WO2022083382A1 - 一种磷酸镁水泥基双液注浆材料及其制备方法 - Google Patents
一种磷酸镁水泥基双液注浆材料及其制备方法 Download PDFInfo
- Publication number
- WO2022083382A1 WO2022083382A1 PCT/CN2021/119504 CN2021119504W WO2022083382A1 WO 2022083382 A1 WO2022083382 A1 WO 2022083382A1 CN 2021119504 W CN2021119504 W CN 2021119504W WO 2022083382 A1 WO2022083382 A1 WO 2022083382A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- parts
- phosphate
- component
- water
- grouting material
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/34—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/70—Grouts, e.g. injection mixtures for cables for prestressed concrete
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2201/00—Mortars, concrete or artificial stone characterised by specific physical values
- C04B2201/50—Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
Definitions
- the invention relates to the technical field of building materials, in particular to a magnesium phosphate cement-based double-liquid grouting material and a preparation method thereof.
- grouting reinforcement is a more effective control measure in order to prevent risks such as water inrush and mud intrusion, surface settlement, and structural displacement.
- Grouting refers to injecting the prepared grouting material into the part to be reinforced by the corresponding grouting process through the matching grouting equipment.
- grouting materials suitable for specific engineering needs have become a research hotspot.
- Magnesium phosphate cement as a kind of ceramic-like phosphate cement, has the advantages of fast setting, super early strength, small shrinkage, good volume stability, and low environmental pollution (the pH of the slurry is close to neutral). It is widely used in engineering Repair and reinforcement of structures. Studies have shown that adding industrial by-products such as fly ash and steel slag into MPC can not only reduce costs, but also improve mechanical properties and improve the early hydration hardening process. On the basis again, the inventor further improved the formula and preparation method of the magnesium phosphate cement grouting material, so as to further improve the related properties.
- the technical problem to be solved by the present invention is to provide a magnesium phosphate cement-based double-liquid grouting material with short and controllable setting time, high stone rate and excellent water resistance.
- a magnesium phosphate cement-based double-liquid grouting material comprising component A and component B used together, wherein:
- Component A includes 10-40 parts of magnesium oxide, 10-40 parts of slag powder, 1-5 parts of retarder and water;
- Component B includes 10-30 parts of phosphate, 20-40 parts of fly ash, 1-5 parts of retarder and water. The above-mentioned parts are all parts by mass.
- component A includes 20-40 parts of magnesium oxide, 20-40 parts of slag powder, 1-5 parts of retarder and water; component B includes 10-25 parts of phosphate, 20-35 parts of fly ash, 1 to 5 parts of retarder and water.
- component A includes 20-30 parts of magnesium oxide, 20-30 parts of slag powder, 1-3 parts of retarder and water; component B includes 15-25 parts of phosphate and 25-35 parts of fly ash , 1 to 3 parts of retarder and water.
- the mass ratio of water to the total solid material is 0.1-0.3:1; in the component B, the mass ratio of water to the total solid material is 0.1-0.2:1.
- the retarder can be selected from commonly used retarders in the field.
- a mixture of borax and sodium tripolyphosphate is selected; further, the retarder is borax and tripolyphosphate.
- the slag powder is granulated blast furnace slag powder.
- the phosphate is at least selected from the group consisting of diammonium hydrogen phosphate, ammonium dihydrogen phosphate, dipotassium hydrogen phosphate, potassium dihydrogen phosphate, calcium hydrogen phosphate, calcium dihydrogen phosphate, disodium hydrogen phosphate and sodium dihydrogen phosphate A sort of.
- a second aspect of the present invention provides a method for preparing a magnesium phosphate cement-based double-liquid grouting material as described above, comprising the following steps:
- the stirring time in the steps (1) and (2) is 1-10 min.
- the stirring time in the step (3) is 10-100s.
- the magnesium phosphate cement-based double-fluid grouting material provided by the invention has the incomparable advantages of traditional grouting materials: the setting time is short and can be controlled within 2-15 minutes; the castability is good, and the stone rate exceeds 100%; , The pH value of the slurry is nearly neutral; the early strength is high, the 3d compressive strength reaches 5.1MPa, and the 28d strength reaches 14.6MPa; the water resistance is excellent, and the modified 28d water resistance coefficient exceeds 90%.
- Fig. 1 is the schematic flow sheet of the magnesium phosphate cement-based double-liquid grouting material provided by the specific embodiment of the present invention
- Figure 2 is a line graph showing the effect of slag powder content on fluidity and pH value of grouting material
- Figure 3 is a line graph showing the effect of phosphate dosage on fluidity and pH value of grouting material
- Figure 4 is a broken line graph showing the effect of slag powder content on the setting time and stone rate of grouting materials
- Figure 5 is a line graph showing the effect of phosphate content on the setting time and stone rate of grouting materials
- Figure 6 is a bar graph showing the effect of slag powder content on the compressive strength of grouting materials
- Figure 7 is a bar graph showing the effect of phosphate content on the compressive strength of grouting materials
- Figure 8 is a bar graph showing the effect of slag powder content on the water resistance of grouting materials
- Figure 9 is a bar graph showing the effect of phosphate content on the water resistance of grouting materials.
- Magnesium Phosphate Cement The raw materials are prepared from industrial-grade dead-burned magnesium oxide and ammonium dihydrogen phosphate. Among them, the dead-burned magnesium oxide is a brown-yellow powder.
- Slag powder S95 grade slag powder.
- the test adopts the double-liquid grouting method to prepare the grouting material.
- Component A is formed; phosphate, fly ash and retarder are weighed according to the proportions, and component B is prepared according to the same steps; the two components A and B are fully mixed, and stirred at high speed for 30s to obtain grouting material ;
- the specific formula of component A and component B is shown in Table 2:
- Part of the hardened sample is placed at a temperature of (20 ⁇ 5) °C and a relative humidity of ( 60 ⁇ 10)% air environment for curing, used to test mechanical properties; the other part is placed in water for curing, and water resistance is studied by testing strength.
- Scheme 1 Fix the mixing ratio of component B unchanged, change the content ratio of slag powder in component A, study the effect of the content of slag powder on the fresh mixing performance and mechanical properties of the slurry, and confirm that it meets the requirements of the double-liquid grouting reinforcement project.
- Scheme 2 In the case of determining the optimum amount of slag powder, change the proportion of phosphate in component B, and study the effect of the amount of phosphate on the properties of the pulp.
- the unit price of ammonium dihydrogen phosphate is the highest among several raw materials, it should be ensured that the minimum dosage of phosphate should be sought on the premise of meeting the requirements of engineering performance, so as to reduce the cost of grouting materials.
- the mass ratio of component A to component B is 1:1
- the water-solid ratio refers to the mass ratio of water to the total mass of solid matter in component A or B.
- the fluidity test is carried out in accordance with the requirements of GB/T 8077-2000 "Test Method for Fluidity of Cement Slurry". Determination of setting time refers to GB/T 1346-2001 "Water consumption, setting time and stability test method for standard consistency of cement”. Because MPC coagulates too fast, the time interval between initial and final coagulation is relatively short, and only the final coagulation time is measured during the test. The pH value of the freshly mixed slurry was tested with a PHS-3E acidity meter.
- the size of the test block used for the compressive strength test is 40mm ⁇ 40mm ⁇ 160mm, and 3 samples are taken from each group for parallel tests.
- the water resistance (Wr n ) of the grouting material is characterized by comparing the strengths of the test blocks in air curing and water curing at the same age.
- the calculation formula is:
- Wrn is the water resistance coefficient of the specimen at n d
- f n is the compressive strength of the test block when it is immersed in water for n d
- F n is the compressive strength of the air curing test block at n d.
- slag powder can improve the particle gradation of the powder and improve the fluidity; but when the slag powder is excessive, the fluidity will be reduced; The reactivity is higher than that of magnesium oxide, and the addition of excessive slag powder will promote the early hydration reaction of MPC, and will also reduce the fluidity.
- the pH value of the freshly mixed slurry increased continuously with the increase of the slag powder content, from 6.15 in the Z1 group to 7.61 (the slag powder content was 40%), as shown in Table 1. This is because the slag powder contains more highly active calcium oxide, which has higher alkalinity and reactivity than magnesium oxide, which increases the pH value.
- the pH value of the new MPC slurry obtained in this experiment is close to neutral, more green and environmentally friendly, and is an environmentally friendly grouting material.
- phosphate content on the setting time and stone rate (HR) of the grouting fluid is shown in Fig. 5.
- the setting time was slightly shortened, from 6 min at 30% content (Z3-1 group) to 3.5 min at 10% (Z3-4 group).
- M/P value mass ratio of magnesium oxide to phosphate
- MPC grouting materials can realize the adjustable setting time of 2min-15min, which can meet the general needs of the project.
- the test method of stone rate in this test is different from the conventional test method, because MPC has a short coagulation time and high early strength. 0%, and the stone rate was 100%.
- the grouting material is injected into the water for testing, which is closer to the actual construction environment of the project.
- the test results are shown in Figures 4 and 5, and the measured stone rates are all greater than 100%. This shows that the grouting material prepared in this paper not only does not separate out water, but can also combine with the free water in the outside world, which is related to the rapid acid-base neutralization reaction and ultra-short coagulation time of MPC.
- Figures 6 and 7 show the effects of slag powder and phosphate content on the compressive strength of MPC pulp, respectively. It can be seen from the figure that the introduction of slag powder has a significant effect on the compressive strength, and the early strength (3h) decreases continuously with the addition of slag powder. Compared with the benchmark group Z1, the middle and late strength of the samples mixed with slag powder has been greatly improved (7d and 28d). For example, the 1d and 7d strengths of the Z1 group were 4.2 MPa and 4.4 MPa, respectively, while the Z2 group increased from 3.8 MPa to 8.6 MPa, a 126% increase in strength. When curing to 28d, the compressive strength of Z3 group was higher than that of other groups, reaching 14.4MPa.
- Slag powder When mixed into MPC-based grouting material, it can not only react quickly with phosphate, but also react in the high heat environment of MPC itself, which can improve the strength in the middle and late stages. Due to the addition of slag powder, the coagulation time of the slurry will be significantly shortened, resulting in rapid coagulation and hardening, resulting in insufficient and inhomogeneous crystal growth of the reaction product, and more internal pores, resulting in a reduction in early strength.
- the content of phosphate has an obvious effect on the compressive strength.
- the compressive strength of the test block increased; as the content decreased from 25% to 10%, the compressive strength gradually decreased, even lower than the benchmark group.
- the strength values of Z3-1, Z3-2, Z3, Z3-3 and Z3-4 were 13.0MPa, 14.6MPa, 14.4MPa, 8.0MPa and 6.6MPa, respectively.
- the results show that the M/P value has a great influence on the mechanical properties of MPC. For the slurry without mineral admixture, when the M/P value is in the range of 2.5/1 ⁇ 3.5 ⁇ 1, the best mechanical properties are obtained.
- the slag has latent hydraulic properties, which can continuously react, enhance the cementation performance of the MPC matrix, and improve the strength of the test block. From 7d to 28d soaking, the water resistance of the samples mixed with slag powder was obviously improved. For example, the Z3 group grew from 62.5% to 93.1%. However, after soaking for 28 days, the benchmark group without slag powder had the lowest water resistance coefficient, which was only 58.8%. It can be seen that the water resistance of the MPC matrix without the addition of modified materials is obviously insufficient, while the slag powder can significantly enhance the stability of MPC in the water-corrosion environment.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
Abstract
本发明涉及建筑材料技术领域,具体涉及一种磷酸镁水泥基双液注浆材料及其制备方法,包括配合使用的组分A和组分B,其中组分A包括10~40份氧化镁、10~40份矿渣粉、1~5份缓凝剂和水;组分B包括10~30份磷酸盐、20~40份粉煤灰、1~5份缓凝剂和水。本发明提供的磷酸镁水泥基双液注浆材料具有传统注浆材料无可比拟的优势:凝结时间短且能在2-15min内可控;可注性好,结石率超过100%;生态环保,浆液pH值近中性;早期强度高,3d抗压强度达5.1MPa,28d强度达14.6MPa;耐水性优,经改性后28d耐水系数超过90%。
Description
本发明涉及建筑材料技术领域,具体涉及一种磷酸镁水泥基双液注浆材料及其制备方法。
在地铁、隧道等地下工程的施工过程中,为防止涌水突泥、地表沉降、结构偏移等风险,采用注浆加固是一种较为有效的治理措施。注浆是指将配制好的注浆材料通过配套的注浆设备,采用相应的注浆工艺注入所需加固的部位。现今,适应于特定工程需求的注浆材料已成为研究热点。然而,传统注浆材料依然存在着各种适用性问题,如期刊论文《防膨胀软岩注浆材料试验及应用研究》[岩石力学与工程学报,2017,36(02):457-465]公开了一种硅酸盐水泥注浆材料,其具有凝结时间不可控、易堵管、浆体稳定性差,容易分层离析、固结率和强度低等问题;期刊论文《膨胀岩地区盾构壁后纤维注浆材料试验研究》[广西大学学报(自然科学版),2016,41(01):187-195]公开了一种水玻璃溶液类注浆材料,虽具有凝结时间可调、强度可控、无毒等优点,但存在抗水溶蚀性差、耐久性不好、成本高等问题;期刊论文《盾构法同步注浆材料的试验研究》[工程与建设,2015,29(04):519-521]公开了一类有机高分子化学类灌浆材料,虽然性能优于前两种,但其成本高,使用安全性差,还易造成环境污染,不适于盾构隧道施工。
磷酸镁水泥(MPC)作为一种类陶瓷型磷酸盐水泥,具有凝结快、超早强、收缩小、体积稳定性好、对环境污染小(浆液pH接近中性)等优点,被广泛应用于工程结构的修复与加固。有研究表明,往MPC中掺入粉煤灰、钢渣等工业副产品不仅可以降低成本,还能提高力学性能,改善早期水化硬化过程。再次基础上,发明人进一步改进了磷酸镁水泥类注浆材料的配方及制备方法,以其进一步提高相关性能。
发明内容
本发明要解决的技术问题是:提供一种具有较短且可控凝结时间、结石率高、耐水性优的磷酸镁水泥基双液注浆材料。
本发明解决上述技术问题的技术方案如下:
一种磷酸镁水泥基双液注浆材料,包括配合使用的组分A和组分B,其中:
组分A包括10~40份氧化镁、10~40份矿渣粉、1~5份缓凝剂和水;
组分B包括10~30份磷酸盐、20~40份粉煤灰、1~5份缓凝剂和水。上述份数均为质量份数。
进一步的,组分A包括20~40份氧化镁、20~40份矿渣粉、1~5份缓凝剂和水;组分B包括10~25份磷酸盐、20~35份粉煤灰、1~5份缓凝剂和水。
更进一步的,组分A包括20~30份氧化镁、20~30份矿渣粉、1~3份缓凝剂和水;组分B包括15~25份磷酸盐、25~35份粉煤灰、1~3份缓凝剂和水。
优选的,所述组分A中,水与总固体物料的质量比为0.1~0.3:1;所述组分B中,水与总固体物料的质量比为0.1~0.2:1。
优选的,所述缓凝剂可以选用本领域常用的缓凝剂,在本发明的一个优选例中,选用了硼砂与三聚磷酸钠的混合物;进一步的,所述缓凝剂为硼砂与三聚磷酸钠质量比为1:1的混合物。
所述矿渣粉为粒化高炉矿渣粉。
优选的,所述磷酸盐选自磷酸氢二铵、磷酸二氢铵、磷酸氢二钾、磷酸二氢钾、磷酸氢钙、磷酸二氢钙、磷酸氢二钠和磷酸二氢钠中的至少一种。
本发明的第二方面提供了一种如前文所述磷酸镁水泥基双液注浆材料的制备方法,包括如下步骤:
(1)照配比称取氧化镁、矿渣粉、缓凝剂,将粉料搅拌均匀,再计量份的水倒入粉料中,搅拌下形成组分A;
(2)按照配比称取磷酸盐、粉煤灰、缓凝剂,将粉料搅拌均匀,再计量份的水倒入粉料中,搅拌下形成组分B;
(3)将A与B两组分充分混合、搅拌,制得注浆材料。
优选的,所述步骤(1)和(2)中搅拌时间为1~10min。
优选的,所述步骤(3)中搅拌时间为10~100s。
本发明中化合物的中文命名与结构式有冲突的,以结构式为准;结构式有明显错误的除外。
本发明提供的磷酸镁水泥基双液注浆材料具有传统注浆材料无可比拟的优势:凝结时间短且能在2-15min内可控;可注性好,结石率超过100%;生态环保,浆液pH值近中性;早期强度高,3d抗压强度达5.1MPa,28d强度达14.6MPa;耐水性优,经改性后28d耐水系数超过90%。
图1为本发明具体实施方式提供的磷酸镁水泥基双液注浆材料的流程示意图;
图2为矿渣粉掺量对注浆材料流动度、pH值影响折线图;
图3为磷酸盐掺量对注浆材料流动度、pH值影响折线图;
图4为矿渣粉掺量对注浆材料凝结时间、结石率影响图折线图;
图5为磷酸盐掺量对注浆材料凝结时间、结石率影响折线图;
图6为矿渣粉掺量对注浆材料抗压强度影响柱形图;
图7为磷酸盐掺量对注浆材料抗压强度影响柱形图;
图8为矿渣粉掺量对注浆材料耐水性能影响柱形图;
图9为磷酸盐掺量对注浆材料耐水性能影响柱形图。
以下结合实例说明本发明,但不限制本发明。在本领域内,技术人员对本发明所做的简单替换或改进均属于本发明所保护的技术方案内。
试验原材料:
磷酸镁水泥:原料由工业级纯度的重烧氧化镁、磷酸二氢铵配制而成,其中,重烧氧化镁为呈棕黄色粉末。
粉煤灰:Ⅱ级粉煤灰。
矿渣粉:S95级矿渣粉。
重烧氧化镁、粉煤灰和矿渣粉的具体成分见表1:
表1
试验方法:
试验采取双液注浆方法制备注浆材料,首先按照配比称取氧化镁、矿渣粉、缓凝剂,将粉料搅拌均匀,再将所称取的水倒入粉料中,搅拌2min,形成组分A;按照配比称取磷酸盐、粉煤灰、缓凝剂,按照相同的步骤制得组分B;将A与B两组分充分混合,高速搅拌30s, 制得注浆材料;具体的组分A和组分B的配方见表2:
表2
搅拌均匀后立即测试新拌浆液的流动性、pH值、凝结时间、结石率等性能指标,然后迅速成模,硬化后的试样一部分置于温度为(20±5)℃,相对湿度为(60±10)%的空气环境中养护,用于测试力学性能;另一部分置于水中养护,通过测试强度研究耐水性能。
发明人分别设计了两组对比实验方案。方案①:固定组分B的配合比不变,改变组分A中矿渣粉的掺量比例,研究矿渣粉掺量对浆材新拌性能、力学性能的影响,确定满足双液注浆加固工程需求的最佳矿渣粉掺量;方案②:在确定矿渣粉最佳掺量的情况下,改变组分B中磷酸盐的比例,研究磷酸盐掺量对浆材各项性能影响。由于磷酸二氢铵的单价是几种原材料中最高的,应确保在满足工程性能需求的前提下寻求磷酸盐的最小掺量,降低注浆材料成本。试验中组分A与组分B质量比为1:1,水固比是指水与组分A或B中的固体物质总质量的质量比。
性能测试:
流动性测试按照GB/T 8077-2000《水泥净浆流动度试验方法》要求进行。凝结时间测定参照GB/T 1346-2001《水泥标准稠度用水量、凝结时间、安定性检验方法》。由于MPC凝结过快,初、终凝时间间隔比较短,试验过程中只测定终凝时间。采用PHS-3E型酸度计测试新拌浆液的pH值。
用注射器从新拌注浆液中抽取100ml浆体,将其快速注入装有100ml水的量筒中,静置3h,测试混合液的体积V
1。结石率(HR)计算公式如下:
参照GB/T 17671-1999《水泥胶砂强度检验方法》,抗压强度测试所用试块规格为40mm×40mm×160mm,每组取3个试样进行平行试验。
通过对比空气养护与水中养护试块的同龄期强度,表征注浆材料的耐水性能(Wr
n),其计算公式为:
式中,Wr
n为试件在n d时的耐水系数;f
n为试块在水中浸泡了n d时的抗压强度,F
n为空气养护试块在n d时的抗压强度。
测试结果及分析:
a.流动度与pH值
不同矿渣粉掺量注浆液的流动性与pH值试验结果见图2。由图可见,随着矿渣粉掺量增加,其流动度开始出现增长,从基准组Z1的292mm,增加到302mm(矿渣粉掺量为20%);当掺量超过20%时,其流动性出现下降,掺量为40%时降低到285mm。这是由于矿渣粉的颗粒分布与氧化镁不同,掺入适量的矿渣粉可以改善粉体的颗粒级配,提高流动度;但当矿渣粉过量时,则会降低流动度;同时,矿渣粉的反应活性比氧化镁高,掺入过量矿渣粉会促进MPC的早期水化反应,也会使得流动度下降。新拌浆液的pH值随着矿渣粉掺量的增加而不断提高,从Z1组的6.15升高到7.61(矿渣粉掺量为40%),如表1所示。这是因为,矿渣粉中含有较多的高活性氧化钙,具有比氧化镁更高的碱性与反应活性,使pH值升高。
不同磷酸盐掺量注浆液的流动度、pH值试验结果见图3。由图可见,磷酸盐的用量对流动性的影响显著:随着磷酸盐掺量从30%(Z3-1)减少到10%(Z3-4),注浆液的流动度从356mm降至256mm。这是因为磷酸盐是能溶于水的晶体颗粒,掺入磷酸盐可相应增加液相成分,提高流动性能。磷酸二氢铵作为一种显酸性的磷酸盐,降低掺量则会提高浆液的pH值。本试验中,当磷酸盐掺量从30%降低到10%时,pH值从6.00提高到7.56。
与传统水泥及水玻璃类注浆材料相比(pH值>12.0),本试验所得新型MPC浆液的pH值接近中性、更加绿色环保,是一种环境友好型的注浆材料。
b.凝结时间与结石率
矿渣粉掺量对注浆液凝结时间和结石率(HR)的影响如图4所示。在矿渣粉0%-40%掺量范围内,随着掺量增大,浆液的凝结时间持续缩短,由基准值Z1的13min降至Z5组的2min。这表明矿渣粉中的高活性组分能与磷酸盐快速反应,加速MPC早期水化进程。
磷酸盐掺量对注浆液凝结时间和结石率(HR)的影响如图5所示。在磷酸盐30%-10%掺量范围内,凝结时间出现了小幅度缩短,从30%掺量(Z3-1组)时6min缩短到10%(Z3-4组)时3.5min。有研究表明,M/P值(氧化镁与磷酸盐质量比)显著影响MPC的性能,M/P值减小,磷酸盐的比例增加则凝结时间延长。与传统注浆材料相比,MPC注浆材料可实现凝结时间2min-15min可调,满足工程一般需求。
本试验中结石率的测试方法不同于常规测试方法,因为MPC凝结时间短,早期强度高,如采用常规析水率、结石率测试方法,则每组MPC基注浆材料的析水率均为0%,结石率均为100%。利用本试验的测试方法,将注浆材料注入水中进行测试,更接近工程实际施工环境。试验结果如图4与图5所示,所测得的结石率均大于100%。这表明本文制备的注浆材料不仅不会析水,还能结合外界的自由水,这与MPC快速的酸碱中和反应、超短的凝结时间有关。随着矿渣粉掺量的增大,结石率出现了小幅度下降,由Z1组125.9%降低到Z5组对应的105.1%;随着磷酸盐掺量减少,结石率也出现小幅度下降,由120.0%(Z3-1组:30%磷酸盐)降低至112.1%(Z3-4组:10%磷酸盐)。这是由于矿渣粉掺量增加、磷酸盐掺量降低均会导致MPC中磷酸盐与氧化镁的反应总量下降,降低了体系结合自由水的能力。因此,相比传统注浆材料,MPC基注浆材料具有优异的可灌注性能。
c.抗压强度
图6与图7分别给出了矿渣粉与磷酸盐掺量对MPC浆材抗压强度的影响。由图可见,矿渣粉的引入对抗压强度有显著影响,早期强度(3h)随着矿渣粉的掺入不断降低。与基准组Z1相比,掺矿渣粉试样中后期强度有较大提高(7d与28d)。例如,Z1组的1d与7d强度分别为4.2MPa与4.4MPa,而Z2组由3.8MPa升至8.6MPa,强度增长126%。当养护至28d时,Z3组的抗压强度高于其他各组,达到14.4MPa。
由此可见,适量的矿渣粉会增强浆材的力学性能,当掺量超过20%时,力学性能出现下降。矿渣粉具有潜在水硬性,掺入到MPC基注浆材料时,它不仅可以与磷酸盐快速反应,同时自身也能在MPC高热环境中反应,起到提高中后期强度的作用。由于掺入矿渣粉,会显著缩短浆液凝结时间,使得凝结硬化迅速,导致反应产物结晶生长不充分、不均质,而且内部 孔隙较多,导致早期强度降低。
从图中可见,磷酸盐的掺量对抗压强度的影响规律明显。当磷酸盐掺量由30%降至25%时,试块抗压强度提高;随着掺量由25%降至10%,抗压强度逐渐降低,甚至低于基准组。在28d龄期时,Z3-1、Z3-2、Z3、Z3-3、Z3-4的强度值分别为13.0MPa、14.6MPa、14.4MPa、8.0MPa、6.6MPa。结果表明,M/P值对MPC的力学性能有较大影响,对于不掺矿物掺合料的浆材,当M/P值在2.5/1~3.5~1范围内时具有最佳力学性能。由此可见,在本试验的基于大掺量粉煤灰、矿渣粉的MPC注浆材料中,由于矿渣粉与磷酸盐发生反应,消耗一定量的磷酸盐,导致M/P值在1.2/1时达到最佳。
d.耐水性
与硅酸盐水泥不同,MPC长期浸泡在水中会出现反应产物的溶蚀,导致硬化浆体孔隙增大、结构疏松、强度下降。矿渣粉、磷酸盐对MPC基注浆材料耐水性能的影响分别见图8与图9。由图8可知,相较于掺矿渣粉的试样,基准组Z1具有较好的7d耐水性能(95.4%)。由于添加矿渣粉的试样凝结时间较短,早龄期时试样内部结构较疏松,晶体还未生长好。因此,浸泡在水中时7d耐水性较差。矿渣具有潜在水硬性,能够持续反应,增强MPC基体的胶结性能,提高试块强度。在浸泡7d到28d时间内,掺矿渣粉试样的耐水性均有明显提高。例如,Z3组从62.5%增长到93.1%。然而,在浸泡28d时,未掺矿渣粉的基准组却具有最低的耐水系数,仅为58.8%。可见,未添加改性材料的MPC基体耐水性明显不足,而矿渣粉可以显著增强MPC在水溶蚀环境中的稳定性。
由图9可知,随着磷酸盐掺量的下降(从30%到10%),7d耐水系数出现轻微降低,28d的指标则有所增长。磷酸盐掺量的下降会促使凝结时间缩短,较短的凝结硬化阶段会导致材料内部颗粒间反应不充分、孔隙较多,因此出现耐水性能在7d时降低。而较少的磷酸盐掺量也意味着未反应完全的磷酸盐较少,在长期浸泡过程中,析出的磷酸盐晶体较少,这对材料耐水性是有利的。因此,出现28d耐水性随磷酸盐掺量的降低而升高的现象。
以上所述的仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。
Claims (10)
- 一种磷酸镁水泥基双液注浆材料,其特征在于包括配合使用的组分A和组分B,其中:组分A包括10~40份氧化镁、10~40份矿渣粉、1~5份缓凝剂和水;组分B包括10~30份磷酸盐、20~40份粉煤灰、1~5份缓凝剂和水;上述份数均为质量份数。
- 如权利要求1所述的磷酸镁水泥基双液注浆材料,其特征在于,所述组分A包括20~40份氧化镁、20~40份矿渣粉、1~5份缓凝剂和水;组分B包括10~25份磷酸盐、20~35份粉煤灰、1~5份缓凝剂和水。
- 如权利要求2所述的磷酸镁水泥基双液注浆材料,其特征在于,组分A包括20~30份氧化镁、20~30份矿渣粉、1~3份缓凝剂和水;组分B包括15~25份磷酸盐、25~35份粉煤灰、1~3份缓凝剂和水。
- 如权利要求1所述的磷酸镁水泥基双液注浆材料,其特征在于,所述组分A中,水与总固体物料的质量比为0.1~0.3:1。
- 如权利要求1所述的磷酸镁水泥基双液注浆材料,其特征在于,所述组分B中,水与总固体物料的质量比为0.1~0.2:1。
- 如权利要求1所述的磷酸镁水泥基双液注浆材料,其特征在于,所述缓凝剂选用硼砂与三聚磷酸钠的混合物。
- 如权利要求1所述的磷酸镁水泥基双液注浆材料,其特征在于,所述磷酸盐选自磷酸氢二铵、磷酸二氢铵、磷酸氢二钾、磷酸二氢钾、磷酸氢钙、磷酸二氢钙、磷酸氢二钠和磷酸二氢钠中的至少一种。
- 一种制备如权利要求1~7任一项所述的磷酸镁水泥基双液注浆材料的方法,其特征在于包括如下步骤:(1)照配比称取氧化镁、矿渣粉、缓凝剂,将粉料搅拌均匀,再计量份的水倒入粉料中,搅拌下形成组分A;(2)按照配比称取磷酸盐、粉煤灰、缓凝剂,将粉料搅拌均匀,再计量份的水倒入粉料中,搅拌下形成组分B;(3)将A与B两组分充分混合、搅拌,制得注浆材料。
- 如权利要求8所述的制备方法,其特征在于,所述步骤(1)和(2)中搅拌时间为1~10min。
- 如权利要求8所述的制备方法,其特征在于,所述步骤(3)中搅拌时间为10~100s。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011117929.4 | 2020-10-19 | ||
CN202011117929.4A CN112174634A (zh) | 2020-10-19 | 2020-10-19 | 一种磷酸镁水泥基双液注浆材料及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022083382A1 true WO2022083382A1 (zh) | 2022-04-28 |
Family
ID=73950913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/119504 WO2022083382A1 (zh) | 2020-10-19 | 2021-09-22 | 一种磷酸镁水泥基双液注浆材料及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112174634A (zh) |
WO (1) | WO2022083382A1 (zh) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114956773A (zh) * | 2022-06-24 | 2022-08-30 | 福州大学 | 一种快硬早强的超高性能磷酸镁水泥基材料 |
CN115059482A (zh) * | 2022-06-02 | 2022-09-16 | 昆山市交通科技研究中心有限公司 | 一种富水砂层水泥高聚物高压旋喷注浆制备方法 |
CN115321788A (zh) * | 2022-09-09 | 2022-11-11 | 太原理工大学 | 一种淤泥快速固化剂及其制备方法和应用 |
CN115448687A (zh) * | 2022-10-18 | 2022-12-09 | 中铁第四勘察设计院集团有限公司 | 一种磷酸铵镁水泥基复合材料及其制备方法和应用 |
CN115524261A (zh) * | 2022-10-14 | 2022-12-27 | 山东科技大学 | 一种矿用耦合条件下岩层注浆堵水试验装置及方法 |
CN115893972A (zh) * | 2022-11-22 | 2023-04-04 | 中建材中研益科技有限公司 | 一种磷铝酸盐水泥基碳封存材料及其制备方法 |
CN116199488A (zh) * | 2023-01-10 | 2023-06-02 | 中国地质大学(武汉) | 一种磷石膏基超缓凝砂浆材料与应用 |
CN116285374A (zh) * | 2023-03-03 | 2023-06-23 | 北京大地高科地质勘查有限公司 | 一种针对煤层顶板水害的注浆材料的制备方法及注浆工艺 |
CN116283203A (zh) * | 2023-01-10 | 2023-06-23 | 河南省高新技术实业有限公司 | 一种氯氧镁水泥基复合材料及其制备方法 |
CN116789406A (zh) * | 2023-03-11 | 2023-09-22 | 南通大学 | 一种基于碳纳米管包覆粉煤灰改性水泥基的注浆材料及其制备方法 |
CN117069424A (zh) * | 2023-07-03 | 2023-11-17 | 广东粤海珠三角供水有限公司 | 一种预应力内衬混凝土及其制备方法和施工方法 |
CN117534409A (zh) * | 2023-11-21 | 2024-02-09 | 西南交通大学 | 一种单双液同体系注浆材料及其制备方法 |
CN118145953A (zh) * | 2024-05-06 | 2024-06-07 | 石家庄铁道大学 | 高强抗裂磷酸镁水泥砂浆及其制备方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112174634A (zh) * | 2020-10-19 | 2021-01-05 | 常州工学院 | 一种磷酸镁水泥基双液注浆材料及其制备方法 |
CN113666710A (zh) * | 2021-07-08 | 2021-11-19 | 山东大学 | 一种用于双液注浆的液态磷镁材料、装置及方法 |
CN113735549B (zh) * | 2021-09-03 | 2023-02-03 | 青岛理工大学 | 一种氯氧镁水泥基双液注浆材料及其制备方法 |
CN117185768B (zh) * | 2023-09-11 | 2024-04-12 | 中煤地质(湖南)环境科技有限责任公司 | 一种矿洞封堵材料及其制备方法和应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102643073A (zh) * | 2012-05-02 | 2012-08-22 | 河海大学 | 一种磷酸镁水泥灌浆料 |
CN104591570A (zh) * | 2014-12-31 | 2015-05-06 | 浙江工业大学 | 一种耐水性磷酸镁水泥及其应用 |
CN108558350A (zh) * | 2018-07-04 | 2018-09-21 | 山东创能机械科技有限公司 | 一种粉煤灰注浆材料及其制备方法 |
CN109928711A (zh) * | 2019-04-19 | 2019-06-25 | 辽宁科大中驰镁建材科技有限公司 | 一种镁质高强注浆修补料及制备方法与应用 |
CN111592328A (zh) * | 2020-06-15 | 2020-08-28 | 重庆安淮科技有限公司 | 一种双液态磷酸镁材料及其制备方法 |
CN112174634A (zh) * | 2020-10-19 | 2021-01-05 | 常州工学院 | 一种磷酸镁水泥基双液注浆材料及其制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014057949A (ja) * | 2012-09-14 | 2014-04-03 | Natoo Kenkyusho:Kk | 公害型廃石膏類の処理法ならびに無公害型石膏組成物 |
-
2020
- 2020-10-19 CN CN202011117929.4A patent/CN112174634A/zh active Pending
-
2021
- 2021-09-22 WO PCT/CN2021/119504 patent/WO2022083382A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102643073A (zh) * | 2012-05-02 | 2012-08-22 | 河海大学 | 一种磷酸镁水泥灌浆料 |
CN104591570A (zh) * | 2014-12-31 | 2015-05-06 | 浙江工业大学 | 一种耐水性磷酸镁水泥及其应用 |
CN108558350A (zh) * | 2018-07-04 | 2018-09-21 | 山东创能机械科技有限公司 | 一种粉煤灰注浆材料及其制备方法 |
CN109928711A (zh) * | 2019-04-19 | 2019-06-25 | 辽宁科大中驰镁建材科技有限公司 | 一种镁质高强注浆修补料及制备方法与应用 |
CN111592328A (zh) * | 2020-06-15 | 2020-08-28 | 重庆安淮科技有限公司 | 一种双液态磷酸镁材料及其制备方法 |
CN112174634A (zh) * | 2020-10-19 | 2021-01-05 | 常州工学院 | 一种磷酸镁水泥基双液注浆材料及其制备方法 |
Non-Patent Citations (4)
Title |
---|
DAI MIN, PEI LIQIAO: "Study on the Preparation and Performance of Double Component negative Temperature MPC Road Quick Repair Mortar", NEW BUILDING MATERIALS, no. 9, 31 December 2018 (2018-12-31), pages 21 - 24, XP055922814, ISSN: 1001-702X * |
JIANG YU; AHMAD MUHAMMAD RIAZ; CHEN BING: "Properties of magnesium phosphate cement containing steel slag powder", CONSTRUCTION AND BUILDING MATERIALS, ELSEVIER, NETHERLANDS, vol. 195, 1 January 1900 (1900-01-01), Netherlands , pages 140 - 147, XP085564231, ISSN: 0950-0618, DOI: 10.1016/j.conbuildmat.2018.11.085 * |
LI CHUNMEI, WANG PEIMING;WANG AN;YI ANHAI: "Effect of Admixtures on Properties of Magnesium Phosphate Cement and the Mechanism", CHINA CONCRETE = HUNNINGTU, CN, no. 1, 31 December 2015 (2015-12-31), CN , XP055922811, ISSN: 1002-3550, DOI: 10.3969/j.issn.1002-3550.2015.01.029 * |
MA, YUE; ZHOU, XINTAO; HUANG, JING; LUO, ZHONGQIU; FU, YIZONG; MU, WEIHONG; WANG, LUXING; SHAO, ZHOUJUN: "Research Status of Mineral Admixtures on Properties and Mechanism of Magnesium Phosphate Cement", THE CHINESE JOURNAL OF PROCESS ENGINEERING, vol. 21, no. 6, 28 July 2020 (2020-07-28), CN , pages 629 - 638, XP009536041, ISSN: 1009-606X * |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115059482A (zh) * | 2022-06-02 | 2022-09-16 | 昆山市交通科技研究中心有限公司 | 一种富水砂层水泥高聚物高压旋喷注浆制备方法 |
CN114956773A (zh) * | 2022-06-24 | 2022-08-30 | 福州大学 | 一种快硬早强的超高性能磷酸镁水泥基材料 |
CN115321788B (zh) * | 2022-09-09 | 2023-07-21 | 太原理工大学 | 一种淤泥快速固化剂及其制备方法和应用 |
CN115321788A (zh) * | 2022-09-09 | 2022-11-11 | 太原理工大学 | 一种淤泥快速固化剂及其制备方法和应用 |
CN115524261A (zh) * | 2022-10-14 | 2022-12-27 | 山东科技大学 | 一种矿用耦合条件下岩层注浆堵水试验装置及方法 |
CN115524261B (zh) * | 2022-10-14 | 2023-09-19 | 山东科技大学 | 一种矿用耦合条件下岩层注浆堵水试验装置及方法 |
CN115448687A (zh) * | 2022-10-18 | 2022-12-09 | 中铁第四勘察设计院集团有限公司 | 一种磷酸铵镁水泥基复合材料及其制备方法和应用 |
CN115448687B (zh) * | 2022-10-18 | 2023-08-04 | 中铁第四勘察设计院集团有限公司 | 一种磷酸铵镁水泥基复合材料及其制备方法和应用 |
CN115893972A (zh) * | 2022-11-22 | 2023-04-04 | 中建材中研益科技有限公司 | 一种磷铝酸盐水泥基碳封存材料及其制备方法 |
CN116283203A (zh) * | 2023-01-10 | 2023-06-23 | 河南省高新技术实业有限公司 | 一种氯氧镁水泥基复合材料及其制备方法 |
CN116199488A (zh) * | 2023-01-10 | 2023-06-02 | 中国地质大学(武汉) | 一种磷石膏基超缓凝砂浆材料与应用 |
CN116285374A (zh) * | 2023-03-03 | 2023-06-23 | 北京大地高科地质勘查有限公司 | 一种针对煤层顶板水害的注浆材料的制备方法及注浆工艺 |
CN116285374B (zh) * | 2023-03-03 | 2024-10-18 | 北京大地高科地质勘查有限公司 | 一种针对煤层顶板水害的注浆材料的制备方法及注浆工艺 |
CN116789406A (zh) * | 2023-03-11 | 2023-09-22 | 南通大学 | 一种基于碳纳米管包覆粉煤灰改性水泥基的注浆材料及其制备方法 |
CN117069424A (zh) * | 2023-07-03 | 2023-11-17 | 广东粤海珠三角供水有限公司 | 一种预应力内衬混凝土及其制备方法和施工方法 |
CN117069424B (zh) * | 2023-07-03 | 2024-06-11 | 广东粤海珠三角供水有限公司 | 一种预应力内衬混凝土及其制备方法和施工方法 |
CN117534409A (zh) * | 2023-11-21 | 2024-02-09 | 西南交通大学 | 一种单双液同体系注浆材料及其制备方法 |
CN117534409B (zh) * | 2023-11-21 | 2024-05-24 | 西南交通大学 | 一种单双液同体系注浆材料及其制备方法 |
CN118145953A (zh) * | 2024-05-06 | 2024-06-07 | 石家庄铁道大学 | 高强抗裂磷酸镁水泥砂浆及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112174634A (zh) | 2021-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022083382A1 (zh) | 一种磷酸镁水泥基双液注浆材料及其制备方法 | |
Qin et al. | Effects of metakaolin on properties and microstructure of magnesium phosphate cement | |
CN111533517B (zh) | 一种高速铁路混凝土轨道板用快速修补砂浆及其制备方法 | |
Wang et al. | Cementitious composites blending with high belite sulfoaluminate and medium-heat Portland cements for largescale 3D printing | |
CN108424073A (zh) | 一种高耐磨高强混凝土及其制备方法 | |
CN104961418B (zh) | 适用于低温环境的后张法预应力孔道压浆料及其制备方法 | |
CN108328977B (zh) | 一种混凝土修补材料 | |
CN109400043A (zh) | 一种碎石活性粉末混凝土 | |
Zhang et al. | Injectability analysis of seawater-mixed magnesium phosphate cement slurry applied to a sand layer | |
CN112048035A (zh) | 一种混凝土离析修复剂及其制备方法 | |
Ruan et al. | Effects of water purifying material waste on properties and hydration mechanism of magnesium phosphate cement-based grouting materials | |
Cui et al. | Early solidification process of the slurry with quicklime for fissure restoration of earthen sites | |
Li et al. | Corrosion resistance of magnesium phosphate cement under long-term immersion in different solutions | |
CN110128081A (zh) | 一种混凝土及其制备方法 | |
CN110615654A (zh) | 一种低温施工软土地基加固用固化材料及其应用方法 | |
Yunfen et al. | Influence of Redispersible Latex Powder on the Performance of Dry-Mixed Mortar. | |
Huo et al. | Retarding the setting time of alkali-activated slag paste by processing the alkali activator into pills and capsules | |
Zhang et al. | Characterization of Magnesium Potassium Phosphate Cement‐Based Grouting Material Blended with High Volume Industrial Wastes | |
Hung et al. | Performance of high-strength green strain-hardening cementitious composites incorporating CSA/CAC cements and GGBS | |
CN115231895A (zh) | 一种磷酸镁水泥基材料及其制备方法和在制备防水建筑材料中的应用 | |
Wang et al. | Mechanical Properties Improvement Mechanism of Silica Fume‐Modified Ultrafine Cement Used to Repair Pavement Microcracks | |
CN109437696B (zh) | 一种超缓凝混凝土及其制备方法 | |
Zhang et al. | Study on the effect of new type liquid accelerator on the performance of shotcrete | |
Bian et al. | Lightweight Aggregate Shotcrete: Part 1 | |
CN114804737B (zh) | 一种隧道用无水泥注浆材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21881801 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21881801 Country of ref document: EP Kind code of ref document: A1 |