WO2022082900A1 - 5000MPa级金刚线用盘条及其生产方法 - Google Patents

5000MPa级金刚线用盘条及其生产方法 Download PDF

Info

Publication number
WO2022082900A1
WO2022082900A1 PCT/CN2020/128268 CN2020128268W WO2022082900A1 WO 2022082900 A1 WO2022082900 A1 WO 2022082900A1 CN 2020128268 W CN2020128268 W CN 2020128268W WO 2022082900 A1 WO2022082900 A1 WO 2022082900A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire rod
wire
billet
remelting
ingot
Prior art date
Application number
PCT/CN2020/128268
Other languages
English (en)
French (fr)
Inventor
麻晗
沈奎
胡显军
王雷
Original Assignee
江苏省沙钢钢铁研究院有限公司
张家港荣盛特钢有限公司
江苏沙钢集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏省沙钢钢铁研究院有限公司, 张家港荣盛特钢有限公司, 江苏沙钢集团有限公司 filed Critical 江苏省沙钢钢铁研究院有限公司
Priority to KR1020237010960A priority Critical patent/KR20230059827A/ko
Priority to EP20958478.8A priority patent/EP4206346A4/en
Priority to JP2023521827A priority patent/JP2023544639A/ja
Priority to US18/247,741 priority patent/US20230416865A1/en
Publication of WO2022082900A1 publication Critical patent/WO2022082900A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/12Making spongy iron or liquid steel, by direct processes in electric furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/44Methods of heating in heat-treatment baths
    • C21D1/46Salt baths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/44Methods of heating in heat-treatment baths
    • C21D1/48Metal baths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5732Continuous furnaces for strip or wire with cooling of wires; of rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/04Refining by applying a vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/18Electroslag remelting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/20Arc remelting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/076Use of slags or fluxes as treating agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2261/00Machining or cutting being involved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of material preparation, and relates to a production method of a wire rod for 5000 MPa grade diamond wire, and a wire rod prepared by the production method.
  • Cutting steel wire also known as cutting wire, cutting steel wire, cutting wire, is a special wire used for segmentation, and also a special steel wire with a diameter of less than 0.20mm and a surface of galvanized copper. It is widely used as a consumable material in the fields of energy, aviation, equipment and utilities.
  • Diamond wire as a high-carbon cutting steel wire with fine diamond particles on the surface, is mainly used for cutting and shaping of materials such as solar silicon wafers, quartz materials, monocrystalline silicon, polycrystalline silicon, and diamond.
  • the diamond wire In order to reduce the loss of materials to be cut, such as silicon materials, during the cutting process, the diamond wire is developing in the direction of thinner diameter, longer continuous wire mileage and higher strength. Therefore, the production of raw materials for cutting wire such as high carbon steel wire rod
  • the requirements of the wire rod are becoming more and more stringent, that is, higher requirements are placed on the purity, uniformity of the structure, mechanical properties and drawing performance of the wire rod.
  • the wire rods that can be used to draw 5000MPa grade diamond wires are still in a blank state, that is to say, the existing wire rods cannot basically meet the basic requirements of diameter and continuous wire mileage. 5000MPa grade diamond wire.
  • the purpose of the present invention is to provide a wire rod and a production method thereof, which can be used for deep drawing to prepare a diamond wire bus bar of 5000MPa level, and meet the high requirements of the market for the diameter and wire breakage rate of the diamond wire. .
  • an embodiment of the present invention provides a method for producing a wire rod for deep drawing, especially a method for producing a wire rod for drawing a 5000MPa grade diamond wire, wherein the chemical composition of the wire rod is as follows:
  • the mass percentage meter includes: C: 1.01-1.10%, Si: 0.15-0.40%, Mn: 0.30-0.60%, Cr: 0.01-0.40%, and both of B: 0.0005-0.0020% and V: 0.01-0.09% Any one or two kinds of; the rest are Fe and inevitable impurities, wherein the impurities include Al ⁇ 0.003%, Ti ⁇ 0.0008%, S ⁇ 0.005%, P ⁇ 0.008%, O ⁇ 0.0010% and N ⁇ 0.0020%;
  • the production method includes the following steps,
  • Vacuum smelting use a vacuum smelting furnace to smelt molten steel in an atmosphere with a pressure below 10Pa in the furnace, and cast it into ingots;
  • Steel ingot remelting use either or both of electroslag remelting and vacuum consumable remelting to process the steel ingot to obtain a remelting ingot; wherein, electroslag remelting is carried out under a protective atmosphere, and the remelting of vacuum consumable remelting is carried out.
  • the melting speed is 3.0 ⁇ 3.5kg/min;
  • Billet making and grinding billet or forge the remelted ingot into billet, and grind the billet;
  • High-speed wire rolling Roll the billet into a wire rod, the rolling temperature is 1030-1060°C, and the final rolling temperature is 950-1020°C;
  • the wire rod is temperature-controlled and cooled on the Steyrmore cooling line.
  • the first to fourth fans are turned on and the air volume is 80% to 100%, and the rest of the fans are turned off.
  • an embodiment of the present invention provides a method for producing a wire rod for deep drawing, especially a method for producing a wire rod for drawing a 5000MPa grade diamond wire, the production method comprising the following steps:
  • Vacuum smelting according to any of C: 1.01-1.10%, Si: 0.15-0.40%, Mn: 0.30-0.60%, Cr: 0.01-0.40%, and B: 0.0005-0.0020% and V: 0.01-0.09%
  • One or two components are designed to mix alloying elements into molten iron, use a vacuum melting furnace to smelt molten steel in an atmosphere below 10Pa pressure in the furnace, and cast it into steel ingots;
  • Steel ingot remelting use either or both of electroslag remelting and vacuum consumable remelting to process the steel ingot to obtain a remelting ingot whose chemical composition is in addition to C, Si, Mn, Cr, and B and Either or both of V, the rest are Fe and inevitable impurities, impurity elements Al ⁇ 0.003%, Ti ⁇ 0.0008%, S ⁇ 0.005%, P ⁇ 0.008%, O ⁇ 0.0010% and N ⁇ 0.0020%; wherein, electroslag remelting is carried out under a protective atmosphere, and the remelting speed of vacuum consumable remelting is 3.0 to 3.5 kg/min;
  • Billet making and grinding billet or forge the remelted ingot into billet, and grind the billet;
  • High-speed wire rolling Roll the billet into a wire rod, the rolling temperature is 1030-1060°C, and the final rolling temperature is 950-1020°C;
  • the wire rod is temperature-controlled and cooled on the Steyrmore cooling line.
  • the first to fourth fans are turned on and the air volume is 80% to 100%, and the rest of the fans are turned off.
  • the pressure in the furnace is 5 Pa or less.
  • the casting temperature is 1580-1620°C.
  • the obtained remelting ingot is kept for more than 48 hours.
  • the remelted ingot is billeted or forged into a billet with a length of 9 to 16 m and a length of 145 mm ⁇ 145 mm.
  • the remelted ingot is blanked or forged at a temperature of 1130-1160°C.
  • the total depth of grinding on the surface of the billet is greater than or equal to 1.5 mm.
  • 16-mesh, 24-mesh, and 30-mesh grinding wheels are used to perform grinding treatment on the surface of the billet, and the grinding depths of each pass are respectively ⁇ 0.9mm, ⁇ 0.5mm, and ⁇ 0.1mm. , Corner grinding width ⁇ 5mm.
  • the steel billet is rolled into a wire rod with a diameter of ⁇ 4.5-5.5 mm.
  • the final rolling speed is 100-110 m/s.
  • the spinning temperature is 890-920°C.
  • the running speed of the inlet section of the roller table is 0.9-1.0 m/s.
  • a Jialing device is used to adjust the wind speed at the overlapping point to be 1.1 to 1.4 times the wind speed at the non-overlapping point.
  • the production method further includes a heat treatment process: salt bath heat treatment or lead bath heat treatment is performed on the wire rod after Steyrmore cooling, wherein the temperature in the isothermal phase transition stage is 520-560°C and the time is 20-80s .
  • the packing line and the wire rod are separated by a flexible wear-resistant material, and then an aging treatment is performed, wherein, when the room temperature is greater than or equal to 15°C, the aging treatment is performed.
  • the treatment time is ⁇ 10 days, and when the room temperature is less than 15°C, the aging treatment time is ⁇ 20 days.
  • an embodiment of the present invention provides a wire rod for deep drawing prepared by adopting the production method provided by any of the foregoing embodiments, especially a wire rod for drawing 5000MPa grade diamond wire, so
  • the chemical composition of the wire rod includes in terms of mass percentage: C: 1.01-1.10%, Si: 0.15-0.40%, Mn: 0.30-0.60%, Cr: 0.01-0.40%, and B: 0.0005-0.0020% and V: 0.01-0.09% of either or both of the two; the rest are Fe and inevitable impurities, wherein the impurities include Al ⁇ 0.003%, Ti ⁇ 0.0008%, S ⁇ 0.005%, P ⁇ 0.008%, O ⁇ 0.0010 % and N ⁇ 0.0020%.
  • the diameter of the wire rod is ⁇ 4.5-5.5mm.
  • the tensile strength of the wire rod is greater than or equal to 1320MPa, and the area shrinkage rate is greater than or equal to 30%.
  • the maximum inclusion size of the wire rod is less than or equal to 4 ⁇ m, and the reticulated carbide is less than or equal to grade 1.0.
  • the maximum inclusion size is ⁇ 4 ⁇ m, including the maximum transverse inclusion size ⁇ 4 ⁇ m and the longitudinal maximum inclusion size ⁇ 4 ⁇ m.
  • the detection ratio of reticulated carbides is less than or equal to 30%, and the central carbon segregation ratio is less than or equal to 1.03.
  • the surface crack depth of the wire rod is less than or equal to 30 ⁇ m
  • the depth of the decarburized layer is less than or equal to 40 ⁇ m
  • the proportion of the decarburized layer to the total circumference is less than or equal to 15%
  • the thickness of the surface oxide scale is 7-15 ⁇ m.
  • an embodiment of the present invention provides a wire rod for deep drawing, especially a wire rod for drawing 5000MPa grade diamond wire, and its chemical composition in mass percentage includes: C: 1.01 ⁇ 1.10%, Si: 0.15 ⁇ 0.40%, Mn: 0.30 ⁇ 0.60%, Cr: 0.01 ⁇ 0.40%, and either or both of B: 0.0005 ⁇ 0.0020% and V: 0.01 ⁇ 0.09%;
  • the rest are Fe and inevitable impurities, wherein the impurities include Al ⁇ 0.003%, Ti ⁇ 0.0008%, S ⁇ 0.005%, P ⁇ 0.008%, O ⁇ 0.0010% and N ⁇ 0.0020%;
  • the tensile strength of the wire rod is greater than or equal to 1320 MPa
  • the area shrinkage rate is greater than or equal to 30%
  • the maximum inclusion size is less than or equal to 4 ⁇ m
  • the network carbide is less than or equal to grade 1.0.
  • the beneficial effects of the present invention include:
  • the chemical composition in the material is It is finely controlled to ensure high purity, greatly reducing the generation of inclusions, and making the size of inclusions small; at the same time, through the grinding of the billet, the surface quality of the billet is optimized, and the surface pits and other defects of the billet are eliminated. carbon layer; then through the control of the rolling temperature in the high-wire rolling process, the billet is kept in the recrystallization zone for rolling, and the temperature-controlled cooling in the cooling process is combined to avoid the pearlite transformation process and the phase transformation process. The subsequent cooling rate is too fast to prevent the formation of martensitic structure due to insufficient phase transformation time, while reducing internal stress and optimizing the structure and properties, thereby enhancing the tensile strength and drawing performance of the wire rod;
  • the wire rod can be applied to the production of ultra-fine, low wire breakage and high-strength diamond wire bus bars. Thousand kilometers, tensile strength ⁇ 5000MPa, suitable for manufacturing diamond wire for silicon wafer cutting, far meeting the market demand for good drawing performance, low wire breakage rate and high-strength steel wire, filling the domestic and foreign diamond wire above 5000MPa Technical blank with wire rod.
  • the existing high-strength diamond wire wire rod technology needs to be improved, and cannot meet the increasingly high requirements of diamond wire for diameter, continuous wire mileage, and strength, especially suitable for industrial production of 5000 MPa
  • the wire rod of the grade diamond wire is still in a blank state, for this reason, the present invention aims to provide a wire rod for deep drawing and a production method thereof, especially a hypereutectoid steel wire rod that can be used for drawing and preparing the diamond wire
  • the wire rod has the advantages of high purity, good structure uniformity and ultra-high strength, and can be used for the production of 5000 MPa grade diamond wire with ultra-fine and low wire breaking rate.
  • This embodiment provides a wire rod for deep drawing, especially a wire rod for drawing a diamond wire of 5000 MPa grade.
  • the wire rod can be used to draw a diamond wire busbar of 5000MPa level, but it is not limited to this.
  • it can also be used to draw other steel wire products according to the actual production needs of the enterprise.
  • the chemical composition of the wire rod includes in mass percentage: C: 1.01-1.10%, Si: 0.15-0.40%, Mn: 0.30-0.60%, Cr: 0.01-0.40%, and B: 0.0005-0.0020% and V : 0.01 ⁇ 0.09% any one or two of the two; the rest are Fe and inevitable impurities, wherein the impurities include Al ⁇ 0.003%, Ti ⁇ 0.0008%, S ⁇ 0.005%, P ⁇ 0.008%, O ⁇ 0.0010% and N ⁇ 0.0020%.
  • the core idea is to increase the content of pearlite strengthening elements, especially the content of C element, and at the same time to ensure controllable structure and avoid the formation of high melting point inclusions.
  • C is the most important constituent element, C content can significantly affect the strength of steel and directly affect the structure of steel; in detail, on the one hand, the increase of C content will significantly improve the strength of steel; on the other hand, in common steel In the structure, the eutectoid structure formed by C participation can improve the strength and strain hardening rate of the steel. However, when the C content is too high, a pro-eutectoid network cementite structure will be formed, which will destroy the eutectoid structure.
  • the C content is 1.01 to 1.10%.
  • Si is a solid solution strengthening element, and can also be used to reduce the oxygen content in the steel; however, if the Si content is too high, it will reduce the plasticity of the steel, aggravate the decarburization tendency of the billet, and be unfavorable for the surface quality control of the wire rod; in the present invention, the Si content 0.15 to 0.40%.
  • Mn It is a solid solution strengthening element, which can improve the strength of the wire rod, and can also be combined with the harmful element S to reduce the hot brittleness of the wire rod; but when the Mn content is too high, the hardenability is enhanced, and it is easy after the high-wire rolling process.
  • Cr It can refine the pearlite structure (ie eutectoid structure), reduce the lamellar spacing of pearlite structure, thereby improving the strength of the wire rod; but similar to Mn, too high Cr content will improve the hardenability, and high After the wire rolling process, bainite or martensite that affects drawing is likely to appear, which in turn leads to poor plasticity and drawing performance of the wire rod; in the present invention, the Cr content is 0.01-0.40%.
  • the B element participates in the formation of fine carbonitrides in high carbon steel, which preferentially segregates at the austenite grain boundary, which is beneficial to hinder the formation of reticulated cementite structure; however, if the B content is too high, the grain boundary will be brittle. change, reduce the drawing performance of the wire rod;
  • the V element it is easy to form VC particles on the austenite grain boundaries in the early stage of transformation, which inhibits the growth of austenite grains during high-wire rolling, reduces the C content in the grain boundaries, and is beneficial to suppress the network cementite.
  • the V element will precipitate carbonitrides during the phase transformation, which is conducive to improving the strength of the wire rod; but when the V content is too high, quenching structure is likely to appear, which is not conducive to the control of the wire rod structure;
  • the chemical composition of the aforementioned wire rod includes B: 0.0005 ⁇ Any one or both of 0.0020% and V: 0.01-0.09%, that is, including the following three implementation situations: First, the chemical composition of the wire rod includes B: 0.0005-0.0020%, but does not contain V, using B element to form fine carbonitrides at the austenite grain boundaries to hinder the formation of reticulated cementite structure; second, the chemical composition of the wire rod does not contain B, but includes V: 0.01-0.09 %, using V element to form VC particles at the early stage of phase transformation, reducing the C content of grain boundaries to hinder the formation of reticulated cementite structure; third, more preferably, the chemical composition of the wire rod also includes B: 0.0005 ⁇ 0.0020% and V: 0.01 ⁇ 0.09%, on the one hand, the V element is used to form VC particles
  • Al It is a harmful element in the wire rod for deep drawing.
  • the combination of Al and O in the steel forms Al 2 O 3 inclusions with large size, easy agglomeration, high melting point and poor plasticity, which is the reason why the wire rod is drawn to prepare steel wire.
  • the Al content is within 0.003%.
  • Ti It is a harmful element in the wire rod for deep drawing. Ti is very easy to form large-sized Ti(C,N) inclusions with clear edges and corners with C and N, thereby causing stress concentration and micro-cracks. In the present invention, the Ti content within 0.0008%.
  • S, P, O, N belong to harmful impurity elements, the content is S ⁇ 0.005%, P ⁇ 0.008%, O ⁇ 0.0010%, N ⁇ 0.0020%.
  • the diameter of the wire rod is ⁇ 4.5-5.5mm, which can meet the requirements of drawing and preparing the steel wire next.
  • the tensile strength of the wire rod is greater than or equal to 1320 MPa, so that the tensile strength of the further prepared steel wire reaches more than 5000 MPa; and the wire rod has excellent drawing performance, and its section shrinkage rate is greater than or equal to 30%, Guaranteed low wire breakage rate during drawing.
  • the inner quality of the wire rod is excellent and the structure is uniform, the maximum inclusion size is ⁇ 4 ⁇ m, and the network carbide is ⁇ 1.0 grade, wherein the maximum inclusion size is ⁇ 4 ⁇ m, including the maximum lateral inclusion size ⁇ 4 ⁇ m And the largest inclusion size in the longitudinal direction is less than or equal to 4 ⁇ m.
  • the detection ratio of the network carbide is ⁇ 30%, and the central carbon segregation ratio is ⁇ 1.03.
  • the central carbon segregation ratio refers to the carbon content ratio between the most severe segregation region and the matrix position.
  • the surface crack depth of the wire rod is less than or equal to 30 ⁇ m
  • the depth of the decarburized layer is less than or equal to 40 ⁇ m
  • the proportion of the decarburized layer to the total circumference is less than or equal to 15%
  • the thickness of the surface oxide scale is 7-15 ⁇ m.
  • the wire rod of this embodiment has high purity, uniform structure, high mechanical properties and high drawing performance, and can be satisfied with the preparation of diamond wire.
  • the invented wire rod can produce steel wire with a diameter of 40-46 ⁇ m, a wire breakage rate of ⁇ 2 times/1000 km, and a tensile strength of ⁇ 5000MPa, which far meets the market demand for good drawing performance, low wire breakage rate and high-strength steel wire. need.
  • a method for producing the wire rod is provided.
  • the wire rod is sequentially performed through vacuum smelting ⁇ ingot remelting ⁇ billet making and grinding ⁇ high wire rolling ⁇ Prepared by cooling each process. That is, the production method includes the following steps,
  • Vacuum smelting according to any of C: 1.01-1.10%, Si: 0.15-0.40%, Mn: 0.30-0.60%, Cr: 0.01-0.40%, and B: 0.0005-0.0020% and V: 0.01-0.09%
  • One or two components are designed to mix alloying elements into molten iron, use a vacuum melting furnace to smelt molten steel in an atmosphere below 10Pa pressure in the furnace, and cast it into steel ingots;
  • Billet making and grinding billet or forge the remelted ingot into billet, and grind the billet;
  • High-speed wire rolling Roll the billet into a wire rod, the rolling temperature is 1030-1060°C, and the final rolling temperature is 950-1020°C;
  • the wire rod is temperature-controlled and cooled on the Steyrmore cooling line.
  • the first to fourth fans are turned on and the air volume is 80% to 100%, and the rest of the fans are turned off.
  • the chemical composition of the material can be finely controlled to ensure high purity and greatly reduce the generation of inclusions. And make the size of the inclusions small; at the same time, through the grinding of the billet, the surface quality of the billet is optimized, and the defects such as the surface pits and the decarburization layer of the billet are eliminated; Keep the billet in the recrystallization zone for rolling, and combine the temperature-controlled cooling in the cooling process to prevent the cooling rate during and after the pearlite transformation process from being too fast, and prevent the formation of martensitic martensitic due to insufficient transformation time. Body tissue, while reducing internal stress, optimizing tissue properties, thereby enhancing the tensile strength and drawing performance of the wire rod.
  • the raw and auxiliary materials used in the vacuum smelting process are high-quality raw and auxiliary materials with low impurity element content, for example, industrial pure materials with Al ⁇ 0.001%, Ti ⁇ 0.0005%, Cu ⁇ 0.001% and Ni ⁇ 0.001% Iron is used as the raw material, and alloying elements are added according to the composition design, that is, the molten iron mentioned above is the melting of industrial pure iron with Al ⁇ 0.001%, Ti ⁇ 0.0005%, Cu ⁇ 0.001% and Ni ⁇ 0.001%.
  • the impurity elements in the industrial pure iron which is the raw material of the molten iron, are preferably but not necessarily limited to the above-mentioned content, so that from the beginning of the molten steel smelting, the harmful elements can be less and the purity is higher, which is conducive to the fine control of subsequent inclusions.
  • molten steel is melted in a vacuum melting furnace in an atmosphere of 10 Pa or less pressure in the furnace, and cast into a steel ingot.
  • the pressure in the furnace below 10Pa, that is, maintaining a high degree of vacuum in the furnace, the influence of O and N elements in the air on the molten steel is avoided, and the content of O and N harmful elements in the molten steel is controlled to be low. More preferably, the pressure in the furnace is controlled to be less than 5Pa.
  • the casting temperature is 1580-1620°C, that is, when the molten steel temperature is heated to 1580-1620°C, the ingots are cast, and the casting speed is 300-1620°C. 400kg/min, thus, on the one hand, it can further ensure the purity of molten steel, and on the other hand, it can also ensure that the solute in the core of the ingot can be fully diffused and reduce the central segregation of the ingot.
  • electroslag remelting treatment is performed on the steel ingot obtained in the vacuum melting process under a protective atmosphere to obtain a remelting ingot.
  • the chemical composition of the remelting ingot is in addition to C, Si, Mn, Cr, and B and Either or both of V, the rest are Fe and inevitable impurities, impurity elements Al ⁇ 0.003%, Ti ⁇ 0.0008%, S ⁇ 0.005%, P ⁇ 0.008%, O ⁇ 0.0010% and N ⁇ 0.0020%.
  • the protective atmosphere can be an atmosphere composed of an inert gas. Replaced with inert gas, and then remelted the ingot.
  • the remelted ingot obtained in the steel ingot remelting process is billed or forged into a billet.
  • the billet is a billet with a length of 9-16m and 145mm ⁇ 145mm.
  • the size of the billet is not limited to This can be any industrially feasible size.
  • the remelted ingot is blanked or forged at a temperature of 1130-1160 °C, thereby further ensuring the temperature uniformity of the core and surface of the billet, which is beneficial to improve the uniformity of the structure.
  • the billet obtained in the billet making process is ground to optimize the surface quality of the billet, eliminate defects such as surface pits and decarburization layer of the billet, and then create a good foundation for the subsequent high wire rolling. .
  • the total depth of grinding on the surface of the billet is greater than or equal to 1.5 mm.
  • 16-mesh, 24-mesh, and 30-mesh grinding wheels are used to grind the surface of the billet in turn, and the grinding depths of each pass are respectively ⁇ 0.9mm, ⁇ 0.5mm, and ⁇ 0.1mm, that is, the 16-mesh grinding wheel pairs
  • the surface grinding depth of the billet is greater than or equal to 0.9mm
  • the surface grinding depth of the 24-mesh grinding wheel to the billet is greater than or equal to 0.5mm
  • the surface grinding depth of the 30-mesh grinding wheel to the billet is greater than or equal to 0.1mm.
  • the grinding width of the corners of the billet is ⁇ 5 mm.
  • the corners of the billets are obliquely ground.
  • the width of the inclined plane formed at the corners is the grinding width of the corners. In this way, through the grinding process, it is finally ensured that the surface of the billet is smooth and free of burrs.
  • the billet is rolled into a wire rod, the soaking temperature during heating before rolling is adjusted so that the rolling temperature is 1030-1060°C, and the temperature is controlled by water cooling during the rolling process.
  • the final rolling temperature is set at 950-1020 °C, thereby ensuring that the billet is basically kept in the recrystallization zone for rolling, so as to finely control the structure of the wire rod and avoid the structure of bainite, martensite and reticulated cementite. Appear.
  • the steel billet is rolled into a wire rod with a diameter of ⁇ 4.5-5.5 mm, that is, the diameter of the wire rod finally obtained based on the production method of this embodiment is ⁇ 4.5 ⁇ 5.5mm, which can then meet the requirements of the subsequent drawing and preparation of steel wires.
  • the final rolling rate is 100-110 m/s to further ensure that the billet is basically kept in the recrystallization zone for rolling, and the spinning temperature is 890-920 °C to further finely control Wire rod organization, and facilitates temperature control for subsequent air-cooled cooling.
  • the wire rod is temperature-controlled and cooled on the Steyrmore cooling line, the first to fourth fans are turned on and the air volume is 80% to 100%, and the rest of the fans are turned off, that is, the Steyrmore fan is used.
  • Cold cooling technology for temperature-controlled cooling.
  • the cooling system of the present invention can prevent the cooling rate during and after the pearlite transformation process from being too fast, prevent the formation of martensite structure due to insufficient transformation time, reduce internal stress, optimize the structure and properties, and further enhance the Tensile strength and pull-out properties of wire rods.
  • all the heat preservation covers on the Steyrmore cooling line are opened, that is, air cooling is performed on the roller table sections corresponding to the first four fans, and the roller tables corresponding to the remaining fans after All sections are naturally cooled.
  • the running speed of the entry section of the roller table is 0.9-1.0 m/s
  • the running speed ratio of the roller table corresponding to the first to fourth fans is 1.10:1.05:1.02:1.00, and the rest of the fans are The corresponding roller table running speed ratio is 0.8:1.00 ⁇ 1.05:1.00.
  • the Jialing device is used to adjust the wind speed of the lap joint to be 1.1 to 1.4 times the wind speed of the non-lap joint to ensure that the cooling speed of the lap joint and the non-lap joint is balanced, so as to further obtain uniform cooling. organizational performance.
  • the wire rod prepared by the production method can be packed by a packing line, and the packing line and the wire rod are separated by a flexible wear-resistant material, so as to avoid the packing line from scratching the wire rod during transportation, reverse transportation and storage. ; Then carry out aging treatment, wherein, when the room temperature is greater than or equal to 15°C, the aging treatment time is greater than or equal to 10 days, and when the room temperature is less than 15°C, the aging treatment time is greater than or equal to 20 days.
  • the wire rod can be applied to the production of ultra-fine, low wire breakage and high-strength diamond wire steel wires, and the diameter of the diamond wire prepared by drawing can be 40-46 ⁇ m, and the wire breaking rate is ⁇ 2 times/ Thousand kilometers, tensile strength ⁇ 5000MPa, suitable for manufacturing diamond wire for silicon wafer cutting, far meeting the market demand for good drawing performance, low wire breakage rate and high-strength steel wire, filling the domestic and foreign diamond wire above 5000MPa Technical blank with wire rod.
  • This embodiment also provides a wire rod for deep drawing, especially a wire rod for drawing 5000MPa grade diamond wire, and a production method of the wire rod.
  • the difference between this embodiment and the aforementioned first embodiment is only in the remelting process of the steel ingot in the production method, and other technologies are the same as the aforementioned first embodiment. In the following, only the differences between this embodiment and the foregoing first embodiment will be introduced, and the rest of the same parts will not be repeated.
  • the step (2) steel ingot remelting step of the production method is specifically as follows.
  • vacuum consumable remelting is used to process the steel ingot, and the remelting speed is 3.0-3.5 kg/min to obtain a remelting ingot.
  • the rest are Fe and inevitable impurities, impurity elements Al ⁇ 0.003%, Ti ⁇ 0.0008%, S ⁇ 0.005%, P ⁇ 0.008%, O ⁇ 0.0010% and N ⁇ 0.0020%.
  • the strict control of impurity elements (that is, harmful elements) in the material is realized, thereby ensuring high purity and greatly reducing the generation of inclusions. And make the size of the inclusions small, and also control the type of inclusions, so that the chemical composition is uniform.
  • the vacuum consumable remelting is performed using the steel ingot obtained in the vacuum melting process as an electrode.
  • the obtained remelting ingot is kept for more than 48 hours, thereby further reducing stress cracks on the surface and core of the remelting ingot.
  • vacuum consumable remelting is used in the steel ingot remelting process instead of the electroslag remelting in the first embodiment, except that it is the same as the first embodiment. Therefore, this embodiment also has the beneficial effects of the aforementioned first embodiment, which will not be repeated.
  • This embodiment also provides a wire rod for deep drawing, especially a wire rod for drawing 5000MPa grade diamond wire, and a production method of the wire rod.
  • the difference between this embodiment and the aforementioned first embodiment is only in the remelting process of the steel ingot in the production method, and other technologies are the same as the aforementioned first embodiment. In the following, only the differences between this embodiment and the foregoing first embodiment will be introduced, and the rest of the same parts will not be repeated.
  • the step (2) steel ingot remelting step of the production method is specifically as follows.
  • the steel ingot obtained in the vacuum smelting process is first subjected to electroslag remelting treatment under a protective atmosphere; then the remelting ingot obtained by electroslag remelting is used as an electrode, and vacuum consumable remelting is used for processing, and remelting is carried out.
  • Melting speed is 3.0 ⁇ 3.5kg/min, obtains remelting ingot, the chemical composition of this remelting ingot is except C, Si, Mn, Cr, and any one or two in B and V, the rest are Fe and Inevitable impurities, impurity elements Al ⁇ 0.003%, Ti ⁇ 0.0008%, S ⁇ 0.005%, P ⁇ 0.008%, O ⁇ 0.0010% and N ⁇ 0.0020%.
  • the obtained remelting ingot is kept for more than 48 hours, thereby further reducing the surface and core of the remelting ingot. stress cracks.
  • the electroslag remelting process in this embodiment is the same as that of the first embodiment.
  • vacuum consumable remelting is further increased, so that impurity elements (that is, harmful elements) can be further finely controlled. elements), further ensuring purity and inclusions.
  • this embodiment also has the beneficial effects of the aforementioned first embodiment, which will not be repeated.
  • vacuum consumable remelting and electroslag remelting can be interchanged, that is, vacuum consumable remelting is performed first, and then electroslag remelting is performed.
  • This embodiment also provides a wire rod for deep drawing, especially a wire rod for drawing 5000MPa grade diamond wire, and a production method of the wire rod.
  • the only difference between this embodiment and the aforementioned first, second, and third embodiments is that the production method further includes adding a heat treatment process after the cooling process, and other technologies are the same as the aforementioned
  • the first embodiment, the second embodiment, and the third embodiment are the same. In the following, only the above differences will be introduced, and the remaining identical parts will not be repeated.
  • the production method further includes the following steps.
  • Salt-bath heat treatment or lead-bath heat treatment is performed on the wire rod after Steyrmore cooling, wherein the temperature in the isothermal phase transition stage is 520-560° C. and the time is 20-80 s.
  • the structure properties of the wire rod obtained in this embodiment are more uniform, and the drawing performance and tensile strength are stronger.
  • Example 1 provides a wire rod with a diameter of ⁇ 5.5mm, the chemical composition of which includes, in terms of mass percentage, C: 1.01%, Si: 0.30%, Mn: 0.60%, Cr: 0.40%, B: 0.0013%, V : 0.09%, the rest are Fe and inevitable impurities, wherein the impurities include Al: 0.001%, Ti: 0.0006%, S: 0.003%, P: 0.006%, O: 0.0008% and N: 0.0012%.
  • 12 samples include 6 longitudinal section samples and 6 cross section samples, as shown in Table 1, after grinding and polishing, observe and measure the maximum surface of each sample with a metallographic microscope Crack depth, oxide skin thickness, transverse maximum inclusion size (abbreviated as transverse inclusion size in the table), longitudinal maximum inclusion size (abbreviated as longitudinal inclusion size in the table) and reticulated carbide grade (abbreviated as mesh carbon grade in the table ), use an electron probe to detect and analyze the carbon segregation ratio of the center, and observe the maximum decarburized layer depth and the ratio of the decarburized layer to the total circumference (abbreviated as decarburization ratio in the table) after corroding each sample.
  • Table 1 after grinding and polishing, observe and measure the maximum surface of each sample with a metallographic microscope Crack depth, oxide skin thickness, transverse maximum inclusion size (abbreviated as transverse inclusion size in the table), longitudinal maximum inclusion size (abbreviated as longitudinal inclusion size in the table) and reticulated carbide grade (abbreviated as
  • the wire rod of this embodiment has high purity, uniform structure, high tensile strength and good drawing performance, and can meet the high requirements of the market for wire rods for deep drawing; further, with this embodiment
  • the wire rod is used as the base material, and the existing diamond wire preparation process is used to prepare the diamond wire bus bar for silicon wafer cutting.
  • the obtained diamond wire has a tensile strength of 5300 MPa, a diameter of 46 ⁇ m, and a wire breakage rate of approximately 1.2 times/1,000 km. far ahead of existing technology.
  • Embodiment 2 provides a wire rod with a diameter of ⁇ 5.0mm, the chemical composition of which includes, in terms of mass percentage, C: 1.03%, Si: 0.18%, Mn: 0.58%, Cr: 0.36%, B: 0.002%, and the rest It is Fe and inevitable impurities, wherein the impurities include Al: 0.001%, Ti: 0.0005%, S: 0.002%, P: 0.004%, O: 0.001% and N: 0.0013%.
  • 12 samples include 6 longitudinal section samples and 6 cross section samples, as shown in Table 2, after grinding and polishing, observe and measure the maximum surface of each sample with a metallographic microscope Crack depth, oxide skin thickness, transverse maximum inclusion size (abbreviated as transverse inclusion size in the table), longitudinal maximum inclusion size (abbreviated as longitudinal inclusion size in the table) and reticulated carbide grade (abbreviated as mesh carbon grade in the table ), use an electron probe to detect and analyze the carbon segregation ratio of the center, and observe the maximum decarburized layer depth and the ratio of the decarburized layer to the total circumference (abbreviated as decarburization ratio in the table) after corroding each sample.
  • transverse maximum inclusion size abbreviated as transverse inclusion size in the table
  • longitudinal maximum inclusion size abbreviated as longitudinal inclusion size in the table
  • reticulated carbide grade abbreviated as mesh carbon grade in the table
  • the wire rod of this embodiment has high purity, uniform structure, high tensile strength and good drawing performance, and can meet the high requirements of the market for wire rods for deep drawing; further, with this embodiment
  • the wire rod is used as the base material, and the existing diamond wire preparation process is used to prepare a diamond wire bus bar for silicon wafer cutting.
  • the obtained diamond wire has a tensile strength of 5500 MPa, a diameter of 45 ⁇ m, and a wire breakage rate of approximately 1.5 times/1,000 km. , far ahead of the existing technology.
  • Embodiment 3 provides a wire rod with a diameter of ⁇ 5.5mm, the chemical composition of which includes, in terms of mass percentage, C: 1.03%, Si: 0.20%, Mn: 0.55%, Cr: 0.22%, V: 0.06%, and the rest It is Fe and inevitable impurities, wherein the impurities include Al: 0.002%, Ti: 0.0006%, S: 0.002%, P: 0.006%, O: 0.0006% and N: 0.0008%.
  • 12 samples include 6 longitudinal section samples and 6 cross section samples, as shown in Table 3, after grinding and polishing, observe and measure the maximum surface of each sample with a metallographic microscope Crack depth, oxide skin thickness, transverse maximum inclusion size (abbreviated as transverse inclusion size in the table), longitudinal maximum inclusion size (abbreviated as longitudinal inclusion size in the table) and reticulated carbide grade (abbreviated as mesh carbon grade in the table ), use an electron probe to detect and analyze the carbon segregation ratio of the center, and observe the maximum decarburized layer depth and the ratio of the decarburized layer to the total circumference (abbreviated as decarburization ratio in the table) after corroding each sample.
  • transverse maximum inclusion size abbreviated as transverse inclusion size in the table
  • longitudinal maximum inclusion size abbreviated as longitudinal inclusion size in the table
  • reticulated carbide grade abbreviated as mesh carbon grade in the table
  • the wire rod of this embodiment has high purity, uniform structure, high tensile strength and good drawing performance, and can meet the high requirements of the market for wire rods for deep drawing; further, with this embodiment
  • the wire rod is used as the base material, and the existing diamond wire preparation process is used to prepare a diamond wire bus bar for silicon wafer cutting.
  • the obtained diamond wire has a tensile strength of 5500 MPa, a diameter of 45 ⁇ m, and a wire breakage rate of approximately 1.6 times/1,000 km. , far ahead of the existing technology.
  • Embodiment 4 provides a wire rod with a diameter of ⁇ 4.5mm, the chemical composition of which includes, in terms of mass percentage, C: 1.05%, Si: 0.16%, Mn: 0.55%, Cr: 0.01%, B: 0.0005%, V : 0.04%, the rest are Fe and inevitable impurities, wherein the impurities include Al: 0.002%, Ti: 0.0003%, S: 0.001%, P: 0.003%, O: 0.0003% and N: 0.0009%.
  • 12 samples include 6 longitudinal section samples and 6 cross section samples, as shown in Table 4, after grinding and polishing, observe and measure the maximum surface of each sample with a metallographic microscope Crack depth, oxide skin thickness, transverse maximum inclusion size (abbreviated as transverse inclusion size in the table), longitudinal maximum inclusion size (abbreviated as longitudinal inclusion size in the table) and reticulated carbide grade (abbreviated as mesh carbon grade in the table ), use an electron probe to detect and analyze the carbon segregation ratio of the center, and observe the maximum decarburized layer depth and the ratio of the decarburized layer to the total circumference (abbreviated as decarburization ratio in the table) after corroding each sample.
  • transverse maximum inclusion size abbreviated as transverse inclusion size in the table
  • longitudinal maximum inclusion size abbreviated as longitudinal inclusion size in the table
  • reticulated carbide grade abbreviated as mesh carbon grade in the table
  • the wire rod of this embodiment has high purity, uniform structure, high tensile strength and good drawing performance, and can meet the high requirements of the market for wire rods for deep drawing; further, with this embodiment
  • the wire rod is used as the base material, and the existing diamond wire preparation process is used to prepare a diamond wire bus bar for silicon wafer cutting.
  • the obtained diamond wire has a tensile strength of 5500 MPa, a diameter of 40 ⁇ m, and a wire breakage rate of approximately 1.8 times/1,000 km. , far ahead of the existing technology.
  • Embodiment 5 provides a wire rod with a diameter of ⁇ 5.5mm, the chemical composition of which includes, in terms of mass percentage, C: 1.05%, Si: 0.22%, Mn: 0.45%, Cr: 0.19%, B: 0.001%, and the rest It is Fe and inevitable impurities, wherein the impurities include Al: 0.001%, Ti: 0.0002%, S: 0.003%, P: 0.004%, O: 0.0005% and N: 0.001%.
  • 12 samples include 6 longitudinal section samples and 6 cross section samples, as shown in Table 5, after grinding and polishing, observe and measure the maximum surface of each sample with a metallographic microscope Crack depth, oxide skin thickness, transverse maximum inclusion size (abbreviated as transverse inclusion size in the table), longitudinal maximum inclusion size (abbreviated as longitudinal inclusion size in the table) and reticulated carbide grade (abbreviated as mesh carbon grade in the table ), use an electron probe to detect and analyze the carbon segregation ratio of the center, and observe the maximum decarburized layer depth and the ratio of the decarburized layer to the total circumference (abbreviated as decarburization ratio in the table) after corroding each sample.
  • transverse maximum inclusion size abbreviated as transverse inclusion size in the table
  • longitudinal maximum inclusion size abbreviated as longitudinal inclusion size in the table
  • reticulated carbide grade abbreviated as mesh carbon grade in the table
  • the wire rod of this embodiment has high purity, uniform structure, high tensile strength and good drawing performance, and can meet the high requirements of the market for wire rods for deep drawing; further, with this embodiment
  • the wire rod is used as the base material, and the existing diamond wire preparation process is used to prepare a diamond wire bus bar for silicon wafer cutting.
  • the obtained diamond wire has a tensile strength of 6100 MPa, a diameter of 40 ⁇ m, and a wire breakage rate of approximately 1.9 times/1,000 km. , far ahead of the existing technology.
  • Embodiment 6 provides a wire rod with a diameter of ⁇ 5.0mm, the chemical composition of which includes, in terms of mass percentage, C: 1.08%, Si: 0.25%, Mn: 0.32%, Cr: 0.18%, V: 0.01%, and the rest It is Fe and inevitable impurities, wherein the impurities include Al: 0.001%, Ti: 0.0005%, S: 0.001%, P: 0.003%, O: 0.0004% and N: 0.0006%.
  • 12 samples include 6 longitudinal section samples and 6 cross section samples, as shown in Table 6, after grinding and polishing, observe and measure the maximum surface of each sample with a metallographic microscope Crack depth, oxide skin thickness, transverse maximum inclusion size (abbreviated as transverse inclusion size in the table), longitudinal maximum inclusion size (abbreviated as longitudinal inclusion size in the table) and reticulated carbide grade (abbreviated as mesh carbon grade in the table ), use an electron probe to detect and analyze the carbon segregation ratio of the center, and observe the maximum decarburized layer depth and the ratio of the decarburized layer to the total circumference (abbreviated as decarburization ratio in the table) after corroding each sample.
  • transverse maximum inclusion size abbreviated as transverse inclusion size in the table
  • longitudinal maximum inclusion size abbreviated as longitudinal inclusion size in the table
  • reticulated carbide grade abbreviated as mesh carbon grade in the table
  • the wire rod of this embodiment has high purity, uniform structure, high tensile strength and good drawing performance, and can meet the high requirements of the market for wire rods for deep drawing; further, with this embodiment
  • the wire rod is used as the base material, and the existing diamond wire preparation process is used to prepare a diamond wire bus bar for silicon wafer cutting.
  • the obtained diamond wire has a tensile strength of 6400 MPa, a diameter of 45 ⁇ m, and a wire breakage rate of approximately 1.9 times/1,000 km. , far ahead of the existing technology.
  • Embodiment 7 provides a wire rod with a diameter of ⁇ 5.5mm, the chemical composition of which includes, in terms of mass percentage, C: 1.10%, Si: 0.16%, Mn: 0.30%, Cr: 0.15%, V: 0.05%, and the rest It is Fe and inevitable impurities, wherein the impurities include Al: 0.001%, Ti: 0.0002%, S: 0.002%, P: 0.003%, O: 0.0002% and N: 0.0009%.
  • 12 samples include 6 longitudinal section samples and 6 cross section samples, as shown in Table 7, after grinding and polishing, observe and measure the maximum surface of each sample with a metallographic microscope Crack depth, oxide skin thickness, transverse maximum inclusion size (abbreviated as transverse inclusion size in the table), longitudinal maximum inclusion size (abbreviated as longitudinal inclusion size in the table) and reticulated carbide grade (abbreviated as mesh carbon grade in the table ), use an electron probe to detect and analyze the carbon segregation ratio of the center, and observe the maximum decarburized layer depth and the ratio of the decarburized layer to the total circumference (abbreviated as decarburization ratio in the table) after corroding each sample.
  • transverse maximum inclusion size abbreviated as transverse inclusion size in the table
  • longitudinal maximum inclusion size abbreviated as longitudinal inclusion size in the table
  • reticulated carbide grade abbreviated as mesh carbon grade in the table
  • the wire rod of this embodiment has high purity, uniform structure, high tensile strength and good drawing performance, and can meet the high requirements of the market for wire rods for deep drawing; further, with this embodiment
  • the wire rod is used as the base material, and the existing diamond wire preparation process is used to prepare the diamond wire bus bar for silicon wafer cutting.
  • the obtained diamond wire has a tensile strength of 6000MPa, a diameter of 46 ⁇ m, and a wire breakage rate of approximately 2.0 times/1000. km, far ahead of the existing technology.
  • This embodiment 8 provides a production method of the wire rod of embodiment 1, and the production method specifically includes the following steps.
  • composition design is to mix alloy elements into molten iron, and keep the furnace pressure of the vacuum melting furnace at 5Pa, so as to make molten steel.
  • the temperature of the refined molten steel is heated to 1580-1600° C., it is protected and cast into an ingot in an inert gas atmosphere, and the casting speed is 370 kg/min.
  • electroslag remelting is carried out on the steel ingot obtained in the vacuum smelting process in an inert gas atmosphere; then the remelting ingot obtained by electroslag remelting is used as an electrode, and vacuum consumable remelting is used for processing, and the remelting speed is 3.2kg/min , to obtain a remelted ingot; after that, the obtained remelted ingot was kept for 60 hours.
  • the chemical composition of the obtained remelted ingot includes, in terms of mass percentage, C: 1.01%, Si: 0.30%, Mn: 0.60%, Cr: 0.40%, B: 0.0013%, V: 0.09%, and the rest are Fe and Inevitable impurities, among which impurities include Al: 0.001%, Ti: 0.0006%, S: 0.003%, P: 0.006%, O: 0.0008% and N: 0.0012%.
  • the remelted ingot obtained in the steel ingot remelting process is forged at a temperature of 1150 ° C into a billet billet with a length of 12m and 145mm ⁇ 145mm; after that, 16 mesh, 24 mesh and 30 mesh grinding wheels are used in turn to grind the surface of the billet.
  • the surface grinding depth of the 16-mesh grinding wheel to the billet is about 1mm
  • the surface grinding depth of the 24-mesh grinding wheel to the billet is about 0.6mm
  • the surface grinding depth of the 30-mesh grinding wheel to the billet is about 0.2mm.
  • the total grinding depth is approximately 1.8mm (the total grinding depth on the opposite sides is approximately 3.6mm)
  • the corner grinding width is 6mm
  • the surface of the steel billet after grinding is smooth and free of burrs.
  • the ground billets are transported to the high wire and rolled into wire rods with a diameter of ⁇ 5.5mm.
  • the rolling temperature is 1030-1050 °C, and the rolling process is cooled by water.
  • the final rolling temperature is 980-1020°C, thereby ensuring that the steel billet is basically kept in the recrystallization zone for rolling.
  • the final rolling speed is 105m/s, and the spinning temperature is 890-910°C.
  • the wire rod is temperature-controlled and cooled on the Steyrmore cooling line.
  • the 1st to 4th fans are turned on and the air volume is 100%, 100%, 100%, and 90% in turn.
  • the rest of the fans are turned off, and the Steyrmore cooling line
  • the thermal insulation cover is all open.
  • the running speed of the entry section of the roller table is 0.9m/s
  • the running speed ratio of the roller table corresponding to the first to fourth fans is 1.10:1.05:1.02:1.00
  • the roller table corresponding to the other fans is running.
  • the speed ratio is 0.8:1.00 ⁇ 1.05:1.00.
  • the Jialing device is used to adjust the wind speed of the lap joint to be 1.25 times the wind speed of the non-lap joint to ensure the cooling speed of the lap joint and the non-lap joint is balanced.
  • the wire rod of embodiment 1 can be obtained.
  • the coiled wire rods are packed with a packing line, and the packing line and the wire rods are separated by linen cloth, and are packed in a full-packing manner;
  • the aging treatment time is 12 days, and then it is sent to the user for drawing and preparing the steel wire; among them, in the process of transportation and reverse transportation, a rubber pad is adopted to avoid scratches on the wire rod.
  • This embodiment 9 provides a production method of the wire rod of embodiment 2, and the production method specifically includes the following steps.
  • the temperature of the refined molten steel is heated to 1600-1620° C., it is protected and cast into an ingot in an inert gas atmosphere, and the casting speed is 360 kg/min.
  • the steel ingot obtained in the vacuum smelting process was used as an electrode, and vacuum consumable remelting was used for processing, and the remelting speed was 3.5 kg/min to obtain a remelting ingot; after that, the obtained remelting ingot was kept warm for 72 hours, and then subjected to windproof stack cooling.
  • the chemical composition of the remelted ingot obtained by mass percentage includes: C: 1.03%, Si: 0.18%, Mn: 0.58%, Cr: 0.36%, B: 0.002%, and the rest are Fe and inevitable impurities,
  • the impurities include Al: 0.001%, Ti: 0.0005%, S: 0.002%, P: 0.004%, O: 0.001% and N: 0.0013%.
  • the remelted ingot obtained in the steel ingot remelting process was forged at a temperature of 1130°C into a billet billet with a length of 13m and 145mm ⁇ 145mm; after that, 16 mesh, 24 mesh and 30 mesh grinding wheels were used in turn to grind the surface of the billet.
  • the surface grinding depth of the 16-mesh grinding wheel to the billet is approximately 1.2mm
  • the surface grinding depth of the 24-mesh grinding wheel to the billet is approximately 0.5mm
  • the surface grinding depth of the 30-mesh grinding wheel to the billet is approximately 0.3mm.
  • the total grinding depth is approximately 2mm (the total grinding depth on the opposite sides is approximately 4mm), and the corner grinding width is 9mm.
  • the surface of the billet is smooth and free of burrs.
  • the ground billet is transported to the high wire and rolled into a wire rod with a diameter of ⁇ 5.0mm.
  • the rolling temperature is 1040-1060 °C, and the rolling process is cooled by water.
  • the final rolling temperature is 960-1010°C, thereby ensuring that the steel billet is basically kept in the recrystallization zone for rolling.
  • the final rolling speed is 103m/s, and the spinning temperature is 900 ⁇ 920°C.
  • the wire rod is temperature-controlled and cooled on the Steyrmore cooling line.
  • the 1st to 4th fans are turned on and the air volume is 100%, 100%, 90%, and 90% in turn.
  • the rest of the fans are turned off, and the Steyrmore cooling line
  • the thermal insulation cover is all open.
  • the running speed of the entry section of the roller table is 0.85m/s
  • the running speed ratio of the roller table corresponding to the first to fourth fans is 1.10:1.05:1.02:1.00
  • the roller table corresponding to the other fans is running.
  • the speed ratio is 0.8:1.00 ⁇ 1.05:1.00.
  • the Jialing device is used to adjust the wind speed of the lap joint to be 1.3 times the wind speed of the non-lap joint to ensure the cooling speed of the lap joint and the non-lap joint is balanced.
  • the wire rod of embodiment 2 can be obtained.
  • the coiled wire rods are packed with a packing line, and the packing line and the wire rods are separated by linen cloth, and are packed in a full packaging manner;
  • the aging treatment time is 10 days, and then it is sent to the user for drawing and preparing the application of steel wire; among them, in the process of transportation and reverse transportation, a rubber pad is adopted to avoid scratches on the wire rod.
  • This embodiment 10 provides a production method of the wire rod of embodiment 3, and the production method specifically includes the following steps.
  • the composition is designed to mix alloy elements into the molten iron, and keep the furnace pressure of the vacuum melting furnace at 5Pa, so as to smelt molten steel.
  • the temperature of the refined molten steel is heated to 1600-1620° C., it is protected and cast into an ingot in an inert gas atmosphere, and the casting speed is 330 kg/min.
  • the steel ingot obtained in the vacuum smelting process was used as an electrode, and vacuum consumable remelting was used for processing, and the remelting speed was 3.0 kg/min to obtain a remelting ingot; after that, the obtained remelting ingot was kept for 72 hours, and then subjected to windproof stack cooling.
  • the chemical composition of the remelted ingot obtained by mass percentage includes: C: 1.03%, Si: 0.20%, Mn: 0.55%, Cr: 0.22%, V: 0.06%, and the rest are Fe and inevitable impurities,
  • the impurities include Al: 0.002%, Ti: 0.0006%, S: 0.002%, P: 0.006%, O: 0.0006% and N: 0.0008%.
  • the remelted ingot obtained in the steel ingot remelting process is subjected to continuous rolling at a temperature of 1130 ° C to obtain a billet billet with a length of 15m and 145mm ⁇ 145mm; after that, 16 mesh, 24 mesh and 30 mesh grinding wheels are used in sequence.
  • the surface grinding depth of the 16-mesh grinding wheel to the billet is approximately 1.1mm
  • the surface grinding depth of the 24-mesh grinding wheel to the billet is approximately 0.7mm
  • the surface grinding depth of the 30-mesh grinding wheel to the billet is approximately It is 0.2mm
  • the total depth of grinding on one side is roughly 2mm (the total depth of grinding on the opposite sides is roughly 4mm)
  • the width of corner grinding is 6mm
  • the surface of the billet after grinding is smooth and free of burrs.
  • the polished billet is transported to the high wire and rolled into a wire rod with a diameter of ⁇ 5.5mm.
  • the rolling temperature is 1040-1060 °C, and the rolling process is cooled by water.
  • the final rolling temperature is 1000-1020°C, thereby ensuring that the steel billet is basically kept in the recrystallization zone for rolling.
  • the final rolling speed is 108m/s, and the spinning temperature is 890 ⁇ 910°C.
  • the wire rod is temperature-controlled and cooled on the Steyrmore cooling line.
  • the 1st to 4th fans are turned on and the air volume is 100%, 100%, 95%, and 95% in turn.
  • the rest of the fans are turned off, and the Steyrmore cooling line
  • the thermal insulation cover is all open.
  • the running speed of the entry section of the roller table is 1.0m/s
  • the running speed ratio of the roller table corresponding to the first to fourth fans is 1.10:1.05:1.02:1.00
  • the roller table corresponding to the other fans is running.
  • the speed ratio is 0.8:1.00 ⁇ 1.05:1.00.
  • the Jialing device is used to adjust the wind speed of the lap joint to be 1.3 times the wind speed of the non-lap joint to ensure the cooling speed of the lap joint and the non-lap joint is balanced.
  • the wire rod of embodiment 3 can be obtained.
  • the coiled wire rods are packed by a packing line, and the packing line and the wire rods are separated by linen cloth, and are packed in a full-packing manner;
  • the aging treatment time is 21 days, and then it is sent to the user for drawing and preparing the application of steel wire; among them, in the process of transportation and reverse transportation, a rubber pad is adopted to avoid scratches on the wire rod.
  • This embodiment 11 provides a method for producing the wire rod of embodiment 4, and the production method specifically includes the following processes.
  • composition design is to mix alloy elements into molten iron, and keep the furnace pressure of the vacuum melting furnace at 6Pa, so as to make molten steel.
  • the temperature of the refined molten steel is heated to 1600-1620° C., it is protected and cast into an ingot in an inert gas atmosphere, and the casting speed is 350 kg/min.
  • the steel ingot obtained in the vacuum smelting process was used as an electrode, and vacuum consumable remelting was used for processing, and the remelting speed was 3.3 kg/min to obtain a remelting ingot; after that, the obtained remelting ingot was kept for 72 hours, and then subjected to windproof stack cooling.
  • the chemical composition of the obtained remelted ingot in terms of mass percentage includes: C: 1.05%, Si: 0.16%, Mn: 0.55%, Cr: 0.01%, B: 0.0005%, V: 0.04%, and the rest are Fe and Inevitable impurities, among which impurities include Al: 0.002%, Ti: 0.0003%, S: 0.001%, P: 0.003%, O: 0.0003% and N: 0.0009%.
  • the remelted ingot obtained in the steel ingot remelting process is forged at a temperature of 1130 ° C into a billet billet with a length of 14m and 145mm ⁇ 145mm; after that, the surface of the billet is trimmed with 16-mesh, 24-mesh, and 30-mesh grinding wheels in turn.
  • the surface grinding depth of the 16-mesh grinding wheel to the billet is approximately 1.2mm
  • the surface grinding depth of the 24-mesh grinding wheel to the billet is approximately 0.5mm
  • the surface grinding depth of the 30-mesh grinding wheel to the billet is approximately 0.2mm.
  • the total grinding depth is approximately 1.9mm (the total grinding depth on the opposite sides is approximately 3.8mm), and the corner grinding width is 8mm.
  • the surface of the billet is smooth and free of burrs.
  • the polished billet is transported to the high wire and rolled into a wire rod with a diameter of ⁇ 4.5mm.
  • the rolling temperature is 1050-1060 °C, and the rolling process is cooled by water.
  • the final rolling temperature is 980-1010°C, thereby ensuring that the steel billet is basically kept in the recrystallization zone for rolling.
  • the final rolling speed is 110m/s, and the spinning temperature is 900 ⁇ 920°C.
  • the wire rod is temperature-controlled and cooled on the Steyrmore cooling line.
  • the 1st to 4th fans are turned on and the air volume is 100%, 100%, 85%, and 80% in turn.
  • the rest of the fans are turned off, and the Steyrmore cooling line
  • the thermal insulation cover is all open.
  • the running speed of the entry section of the roller table is 0.93m/s
  • the running speed ratio of the roller table corresponding to the first to fourth fans is 1.10:1.05:1.02:1.00
  • the roller table corresponding to the other fans is running.
  • the speed ratio is 0.8:1.00 ⁇ 1.05:1.00.
  • the Jialing device is used to adjust the wind speed of the lap joint to be 1.25 times the wind speed of the non-lap joint to ensure the cooling speed of the lap joint and the non-lap joint is balanced.
  • the wire rod of embodiment 4 can be obtained.
  • the coiled wire rods are packed with a packing line, and the packing line and the wire rods are separated by linen cloth, and are packed in a full-packing manner;
  • the aging treatment time is 11 days, and then it is sent to the user for drawing and preparing the steel wire; among them, in the process of transportation and reverse transportation, a rubber pad is adopted to avoid scratches on the wire rod.
  • This embodiment 12 provides a method for producing the wire rod of embodiment 5, and the production method specifically includes the following processes.
  • the temperature of the refined molten steel is heated to 1580-1600° C., it is protected and cast into an ingot in an inert gas atmosphere, and the casting speed is 320 kg/min.
  • electroslag remelting is carried out on the steel ingot obtained in the vacuum melting process in an inert gas atmosphere; then the remelting ingot obtained by electroslag remelting is used as an electrode, and vacuum consumable remelting is used for processing, and the remelting speed is 3.3kg/min , to obtain a remelted ingot; after that, the obtained remelted ingot was kept for 72 hours.
  • the chemical composition of the obtained remelted ingot in terms of mass percentage includes: C: 1.05%, Si: 0.22%, Mn: 0.45%, Cr: 0.19%, B: 0.001%, and the rest are Fe and inevitable impurities,
  • the impurities include Al: 0.001%, Ti: 0.0002%, S: 0.003%, P: 0.004%, O: 0.0005% and N: 0.001%.
  • the remelted ingot obtained in the steel ingot remelting process was forged at a temperature of 1140 ° C into a billet billet with a length of 10m and 145mm ⁇ 145mm; after that, the surface of the billet was trimmed with 16-mesh, 24-mesh, and 30-mesh grinding wheels in turn.
  • the surface grinding depth of the 16-mesh grinding wheel to the billet is approximately 1.4mm
  • the surface grinding depth of the 24-mesh grinding wheel to the billet is approximately 0.5mm
  • the surface grinding depth of the 30-mesh grinding wheel to the billet is approximately 0.1mm.
  • the total depth of grinding is approximately 2.0mm (the total depth of grinding on opposite sides is approximately 4.0mm)
  • the width of the corners is 8mm
  • the surface of the billet after grinding is smooth and free of burrs.
  • the polished billet is transported to the high wire and rolled into a wire rod with a diameter of ⁇ 5.5mm.
  • the rolling temperature is 1040-1060 °C, and the rolling process is cooled by water.
  • the final rolling temperature is 980-1020°C, thereby ensuring that the steel billet is basically kept in the recrystallization zone for rolling.
  • the final rolling speed is 110m/s, and the spinning temperature is 890 ⁇ 910°C.
  • the wire rod is temperature-controlled and cooled on the Steyrmore cooling line.
  • the 1st to 4th fans are turned on and the air volume is 100%, 100%, 100%, and 100% in sequence.
  • the rest of the fans are turned off, and the Steyrmore cooling line
  • the thermal insulation cover is all open.
  • the running speed of the entry section of the roller table is 1.0m/s
  • the running speed ratio of the roller table corresponding to the first to fourth fans is 1.10:1.05:1.02:1.00
  • the roller table corresponding to the other fans is running.
  • the speed ratio is 0.8:1.00 ⁇ 1.05:1.00.
  • the Jialing device is used to adjust the wind speed of the lap joint to be 1.28 times the wind speed of the non-lap joint to ensure the cooling speed of the lap joint and the non-lap joint is balanced.
  • the wire rod of embodiment 5 can be obtained.
  • the coiled wire rods are packed by a packing line, and the packing line and the wire rods are separated by linen cloth, and are packed in a full-packing manner;
  • the aging treatment time is 11 days, and then it is sent to the user for drawing and preparing the steel wire; among them, in the process of transportation and reverse transportation, a rubber pad is adopted to avoid scratches on the wire rod.
  • This embodiment 13 provides a method for producing the wire rod of embodiment 6, and the production method specifically includes the following processes.
  • the temperature of the refined molten steel is heated to 1600-1610° C., it is protected and cast into an ingot in an inert gas atmosphere, and the casting speed is 350 kg/min.
  • vacuum self-consumption remelting was used for processing, and the remelting speed was 3.4 kg/min to obtain a remelting ingot; after that, the obtained remelting ingot was kept warm for 72 hours, and then subjected to windproof stack cooling.
  • the chemical composition of the remelted ingot obtained includes, in terms of mass percentage, C: 1.08%, Si: 0.25%, Mn: 0.32%, Cr: 0.18%, V: 0.01%, and the rest are Fe and inevitable impurities,
  • the impurities include Al: 0.001%, Ti: 0.0005%, S: 0.001%, P: 0.003%, O: 0.0004% and N: 0.0006%.
  • the remelted ingot obtained in the ingot remelting process is subjected to continuous rolling at a temperature of 1130 ° C to obtain a billet billet with a length of 14m and 145mm ⁇ 145mm; after that, 16 mesh, 24 mesh, 30 mesh grinding wheels are used in sequence Grind the surface of the billet.
  • the surface grinding depth of the 16-mesh grinding wheel to the billet is approximately 1.1mm
  • the surface grinding depth of the 24-mesh grinding wheel to the billet is approximately 0.7mm
  • the surface grinding depth of the 30-mesh grinding wheel to the billet is approximately It is 0.2mm
  • the total depth of grinding on one side is roughly 2mm (the total depth of grinding on the opposite sides is roughly 4mm)
  • the width of corner grinding is 6mm
  • the surface of the billet after grinding is smooth and free of burrs.
  • the ground billet is transported to the high wire and rolled into a wire rod with a diameter of ⁇ 5.0mm.
  • the rolling temperature is 1040-1060 °C, and the rolling process is cooled by water.
  • the final rolling temperature is 1000-1020°C, thereby ensuring that the steel billet is basically kept in the recrystallization zone for rolling.
  • the final rolling speed is 110m/s, and the spinning temperature is 890 ⁇ 910°C.
  • the wire rod is temperature-controlled and cooled on the Steyrmore cooling line.
  • the 1st to 4th fans are turned on and the air volume is 100%, 100%, 95%, and 95% in turn.
  • the rest of the fans are turned off, and the Steyrmore cooling line
  • the thermal insulation cover is all open.
  • the running speed of the entry section of the roller table is 1.0m/s
  • the running speed ratio of the roller table corresponding to the first to fourth fans is 1.10:1.05:1.02:1.00
  • the roller table corresponding to the other fans is running.
  • the speed ratio is 0.8:1.00 ⁇ 1.05:1.00.
  • the Jialing device is used to adjust the wind speed of the lap joint to be 1.2 times the wind speed of the non-lap joint to ensure the cooling speed of the lap joint and the non-lap joint is balanced.
  • Off-line salt bath heat treatment (which can be replaced by lead bath heat treatment) is performed on the wire rods cooled by Steyrmore, wherein the temperature of the isothermal phase transition stage is 540-560° C. and the time is 70 s.
  • the wire rod of embodiment 6 can be obtained.
  • the coiled wire rods are packaged by a packaging line, and the packaging line and the wire rods are separated by linen cloth, and are packaged in a full packaging manner; the room temperature during high wire rolling is 5 °C, and The aging treatment time is 23 days, and then it is sent to the user for the application of drawing and preparing steel wire; among them, in the process of transportation and reverse transportation, a rubber pad is adopted to avoid scratches on the wire rod.
  • This embodiment 14 provides a method for producing the wire rod of embodiment 7, and the production method specifically includes the following processes.
  • composition design is to mix alloy elements into the molten iron, and keep the furnace pressure of the vacuum melting furnace at 6Pa, so as to smelt molten steel.
  • the temperature of the refined molten steel is heated to 1590-1600° C., it is protected and cast into an ingot in an inert gas atmosphere, and the casting speed is 330 kg/min.
  • the steel ingot obtained in the vacuum smelting process was used as an electrode, and vacuum consumable remelting was used for processing, and the remelting speed was 3.5 kg/min to obtain a remelting ingot; after that, the obtained remelting ingot was kept warm for 72 hours, and then subjected to windproof stack cooling.
  • the chemical composition of the obtained remelted ingot includes, in terms of mass percentage, C: 1.10%, Si: 0.16%, Mn: 0.30%, Cr: 0.15%, V: 0.05%, and the rest are Fe and inevitable impurities,
  • the impurities include Al: 0.001%, Ti: 0.0002%, S: 0.002%, P: 0.003%, O: 0.0002% and N: 0.0009%.
  • the remelted ingot obtained in the steel ingot remelting process is forged at a temperature of 1150 ° C into a billet billet with a length of 10m and 145mm ⁇ 145mm; after that, the surface of the billet is trimmed with 16-mesh, 24-mesh, and 30-mesh grinding wheels in turn.
  • the surface grinding depth of the 16-mesh grinding wheel to the billet is approximately 1.1mm
  • the surface grinding depth of the 24-mesh grinding wheel to the billet is approximately 0.7mm
  • the surface grinding depth of the 30-mesh grinding wheel to the billet is approximately 0.2mm.
  • the total grinding depth is approximately 2mm (the total depth of grinding on the opposite sides is approximately 4mm)
  • the corner grinding width is 8mm
  • the surface of the steel billet after grinding is smooth and free of burrs.
  • the ground billets are transported to the high wire and rolled into wire rods with a diameter of ⁇ 5.5mm.
  • the rolling temperature is 1030-1050 °C, and the rolling process is cooled by water.
  • the final rolling temperature is 950-990°C, thereby ensuring that the steel billet is basically kept in the recrystallization zone for rolling.
  • the final rolling speed is 108m/s, and the spinning temperature is 890 ⁇ 910°C.
  • the wire rod is temperature-controlled and cooled on the Steyrmore cooling line.
  • the 1st to 4th fans are turned on and the air volume is 100%, 100%, 99%, and 95% in turn.
  • the rest of the fans are turned off, and the Steyrmore cooling line
  • the thermal insulation cover is all open.
  • the running speed of the entry section of the roller table is 1.0m/s
  • the running speed ratio of the roller table corresponding to the first to fourth fans is 1.10:1.05:1.02:1.00
  • the roller table corresponding to the other fans is running.
  • the speed ratio is 0.8:1.00 ⁇ 1.05:1.00.
  • the Jialing device is used to adjust the wind speed of the lap joint to be 1.18 times the wind speed of the non-lap joint to ensure the cooling speed of the lap joint and the non-lap joint is balanced.
  • the off-line salt bath heat treatment is performed on the wire rods cooled by Steyrmore, wherein the temperature in the isothermal phase transition stage is 520-540° C. and the time is 80 s.
  • the wire rod of embodiment 7 can be obtained.
  • the coiled wire rods are packed with a packing line, and the packing line and the wire rods are separated by linen cloth, and are packed in a full-packing manner;
  • the aging treatment time is 13 days, and then it is sent to the user for drawing and preparing the application of steel wire; among them, in the process of transportation and reverse transportation, a rubber pad is adopted to avoid scratches on the wire rod.
  • the present invention has the following beneficial effects: through the design of chemical components and the technological improvement of the production method, the size and type of impurities are strictly controlled, so as to ensure high purity and uniform organization, and to improve the quality of the wire rod.
  • Tensile strength and drawing performance make the wire rod suitable for the production of ultra-fine, low wire breaking rate, high-strength diamond wire, and can be drawn to prepare a diameter of 40-46 ⁇ m, wire breaking rate ⁇ 2 times/1000 km,
  • the diamond wire busbar with tensile strength ⁇ 5000MPa is suitable for the manufacture of diamond wire for silicon wafer cutting.
  • Technical blank for wire rod is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Heat Treatment Of Steel (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

一种5000MPa级金刚线用盘条及其生产方法。盘条化学成分以质量百分比计包括碳:1.01~1.1%,硅:0.15~0.4%,锰:0.3~0.6%,铬:0.01~0.4%,硼:0.0005~0.002%和/或钒:0.01~0.09%;其余为铁和杂质,杂质包括铝≤0.003%、钛≤0.0008%、硫≤0.005%、磷≤0.008%、氧≤0.001%和氮≤0.002%。生产方法包括真空熔炼、电渣重熔和/或真空自耗、开坯/锻造后修磨、高线轧制及冷却,1030~1060℃开轧。盘条的组织均匀、抗拉强度≥1320MPa,可用于制备40~46μm的5000MPa级钢丝。

Description

5000MPa级金刚线用盘条及其生产方法 技术领域
本发明属于材料制备技术领域,涉及一种5000MPa级金刚线用盘条的生产方法,以及一种采用该生产方法制备而成的盘条。
背景技术
切割钢丝,又称切割丝、切割钢线、切割线,是一种用于分割的特制线材,也是一种直径小于0.20mm的表面镀锌铜的特种钢丝,它作为一种消耗材料被广泛应用于能源、航空、设备及公共设施领域。金刚线,作为一种表面镶嵌金刚石细颗粒的高碳切割钢丝,主要用于如太阳能硅片、石英材料、单晶硅、多晶硅、金刚石等材料的切割成形。
为了减少被切割材料例如硅材料在切割过程中的损耗,金刚线向着直径更细、不断丝里程数更长、强度更高的方向发展,因此,对生产切割钢丝用原材料例如高碳钢盘条的要求越来越严格,也即对盘条的纯净度、组织均匀性、力学性能以及拉拔性能提出更高要求。具体而言,需要控制夹杂物尺寸更小,组织更均匀,不能形成影响拉拔的马氏体、贝氏体、网状碳化物等异常组织,并且在尽可能提高强度的同时保证盘条的塑性。
然而目前,能够用于拉拔制备出5000MPa级金刚线的盘条尚处于空白状态,也就是说,现有的盘条,基本上不能够在满足直径、不断丝里程数的基本要求下制备出5000MPa级金刚线。
发明内容
为解决上述技术问题,本发明的目的在于提供一种盘条及其生产方法,能够用于深拉拔制备5000MPa级的金刚线母线,且满足市场对金刚线的直径、断丝率的高要求。
为实现上述发明目的,本发明一实施方式提供了一种深拉拔用盘条的生产方法,尤其是拉拔为5000MPa级金刚线用的盘条的生产方法,所述盘条的化学成分以质量百分比计包括:C:1.01~1.10%,Si:0.15~0.40%,Mn:0.30~0.60%,Cr:0.01~0.40%,以及B:0.0005~0.0020%和V:0.01~0.09%二者中的任一种或二种;其余为Fe和不可避免的杂质,其中杂质包括Al≤0.003%、Ti≤0.0008%、S≤0.005%、P≤0.008%、O≤0.0010%和N≤0.0020%;所述生产方法包括以下工序,
真空熔炼:采用真空熔炼炉在炉内压力10Pa以下的氛围中炼制钢水,并浇铸成钢锭;
钢锭重熔:采用电渣重熔和真空自耗重熔的任一种或两种对钢锭处理,获得重熔锭;其中,电渣重熔在保护气氛下进行,真空自耗重熔的重熔速度为3.0~3.5kg/min;
制坯及修磨:将重熔锭进行开坯或锻造为钢坯,并对钢坯进行修磨;
高线轧制:将钢坯轧制为盘条,开轧温度为1030~1060℃,终轧温度为950~1020℃;
冷却:将盘条在斯太尔摩冷却线上进行控温冷却,第1~4台风机开启且风量为80%~100%,其余风机关闭。
为实现上述发明目的,本发明一实施方式提供了一种深拉拔用盘条的生产方法,尤其是拉拔为5000MPa级金刚线用的盘条的生产方法,所述生产方法包括以下工序,
真空熔炼:按照C:1.01~1.10%,Si:0.15~0.40%,Mn:0.30~0.60%,Cr:0.01~0.40%,以及B:0.0005~0.0020%和V:0.01~0.09%二者中任一种或二种的成分设计向铁水中配入合金元素,采用真空熔炼炉在炉内压力10Pa以下的氛围中炼制钢水,并浇铸成钢锭;
钢锭重熔:采用电渣重熔和真空自耗重熔的任一种或两种对钢锭处理,获得重熔锭,该重熔锭的化学成分除了C、Si、Mn、Cr,以及B和V二者中的任一种或二种,其余为Fe和不可避免的杂质,杂质元素Al≤0.003%、Ti≤0.0008%、S≤0.005%、P≤0.008%、O≤0.0010%和N≤0.0020%;其中,电渣重熔在保护气氛下进行,真空自耗重熔的重熔速度为3.0~3.5kg/min;
制坯及修磨:将重熔锭进行开坯或锻造为钢坯,并对钢坯进行修磨;
高线轧制:将钢坯轧制为盘条,开轧温度为1030~1060℃,终轧温度为950~1020℃;
冷却:将盘条在斯太尔摩冷却线上进行控温冷却,第1~4台风机开启且风量为80%~100%,其余风机关闭。
进一步优选地,在真空熔炼工序中,炉内压力为5Pa以下。
进一步优选地,在真空熔炼工序中,以Al≤0.001%、Ti≤0.0005%、Cu≤0.001%且Ni≤0.001%的工业纯铁为原料,并按照成分设计配入合金元素,采用真空熔炼炉炼制钢水。
进一步优选地,在真空熔炼工序中,浇铸温度为1580~1620℃。
进一步优选地,在钢锭重熔工序中,采用真空自耗重熔获得重熔锭之后,对所得重熔锭保温48小时以上。
进一步优选地,在制坯工序中,将重熔锭进行开坯或锻造为长度9~16m且145mm×145mm的方坯。
进一步优选地,在制坯工序中,将重熔锭在1130-1160℃温度下进行开坯或锻造。
进一步优选地,在修磨工序中,对钢坯表面的修磨总深度≥1.5mm。
进一步优选地,在修磨工序中,依次采用16目、24目、30目的砂轮对钢坯的表面进行修磨处理,且各道次修磨深度分别为≥0.9mm、≥0.5mm、≥0.1mm,角部修磨宽度≥5mm。
进一步优选地,在高线轧制工序中,将钢坯轧制成直径为Φ4.5~5.5mm的盘条。
进一步优选地,在高线轧制工序中,终轧速率为100~110m/s。
进一步优选地,在高线轧制工序中,吐丝温度为890~920℃。
进一步优选地,在冷却工序中,在第1台风机之前,辊道入口段运行速度为0.9~1.0m/s。
进一步优选地,在冷却工序中,保温罩全部打开,并且第1~4台风机所对应的辊道运行速比为1.10:1.05:1.02:1.00。
进一步优选地,在冷却工序中,采用佳灵装置调节搭接点的风速为非搭接点的风速的1.1~1.4倍。
进一步优选地,所述生产方法还包括热处理工序:对斯太尔摩冷却后的盘条进行盐浴热处理或者铅浴热处理,其中等温相变阶段的温度为520~560℃且时间为20~80s。
进一步优选地,所述生产方法制备而成的盘条采用打包线打包时,打包线和盘条之间采用柔性耐磨材料间隔开,之后进行时效处理,其中,当室温≥15℃时,时效处理的时间≥10天,当室温<15℃时,时效处理的时间≥20天。
为实现上述发明目的,本发明一实施方式提供了一种采用前述任意实施方式提供的生产方法制备而成的深拉拔用盘条,尤其是拉拔为5000MPa级金刚线用的盘条,所述盘条的化学成分以质量百分比计包括:C:1.01~1.10%,Si:0.15~0.40%,Mn:0.30~0.60%,Cr:0.01~0.40%,以及B:0.0005~0.0020%和V:0.01~0.09%二者中的任一种或二种;其余为Fe和不可避免的杂质,其中杂质包括Al≤0.003%、Ti≤0.0008%、S≤0.005%、P≤0.008%、O≤0.0010%和N≤0.0020%。
进一步地,所述盘条的直径为Φ4.5~5.5mm。
进一步地,所述盘条的抗拉强度≥1320MPa,断面收缩率≥30%。
进一步地,所述盘条的最大夹杂物尺寸≤4μm,网状碳化物≤1.0级。
进一步地,所述最大夹杂物尺寸≤4μm,包括横向最大夹杂物尺寸≤4μm且纵向最大夹杂物尺寸≤4μm。
进一步地,网状碳化物的检出比例≤30%,中心碳偏析比≤1.03。
进一步地,所述盘条的表面裂纹深度≤30μm,脱碳层深度≤40μm,脱碳层占总圆周的比例≤15%,表面氧化皮厚度为7~15μm。
为实现上述发明目的,本发明一实施方式提供了一种深拉拔用盘条,尤其是一种拉拔为5000MPa级金刚线用的盘条,其化学成分以质量百分比计包括:C:1.01~1.10%,Si:0.15~0.40%,Mn:0.30~0.60%,Cr:0.01~0.40%,以及B:0.0005~0.0020%和V:0.01~0.09%二者中的任一种或二种;其余为Fe和不可避免的杂质,其中杂质包括Al≤0.003%、Ti≤0.0008%、S≤0.005%、P≤0.008%、O≤0.0010%和N≤0.0020%;
并且,所述盘条的抗拉强度≥1320MPa,断面收缩率≥30%,最大夹杂物尺寸≤4μm,网状碳化物≤1.0级。
与现有技术相比,本发明的有益效果包括:
(1)通过提高珠光体强化元素含量,尤其是C元素含量,并配合B和/或V的添加,以及严格控制杂质元素的含量,确保组织均匀,避免形成高熔点夹杂物,提高纯净度、抗拉强度和拉拔性能;
(2)通过在真空熔炼工序中调控炉内压力,并结合在保护气氛下进行电渣重熔工序,或者/以及通过对真空自耗重熔中重熔速度的调控,使得材料中的化学成分得到精细控制,保证纯净度高,大大减少了夹杂 物的产生,并使得夹杂物的尺寸小;同时,通过对钢坯的修磨,优化钢坯的表面质量,消除钢坯的表面凹坑等缺陷以及脱碳层;进而通过高线轧制工序中开轧温度的控制,使钢坯保持在再结晶区内进行轧制,以及结合冷却工序中的控温冷却,避免珠光体相变过程中和相变过程后的冷却速率过快,防止由于相变时间不足而形成马氏体组织,同时减小内应力,优化组织性能,进而增强盘条的抗拉强度和拉拔性能;
(3)所述盘条能够适用于超细、断丝率低、高强度的金刚线母线的生产,可使拉拔制备而成的金刚线的直径40~46μm、断丝率≤2次/千公里、抗拉强度≥5000MPa,适用于制造硅片切割用金刚线,远远满足市场对良好的拉拔性能、低断丝率以及高强度钢丝的需求,填补了国内外5000MPa级以上金刚线用盘条的技术空白。
具体实施方式
如背景技术所提,而现有的高强度金刚线用盘条的技术尚待改进,无法满足金刚线对直径、不断丝里程数、强度的日益增强的高要求,尤其是适用于工业化制备5000MPa级金刚线的盘条尚处于空白状态,为此,本发明旨在提供一种深拉拔用盘条及其生产方法,尤其是能够用于拉拔制备金刚线用的过共析钢盘条及其生产方法,盘条具有纯净度高、组织均匀性好、超高强度的优点,能够用于超细、断丝率低的5000MPa级金刚线的生产。
下面结合具体的实施方式来对本发明的技术方案做进一步的介绍,但要求保护的范围不仅局限于所作的描述。
<第一实施方式>
本实施方式提供了一种深拉拔用盘条,尤其是拉拔为5000MPa级金刚线用的盘条。当然,可以理解的,该盘条能够用于拉拔为5000MPa级的金刚线母线,但不限于此,例如还可以根据企业实际生产需求而用于拉拔为其它钢丝产品。
所述盘条的化学成分以质量百分比计包括:C:1.01~1.10%,Si:0.15~0.40%,Mn:0.30~0.60%,Cr:0.01~0.40%,以及B:0.0005~0.0020%和V:0.01~0.09%二者中的任一种或二种;其余为Fe和不可避免的杂质,其中杂质包括Al≤0.003%、Ti≤0.0008%、S≤0.005%、P≤0.008%、O≤0.0010%和N≤0.0020%。
本发明中盘条的化学成分的设计,其核心思想是提高珠光体强化元素含量,尤其是C元素含量,同时确保组织可控,避免形成高熔点夹杂物。
具体地,盘条的化学成分的设计原理说明如下。
C:是最重要的组成元素,C含量能显著影响钢材的强度并直接影响钢材的组织结构;详细来讲,一方面,C含量的增大会显著提高钢材的强度;另一方面,在常见钢材组织中,C参与形成的共析组织可以提升钢材的强度、应变硬化率,然而C含量过高时会形成先共析网状渗碳体组织,该网状渗碳体组织会破坏共 析组织的连续性,导致盘条加工钢丝的拉拔工序中形成微裂纹,甚至造成断丝;因此,本发明的化学成分设计中,在通过尽量提高碳含量以提升钢材的强度、应变硬化率的同时,配合B或V的含量设计来避免出现局部网状渗碳体组织,基于此,C含量为1.01~1.10%。
Si:是固溶强化元素,同时还可以用于降低钢中氧含量;但Si含量过高会降低钢材的塑性,加剧钢坯脱碳倾向,不利于盘条表面质量控制;本发明中,Si含量为0.15~0.40%。
Mn:是固溶强化元素,可以提高盘条的强度,同时还可以与有害元素S结合以降低盘条的热脆性;但Mn含量过高时,淬透性增强,高线轧制工序后容易出现影响拉拔的贝氏体或马氏体,进而导致盘条的塑性和拉拔性能差;本发明中,Mn含量为0.30~0.60%。
Cr:可细化珠光体组织(也即共析组织),减小珠光体组织的片层间距,从而提高盘条的强度;但与Mn类似的,Cr含量过高会提高淬透性,高线轧制工序后容易出现影响拉拔的贝氏体或马氏体,进而导致盘条的塑性和拉拔性能差;本发明中,Cr含量为0.01~0.40%。
B、V:
关于B元素,在高碳钢中参与形成细小的碳氮化物,优先偏聚在奥氏体晶界,有利于阻碍网状渗碳体组织的形成;但B含量过高,会使晶界脆化,降低盘条的拉拔性能;
而关于V元素,在相变初期易于在奥氏体晶界上形成VC颗粒,抑制高线轧制时奥氏体晶粒的长大,降低晶界C含量,有利于抑制网状渗碳体组织的形成;并且,V元素在相变过程中会析出碳氮化物,有利于提高盘条的强度;但V含量过高时容易出现淬火组织,不利于盘条组织控制;
鉴于B和V元素均可以用于阻止网状渗碳体组织的形成,对于提升C含量的上限有助益,因而,如前所述,前述的所述盘条的化学成分包括B:0.0005~0.0020%和V:0.01~0.09%二者中的任一种或二种,也即包括以下三种实施情况:其一,所述盘条的化学成分包括B:0.0005~0.0020%,而不包含V,利用B元素在奥氏体晶界形成细小的碳氮化物,来阻碍网状渗碳体组织的形成;其二,所述盘条的化学成分不包含B,而包括V:0.01~0.09%,利用V元素在相变初期形成VC颗粒,降低晶界C含量,来阻碍网状渗碳体组织的形成;其三,更为优选地,所述盘条的化学成分同时包括B:0.0005~0.0020%和V:0.01~0.09%,一方面利用V元素在相变初期形成VC颗粒,降低晶界C含量,来阻碍网状渗碳体组织的形成,另一方面同时利用B元素在奥氏体晶界形成细小的碳氮化物,来阻碍网状渗碳体组织的形成。
Al:在深拉拔用盘条中属于有害元素,Al和钢中的O结合形成尺寸大、易团聚、熔点高、塑性差的Al 2O 3夹杂物,是导致盘条在拉拔制备钢丝时细丝断丝的主要原因之一,本发明中,Al含量为0.003%以内。
Ti:在深拉拔用盘条中属于有害元素,Ti极易与C、N形成棱角分明的大尺寸Ti(C,N)夹杂物,进而造成应力集中、微裂纹,本发明中,Ti含量为0.0008%以内。
S、P、O、N:属于有害杂质元素,含量分别为S≤0.005%,P≤0.008%,O≤0.0010%,N≤0.0020%。
进一步地,所述盘条的直径为Φ4.5~5.5mm,其可以适应接下来拉拔制备钢丝的要求。
进一步地,所述盘条的抗拉强度≥1320MPa,以使得进一步制备而成的钢丝的抗拉强度达到5000MPa以上;并且,所述盘条的拉拔性能优异,其断面收缩率≥30%,保证拉拔过程中的断丝率低。
进一步地,所述盘条的内部质量优、组织均匀,其最大夹杂物尺寸≤4μm,网状碳化物≤1.0级,其中所述的最大夹杂物尺寸≤4μm,包括横向最大夹杂物尺寸≤4μm且纵向最大夹杂物尺寸≤4μm。并且,进一步地,网状碳化物的检出比例≤30%,中心碳偏析比≤1.03。其中,所述中心碳偏析比指的是偏析最严重区域和基体位置的碳含量比值。
进一步地,所述盘条的表面裂纹深度≤30μm,脱碳层深度≤40μm,脱碳层占总圆周的比例≤15%,表面氧化皮厚度为7~15μm。
综上所述,本实施方式的盘条纯净度高、组织均匀、力学性能高以及拉拔性能高,能够满足于金刚线的制备,且通过采用盘条制备金刚线的现有技术,利用本发明的盘条可以制得直径40~46μm、断丝率≤2次/千公里、抗拉强度≥5000MPa的钢丝,远远满足市场对良好的拉拔性能、低断丝率以及高强度钢丝的需求。
在一实施方式中提供了一种所述盘条的生产方法,在本实施方式中,所述盘条通过依序进行的真空熔炼→钢锭重熔→制坯及修磨→高线轧制→冷却各个工序制备而成。也即,所述生产方法包括以下工序,
真空熔炼:按照C:1.01~1.10%,Si:0.15~0.40%,Mn:0.30~0.60%,Cr:0.01~0.40%,以及B:0.0005~0.0020%和V:0.01~0.09%二者中任一种或二种的成分设计向铁水中配入合金元素,采用真空熔炼炉在炉内压力10Pa以下的氛围中炼制钢水,并浇铸成钢锭;
钢锭重熔:对钢锭在保护气氛下进行电渣重熔处理,获得重熔锭,该重熔锭的化学成分除了C、Si、Mn、Cr,以及B和V二者中的任一种或二种,其余为Fe和不可避免的杂质,杂质元素Al≤0.003%、Ti≤0.0008%、S≤0.005%、P≤0.008%、O≤0.0010%和N≤0.0020%;
制坯及修磨:将重熔锭进行开坯或锻造为钢坯,并对钢坯进行修磨;
高线轧制:将钢坯轧制为盘条,开轧温度为1030~1060℃,终轧温度为950~1020℃;
冷却:将盘条在斯太尔摩冷却线上进行控温冷却,第1~4台风机开启且风量为80%~100%,其余风机关闭。
由此,通过在真空熔炼工序中调控炉内压力,并结合在保护气氛下进行电渣重熔工序,使得材料中的化学成分得到精细控制,保证纯净度高,大大减少了夹杂物的产生,并使得夹杂物的尺寸小;同时,通过对钢坯的修磨,优化钢坯的表面质量,消除钢坯的表面凹坑等缺陷以及脱碳层;进而通过高线轧制工序中开轧温度的控制,使钢坯保持在再结晶区内进行轧制,以及结合冷却工序中的控温冷却,避免珠光体相变过程中和相变过程后的冷却速率过快,防止由于相变时间不足而形成马氏体组织,同时减小内应力,优化组织性能,进而增强盘条的抗拉强度和拉拔性能。
下面,对各个工序的优选实施进行详细介绍。
(1)真空熔炼工序
在该真空熔炼工序中,基于前文所述盘条的化学成分的设计思路,按照C:1.01~1.10%,Si:0.15~0.40%,Mn:0.30~0.60%,Cr:0.01~0.40%,以及B:0.0005~0.0020%和V:0.01~0.09%二者中任一种或二种的成分设计向铁水中配入合金元素,以此来炼制钢水。
优选的,在真空熔炼工序中所采用的原辅料均为杂质元素含量低的高质量原辅料,例如,以Al≤0.001%、Ti≤0.0005%、Cu≤0.001%且Ni≤0.001%的工业纯铁为原料,并按照成分设计配入合金元素,也即,前文所述铁水即为Al≤0.001%、Ti≤0.0005%、Cu≤0.001%且Ni≤0.001%的工业纯铁熔化而成,当然,所述铁水的原料工业纯铁中杂质元素优选但并不必然限定为上述含量,这样可以从钢水熔炼之初即可使得有害元素少、纯净度较高,进而利于后续夹杂物的精细控制。
在该真空熔炼工序中,采用真空熔炼炉在炉内压力10Pa以下的氛围中炼制钢水,并浇铸成钢锭。其中,通过控制炉内压力10Pa以下,也即炉内维持高真空度,从而避免空气中O、N元素对钢水的影响,利于控制钢水中O、N有害元素的含量低。进一步优选的,炉内压力控制为5Pa以下。
优选的,在该真空熔炼工序中,在钢水浇铸成钢锭的过程中,浇铸温度为1580~1620℃,也即,将钢水温度加热到1580~1620℃时进行浇铸成锭,浇铸速度为300-400kg/min,由此,一方面可以进一步保证钢水纯净度,另一方面还可以保证钢锭的心部溶质能够充分扩散,减少钢锭的中心偏析。
(2)钢锭重熔工序
在该钢锭重熔工序中,对真空熔炼工序中所得钢锭在保护气氛下进行电渣重熔处理,获得重熔锭,该重熔锭的化学成分除了C、Si、Mn、Cr,以及B和V二者中的任一种或二种,其余为Fe和不可避免的杂质,杂质元素Al≤0.003%、Ti≤0.0008%、S≤0.005%、P≤0.008%、O≤0.0010%和N≤0.0020%。
也即,通过该钢锭重熔工序,结合真空熔炼工序的精细控制,实现对材料中杂质元素(也即有害元素)的严格控制,从而保证了保证纯净度高,大大减少了夹杂物的产生,并使得夹杂物的尺寸小,化学成分均匀。
其中,在所述保护气氛下进行电渣重熔,可以保证钢水不被氧化,减少夹杂物的产生,所述保护气氛具体可以是由惰性气体构成的气氛,例如在电渣炉内排出空气并替换为惰性气体,进而再对钢锭进行重熔处理。
(3)制坯工序及修磨工序
在该制坯工序中,将钢锭重熔工序中所得重熔锭进行开坯或锻造为钢坯,优选地,该钢坯为长度9~16m且145mm×145mm的方坯,当然,钢坯的尺寸不限于此,可以为任意工业可行的尺寸。
进一步优选的,在制坯工序中,将重熔锭在1130-1160℃温度下进行开坯或锻造,由此,可以进一步保 证钢坯心部和表面的温度均匀性,利于提升组织均匀性。
在该修磨工序中,对制坯工序中所得钢坯进行修磨,以优化钢坯的表面质量,消除钢坯的表面凹坑等缺陷以及脱碳层,进而为后续的高线轧制创造好的基础。
优选的,在该修磨工序中,对钢坯表面的修磨总深度≥1.5mm。具体地,依次采用16目、24目、30目的砂轮对钢坯的表面进行修磨处理,且各道次修磨深度分别为≥0.9mm、≥0.5mm、≥0.1mm,也即16目砂轮对钢坯的表面修磨深度≥0.9mm,24目砂轮对钢坯的表面修磨深度≥0.5mm,30目砂轮对钢坯的表面修磨深度≥0.1mm。另外,对钢坯的角部修磨宽度≥5mm,具体的,对钢坯的角部进行斜向修磨,完成之后,形成于该角部处的斜面宽度即为所述角部修磨宽度。这样,通过修磨工序,最终确保钢坯表面光滑无毛刺。
(4)高线轧制工序
在该高线轧制工序中,将钢坯轧制为盘条,通过调整轧制之前加热时的均热温度,使开轧温度为1030~1060℃,并通过轧制过程中的水冷等控温手段,使终轧温度为950~1020℃,由此确保钢坯基本保持在再结晶区内进行轧制,以精细控制盘条组织,避免贝氏体、马氏体、网状渗碳体组织的出现。
优选的,在高线轧制工序中,将钢坯轧制成直径为Φ4.5~5.5mm的盘条,也即,使得基于本实施方式的生产方法最终制得的盘条直径为Φ4.5~5.5mm,进而可以适应接下来拉拔制备钢丝的要求。
优选的,在该高线轧制工序中,终轧速率为100~110m/s,以进一步确保钢坯基本保持在再结晶区内进行轧制,吐丝温度为890~920℃,以进一步精细控制盘条组织,并利于接下来进行风冷冷却的温度控制。
(5)冷却工序
在该冷却工序中,将盘条在斯太尔摩冷却线上进行控温冷却,第1~4台风机开启且风量为80%~100%,其余风机关闭,也即采用斯太尔摩风冷冷却技术进行控温冷却处理。本发明的冷却制度,可以避免珠光体相变过程中和相变过程后的冷却速率过快,防止由于相变时间不足而形成马氏体组织,同时减小内应力,优化组织性能,进而增强盘条的抗拉强度和拉拔性能。
优选的,在冷却工序中,斯太尔摩冷却线上的保温罩全部打开,也即,在前4台风机所对应的辊道区段执行风冷冷却,之后的其余风机所对应的辊道区段全部为自然冷却。
优选的,在第1台风机之前,辊道入口段运行速度为0.9~1.0m/s,第1~4台风机所对应的辊道运行速比为1.10:1.05:1.02:1.00,其余风机所对应的辊道运行速比为0.8:1.00~1.05:1.00。
另外,在冷却工序中,采用佳灵装置调节搭接点的风速为非搭接点的风速的1.1~1.4倍,以保证搭接点和非搭接点的冷速均衡,以便于进一步得到均匀的组织性能。
进一步优选地,所述生产方法制备得到的盘条,可采用打包线打包,打包线和盘条之间采用柔性耐磨材料间隔开,以避免运输、倒运、存储过程中打包线擦伤盘条;之后进行时效处理,其中,当室温≥15℃时,时效处理的时间≥10天,当室温<15℃时,时效处理的时间≥20天。
与现有技术相比,本发明一实施方式的有益效果在于:
(1)通过提高珠光体强化元素含量,尤其是C元素含量,并配合B和/或V的添加,以及严格控制杂质元素的含量,确保组织均匀,避免形成高熔点夹杂物,提高纯净度、抗拉强度和拉拔性能;
(2)通过在真空熔炼工序中调控炉内压力,并结合在保护气氛下进行电渣重熔工序,使得材料中的化学成分得到精细控制,保证纯净度高,大大减少了夹杂物的产生,并使得夹杂物的尺寸小;同时,通过对钢坯的修磨,优化钢坯的表面质量,消除钢坯的表面凹坑等缺陷以及脱碳层;进而通过高线轧制工序中开轧温度的控制,使钢坯保持在再结晶区内进行轧制,以及结合冷却工序中的控温冷却,避免珠光体相变过程中和相变过程后的冷却速率过快,防止由于相变时间不足而形成马氏体组织,同时减小内应力,优化组织性能,进而增强盘条的抗拉强度和拉拔性能;
(3)所述盘条能够适用于超细、断丝率低、高强度的金刚线钢丝的生产,可使拉拔制备而成的金刚线的直径40~46μm、断丝率≤2次/千公里、抗拉强度≥5000MPa,适用于制造硅片切割用金刚线,远远满足市场对良好的拉拔性能、低断丝率以及高强度钢丝的需求,填补了国内外5000MPa级以上金刚线用盘条的技术空白。
<第二实施方式>
本实施方式同样提供了一种深拉拔用盘条,尤其是拉拔为5000MPa级金刚线用的盘条,以及提供了一种所述盘条的生产方法。本实施方式与前述第一实施方式的区别仅在于所述生产方法中的钢锭重熔工序,除此之外,其余技术均与前述第一实施方式相同。下面,仅对本实施方式与前述第一实施方式的区别进行介绍,其余相同部分不再赘述。
在本实施方式中,所述生产方法的工序(2)钢锭重熔工序具体如下。
在该钢锭重熔工序中,采用真空自耗重熔对钢锭处理,重熔速度为3.0~3.5kg/min,获得重熔锭,该重熔锭的化学成分除了C、Si、Mn、Cr,以及B和V二者中的任一种或二种,其余为Fe和不可避免的杂质,杂质元素Al≤0.003%、Ti≤0.0008%、S≤0.005%、P≤0.008%、O≤0.0010%和N≤0.0020%。
也即,通过该钢锭重熔工序,结合真空熔炼工序的精细控制,实现对材料中杂质元素(也即有害元素)的严格控制,从而保证了保证纯净度高,大大减少了夹杂物的产生,并使得夹杂物的尺寸小,同时还控制夹杂物的类型,使得化学成分均匀。
具体的,在该钢锭重熔工序中,以真空熔炼工序所得钢锭作为电极进行真空自耗重熔。
进一步地,在钢锭重熔工序中,采用真空自耗重熔获得重熔锭之后,对所得重熔锭保温48小时以上,由此来进一步减少重熔锭表面和心部的应力裂纹。
总结来讲,本实施方式中,钢锭重熔工序中采用了真空自耗重熔取代了第一实施方式中的电渣重熔,除此之外均与第一实施方式相同。由此,本实施方式同样具有前述第一实施方式的有益效果,不再赘述。
<第三实施方式>
本实施方式同样提供了一种深拉拔用盘条,尤其是拉拔为5000MPa级金刚线用的盘条,以及提供了一种所述盘条的生产方法。本实施方式与前述第一实施方式的区别仅在于所述生产方法中的钢锭重熔工序,除此之外,其余技术均与前述第一实施方式相同。下面,仅对本实施方式与前述第一实施方式的区别进行介绍,其余相同部分不再赘述。
在本实施方式中,所述生产方法的工序(2)钢锭重熔工序具体如下。
在该钢锭重熔工序中,先对真空熔炼工序中所得钢锭在保护气氛下进行电渣重熔处理;再以电渣重熔所得重熔锭作为电极,采用真空自耗重熔进行处理,重熔速度为3.0~3.5kg/min,获得重熔锭,该重熔锭的化学成分除了C、Si、Mn、Cr,以及B和V二者中的任一种或二种,其余为Fe和不可避免的杂质,杂质元素Al≤0.003%、Ti≤0.0008%、S≤0.005%、P≤0.008%、O≤0.0010%和N≤0.0020%。
进一步地,本实施方式中,在钢锭重熔工序中,采用真空自耗重熔获得重熔锭之后,对所得重熔锭保温48小时以上,由此来进一步减少重熔锭表面和心部的应力裂纹。
总结来讲,本实施方式中的电渣重熔工艺与第一实施方式相同,在第一实施方式基础上,进一步增加了真空自耗重熔,由此可以进一步精细控制杂质元素(也即有害元素),进一步保证纯净度和夹杂物。除此之外,本实施方式同样具有前述第一实施方式的有益效果,不再赘述。
当然,在变化实施方式中,真空自耗重熔和电渣重熔的实施顺序可以互换,也即先进行真空自耗重熔,再进行电渣重熔。
<第四实施方式>
本实施方式同样提供了一种深拉拔用盘条,尤其是拉拔为5000MPa级金刚线用的盘条,以及提供了一种所述盘条的生产方法。本实施方式与前述第一实施方式、第二实施方式、第三实施方式的区别仅在于所述生产方法还包括在所述冷却工序之后增加了热处理工序,除此之外,其余技术均与前述第一实施方式、第二实施方式、第三实施方式相同。下面,仅对如上区别进行介绍,其余相同部分不再赘述。
在本实施方式中,所述生产方法还进一步包括以下工序。
(6)热处理工序
对斯太尔摩冷却后的盘条进行盐浴热处理或者铅浴热处理,其中等温相变阶段的温度为520~560℃且时间为20~80s。
由此,本实施方式相较于前述第一实施方式、第二实施方式、第三实施方式,所得盘条的组织性能更均匀,拉拔性能和抗拉强度更强。
下面提供本发明的几个实施例来对本发明的技术方案进一步说明。
实施例1
实施例1提供一种直径为Φ5.5mm的盘条,其化学成分以质量百分比计包括,C:1.01%,Si:0.30%,Mn:0.60%,Cr:0.40%,B:0.0013%,V:0.09%,其余为Fe和不可避免的杂质,其中杂质包括Al:0.001%、Ti:0.0006%、S:0.003%、P:0.006%、O:0.0008%和N:0.0012%。
对该实施例的盘条进行组织性能检测,包括:
第一,以每卷盘条取12个样品,分别检测得到抗拉强度均为1320~1350MPa、断面收缩率35~40%;
第二,以每卷盘条取12个样品,12个样品包括6个纵截面样品和6个横截面样品,如表1所示,磨抛后用金相显微镜观察测量每个样品的最大表面裂纹深度、氧化皮厚度、横向最大夹杂物尺寸(表中简写为横向夹杂尺寸)、纵向最大夹杂物尺寸(表中简写为纵向夹杂尺寸)以及网状碳化物级别(表中简写为网碳级别),用电子探针检测分析中心碳偏析比,对各个样品腐蚀之后观察最大脱碳层深度和脱碳层占总圆周的比例(表中简写为脱碳比例)。
[表1]
Figure PCTCN2020128268-appb-000001
由此可以看出,本实施例的盘条纯净度高、组织均匀、抗拉强度高且拉拔性能好,能够满足市场对深拉拔用盘条的高要求;进一步地,以本实施例的盘条作为母材,采用现有的金刚线制备工艺,制备硅片切割用金刚线母线,所得金刚线的抗拉强度为5300MPa、直径为46μm、断丝率大致为1.2次/千公里,远远领先于现有技术。
实施例2
实施例2提供一种直径为Φ5.0mm的盘条,其化学成分以质量百分比计包括,C:1.03%,Si:0.18%,Mn:0.58%,Cr:0.36%,B:0.002%,其余为Fe和不可避免的杂质,其中杂质包括Al:0.001%、Ti:0.0005%、S:0.002%、P:0.004%、O:0.001%和N:0.0013%。
对该实施例的盘条进行组织性能检测,包括:
第一,以每卷盘条取12个样品,分别检测得到抗拉强度均为1330~1360MPa、断面收缩率33~40%;
第二,以每卷盘条取12个样品,12个样品包括6个纵截面样品和6个横截面样品,如表2所示,磨抛后用金相显微镜观察测量每个样品的最大表面裂纹深度、氧化皮厚度、横向最大夹杂物尺寸(表中简写为横向夹杂尺寸)、纵向最大夹杂物尺寸(表中简写为纵向夹杂尺寸)以及网状碳化物级别(表中简写为网碳级别),用电子探针检测分析中心碳偏析比,对各个样品腐蚀之后观察最大脱碳层深度和脱碳层占总圆周的比例(表中简写为脱碳比例)。
[表2]
Figure PCTCN2020128268-appb-000002
由此可以看出,本实施例的盘条纯净度高、组织均匀、抗拉强度高且拉拔性能好,能够满足市场对深拉拔用盘条的高要求;进一步地,以本实施例的盘条作为母材,采用现有的金刚线的制备工艺,制备硅片切割用金刚线母线,所得金刚线的抗拉强度为5500MPa、直径为45μm、断丝率大致为1.5次/千公里,远远领先于现有技术。
实施例3
实施例3提供一种直径为Φ5.5mm的盘条,其化学成分以质量百分比计包括,C:1.03%,Si:0.20%,Mn:0.55%,Cr:0.22%,V:0.06%,其余为Fe和不可避免的杂质,其中杂质包括Al:0.002%、Ti:0.0006%、S:0.002%、P:0.006%、O:0.0006%和N:0.0008%。
对该实施例的盘条进行组织性能检测,包括:
第一,以每卷盘条取12个样品,分别检测得到抗拉强度均为1320~1350MPa、断面收缩率33~39%;
第二,以每卷盘条取12个样品,12个样品包括6个纵截面样品和6个横截面样品,如表3所示,磨抛 后用金相显微镜观察测量每个样品的最大表面裂纹深度、氧化皮厚度、横向最大夹杂物尺寸(表中简写为横向夹杂尺寸)、纵向最大夹杂物尺寸(表中简写为纵向夹杂尺寸)以及网状碳化物级别(表中简写为网碳级别),用电子探针检测分析中心碳偏析比,对各个样品腐蚀之后观察最大脱碳层深度和脱碳层占总圆周的比例(表中简写为脱碳比例)。
[表3]
Figure PCTCN2020128268-appb-000003
由此可以看出,本实施例的盘条纯净度高、组织均匀、抗拉强度高且拉拔性能好,能够满足市场对深拉拔用盘条的高要求;进一步地,以本实施例的盘条作为母材,采用现有的金刚线的制备工艺,制备硅片切割用金刚线母线,所得金刚线的抗拉强度为5500MPa、直径为45μm、断丝率大致为1.6次/千公里,远远领先于现有技术。
实施例4
实施例4提供一种直径为Φ4.5mm的盘条,其化学成分以质量百分比计包括,C:1.05%,Si:0.16%,Mn:0.55%,Cr:0.01%,B:0.0005%,V:0.04%,其余为Fe和不可避免的杂质,其中杂质包括Al:0.002%、Ti:0.0003%、S:0.001%、P:0.003%、O:0.0003%和N:0.0009%。
对该实施例的盘条进行组织性能检测,包括:
第一,以每卷盘条取12个样品,分别检测得到抗拉强度均为1320~1360MPa、断面收缩率32~38%;
第二,以每卷盘条取12个样品,12个样品包括6个纵截面样品和6个横截面样品,如表4所示,磨抛后用金相显微镜观察测量每个样品的最大表面裂纹深度、氧化皮厚度、横向最大夹杂物尺寸(表中简写为横向夹杂尺寸)、纵向最大夹杂物尺寸(表中简写为纵向夹杂尺寸)以及网状碳化物级别(表中简写为网碳级别),用电子探针检测分析中心碳偏析比,对各个样品腐蚀之后观察最大脱碳层深度和脱碳层占总圆周的 比例(表中简写为脱碳比例)。
[表4]
Figure PCTCN2020128268-appb-000004
由此可以看出,本实施例的盘条纯净度高、组织均匀、抗拉强度高且拉拔性能好,能够满足市场对深拉拔用盘条的高要求;进一步地,以本实施例的盘条作为母材,采用现有的金刚线的制备工艺,制备硅片切割用金刚线母线,所得金刚线的抗拉强度为5500MPa、直径为40μm、断丝率大致为1.8次/千公里,远远领先于现有技术。
实施例5
实施例5提供一种直径为Φ5.5mm的盘条,其化学成分以质量百分比计包括,C:1.05%,Si:0.22%,Mn:0.45%,Cr:0.19%,B:0.001%,其余为Fe和不可避免的杂质,其中杂质包括Al:0.001%、Ti:0.0002%、S:0.003%、P:0.004%、O:0.0005%和N:0.001%。
对该实施例的盘条进行组织性能检测,包括:
第一,以每卷盘条取12个样品,分别检测得到抗拉强度均为1340~1380MPa、断面收缩率30~38%;
第二,以每卷盘条取12个样品,12个样品包括6个纵截面样品和6个横截面样品,如表5所示,磨抛后用金相显微镜观察测量每个样品的最大表面裂纹深度、氧化皮厚度、横向最大夹杂物尺寸(表中简写为横向夹杂尺寸)、纵向最大夹杂物尺寸(表中简写为纵向夹杂尺寸)以及网状碳化物级别(表中简写为网碳级别),用电子探针检测分析中心碳偏析比,对各个样品腐蚀之后观察最大脱碳层深度和脱碳层占总圆周的比例(表中简写为脱碳比例)。
[表5]
Figure PCTCN2020128268-appb-000005
Figure PCTCN2020128268-appb-000006
由此可以看出,本实施例的盘条纯净度高、组织均匀、抗拉强度高且拉拔性能好,能够满足市场对深拉拔用盘条的高要求;进一步地,以本实施例的盘条作为母材,采用现有的金刚线的制备工艺,制备硅片切割用金刚线母线,所得金刚线的抗拉强度为6100MPa、直径为40μm、断丝率大致为1.9次/千公里,远远领先于现有技术。
实施例6
实施例6提供一种直径为Φ5.0mm的盘条,其化学成分以质量百分比计包括,C:1.08%,Si:0.25%,Mn:0.32%,Cr:0.18%,V:0.01%,其余为Fe和不可避免的杂质,其中杂质包括Al:0.001%、Ti:0.0005%、S:0.001%、P:0.003%、O:0.0004%和N:0.0006%。
对该实施例的盘条进行组织性能检测,包括:
第一,以每卷盘条取12个样品,分别检测得到抗拉强度均为1350~1400MPa、断面收缩率30~38%;
第二,以每卷盘条取12个样品,12个样品包括6个纵截面样品和6个横截面样品,如表6所示,磨抛后用金相显微镜观察测量每个样品的最大表面裂纹深度、氧化皮厚度、横向最大夹杂物尺寸(表中简写为横向夹杂尺寸)、纵向最大夹杂物尺寸(表中简写为纵向夹杂尺寸)以及网状碳化物级别(表中简写为网碳级别),用电子探针检测分析中心碳偏析比,对各个样品腐蚀之后观察最大脱碳层深度和脱碳层占总圆周的比例(表中简写为脱碳比例)。
[表6]
Figure PCTCN2020128268-appb-000007
Figure PCTCN2020128268-appb-000008
由此可以看出,本实施例的盘条纯净度高、组织均匀、抗拉强度高且拉拔性能好,能够满足市场对深拉拔用盘条的高要求;进一步地,以本实施例的盘条作为母材,采用现有的金刚线的制备工艺,制备硅片切割用金刚线母线,所得金刚线的抗拉强度为6400MPa、直径为45μm、断丝率大致为1.9次/千公里,远远领先于现有技术。
实施例7
实施例7提供一种直径为Φ5.5mm的盘条,其化学成分以质量百分比计包括,C:1.10%,Si:0.16%,Mn:0.30%,Cr:0.15%,V:0.05%,其余为Fe和不可避免的杂质,其中杂质包括Al:0.001%、Ti:0.0002%、S:0.002%、P:0.003%、O:0.0002%和N:0.0009%。
对该实施例的盘条进行组织性能检测,包括:
第一,以每卷盘条取12个样品,分别检测得到抗拉强度均为1340~1390MPa、断面收缩率32~38%;
第二,以每卷盘条取12个样品,12个样品包括6个纵截面样品和6个横截面样品,如表7所示,磨抛后用金相显微镜观察测量每个样品的最大表面裂纹深度、氧化皮厚度、横向最大夹杂物尺寸(表中简写为横向夹杂尺寸)、纵向最大夹杂物尺寸(表中简写为纵向夹杂尺寸)以及网状碳化物级别(表中简写为网碳级别),用电子探针检测分析中心碳偏析比,对各个样品腐蚀之后观察最大脱碳层深度和脱碳层占总圆周的比例(表中简写为脱碳比例)。
[表7]
Figure PCTCN2020128268-appb-000009
Figure PCTCN2020128268-appb-000010
由此可以看出,本实施例的盘条纯净度高、组织均匀、抗拉强度高且拉拔性能好,能够满足市场对深拉拔用盘条的高要求;进一步地,以本实施例的盘条作为母材,采用现有的金刚线的制备工艺,制备硅片切割用金刚线母线,所得切金刚线的抗拉强度为6000MPa、直径为46μm、断丝率大致为2.0次/千公里,远远领先于现有技术。
实施例8
该实施例8提供了一种实施例1的盘条的生产方法,所述生产方法具体包括以下各个工序。
(1)真空熔炼工序
以Al≤0.001%、Ti≤0.0005%、Cu≤0.001%且Ni≤0.001%的工业纯铁为原料,按照C:1.01~1.10%,Si:0.15~0.40%,Mn:0.30~0.60%,Cr:0.01~0.40%,B:0.0005~0.0020%,V:0.01~0.09%的成分设计向铁水中配入合金元素,保持真空熔炼炉的炉内压力为5Pa,以此来炼制钢水。
将炼制好的钢水温度加热到1580~1600℃时,在惰性气体气氛中进行保护浇铸成锭,浇铸速度为370kg/min。
(2)钢锭重熔工序
先对真空熔炼工序中所得钢锭在惰性气体气氛下进行电渣重熔处理;再以电渣重熔所得重熔锭作为电极,采用真空自耗重熔进行处理,重熔速度为3.2kg/min,获得重熔锭;之后,对所得重熔锭保温60小时。
经检测,所得重熔锭的化学成分以质量百分比计包括,C:1.01%,Si:0.30%,Mn:0.60%,Cr:0.40%,B:0.0013%,V:0.09%,其余为Fe和不可避免的杂质,其中杂质包括Al:0.001%、Ti:0.0006%、S:0.003%、P:0.006%、O:0.0008%和N:0.0012%。
(3)制坯工序及修磨工序
将钢锭重熔工序中所得重熔锭,在1150℃温度下,锻造为长度12m且145mm×145mm的方坯钢坯;之后,依次采用16目、24目、30目的砂轮对钢坯的表面进行修磨处理,16目砂轮对钢坯的表面修磨深度大致为1mm,24目砂轮对钢坯的表面修磨深度大致为0.6mm,30目砂轮对钢坯的表面修磨深度大致为0.2mm,单面的修磨总深度大致为1.8mm(相对两面的修磨总深度大致为3.6mm),角部修磨宽度为6mm,修磨完成后的钢坯表面光滑无毛刺。
(4)高线轧制工序
将修磨好的钢坯运至高线轧制为直径Φ5.5mm的盘条,通过调整轧制之前加热时的均热温度,使开轧温度为1030~1050℃,并通过轧制过程中的水冷等控温手段,使终轧温度为980~1020℃,由此确保钢坯基 本保持在再结晶区内进行轧制。
终轧速率为105m/s,吐丝温度为890~910℃。
(5)冷却工序
将盘条在斯太尔摩冷却线上进行控温冷却,第1~4台风机开启且风量依次为100%、100%、100%、90%,其余风机关闭,斯太尔摩冷却线上的保温罩全部打开。
在第1台风机之前,辊道入口段运行速度为0.9m/s,第1~4台风机所对应的辊道运行速比为1.10:1.05:1.02:1.00,其余风机所对应的辊道运行速比为0.8:1.00~1.05:1.00。另外,采用佳灵装置调节搭接点的风速为非搭接点的风速的1.25倍,以保证搭接点和非搭接点的冷速均衡。
采用本实施例的所述生产方法,即可获得实施例1的盘条。
针对所得盘条,采用打包线将集卷后的盘条打包,打包线与盘条之间用麻布隔开,并采用全包装的方式进行包装;高线轧制时的室温为25℃,自然时效处理的时间为12天,之后再发往用户处进行拉拔制备钢丝的应用;其中,在运输和倒运过程中,采取点橡胶垫的方式,来避免盘条擦伤。
实施例9
该实施例9提供了一种实施例2的盘条的生产方法,所述生产方法具体包括以下各个工序。
(1)真空熔炼工序
以低杂质元素含量的工业纯铁为原料,按照C:1.01~1.10%,Si:0.15~0.40%,Mn:0.30~0.60%,Cr:0.01~0.40%,B:0.0005~0.0020%的成分设计向铁水中配入合金元素,保持真空熔炼炉的炉内压力为6Pa,以此来炼制钢水。
将炼制好的钢水温度加热到1600~1620℃时,在惰性气体气氛中进行保护浇铸成锭,浇铸速度为360kg/min。
(2)钢锭重熔工序
以真空熔炼工序中所得钢锭作为电极,采用真空自耗重熔进行处理,重熔速度为3.5kg/min,获得重熔锭;之后,对所得重熔锭保温72小时,而后进行避风堆冷。
经检测,所得重熔锭的化学成分以质量百分比计包括,C:1.03%,Si:0.18%,Mn:0.58%,Cr:0.36%,B:0.002%,其余为Fe和不可避免的杂质,其中杂质包括Al:0.001%、Ti:0.0005%、S:0.002%、P:0.004%、O:0.001%和N:0.0013%。
(3)制坯工序及修磨工序
将钢锭重熔工序中所得重熔锭,在1130℃温度下,锻造为长度13m且145mm×145mm的方坯钢坯;之后,依次采用16目、24目、30目的砂轮对钢坯的表面进行修磨处理,16目砂轮对钢坯的表面修磨深度大致为1.2mm,24目砂轮对钢坯的表面修磨深度大致为0.5mm,30目砂轮对钢坯的表面修磨深度大致为 0.3mm,单面的修磨总深度大致为2mm(相对两面的修磨总深度大致为4mm),角部修磨宽度为9mm,修磨完成后的钢坯表面光滑无毛刺。
(4)高线轧制工序
将修磨好的钢坯运至高线轧制为直径Φ5.0mm的盘条,通过调整轧制之前加热时的均热温度,使开轧温度为1040~1060℃,并通过轧制过程中的水冷等控温手段,使终轧温度为960~1010℃,由此确保钢坯基本保持在再结晶区内进行轧制。
终轧速率为103m/s,吐丝温度为900~920℃。
(5)冷却工序
将盘条在斯太尔摩冷却线上进行控温冷却,第1~4台风机开启且风量依次为100%、100%、90%、90%,其余风机关闭,斯太尔摩冷却线上的保温罩全部打开。
在第1台风机之前,辊道入口段运行速度为0.85m/s,第1~4台风机所对应的辊道运行速比为1.10:1.05:1.02:1.00,其余风机所对应的辊道运行速比为0.8:1.00~1.05:1.00。另外,采用佳灵装置调节搭接点的风速为非搭接点的风速的1.3倍,以保证搭接点和非搭接点的冷速均衡。
采用本实施例的所述生产方法,即可获得实施例2的盘条。
针对所得盘条,采用打包线将集卷后的盘条打包,打包线与盘条之间用麻布隔开,并采用全包装的方式进行包装;高线轧制时的室温为30℃,自然时效处理的时间为10天,之后再发往用户处进行拉拔制备钢丝的应用;其中,在运输和倒运过程中,采取点橡胶垫的方式,来避免盘条擦伤。
实施例10
该实施例10提供了一种实施例3的盘条的生产方法,所述生产方法具体包括以下各个工序。
(1)真空熔炼工序
以Al≤0.001%、Ti≤0.0005%、Cu≤0.001%且Ni≤0.001%的工业纯铁为原料,按照C:1.01~1.10%,Si:0.15~0.40%,Mn:0.30~0.60%,Cr:0.01~0.40%,V:0.01~0.09%的成分设计向铁水中配入合金元素,保持真空熔炼炉的炉内压力为5Pa,以此来炼制钢水。
将炼制好的钢水温度加热到1600~1620℃时,在惰性气体气氛中进行保护浇铸成锭,浇铸速度为330kg/min。
(2)钢锭重熔工序
以真空熔炼工序中所得钢锭作为电极,采用真空自耗重熔进行处理,重熔速度为3.0kg/min,获得重熔锭;之后,对所得重熔锭保温72小时,而后进行避风堆冷。
经检测,所得重熔锭的化学成分以质量百分比计包括,C:1.03%,Si:0.20%,Mn:0.55%,Cr:0.22%,V:0.06%,其余为Fe和不可避免的杂质,其中杂质包括Al:0.002%、Ti:0.0006%、S:0.002%、P:0.006%、 O:0.0006%和N:0.0008%。
(3)制坯工序及修磨工序
将钢锭重熔工序中所得重熔锭,在1130℃温度下,进行连轧式开坯,制得长度15m且145mm×145mm的方坯钢坯;之后,依次采用16目、24目、30目的砂轮对钢坯的表面进行修磨处理,16目砂轮对钢坯的表面修磨深度大致为1.1mm,24目砂轮对钢坯的表面修磨深度大致为0.7mm,30目砂轮对钢坯的表面修磨深度大致为0.2mm,单面的修磨总深度大致为2mm(相对两面的修磨总深度大致为4mm),角部修磨宽度为6mm,修磨完成后的钢坯表面光滑无毛刺。
(4)高线轧制工序
将修磨好的钢坯运至高线轧制为直径Φ5.5mm的盘条,通过调整轧制之前加热时的均热温度,使开轧温度为1040~1060℃,并通过轧制过程中的水冷等控温手段,使终轧温度为1000~1020℃,由此确保钢坯基本保持在再结晶区内进行轧制。
终轧速率为108m/s,吐丝温度为890~910℃。
(5)冷却工序
将盘条在斯太尔摩冷却线上进行控温冷却,第1~4台风机开启且风量依次为100%、100%、95%、95%,其余风机关闭,斯太尔摩冷却线上的保温罩全部打开。
在第1台风机之前,辊道入口段运行速度为1.0m/s,第1~4台风机所对应的辊道运行速比为1.10:1.05:1.02:1.00,其余风机所对应的辊道运行速比为0.8:1.00~1.05:1.00。另外,采用佳灵装置调节搭接点的风速为非搭接点的风速的1.3倍,以保证搭接点和非搭接点的冷速均衡。
采用本实施例的所述生产方法,即可获得实施例3的盘条。
针对所得盘条,采用打包线将集卷后的盘条打包,打包线与盘条之间用麻布隔开,并采用全包装的方式进行包装;高线轧制时的室温为10℃,自然时效处理的时间为21天,之后再发往用户处进行拉拔制备钢丝的应用;其中,在运输和倒运过程中,采取点橡胶垫的方式,来避免盘条擦伤。
实施例11
该实施例11提供了一种实施例4的盘条的生产方法,所述生产方法具体包括以下各个工序。
(1)真空熔炼工序
以Al≤0.001%、Ti≤0.0005%、Cu≤0.001%且Ni≤0.001%的工业纯铁为原料,按照C:1.01~1.10%,Si:0.15~0.40%,Mn:0.30~0.60%,Cr:0.01~0.40%,B:0.0005~0.0020%,V:0.01~0.09%的成分设计向铁水中配入合金元素,保持真空熔炼炉的炉内压力为6Pa,以此来炼制钢水。
将炼制好的钢水温度加热到1600~1620℃时,在惰性气体气氛中进行保护浇铸成锭,浇铸速度为350kg/min。
(2)钢锭重熔工序
以真空熔炼工序中所得钢锭作为电极,采用真空自耗重熔进行处理,重熔速度为3.3kg/min,获得重熔锭;之后,对所得重熔锭保温72小时,而后进行避风堆冷。
经检测,所得重熔锭的化学成分以质量百分比计包括,C:1.05%,Si:0.16%,Mn:0.55%,Cr:0.01%,B:0.0005%,V:0.04%,其余为Fe和不可避免的杂质,其中杂质包括Al:0.002%、Ti:0.0003%、S:0.001%、P:0.003%、O:0.0003%和N:0.0009%。
(3)制坯工序及修磨工序
将钢锭重熔工序中所得重熔锭,在1130℃温度下,锻造为长度14m且145mm×145mm的方坯钢坯;之后,依次采用16目、24目、30目的砂轮对钢坯的表面进行修磨处理,16目砂轮对钢坯的表面修磨深度大致为1.2mm,24目砂轮对钢坯的表面修磨深度大致为0.5mm,30目砂轮对钢坯的表面修磨深度大致为0.2mm,单面的修磨总深度大致为1.9mm(相对两面的修磨总深度大致为3.8mm),角部修磨宽度为8mm,修磨完成后的钢坯表面光滑无毛刺。
(4)高线轧制工序
将修磨好的钢坯运至高线轧制为直径Φ4.5mm的盘条,通过调整轧制之前加热时的均热温度,使开轧温度为1050~1060℃,并通过轧制过程中的水冷等控温手段,使终轧温度为980~1010℃,由此确保钢坯基本保持在再结晶区内进行轧制。
终轧速率为110m/s,吐丝温度为900~920℃。
(5)冷却工序
将盘条在斯太尔摩冷却线上进行控温冷却,第1~4台风机开启且风量依次为100%、100%、85%、80%,其余风机关闭,斯太尔摩冷却线上的保温罩全部打开。
在第1台风机之前,辊道入口段运行速度为0.93m/s,第1~4台风机所对应的辊道运行速比为1.10:1.05:1.02:1.00,其余风机所对应的辊道运行速比为0.8:1.00~1.05:1.00。另外,采用佳灵装置调节搭接点的风速为非搭接点的风速的1.25倍,以保证搭接点和非搭接点的冷速均衡。
采用本实施例的所述生产方法,即可获得实施例4的盘条。
针对所得盘条,采用打包线将集卷后的盘条打包,打包线与盘条之间用麻布隔开,并采用全包装的方式进行包装;高线轧制时的室温为32℃,自然时效处理的时间为11天,之后再发往用户处进行拉拔制备钢丝的应用;其中,在运输和倒运过程中,采取点橡胶垫的方式,来避免盘条擦伤。
实施例12
该实施例12提供了一种实施例5的盘条的生产方法,所述生产方法具体包括以下各个工序。
(1)真空熔炼工序
以工业纯铁为原料,按照C:1.01~1.10%,Si:0.15~0.40%,Mn:0.30~0.60%,Cr:0.01~0.40%,B:0.0005~0.0020%的成分设计向铁水中配入合金元素,保持真空熔炼炉的炉内压力为8Pa,以此来炼制钢水。
将炼制好的钢水温度加热到1580~1600℃时,在惰性气体气氛中进行保护浇铸成锭,浇铸速度为320kg/min。
(2)钢锭重熔工序
先对真空熔炼工序中所得钢锭在惰性气体气氛下进行电渣重熔处理;再以电渣重熔所得重熔锭作为电极,采用真空自耗重熔进行处理,重熔速度为3.3kg/min,获得重熔锭;之后,对所得重熔锭保温72小时。
经检测,所得重熔锭的化学成分以质量百分比计包括,C:1.05%,Si:0.22%,Mn:0.45%,Cr:0.19%,B:0.001%,其余为Fe和不可避免的杂质,其中杂质包括Al:0.001%、Ti:0.0002%、S:0.003%、P:0.004%、O:0.0005%和N:0.001%。
(3)制坯工序及修磨工序
将钢锭重熔工序中所得重熔锭,在1140℃温度下,锻造为长度10m且145mm×145mm的方坯钢坯;之后,依次采用16目、24目、30目的砂轮对钢坯的表面进行修磨处理,16目砂轮对钢坯的表面修磨深度大致为1.4mm,24目砂轮对钢坯的表面修磨深度大致为0.5mm,30目砂轮对钢坯的表面修磨深度大致为0.1mm,单面的修磨总深度大致为2.0mm(相对两面的修磨总深度大致为4.0mm),角部修磨宽度为8mm,修磨完成后的钢坯表面光滑无毛刺。
(4)高线轧制工序
将修磨好的钢坯运至高线轧制为直径Φ5.5mm的盘条,通过调整轧制之前加热时的均热温度,使开轧温度为1040~1060℃,并通过轧制过程中的水冷等控温手段,使终轧温度为980~1020℃,由此确保钢坯基本保持在再结晶区内进行轧制。
终轧速率为110m/s,吐丝温度为890~910℃。
(5)冷却工序
将盘条在斯太尔摩冷却线上进行控温冷却,第1~4台风机开启且风量依次为100%、100%、100%、100%,其余风机关闭,斯太尔摩冷却线上的保温罩全部打开。
在第1台风机之前,辊道入口段运行速度为1.0m/s,第1~4台风机所对应的辊道运行速比为1.10:1.05:1.02:1.00,其余风机所对应的辊道运行速比为0.8:1.00~1.05:1.00。另外,采用佳灵装置调节搭接点的风速为非搭接点的风速的1.28倍,以保证搭接点和非搭接点的冷速均衡。
采用本实施例的所述生产方法,即可获得实施例5的盘条。
针对所得盘条,采用打包线将集卷后的盘条打包,打包线与盘条之间用麻布隔开,并采用全包装的方式进行包装;高线轧制时的室温为28℃,自然时效处理的时间为11天,之后再发往用户处进行拉拔制备钢 丝的应用;其中,在运输和倒运过程中,采取点橡胶垫的方式,来避免盘条擦伤。
实施例13
该实施例13提供了一种实施例6的盘条的生产方法,所述生产方法具体包括以下各个工序。
(1)真空熔炼工序
以Al、Ti、Cu且Ni等杂质元素含量低的工业纯铁为原料,按C:1.01~1.10%,Si:0.15~0.40%,Mn:0.30~0.60%,Cr:0.01~0.40%,V:0.01~0.09%的成分设计向铁水中配入合金元素,保持真空熔炼炉的炉内压力为8Pa,以此来炼制钢水。
将炼制好的钢水温度加热到1600~1610℃时,在惰性气体气氛中进行保护浇铸成锭,浇铸速度为350kg/min。
(2)钢锭重熔工序
以真空熔炼工序中所得钢锭作为电极,采用真空自耗重熔进行处理,重熔速度为3.4kg/min,获得重熔锭;之后,对所得重熔锭保温72小时,而后进行避风堆冷。
经检测,所得重熔锭的化学成分以质量百分比计包括,C:1.08%,Si:0.25%,Mn:0.32%,Cr:0.18%,V:0.01%,其余为Fe和不可避免的杂质,其中杂质包括Al:0.001%、Ti:0.0005%、S:0.001%、P:0.003%、O:0.0004%和N:0.0006%。
(3)制坯工序及修磨工序
将钢锭重熔工序中所得重熔锭,在1130℃温度下,进行连轧式开坯,制得长度14m且145mm×145mm的方坯钢坯;之后,依次采用16目、24目、30目的砂轮对钢坯的表面进行修磨处理,16目砂轮对钢坯的表面修磨深度大致为1.1mm,24目砂轮对钢坯的表面修磨深度大致为0.7mm,30目砂轮对钢坯的表面修磨深度大致为0.2mm,单面的修磨总深度大致为2mm(相对两面的修磨总深度大致为4mm),角部修磨宽度为6mm,修磨完成后的钢坯表面光滑无毛刺。
(4)高线轧制工序
将修磨好的钢坯运至高线轧制为直径Φ5.0mm的盘条,通过调整轧制之前加热时的均热温度,使开轧温度为1040~1060℃,并通过轧制过程中的水冷等控温手段,使终轧温度为1000~1020℃,由此确保钢坯基本保持在再结晶区内进行轧制。
终轧速率为110m/s,吐丝温度为890~910℃。
(5)冷却工序
将盘条在斯太尔摩冷却线上进行控温冷却,第1~4台风机开启且风量依次为100%、100%、95%、95%,其余风机关闭,斯太尔摩冷却线上的保温罩全部打开。
在第1台风机之前,辊道入口段运行速度为1.0m/s,第1~4台风机所对应的辊道运行速比为 1.10:1.05:1.02:1.00,其余风机所对应的辊道运行速比为0.8:1.00~1.05:1.00。另外,采用佳灵装置调节搭接点的风速为非搭接点的风速的1.2倍,以保证搭接点和非搭接点的冷速均衡。
(6)热处理工序
对斯太尔摩冷却后的盘条进行离线的盐浴热处理(可替换为铅浴热处理),其中等温相变阶段的温度为540~560℃且时间为70s。
采用本实施例的所述生产方法,即可获得实施例6的盘条。
针对所得盘条,采用打包线将集卷后的盘条打包,打包线与盘条之间用麻布隔开,并采用全包装的方式进行包装;高线轧制时的室温为5℃,自然时效处理的时间为23天,之后再发往用户处进行拉拔制备钢丝的应用;其中,在运输和倒运过程中,采取点橡胶垫的方式,来避免盘条擦伤。
实施例14
该实施例14提供了一种实施例7的盘条的生产方法,所述生产方法具体包括以下各个工序。
(1)真空熔炼工序
以Al≤0.001%、Ti≤0.0005%、Cu≤0.001%且Ni≤0.001%的工业纯铁为原料,按照C:1.01~1.10%,Si:0.15~0.40%,Mn:0.30~0.60%,Cr:0.01~0.40%,V:0.01~0.09%的成分设计向铁水中配入合金元素,保持真空熔炼炉的炉内压力为6Pa,以此来炼制钢水。
将炼制好的钢水温度加热到1590~1600℃时,在惰性气体气氛中进行保护浇铸成锭,浇铸速度为330kg/min。
(2)钢锭重熔工序
以真空熔炼工序中所得钢锭作为电极,采用真空自耗重熔进行处理,重熔速度为3.5kg/min,获得重熔锭;之后,对所得重熔锭保温72小时,而后进行避风堆冷。
经检测,所得重熔锭的化学成分以质量百分比计包括,C:1.10%,Si:0.16%,Mn:0.30%,Cr:0.15%,V:0.05%,其余为Fe和不可避免的杂质,其中杂质包括Al:0.001%、Ti:0.0002%、S:0.002%、P:0.003%、O:0.0002%和N:0.0009%。
(3)制坯工序及修磨工序
将钢锭重熔工序中所得重熔锭,在1150℃温度下,锻造为长度10m且145mm×145mm的方坯钢坯;之后,依次采用16目、24目、30目的砂轮对钢坯的表面进行修磨处理,16目砂轮对钢坯的表面修磨深度大致为1.1mm,24目砂轮对钢坯的表面修磨深度大致为0.7mm,30目砂轮对钢坯的表面修磨深度大致为0.2mm,单面的修磨总深度大致为2mm(相对两面的修磨总深度大致为4mm),角部修磨宽度为8mm,修磨完成后的钢坯表面光滑无毛刺。
(4)高线轧制工序
将修磨好的钢坯运至高线轧制为直径Φ5.5mm的盘条,通过调整轧制之前加热时的均热温度,使开轧温度为1030~1050℃,并通过轧制过程中的水冷等控温手段,使终轧温度为950~990℃,由此确保钢坯基本保持在再结晶区内进行轧制。
终轧速率为108m/s,吐丝温度为890~910℃。
(5)冷却工序
将盘条在斯太尔摩冷却线上进行控温冷却,第1~4台风机开启且风量依次为100%、100%、99%、95%,其余风机关闭,斯太尔摩冷却线上的保温罩全部打开。
在第1台风机之前,辊道入口段运行速度为1.0m/s,第1~4台风机所对应的辊道运行速比为1.10:1.05:1.02:1.00,其余风机所对应的辊道运行速比为0.8:1.00~1.05:1.00。另外,采用佳灵装置调节搭接点的风速为非搭接点的风速的1.18倍,以保证搭接点和非搭接点的冷速均衡。
(6)热处理工序
对斯太尔摩冷却后的盘条进行离线的盐浴热处理,其中等温相变阶段的温度为520~540℃且时间为80s。
采用本实施例的所述生产方法,即可获得实施例7的盘条。
针对所得盘条,采用打包线将集卷后的盘条打包,打包线与盘条之间用麻布隔开,并采用全包装的方式进行包装;高线轧制时的室温为25℃,自然时效处理的时间为13天,之后再发往用户处进行拉拔制备钢丝的应用;其中,在运输和倒运过程中,采取点橡胶垫的方式,来避免盘条擦伤。
总得来讲,本发明相较于现有技术具有以下有益效果:通过化学成分的设计、生产方法的工艺技术改进,严格控制杂质物尺寸和类型,确保纯净度高、组织均匀,提高盘条的抗拉强度和拉拔性能;使得盘条能够适用于超细、断丝率低、高强度的金刚线的生产,可拉拔制备出直径40~46μm、断丝率≤2次/千公里、抗拉强度≥5000MPa的金刚线母线,适用于制造硅片切割用金刚线,远远满足市场对良好的拉拔性能、低断丝率以及高强度钢丝的需求,填补了国内外5000MPa级以上金刚线用盘条的技术空白。

Claims (20)

  1. 一种5000MPa级金刚线用盘条的生产方法,其特征在于,所述盘条的化学成分以质量百分比计包括:C:1.01~1.10%,Si:0.15~0.40%,Mn:0.30~0.60%,Cr:0.01~0.40%,以及B:0.0005~0.0020%和V:0.01~0.09%二者中的任一种或二种;其余为Fe和不可避免的杂质,其中杂质包括Al≤0.003%、Ti≤0.0008%、S≤0.005%、P≤0.008%、O≤0.0010%和N≤0.0020%;所述生产方法包括以下工序,
    真空熔炼:采用真空熔炼炉在炉内压力10Pa以下的氛围中炼制钢水,并浇铸成钢锭;
    钢锭重熔:采用电渣重熔和真空自耗重熔的任一种或两种对钢锭处理,获得重熔锭;其中,电渣重熔在保护气氛下进行,真空自耗重熔的重熔速度为3.0~3.5kg/min;
    制坯及修磨:将重熔锭进行开坯或锻造为钢坯,并对钢坯进行修磨;
    高线轧制:将钢坯轧制为盘条,开轧温度为1030~1060℃,终轧温度为950~1020℃;
    冷却:将盘条在斯太尔摩冷却线上进行控温冷却,第1~4台风机开启且风量为80%~100%,其余风机关闭。
  2. 根据权利要求1所述的5000MPa级金刚线用盘条的生产方法,其特征在于,在真空熔炼工序中,炉内压力为5Pa以下。
  3. 根据权利要求1所述的5000MPa级金刚线用盘条的生产方法,其特征在于,在真空熔炼工序中,以Al≤0.001%、Ti≤0.0005%、Cu≤0.001%且Ni≤0.001%的工业纯铁为原料,并按照成分设计配入合金元素,采用真空熔炼炉炼制钢水。
  4. 根据权利要求1所述的5000MPa级金刚线用盘条的生产方法,其特征在于,在真空熔炼工序中,浇铸温度为1580~1620℃。
  5. 根据权利要求1所述的5000MPa级金刚线用盘条的生产方法,其特征在于,在钢锭重熔工序中,采用真空自耗重熔获得重熔锭之后,对所得重熔锭保温48小时以上。
  6. 根据权利要求1所述的5000MPa级金刚线用盘条的生产方法,其特征在于,在制坯工序中,将重熔锭进行开坯或锻造为长度9~16m且145mm×145mm的方坯。
  7. 根据权利要求1所述的5000MPa级金刚线用盘条的生产方法,其特征在于,在制坯工序中,将重熔锭在1130-1160℃温度下进行开坯或锻造。
  8. 根据权利要求1所述的5000MPa级金刚线用盘条的生产方法,其特征在于,在修磨工序中,对钢坯表面的修磨总深度≥1.5mm。
  9. 根据权利要求8所述的5000MPa级金刚线用盘条的生产方法,其特征在于,在修磨工序中,依次采用16目、24目、30目的砂轮对钢坯的表面进行修磨处理,且各道次修磨深度分别为≥0.9mm、≥0.5mm、 ≥0.1mm,角部修磨宽度≥5mm。
  10. 根据权利要求1所述的5000MPa级金刚线用盘条的生产方法,其特征在于,在高线轧制工序中,将钢坯轧制成直径为Φ4.5~5.5mm的盘条。
  11. 根据权利要求1所述的5000MPa级金刚线用盘条的生产方法,其特征在于,在高线轧制工序中,终轧速率为100~110m/s。
  12. 根据权利要求1所述的5000MPa级金刚线用盘条的生产方法,其特征在于,在高线轧制工序中,吐丝温度为890~920℃。
  13. 根据权利要求1所述的5000MPa级金刚线用盘条的生产方法,其特征在于,在冷却工序中,在第1台风机之前,辊道入口段运行速度为0.9~1.0m/s。
  14. 根据权利要求13所述的5000MPa级金刚线用盘条的生产方法,其特征在于,在冷却工序中,保温罩全部打开,并且第1~4台风机所对应的辊道运行速比为1.10:1.05:1.02:1.00。
  15. 根据权利要求1所述的5000MPa级金刚线用盘条的生产方法,其特征在于,在冷却工序中,采用佳灵装置调节搭接点的风速为非搭接点的风速的1.1~1.4倍。
  16. 根据权利要求1所述的5000MPa级金刚线用盘条的生产方法,其特征在于,还包括热处理工序:对斯太尔摩冷却后的盘条进行盐浴热处理或者铅浴热处理,其中等温相变阶段的温度为520~560℃且时间为20~80s。
  17. 一种5000MPa级金刚线用盘条,其特征在于,其采用权利要求1所述的生产方法制备而成。
  18. 根据权利要求17所述的5000MPa级金刚线用盘条,其特征在于,其抗拉强度≥1320MPa,断面收缩率≥30%。
  19. 根据权利要求17所述的5000MPa级金刚线用盘条,其特征在于,其最大夹杂物尺寸≤4μm,网状碳化物≤1.0级,网状碳化物的检出比例≤30%,中心碳偏析比≤1.03。
  20. 根据权利要求17所述的5000MPa级金刚线用盘条,其特征在于,其表面裂纹深度≤30μm,脱碳层深度≤40μm,脱碳层占总圆周的比例≤15%,表面氧化皮厚度为7~15μm。
PCT/CN2020/128268 2020-10-22 2020-11-12 5000MPa级金刚线用盘条及其生产方法 WO2022082900A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237010960A KR20230059827A (ko) 2020-10-22 2020-11-12 5,000 MPa급 다이아몬드 와이어용 선재 및 그 생산 방법
EP20958478.8A EP4206346A4 (en) 2020-10-22 2020-11-12 ROLL ROD FOR DIAMOND WIRE OF 500 MPA QUALITY AND PRODUCTION PROCESS THEREOF
JP2023521827A JP2023544639A (ja) 2020-10-22 2020-11-12 5000MPa級ダイヤモンドワイヤ用荒引線及びその生産方法
US18/247,741 US20230416865A1 (en) 2020-10-22 2020-11-12 Wire rod for 5000 mpa-grade diamond wire and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011134922.3 2020-10-22
CN202011134922.3A CN112011742B (zh) 2020-10-22 2020-10-22 5000MPa级金刚线用盘条及其生产方法

Publications (1)

Publication Number Publication Date
WO2022082900A1 true WO2022082900A1 (zh) 2022-04-28

Family

ID=73527919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128268 WO2022082900A1 (zh) 2020-10-22 2020-11-12 5000MPa级金刚线用盘条及其生产方法

Country Status (6)

Country Link
US (1) US20230416865A1 (zh)
EP (1) EP4206346A4 (zh)
JP (1) JP2023544639A (zh)
KR (1) KR20230059827A (zh)
CN (3) CN112011742B (zh)
WO (1) WO2022082900A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114733920A (zh) * 2022-05-07 2022-07-12 江苏永钢集团有限公司 一种焊丝钢er70s-6热轧盘条氧化铁皮控制方法
CN115415314A (zh) * 2022-09-14 2022-12-02 新疆八一钢铁股份有限公司 利于拉丝钢拉拔过程表面氧化铁皮剥落的控冷工艺
CN115449694A (zh) * 2022-08-22 2022-12-09 成都先进金属材料产业技术研究院股份有限公司 一种盾构机刀具及其生产方法
CN115287544B (zh) * 2022-08-24 2023-10-31 浙江青山钢铁有限公司 一种具有优异焊接性能的软磁不锈钢盘条及其制造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113621865B (zh) * 2020-05-06 2022-06-28 宝山钢铁股份有限公司 一种冶炼极细金刚砂线用钢的工艺方法
CN113403521A (zh) * 2021-05-07 2021-09-17 青岛特殊钢铁有限公司 一种2100MPa级合金防腐镀层钢丝用盘条生产方法
CN114734009B (zh) * 2022-03-23 2024-04-02 江阴兴澄合金材料有限公司 一种超高强度针布用钢线材及其制造方法
CN116891977B (zh) * 2023-09-04 2023-11-21 江苏永钢集团有限公司 一种特高强度金刚线母线用盘条及其生产方法
CN117568700B (zh) * 2024-01-10 2024-04-19 江苏省沙钢钢铁研究院有限公司 一种高纯净金刚线铸锭的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03253544A (ja) * 1990-03-01 1991-11-12 Daido Steel Co Ltd ショット粒用高硬線鋼材
JP2005002413A (ja) * 2003-06-12 2005-01-06 Sumitomo Metal Ind Ltd 鋼線材及び鋼線の製造方法
CN103717326A (zh) * 2012-04-10 2014-04-09 新日铁住金株式会社 线材、使用该线材的钢丝以及钢坯
CN110230008A (zh) * 2019-06-26 2019-09-13 江苏省沙钢钢铁研究院有限公司 超细超高强度钢丝、盘条及盘条的生产方法
CN110238230A (zh) * 2019-04-28 2019-09-17 江苏省沙钢钢铁研究院有限公司 一种超高强度金刚线用盘条的生产方法
CN110318001A (zh) * 2019-06-27 2019-10-11 江苏省沙钢钢铁研究院有限公司 一种金刚线母线用高碳钢及其熔炼方法
CN111041352A (zh) * 2019-11-30 2020-04-21 江苏省沙钢钢铁研究院有限公司 一种切割金刚线用盘条炉外精炼生产方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3983218B2 (ja) * 2003-10-23 2007-09-26 株式会社神戸製鋼所 延性に優れた極細高炭素鋼線およびその製造方法
EP1900837B1 (en) * 2005-06-29 2020-09-23 Nippon Steel Corporation High-strength wire rod excelling in wire drawing performance and high strength steel wire
JP5162875B2 (ja) * 2005-10-12 2013-03-13 新日鐵住金株式会社 伸線特性に優れた高強度線材およびその製造方法
WO2007139234A1 (ja) * 2006-06-01 2007-12-06 Nippon Steel Corporation 高延性の高炭素鋼線材
CN101649416B (zh) * 2009-09-04 2011-05-25 江苏省沙钢钢铁研究院有限公司 高碳钢盘条及其制备方法
CN102181786A (zh) * 2011-04-25 2011-09-14 江苏省沙钢钢铁研究院有限公司 1670MPa级桥梁缆索镀锌钢丝用盘条及其制备方法
CN102953005B (zh) * 2011-08-19 2015-07-08 鞍钢股份有限公司 一种生产细钢丝用高碳低合金钢盘条及其制造方法
CN102534094B (zh) * 2012-01-01 2013-05-22 首钢总公司 一种通过转炉小方坯连铸工艺生产帘线钢线材的方法
JP6461672B2 (ja) * 2015-03-27 2019-01-30 株式会社神戸製鋼所 冷間圧造性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用鋼線、並びにボルト
JP6481770B2 (ja) * 2015-10-23 2019-03-13 新日鐵住金株式会社 伸線加工用鋼線材
CN108396128A (zh) * 2017-11-28 2018-08-14 江苏省沙钢钢铁研究院有限公司 一种大方坯合金工具钢线材表面脱碳的控制方法
CN108559908A (zh) * 2018-05-09 2018-09-21 张家港荣盛炼钢有限公司 钢材、热轧盘条及其制造方法和应用
CN109468530B (zh) * 2018-10-17 2021-04-06 江阴兴澄合金材料有限公司 2000MPa级以上大桥缆索镀锌钢丝用热轧盘条及生产方法
CN110117748B (zh) * 2019-05-24 2020-05-22 江苏省沙钢钢铁研究院有限公司 切割钢丝、切割钢丝用钢材及其生产方法
CN110629132B (zh) * 2019-09-26 2020-11-17 江苏省沙钢钢铁研究院有限公司 超高强度钢帘线用盘条及其制造方法
CN110669981B (zh) * 2019-10-02 2021-07-16 江苏省沙钢钢铁研究院有限公司 一种钒硼复合微合金化帘线钢盘条及其生产方法
CN111187992B (zh) * 2020-02-26 2022-03-29 江苏省沙钢钢铁研究院有限公司 一种切割金刚线用盘条的连铸坯生产方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03253544A (ja) * 1990-03-01 1991-11-12 Daido Steel Co Ltd ショット粒用高硬線鋼材
JP2005002413A (ja) * 2003-06-12 2005-01-06 Sumitomo Metal Ind Ltd 鋼線材及び鋼線の製造方法
CN103717326A (zh) * 2012-04-10 2014-04-09 新日铁住金株式会社 线材、使用该线材的钢丝以及钢坯
CN110238230A (zh) * 2019-04-28 2019-09-17 江苏省沙钢钢铁研究院有限公司 一种超高强度金刚线用盘条的生产方法
CN110230008A (zh) * 2019-06-26 2019-09-13 江苏省沙钢钢铁研究院有限公司 超细超高强度钢丝、盘条及盘条的生产方法
CN110318001A (zh) * 2019-06-27 2019-10-11 江苏省沙钢钢铁研究院有限公司 一种金刚线母线用高碳钢及其熔炼方法
CN111041352A (zh) * 2019-11-30 2020-04-21 江苏省沙钢钢铁研究院有限公司 一种切割金刚线用盘条炉外精炼生产方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4206346A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114733920A (zh) * 2022-05-07 2022-07-12 江苏永钢集团有限公司 一种焊丝钢er70s-6热轧盘条氧化铁皮控制方法
CN115449694A (zh) * 2022-08-22 2022-12-09 成都先进金属材料产业技术研究院股份有限公司 一种盾构机刀具及其生产方法
CN115449694B (zh) * 2022-08-22 2023-09-19 成都先进金属材料产业技术研究院股份有限公司 一种盾构机刀具及其生产方法
CN115287544B (zh) * 2022-08-24 2023-10-31 浙江青山钢铁有限公司 一种具有优异焊接性能的软磁不锈钢盘条及其制造方法
CN115415314A (zh) * 2022-09-14 2022-12-02 新疆八一钢铁股份有限公司 利于拉丝钢拉拔过程表面氧化铁皮剥落的控冷工艺

Also Published As

Publication number Publication date
US20230416865A1 (en) 2023-12-28
CN112899565B (zh) 2022-05-17
CN112899565A (zh) 2021-06-04
CN112011742A (zh) 2020-12-01
EP4206346A1 (en) 2023-07-05
CN112011742B (zh) 2021-01-22
CN112899566B (zh) 2022-05-17
KR20230059827A (ko) 2023-05-03
CN112899566A (zh) 2021-06-04
JP2023544639A (ja) 2023-10-24
EP4206346A4 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
WO2022082900A1 (zh) 5000MPa级金刚线用盘条及其生产方法
JP5893770B2 (ja) ストリップ連続鋳造法による700MPa級高強度耐候性鋼の製造方法
JP5893769B2 (ja) ストリップ鋳造法による550MPa級高強度耐候性鋼帯の製造方法
JP5893768B2 (ja) ストリップ鋳造法による700MPa級高強度耐候性鋼の製造方法
CN107502821A (zh) 一种特厚规格超低温环境下使用的经济型x70管线钢板及其制造方法
CN110230008B (zh) 超细超高强度钢丝、盘条及盘条的生产方法
KR101461740B1 (ko) 재질 및 두께 편차가 작고 내도금박리성이 우수한 열연강판 및 그 제조방법
WO2021052315A1 (zh) 30CrMo热轧钢板/带及其生产方法
WO2021143661A1 (zh) 一种高耐蚀带钢及其制造方法
CN111424211B (zh) 宽幅700MPa级热轧集装箱用耐候钢及其制造方法
WO2021052314A1 (zh) 耐火耐候钢板/带及其制造方法
CN113388787B (zh) 一种高强韧耐磨钢及其纳米孪晶增强增韧化的制备方法
WO2021052426A1 (zh) 一种薄规格高耐蚀钢及其生产方法
CN112090956B (zh) 一种低偏析高扭转桥梁缆索用盘条的生产控制方法
CN111534746B (zh) 宽幅450MPa级热轧集装箱用耐候钢及其制造方法
CN110983176A (zh) 一种70公斤级焊丝用热轧盘条及其生产方法
CN110791717A (zh) 一种高品质亚共析合金工具钢线材及其生产方法
CN112522641B (zh) 一种高强薄规格高耐蚀钢及其制造方法
CN103484764B (zh) Ti析出强化型超高强热轧薄板及其生产方法
WO2020108595A1 (zh) 一种高表面质量、低屈强比热轧高强度钢板及制造方法
WO2021052319A1 (zh) 高强薄规格高耐蚀钢及其制造方法
CN103614637A (zh) 一种梳理用齿条钢盘条及其生产方法
CN113751679A (zh) 一种无钴马氏体时效钢冷轧薄带的制造方法
WO2019153764A1 (zh) 一种热轧耐磨钢板及其制造方法
CN112760574B (zh) 一种具有优异深拉拔加工性能的中碳钢热轧盘条及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958478

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237010960

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020958478

Country of ref document: EP

Effective date: 20230330

WWE Wipo information: entry into national phase

Ref document number: 18247741

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2023521827

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE