more end devices
  • the terminal devices are grouped based on the acquired location information of the terminal devices in the wireless communication system.
  • the grouping information of each terminal device in the wireless communication system is informed to the terminal device through Radio Resource Control (RRC) or Medium Access Control (MAC) signaling.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • EE 4 The transmitting-side electronic device according to EE 1, wherein the grouping information includes the wireless network temporary identification code of the device group to which the terminal device belongs.
  • the shared beam of the group is determined by performing beam scanning between the control-side device and key terminal devices in the terminal device group.
  • EE 6 The transmitting-side electronic device according to EE 5, wherein the key terminal device is selected based on the communication capability of the terminal device.
  • EE 7 The transmitting-side electronic device according to EE 5, wherein the key terminal device is determined by polling among a plurality of terminal devices in a terminal device group.
  • EE 8 The transmitting-side electronic device according to EE 1, wherein the processing circuit is further configured to:
  • EE 9 The transmitting-side electronic device according to EE 1, wherein the processing circuit sends the related information of the group shared beam to the corresponding terminal equipment group via the group shared physical downlink control channel (PDCCH) using the group shared beam.
  • PDCCH group shared physical downlink control channel
  • EE 10 The transmit-side electronic device according to EE 1, wherein the processing circuit uses the group shared beam to send the relevant information of the group shared beam to the corresponding group via the group shared medium access control-control element (MAC CE). Terminal Equipment.
  • MAC CE group shared medium access control-control element
  • EE 11 The transmitting-side electronic device according to EE 1, wherein the processing circuit uses the group shared beam to send the relevant information of the group shared beam to a specific device in the terminal equipment group via the terminal equipment dedicated physical downlink control channel (PDCCH). terminal equipment, and the specific terminal equipment informs other terminal equipments in the terminal equipment group of the relevant information.
  • the processing circuit uses the group shared beam to send the relevant information of the group shared beam to a specific device in the terminal equipment group via the terminal equipment dedicated physical downlink control channel (PDCCH).
  • PDCCH terminal equipment dedicated physical downlink control channel
  • a receiving-side electronic device in a wireless communication system comprising a processing circuit configured to:
  • a receive beam is determined for communication with the transmit-side electronic device based on the acquired beam information.
  • the information of the group of shared beams is reported to the transmitting-side electronic device.
  • EE 15 The receiving-side electronic device according to EE 13, wherein the processing circuit is further configured to inform other terminal devices in the terminal device group of the relevant information of the group of shared beams.
  • Relevant information of the group shared beam transmitted by the transmitting side device via the group shared beam is received and decoded in order to determine the receive beam corresponding to the group shared beam from the transmitting side device.
  • PDCCH group shared physical downlink control channel
  • PDSCH dedicated physical downlink shared channel
  • PDSCH Physical downlink shared channel
  • a method on a transmitting side in a wireless communication system comprising:
  • the terminal device group including one or more terminal devices
  • the group shared beam information is sent to at least one of the terminal devices using the determined group shared beam.
  • a method on a receiving side in a wireless communication system comprising:
  • a receive beam is determined for communication with the transmit-side electronic device based on the acquired beam information.
  • At least one storage device on which instructions are stored which, when executed by the at least one processor, cause the at least one processor to perform the execution of any one of EE 18 or 19 method.
  • a storage medium storing instructions which, when executed by a processor, enable the execution of a method according to EE 18 or 19.
  • An apparatus comprising means for performing the method of EE 18 or 19.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种无线通信系统中的电子设备和通信方法。提供了一种无线通信系统中的发射侧电子设备,包括处理电路,所述处理电路被配置为确定用于与无线通信系统中的终端设备组进行通信的组共享波束,所述终端设备组包括一个或多个终端设备;以及利用所确定的组共享波束将组共享波束信息发送给所述终端设备中的至少一个终端设备。

Description

无线通信系统中的电子设备和方法
相关申请的交叉引用
本申请要求于2020年10月22日递交的中国专利申请No.202011141627.0的优先权,其全文通过引用并入于此。
技术领域
本公开涉及一种无线通信系统中的电子设备和方法,并且具体而言,涉及无线通信系统中进行信息传输的电子设备和方法。
背景技术
随着移动互联网技术的发展和广泛应用,无线通信前所未有地满足了人们的语音和数据通信需求。随着使用频段的增加(比如26GHz、60GHz或者更高的频段),无线信道必将承受比低频段(如2GHz)更大的路径损耗、大气吸收损耗等负面影响。为了提供更高的通信质量和容量,无线通信系统采用了不同层面的各种技术。
近年来,大规模多输入多输出(Massive Multi-Input Multi-Output,MIMO)技术和毫米波(Millimeter Wave)技术被认为是未来5G关键技术的一部分,引起了学术界和工业界的广泛关注。毫米波频段具有大量可用频谱资源,能够满足移动通信日益增长的业务流量需求。此外,由于毫米波的波长较短,根据天线理论,毫米波系统的天线尺寸也较小,使得能够在小范围空间中放置几百甚至上千根天线,更有利于大规模天线技术在现实系统中的应用。
此外,在大规模天线技术中,通过波束赋形(Beam forming)技术能有效弥补毫米波信道路径衰落过大的缺点,为毫米波技术应用于移动通信提供了可能。波束赋形可以通过增加天线发射和/或接收的指向性,提供波束赋形增益以补偿无线信号的损耗。为此,3GPP在5G的标准制定中引入了波束管理(Beam Management)的概念,其中介绍了用于通信的波束的确定和应用。
目前仍需要改进的波束管理以便进行无线通信传输的技术方案。
除非另有说明,否则不应假定本节中描述的任何方法仅仅因为包含在本节中而成为现有技术。同样,除非另有说明,否则关于一种或多种方法所认识出的问题不应在本节的基础上假定在任何现有技术中都认识到。
发明内容
本公开提出了改进的波束通信方案,特别地提出了基于终端设备分组的波束管理,其中发射侧电子设备可以对于终端设备组采用组共享的通信波束进行后续信道和信号的通信,这样在满足可靠性的前提下减少不必要的信令开销和时延。
本公开的一方面涉及一种无线通信系统中的发射侧电子设备,该发射侧电子设备包括处理电路,所述处理电路被配置为确定用于与无线通信系统中的终端设备组进行通信的组共享波束,所述终端设备组包括一个或多个终端设备;以及利用所确定的组共享波束将组共享波束信息发送给所述终端设备中的至少一个终端设备。
本公开的又一方面涉及一种用于无线通信系统中的发射侧的方法,该方法包括确定用于与无线通信系统中的终端设备组进行通信的组共享波束,所述终端设备组包括一个或多个终端设备;以及利用所确定的组共享波束将组共享波束信息发送给所述终端设备中的至少一个终端设备。
本公开的一方面涉及一种无线通信系统中的接收侧电子设备,该接收侧电子设备包括处理电路,所述处理电路被配置为获取关于来自无线通信系统中的发射侧电子设备的组共享波束的波束信息;以及基于获取的波束信息确定接收波束以供与发射侧电子设备进行通信。
本公开的又一方面涉及一种用于无线通信系统中的接收侧的方法,该方法包括获取关于来自无线通信系统中的发射侧电子设备的组共享波束的波束信息;以及基于获取的波束信息确定接收波束以供与发射侧电子设备进行通信。
本公开的另一个方面涉及一种存储有可执行指令的非暂时性计算机可读存储介质,所述可执行指令当被执行时实现如前所述的方法。
本公开的另一个方面涉及一种无线通信装置。根据一个实施例,所述无线通信装置包括:处理器和存储装置,所述存储装置存储有可执行指令,所述可执行指令当被执行时实现如前所述的方法。
本公开的另一个方面涉及一种无线通信装置,包括用于实现如前所述的方法的部件。
附图说明
下面结合具体的实施例,并参照附图,对本公开的上述和其它目的和优点做进一 步的描述。在附图中,相同的或对应的技术特征或部件将采用相同或对应的附图标记来表示。
图1示出了根据本公开的实施例的示例性应用场景。
图2A示出了根据本公开的实施例的基于分组的波束管理的概念性流程图,图2B示出了根据本公开的实施例的发射侧设备和终端侧设备之间的示例性波束扫描,并且图2C示出了根据本公开的实施例的基于分组的波束管理的结果的示意图。
图3示出了根据本公开的实施例的发射侧电子设备的框图。
图4示出了根据本公开的实施例的终端设备移动情况下的波束管理的示意图。
图5示出了根据本公开的实施例的通过采用波束扫描实现基站与终端设备组之间的波束管理的示意图。
图6示出了根据本公开的实施例的基于组共享PDCCH进行组共享波束指示的示意图。
图7示出了根据本公开的实施例的MAC-CE的格式的示意图。
图8示出了根据本公开的实施例的基于终端设备专属的PDSCH的媒体接入控制层信令进行组共享波束指示的示意图。
图9示出了根据本公开的实施例的基于组共享PDSCH的媒体接入控制层信令进行组共享波束指示的示意图。
图10示出了根据本公开的实施例的关键终端设备与其它终端设备之间的组共享波束信息传输的示意图。
图11示出了根据本公开的实施例的基于分组的波束管理的概念性流程图。
图12示出了根据本公开的实施例的未采用波束管理的终端设备分组示例。
图13示出了根据本公开的实施例的用于发射侧的方法的流程图。
图14示出了根据本公开的实施例的终端侧电子设备的框图。
图15示出了根据本公开的实施例的用于终端侧的方法的流程图。
图16是示意性地示出了根据本公开的实施例的中可采用的信息处理设备的个人计算机的示例结构的框图;
图17是示出可以应用本公开的技术的eNB的示意性配置的第一示例的框图;
图18是示出可以应用本公开的技术的eNB的示意性配置的第二示例的框图;
图19是示出可以应用本公开的技术的通讯设备的示意性配置的示例的框图,以及
图20是示出可以应用本公开的技术的汽车导航设备的示意性配置的示例的框图。
虽然在本公开内容中所描述的实施例可能易于有各种修改和另选形式,但是其具体实施例在附图中作为例子示出并且在本文中被详细描述。但是,应当理解,附图以及对其的详细描述不是要将实施例限定到所公开的特定形式,而是相反,目的是要涵盖属于权利要求的精神和范围内的所有修改、等同和另选方案。
具体实施方式
在下文中将结合附图对本公开的示范性实施例进行描述。为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与至少根据本公开的方案密切相关的处理步骤和/或设备结构,而省略了与本公开关系不大的其他细节。此外,还应注意,在附图中相似的附图标记和字母指示相似的项目,并且因此一旦一个项目在一个附图中被定义,则对于随后的附图无需再对其进行论述。
为了清楚和简明起见,在说明书中并未描述实施例的所有特征。然而,应该了解,在对实施例进行实施的过程中必须做出很多特定于实施方式的设置,以便实现开发人员的具体目标,例如,符合与设备及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
典型地,无线通信系统或者无线电系统至少包括发射侧和接收侧,发射侧设备与接收侧设备通过信号流的发送与接收来进行通信。在本公开中,无线通信系统或无线电系统的“发射侧”具有其通常含义的全部广度,通常指示系统中发射信号流以进行通信和/或控制的一侧,其也可以被称为系统中的信号“控制侧”,并且在本公开的上下文中可互换地使用。类似地,术语“接收侧”具有其通常含义的全部广度,相应地可以指示系统中接收信号流以进行的通信和操作的一侧,其也可以被称为系统中的信号“终端侧”,并且在本公开的上下文中可互换地使用。
作为示例,依赖于通信系统中信号流的方向和/或通信系统中的操作控制,“发射侧”和“接收侧”可包含通信系统中的不同设备。例如对于下行信号传输,“发射侧”设备可以包括无线通信系统(诸如蜂窝式通信系统、V2X系统等)中的基站、控制设备、服务器或MEC、中继器或路边单元(RSU)等等,而“接收侧”设备可以相应地包括通信系统中的终端设备。反之,对于上行信号传输,“发射侧”设备可以包括 通信系统中的终端设备,而“接收侧”设备可以相应地包括通信系统中的基站等等。
在本公开中,术语“基站”具有其通常含义的全部广度,并且作为例子,基站例如可以是遵循4G通信标准的eNB、遵循5G通信标准的gNB、远程无线电头端、无线接入点、飞行器控制塔台或者执行类似功能的通信装置。
在本公开中,术语“终端设备”具有其通常含义的全部广度,并且至少包括作为无线通信系统或无线电系统的一部分接收来自发射侧设备的信号以便于通信的终端设备。作为例子,终端设备例如可以是无线中继、微基站、路由器、用户设备等之类的终端设备或者执行类似功能的通信装置。在本公开中,“终端设备”和“用户设备(UE)”可以互换地使用,或者“终端设备”可以与“用户设备”结合在一起或者实现为“用户设备”的一部分。在本公开中,术语“用户设备(UE)”具有其通常含义的全部广度,并且作为例子,用户设备例如可以是移动电话、膝上型电脑、平板电脑、车载通信设备等之类的终端设备或者执行类似功能的通信装置。
在当前5G无线通信系统中,特别在毫米波技术领域中,发射侧设备(诸如基站)往往利用天线来形成方向性波束以用于与接收侧设备(诸如终端设备)之间进行通信。特别地,在无线通信系统、尤其是毫米波通信系统中,通常采用每条射频链路连接多个移相器及天线而利用少至一条射频链路形成具有指向性的波束,并且通过波束赋形方案来找到发射侧设备与接收侧设备之间匹配的波束对,以便用于后续的无线通信。作为示例,以下行链路为例,通过基站的发送波束与用户设备的接收波束之间的波束扫描来进行下行波束赋形训练以获得用于下行链路的波束对,即找到由最优的基站发送波束和最优的用户设备接收波束构成的一组最优的波束对。类似地,在上行链路中,基站的接收波束与用户设备的发送波束也构成一组波束对。
然而,在5G通信系统中,发射侧设备与终端设备之间的波束通信的开销值得关注,尤其是当发射侧设备(诸如基站)往往服务于多个终端设备(诸如移动用户设备)时,针对基站与多个用户设备的通信的波束管理的信令开销尤其值得关注。在当前的技术中,基站与每个用户设备之间的波束管理是通过两者之间的单独信令交互而进行,这样基站往往需要进行多次重复性的信令操作,波束管理中的信令开销高。
鉴于此,本公开研究了5G通信系统中通过将终端设备分组来减少波束管理中的信令开销。特别地,本公开提出了基于终端设备分组的波束管理,其中一个或多个终端设备被分到同一个终端设备组,并且对于每个终端设备组,使用一个波束来进行发射侧设备与该终端设备组中的各个终端设备之间的通信操作,例如波束扫描、组标识 信息传输、组共享波束信息传输、终端设备接收波束的确定等等,以及为该终端设备组中的各个终端设备提供服务。这样,当5G系统运行在毫米波频段时,通过多个信道或信号使用相同的波束,可以在满足可靠性的前提下减少不必要的信令开销和时延。特别地,基于组共享波束,能够通过较少的波束操作和信令传输来减少基站与UE之间的波束管理的开销。
以下将主要以基站作为发射侧设备/控制侧设备的示例、以及以用户设备作为接收侧设备/终端侧设备的示例,在基站与用户设备的下行链路通信场景下来描述根据本公开的技术方案。应指出,以下虽然主要基于包含基站和用户设备的通信系统对本公开的实施例进行了描述,但是这些描述可以相应地扩展到包含任何其它类型的控制侧和终端侧的通信系统的情况。而且,这些描述的操作同样可以应用于上行链路通信场景。
特别地,当一些用户设备聚集在一起的时候,基站可以使用相同的下行波束来为构成用户设备组的这些用户设备进行服务。例如,当多个用户设备聚集在车辆或者列车车厢内时,车辆或者列车车厢内的用户设备可被分为一组,并且基站可以使用相同的下行波束服务于列车或者列车车厢内的这组用户设备。
作为示例,图1示出列车环境下的发射侧/控制侧设备与接收侧/终端侧设备之间的通信场景。其中,发射侧设备可包括图中所示的BBU(基带处理单元),RRU(远端射频单元)等中的至少一个,其用于控制与列车中的设备进行通信,而终端设备可包括图中所示的CPE(前置设备)以及列车上的用户设备等中的至少一个。其中,一辆列车、甚至是一个车厢中的终端设备可以作为终端设备组与发射侧设备进行通信。此外,列车中的车厢之间、车队中的相邻车辆之间以及车辆与头车之间可实现信息共享。例如,可以通过利用直通链路通过组播的方式在车队中进行信息分享。上述通信场景同样适用于利用直通链路(sidelink)组播通信的其它各种无线通信场景中,例如智能工厂机器人编队操作等等。
以下将参照附图示意性地描述根据本公开的实施例的基于用户设备分组的波束管理。图2A示出了根据本公开的实施例的基于分组的波束管理过程200的概念性流程图。
在步骤201,实现用户设备的分组。根据本公开的实施例,可以根据无线通信系统中的用户设备的位置信息来对用户设备进行分组。特别地,作为示例,位置彼此接近的用户设备可被分为一组,例如被分为一组的用户设备之间的距离往往会小于特定 阈值。
根据本公开的实施例,用户设备的分组可以由与用户设备通信的基站来进行。特别地,基站可以获取其服务的用户设备各自的位置信息,并且根据位置信息来将用户进行分组。用户设备的位置信息可以由用户设备上报给基站,例如通过GPS系统上报;或者用户设备向基站发送与定位相关的信息以便基站能够根据该信息来估计出用户设备的位置,例如通过发送上行的以定位为目标的SRS,使得基站可以估计出用户设备的位置;或者用户设备的位置信息可以由系统中的其它设备获知,并且基站可以从该其它设备获知用户设备的位置信息,从而可以基于该位置信息来实现用户设备的分组。
根据本公开的实施例,用户设备的分组可以由系统中的其它设备实现,并且基站可以从该其它设备获知用户设备的分组信息。作为示例,无线通信系统中的其它控制设备、接入点等可获得用户设备的位置并且进行分组,然后将分组信息告知基站。例如,在V2X中,路侧单元可参与车辆的分组并且将车辆分组信息告知基站。
根据本公开的实施例,用户设备的分组信息可以由基站获知并且告知用户设备,或者可以由系统中实现用户设备分组的其它设备来告知用户设备,以便用户设备能够知晓自己的分组状况。
在步骤202,获取基站与用户设备组之间的通信所使用的组共享波束。根据本公开的实施例,组共享波束指的是基站与用户设备组中的各个用户设备进行通信所使用的公共波束,这样基站可以对于用户设备组所包含的多个用户设备使用一个公共波束,从而有效地节省了通信开销。
根据本公开的实施例,通过基站与用户设备组中的特定用户设备之间的波束扫描来获取组共享波束。波束扫描可以采用各种方式来实现。图2B示出了根据本公开的实施例的波束扫描操作的示意图,其中基站采用具有指向性的数个发送波束与用户设备的具有多个指向性的数个接收波束进行通信,以形成多个波束对,如(a)所示。然后选择这些波束对中的通信质量最优的波束对作为所希望的发送波束与接收波束对,如(b)所示,以用于后续的基站与用户设备之间的通信。应指出,图2B所示的用于波束管理的波束扫描仅仅是示例性的,基站与用户设备之间的波束配对可以采用各种适当的方式来进行。例如,基站和用户设备之一可以采用全向天线进行波束配对;基站和用户设备可以分别采用水平波束和垂直波束来进行波束配对,等等,这里将不在详细描述。
在步骤203,获取基站与用户设备组中的各个用户设备之间的通信用波束。特别地,虽然基站可以使用相同的下行波束来给用户设备发送数据信道、控制信道和下行参考信号,但用户设备所处的位置和设备姿态不一致,需要使用各自的接收波束来进行接收。
根据本公开的实施例,基站可以采用之前获取的组共享波束来分别与各个用户设备进行波束扫描操作,继而进一步获取基站与各个用户设备进行通信的波束对,尤其是用户设备的接收波束。这样的波束对确定操作中,基站仅需要采用一个公共波束进行波束扫描,有效地降低了操作开销。这里波束扫描操作可以按照上文所述的波束扫描操作的方式来进行。
图2C示出了根据本公开的实施例的控制侧和终端侧的基于分组的波束管理的结果的示意图。其中,基站所服务的小区域内的用户设备分成两个组,UE组1和UE组2。并且,基站使用公共的下行发射(Tx)波束(也就是组共享波束)来给用户设备组发送数据信道,控制信道和下行参考信号,而用户设备使用各自的接收波束来进行接收。
由此,通过用户设备分组并且基于分组进行波束管理,尤其是使用公共的组共享波束,至少可以降低操作中基站侧的波束操作开销,从而有效地降低操作开销和信令交互开销,改进系统通信性能。
以下将描述根据本公开的实施例的发射侧电子设备和接收侧电子设备的实现。在本公开中,“发射侧电子设备”具有其通常含义的全部广度,例如可以包括作为无线通信系统或无线电系统的一部分以便发射信号进行通信和控制的设备,并且可以与“控制侧电子设备”互换地使用。在一些实施例中,发射侧电子设备可以是发射侧设备或者该发射侧设备的一部分。在本公开中,术语“接收侧电子设备”具有其通常含义的全部广度,并且至少包括被用于作为无线通信系统或无线电系统的一部分以接收信号进行通信或操作的设备,并且可以与“终端侧电子设备”互换地使用。在一些实施例中,接收侧电子设备可以是接收侧设备(即终端设备)或者该接收侧设备的一部分。
图3示出了根据本公开的实施例的发射侧电子设备300的示意性框图。发射侧电子设备300可以与无线通信系统中的接收侧电子设备进行通信,特别地进行波束通信。
如图3所示,发射侧电子设备300可以包括处理电路320。根据本公开的实施例,处理电路320可以被配置为:确定用于与无线通信系统中的终端设备组进行通信的组 共享波束,所述终端设备组包括多个终端设备;以及利用所确定的组共享波束将组共享波束的相关信息发送给所述终端设备中的至少一个终端设备。
如前文所述,终端设备的分组可以由系统中的适当设备基于终端设备的位置来实现。根据本公开的实施例,该终端设备的分组可以由发射侧设备来进行,特别地,发射侧电子设备的处理电路可基于所获取的无线通信系统中的终端设备的位置信息来对终端设备进行分组。作为示例,如前文所述地,终端设备的位置信息可直接获取或者估计得到。
根据本公开的实施例,发射侧电子设备的处理电路可以通过信令将分组信息告知终端设备,例如可以通过无线资源控制(RRC)或者媒体接入控制(MAC)信令将无线通信系统中的每个终端设备的分组信息告知该终端设备。这样,对于一个终端设备而言,该终端设备可以明了自己处于哪个分组中。
根据本公开的分组状况可以采用适当的信息来指示。根据本公开的实施例,该分组信息可以是指示终端设备组别的标识,特别地,所述分组信息可以包括该终端设备所属的设备组的无线网络临时识别码(RNTI,Radio Network Temporary Identifier)。
作为一个示例,发射侧设备可以经由RRC(Radio Resource Control,无线资源控制)层的信令来传输RNTI告知终端设备属于哪个分组。这尤其适合于终端设备属于一个组的情况。
应指出,还存在终端设备可能属于多于一个以上的组的情况。例如,终端设备可能同时属于两个组,或者通过移动而先后属于不同的组。作为另一示例,如果终端设备属于多于一个分组,则发射侧设备可以使用更下层的MAC(Media Access Control,媒体接入控制)信令或物理层信令,如MAC CE(Media Access Control-Control Element,媒体接入控制-控制元素)或DCI(Downlink control information,下行控制信息)来传输RNTI以告知终端设备所属的分组,和/或还可以通知终端设备进行分组的调整。例如,当终端设备由于移动而改变分组状况时,发射侧设备可以通过MAC-CE或DCI来将分组的变更告知终端设备。
图4示出了UE可以属于两个分组以及移动的情景。对于图4中处于两个分组交界的UE,基站可以将其分配进入两个分组,即组1和组2,并分别分配组共享(GC,GroupCommon)RNTI,即GC-RNTI 1和GC-RNTI 2。并且可以根据UE和基站的状况来改变分配给该UE的GC-RNTI的状态。
特别地,当UE从组1移动到组2的时候,基站可以通过MAC CE来更改UE的分 组,即去激活掉GC-RNTI 1并且激活GC-RNTI 2。作为另一示例,如果该UE具备较强的波束赋型能力,其可以同时被组1和组2服务,即所分配的GC-RNTI 1和GC-RNTI2都处于激活的状态。这取决于UE的上报能力和基站对应的配置。
在确定UE分组之后,可以基于该分组进行基站与用户设备之间的波束管理,以便确定用于基站与用户设备之间进行通信的波束。特别地,确定用于与用户设备组进行通信的组共享波束,从而基站采用该组共享波束作为发送波束与用户设备组中的各个用户设备进行通信,而各个用户设备可以采用相应的接收波束进行接收通信。
根据本公开的实施例,发射侧电子设备的处理电路进一步配置为通过控制侧设备与终端设备组中的关键终端设备进行波束扫描来确定所述组共享波束。特别地,关键终端设备指示作为该终端设备组的代表与发射侧电子设备进行通信的特定设备,该关键终端设备可以是终端设备组中的一个终端设备,或者可以是与该终端设备组相关联的一个设备,例如在一辆列车中的终端设备作为一个终端设备组的情况下的该列车的CPE,等等。
根据本公开的实施例,关键终端设备可以采用各种方式被适当地确定。根据一个实施例,关键终端设备是基于终端侧设备的通信能力被选定的。作为一个示例,终端设备组中的功率、天线尺寸、信道条件最优的终端设备,可以作为关键终端设备。作为另一个示例,与该终端设备组相关联的一个设备由于其更好的通信能力而作为关键终端设备。例如,在列车应用场景中,架设在车顶的CPE往往比列车内的一般UE具有功率,天线尺寸,信道条件上的优势,可作为关键设备,负责列车内的用户设备组与基站之间的通信。
根据一个实施例,所述关键终端设备可以被静态或者半静态地确定。例如,关键终端设备被确定并且在基站与终端设备之间进行通信器件保持不变。
根据另一个实施例,关键终端设备是动态确定的。特别的,关键终端设备是终端设备组中的多个终端设备之间轮询地确定的。该轮询可通过各种方式来执行。作为示例,通过在多个终端设备之间比较各个终端设备之间的性能,诸如功率、信道条件等等,选择具有最佳性能的终端设备作为关键终端设备。当然,还可以参照其它性能条件来进行终端设备的轮询。作为示例,轮询可以定期地执行,或者事件触发地进行,例如当有新的用户设备加入或者已有用户设备离开时进行。这样,关键终端设备能够动态地改变,可以保证每个终端设备不会因为分组的波束管理而付出过大的代价。
在确定了关键终端设备之后,可以经由所确定的关键终端设备与基站之间进行波 束扫描来确定基站用于与用户设备组进行通信的组共享波束。特别地,关键终端设备的作用就是代表整个终端设备组找到基站针对该终端设备组的公共的下行发射波束,作为组共享波束。并且在确定了组共享波束之后,关键终端设备通过波束上报机制告知基站该组共享波束。
该组共享波束的确定可采用本领域已知的波束扫描方法来进行,例如前文参照图2B所述的波束对确定方法来进行,或者采用本领域已知的其它方法来进行。
作为示例,在3GPP中,基站基于下行链路波束形成的参考信号选择适合于与关键终端设备的通信的波束。这种下行链路参考信号也称为信道状态信息参考信号(CSI-RS)。首先,基站使用多个波束来发送多个CSI-RS。然后,关键终端设备采用多个接收波束进行接收,并且基于对于该多个CSI-RS的接收结果在用于发送CSI-RS的多个波束中选择适当波束作为该组共享波束。例如,终端设备选择最大的接收信号强度所对应的下行发射波束作为该组共享波束,或者可以选择通信质量最佳的下行发射波束作为该组共享波束。然后,用户设备将指示选择结果的信息上报给基站,该信息例如可包括期望波束的标识信息(例如,波束编号),从而基站能够使用所选择的发射波束作为组共享的发射波束与该终端设备组进行通信。
最后,需要说明的是,当UE具有上下行的波束对称性时,基站可通过TCI状态(Transmission Configuration Info state,传输配置信息状态)指示给UE的下行发送波束,UE在下行接收时可以使用对应的下行接收波束,在上行发送时可以使用下行对应接收波束所对应的上行发射空间滤波器来发送。从而实现上下行两个方向的基于UE分组波束指示。
在确定了组共享波束之后,基站可以采用该组共享波束与终端设备组进行通信。根据实施例,发射侧电子设备的处理电路进一步配置为:利用所述组共享波束与所述终端设备组中的各个终端设备进行波束扫描,以便确定各个终端设备与发射侧电子设备进行通信的波束。
该波束扫描以及波束确定可采用本领域已知的波束确定方法来进行,例如前文所述的基于CSI-RS的上下行波束对确定方法来进行。特别地,基站采用所确定的组共享波束对于终端设备组中的其它终端设备进行波束扫描,而对于该组共享波束,每个终端设备采用各自的可用的接收波束进行接收,确定其中的通信质量最佳的接收波束作为该终端设备的相应的接收波束。特别地,为了减少接收波束扫描资源的消耗,基站可以把相同的波束扫描资源配置给组内的除关键UE之外的其他UE。作为示例,终 端设备所确定的接收波束可以不上报给基站。
图5示出了根据本公开的实施例的基站与终端设备组之间的基于分组的波束管理结果的示意图,其中通过基站与关键UE之间的下行波束扫描确定了基站的下行发射波束,关键UE将所确定的下行发射波束上报给基站,并且基站可以使用该下行发射波束作为组共享下行发射波束与组中的其它UE进行波束扫描,从而可以确定终端设备组中的各个终端设备的接收波束。
根据本公开的实施例,提出了基于终端设备分组的组共享波束指示方案。在该方案中,可以将所确定的组共享波束的相关信息提供给终端设备组中的各个终端设备,尤其是除关键终端设备之外的其它终端设备。
根据本公开的实施例,此波束指示方案可用于终端设备组中的除关键设备之外的其它设备的接收波束确定,即在采用关键终端设备确定了基站的组共享波束之后,可以向终端设备组传输波束指示信息,从而终端设备可以接收并解码该波束指示信息中所包含的组共享波束信息,由此基于该信息来准备相对应的接收波束。作为一个示例,组共享波束的相关信息的指示可以与在基站与终端设备之间的波束扫描交替地进行。通常,一般波束扫描可以周期性执行,或者非周期性执行,例如由于终端设备接入或者移动而导致分组发生变化而触发进行波束扫描,而波束指示往往是非周期性地,例如分组变化可能导致组共享波束变化,这样就需要将变化的组共享波束告知终端设备。例如,组共享波束的相关信息的指示可以在波束扫描之后执行。应指出,此波束指示方案可以在如前所述的基站与终端设备组中的各个终端设备之间的波束对确定之后来执行。
根据本公开的实施例,组共享波束的相关信息可以由各种设备采用各种适当的方式来提供给终端设备。特别地,组共享波束的相关信息可以由基站或者其它适当设备提供。作为另一示例,该波束指示方案中可以经由适当的信道来传输组共享波束的相关信息。根据本公开的实施例,优选地,组共享波束相关信息是由基站提供给终端设备的,特别地,通过所确定的组共享波束采用适当的信道将组共享波束的相关信息提供给终端设备组中的各个终端设备。当然,组共享波束的相关信息也可通过基站专门针对终端设备的波束来提供给终端设备。例如当终端设备刚刚完成与基站的初始接入,还未为对于该终端设备的发送信道配置组共享波束,则可以使用该终端设备的专属波束来传输组共享波束的相关信息给该终端设备。
根据本公开的实施例,组共享波束的相关信息可包含组共享波束的方向信息,例 如组共享的下行波束方向。在标准中往往使用TCI状态来标识。TCI状态中包含一个下行参考信号(CSI-RS或SSB)或上行参考信号(SRS)。
根据一个实施例,所述处理电路使用组共享(GC)波束经由组共享物理下行控制信道(PDCCH)将组共享波束的相关信息发送给相应的终端设备组。特别地,组共享物理下行控制信道(PDCCH)可指的是对于终端设备组中的各个终端设备都使用一个公共PDCCH,由此来指示组共享波束的相关信息。
图6示出了根据本公开的实施例的基于组共享PDCCH进行组共享波束指示的示意图,其中组共享波束的相关信息被包含在GC-PDCCH所承载的内容中。
这里存在两个组,分别是UE组1和组2,对于两个组分别经由各自对应的组共享波束经由GC-PDCCH提供相应的组共享波束信息,并且每个UE组通过各自对应的组共享波束指示专门的GC-RNTI来标识。作为示例,GC-RNTI可以与组共享波束的相关信息一起传输。
如果组1中的UE被提供了GC-RNTI 1的话,那么它可以解码GC-PDCCH 1中的内容(因为GC-PDCCH 1的CRC是通过GC-RNTI 1进行的加扰操作,解码过程需要使用GC-RNTI 1进行逆向的去加扰操作),从而得到了组共享的下行波束方向,其往往使用TCI状态来标识。TCI状态中包含一个下行参考信号(CSI-RS或SSB)或上行参考信号(SRS)。UE在解码该所在组的GC-PDCCH后,可以得到该组的共享波束,并且准备对应的接收波束来进行后续信道和信号的接收。另外,在上行方向上,UE可以准备对应各自的上行信道和信号的发射方向。
根据本公开,GC-PDCCH可以采用各种适当的格式。根据一个示例,组共享波束的相关信息,例如TCI状态等,可以添加到现有的PDCCH信令格式中被传输。根据另一实施例,可以引入了全新的GC PDCCH的格式。特别地,本公开的实施例提出了DCI格式2,其被用于将公共TCI状态(波束)告知公共下行链路,其中UE假设对于该UE预期不进行传输。这样,可以利用该DCI格式2,在CRC被GC-RNTI加扰的情况下来传输以下信息:{UE组1,UE组2,…,UE组N,TCI状态1,TCI状态2,…,TCI状态N},这里的N代表一共有N个UE分组。也就是说,针对每个UE组的组共享波束的相关信息被组成一个公共信息,并且公共信息被经由组共享波束以及GC-PDCCH提供给各个组,以便各个组能够基于该公共消息来获取相应的组共享波束的信息。
根据另一实施例,所述处理电路也可以使用组共享波束经由终端设备组中的各终端设备的专属物理下行控制信道(PDCCH)将组共享波束信息发送给相应的终端设备。 特别地,可以采用组共享波束经由专用于各个终端设备的PDCCH来传输组共享波束信息,这样终端设备接收到信息之后可以直接解码相应PDCCH中的内容以获取组共享波束信息,由此可以准备对应的接收波束来进行后续信道和信号的接收。但是这种情况下,信道开销可能比较大。
根据本公开的实施例,发射侧电子设备的处理电路可以使用组共享波束经由组共享的媒体接入控制-控制元素(MAC CE)的将组共享波束的相关信息发送给相应的终端设备。
特别的,除了上文中考虑的基于GC-PDCCH的组共享波束指示外,我们也可以考虑组共享的MAC CE来进行上下行波束的激活或者去激活操作。值得一提的是,在目前的NR协议中,MAC CE一般是UE专属的信令方式。这里提出使用GC-MAC CE的概念来进行波束管理。基站通过给这个MAC CE分配一个组专属的组别标识,例如LCID(区域设置标识符)或者eLCID来标识,明确指示该MAC-CE所对应的终端设备组。图7示出了根据本公开的实施例的MACCE的格式。
根据本公开的实施例,对于GC-MAC CE,可以有两种传输的方式。图8示出了根据本公开的一个实施例的GC-MAC CE传输的示意图,其中,使用组共享波束经由终端设备专属物理下行共享信道(PDSCH)将组共享波束的相关信息指示给各个终端设备,组共享波束的相关信息被包含在GC-MAC CE中。
如图8所示,在物理层通过UE专属PDSCH来承载GC-MAC CE,在给每一个UE的专属PDSCH中放置相同的MAC CE内容,这样,因为PDSCH的HARQ-ACK的差错控制机制,可以确保每一个UE都可以正确地解码MAC CE,从而准确地获取组共享波束的相关信息,例如组共享波束的方向信息,由此可以准备对应的接收波束来进行后续信道和信号的接收。应指出,这种方式能够实现准确的传输和解码,但是对于物理层无线资源的开销比较大。
图9示出了根据本公开的另一实施例的GC-MAC CE传输的示意图,其中,所述处理电路使用组共享波束经由组共享物理下行共享信道(PDSCH)将组共享波束的相关信息发送给终端设备组中的各个终端设备。
如图9所示,基站可以把GC-MAC CE放到GC-PDSCH中来承载。在终端设备解码GC-PDSCH后,便可以得到GC-MAC CE所携带的组共享波束指示。特别地,类似于GC-PDCCH,终端设备可以根据发送给其的组标识信息,例如RNTI,来解码相应的GC-PDSCH或者公共PDSCH中的相应部分的内容,从而得到GC-MAC CE所携带的内容。 这样做的好处是,GC-PDSCH在物理层仅占用一个PDSCH的资源,从而减少了无线资源的开销。此外,为了传输安全,可以引入HARQ机制来保护差错传输。
UE在解码该所在组的GC-MAC CE后,可以得到该组的共享波束,并且准备对应的接收波束来进行后续信道和信号的接收。另外,在上行方向上,UE可以准备对应各自的上行信道和信号的发射方向。
根据本公开的实施例,组共享波束的相关信息还可以由其它设备提供给终端设备组中的终端设备。特别地,根据本公开的实施例,关键设备可以将所述组共享波束的相关信息告知关键设备所属的终端设备组中的其它终端设备。特别地,在基站与关键设备之间进行波束扫描以确定了上下行波束对时,关键设备已经获知基站所要使用的组共享波束的相关信息,并且将该信息告知终端设备组中的终端设备。
图10示出了根据本公开的实施例的关键终端设备与其它终端设备之间的组共享波束信息传输的示意图。其中,基站通过UE专属的控制信道或者数据信道,将上下行的组共享波束的相关信息告知给关键UE。然后关键UE将组共享波束的相关信息通知给组内的其他UE。关键UE可以采用各种适当方式来进行信息通知。例如,可以通过下行链路(Downlink)或直通链路(Sidelink)的方式。这取决于关键UE所担任的角色和/或所起的作用。如果该UE作为一个非IAB节点的UE,那么它可以把基于MAC CE或者DCI的波束指示信息通过Sidelink的方式,即SCI或PSSCH,通知组内的其他UE。如果该UE作为一个IAB节点,那么它和其他UE的链路可以通过DL的方式。
根据本公开的实施例,关键UE可以通过各种适当的方式来获知组内的其它UE的相关信息,例如其它UE的ID,位置信息等等。作为示例,对于sidelink的UE来说,网络侧可以提供预先的配置,使得UE可以根据自身所在的位置来计算所在的区域标识(ZoneID),即一个提前规划好的位置区域。关键UE只需要向该区域内广播Sidelink的控制信息,即SCI(Sidelink Control Info.)来传达下行的共波束信息即可。作为另一示例,如果在之前的UE分组阶段基站给关键UE额外地提供了组内的其他UE信息,关键UE可以通过广播SCI来更确切地找到其他UE。
图11示出了根据本公开的实施例的基于分组的波束管理的概念性流程图。特别地,应指出,基站和用户设备之间进行分组、组共享波束确定、各终端设备的接收波束确定等等可以按照上文所示的方式来进行,这里将不再详细描述。
以上描述了根据本公开的实施例的基于终端设备分组的波束管理。其中,将终端 设备进行分组并且确定基站针对终端设备组的一个公共的组共享波束,这样使用公共的组共享波束进行发射侧设备与各个终端设备之间的通信,从而通过多个信道或信号使用相同的波束,可以在满足可靠性的前提下减少不必要的信令开销和时延,这在5G系统运行在毫米波频段时尤其有利。
以上主要描述了基于分组的波束管理,其中基于UE的位置进行UE的分组,以及基站所使用的组共享波束以及UE的相应的接收波束都是基于波束扫描而确定的。
应指出,在本公开的实施例中,可以在无波束扫描、也无波束管理的前提下进行UE的分组,并且组共享波束以及UE的相应接收波束是通过计算而确定的,而没有通过波束扫描。特别地,本实施例尤其适合于UE与波束发射位置距离太远的情况。图12示出了根据本公开的实施例的未采用波束管理的终端设备分组示例,其以卫星通信场景为例进行了描绘。其中无需进行波束管理即可对用户设备的分组,也不再进行基站与用户设备之间的波束管理。
应指出,对于基于卫星的覆盖场景,由于每个UE都可以计算出对于卫星的位置信息,所以波束扫描的过程可以在NTN的场景下省略。因此,也不需要一个关键UE在后期分发组内的共波束信息。如图12(a)所示,网络侧可以通过RRC或者MAC CE信令告知它所服务UE,该卫星所使用的波束的中心角度,即某一个波束的所指向的中心方向。UE通过计算星历图和自身所在的位置来计算UE和卫星之间的夹角。通过对比可以发现UE和卫星的相对位置,哪一个波束更适合UE作为下行的发射波束。因此,在NTN的场景中,常规的波束扫描和上报过程是一个非必要的手段。
另外需要注意的是,由于卫星举例UE的距离较远,一个下行波束可以在地表覆盖非常大的范围,比如半径为60km的区域。因此,UE在一个波束覆盖的区域内自然地形成了一个UE分组,如图12(b)所示。
在上述设备的结构示例中,处理电路320可以是通用处理器的形式,也可以是专用处理电路,例如ASIC。例如,处理电路230能够由电路(硬件)或中央处理设备(诸如,中央处理单元(CPU))构造。此外,处理电路320上可以承载用于使电路(硬件)或中央处理设备工作的程序(软件)。该程序能够存储在存储器(诸如,布置在存储器中)或从外面连接的外部存储介质中,以及经由网络(诸如,互联网)下载。
根据一个实施例,处理电路320可以包括用于相应地实现上述操作的各个单元,例如,波束确定单元324被配置为确定用于与无线通信系统中的终端设备组进行通信的组共享波束,所述终端设备组包括多个终端设备;以及信息发送单元326,被配置 为利用所确定的组共享波束将组共享波束信息发送给所述终端设备中的至少一个终端设备。
此外,处理电路320还可包括被配置为利用所述组共享波束与所述终端设备组中的各个终端设备进行波束扫描,以便确定各个终端设备与发射侧电子设备进行通信的波束的单元,该单元可以包含在波束确定单元324中,或者与波束确定单元324分离。
此外,处理电路320还可包括被配置为通过无线资源控制(RRC)或者媒体接入控制(MAC)信令将无线通信系统中的每个终端设备的分组信息告知该终端设备的单元,该单元可以包含在信息发送单元326中,或者与信息发送单元326分离。
此外,处理单元320还可以包括被配置将组共享波束的相关信息发送给相应的终端设备组的单元。特别地,可以包括被配置为使用组共享波束经由组共享物理下行控制信道(PDCCH)将组共享波束的相关信息发送给相应的终端设备组的单元;被配置为使用组共享波束经由组共享媒体接入控制-控制元素(MAC CE)的将组共享波束的相关信息发送给相应的终端设备的单元。这些单元可以在信息发送单元326中,或者与信息发送单元326分离。
此外,处理电路320可以包括被配置为分组单元328,其基于所获取的无线通信系统中的终端设备的位置信息来对终端设备进行分组。应指出,该分组单元也可被位于处理电路之外,甚至位于发射侧电子设备之外。
上述各个单元可以进行如上文所述地操作,这里将不再详细描述。应注意,上述各个单元仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具体的实现方式,例如可以以软件、硬件或者软硬件结合的方式来实现。在实际实现时,上述各个单元可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。需要注意的是,尽管图3中将各个单元示为分立的单元,但是这些单元中的一个或多个也可以合并为一个单元,或者拆分为多个单元。此外,上述各个单元在附图中用虚线示出指示这些单元可以并不实际存在,而它们所实现的操作/功能可由处理电路本身来实现。
应理解,图3仅仅是发射侧电子设备的概略性结构配置,可选地,发射侧电子设备300还可以包括未示出的其它部件,诸如存储器、射频链路、基带处理单元、网络接口、控制器等。处理电路可以与存储器和/或天线相关联。例如,处理电路可以直接或间接(例如,中间可能连接有其它部件)连接到存储器,以进行数据的存取。存储器可以存储由处理电路320获取的和产生的各种信息(例如,车辆内部状况信息及 其分析结果等)、用于发射侧电子设备操作的程序和数据、将由发射侧电子设备发送的数据等。存储器还可以位于发射侧电子设备内但在处理电路之外,或者甚至位于发射侧电子设备之外。存储器可以是易失性存储器和/或非易失性存储器。例如,存储器可以包括但不限于随机存储存储器(RAM)、动态随机存储存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)、闪存存储器。
还例如,处理电路可以直接或间接连接到天线,以经由传输单元发送信息以及接收请求/指令。例如,作为示例,天线可以是全向天线和/或定向天线,其可以通过各种方式来实现,例如天线阵列(诸如全向天线和定向天线两者,或者能够实现全向天线和定向天线两者的功能的单一天线阵列)和/或射频链路等通信部件,这里将不再详细描述。作为示例,天线也可被包含在处理电路中,或者在处理电路之外。甚至可以耦合/附接到电子设备300、而不被包含在电子设备300中。
以下将参照附图来描述根据本公开的实施例的用于无线通信系统发射侧的方法,图13示出了根据本公开的实施例的用于无线通信系统发射侧的方法的流程图。
在步骤S1301,确定用于与无线通信系统中的终端设备组进行通信的组共享波束,所述终端设备组包括多个终端设备。
在步骤S1302,利用所确定的组共享波束将组共享波束信息发送给所述终端设备中的至少一个终端设备。
此外,该方法还可以包括实现上文所述的发射侧电子设备所执行的操作的相应步骤,这里将不再重复描述。
应指出,这些步骤可以由前文所述的根据本公开的发射侧电子设备来执行,特别地由前文所述的根据本公开的发射侧电子设备的相应单元来执行,或者可由适当的发射侧设备来执行。
以下将参照附图来描述根据本公开的实施例的无线通信设备的接收侧电子设备,图14为根据本公开的实施例无线通信设备的接收侧电子设备的框图。该接收侧电子设备1400可以属于一个或多个接收侧电子设备组,该电子设备1400包括处理电路1420,其被配置为获取关于来自无线通信系统中的发射侧电子设备的组共享波束的波束信息;以及基于所获取的波束信息来确定接收波束以供与发射侧电子设备进行通信。
类似于上文针对用于发射侧的电子设备所论述的,接收侧电子设备的处理电路、继而接收侧电子设备也可以采用各种适当的形式来实现,这里将不再详细描述。此外,类似于上文针对用于发射侧电子设备所论述的,接收侧电子设备的结构/组成仅仅是 示例性的。
作为示例,该处理电路1420可包括信息获取单元1424,被配置为获取关于来自无线通信系统中的发射侧电子设备的组共享波束的波束信息;以及波束确定单元1426,被配置为基于所获取的波束信息来确定接收波束以供与发射侧电子设备进行通信。
此外,处理电路1420还可包括被配置为通过与控制侧设备进行初始波束扫描来确定所述组共享波束的单元,该单元可包含在波束确定单元1426中,或者与波束确定单元1426分离。
此外,处理电路1420还可包括发送单元1428,其可被配置为将所述组共享波束的信息上报发射侧电子设备。
此外,处理电路1420还可包括被配置为将所述组共享波束的相关信息告知终端设备组中的其它终端设备的单元,该单元可包含在发送单元1428中,或者与发送单元1428分离。
应注意,上述各个单元仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具体的实现方式,与前述资源求购侧的描述类似,这里将不再详细描述。此外,类似于前述资源求购侧的描述,资源出售侧的电子设备也可包括额外的或者附加的单元/设备,诸如存储器,通信接口等等,这里将不再详细描述。
以下将参照附图来描述根据本公开的实施例的用于无线通信系统接收侧的方法,图15示出了根据本公开的实施例的用于无线通信系统接收侧的方法的流程图。
在步骤S1501,获取关于来自无线通信系统中的发射侧电子设备的组共享波束的波束信息。
在步骤S1502,基于所获取的波束信息来确定接收波束以供与发射侧电子设备进行通信。
此外,该方法还可以包括实现上文所述的接收侧电子设备所执行的操作的相应步骤,这里将不再重复描述。
应指出,这些步骤可以由前文所述的根据本公开的接收侧电子设备来执行,特别地由前文所述的根据本公开的接收侧电子设备的相应单元来执行,或者可由适当的接收侧设备来执行。
应用示例
在本公开中描述了基站与用户设备之间的下行链路的通信场景的示例,但是应当 理解,本公开的应用场景不仅仅局限于此通信场景。本公开所提出的改进方案可应用于任何协作通信应用场景,例如飞行器编队飞行、智能工厂机器人协作操作等等。
应指出,上述描述仅仅是示例性的。本公开的实施例还可以任何其它适当的方式执行,仍可实现本公开的实施例所获得的有利效果。而且,本公开的实施例同样可应用于其它类似的应用实例,仍可实现本公开的实施例所获得的有利效果。
应当理解,根据本公开实施例的机器可读存储介质或程序产品中的机器可执行指令可以被配置为执行与上述设备和方法实施例相应的操作。当参考上述设备和方法实施例时,机器可读存储介质或程序产品的实施例对于本领域技术人员而言是明晰的,因此不再重复描述。用于承载或包括上述机器可执行指令的机器可读存储介质和程序产品也落在本公开的范围内。这样的存储介质可以包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
另外,应当理解,上述系列处理和设备也可以通过软件和/或固件实现。在通过软件和/或固件实现的情况下,从存储介质或网络向具有专用硬件结构的计算机,例如图16所示的通用个人计算机1300安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等等。图16是示出根据本公开的实施例的中可采用的信息处理设备的个人计算机的示例结构的框图。在一个例子中,该个人计算机可以对应于根据本公开的上述示例性发射侧电子设备或接收侧电子设备。
在图16中,中央处理单元(CPU)1301根据只读存储器(ROM)1302中存储的程序或从存储部分1308加载到随机存取存储器(RAM)1303的程序执行各种处理。在RAM 1303中,也根据需要存储当CPU 1301执行各种处理等时所需的数据。
CPU 1301、ROM 1302和RAM 1303经由总线1304彼此连接。输入/输出接口1305也连接到总线1304。
下述部件连接到输入/输出接口1305:输入部分1306,包括键盘、鼠标等;输出部分1307,包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等;存储部分1308,包括硬盘等;和通信部分1309,包括网络接口卡比如LAN卡、调制解调器等。通信部分1309经由网络比如因特网执行通信处理。
根据需要,驱动器1310也连接到输入/输出接口1305。可拆卸介质1311比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1310上,使得从中读出的计算机程序根据需要被安装到存储部分1308中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可拆 卸介质1311安装构成软件的程序。
本领域技术人员应当理解,这种存储介质不局限于图16所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可拆卸介质1311。可拆卸介质1311的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1302、存储部分1308中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
本公开的技术能够应用于各种产品。
例如,根据本公开的实施例的发射侧电子设备可以被实现为各种控制设备/基站或者被包含在各种控制设备/基站中。例如,根据本公开的实施例的发射设备和终端设备可以被实现为各种终端设备或者被包含在各种终端设备中。
例如,本公开中提到的控制设备/基站可以被实现为任何类型的基站,例如eNB,诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。还例如,可以实现为gNB,诸如宏gNB和小gNB。小gNB可以为覆盖比宏小区小的小区的gNB,诸如微微gNB、微gNB和家庭(毫微微)gNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(Base Transceiver Station,BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(Remote Radio Head,RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,本公开中提到的终端设备,在一些实施例中可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。终端设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,终端设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
以下将参照附图描述根据本公开的应用示例。
[关于基站的示例]
应当理解,本公开中的基站一词具有其通常含义的全部广度,并且至少包括被用于作为无线通信系统或无线电系统的一部分以便于通信的无线通信站。基站的例子可 以例如是但不限于以下:基站可以是GSM系统中的基站收发信机(BTS)和基站控制器(BSC)中的一者或两者,可以是WCDMA系统中的无线电网络控制器(RNC)和Node B中的一者或两者,可以是LTE和LTE-Advanced系统中的eNB,或者可以是未来通信系统中对应的网络节点(例如可能在5G通信系统中出现的gNB,eLTE eNB等等)。本公开的基站中的部分功能也可以实现为在D2D、M2M以及V2V通信场景下对通信具有控制功能的实体,或者实现为在认知无线电通信场景下起频谱协调作用的实体。
第一示例
图17是示出可以应用本公开内容的技术的gNB的示意性配置的第一示例的框图。gNB 1700包括多个天线1710以及基站设备1720。基站设备1720和每个天线1710可以经由RF线缆彼此连接。在一种实现方式中,此处的gNB 1700(或基站设备1720)可以对应于上述发射侧电子设备。
天线1710中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1720发送和接收无线信号。如图17所示,gNB 1700可以包括多个天线1710。例如,多个天线1710可以与gNB 1700使用的多个频段兼容。
基站设备1720包括控制器1721、存储器1722、网络接口1717以及无线通信接口1725。
控制器1721可以为例如CPU或DSP,并且操作基站设备1720的较高层的各种功能。例如,控制器1721根据由无线通信接口1725获取的无线通信系统中的终端侧的至少一个终端设备的定位信息和至少一个终端设备的特定位置配置信息来确定至少一个终端设备中的目标终端设备的位置信息。控制器1721可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接入控制和调度。该控制可以结合附近的gNB或关键网节点来执行。存储器1722包括RAM和ROM,并且存储由控制器1721执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1723为用于将基站设备1720连接至关键网1724的通信接口。控制器1721可以经由网络接口1717而与关键网节点或另外的gNB进行通信。在此情况下,gNB 1700与关键网节点或其他gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1723还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1723为无线通信接口,则与由无线通信接口1725使用的频段相比,网 络接口1723可以使用较高频段用于无线通信。
无线通信接口1725支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-Advanced),并且经由天线1710来提供到位于gNB 1700的小区中的终端的无线连接。无线通信接口1725通常可以包括例如基带(BB)处理器1726和RF电路1727。BB处理器1726可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1721,BB处理器1726可以具有上述逻辑功能的一部分或全部。BB处理器1726可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1726的功能改变。该模块可以为插入到基站设备1720的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1727可以包括例如混频器、滤波器和放大器,并且经由天线1710来传送和接收无线信号。虽然图17示出一个RF电路1727与一根天线1710连接的示例,但是本公开并不限于该图示,而是一个RF电路1727可以同时连接多根天线1710。
如图17所示,无线通信接口1725可以包括多个BB处理器1726。例如,多个BB处理器1726可以与gNB 1700使用的多个频段兼容。如图17所示,无线通信接口1725可以包括多个RF电路1727。例如,多个RF电路1727可以与多个天线元件兼容。虽然图17示出其中无线通信接口1725包括多个BB处理器1726和多个RF电路1727的示例,但是无线通信接口1725也可以包括单个BB处理器1726或单个RF电路1727。
第二示例
图18是示出可以应用本公开内容的技术的gNB的示意性配置的第二示例的框图。gNB 1800包括多个天线1810、RRH 1820和基站设备1830。RRH 1820和每个天线1810可以经由RF线缆而彼此连接。基站设备1830和RRH 1820可以经由诸如光纤线缆的高速线路而彼此连接。在一种实现方式中,此处的gNB 1800(或基站设备1830)可以对应于上述发射侧电子设备。
天线1810中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于RRH 1820发送和接收无线信号。如图18所示,gNB 1800可以包括多个天线1810。例如,多个天线1810可以与gNB 1800使用的多个频段兼容。
基站设备1830包括控制器1831、存储器1832、网络接口1833、无线通信接口1834以及连接接口1836。控制器1831、存储器1832和网络接口1833与参照图17描 述的控制器1721、存储器1722和网络接口1723相同。
无线通信接口1834支持任何蜂窝通信方案(诸如LTE和LTE-Advanced),并且经由RRH 1820和天线1810来提供到位于与RRH 1820对应的扇区中的终端的无线通信。无线通信接口1834通常可以包括例如BB处理器1835。除了BB处理器1835经由连接接口1836连接到RRH 1820的RF电路1822之外,BB处理器1835与参照图17描述的BB处理器1726相同。如图18所示,无线通信接口1834可以包括多个BB处理器1835。例如,多个BB处理器1835可以与gNB 1800使用的多个频段兼容。虽然图18示出其中无线通信接口1834包括多个BB处理器1835的示例,但是无线通信接口1834也可以包括单个BB处理器1835。
连接接口1836为用于将基站设备1830(无线通信接口1834)连接至RRH 1820的接口。连接接口1836还可以为用于将基站设备1830(无线通信接口1834)连接至RRH 1820的上述高速线路中的通信的通信模块。
RRH 1820包括连接接口1823和无线通信接口1821。
连接接口1823为用于将RRH 1820(无线通信接口1821)连接至基站设备1830的接口。连接接口1823还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1821经由天线1810来传送和接收无线信号。无线通信接口1821通常可以包括例如RF电路1822。RF电路1822可以包括例如混频器、滤波器和放大器,并且经由天线1810来传送和接收无线信号。虽然图18示出一个RF电路1822与一根天线1810连接的示例,但是本公开并不限于该图示,而是一个RF电路1822可以同时连接多根天线1810。
如图18所示,无线通信接口1821可以包括多个RF电路1822。例如,多个RF电路1822可以支持多个天线元件。虽然图18示出其中无线通信接口1821包括多个RF电路1822的示例,但是无线通信接口1821也可以包括单个RF电路1822。
[关于用户设备/终端设备的示例]
第一示例
图19是示出可以应用本公开内容的技术的通讯设备1900(例如,智能电话,联络器等等)的示意性配置的示例的框图。通讯设备1900包括处理器1901、存储器1902、存储装置1903、外部连接接口1904、摄像装置1906、传感器1907、麦克风1908、输入装置1909、显示装置1910、扬声器1911、无线通信接口1912、一个或多个天线开关1915、一个或多个天线1916、总线1917、电池1918以及辅助控制器1919。在一 种实现方式中,此处的通讯设备1900(或处理器1901)可以对应于上述发射侧电子设备或接收侧电子设备。
处理器1901可以为例如CPU或片上系统(SoC),并且控制通讯设备1900的应用层和另外层的功能。存储器1902包括RAM和ROM,并且存储数据和由处理器1901执行的程序。存储装置1903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至通讯设备1900的接口。
摄像装置1906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1908将输入到通讯设备1900的声音转换为音频信号。输入装置1909包括例如被配置为检测显示装置1910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示通讯设备1900的输出图像。扬声器1911将从通讯设备1900输出的音频信号转换为声音。
无线通信接口1912支持任何蜂窝通信方案(诸如LTE和LTE-Advanced),并且执行无线通信。无线通信接口1912通常可以包括例如BB处理器1913和RF电路1914。BB处理器1913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1914可以包括例如混频器、滤波器和放大器,并且经由天线1916来传送和接收无线信号。无线通信接口1912可以为其上集成有BB处理器1913和RF电路1914的一个芯片模块。如图19所示,无线通信接口1912可以包括多个BB处理器1913和多个RF电路1914。虽然图19示出其中无线通信接口1912包括多个BB处理器1913和多个RF电路1914的示例,但是无线通信接口1912也可以包括单个BB处理器1913或单个RF电路1914。
此外,除了蜂窝通信方案之外,无线通信接口1912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1912可以包括针对每种无线通信方案的BB处理器1913和RF电路1914。
天线开关1915中的每一个在包括在无线通信接口1912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1916的连接目的地。
天线1916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1912传送和接收无线信号。如图19所示,通讯设备1900可以包括多个天线1916。虽然图19示出其中通讯设备1900包括多个天线1916的示例,但是通讯设备1900也可以包括单个天线1916。
此外,通讯设备1900可以包括针对每种无线通信方案的天线1916。在此情况下,天线开关1915可以从通讯设备1900的配置中省略。
总线1917将处理器1901、存储器1902、存储装置1903、外部连接接口1904、摄像装置1906、传感器1907、麦克风1908、输入装置1909、显示装置1910、扬声器1911、无线通信接口1912以及辅助控制器1919彼此连接。电池1918经由馈线向图19所示的通讯设备1900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1919例如在睡眠模式下操作通讯设备1900的最小必需功能。
第二示例
图20是示出可以应用本公开内容的技术的汽车导航设备2000的示意性配置的示例的框图。汽车导航设备2000包括处理器2001、存储器2002、全球定位系统(GPS)模块2004、传感器2005、数据接口2006、内容播放器2007、存储介质接口2008、输入装置2009、显示装置2010、扬声器2011、无线通信接口2013、一个或多个天线开关2016、一个或多个天线2017以及电池2018。在一种实现方式中,此处的汽车导航设备2000(或处理器2001)可以对应于发射侧电子设备或接收侧电子设备。
处理器2001可以为例如CPU或SoC,并且控制汽车导航设备2000的导航功能和另外的功能。存储器2002包括RAM和ROM,并且存储数据和由处理器2001执行的程序。
GPS模块2004使用从GPS卫星接收的GPS信号来测量汽车导航设备2000的位置(诸如纬度、经度和高度)。传感器2005可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口2006经由未示出的终端而连接到例如车载网络2021,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器2007再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口2008中。输入装置2009包括例如被配置为检测显示装置2010的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置2010包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器2011输出导航功能的声音或再现的内容。
无线通信接口2013支持任何蜂窝通信方案(诸如LTE和LTE-Advanced),并且执行无线通信。无线通信接口2013通常可以包括例如BB处理器2014和RF电路2015。BB处理器2014可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2015可以包括例如混频器、滤波器和放大器,并且经由天线2017来传送和接收无线信号。无线通信接口2013还可以为其上集成有BB处理器2014和RF电路2015的一个芯片模块。如图20所示,无线通信接口2013可以包括多个BB处理器2014和多个RF电路2015。虽然图20示出其中无线通信接口2013包括多个BB处理器2014和多个RF电路2015的示例,但是无线通信接口2013也可以包括单个BB处理器2014或单个RF电路2015。
此外,除了蜂窝通信方案之外,无线通信接口2013可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口2013可以包括BB处理器2014和RF电路2015。
天线开关2016中的每一个在包括在无线通信接口2013中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线2017的连接目的地。
天线2017中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2013传送和接收无线信号。如图20所示,汽车导航设备2000可以包括多个天线2017。虽然图20示出其中汽车导航设备2000包括多个天线2017的示例,但是汽车导航设备2000也可以包括单个天线2017。
此外,汽车导航设备2000可以包括针对每种无线通信方案的天线2017。在此情况下,天线开关2016可以从汽车导航设备2000的配置中省略。
电池2018经由馈线向图20所示的汽车导航设备2000的各个块提供电力,馈线在图中被部分地示为虚线。电池2018累积从车辆提供的电力。
本公开内容的技术也可以被实现为包括汽车导航设备2000、车载网络2021以及车辆模块2022中的一个或多个块的车载系统(或车辆)2020。车辆模块2022生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络2021。
上面已经参考图1至图20详细描述了本公开的实施例。如上所述,本公开同时利用了发射设备和终端侧电子设备的全向天线和定向天线,其中在发射设备和终端侧电子设备之间利用了定向天线所发射的高方向性波束来进行数据通信,提高了道路容量和能量效率,而在发射设备和终端侧电子设备之间利用全向天线通信来更适当和准 确地判断通信状况,使得在经由定向天线的通信受到影响之后,能够经由全向天线判断影响通信的事件类型,并且相应地调整通信配置,从而能够改进发射设备和终端侧电子设备之间的通信,使得通信能够保持稳健和鲁棒。
以上参照附图描述了本公开的示例性实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
应当理解,根据本公开实施例的机器可读存储介质或程序产品中的机器可执行指令可以被配置为执行与上述设备和方法实施例相应的操作。当参考上述设备和方法实施例时,机器可读存储介质或程序产品的实施例对于本领域技术人员而言是明晰的,因此不再重复描述。用于承载或包括上述机器可执行指令的机器可读存储介质和程序产品也落在本公开的范围内。这样的存储介质可以包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
另外,应当理解,上述系列处理和设备也可以通过软件和/或固件实现。在通过软件和/或固件实现的情况下,在相关设备的存储介质存储构成相应软件的相应程序,当所述程序被执行时,能够执行各种功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
本公开的示例性实施例实现
根据本公开的实施例,可以想到各种实现本公开的概念的示例性实现方式(EE),包括但不限于:
EE 1.一种无线通信系统中的发射侧电子设备,包括处理电路,所述处理电路被配置为:
确定用于与无线通信系统中的终端设备组进行通信的组共享波束,所述终端设备组包括一个或多个终端设备;以及
利用所确定的组共享波束将组共享波束信息发送给所述终端设备中的至少一个 终端设备。
EE 2.根据EE 1所述的发射侧电子设备,其中,所述处理电路进一步配置为:
基于所获取的无线通信系统中的终端设备的位置信息来对终端设备进行分组。
EE 3.根据EE 1所述的发射侧电子设备,其中,所述处理电路进一步配置为:
通过无线资源控制(RRC)或者媒体接入控制(MAC)信令将无线通信系统中的每个终端设备的分组信息告知该终端设备。
EE 4.根据EE 1所述的发射侧电子设备,其中,所述分组信息包括该终端设备所属的设备组的无线网络临时识别码。
EE 5.根据EE 1所述的发射侧电子设备,其中,所述处理电路进一步配置为:
通过控制侧设备与终端设备组中的关键终端设备进行波束扫描来确定所述组共享波束。
EE 6.根据EE 5所述的发射侧电子设备,其中,所述关键终端设备是基于终端设备的通信能力被选定的。
EE 7.根据EE 5所述的发射侧电子设备,其中,所述关键终端设备是终端设备组中的多个终端设备之间轮询地确定的。
EE 8.根据EE 1所述的发射侧电子设备,其中,所述处理电路进一步配置为:
利用所述组共享波束与所述终端设备组中的各个终端设备进行波束扫描,以便确定各个终端设备与发射侧电子设备进行通信的波束。
EE 9.根据EE 1所述的发射侧电子设备,其中,所述处理电路使用组共享波束经由组共享物理下行控制信道(PDCCH)将组共享波束的相关信息发送给相应的终端设备组。
EE 10.根据EE 1所述的发射侧电子设备,其中,所述处理电路使用组共享波束经由组共享媒体接入控制-控制元素(MAC CE)的将组共享波束的相关信息发送给相应的终端设备。
EE 11.根据EE 1所述的发射侧电子设备,其中,所述处理电路使用组共享波束经由终端设备专属物理下行控制信道(PDCCH)将组共享波束的相关信息发送给终端设备组中的特定终端设备,并且该特定终端设备将该相关信息告知终端设备组中的其它终端设备。
EE 12.一种无线通信系统中的接收侧电子设备,包括处理电路,所述处理电路被配置为:
获取关于来自无线通信系统中的发射侧电子设备的组共享波束的波束信息;
基于所获取的波束信息确定接收波束以供与发射侧电子设备进行通信。
EE 13.根据EE 12所述的接收侧电子设备,其中,所述接收侧电子设备是终端设备组中的关键设备,其是基于终端设备的通信能力被设定和/或在终端设备组中的多个终端设备之间轮询地确定。
EE 14.根据EE 13所述的接收侧电子设备,其中,所述处理电路进一步配置为:
通过与控制侧设备进行初始波束扫描来确定所述组共享波束;以及
将所述组共享波束的信息上报发射侧电子设备。
EE 15.根据EE 13所述的接收侧电子设备,其中,所述处理电路进一步配置为将所述组共享波束的相关信息告知终端设备组中的其它终端设备。
EE 16.根据EE 12所述的接收侧电子设备,其中,所述处理电路进一步配置为:
接收并解码由发射侧设备经由组共享波束传输的组共享波束的相关信息,以便于确定与来自发射侧设备的组共享波束对应的接收波束。
EE 17.根据EE 16所述的接收侧电子设备,其中,所述组共享波束的相关信息由所述发射侧设备经由组共享波束通过以下方式中的任一种进行传输:
经由组共享物理下行控制信道(PDCCH)传输;
经由终端设备组中的各终端设备的专属物理下行共享信道(PDSCH)传输;以及
经由组共享物理下行共享信道(PDSCH)传输。
EE 18、一种无线通信系统中的发射侧的方法,该方法包括:
确定发射侧设备的用于与无线通信系统中的终端设备组进行通信的组共享波束,所述终端设备组包括一个或多个终端设备;以及
利用所确定的组共享波束将组共享波束信息发送给所述终端设备中的至少一个终端设备。
EE 19、一种无线通信系统中的接收侧的方法,该方法包括:
获取关于来自无线通信系统中的发射侧电子设备的组共享波束的波束信息;
基于所获取的波束信息确定接收波束以供与发射侧电子设备进行通信。
EE20、一种设备,包括
至少一个处理器;和
至少一个存储设备,所述至少一个存储设备在其上存储指令,该指令在由所述至少一个处理器执行时,使所述至少一个处理器执行根据EE 18或19中任一项所述的 方法。
EE21、一种存储指令的存储介质,该指令在由处理器执行时能使得执行根据EE 18或19所述的方法。
EE22、一种包括用于执行EE 18或19所述的方法的部件的装置。
虽然已经详细说明了本公开及其优点,但是应当理解在不脱离由所附的权利要求所限定的本公开的精神和范围的情况下可以进行各种改变、替代和变换。而且,本公开实施例的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
虽然已详细描述了本公开的一些具体实施例,但是本领域技术人员应当理解,上述实施例仅是说明性的而不限制本公开的范围。本领域技术人员应该理解,上述实施例可以被组合、修改或替换而不脱离本公开的范围和实质。本公开的范围是通过所附的权利要求限定的。

Claims (38)

  1. 一种无线通信系统中的发射侧电子设备,包括处理电路,所述处理电路被配置为:
    确定用于与无线通信系统中的终端设备组进行通信的组共享波束,所述终端设备组包括一个或多个终端设备;以及
    利用所确定的组共享波束将组共享波束信息发送给所述终端设备中的至少一个终端设备。
  2. 根据权利要求1所述的发射侧电子设备,其中,所述处理电路进一步配置为:
    基于所获取的无线通信系统中的终端设备的位置信息来对终端设备进行分组。
  3. 根据权利要求1所述的发射侧电子设备,其中,所述处理电路进一步配置为:
    通过无线资源控制(RRC)或者媒体接入控制(MAC)信令将无线通信系统中的每个终端设备的分组信息告知该终端设备。
  4. 根据权利要求1所述的发射侧电子设备,其中,所述分组信息包括该终端设备所属的设备组的无线网络临时识别码。
  5. 根据权利要求1所述的发射侧电子设备,其中,所述处理电路进一步配置为:
    通过控制侧设备与终端设备组中的关键终端设备进行波束扫描来确定所述组共享波束。
  6. 根据权利要求5所述的发射侧电子设备,其中,所述关键终端设备是基于终端设备的通信能力被选定的。
  7. 根据权利要求5所述的发射侧电子设备,其中,所述关键终端设备是终端设备组中的多个终端设备之间轮询地确定的。
  8. 根据权利要求1所述的发射侧电子设备,其中,所述处理电路进一步配置为:
    利用所述组共享波束与所述终端设备组中的各个终端设备进行波束扫描,以便确定各个终端设备与发射侧电子设备进行通信的波束。
  9. 根据权利要求1所述的发射侧电子设备,其中,所述处理电路使用组共享波束经由组共享物理下行控制信道(PDCCH)将组共享波束的相关信息发送给相应的终端设备组。
  10. 根据权利要求1所述的发射侧电子设备,其中,所述处理电路使用组共享波束经由组共享媒体接入控制-控制元素(MAC CE)的将组共享波束的相关信息发送给相应的终端设备。
  11. 根据权利要求1所述的发射侧电子设备,其中,所述处理电路使用组共享波束经由终端设备专属物理下行控制信道(PDCCH)将组共享波束的相关信息发送给终端设备组中的特定终端设备,并且该特定终端设备将该相关信息告知终端设备组中的其它终端设备。
  12. 一种无线通信系统中的接收侧电子设备,包括处理电路,所述处理电路被配置为:
    获取关于来自无线通信系统中的发射侧电子设备的组共享波束的波束信息;
    基于所获取的波束信息确定接收波束以供与发射侧电子设备进行通信。
  13. 根据权利要求12所述的接收侧电子设备,其中,所述接收侧电子设备是终端设备组中的关键设备,其是基于终端设备的通信能力被设定和/或在终端设备组中的多个终端设备之间轮询地确定。
  14. 根据权利要求13所述的接收侧电子设备,其中,所述处理电路进一步配置为:
    通过与控制侧设备进行初始波束扫描来确定所述组共享波束;以及
    将所述组共享波束的信息上报发射侧电子设备。
  15. 根据权利要求13所述的接收侧电子设备,其中,所述处理电路进一步配置为将所述组共享波束的相关信息告知终端设备组中的其它终端设备。
  16. 根据权利要求12所述的接收侧电子设备,其中,所述处理电路进一步配置为:
    接收并解码由发射侧设备经由组共享波束传输的组共享波束的相关信息,以便于确定与来自发射侧设备的组共享波束对应的接收波束。
  17. 根据权利要求16所述的接收侧电子设备,其中,所述组共享波束的相关信息由所述发射侧设备经由组共享波束通过以下方式中的任一种进行传输:
    经由组共享物理下行控制信道(PDCCH)传输;
    经由终端设备组中的各终端设备的专属物理下行共享信道(PDSCH)传输;以及
    经由组共享物理下行共享信道(PDSCH)传输。
  18. 一种无线通信系统中的发射侧的方法,该方法包括:
    确定发射侧设备的用于与无线通信系统中的终端设备组进行通信的组共享波束,所述终端设备组包括一个或多个终端设备;以及
    利用所确定的组共享波束将组共享波束信息发送给所述终端设备中的至少一个终端设备。
  19. 根据权利要求18所述的方法,进一步包括:
    基于所获取的无线通信系统中的终端设备的位置信息来对终端设备进行分组。
  20. 根据权利要求18所述的方法,进一步包括:
    通过无线资源控制(RRC)或者媒体接入控制(MAC)信令将无线通信系统中的每个终端设备的分组信息告知该终端设备。
  21. 根据权利要求18所述的方法,其中,所述分组信息包括该终端设备所属的设备组的无线网络临时识别码。
  22. 根据权利要求18所述的方法,进一步包括:
    通过控制侧设备与终端设备组中的关键终端设备进行波束扫描来确定所述组共享波束。
  23. 根据权利要求22所述的方法,其中,所述关键终端设备是基于终端设备的通信能力被选定的。
  24. 根据权利要求22所述的方法,其中,所述关键终端设备是终端设备组中的多个终端设备之间轮询地确定的。
  25. 根据权利要求18所述的方法,进一步包括:
    利用所述组共享波束与所述终端设备组中的各个终端设备进行波束扫描,以便确定各个终端设备与发射侧电子设备进行通信的波束。
  26. 根据权利要求18所述的方法,其中,使用组共享波束经由组共享物理下行控制信道(PDCCH)将组共享波束的相关信息发送给相应的终端设备组。
  27. 根据权利要求18所述的方法,其中,使用组共享波束经由组共享媒体接入控制-控制元素(MAC CE)的将组共享波束的相关信息发送给相应的终端设备。
  28. 根据权利要求18所述的方法,其中,使用组共享波束经由终端设备专属物理下行控制信道(PDCCH)将组共享波束的相关信息发送给终端设备组中的特定终端设备,并且该特定终端设备将该相关信息告知终端设备组中的其它终端设备。
  29. 一种无线通信系统中的接收侧的方法,该方法包括:
    获取关于来自无线通信系统中的发射侧电子设备的组共享波束的波束信息;
    基于所获取的波束信息确定接收波束以供与发射侧电子设备进行通信。
  30. 根据权利要求29所述的方法,其中,接收侧电子设备是终端设备组中的关键设备,其是基于终端设备的通信能力被设定和/或在终端设备组中的多个终端设备 之间轮询地确定。
  31. 根据权利要求30所述的方法,进一步包括:
    通过与控制侧设备进行初始波束扫描来确定所述组共享波束;以及
    将所述组共享波束的信息上报发射侧电子设备。
  32. 根据权利要求30所述的方法,进一步包括将所述组共享波束的相关信息告知终端设备组中的其它终端设备。
  33. 根据权利要求29所述的方法,进一步包括:
    接收并解码由发射侧设备经由组共享波束传输的组共享波束的相关信息,以便于确定与来自发射侧设备的组共享波束对应的接收波束。
  34. 根据权利要求33所述的方法,其中,所述组共享波束的相关信息由所述发射侧设备经由组共享波束通过以下方式中的任一种进行传输:
    经由组共享物理下行控制信道(PDCCH)传输;
    经由终端设备组中的各终端设备的专属物理下行共享信道(PDSCH)传输;以及
    经由组共享物理下行共享信道(PDSCH)传输。
  35. 一种设备,包括
    至少一个处理器;和
    至少一个存储设备,所述至少一个存储设备在其上存储指令,该指令在由所述至少一个处理器执行时,使所述至少一个处理器执行根据权利要求18-34中任一项所述的方法。
  36. 一种存储指令的存储介质,该指令在由处理器执行时能使得执行根据权利要求18-34中任一项所述的方法。
  37. 一种包括用于执行权利要求18-34中任一项所述的方法的部件的装置。
  38. 一种计算机程序产品,包括指令,所述指令在由计算机执行时使得计算机执行根据权利要求18-34中任一项所述的方法。
PCT/CN2021/125119 2020-10-22 2021-10-21 无线通信系统中的电子设备和方法 WO2022083662A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180071088.4A CN116326099A (zh) 2020-10-22 2021-10-21 无线通信系统中的电子设备和方法
US18/245,898 US20240015718A1 (en) 2020-10-22 2021-10-21 Electronic device and method in a wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011141627.0A CN114390695A (zh) 2020-10-22 2020-10-22 无线通信系统中的电子设备和方法
CN202011141627.0 2020-10-22

Publications (1)

Publication Number Publication Date
WO2022083662A1 true WO2022083662A1 (zh) 2022-04-28

Family

ID=81194968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125119 WO2022083662A1 (zh) 2020-10-22 2021-10-21 无线通信系统中的电子设备和方法

Country Status (3)

Country Link
US (1) US20240015718A1 (zh)
CN (2) CN114390695A (zh)
WO (1) WO2022083662A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107710507A (zh) * 2015-05-29 2018-02-16 华为技术有限公司 正交波束域空间复用无线电通信系统及相关联的天线阵列
US20190069309A1 (en) * 2017-08-29 2019-02-28 Telefonaktiebolaget Lm Ericsson (Publ) Co-scheduling of terminal devices
US20200288452A1 (en) * 2017-09-19 2020-09-10 Telefonaktiebolaget Lm Ericsson (Publ) Beam assignment in a communications network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107710507A (zh) * 2015-05-29 2018-02-16 华为技术有限公司 正交波束域空间复用无线电通信系统及相关联的天线阵列
US20190069309A1 (en) * 2017-08-29 2019-02-28 Telefonaktiebolaget Lm Ericsson (Publ) Co-scheduling of terminal devices
US20200288452A1 (en) * 2017-09-19 2020-09-10 Telefonaktiebolaget Lm Ericsson (Publ) Beam assignment in a communications network

Also Published As

Publication number Publication date
CN114390695A (zh) 2022-04-22
US20240015718A1 (en) 2024-01-11
CN116326099A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
WO2020108473A1 (zh) 电子设备、通信方法和存储介质
JP7147790B2 (ja) 電子機器、無線通信装置、及び無線通信方法
WO2019029515A1 (zh) 用于无线通信的电子设备、方法和介质
US10944449B2 (en) Apparatus and method in wireless communication system, and computer readable storage medium
WO2017028664A1 (zh) 用于无线通信的基站侧和用户设备侧的装置及方法
US11528647B2 (en) Device and method for measuring a channel state
CA3048935A1 (en) Electronic device, method and storage medium for wireless communication system
WO2021139669A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
JP2023126969A (ja) 無線通信システムに用いられる電子機器、及び方法
WO2019205997A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
CN112314027A (zh) 网络侧设备、用户设备、无线通信方法和存储介质
US10897296B2 (en) Terminal apparatus, base station, method and recording medium
EP4135449A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
WO2020020025A1 (zh) 用户设备、电子设备、无线通信方法和存储介质
CN112740771A (zh) 通信设备、通信方法和程序
CN113678381B (zh) 基站设备、通信方法和存储介质
WO2021068817A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2021027802A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2022083662A1 (zh) 无线通信系统中的电子设备和方法
CN109075833B (zh) 通信控制装置、终端装置、方法和程序
WO2022017303A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2022267910A1 (zh) 用于无线通信系统的基站侧电子设备和终端侧电子设备
US20240188128A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
WO2023221913A1 (zh) 用于指示tci状态的方法及相关设备
CN116471607A (zh) 用于无线通信的电子设备和方法、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882077

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18245898

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882077

Country of ref document: EP

Kind code of ref document: A1